WO2021155658A1 - 一种车身高度测量装置,以及采用此装置的车辆 - Google Patents

一种车身高度测量装置,以及采用此装置的车辆 Download PDF

Info

Publication number
WO2021155658A1
WO2021155658A1 PCT/CN2020/107674 CN2020107674W WO2021155658A1 WO 2021155658 A1 WO2021155658 A1 WO 2021155658A1 CN 2020107674 W CN2020107674 W CN 2020107674W WO 2021155658 A1 WO2021155658 A1 WO 2021155658A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
value
vehicle height
vehicle
height
Prior art date
Application number
PCT/CN2020/107674
Other languages
English (en)
French (fr)
Inventor
陈刚
Original Assignee
陈刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈刚 filed Critical 陈刚
Publication of WO2021155658A1 publication Critical patent/WO2021155658A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/06Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness

Definitions

  • the invention is mainly used to measure or indicate the height of the vehicle body.
  • Vehicle height sensor Chassis Height Sensor in English, also called axle height sensor, vehicle attitude sensor, vehicle height sensor, etc.
  • vehicle suspension control systems such as active suspension system, suspension damping control system, air suspension system, etc.
  • headlight automatic adjustment systems all need to use this sensor to measure changes in the vehicle’s driving posture.
  • the vehicle height sensor has been developed for several generations, from the initial contact resistive film angle sensor to various non-contact angle sensors. Among them, the contact angle sensor has been eliminated due to its short life span, low accuracy, and poor anti-interference ability.
  • the mainstream non-contact sensors are divided into linear Hall type, magnetoresistive type, electromagnetic induction type, and differential Hall type.
  • the four-link vehicle height sensor is connected to the rotating arm of an angle sensor through the four-link structure of the car’s lower swing arm.
  • the lower control arm will rotate around the rotation axis and drive the four-link at the same time.
  • the swing arm of the angle sensor is driven to rotate, and the output signal of the angle sensor changes, which indirectly reflects the change of the vehicle height.
  • the four-link vehicle height sensor is one of the more commonly used sensors among the above-mentioned vehicle height sensors.
  • the linear Hall type is the earliest non-contact sensor used in vehicle height measurement. It uses the characteristic that the output of the Hall element is proportional to the magnetic field. By designing a special magnetic circuit, it can ensure that the The magnetic field of the element is proportional to the angle of the shaft. At the same time dedicated Hall The appearance of ASIC also enables programming and linear compensation of the output within a certain angle range, which improves the accuracy of measurement. However, because the linear Hall can only directly measure the magnetic field strength in one direction, subtle changes in the magnetic field strength will cause changes in the output. This requires high positioning accuracy when manufacturing the sensor, and the linearity of the magnetic field and the angle has been ensured. At the same time, it is also necessary to select samarium-cobalt magnetic steel with a small temperature coefficient in the automotive-grade working temperature. These are not conducive to the improvement of sensor accuracy and cost control.
  • magnetoresistive type electromagnetic induction type
  • differential Hall type are emerging technologies in recent years and are not widely used.
  • the above-mentioned vehicle height sensor is characterized by high cost, complicated technology, many parts, limited installation location, and poor versatility.
  • the technical problem to be solved by the present invention is to make the vehicle suspension height measurement or indication method simpler, lower cost, higher reliability, and stronger versatility.
  • the technical solution adopted by the present invention is to utilize the spring in the elastic deformation range, and the extension or compression length of the spring connected between the vehicle body and the wheel suspension link (swing arm) corresponds to the vehicle height and the force value of the spring one by one.
  • the characteristics of the vehicle body height value can be obtained by measuring the force value of the spring, or by using the spring in the elastic deformation range, the spring stiffness is constant, and the force sensor is used to measure the connection between the vehicle body and the wheel suspension link (swing arm)
  • the force value of the spring is calculated by microcomputer and other electronic circuit devices to calculate the change of the spring force value, calculate the spring deformation, and calculate the vehicle suspension height change according to the geometric dimensions of the wheel suspension link and other related parts, and the body The current height value.
  • a vehicle height measuring device including: springs, load cells, and auxiliary electronic circuit devices; the load cells are used to measure the real-time force value of the spring installed between the wheel suspension link and the body (as shown in Figure 1, Figure 3) ), calculate or measure the vehicle height value by real-time measurement of the force value.
  • the spring deformation shown in Figures 1 and 3 correspond to the vehicle height value one-to-one, and the force value measured by the load cell corresponds to the spring deformation one-to-one, so the force measured by the load cell
  • the value and the height value of the vehicle body are also one-to-one correspondence. That is, the current force value measured by the load cell must correspond to the corresponding vehicle height value. According to this, the current vehicle height value can be obtained according to the current measured force value according to the corresponding relationship between the measured force value and the height (that is, the load cell's value can be calibrated first. Measure the corresponding relationship between the force value and the vehicle height value, and then obtain the vehicle height value by measuring the force value).
  • Auxiliary circuit measuring device refers to electronic or electrical components used to convert the signal measured by the load cell into a digital signal or into a more stable analog signal for processing, including PLC, single-chip microcomputer, microcomputer, etc.
  • the spring used is a tension spring (as shown in Figure 1).
  • One end of the load cell is connected to one end of the spring, and the other end of the spring is connected to the other end of the load cell.
  • the load cell measures the current tension value of the spring, calculates the change of the tension value through the value of the tension received by the spring, and calculates the spring deformation from the change of the tension value and the stiffness of the spring.
  • the geometric dimensions of the wheel suspension links and related components are used to calculate the vehicle height change and the vehicle height. Or the corresponding relationship between the measured force value and the height can be calibrated through the corresponding relationship between the spring deformation and the vehicle height value, and the vehicle height value can be directly obtained from the force value measured by the load cell. Other vehicle height calculation methods can also be used.
  • Method 1 As shown in Figure 2 (O, B, C, D, and F in Figure 2 correspond to O, B, C, D, and F in Figure 1): According to the relationship of trigonometric functions, when the initial value BC, When BO, OC, CD, DF are known, then The number of BOC angles is known or can be obtained by known conditions.
  • Method 2 Assuming that D'in Figure 2 is the upper limit position (the lowest position of the vehicle height), the measured force value is F2 at this time. D in Figure 2 is the lower limit position (the highest position of the vehicle height), and the measured force value at this time is F1. The distance DD' between the upper limit position and the lower limit position is L1. The current measured force value of the vehicle body is F3, and the current vehicle height position is D”, then the approximate value of the vehicle height: D” F DD”+DF L1/(F1-F2)*(F1-F3)+DF.
  • Method 3 As shown in Figure 2, assume that D'in Figure 2 is the upper limit position (the lowest position of the vehicle height), and D in Figure 2 is the lower limit position (the highest position of the vehicle height). Points, record the height of each vehicle height point and the measured force value of the corresponding sensor. When measuring the height, the height value of the vehicle height point adjacent to the current force value is obtained according to the measured force value to obtain the approximate value of the vehicle height.
  • the spring used is a torsion spring.
  • the force value change is calculated by measuring the force value, and the angle value variable is calculated or measured from the force value change to calculate or measure the vehicle height change and the vehicle height.
  • Method 1 Assuming that D'is the upper limit position (the lowest position of the vehicle height), the measured force value at point B is F2, and D in Figure 2 is the lower limit position (the highest position of the vehicle height), and the measured force value at point B at this time Is F1, the distance DD' between the upper limit position and the lower limit position is L1, the current measured force at point B of the vehicle body is F3, and the current position value is D”, then the current height of the vehicle body is approximate:
  • Method 2 (As shown in Figure 3 and Figure 4): Because the torsion angle of the torsion spring and the torsion moment of the torsion spring are linear. If the force arm OB remains unchanged, the force value measured by the load cell is linear with the torsion angle of the spring. According to the corresponding relationship between the force value and the angle change, the angle change value can be obtained from the force value measured by the force sensor, and the vehicle height displacement value and the vehicle height value can be obtained accordingly.
  • the stiffness value of the torsion spring is K (K is the value of the rotation angle corresponding to the unit torque, such as kilogram force.m/degree)
  • K is the value of the rotation angle corresponding to the unit torque, such as kilogram force.m/degree
  • the change in the force value measured by the sensor is calculated to calculate the change in the torsion force, thereby calculating the change in the angle of the torsion spring.
  • the relationship between the force value and angle of the spring for point B is: when the measured force value changes from F1 to F2, that is, the height of the vehicle moves from D to D', then
  • Method 3 As shown in Figure 3, assume that D'in Figure 3 is the upper limit position (the lowest position of the vehicle height), and D in Figure 2 is the lower limit position (the highest position of the vehicle height). Points, record the height of each vehicle height point and the measured force value of the corresponding sensor. When measuring the height, the height value of the vehicle height point adjacent to the current force value is obtained according to the measured force value to obtain the approximate value of the vehicle height.
  • a vehicle with a vehicle height measuring device is characterized by adopting one of the vehicle height measuring devices as in schemes 1 to 3.
  • the vehicle height measuring device has simple structure, high reliability, low cost, strong versatility and easy installation.
  • Figure 1 Schematic diagram of a vehicle height measuring device using a tension spring
  • FIG. 1 Schematic diagram of a vehicle height measuring device using a torsion spring
  • a vehicle height measuring device including a tension spring (2), a load cell (1), and an attached electronic circuit device; the vehicle height measuring device connects one end of the load cell (1) On the car body, the other end of the load cell (1) is connected to one end of the tension spring (2), the other end of the tension spring (2) is connected to the wheel suspension link (7), and the load cell (1) measures the tension The tension value of the spring (2).
  • the corresponding current vehicle height value is obtained according to the measured force value of the load cell.
  • a vehicle height measuring device including a torsion spring (9), a load cell (1), and an attached electronic circuit device; the vehicle height measuring device installs the load cell (1) on the vehicle body (4) The force at one end of the torsion arm (3) of the spring acts on the load cell (1), and the force at the other end of the torsion arm (3) of the torsion spring acts on the fulcrum (8) on the wheel suspension link (7), The force sensor (1) measures the force value of the torsion spring (9).
  • the force value change is calculated from the measured force value
  • the angular deformation of the torsion spring (9) is calculated from the force value change
  • the angular displacement of the wheel suspension link (7) is calculated based on the angular deformation of the torsion spring. Calculate the vehicle height value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种车身高度测量装置,采用的技术方案是利用弹簧在弹性形变范围内,弹簧的形变量和弹簧所受的力的大小成正比的特性,通过测力传感器(1)测量连接在车身(4)与车轮悬架连杆(7)之间的弹簧所受的力,并依据弹簧所受的力值计算或测量弹簧的变形量,以此计算或测量车身悬挂高度。

Description

一种车身高度测量装置,以及采用此装置的车辆 技术领域
本发明主要用于测量或指示车身高度。
背景技术
车身高度传感器(英文Chassis Height Sensor,又叫轴高传感器,车姿传感器,车身高度传感器等),是汽车上用于测量车身前后悬架姿态变化必不可少的零部件。目前汽车的悬架控制系统(如主动悬架系统、悬架阻尼控制系统、空气悬架系统等),前大灯自动调节系统均需要通过该传感器测量汽车行驶姿态的变化。 车身高度传感器已经发展了好几代,从最初的采用的接触式电阻膜式角度传感器到各种非接触式角度传感器。其中接触式角度传感器由于存在寿命短、精度低、抗干扰能力差等缺点已经被淘汰。目前主流的非接触式传感器又分为线性霍尔型、磁阻型、电磁感应型、差分霍尔型等几种。
四连杆车身高度传感器,由汽车的下摆臂通过四连杆结构与一个角度传感器的旋转臂连接,当车身高度发生变化时,下控制臂会以旋转轴为圆心发生旋转,同时带动四连杆机构运动,角度传感器的摆臂被带动旋转,角度传感器的输出信号发生变化,间接反映了车身高度的变化,四连杆车身高度传感器就属于上述车身高度传感器中运用较多的传感器之一。
线性霍尔型是最早应用在车身高度测量上的非接触式传感器,其利用了霍尔元件输出与磁场成正比的特点,通过设计一个特殊的磁路,确保在一定角度范围内,通过霍尔元件的磁场与转轴角度呈正比关系。同时专用Hall ASIC的出现也使在一定角度范围内能够对输出进行编程及线性补偿,提高了测量的精度。但是,由于线性霍尔只能直接测量一个方向磁场强度的原因,磁场强度的细微变化都会引起输出的变化,这就需要在制造传感器时确保很高的定位精度,已确保磁场与角度的线性度,同时还需要选用在汽车级工作温度内温度系数很小的钐钴磁钢。这些都不利于传感器精度的提高以及成本的控制。
此外还有 磁阻型、电磁感应型、以及差分霍尔型是近几年新兴起的技术,应用不是很广泛。
上述的车身高度传感器其特点是成本较高,技术复杂,零件较多,安装位置受限,通用性差。
技术问题
本发明要解决的技术问题:使车身悬挂高度测量或指示方式更简单,成本更低,可靠性更高,通用性更强。
技术解决方案
本发明采用的技术方案是利用弹簧在弹性形变范围内,连接在车身与车轮悬挂连杆(摆臂)之间的弹簧的拉伸或压缩长度与车身高度以及弹簧所受的力值一一对应的特性,通过测量弹簧所受力值获得车身高度值,或者利用弹簧在弹性形变范围内,弹簧刚度不变特性,用测力传感器测量连接在车身与车轮悬挂连杆(摆臂)之间的弹簧所受的力值,通过微电脑等电子电路装置计算弹簧所受力值的变化量,计算弹簧的变形量,并根据车轮悬挂连杆等相关部件的几何尺寸计算车身悬挂高度变化量,以及车身当前高度值。
具体方案
 方案1、
一种车身高度测量装置,包括:弹簧,测力传感器,附属电子电路装置;用测力传感器测量安装在车轮悬挂连杆与车身之间的弹簧的实时力值(如图1,图3所示),通过实时测量力值计算或测量车身高度值。
采用的方法如下:
1、通过测量弹簧的力值,计算弹簧的力值变化量,再由弹簧的力值变化量计算弹簧的变形量(如角度变形量或位移变形量),并依据相关部件的几何尺寸,以及弹簧刚度等参数计算车身高度的位移量,以及车身当前高度值。
2、在车身高度变化范围内,车身高度值与弹簧的变形量或受力值大小呈一一对应关系,因此,可以预先标定测力传感器各测量力值与车身高度值的对应关系,通过测力传感器的实时测量力值以及测力传感器测量力值与车身高度值对应关系,获得车身实时高度值。
图1和图3所示的弹簧变形量与车身高度值都是一一对应的,测力传感器所测得的力值与弹簧变形量也是一一对应的,因此测力传感器所测得的力值与车身的高度值也是一一对应的。即,测力传感器测得的当前力值一定对应相应的车身高度值,据此可以通过当前测量力值根据测量力值与高度的对应关系获得当前车身高度值(即可以先标定测力传感器的测量力值与车身高度值的对应关系,再通过测量力值获得车身高度值)。
 附属电路测量装置指用于将测力传感器所测得的信号转换为数字信号或转换为更稳定的模拟信号并进行处理的电子或电器部件,包括PLC,单片机,微电脑等。
方案2(图1,图2)、
如方案1所述的车身高度测量装置,所用的弹簧为拉力弹簧(如图1所示),将测力传感器的一端与弹簧的一端连接,弹簧的另一端和测力传感器的另一端分别连接于车身和车轮悬挂连杆上,测力传感器测量弹簧当前所受的拉力值,通过弹簧所受的拉力力值计算拉力值变化量,由拉力值变化量以及弹簧的刚度计算弹簧变形量,结合到车轮悬挂连杆以及相关部件的几何尺寸计算车身高度变化量以及车身高度。或者通过弹簧变形量与车身高度值的对应关系,标定测量力值与高度的对应关系,由测力传感器所测得的力值直接获得车身高度值。也可以采用其它的车身高度计算方法。
其中的几种高度计算方法如下所示:
方法1:如图2所示(图2的O, B,C,D,F 与图1的O,B,C,D,F一一对应):根据三角函数的关系,当初始值BC,BO,OC, CD,DF为已知时,则
Figure 25149dest_path_image001
BOC的角度数为已知或可以通过已知条件求得。当弹簧的刚度值为K时,且测量力值由F1变为F2,即车辆的高度由D移至D', 弹簧的拉伸或压缩长度CE=(F1-F2)/K, 三角形BOC'的边长BC'=BC-CE, 边长OC'=OC, 边长BO为已知,根据三角函数关系可以求得
Figure 125829dest_path_image001
BOC'的角度数,即角位移值。由于OC,CD为已知,且OC'=OC ,C' D'=CD, 据此,根据已知条件:三角形OGD'的边OD'=OD=OC+CD,
Figure 853482dest_path_image002
C'OC的角度数为: 
Figure 434636dest_path_image002
C'OC=
Figure 956753dest_path_image002
BOC—
Figure 623358dest_path_image002
BOC',
Figure 889123dest_path_image003
OGD'为直角,则三角形OGD'的边GD'的长度可以通过三角函数关系求得,GD'为车身高度位移值,车身高度值D'H=GD'+GH=GD'+DF。
方法2:假定图2的D'为上极限位(车身高度最低位),此时测量力值为F2。图2的D为下极限位(车身高度最高位),此时的测量力值为F1。上极限位和下极限位的距离DD'为L1。车身当前测量力值为F3,当前车身高度位为D”,则车身高度近似值:D”F
Figure 324784dest_path_image004
DD”+DF
Figure 17802dest_path_image004
L1/(F1-F2)*(F1-F3)+DF。
方法3:如图2所示,假定图2的D'为上极限位(车身高度最低位),图2的D为下极限位(车身高度最高位),在D和D'之间取无数个点,记录各个车身高度点的高度以及对应的传感器的测量力值。测量高度时,根据测量力值获得当前力值临近的车身高度点的高度值,以此获得车身高度近似值。
方案3(图3,图4)、
如方案1所述的车身高度测量装置,所用的弹簧为扭力弹簧。通过测量力值计算力值变化量,由力值变化量计算或测量其角度值变量,以此计算或测量车身高度变化量以及车身高度。
如图3所示:将测力传感器安装在车身上,扭力弹簧其中一扭力臂的力作用在测力传感器上,扭力弹簧另一扭力臂的力作用在车轮悬挂连杆上,测力传感器测量扭力弹簧扭力臂的作用力,并根据扭力臂的力值变化量计算车轮悬挂连杆的转动角度变化量,以此计算车身高度变化量,以及车身高度。车身高度计算方法有多种。
以下为其中的几种计算方法:
方法1:假定D'为上极限位(车身高度最低位),此时B点测量力值为F2,图2的D为下极限位(车身高度最高位),此时的B点测量力值为F1,上极限位与下极限位的距离DD'为L1,车身当前B点测量力值为F3,当前位值为D”,则车身当前高度近似值:
D”F
Figure 358654dest_path_image005
DD”+DF
Figure 178842dest_path_image006
L1/(F1-F2)*(F1-F3)+DF。
方法2:(如图3,图4所示): 由于扭力弹簧的扭转角度与该扭力弹簧的扭转力矩是呈线性关系的。力臂OB不变,则测力传感器所测得的力值是与弹簧的扭转角度呈线性关系的。根据力值变化量与角度变化量的对应关系可以测力传感器所测得的力值求得角度变化值,据此求得车身高度位移值和车身高度值。例如:当扭力弹簧刚度值为K(K为单位扭矩对应的转角度数值,如:千克力.米/度)时, 可以根据测力传感器测力点到扭力弹簧的扭力轴心的距离和测力传感器测得的力值变化量(两个不同位置测量力值的差值),计算出扭力变化量,以此计算扭力弹簧的角度变化量。弹簧对于B点的力值与角度关系为:当测量力值由F1变为F2时,即车辆的高度由D移至D',则
Figure 718277dest_path_image002
D'OD的角度数为:
Figure 598508dest_path_image002
D'OD=(F2-F1)/(K/BO),(K为扭力弹簧的刚度值,BO为测力传感器测力点到扭力弹簧的扭力轴心的距离),三角形D'OG的边OD'=OD, 且D'G垂直于OD,根据三角函数关系可以求得车身高度位移量D'G的长度,则可以求得车身高度D'H=D'G+GH=D'G+DF。
方法3:如图3所示,假定图3的D'为上极限位(车身高度最低位),图2的D为下极限位(车身高度最高位),在D和D'之间取无数个点,记录各个车身高度点的高度以及对应的传感器的测量力值。测量高度时,根据测量力值获得当前力值临近的车身高度点的高度值,以此获得车身高度近似值。
方案4、
一种带车身高度测量装置的车辆,其特征是采用了如方案1~3中的其中一种车身高度测量装置。
有益效果
该车身高度测量装置结构简单,可靠性高,成本低,通用性强,易于安装。
附图说明
图1、采用拉力弹簧的车身高度测量装置示意图
图2、图1的几何关系对应图以及运动状态示意图
图3、采用扭力弹簧的车身高度测量装置示意图
图4、图3的几何关系对应图以及运动状态示意图
1-测力传感器   2-拉力弹簧  3-扭力弹簧的扭力臂
4-车身  5- 减振器和支撑弹簧   6-车轮   7-车轮悬挂连杆
8-扭力弹簧在车轮悬挂连杆上的支点   9-扭力弹簧   10-弹簧和悬挂连杆转轴
本发明的具体实施方式
优选方案1:
(如图1所示):一种车身高度测量装置,包括拉伸弹簧(2),测力传感器(1),附属电子电路装置;该车身高度测量装置将测力传感器(1)的一端连接在车身上,测力传感器(1)的另一端连接在拉力弹簧(2)的一端,拉力弹簧(2)的另一端连接在车轮悬挂连杆(7)上,测力传感器(1)测量拉力弹簧(2)所受的拉力值。
通过测力传感器(1)测得的力值计算拉力值变化量,由的拉力值变化量和弹簧的刚度,计算拉力弹簧(2)的拉伸长度变化量,以此计算车身高度变化量,由车身高度变化量加上车身原始高度,获得实时车身高度值。
如图2所示(图2的O B,C,D,F 与图1的O, B,C,D,F一一对应):根据三角函数的关系,当初始值BC,BO,OC, CD,DF为已知时,则角BOC的角度数为已知或可以通过已知条件求得。当弹簧的刚度值为K时,且测量力值由F1变为F2,即车辆的高度由D移至D', 弹簧的拉伸或压缩长度CE=(F1-F2)/K, 三角形BOC'的边长BC'=BC-CE, 边长OC'=OC, 边长BO为已知,根据三角函数关系可以求得角BOC'的角度数,即角位移值。由于OC,CD为已知,且OC'=OC ,C' D'=CD, 据此,根据已知条件:三角形OGD'的边OD'=OD=OC+CD, 
Figure 223393dest_path_image002
C'OC的角度数:
Figure 581693dest_path_image002
C'OC =
Figure 241214dest_path_image002
BOC
Figure 26767dest_path_image007
Figure 138949dest_path_image002
BOC',
Figure 300940dest_path_image002
OGD'为直角,则三角形OGD'的边GD'的长度可以通过三角函数关系求得,GD'为车身高度位移值,车身高度值D'H=GD'+GH=GD'+DF。
或者,通过标定拉力值(传感器的测量力值)与车身高度的对应关系,依据测力传感器的测量力值获得对应的当前车身高度值。
 优选方案2:
如图3所示:一种车身高度测量装置,包括扭力弹簧(9),测力传感器(1),附属电子电路装置;该车身高度测量装置将测力传感器(1)安装在车身(4)上,弹簧的扭力臂(3)一端力作用在测力传感器(1)上,扭力弹簧的扭力臂(3)另一端的力作用在车轮悬挂连杆(7)上的支点(8)上,测力传感器(1)测量扭力弹簧(9)所受的力值。
通过测得的力值计算力值变化量,由力值变化量计算扭力弹簧(9)的角度变形量,依据扭力弹簧的角度变形量计算车轮悬挂连杆(7)的角位移量,以此计算车身高度值。
如图4所示:当测量力值由F1变为F2时,即车辆的高度由D移至D',则
Figure 939600dest_path_image002
D'OD的角度数为:
Figure 161634dest_path_image002
D'OD=(F2-F1)/(K/BO),(K为扭力弹簧的刚度值,BO为测力传感器测力点到扭力弹簧的扭力轴心的距离),三角形D'OG的边OD'=OD, 且D'G垂直于OD,根据三角函数关系可以求得车身高度位移量D'G的长度,则可以求得车身高度D'H=D'G+GH=D'G+DF。
 或者,通过标定扭力值(传感器的测量力值)与高度的对应关系,依据测力传感器的测量力值获得对应的当前车身高度值。

Claims (4)

  1. 一种车身高度测量装置,包括:弹簧,测力传感器;其特征是:用测力传感器测量安装在车轮悬挂连杆与车身之间的弹簧的力值,通过测力传感器测得的力值计算或测量车身悬架高度。
  2.  如权利要求1所述的车身高度测量装置,其特征是:安装在车轮悬挂连杆与车身之间的弹簧为拉力弹簧。
  3.  如权利要求1所述的车身高度测量装置,其特征是:安装在车轮悬挂连杆与车身之间的弹簧为拉力弹簧。
  4. 一种带车身高度测量的车辆,其特征是:采用了如方案1~3中的其中一种车身高度测量装置。
PCT/CN2020/107674 2020-02-03 2020-08-07 一种车身高度测量装置,以及采用此装置的车辆 WO2021155658A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010078359 2020-02-03
CN202010078359.6 2020-02-03
CN202010780688 2020-08-06
CN202021610321.0 2020-08-06
CN202010780688.5 2020-08-06
CN202021610321 2020-08-06

Publications (1)

Publication Number Publication Date
WO2021155658A1 true WO2021155658A1 (zh) 2021-08-12

Family

ID=77199193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107674 WO2021155658A1 (zh) 2020-02-03 2020-08-07 一种车身高度测量装置,以及采用此装置的车辆

Country Status (1)

Country Link
WO (1) WO2021155658A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189063B1 (en) * 1985-01-16 1990-09-05 Toyota Jidosha Kabushiki Kaisha Suspension controller
CN104608583A (zh) * 2014-12-15 2015-05-13 山西大学 一种汽车自抗扰悬挂系统与控制方法
CN106515648A (zh) * 2016-10-27 2017-03-22 江苏金米智能科技有限责任公司 基于拉力感应的车辆防侧翻系统的控制方法
CN206856429U (zh) * 2017-05-12 2018-01-09 厦门海德科液压机械设备有限公司 自适应电控液压主动悬挂系统
CN208615671U (zh) * 2018-08-27 2019-03-19 华东交通大学 一种汽车悬架减振控制系统
CN110682756A (zh) * 2019-11-12 2020-01-14 山东汽车弹簧厂淄博有限公司 主动式可调刚度空气悬架装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189063B1 (en) * 1985-01-16 1990-09-05 Toyota Jidosha Kabushiki Kaisha Suspension controller
CN104608583A (zh) * 2014-12-15 2015-05-13 山西大学 一种汽车自抗扰悬挂系统与控制方法
CN106515648A (zh) * 2016-10-27 2017-03-22 江苏金米智能科技有限责任公司 基于拉力感应的车辆防侧翻系统的控制方法
CN206856429U (zh) * 2017-05-12 2018-01-09 厦门海德科液压机械设备有限公司 自适应电控液压主动悬挂系统
CN208615671U (zh) * 2018-08-27 2019-03-19 华东交通大学 一种汽车悬架减振控制系统
CN110682756A (zh) * 2019-11-12 2020-01-14 山东汽车弹簧厂淄博有限公司 主动式可调刚度空气悬架装置

Similar Documents

Publication Publication Date Title
CN201340320Y (zh) 一种车用压力传感器
US7181852B2 (en) Sensing steering axis inclination and camber with an accelerometer
US6234654B1 (en) Height sensor and vehicular headlight beam axis leveling apparatus
US20030136929A1 (en) Positioner for a valve that can be actuated by a drive
US20220088988A1 (en) Suspension controller and sensor network for ride height control with air suspension
JP2011526859A (ja) 車両のホイールサスペンション
US7873458B2 (en) Device for measuring incline under acceleration
WO2021155658A1 (zh) 一种车身高度测量装置,以及采用此装置的车辆
EP1571424A1 (en) Apparatus for sensing angular positions of an object
CN101769731B (zh) 基于磁流变液的柔性坐标测量机重力平衡装置与方法
CN210625908U (zh) 一种机器人关节力矩测量装置
WO2023173744A1 (zh) 一种综合高精度智能车辆实时称重方法及其系统
US20030115968A1 (en) Capacitive microsystem for recording mechanical deformations, use and operating method
CN116534124A (zh) 基于扭矩波动补偿的eps控制方法、装置、设备及存储介质
CN111896773B (zh) 一种三轴石英挠性加速度计总成及其测量方法
US8146435B1 (en) Differential pressure gauge
ES2672357T3 (es) Banco de pruebas de freno de automóvil
CN200941065Y (zh) 磁力油量测量器
CN213812128U (zh) 一种商用车车架扭转角度测量装置
US11897306B2 (en) Vehicle suspension system with a sensor
CN2674421Y (zh) 汽车用测力方向盘
CN206598765U (zh) 一种电动汽车称重系统
CN218443714U (zh) 一种检测汽车底盘高度的连杆结构
CN221173870U (zh) 一种舵机转角测试工装
CN116722361B (zh) 一种摇摆平台下的天线极化稳定装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917499

Country of ref document: EP

Kind code of ref document: A1