WO2021155562A1 - 一种数据传输方法及参数调整方法、装置、终端设备 - Google Patents

一种数据传输方法及参数调整方法、装置、终端设备 Download PDF

Info

Publication number
WO2021155562A1
WO2021155562A1 PCT/CN2020/074484 CN2020074484W WO2021155562A1 WO 2021155562 A1 WO2021155562 A1 WO 2021155562A1 CN 2020074484 W CN2020074484 W CN 2020074484W WO 2021155562 A1 WO2021155562 A1 WO 2021155562A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
configuration information
drx
drx configuration
time range
Prior art date
Application number
PCT/CN2020/074484
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
付喆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/074484 priority Critical patent/WO2021155562A1/zh
Priority to JP2022547851A priority patent/JP2023518660A/ja
Priority to CN202211103043.3A priority patent/CN116261230A/zh
Priority to CN202080090328.0A priority patent/CN114846857A/zh
Priority to EP20917659.3A priority patent/EP4093097A4/en
Priority to KR1020227028391A priority patent/KR20220137915A/ko
Publication of WO2021155562A1 publication Critical patent/WO2021155562A1/zh
Priority to US17/881,888 priority patent/US20220377835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a data transmission method, a parameter adjustment method, device, and terminal equipment.
  • DRX Discontinuous Reception
  • the terminal device is not always in the receiving state, but according to the DRX configuration, it is continuously ( Data is received within the duration of time, and the terminal device is in continuous reception (or continuous monitoring) state for the duration. If the terminal device does not receive data, it will switch to DRX, that is, stop continuous monitoring state (off duration), so as to save The purpose of electricity.
  • DRX Discontinuous Reception
  • the data sent by the sender needs to be received by the receiver. Therefore, after the introduction of the DRX mechanism, how to ensure the reliability of sideline transmission is a problem that needs to be solved.
  • the embodiments of the present application provide a data transmission method, a parameter adjustment method, device, and terminal equipment.
  • the first terminal device acquires first DRX configuration information, where the first DRX configuration information is used to determine the continuous listening time range of the second terminal device;
  • the first terminal device sends sideline data to the second terminal device within the continuous listening time range of the second terminal device.
  • the second terminal device receives the first indication information sent by the first terminal device, where the first indication information is used to determine the next time when the first terminal device transmits sideline data;
  • the second terminal device adjusts one or more DRX parameters in the first DRX configuration information according to the first indication information, and the one or more DRX parameters are used to determine the continuous listening of the second terminal device Time range, the next time the first terminal device transmits side line data is within the continuous listening time range.
  • An acquiring unit configured to acquire first DRX configuration information, where the first DRX configuration information is used to determine the continuous listening time range of the second terminal device;
  • the sending unit is configured to send sideline data to the second terminal device within the continuous listening time range of the second terminal device.
  • a receiving unit configured to receive first indication information sent by a first terminal device, where the first indication information is used to determine the next time when the first terminal device transmits sideline data;
  • the adjustment unit is configured to adjust one or more DRX parameters in the first DRX configuration information according to the first indication information, and the one or more DRX parameters are used to determine the continuous listening time of the second terminal device Range, the next time the first terminal device transmits sideline data is within the continuous listening time range.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the aforementioned resource selection method or parameter adjustment method.
  • the chip provided in the embodiment of the present application is used to implement the aforementioned resource selection method or parameter adjustment method.
  • the chip includes: a processor, which is used to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for selecting resources or method for adjusting parameters.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program that enables the computer to execute the above-mentioned resource selection method or parameter adjustment method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions that cause a computer to execute the above-mentioned resource selection method or parameter adjustment method.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned resource selection method or parameter adjustment method.
  • the first terminal device and the second terminal device exchange DRX configuration information, or the second terminal device adjusts DRX parameters according to the transmission resources reserved by the first terminal device, so that the DRX on the second terminal device is transmitted side by side.
  • the second terminal device can correctly receive the sideline data sent by the first terminal device, thereby ensuring the reliability of the sideline transmission.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG 2-1 is a schematic diagram of Mode A provided by an embodiment of the present application.
  • Figure 2-2 is a schematic diagram of Mode B provided by an embodiment of the present application.
  • Figure 3-1 is a schematic diagram of unicast provided by an embodiment of the present application.
  • Figure 3-2 is a schematic diagram of multicast provided by an embodiment of the present application.
  • Figure 3-3 is a schematic diagram of broadcasting provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the DRX cycle provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a data transmission method provided by an embodiment of the application.
  • FIG. 6 is a first schematic diagram of a DRX pattern provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a parameter adjustment method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of reserved resources provided by an embodiment of the application.
  • Figure 9-1 is a second schematic diagram of the DRX pattern provided by an embodiment of this application.
  • Figure 9-2 is the third schematic diagram of the DRX pattern provided by the embodiment of this application.
  • FIG. 10 is a schematic diagram of the structural composition of a data transmission device provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of the structural composition of a parameter adjustment device provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system or future communication system etc.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via a wired line, such as via a public switched telephone network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/send communication signals; and/or an Internet of Things (IoT) device.
  • PSTN public switched telephone network
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscribe
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
  • the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • D2D Device to Device
  • D2D communication is based on Sidelink (SL) transmission technology, which is different from the way in which communication data is received or sent through base stations in traditional cellular systems.
  • SL Sidelink
  • the Internet of Vehicles system uses D2D communication (that is, direct device-to-device communication). , So it has higher spectral efficiency and lower transmission delay.
  • the Third Generation Partnership Project (3GPP) defines two transmission modes: Mode A and Mode B. The mode A and mode B are described below.
  • the transmission resources of the terminal equipment are allocated by the base station, and the terminal equipment transmits data on the side link according to the resources allocated by the base station; the base station can allocate a single transmission for the terminal equipment Resources, semi-static transmission resources can also be allocated to terminal devices.
  • Mode B As shown in Figure 2-2, the terminal device selects a resource in the resource pool to send data. Specifically, the terminal device may select transmission resources in the resource pool by means of interception, or select transmission resources in the resource pool by means of random selection.
  • mode 1 is that network equipment allocates transmission resources for terminal equipment (corresponding to the above-mentioned mode A)
  • mode 2 is that terminal equipment selects transmission resources ( Corresponds to the above mode B).
  • LTE-V2X supports broadcast transmission.
  • unicast and multicast transmissions are introduced in NR-V2X.
  • unicast transmission there is only one terminal device at the receiving end.
  • the receiving end is all terminal devices in a communication group, or all terminal devices within a certain transmission distance, as shown in Figure 3-2, UE1, UE2, UE3, and UE4 form a communication group , Where UE1 sends data, and other terminal devices in the communication group are all receivers.
  • the receiving end is any terminal device, as shown in Figure 3-3, where UE1 is the transmitting end, and other terminal devices around it are all receiving ends.
  • the terminal device In a wireless network, if the terminal device always monitors the Physical Downlink Control Channel (PDCCH), and transmits and receives data according to the instruction message sent by the network side, the power consumption of the terminal device is relatively large. Therefore, the 3GPP standard protocol introduces the DRX energy-saving strategy in the LTE system.
  • PDCCH Physical Downlink Control Channel
  • the basic mechanism of DRX is to configure a DRX cycle (DRX cycle) for the terminal device in the RRC_CONNECTED state.
  • the DRX cycle is composed of "On Duration" and "DRX Opportunity for DRX".
  • the terminal device monitors and Receive the PDCCH (that is, the terminal device is in the active period); if the terminal does not receive the PDCCH within the continuous monitoring range, it will stop continuous monitoring and switch to the DRX state within the "Opportunity for DRX" time.
  • the terminal device does not receive the PDCCH to reduce power. Consumption (that is, the terminal device is in the dormant period).
  • the terminal device controls the on duration and off duration of the terminal device according to some timer parameters configured by the network. It should be noted that the terminal device will switch to the DRX state within the "Opportunity for DRX" time, that is, stop the continuous monitoring state (off duration).
  • the DRX mechanism is not introduced. Considering that the Internet of Vehicles service may be sent by broadcast, all terminal devices are in the receiving state when not sending data, but this will cause the terminal device The power consumption is very large, especially for handheld terminals, how to reduce power consumption is a problem that needs to be solved.
  • the introduction of DRX mechanism in side link transmission is discussed.
  • the terminal device is not always in the receiving state, but according to the DRX configuration, it receives data within the on duration. If the terminal device If no data is received, it will be converted to DRX (off duration) to save power.
  • DRX off duration
  • the data sent by the sender needs to be received by the receiver. Therefore, after the introduction of the DRX mechanism, how to ensure the reliability of sideline transmission is a problem that needs to be solved. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 5 is a schematic flowchart of a data transmission method provided by an embodiment of the application. As shown in FIG. 5, the data transmission method includes the following steps:
  • Step 501 The first terminal device obtains first DRX configuration information, where the first DRX configuration information is used to determine the continuous listening time range of the second terminal device.
  • the first terminal device is the sending end of sideline data
  • the second terminal device is the receiving end of sideline data
  • the first DRX configuration information is used to determine the continuous listening time range of the second terminal device.
  • the continuous listening time range is based on the first DRX configuration information in the first DRX configuration information.
  • a time range determined by a DRX parameter, the first DRX parameter is used to determine the continuous listening range of the second terminal device, that is, the first time range is the continuous listening range of the second terminal device, for example, the first The DRX parameter is drx-onDurationTimer, and the time range corresponding to the running period of drx-onDurationTimer is the continuous listening time range.
  • the sender needs to know the DRX configuration information of the receiver (that is, the first DRX configuration information), so as to ensure that the data sent by the sender can be received by the receiver.
  • the sending end that is, the first terminal device
  • the sending end can obtain the DRX configuration information of the receiving end (that is, the second terminal device) in any of the following ways:
  • the first terminal device obtains network configuration information, where the network configuration information includes the first DRX configuration information.
  • the first DRX configuration information is DRX configuration information of the second terminal device.
  • the network configuration information is carried in a system information block (System Information Block, SIB) message or radio resource control (Radio Resource Control, RRC) signaling or downlink control information (Downlink Control Information, DCI) .
  • SIB System Information Block
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • Manner 2 The first terminal device obtains pre-configuration information, where the pre-configuration information includes the first DRX configuration information.
  • the first DRX configuration information is DRX configuration information of the second terminal device.
  • the first terminal device obtains resource pool configuration information, and the resource pool configuration information includes the first DRX configuration information.
  • Manner 3 1) The first terminal device receives the first DRX configuration information sent by the second terminal device. Or, 2) The first terminal device receives configuration information sent by a third terminal device, where the configuration information includes the first DRX configuration information, wherein the first terminal device, the second terminal device, and the The third terminal device belongs to the same communication group.
  • the first DRX configuration information is DRX configuration information of the second terminal device.
  • the group head terminal device configures DRX configuration information for each terminal device in the communication group.
  • the group head terminal device may be the first terminal device, or the second terminal device, or the third terminal device.
  • the first terminal device can naturally clarify the first DRX configuration information.
  • the group head terminal device is the second terminal device
  • the first terminal device may obtain the first DRX configuration information from the second terminal device.
  • the group head terminal device is the third terminal device
  • the first terminal device may obtain the first DRX configuration information from the third terminal device, but it is not limited to this, and the first terminal device also The first DRX configuration information may be obtained from the second terminal device.
  • the first DRX configuration information is carried in Sidelink Control Information (SCI), or PC5-RRC signaling, or Media Access Control (Media Access Control). Control Element, MAC CE).
  • SCI Sidelink Control Information
  • PC5-RRC signaling or PC5-RRC signaling
  • Media Access Control Media Access Control
  • Control Element, MAC CE Media Access Control
  • the first DRX configuration information is carried in the second-order SCI, that is, the first DRX configuration information is carried in the SCI format 0-2.
  • the second terminal device or the third terminal device sends an SCI to the first terminal device, and the SCI carries the first DRX configuration information.
  • the SCI sent by the second terminal device or the third terminal device includes a first-order SCI (SCI format 0-1) and a second-order SCI (SCI format 0-2), and the first DRX configuration information carries In the second-order SCI.
  • the first-order SCI is used to indicate the transmission resources of the PSSCH scheduled by the SCI
  • the second-order SCI is used to indicate the parameters of demodulating the PSSCH scheduled by the SCI.
  • the second terminal device or the third terminal device sends PC5-RRC signaling to the first terminal device, and the PC5-RRC signaling carries the first DRX configuration information.
  • the first DRX configuration information is carried through PC5-RRC signaling.
  • the second terminal device or the third terminal device sends sideline data to the first terminal device, and the MAC CE of the sideline data carries the first DRX configuration information.
  • the PSSCH sent by the second terminal device or the third terminal device carries sideline data, and the MAC CE of the sideline data includes the first DRX configuration information.
  • the first DRX configuration information includes but is not limited to at least one of the following DRX parameters:
  • the first DRX parameter used to determine the duration (or continuous listening time) at the beginning of the DRX cycle, for example, drx-onDurationTimer.
  • the second DRX parameter used to determine the duration after the PSCCH timing (the PSCCH timing is transmitted with the PSCCH and the PSCCH indicates the side-line data transmission), for example, drx-InactivityTimer.
  • the third DRX parameter used to determine the starting subframe of the DRX cycle and/or the DRX cycle, for example, drx-LongCycleStartOffset, including drx-LongCycle and drx-StartOffset.
  • the fourth DRX parameter used to determine the slot offset of the start time of the first DRX parameter in one subframe (the subframe is determined based on the third DRX parameter), for example, drx-SlotOffset.
  • the first terminal device can obtain the DRX configuration information of the second terminal device (that is, the first DRX configuration information) according to the above method, which is not limited to this, and the second terminal device also The DRX configuration information of the first terminal device can be acquired in the above manner (for a scenario where the first terminal device is the receiving end of sideline data and the second terminal device is the sending end of sideline data). That is, the first terminal device and the second terminal device can exchange DRX configuration information in the foregoing manner.
  • different terminal devices may have different DRX configuration information.
  • UE1 and UE2 are in two cells, and the network configures DRX configuration information for UE1 and UE2, and the base stations of the two cells can be configured with different DRX. Parameters, so UE1 and UE2 can have different DRX configuration information.
  • UE1 and UE2 need to perform side-line data transmission. If DRX configuration information is not exchanged, the time when one terminal device sends side-line data will be in the off-duration period of the other terminal device, causing the other terminal device to fail. Correctly receive the side line data. To this end, DRX configuration information needs to be exchanged between two terminal devices.
  • Step 502 The first terminal device sends sideline data to the second terminal device within the continuous listening time range of the second terminal device.
  • the first terminal device and the second terminal device can learn the DRX configuration information of the other party by exchanging DRX configuration information. Therefore, when the first terminal device sends sideline data, it will The sideline data is sent within the continuous listening time range of the second terminal device (that is, during the on duration), so as to ensure that the second terminal device can correctly receive the sideline data. Similarly, when the second terminal device sends sideline data, it will send the sideline data within the continuous listening time range of the first terminal device (that is, during the on duration), so as to ensure that the first terminal device The side row data can be received correctly.
  • the first terminal device sends first indication information to the second terminal device, and the first indication information is used to determine the next transmission of sideline data by the first terminal device The moment; wherein, the first indication information is used by the second terminal device to adjust the continuous listening time range of the second terminal device, and the next time the first terminal device transmits sideline data is located in the Within the continuous listening time range.
  • the second terminal device may adjust the continuous listening time range of the second terminal device in any of the following manners:
  • the second terminal device adjusts one or more DRX parameters in the first DRX configuration information, and the one or more DRX parameters are used to determine the continuous listening time range of the second terminal device, so The next time the first terminal device transmits sideline data is within the continuous listening time range.
  • the second terminal device starts a first timer before the next time when the side line data is transmitted.
  • the first timer is used to determine the continuous listening time range of the second terminal device.
  • the next time a terminal device transmits sideline data is within the continuous listening time range.
  • the second terminal device is in a continuous monitoring (ie on duration) state, and the time corresponding to the running period of the first timer is the first timer. 2.
  • the first timer is, for example, a timer determined by the first DRX parameter (for example, drx-onDurationTimer), or a timer determined by the second DRX parameter (for example, drx-InactivityTimer), or determined by other DRX parameters. Timer.
  • FIG. 7 is a schematic flowchart of a parameter adjustment method provided by an embodiment of the application. As shown in FIG. 7, the parameter adjustment method includes the following steps:
  • Step 701 The second terminal device receives first instruction information sent by the first terminal device, where the first instruction information is used to determine the next time when the first terminal device transmits sideline data.
  • the first terminal device is the sending end of sideline data
  • the second terminal device is the receiving end of sideline data
  • the second terminal device receives the SCI sent by the first terminal device at the first moment, where the SCI carries first indication information, and the first indication information is used to indicate the first time interval; where , The next time the first terminal device transmits the side line data is the first time plus the first time interval.
  • NR-V2X periodic services and aperiodic services are supported.
  • periodic services when a terminal device selects transmission resources, it can reserve resources for transmitting the next sideline data.
  • the terminal device supports the reservation of transmission resources for the next sideline data is usually configurable, through the parameter "reserveResourceDifferentTB" "To indicate that when the parameter value is the first value (for example, "enable"), it means that the terminal device can reserve transmission resources for the next side line data, when the parameter value is the second value (for example,” disable”), which means that the terminal device cannot reserve transmission resources for side-line data.
  • the period of the resource that the terminal device can reserve can be configured through the parameter "reservationPeriodAllowed".
  • the value of this parameter is, for example, ⁇ 0,20,50,100,200,300,400,500,600,700,800,900,1000 ⁇ ms, etc.
  • the terminal device selects two resources at time n, which are located at n+t1 and n+t2. The two resources are used to transmit the first side line data (including the first transmission and retransmission).
  • the pool allows the terminal device to reserve transmission resources for the next side line data, that is, the parameter reserveResourceDifferentTB takes the value enable, and the terminal's service cycle is 100ms, so the terminal device will carry the first indication information in the SCI, such as the first indication
  • the information is resource reservation period, and the first indication information indicates 100ms, which means that the terminal device will reserve two resources after 100ms, that is, the two resources corresponding to n+100+t1 and n+100+t2.
  • the resource is used to transmit the second side line data (including the first transmission and retransmission). When new side line data arrives at the terminal device, it can use two resources corresponding to n+100+t1 and n+100+t2 for transmission. The above is an example of two resources.
  • the first information field in the SCI indicates the time-frequency information of the N transmission resources
  • the second information field in the SCI (such as resource reservation) is used to indicate the time-frequency information of the N transmission resources. period) indicates to reserve N resources in the next period, and the N resources in the next period are used to transmit different side row data.
  • Step 702 The second terminal device adjusts the continuous listening time range of the second terminal device according to the first indication information, and the next time the first terminal device transmits sideline data is located in the continuous detection time range. Listen within the time frame.
  • the second terminal device may adjust the continuous listening time range of the second terminal device in any of the following manners:
  • the second terminal device adjusts one or more DRX parameters in the first DRX configuration information, and the one or more DRX parameters are used to determine the continuous listening time range of the second terminal device. The next time a terminal device transmits sideline data is within the continuous listening time range.
  • the second terminal device starts a first timer before the next time when the side line data is transmitted.
  • the first timer is used to determine the continuous listening time range of the second terminal device.
  • the next time a terminal device transmits sideline data is within the continuous listening time range.
  • the second terminal device is in a continuous monitoring (ie on duration) state, and the time corresponding to the running period of the first timer is the first timer. 2.
  • the first timer is, for example, a timer determined by the first DRX parameter (for example, drx-onDurationTimer), or a timer determined by the second DRX parameter (for example, drx-InactivityTimer), or determined by other DRX parameters. Timer.
  • the first terminal device when the first terminal device indicates the transmission resource of the current PSSCH through the SCI, it can also indicate to reserve resources for the next sideline data transmission (that is, the first indication information carried by the SCI indicates (Reserved resources for the next sideline data transmission), the second terminal device receives the SCI, obtains the first indication information carried by it, and can learn the next sideline data of the first terminal device through the first indication information At the time of transmission, therefore, the second terminal device can adjust the DRX parameters so that when the first terminal device sends the next sideline data, the second terminal device is in the on duration period, so that the second terminal device can receive the data correctly. Side row data.
  • (a) is a schematic diagram of the resources reserved by UE1 (transmitting end), and (b) is the DRX pattern of UE2 (receiving end).
  • UE2 receives UE1's SCI at n+t1, and knows UE1 reserves the transmission resources at time n+100+t1, so UE2 will adjust the DRX parameters, that is, adjust the DRX pattern shown in (b) to the DRX pattern shown in (c), so that UE1 is at n+100+
  • the sideline data sent at t1 is within the on duration of UE2, so UE2 can receive the sideline data sent by UE1.
  • (a) is a schematic diagram of the resources reserved by UE1 (transmitting end), and (b) is the DRX pattern of UE2 (receiving end).
  • UE2 receives UE1's SCI at n+t1, and knows UE1 reserves the transmission resources at time n+100+t1, so UE2 will start the first timer (for example, drx-onDurationTimer or drx-InactivityTimer) before time n+100+t1, thereby expanding the second terminal equipment
  • the continuous listening time range is such that moment n+100+t1 is within the continuous listening time range of the second terminal device, so UE2 can receive the sideline data sent by UE1.
  • the second terminal device adjusts one or more of its own DRX parameters or starts the first timing before receiving the side row data next time after learning the time when the first terminal device transmits the side row data next time So that the next time the first terminal device transmits sideline data is within the continuous listening time range of the second terminal device, so that the second terminal device can correctly receive the data sent by the first terminal device.
  • the side-line data of the data thereby ensuring the reliability of the side-line transmission.
  • FIG. 10 is a schematic diagram of the structural composition of a data transmission device provided by an embodiment of the application. As shown in FIG. 10, the data transmission device includes:
  • the obtaining unit 1001 is configured to obtain first DRX configuration information, where the first DRX configuration information is used to determine the continuous listening time range of the second terminal device;
  • the sending unit 1002 is configured to send sideline data to the second terminal device within the continuous listening time range of the second terminal device.
  • the first DRX configuration information is DRX configuration information of the second terminal device
  • the obtaining unit 1001 is configured to obtain network configuration information, where the network configuration information includes the first DRX configuration information.
  • the network configuration information is carried in SIB messages or RRC signaling or DCI.
  • the first DRX configuration information is DRX configuration information of the second terminal device
  • the acquiring unit 1001 is configured to acquire pre-configuration information, where the pre-configuration information includes the first DRX configuration information.
  • the obtaining unit 1001 is configured to obtain resource pool configuration information, where the resource pool configuration information includes the first DRX configuration information.
  • the first DRX configuration information is DRX configuration information of the second terminal device
  • the acquiring unit 1001 is configured to receive the first DRX configuration information sent by the second terminal device, or receive the configuration information sent by a third terminal device, where the configuration information includes the first DRX configuration information, Wherein, the first terminal device, the second terminal device, and the third terminal device belong to the same communication group.
  • the first DRX configuration information is carried in SCI, or PC5-RRC signaling, or MAC CE.
  • the device further includes:
  • a sending unit (not shown in the figure), configured to send first indication information to the second terminal device, where the first indication information is used to determine the next time when the first terminal device transmits sideline data;
  • the first indication information is used by the second terminal device to adjust the continuous listening time range of the second terminal device, and the next time the first terminal device transmits sideline data is located in the continuous listening time range. Within the time frame.
  • FIG. 11 is a schematic structural composition diagram of a parameter adjustment device provided by an embodiment of the application. As shown in FIG. 11, the parameter adjustment device includes:
  • the receiving unit 1101 is configured to receive first indication information sent by a first terminal device, where the first indication information is used to determine the next time when the first terminal device transmits sideline data;
  • the adjusting unit 1102 is configured to adjust the continuous listening time range of the second terminal device according to the first instruction information, and the next time the first terminal device transmits sideline data is within the continuous listening time range Inside.
  • the adjustment unit 1102 is configured to adjust one or more DRX parameters in the first DRX configuration information, and the one or more DRX parameters are used to determine the continuity of the second terminal device.
  • a listening time range, where the next time the first terminal device transmits sideline data is within the continuous listening time range.
  • the adjustment unit 1102 is configured to start a first timer before the next time when the side line data is transmitted, and the first timer is used to determine the continuity of the second terminal device.
  • a listening time range, where the next time the first terminal device transmits sideline data is within the continuous listening time range.
  • the receiving unit 1101 is configured to receive an SCI sent by the first terminal device at a first moment, where the SCI carries first indication information, and the first indication information is used to indicate the first A time interval; wherein the next time the first terminal device transmits side line data is the first time plus the first time interval.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device may be a terminal device.
  • the communication device 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1200 may further include a memory 1220.
  • the processor 1210 can call and run a computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated in the processor 1210.
  • the communication device 1200 may further include a transceiver 1230, and the processor 1210 may control the transceiver 1230 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1230 may include a transmitter and a receiver.
  • the transceiver 1230 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1200 may specifically be a network device of an embodiment of the present application, and the communication device 1200 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 1200 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 1200 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • FIG. 13 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1300 may further include a memory 1320.
  • the processor 1310 can call and run a computer program from the memory 1320 to implement the method in the embodiment of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310, or may be integrated in the processor 1310.
  • the chip 1300 may further include an input interface 1030.
  • the processor 1310 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1300 may further include an output interface 1340.
  • the processor 1310 can control the output interface 1340 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 14 is a schematic block diagram of a communication system 1400 according to an embodiment of the present application. As shown in FIG. 14, the communication system 1400 includes a terminal device 1410 and a network device 1420.
  • the terminal device 1410 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1420 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法及参数调整方法、装置、终端设备,包括:第一终端设备获取第一非连续接收DRX配置信息,所述第一DRX配置信息用于确定第二终端设备的连续侦听时间范围;所述第一终端设备在所述第二终端设备的连续侦听时间范围内向所述第二终端设备发送侧行数据。

Description

一种数据传输方法及参数调整方法、装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种数据传输方法及参数调整方法、装置、终端设备。
背景技术
在侧行链路增强的课题中,讨论在侧行链路传输中引入非连续接收(Discontinuous Reception,DRX)机制,此时终端设备不是一直处于接收的状态,而是根据DRX配置,在持续(on duration)时间内接收数据,在持续时间内终端设备处于连续接收(或连续监听)状态,如果终端设备没有接收到数据,会转为DRX,即停止连续监听状态(off duration),从而达到省电的目的。但是,对于单播和组播通信而言,发送端发送的数据需要被接收端接收,因此,在引入DRX机制后,如何保证侧行传输的可靠性是需要解决的问题。
发明内容
本申请实施例提供一种数据传输方法及参数调整方法、装置、终端设备。
本申请实施例提供的数据传输方法,包括:
第一终端设备获取第一DRX配置信息,所述第一DRX配置信息用于确定第二终端设备的连续侦听时间范围;
所述第一终端设备在所述第二终端设备的连续侦听时间范围内向所述第二终端设备发送侧行数据。
本申请实施例提供的参数调整方法,包括:
第二终端设备接收第一终端设备发送的第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;
所述第二终端设备根据所述第一指示信息,调整第一DRX配置信息中的一个或多个DRX参数,所述一个或多个DRX参数用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
本申请实施例提供的数据传输装置,包括:
获取单元,用于获取第一DRX配置信息,所述第一DRX配置信息用于确定第二终端设备的连续侦听时间范围;
发送单元,用于在所述第二终端设备的连续侦听时间范围内向所述第二终端设备发送侧行数据。
本申请实施例提供的参数调整装置,包括:
接收单元,用于接收第一终端设备发送的第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;
调整单元,用于根据所述第一指示信息,调整第一DRX配置信息中的一个或多个DRX参数,所述一个或多个DRX参数用于确定所述第二终端设备的连续侦听时 间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的选取资源的方法或者参数调整方法。
本申请实施例提供的芯片,用于实现上述的选取资源的方法或者参数调整方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的选取资源的方法或者参数调整方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的选取资源的方法或者参数调整方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的选取资源的方法或者参数调整方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的选取资源的方法或者参数调整方法。
通过上述技术方案,第一终端设备和第二终端设备交互DRX配置信息,或者第二终端设备根据第一终端设备预留的传输资源调整DRX参数,使得侧行传输位于第二终端设备的DRX on duration期间,从而第二终端设备可以正确接收第一终端设备发送的侧行数据,进而保证了侧行传输的可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2-1是本申请实施例提供的模式A的示意图;
图2-2是本申请实施例提供的模式B的示意图;
图3-1是本申请实施例提供的单播示意图;
图3-2是本申请实施例提供的组播示意图;
图3-3是本申请实施例提供的广播示意图;
图4是本申请实施例提供的DRX周期的示意图;
图5为本申请实施例提供的数据传输方法的流程示意图;
图6为本申请实施例提供的DRX图样的示意图一;
图7为本申请实施例提供的参数调整方法的流程示意图;
图8为本申请实施例提供的预留资源示意图;
图9-1为本申请实施例提供的DRX图样的示意图二;
图9-2为本申请实施例提供的DRX图样的示意图三;
图10为本申请实施例提供的数据传输装置的结构组成示意图;
图11为本申请实施例提供的参数调整装置的结构组成示意图;
图12是本申请实施例提供的一种通信设备示意性结构图;
图13是本申请实施例的芯片的示意性结构图;
图14是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1 示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
Figure PCTCN2020074484-appb-000001
设备到设备(Device to Device,D2D)
D2D通信基于侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用D2D通信的方式(即设备到设备直接通信的方式),因此具有更高的频谱效率以及更低的传输时延。对于D2D通信,第三代合作伙伴计划(Third Generation Partnership Project,3GPP)定义了两种传输模式:模式A和模式B。以下对模式A和模式B进行描述。
模式A:如图2-1所示,终端设备的传输资源是由基站分配的,终端设备根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。
模式B:如图2-2所示,终端设备在资源池中选取一个资源进行数据的发送。具体地,终端设备可以通过侦听的方式在资源池中选取传输资源,或者通过随机选取的方式在资源池中选取传输资源。
Figure PCTCN2020074484-appb-000002
新无线(New Radio,NR)-车辆到其他设备(Vehicle to Everything,V2X)
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在NR-V2X系统中,引入了多种传输模式,包括模式1和模式2,其中,模式1是网络设备为终端设备分配传输资源(对应上述模式A),模式2是终端设备选取传输资源(对应上述模式B)。
LTE-V2X支持广播传输方式,此外,在NR-V2X中引入了单播和组播的传输方式。对于单播传输方式,其接收端只有一个终端设备,如图3-1所示,UE1和UE2之间进行单播传输。对于组播传输方式,其接收端是一个通信组内的所有终端设备,或者是在一定传输距离内的所有终端设备,如图3-2所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该通信组内的其他终端设备都是接收端。对于广播传输方式,其接收端是任意一个终端设备,如图3-3所示,其中UE1是发送端,其周围的其他终端设备都是接收端。
Figure PCTCN2020074484-appb-000003
NR Uu口的DRX机制
在无线网络中,如果终端设备一直监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),根据网络侧发送的指示消息对数据进行收发,这样导致终端设备的功耗比较大。因此3GPP标准协议在LTE系统中引入DRX节能策略。
DRX的基本机制是为处于无线资源控制连接(RRC_CONNECTED)态的终端设备配置一个DRX周期(DRX cycle)。如图4所示,DRX cycle由“持续(On Duration)”和“DRX时机(Opportunity for DRX)”组成,其中,在“On Duration”时间内(又称为连续监听范围),终端设备监听并接收PDCCH(即终端设备处于激活期);如果终端在连续监听范围内没有接收到PDCCH,就会停止连续监听,在“Opportunity for DRX” 时间内转为DRX状态,终端设备不接收PDCCH以减少功耗(即终端设备处于休眠期)。在DRX操作中,终端设备根据网络配置的一些定时器参数来控制终端设备的on duration和off duration。需要说明的是,终端设备在“Opportunity for DRX”时间内会转为DRX状态,也即停止连续监听状态(off duration)。
在基于侧行链路的传输中,没有引入DRX机制,考虑到车联网业务可能是广播的方式发送的,所有的终端设备在不发送数据的时候都是处于接收状态,但是这样会导致终端设备的功耗很大,尤其对于手持终端而言,如何降低功耗是需要解决的问题。
在侧行链路增强的课题中,讨论在侧行链路传输中引入DRX机制,此时终端设备不是一直处于接收的状态,而是根据DRX配置,在on duration时间内接收数据,如果终端设备没有接收到数据,会转为DRX(off duration),从而达到省电的目的。但是,对于单播和组播通信而言,发送端发送的数据需要被接收端接收,因此,在引入DRX机制后,如何保证侧行传输的可靠性是需要解决的问题。为此,提出了本申请实施例的以下技术方案。
图5为本申请实施例提供的数据传输方法的流程示意图,如图5所示,所述数据传输方法包括以下步骤:
步骤501:第一终端设备获取第一DRX配置信息,所述第一DRX配置信息用于确定第二终端设备的连续侦听时间范围。
本申请实施例中,所述第一终端设备为侧行数据的发送端,所述第二终端设备为侧行数据的接收端。
本申请实施例中,所述第一DRX配置信息用于确定所述第二终端设备的连续侦听时间范围,这里,所述连续侦听时间范围是根据所述第一DRX配置信息中的第一DRX参数确定的时间范围,该第一DRX参数用于确定所述第二终端设备的连续监听范围,即该第一时间范围是所述第二终端设备的连续侦听范围,例如该第一DRX参数是drx-onDurationTimer,drx-onDurationTimer运行期间对应的时间范围即为所述连续侦听时间范围。
本申请实施例中,对于单播通信或组播通信的场景,发送端需要获知接收端的DRX配置信息(即所述第一DRX配置信息),从而保证发送端发送的数据能够被接收端接收。发送端(即所述第一终端设备)可以通过以下任意一种方式获取接收端(即所述第二终端设备)的DRX配置信息:
方式一:所述第一终端设备获取网络配置信息,所述网络配置信息包括所述第一DRX配置信息。
这里,所述第一DRX配置信息为所述第二终端设备的DRX配置信息。
在一可选方式中,所述网络配置信息携带在系统信息块(System Information Block,SIB)消息或者无线资源控制(Radio Resource Control,RRC)信令或者下行控制信息(Downlink Control Information,DCI)中。
方式二:所述第一终端设备获取预配置信息,所述预配置信息包括所述第一DRX配置信息。
这里,所述第一DRX配置信息为所述第二终端设备的DRX配置信息。
本申请实施例中,可选地,对于上述任意一种方式而言,所述第一终端设备获取资源池配置信息,所述资源池配置信息包括所述第一DRX配置信息。
方式三:1)所述第一终端设备接收所述第二终端设备发送的所述第一DRX配置信息。或者,2)所述第一终端设备接收第三终端设备发送的配置信息,所述配置信息包括所述第一DRX配置信息,其中,所述第一终端设备、所述第二终端设备和所述第三终端设备属于同一通信组。
这里,所述第一DRX配置信息为所述第二终端设备的DRX配置信息。
这里,由组头终端设备为通信组内的各个终端设备配置DRX配置信息。组头终端设备可以为所述第一终端设备、或者所述第二终端设备、或者所述第三终端设备。其中,组头终端设备为所述第一终端设备的情况下,所述第一终端设备自然可以明确所述第一DRX配置信息。组头终端设备为所述第二终端设备的情况下,所述第一终端设备可以从所述第二终端设备获取所述第一DRX配置信息。组头终端设备为所述第三终端设备的情况下,所述第一终端设备可以从所述第三终端设备获取所述第一DRX配置信息,不局限于此,所述第一终端设备还可以从所述第二终端设备获取所述第一DRX配置信息。
在一可选方式中,所述第一DRX配置信息携带在侧行链路控制信息(Sidelink Control Information,SCI)中、或者PC5-RRC信令中、或者媒体接入控制控制单元(Media Access Control Control Element,MAC CE)中。
可选地,所述第一DRX配置信息携带在第二阶SCI中,即通过SCI格式0-2携带所述第一DRX配置信息。
例如:所述第二终端设备或第三终端设备向所述第一终端设备发送SCI,所述SCI携带所述第一DRX配置信息。具体地,所述第二终端设备或第三终端设备发送的SCI包括第一阶SCI(SCI格式0-1)和第二阶SCI(SCI格式0-2),所述第一DRX配置信息携带在第二阶SCI中。其中,第一阶SCI用于指示该SCI调度的PSSCH的传输资源,第二阶SCI用于指示解调该SCI调度的PSSCH的参数。
例如:所述第二终端设备或第三终端设备向所述第一终端设备发送PC5-RRC信令,所述PC5-RRC信令携带所述第一DRX配置信息。具体地,所述第二终端设备或第三终端设备和所述第一终端设备建立连接时,通过PC5-RRC信令携带所述第一DRX配置信息。
例如:所述第二终端设备或第三终端设备向所述第一终端设备发送侧行数据,该侧行数据的MAC CE中携带所述第一DRX配置信息。具体地,述第二终端设备或第三终端设备发送的PSSCH中承载侧行数据,该侧行数据的MAC CE中包括所述第一DRX配置信息。
在一可选方式中,所述第一DRX配置信息包括但不限于以下至少一种DRX参数:
第一DRX参数:用于确定位于DRX周期开始的持续时间(或连续侦听时间),例如是drx-onDurationTimer。
第二DRX参数:用于确定位于PSCCH时机(该PSCCH时机上传输有PSCCH,且该PSCCH指示有侧行数据传输)之后的持续时间,例如是drx-InactivityTimer。
第三DRX参数:用于确定DRX周期的起始子帧和/或DRX周期,例如是drx-LongCycleStartOffset,包括drx-LongCycle和drx-StartOffset。
第四DRX参数:用于确定第一DRX参数的启动时间在一个子帧(该子帧基于第三DRX参数确定)内的时隙偏移,例如是drx-SlotOffset。
需要说明的是,按照以上方式可以实现所述第一终端设备获取所述第二终端设备的DRX配置信息(即所述第一DRX配置信息),不局限于此,所述第二终端设备还可以按照以上方式获取所述第一终端设备的DRX配置信息(针对所述第一终端设备为侧行数据的接收端,所述第二终端设备为侧行数据的发送端的场景)。即所述第一终端设备和所述第二终端设备之间可以按照上述方式交互DRX配置信息。
在一可选方式中,不同的终端设备可能具有不同的DRX配置信息,如UE1和UE2在两个小区中,网络为UE1和UE2配置DRX配置信息,而两个小区的基站可 以配置不同的DRX参数,因此UE1和UE2可以具有不同的DRX配置信息。如图6所示,UE1和UE2要进行侧行数据传输,如果没有交互DRX配置信息,会导致一个终端设备发送侧行数据的时刻处于另一个终端设备的off duration期间,导致另一个终端设备不能正确接收该侧行数据。为此,需要两个终端设备之间交互DRX配置信息。
步骤502:所述第一终端设备在所述第二终端设备的连续侦听时间范围内向所述第二终端设备发送侧行数据。
本申请实施例中,所述第一终端设备和所述第二终端设备通过交互DRX配置信息,可以获知对方的DRX配置信息,因此,所述第一终端设备在发送侧行数据时,会在所述第二终端设备的连续侦听时间范围内(即on duration期间)发送侧行数据,从而保证所述第二终端设备可以正确接收该侧行数据。同理,所述第二终端设备在发送侧行数据时,会在所述第一终端设备的连续侦听时间范围内(即on duration期间)发送侧行数据,从而保证所述第一终端设备可以正确接收该侧行数据。
进一步,在一可选实施方式中,所述第一终端设备向所述第二终端设备发送第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;其中,所述第一指示信息用于所述第二终端设备调整所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
进一步,所述第二终端设备可以采用以下任意一种方式调整所述第二终端设备的连续侦听时间范围:
A)所述第二终端设备调整所述第一DRX配置信息中的一个或多个DRX参数,所述一个或多个DRX参数用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
B)所述第二终端设备在所述下一次传输侧行数据的时刻之前启动第一定时器,所述第一定时器用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
这里,在所述第一定时器运行期间(或者说失效之前),所述第二终端设备处于连续监听(即on duration)状态,所述第一定时器运行期间对应的时间即为所述第二终端设备的连续侦听时间范围。这里,所述第一定时器例如是第一DRX参数确定的定时器(例如drx-onDurationTimer),或者是第二DRX参数确定的定时器(例如drx-InactivityTimer),或者是其他的DRX参数确定的定时器。
图7为本申请实施例提供的参数调整方法的流程示意图,如图7所示,所述参数调整方法包括以下步骤:
步骤701:第二终端设备接收第一终端设备发送的第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻。
本申请实施例中,所述第一终端设备为侧行数据的发送端,所述第二终端设备为侧行数据的接收端。
在一可选方式中,第二终端设备接收所述第一终端设备在第一时刻发送的SCI,所述SCI携带第一指示信息,所述第一指示信息用于指示第一时间间隔;其中,所述第一终端设备下一次传输侧行数据的时刻为所述第一时刻加上所述第一时间间隔。
本申请实施例的技术方案可以但不局限于应用于NR-V2X场景,在NR-V2X中,支持周期性业务和非周期业务。对于周期性业务,当终端设备选取传输资源时,可以预留资源用于传输下一个侧行数据,是否支持终端设备为下一个侧行数据预留传输资源通常是可配置的,通过参数“reserveResourceDifferentTB”来表示,当该参数取值 为第一值(例如是“enable“)时,表示终端设备可以为下一个侧行数据预留传输资源,当该参数取值为第二值(例如是“disable”),表示终端设备不能为侧行数据预留传输资源。进一步,可以通过参数“reservationPeriodAllowed”配置终端设备可以预留的资源的周期,该参数取值例如是{0,20,50,100,200,300,400,500,600,700,800,900,1000}ms等。如图8所示,终端设备在时刻n选取两个资源,分别位于n+t1、n+t2,该两个资源是用于传输第一侧行数据的(包括首次传输和重传),资源池允许该终端设备为下一个侧行数据预留传输资源,即参数reserveResourceDifferentTB取值为enable,并且终端的业务周期是100ms,因此终端设备会在SCI中携带第一指示信息,例如该第一指示信息是resource reservation period,并且该第一指示信息指示100ms,即表示终端设备会预留100ms后的两个资源,即n+100+t1、n+100+t2对应的两个资源,这两个资源是用于传输第二侧行数据的(包括首次传输和重传)。当终端设备有新的侧行数据到达时,可以使用n+100+t1、n+100+t2对应的两个资源进行传输。以上是以两个资源为例,若终端设备选取了N个资源,通过SCI中的第一信息域指示该N个传输资源的时频信息,并且通过SCI中的第二信息域(如resource reservation period)指示预留下一个周期的N个资源,并且该下一个周期中的N个资源用于传输不同的侧行数据。
步骤702:所述第二终端设备根据所述第一指示信息,调整所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
进一步,所述第二终端设备可以采用以下任意一种方式调整所述第二终端设备的连续侦听时间范围:
A)所述第二终端设备调整第一DRX配置信息中的一个或多个DRX参数,所述一个或多个DRX参数用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
B)所述第二终端设备在所述下一次传输侧行数据的时刻之前启动第一定时器,所述第一定时器用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
这里,在所述第一定时器运行期间(或者说失效之前),所述第二终端设备处于连续监听(即on duration)状态,所述第一定时器运行期间对应的时间即为所述第二终端设备的连续侦听时间范围。这里,所述第一定时器例如是第一DRX参数确定的定时器(例如drx-onDurationTimer),或者是第二DRX参数确定的定时器(例如drx-InactivityTimer),或者是其他的DRX参数确定的定时器。
本申请实施例中,当所述第一终端设备通过SCI指示当前PSSCH的传输资源时,可以同时指示为下一个侧行数据传输预留资源(即通过所述SCI携带的第一指示信息指示为下一个侧行数据传输预留资源),所述第二终端设备接收该SCI,获取其携带的第一指示信息,通过所述第一指示信息可以获知所述第一终端设备下一个侧行数据传输的时刻,因此,所述第二终端设备可以通过调整DRX参数以使得当所述第一终端设备发送下一个侧行数据时,所述第二终端设备处于on duration时期,从而可以正确接收该侧行数据。
如图9-1所示,(a)是UE1(发送端)预留资源的示意图,(b)是UE2(接收端)的DRX图样,当UE2在n+t1接收到UE1的SCI,并且获知UE1预留了n+100+t1时刻的传输资源,因此UE2会调整DRX参数,即从(b)所示的DRX图样调整为(c)所示的DRX图样,从而使得UE1在n+100+t1时发送的侧行数据处于UE2的on duration内,因此UE2可以接收UE1发送的该侧行数据。
如图9-2所示,(a)是UE1(发送端)预留资源的示意图,(b)是UE2(接收端)的DRX图样,当UE2在n+t1接收到UE1的SCI,并且获知UE1预留了n+100+t1时刻的传输资源,因此UE2会在n+100+t1时刻之前启动第一定时器(例如drx-onDurationTimer或者drx-InactivityTimer),从而扩大所述第二终端设备的连续侦听时间范围,使得n+100+t1时刻位于所述第二终端设备的连续侦听时间范围内,因此UE2可以接收UE1发送的该侧行数据。
本申请实施例中,所述第二终端设备获知所述第一终端设备下一次传输侧行数据的时刻后,调整自身的一个或多个DRX参数或者在下一次接收侧行数据之前启动第一定时器,从而使得所述第一终端设备下一次传输侧行数据的时刻位于所述第二终端设备的连续侦听时间范围内,从而所述第二终端设备可以正确接收所述第一终端设备发送的侧行数据,进而保证了侧行传输的可靠性。
图10为本申请实施例提供的数据传输装置的结构组成示意图,如图10所示,所述数据传输装置包括:
获取单元1001,用于获取第一DRX配置信息,所述第一DRX配置信息用于确定第二终端设备的连续侦听时间范围;
发送单元1002,用于在所述第二终端设备的连续侦听时间范围内向所述第二终端设备发送侧行数据。
在一可选实施方式中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;
所述获取单元1001,用于获取网络配置信息,所述网络配置信息包括所述第一DRX配置信息。
在一可选实施方式中,所述网络配置信息携带在SIB消息或者RRC信令或者DCI中。
在一可选实施方式中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;
所述获取单元1001,用于获取预配置信息,所述预配置信息包括所述第一DRX配置信息。
在一可选实施方式中,所述获取单元1001,用于获取资源池配置信息,所述资源池配置信息包括所述第一DRX配置信息。
在一可选实施方式中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;
所述获取单元1001,用于接收所述第二终端设备发送的所述第一DRX配置信息,或者,接收第三终端设备发送的配置信息,所述配置信息包括所述第一DRX配置信息,其中,所述第一终端设备、所述第二终端设备和所述第三终端设备属于同一通信组。
在一可选实施方式中,所述第一DRX配置信息携带在SCI中、或者PC5-RRC信令中、或者MAC CE中。
在一可选实施方式中,所述装置还包括:
发送单元(图中未示出),用于向所述第二终端设备发送第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;
其中,所述第一指示信息用于所述第二终端设备调整所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
本领域技术人员应当理解,本申请实施例的上述数据传输装置的相关描述可以参照 本申请实施例的数据传输方法的相关描述进行理解。
图11为本申请实施例提供的参数调整装置的结构组成示意图,如图11所示,所述参数调整装置包括:
接收单元1101,用于接收第一终端设备发送的第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;
调整单元1102,用于根据所述第一指示信息,调整所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
在一可选实施方式中,所述调整单元1102,用于调整第一DRX配置信息中的一个或多个DRX参数,所述一个或多个DRX参数用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
在一可选实施方式中,所述调整单元1102,用于在所述下一次传输侧行数据的时刻之前启动第一定时器,所述第一定时器用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
在一可选实施方式中,所述接收单元1101,用于接收所述第一终端设备在第一时刻发送的SCI,所述SCI携带第一指示信息,所述第一指示信息用于指示第一时间间隔;其中,所述第一终端设备下一次传输侧行数据的时刻为所述第一时刻加上所述第一时间间隔。
本领域技术人员应当理解,本申请实施例的上述数据传输装置的相关描述可以参照本申请实施例的数据传输方法的相关描述进行理解。
图12是本申请实施例提供的一种通信设备1200示意性结构图。该通信设备可以是终端设备,图12所示的通信设备1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图12所示,通信设备1200还可以包括收发器1230,处理器1210可以控制该收发器1230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1230可以包括发射机和接收机。收发器1230还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1200具体可为本申请实施例的网络设备,并且该通信设备1200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1200具体可为本申请实施例的移动终端/终端设备,并且该通信设备1200可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片1300还可以包括存储器1320。其中,处理器1310可 以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,该芯片1300还可以包括输入接口1030。其中,处理器1310可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图14是本申请实施例提供的一种通信系统1400的示意性框图。如图14所示,该通信系统1400包括终端设备1410和网络设备1420。
其中,该终端设备1410可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1420可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储 器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种数据传输方法,所述方法包括:
    第一终端设备获取第一非连续接收DRX配置信息,所述第一DRX配置信息用于确定第二终端设备的连续侦听时间范围;
    所述第一终端设备在所述第二终端设备的连续侦听时间范围内向所述第二终端设备发送侧行数据。
  2. 根据权利要去1所述的方法,其中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;所述第一终端设备获取第一DRX配置信息,包括;
    所述第一终端设备获取网络配置信息,所述网络配置信息包括所述第一DRX配置信息。
  3. 根据权利要去2所述的方法,其中,所述网络配置信息携带在系统信息块SIB消息或者无线资源控制RRC信令或者下行控制信息DCI中。
  4. 根据权利要去1所述的方法,其中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;所述第一终端设备获取第一DRX配置信息,包括;
    所述第一终端设备获取预配置信息,所述预配置信息包括所述第一DRX配置信息。
  5. 根据权利要去1至4中任一项所述的方法,第一终端设备获取第一DRX配置信息,包括:
    所述第一终端设备获取资源池配置信息,所述资源池配置信息包括所述第一DRX配置信息。
  6. 根据权利要去1所述的方法,其中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;所述第一终端设备获取第一DRX配置信息,包括;
    所述第一终端设备接收所述第二终端设备发送的所述第一DRX配置信息,或者,
    所述第一终端设备接收第三终端设备发送的配置信息,所述配置信息包括所述第一DRX配置信息,其中,所述第一终端设备、所述第二终端设备和所述第三终端设备属于同一通信组。
  7. 根据权利要去6所述的方法,其中,所述第一DRX配置信息携带在侧行控制信息SCI中、或者PC5-RRC信令中、或者媒体接入控制控制单元MAC CE中。
  8. 根据权利要去1至7中任一项所述的方法,其中,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;
    其中,所述第一指示信息用于所述第二终端设备调整所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
  9. 一种参数调整方法,所述方法包括:
    第二终端设备接收第一终端设备发送的第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;
    所述第二终端设备根据所述第一指示信息,调整所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
  10. 根据权利要求9所述的方法,其中,所述调整所述第二终端设备的连续侦听时间范围,包括:
    所述第二终端设备调整第一DRX配置信息中的一个或多个DRX参数,所述一个或多个DRX参数用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
  11. 根据权利要求9所述的方法,其中,所述调整所述第二终端设备的连续侦听时间范围,包括:
    所述第二终端设备在所述下一次传输侧行数据的时刻之前启动第一定时器,所述第一定时器用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
  12. 根据权利要求9至11中任一项所述的方法,其中,所述第二终端设备接收第一终端设备发送的第一指示信息,包括:
    第二终端设备接收所述第一终端设备在第一时刻发送的SCI,所述SCI携带第一指示信息,所述第一指示信息用于指示第一时间间隔;其中,所述第一终端设备下一次传输侧行数据的时刻为所述第一时刻加上所述第一时间间隔。
  13. 一种数据传输装置,所述装置包括:
    获取单元,用于获取第一DRX配置信息,所述第一DRX配置信息用于确定第二终端设备的连续侦听时间范围;
    发送单元,用于在所述第二终端设备的连续侦听时间范围内向所述第二终端设备发送侧行数据。
  14. 根据权利要求13所述的装置,其中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;
    所述获取单元,用于获取网络配置信息,所述网络配置信息包括所述第一DRX配置信息。
  15. 根据权利要求14所述的装置,其中,所述网络配置信息携带在SIB消息或者RRC信令或者DCI中。
  16. 根据权利要求13所述的装置,其中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;
    所述获取单元,用于获取预配置信息,所述预配置信息包括所述第一DRX配置信息。
  17. 根据权利要求13至16中任一项所述的装置,其中,所述获取单元,用于获取资源池配置信息,所述资源池配置信息包括所述第一DRX配置信息。
  18. 根据权利要求13所述的装置,其中,所述第一DRX配置信息为所述第二终端设备的DRX配置信息;
    所述获取单元,用于接收所述第二终端设备发送的所述第一DRX配置信息,或者,接收第三终端设备发送的配置信息,所述配置信息包括所述第一DRX配置信息,其中,所述第一终端设备、所述第二终端设备和所述第三终端设备属于同一通信组。
  19. 根据权利要求17所述的装置,其中,所述第一DRX配置信息携带在SCI中、或者PC5-RRC信令中、或者MAC CE中。
  20. 根据权利要求13至19中任一项所述的装置,其中,所述装置还包括:
    发送单元,用于向所述第二终端设备发送第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;
    其中,所述第一指示信息用于所述第二终端设备调整所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
  21. 一种参数调整装置,所述装置包括:
    接收单元,用于接收第一终端设备发送的第一指示信息,所述第一指示信息用于确定所述第一终端设备下一次传输侧行数据的时刻;
    调整单元,用于根据所述第一指示信息,调整所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
  22. 根据权利要求21所述的装置,其中,所述调整单元,用于调整第一DRX配置信息中的一个或多个DRX参数,所述一个或多个DRX参数用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
  23. 根据权利要求21所述的装置,其中,所述调整单元,用于在所述下一次传输侧行数据的时刻之前启动第一定时器,所述第一定时器用于确定所述第二终端设备的连续侦听时间范围,所述第一终端设备下一次传输侧行数据的时刻位于所述连续侦听时间范围内。
  24. 根据权利要求21至23中任一项所述的装置,其中,所述接收单元,用于接收所述第一终端设备在第一时刻发送的SCI,所述SCI携带第一指示信息,所述第一指示信息用于指示第一时间间隔;其中,所述第一终端设备下一次传输侧行数据的时刻为所述第一时刻加上所述第一时间间隔。
  25. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至8中任一项所述的方法,或者权利要求9至12中任一项所述的方法。
  26. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至8中任一项所述的方法,或者权利要求9至12中任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至8中任一项所述的方法,或者权利要求9至12中任一项所述的方法。
  28. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至8中任一项所述的方法,或者权利要求9至12中任一项所述的方法。
  29. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至8中任一项所述的方法,或者权利要求9至12中任一项所述的方法。
PCT/CN2020/074484 2020-02-07 2020-02-07 一种数据传输方法及参数调整方法、装置、终端设备 WO2021155562A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2020/074484 WO2021155562A1 (zh) 2020-02-07 2020-02-07 一种数据传输方法及参数调整方法、装置、终端设备
JP2022547851A JP2023518660A (ja) 2020-02-07 2020-02-07 データ伝送方法及びパラメータ調整方法、装置、端末機器
CN202211103043.3A CN116261230A (zh) 2020-02-07 2020-02-07 一种数据传输方法及参数调整方法、装置、终端设备
CN202080090328.0A CN114846857A (zh) 2020-02-07 2020-02-07 一种数据传输方法及参数调整方法、装置、终端设备
EP20917659.3A EP4093097A4 (en) 2020-02-07 2020-02-07 METHOD AND DEVICE FOR DATA TRANSMISSION, METHOD AND DEVICE FOR PARAMETER SETTING AND TERMINAL
KR1020227028391A KR20220137915A (ko) 2020-02-07 2020-02-07 데이터 전송 방법 및 파라미터 조정 방법, 장치, 단말 기기
US17/881,888 US20220377835A1 (en) 2020-02-07 2022-08-05 Data transmission method and apparatus, parameter adjustment method and apparatus, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074484 WO2021155562A1 (zh) 2020-02-07 2020-02-07 一种数据传输方法及参数调整方法、装置、终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/881,888 Continuation US20220377835A1 (en) 2020-02-07 2022-08-05 Data transmission method and apparatus, parameter adjustment method and apparatus, and terminal device

Publications (1)

Publication Number Publication Date
WO2021155562A1 true WO2021155562A1 (zh) 2021-08-12

Family

ID=77199171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074484 WO2021155562A1 (zh) 2020-02-07 2020-02-07 一种数据传输方法及参数调整方法、装置、终端设备

Country Status (6)

Country Link
US (1) US20220377835A1 (zh)
EP (1) EP4093097A4 (zh)
JP (1) JP2023518660A (zh)
KR (1) KR20220137915A (zh)
CN (2) CN116261230A (zh)
WO (1) WO2021155562A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204392A (zh) * 2008-09-05 2011-09-28 诺基亚西门子通信公司 将drx的间歇时段用于小区中的直接对等通信
WO2015176251A1 (zh) * 2014-05-21 2015-11-26 华为技术有限公司 一种设备到设备d2d通信中的信号传输方法及装置
CN107241786A (zh) * 2016-03-28 2017-10-10 电信科学技术研究院 一种进行通信配置的方法和设备
CN108307489A (zh) * 2016-08-11 2018-07-20 中兴通讯股份有限公司 信息处理方法、装置、用户设备及基站
CN109479189A (zh) * 2016-07-21 2019-03-15 三星电子株式会社 设备到设备(d2d)通信中通过侧链路发现用户设备(ue)的系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064477A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Systems and methods for discontinuous reception in device-to-device communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204392A (zh) * 2008-09-05 2011-09-28 诺基亚西门子通信公司 将drx的间歇时段用于小区中的直接对等通信
WO2015176251A1 (zh) * 2014-05-21 2015-11-26 华为技术有限公司 一种设备到设备d2d通信中的信号传输方法及装置
CN107241786A (zh) * 2016-03-28 2017-10-10 电信科学技术研究院 一种进行通信配置的方法和设备
CN109479189A (zh) * 2016-07-21 2019-03-15 三星电子株式会社 设备到设备(d2d)通信中通过侧链路发现用户设备(ue)的系统和方法
CN108307489A (zh) * 2016-08-11 2018-07-20 中兴通讯股份有限公司 信息处理方法、装置、用户设备及基站

Also Published As

Publication number Publication date
EP4093097A1 (en) 2022-11-23
KR20220137915A (ko) 2022-10-12
CN116261230A (zh) 2023-06-13
CN114846857A (zh) 2022-08-02
JP2023518660A (ja) 2023-05-08
US20220377835A1 (en) 2022-11-24
EP4093097A4 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021155594A1 (zh) 一种选取资源的方法及装置、终端设备
WO2021120013A1 (zh) 监听唤醒信号的方法、终端设备和网络设备
WO2020132869A1 (zh) 资源分配的方法和终端设备
WO2021134316A1 (zh) 一种业务调度方法及装置、终端设备、网络设备
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2021081838A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2021026891A1 (zh) 传输侧行数据的方法、终端设备和网络设备
TW202017401A (zh) 一種通訊方法、終端設備和網路設備
WO2021051320A1 (zh) 一种业务数据传输方法及装置、网络设备、终端设备
WO2021056155A1 (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
WO2021007779A1 (zh) 一种资源共享方法及装置、终端设备
WO2021147771A1 (zh) 非连续接收参数的处理方法、存储介质和处理
WO2021212372A1 (zh) 资源分配方法和终端
WO2021051319A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2021016979A1 (zh) 无线通信方法和终端设备
WO2020124534A1 (zh) 数据传输的方法和设备
WO2021155562A1 (zh) 一种数据传输方法及参数调整方法、装置、终端设备
EP4284099A1 (en) Mbs service configuration method and apparatus, terminal device, and network device
WO2022021023A1 (zh) 信息指示方法及装置、终端设备、网络设备
WO2022006875A1 (zh) 建立mbs业务的方法及装置、终端设备、网络设备
WO2021142646A1 (zh) 一种业务传输方法及装置、通信设备
WO2021068301A1 (zh) 清空缓存的方法及缓存的处理方法、装置、终端设备
WO2021026708A1 (zh) 用于侧行链路的能力上报的方法、终端设备和网络设备
WO2021051321A1 (zh) 一种业务数据传输方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547851

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227028391

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020917659

Country of ref document: EP

Effective date: 20220816

NENP Non-entry into the national phase

Ref country code: DE