WO2021153492A1 - Poly(butylene terephthalate) resin composition and molded object - Google Patents

Poly(butylene terephthalate) resin composition and molded object Download PDF

Info

Publication number
WO2021153492A1
WO2021153492A1 PCT/JP2021/002412 JP2021002412W WO2021153492A1 WO 2021153492 A1 WO2021153492 A1 WO 2021153492A1 JP 2021002412 W JP2021002412 W JP 2021002412W WO 2021153492 A1 WO2021153492 A1 WO 2021153492A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
polybutylene terephthalate
resin composition
phase
Prior art date
Application number
PCT/JP2021/002412
Other languages
French (fr)
Japanese (ja)
Inventor
創貴 吉田
山中 康史
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN202180010968.0A priority Critical patent/CN114981357B/en
Priority to JP2021574015A priority patent/JP7133731B2/en
Publication of WO2021153492A1 publication Critical patent/WO2021153492A1/en
Priority to JP2022136089A priority patent/JP2022174130A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a polybutylene terephthalate resin composition and a molded product. Specifically, the present invention relates to a polybutylene terephthalate resin composition having excellent impact resistance, toughness, flame retardancy, fluidity, surface appearance, and hydrolysis resistance, and a polybutylene terephthalate resin composition thereof. Regarding molded products.
  • Polybutylene terephthalate resin has excellent heat resistance, moldability, chemical resistance, electrical insulation, and other properties suitable for engineering plastics. Therefore, electrical and electronic parts, automobile parts, other electrical parts, mechanical parts, etc. It is preferably used in.
  • polybutylene terephthalate resin Since polybutylene terephthalate resin has excellent crystal properties, it has a problem of insufficient toughness represented by impact strength, and in order to solve this problem, research on polymer alloys has been conventionally conducted. Various proposals have also been made for flame-retardant formulations.
  • Patent Document 1 discloses a flame-retardant polyester resin composition containing a polybutylene terephthalate resin, a polycarbonate resin, a halogen-based flame retardant, a flame retardant aid, and an ester exchange inhibitor as constituents
  • Patent Document 2 Discloses a flame-retardant polyester resin composition comprising a polybutylene terephthalate resin, a polycarbonate resin, an elastomer, a flame retardant and a flame retardant aid.
  • Patent Document 3 discloses a polyester resin composition composed of a polyester resin, a polystyrene-based rubber and a flame retardant.
  • polybutylene terephthalate resin is easily hydrolyzed by water and water vapor at high temperatures, and is generally chemically and physically used as an industrial material for electrical parts, electronic parts, automobile parts, mechanical parts, etc.
  • it is required to have excellent hydrolysis resistance.
  • the required physical properties in the field of electrical and electronic equipment have become more and more sophisticated, and materials having excellent impact resistance, toughness, flame retardancy, fluidity, surface appearance, hydrolysis resistance, etc. are required. ing.
  • there is a need for impact resistance in a low temperature environment such as ⁇ 30 ° C.
  • An object (objective) of the present invention is to solve the above-mentioned problems, and to obtain a polybutylene terephthalate resin composition having excellent impact resistance, toughness, flame retardancy, fluidity, surface appearance, and hydrolysis resistance, and a molded product thereof. Is to provide.
  • the present inventor comprises a polybutylene terephthalate resin composition in which a specific amount of a polycarbonate resin is mixed with a polybutylene terephthalate resin and an elastomer is mixed with the polybutylene terephthalate resin.
  • a molded body having a resin phase (a) and a polycarbonate resin phase (b) and having a morphology in which an elastomer is present in both the phases (a) and the phase (b) is impact resistant at low temperature and normal temperature.
  • the present invention relates to the following polybutylene terephthalate resin composition molded article and polybutylene terephthalate resin composition.
  • a molded product composed of a resin composition containing (A) polybutylene terephthalate resin, (B) polycarbonate resin, and (C) elastomer. Based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is contained in an amount of more than 30 parts by mass and 75 parts by mass or less, and (B) polycarbonate resin is contained in an amount of 25 parts by mass or more and less than 70 parts by mass.
  • a morphology having (A) a polybutylene terephthalate resin phase (a) and (B) a polycarbonate resin phase (b), and (C) an elastomer present in both the phases (a) and (b).
  • a molded body of a polybutylene terephthalate resin composition characterized by having. 2.
  • the molded product according to 1 above which has a sea-island structure in which the phase (a) of the polybutylene terephthalate resin (A) forms a matrix phase and the phase (b) of the polycarbonate resin (B) exists in an island shape. 3.
  • the elastomer is a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and the content thereof is 3 to 30 parts by mass based on a total of 100 parts by mass of (A) and (B).
  • Resin composition The molded product according to any one of 1 to 3 above, wherein the resin composition constituting the molded product further contains a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell as an elastomer. 5. The molded product according to 4 above, wherein the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is present in the polycarbonate resin phase (b). 6. The molding according to 4 or 5 above, wherein the content of the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is 3 to 30 parts by mass based on a total of 100 parts by mass of (A) and (B). body. 7.
  • Resin composition Any of the above 1 to 6 in which the resin composition constituting the molded product further contains the flame retardant (E) in an amount of 3 to 30 parts by mass with respect to a total of 100 parts by mass of (A) and (B).
  • Resin composition The resin composition constituting the molded product further contains 0.05 to 10 parts by mass of titanium oxide (F) with respect to 100 parts by mass in total of (A) and (B).
  • the molded product according to any one of. 10 The molded product according to any one of 1 to 9 above, which is a housing.
  • (A) polybutylene terephthalate resin is more than 30 parts by mass and 75 parts by mass or less
  • (B) polycarbonate resin is 25 parts by mass or more and less than 70 parts by mass
  • polysiloxane is a polybutylene terephthalate resin composition containing 3 to 30 parts by mass of a core / shell type elastomer having a rubber core and a styrene-based shell. 12.
  • the resin composition according to 11 above further containing 3 to 30 parts by mass of a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell with respect to a total of 100 parts by mass of (A) and (B). 13.
  • the resin composition according to 11 or 12 above further containing 3 to 30 parts by mass of the flame retardant (E) with respect to 100 parts by mass in total of (A) and (B).
  • the polybutylene terephthalate resin composition molded product and the polybutylene terephthalate resin composition of the present invention have extremely high impact resistance at extremely low temperatures such as ⁇ 30 ° C. and impact resistance at room temperature, and are also excellent in toughness. Has excellent fluidity, surface appearance, hydrolysis resistance, and flame retardancy.
  • FIG. 1 is an SEM photograph of the molded product obtained in Example 1.
  • FIG. 2 is an SEM photograph of the molded product obtained in Example 2.
  • FIG. 3 is an SEM photograph of the molded product obtained in Comparative Example 2.
  • FIG. 4 is a schematic view showing a spiral resin molded product produced in Examples and Comparative Examples.
  • the polybutylene terephthalate resin composition molded article of the present invention is a molded article composed of a resin composition containing (A) polybutylene terephthalate resin, (B) polycarbonate resin, and (C) elastomer. Based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is contained in an amount of more than 30 parts by mass and 75 parts by mass or less, and (B) polycarbonate resin is contained in an amount of 25 parts by mass or more and less than 70 parts by mass.
  • a morphology having (A) a polybutylene terephthalate resin phase (a) and (B) a polycarbonate resin phase (b), and (C) an elastomer present in both the phases (a) and (b). It is characterized by having.
  • the polybutylene terephthalate resin composition molded article of the present invention has a sea-island structure, (A) the polybutylene terephthalate resin phase (a) forms a matrix phase, and (B) the polycarbonate resin phase (b) is an island. It has a morphology with a sea-island structure that exists in a shape.
  • the (C) elastomer is present in both the phases (a) and (b)
  • the impact-resistant reinforcing effect of the (A) polybutylene terephthalate resin and the (B) polycarbonate resin is remarkably exhibited.
  • Excellent impact resistance can be improved even at extremely low temperatures such as ⁇ 30 ° C.
  • the (C) elastomer in the molded product was determined by morphological observation to determine the cross-sectional area in the phase (a) of the (A) polybutylene terephthalate resin and (B) the polycarbonate resin.
  • the area ratio (unit:%) of the cross-sectional area in the phase (a) is preferably 10 to 60%, particularly 20 to 50, with respect to 100% of the total area of the phase (b) with the cross-sectional area. It is preferably%.
  • the morphology of the polybutylene terephthalate resin composition molded product of the present invention can be measured by observing the cross section of the molded product with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope) or the like. Specifically, using an SEM, STEM, or TEM analyzer, the core portion of the cross section of the molded product (the portion excluding the surface layer portion having a depth of less than 20 ⁇ m, the central portion of the cross section, and the cross section parallel to the flow direction of the resin composition). Is observed at a magnification of 3,000 to 100,000 times under an acceleration voltage of 20 kV.
  • FIG. 1 shows an example of the morphology of the molded product of the present invention, and is an SEM photograph (magnification: 30,000 times) of the core portion of the molded product obtained in Example 1 of the present invention.
  • the dark gray portion is the phase (a) of the polybutylene terephthalate resin (A) and forms the matrix phase.
  • the gray layer lighter than the phase (a) is the phase (b) of the (B) polycarbonate resin, and exists in an island shape in the sea of the phase (a) of the (A) polybutylene terephthalate resin to form a sea-island structure. You can see that.
  • the elastomer (C) is present in the form of particles indicated by solid circles in FIG. 1, and is present in the polycarbonate resin phase (b). You can see that there is. Further, it can be seen that the phase indicated by the arrow in FIG. 1 is the phase of the elastomer (C), which is present in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a).
  • FIG. 2 shows another example of the morphology of the molded product of the present invention, and is an SEM photograph (magnification: 30,000 times) of the core portion of the molded product obtained in Example 2 of the present invention.
  • the dark gray portion is the phase (a) of the polybutylene terephthalate resin (A) and forms the matrix phase.
  • the gray layer lighter than the phase (a) is the phase (b) of the (B) polycarbonate resin, and exists in an island shape in the sea of the phase (a) of the (A) polybutylene terephthalate resin to form a sea-island structure. You can see that.
  • the elastomer (C) is present in the form of particles indicated by solid circles in FIG. 2, and is present in the polycarbonate resin phase (b). You can see that there is. Further, in FIG. 2, it can be seen that the phase indicated by the arrow is the phase of the elastomer (C), which is present in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a).
  • the molded product of the present invention preferably has a sea-island structure in which the phase (a) of the polybutylene terephthalate resin (A) forms a matrix phase and the phase (b) of the polycarbonate resin (B) is present in an island shape.
  • the (C) elastomer is preferably a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and the content thereof is 100 in total of (A) and (B). It is preferably 3 to 30 parts by mass on the basis of parts by mass.
  • the resin composition constituting the molded product preferably further contains a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell as an elastomer, preferably a polysiloxane rubber core and an acrylic shell.
  • the core / shell type elastomer to have is present in the polycarbonate resin phase (b).
  • the content of the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is preferably 3 to 30 parts by mass based on a total of 100 parts by mass of (A) and (B).
  • the resin composition molded product (C) contains a core / shell type elastomer having a polysiloxane rubber core and a styrene shell and a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell as the elastomer (C)
  • a core / shell-type elastomer having a polysiloxane rubber core and a styrene-based shell is present in both the (A) polybutylene terephthalate resin phase (a) and the (B) polycarbonate resin phase (b), and the polysiloxane rubber core and the acrylic-based elastomer are present.
  • the core / shell-type elastomer having a shell has the morphology present in the polycarbonate resin phase (b).
  • the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell exists only in the polycarbonate resin phase (b), and (B) the impact resistance reinforcing effect of the polycarbonate resin is further exhibited. Impact resistance at low temperatures can be improved.
  • Resin composition The resin composition constituting the molded product preferably further contains the flame retardant (E) in an amount of 3 to 30 parts by mass with respect to a total of 100 parts by mass of (A) and (B).
  • (E) is preferably brominated polycarbonate.
  • the resin composition constituting the resin composition molded product preferably further contains titanium oxide (F), and the content thereof is 0. It is preferably 05 to 10 parts by mass.
  • the resin composition constituting the resin composition molded product having the above-mentioned morphology is preferably the following polybutylene terephthalate resin composition.
  • the polybutylene terephthalate resin composition of the present invention is based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is more than 30 parts by mass and 75 parts by mass or less, and (B) polycarbonate resin is 25 parts by mass. It is characterized by containing 3 to 30 parts by mass of a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell as the (C) elastomer.
  • the polybutylene terephthalate resin composition contains (A) polybutylene terephthalate resin.
  • the polybutylene terephthalate resin (A) is a polyester resin having a structure in which a terephthalic acid unit and a 1,4-butanediol unit are ester-bonded, and in addition to the polybutylene terephthalate resin (copolymer), a terephthalic acid unit and 1 Includes polybutylene terephthalate copolymers containing other copolymerization components other than the 4-butanediol unit, and mixtures of homopolymers and the copolymers.
  • the (A) polybutylene terephthalate resin may contain a dicarboxylic acid unit other than terephthalic acid, and specific examples of other dicarboxylic acids include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, and 2,5.
  • Aromatic dicarboxylic acids such as methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 4,4'-dicyclohexyldicarboxylic acid, Examples thereof include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid and dimer acid.
  • the diol unit may contain other diol units in addition to 1,4-butanediol, and specific examples of the other diol units include aliphatic or alicyclic diols having 2 to 20 carbon atoms. , Bisphenol derivatives and the like. Specific examples include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexanedimethanol, 4,4'-dicyclohexylhydroxymethane, 4,4. '-Dicyclohexylhydroxypropane, ethylene oxide-added diol of bisphenol A and the like can be mentioned.
  • trifunctional monomers such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane for introducing a branched structure, and fatty acids for adjusting the molecular weight, etc.
  • trimellitic acid trimesic acid
  • pyromellitic acid pyromellitic acid
  • pentaerythritol trimethylolpropane
  • fatty acids for adjusting the molecular weight, etc.
  • a small amount of the monofunctional compound can also be used in combination.
  • polybutylene terephthalate resin (A) As the polybutylene terephthalate resin (A), as described above, a polybutylene terephthalate copolymer obtained by polycondensing terephthalic acid and 1,4-butanediol is preferable, but the carboxylic acid unit is other than the above-mentioned terephthalic acid.
  • a polybutylene terephthalate copolymer containing one or more dicarboxylic acids and / or one or more diols other than the 1,4-butanediol may be used, and the (A) polybutylene terephthalate resin may be used together.
  • polystyrene resin modified by polymerization
  • specific preferable copolymers thereof include polyalkylene glycols, particularly polyester ether resin copolymerized with polytetramethylene glycol, and dimer acid copolymerized polybutylene terephthalate.
  • examples thereof include resins and isophthalic acid copolymer polybutylene terephthalate resins.
  • these copolymers have a copolymerization amount of 1 mol% or more and less than 50 mol% in all segments of polybutylene terephthalate resin.
  • the copolymerization amount is preferably 2 mol% or more and less than 50 mol%, more preferably 3 to 40 mol%, and particularly preferably 5 to 20 mol%. With such a copolymerization ratio, fluidity, toughness, and tracking resistance tend to be improved, which is preferable.
  • the intrinsic viscosity of the polybutylene terephthalate resin (A) is preferably 0.5 to 2 dl / g. If an intrinsic viscosity of less than 0.5 dl / g is used, the obtained polybutylene terephthalate resin material tends to have low mechanical strength. If the value is higher than 2 dl / g, the fluidity of the polybutylene terephthalate resin material may be deteriorated and the moldability may be deteriorated.
  • the intrinsic viscosity is more preferably 0.8 dl / g or more, and more preferably 1.8 dl / g or less. The intrinsic viscosity shall be measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the amount of the terminal carboxyl group of the polybutylene terephthalate resin (A) may be appropriately selected and determined, but is usually 60 eq / ton or less, preferably 50 eq / ton or less, and 30 eq / ton or less. Is even more preferable. If it exceeds 60 eq / ton, the alkali resistance and hydrolysis resistance are lowered, and gas is likely to be generated during melt molding of the resin composition.
  • the lower limit of the amount of the terminal carboxyl group is not particularly determined, but is usually 10 eq / ton in consideration of the productivity of producing the polybutylene terephthalate resin.
  • the amount of terminal carboxyl groups in the polybutylene terephthalate resin is a value measured by titration using a 0.01 mol / l benzyl alcohol solution of sodium hydroxide in which 0.5 g of the polyalkylene terephthalate resin is dissolved in 25 mL of benzyl alcohol.
  • a conventionally known arbitrary method such as a method for adjusting the polymerization conditions such as the raw material charging ratio at the time of polymerization, the polymerization temperature, and the depressurization method, and a method for reacting the terminal sequestering agent can be used. Just do it.
  • a dicarboxylic acid component containing terephthalic acid as a main component or an ester derivative thereof and a diol component containing 1,4-butanediol as a main component are melt-polymerized in a batch or continuous manner. Can be manufactured. Further, the degree of polymerization (or molecular weight) can be increased to a desired value by producing a low molecular weight polybutylene terephthalate resin by melt polymerization and then performing solid phase polymerization under a nitrogen stream or under reduced pressure.
  • the polybutylene terephthalate resin (A) is obtained by a production method in which a dicarboxylic acid component containing terephthalic acid as a main component and a diol component containing 1,4-butanediol as a main component are continuously melt-polycondensed. Is preferable.
  • the catalyst used in carrying out the esterification reaction may be a conventionally known catalyst, and examples thereof include titanium compounds, tin compounds, magnesium compounds, and calcium compounds. Of these, particularly suitable ones are titanium compounds.
  • Specific examples of the titanium compound as an esterification catalyst include titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate and tetrabutyl titanate, and titanium phenolates such as tetraphenyl titanate.
  • the polybutylene terephthalate resin composition contains (A) a polycarbonate resin together with (A) a polybutylene terephthalate resin.
  • the polycarbonate resin is a optionally branched thermoplastic polymer or copolymer obtained by reacting a dihydroxy compound or a small amount of a polyhydroxy compound with phosgene or a carbonic acid diester.
  • the method for producing the polycarbonate resin is not particularly limited, and those produced by a conventionally known phosgene method (interfacial polymerization method) or melting method (transesterification method) can be used.
  • the raw material dihydroxy compound does not substantially contain a bromine atom, and an aromatic dihydroxy compound is preferable.
  • an aromatic dihydroxy compound is preferable.
  • tetramethylbisphenol A bis (4-hydroxyphenyl) -p-diisopropylbenzene
  • hydroquinone resorcinol
  • 4,4-dihydroxy examples thereof include diphenyl and the like, preferably bisphenol A.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
  • the aromatic polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxys.
  • Aromatic polycarbonate copolymers derived from compounds are preferred. Further, it may be a copolymer mainly composed of an aromatic polycarbonate resin, such as a polymer having a siloxane structure or a copolymer with an oligomer. Furthermore, two or more of the above-mentioned polycarbonate resins may be mixed and used.
  • a monovalent aromatic hydroxy compound may be used, for example, m- and p-methylphenol, m- and p-propylphenol, p-tert-butylphenol, p-long chain. Examples thereof include alkyl-substituted phenols.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 15,000 or more, more preferably 20,000 or more, still more preferably 23,000 or more, particularly preferably 25,000 or more, and particularly most preferably more than 28,000. preferable. If a resin composition having a viscosity average molecular weight lower than 15,000 is used, the obtained resin composition tends to have low mechanical strength such as impact resistance.
  • the Mv is preferably 60,000 or less, more preferably 40,000 or less, and even more preferably 35,000 or less. If it is higher than 60,000, the fluidity of the resin composition may be deteriorated and the moldability may be deteriorated.
  • the method for producing the polycarbonate resin is not particularly limited, and a polycarbonate resin produced by any of the phosgene method (interfacial polymerization method) and the melting method (transesterification method) can be used. Further, a polycarbonate resin produced by the melting method and subjected to post-treatment for adjusting the amount of OH groups at the ends is also preferable.
  • the content of (B) polycarbonate resin is based on 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin, and (B) polycarbonate resin is 25 parts by mass or more and less than 70 parts by mass, preferably. 27 parts by mass or more, more preferably 28 parts by mass or more, further preferably 30 parts by mass or more, preferably 65 parts by mass or less, more preferably 63 parts by mass or less, still more preferably 60 parts by mass or less, particularly 55 parts by mass.
  • it is preferably 50 parts by mass or less, 48 parts by mass or less, 46 parts by mass or less, and particularly preferably 45 parts by mass or less.
  • the content of (A) polybutylene terephthalate resin is more than 30 parts by mass and 75 parts by mass or less, preferably 73 parts by mass or less, based on a total of 100 parts by mass of (A) polybutylene terephthalate resin and (B) polycarbonate resin. , More preferably 72 parts by mass or less, further preferably 70 parts by mass or less, preferably 35 parts by mass or more, more preferably 37 parts by mass or more, still more preferably 40 parts by mass or more, especially 45 parts by mass or more, 50 parts by mass. Parts or more, 52 parts by mass or more, 54 parts by mass or more are preferable, and 55 parts by mass or more is particularly preferable.
  • the polybutylene terephthalate resin composition contains (C) an elastomer.
  • Any type of (C) elastomer can be used as long as it can form morphology existing in both the phase (a) of the polybutylene terephthalate resin (A) and the phase (b) of the polycarbonate resin. It is possible.
  • a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell is preferable.
  • a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell By containing a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, the above-mentioned morphology can be easily formed, impact resistance at room temperature and low temperature, toughness, hydrolysis resistance, and heat retention. The stability can be made excellent.
  • a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell which is a preferable example of the (C) elastomer, will be described.
  • the core / shell type elastomer is preferably a graft copolymer obtained by graft-copolymerizing a rubber component with a copolymerizable monomer component, and the method for producing the graft copolymer includes bulk polymerization, solution polymerization, and suspension. Any production method such as turbid polymerization or emulsion polymerization may be used, and the copolymerization method may be a one-step graft or a multi-step graft.
  • the core / shell type in the present invention does not necessarily mean that the core layer and the shell layer can be clearly distinguished, and the purpose is to broadly include a compound obtained by graft-polymerizing a rubber component around the core portion. Is.
  • the polysiloxane rubber constituting the core layer of the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell is a polysiloxane rubber (that is, silicone rubber) such as organopolysiloxane, and is an acrylic-silicone composite rubber. It is also preferable.
  • Acrylic compounds used for acrylic-silicone composite rubber include acrylic acids such as methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, cyclohexyl acrylate, octyl acrylate, and octyl 2-ethylhexyl acrylate.
  • Esters and methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and octyl methacrylate can be preferably mentioned, and these can be used alone or in combination of two or more.
  • the rubber of the core / shell type elastomer preferably has a glass transition temperature of ⁇ 10 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • styrene-based component constituting the shell layer of the core / shell-type elastomer having a polysiloxane rubber core and a styrene-based shell examples include styrene-based components such as styrene, ⁇ -methylstyrene, p-methylstyrene, alkoxystyrene, and halogenated styrene. It is a polymer of a metric, and is also preferably a copolymer with a vinyl cyanide compound such as acrylonitrile.
  • styrene-based component constituting the shell layer a styrene-acrylonitrile copolymer is particularly preferable.
  • the polysiloxane rubber component is preferably contained in an amount of 40% by mass or more, and more preferably 60% by mass or more.
  • the content of the core / shell type elastomer is 3 to 30 parts by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin.
  • the content is preferably 5 parts by mass or more, more preferably 7 parts by mass or more, further preferably 9 parts by mass or more, preferably 25 parts by mass or less, and more preferably 20 parts by mass or less.
  • the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell has a cross-sectional area in the phase (a) of the (A) polybutylene terephthalate resin according to morphology observation.
  • the area ratio (unit:%) of the cross-sectional area in the phase (a) to 100% of the total area of the cross-sectional area of the phase (b) of the polycarbonate resin (B) is 30 to 70%. Is preferable, and particularly preferably 40 to 60%.
  • the polybutylene terephthalate resin composition of the present invention further preferably contains a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell.
  • the polysiloxane rubber constituting the core layer is a polysiloxane rubber (that is, silicone rubber) such as organopolysiloxane, and is preferably an acrylic-silicone composite rubber.
  • Acrylic compounds used for acrylic-silicone composite rubber include acrylic acids such as methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, cyclohexyl acrylate, octyl acrylate, and octyl 2-ethylhexyl acrylate.
  • Esters and methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and octyl methacrylate can be preferably mentioned, and these can be used alone or in combination of two or more.
  • acrylic compound of the acrylic component constituting the shell layer examples include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, cyclohexyl acrylate, octyl acrylate, octyl 2-ethylhexyl acrylate and the like.
  • Acrylic acid esters of the above, and methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and octyl methacrylate can be preferably mentioned, and methyl methacrylate is particularly preferable.
  • the acrylic compound may be used alone or in combination of two or more.
  • the polysiloxane rubber component preferably contains 40% by mass or more, and more preferably 60% by mass or more.
  • the content of the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is preferably 3 to 30 parts by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. ..
  • the content is more preferably 5 parts by mass or more, further preferably 7 parts by mass or more, particularly preferably 9 parts by mass or more, more preferably 25 parts by mass or less, still more preferably 20 parts by mass or less, and particularly 15 parts by mass. Below, 10 parts by mass or less is particularly preferable.
  • the polybutylene terephthalate resin composition preferably contains a flame retardant (E).
  • a flame retardant known flame retardants for plastics can be used. Specifically, halogen-based flame retardants, phosphorus-based flame retardants (melamine polyphosphate, etc.), nitrogen-based flame retardants (melamine cyanurate, etc.), metals. It is a hydroxide (magnesium hydroxide, etc.).
  • a bromine-based flame retardant is more preferable.
  • brominated flame retardant any conventionally known brominated flame retardant used for thermoplastic resins can be used.
  • bromine-based flame retardant include aromatic compounds, and specifically, for example, polybrominated benzyl (meth) acrylate such as pentabromobenzyl polyacrylate, polybromophenylene ether, brominated polystyrene, and the like.
  • brominated epoxy compounds such as the epoxy oligomer of tetrabromobisphenol A, brominated imide compounds such as N, N'-ethylenebis (tetrabromophthalimide) (EBTPI), and brominated polycarbonate.
  • polybromoated benzyl (meth) acrylate such as pentabromobenzyl polyacrylate, brominated epoxy compound such as tetrabromobisphenol A epoxy oligomer, brominated polystyrene, and brominated polycarbonate are preferable from the viewpoint of good thermal stability.
  • brominated polycarbonate is preferable from the viewpoint of impact resistance and flame retardancy.
  • brominated polycarbonate-based flame retardant specifically, for example, brominated polycarbonate obtained from brominated bisphenol A, particularly tetrabromobisphenol A, is preferable.
  • the terminal structure include a phenyl group, a 4-t-butylphenyl group, a 2,4,6-tribromophenyl group, and the like, and in particular, those having a 2,4,6-tribromophenyl group in the terminal group structure. Is preferable.
  • the average number of repeating units of carbonate in the brominated polycarbonate-based flame retardant may be appropriately selected and determined, but is usually 2 to 30. If the average number of repeating units of carbonate is small, the molecular weight of the (A) polybutylene terephthalate resin may decrease during melting. On the contrary, if it is too large, the melt viscosity of the polycarbonate resin (B) becomes high, causing poor dispersion in the molded product, and the appearance of the molded product, particularly the glossiness, may be deteriorated. Therefore, the average number of repeating units is preferably 3 to 15, particularly preferably 3 to 10.
  • the molecular weight of the brominated polycarbonate-based flame retardant is arbitrary and may be appropriately selected and determined, but the viscosity average molecular weight is preferably 1000 to 20000, and more preferably 2000 to 10000.
  • the viscosity average molecular weight of the brominated polycarbonate flame retardant can be determined by the same method as in the measurement of the viscosity average molecular weight of the polycarbonate resin (B).
  • the brominated polycarbonate flame retardant obtained from the above brominated bisphenol A can be obtained, for example, by a usual method of reacting brominated bisphenol with phosgene.
  • the terminal sequestering agent include aromatic monohydroxy compounds, which may be substituted with halogens or organic groups.
  • the polybrominated benzyl (meth) acrylate a polymer obtained by polymerizing a benzyl (meth) acrylate containing a bromine atom alone, copolymerizing two or more kinds, or copolymerizing with another vinyl-based monomer.
  • the bromine atom is added to the benzene ring, and the number of additions is preferably 1 to 5, particularly 4 to 5 per benzene ring.
  • benzyl acrylate containing the bromine atom examples include pentabrombenzyl acrylate, tetrabrombenzyl acrylate, tribrombenzyl acrylate, and a mixture thereof. Further, as the benzyl methacrylate containing a bromine atom, a methacrylate corresponding to the above-mentioned acrylate can be mentioned.
  • vinyl-based monomers used for copolymerizing with benzyl (meth) acrylate containing a bromine atom include, for example, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, and benzyl acrylate.
  • Acrylate esters Methacrylic acid esters such as methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate; unsaturated carboxylic acids such as styrene, acrylonitrile, fumaric acid, maleic acid or anhydrides thereof; vinyl acetate , Vinyl chloride, etc.
  • vinyl-based monomer xylenediacrylate, xylenedimethacrylate, tetrabromxylenediacrylate, tetrabromxylene dimethacrylate, butadiene, isoprene, divinylbenzene and the like can also be used, and these usually contain a bromine atom. 0.5 times the molar amount or less can be used with respect to benzyl acrylate or benzyl methacrylate.
  • pentabromobenzyl polyacrylate is preferable from the viewpoint of having a high bromine content and high electrical insulation characteristics (tracking resistance characteristics).
  • brominated epoxy compound examples include a bisphenol A type bromoated epoxy compound represented by a tetrabromobisphenol A epoxy compound.
  • the molecular weight of the brominated epoxy compound is arbitrary and may be appropriately selected and determined, but the mass average molecular weight (Mw) is preferably 3000 to 100,000, and the higher the molecular weight is preferable, and specifically, Mw. It is preferably 15,000 to 80,000, particularly 18,000 to 78,000 (Mw), further 20,000 to 75,000 (Mw), particularly 22,000 to 70,000, and even within this range, a compound having a high molecular weight is preferable.
  • the brominated epoxy compound preferably has an epoxy equivalent of 3000 to 40,000 g / eq, particularly preferably 4000 to 35000 g / eq, and particularly preferably 10000 to 30000 g / eq.
  • a brominated epoxy oligomer can be used in combination as a brominated epoxy compound-based flame retardant.
  • a brominated epoxy compound-based flame retardant for example, by using about 0 to 50% by mass of an oligomer having Mw of 5000 or less, flame retardancy, releasability and fluidity can be appropriately adjusted.
  • the content of the bromine atom in the brominated epoxy compound is arbitrary, but in order to impart sufficient flame retardancy, it is usually 10% by mass or more, and more preferably 20% by mass or more, particularly 30% by mass or more.
  • the upper limit is 60% by mass, preferably 55% by mass or less.
  • the content of the flame retardant is preferably 3 to 30 parts by mass, more preferably 7 parts by mass or more, still more preferably 7 parts by mass, based on 100 parts by mass of the total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. Is 10 parts by mass or more, more preferably 25 parts by mass or less, and further preferably 20 parts by mass or less. If the content of the flame retardant is too small, the flame retardancy of the resin composition used in the present invention becomes insufficient, and conversely, if the content is too large, problems such as deterioration of mechanical properties and releasability and bleed-out of the flame retardant occur. ..
  • the polybutylene terephthalate resin composition preferably contains an antimony compound which is a flame retardant auxiliary.
  • the antimony compound include antimony trioxide (Sb 2 O 3 ), antimony pentoxide (Sb 2 O 5 ) and sodium antimonate.
  • antimony trioxide is preferable from the viewpoint of impact resistance.
  • the antimony compound is preferably blended as a masterbatch with the (A) polybutylene terephthalate resin.
  • the antimony compound is likely to be present in the (A) polybutylene terephthalate resin phase, the adverse effect on the (B) polycarbonate resin can be suppressed, and the decrease in impact resistance tends to be suppressed.
  • the content of the antimony compound in the masterbatch is preferably 20 to 90% by mass. When the amount of the antimony compound is less than 20% by mass, the proportion of the antimony compound in the flame retardant masterbatch is small, and the effect of improving the flame retardancy of the polybutylene terephthalate resin containing the antimony compound is small.
  • the antimony compound exceeds 90% by mass, the dispersibility of the antimony compound tends to decrease, and when this is blended with the polybutylene terephthalate resin, the flame retardancy of the resin composition becomes unstable, and the flame retardant masterbatch Workability during manufacturing is also significantly reduced, for example, when manufacturing using an extruder, problems such as unstable strands and easy cutting are likely to occur, which is not preferable.
  • the content of the antimony compound in the masterbatch is preferably 30 to 85% by mass, more preferably 40 to 80% by mass, and further preferably 50 to 75% by mass.
  • the content of the antimony compound is preferably 1 to 15 parts by mass, more preferably 2 parts by mass or more, still more preferably 2 parts by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. It is .5 parts by mass or more, more preferably 10 parts by mass or less, further preferably 7 parts by mass or less, and particularly preferably 6 parts by mass or less, particularly preferably 5 parts by mass or less. If it is below the above lower limit, the flame retardancy is likely to decrease, and if it exceeds the above upper limit, the crystallization temperature is lowered, the releasability is deteriorated, and the mechanical properties such as impact resistance are lowered.
  • the polybutylene terephthalate resin composition preferably contains a dropping inhibitor.
  • a fluoropolymer is preferable.
  • the fluoropolymer a known polymer having fluorine can be arbitrarily selected and used, and among them, a fluoroolefin resin is preferable.
  • the fluoroolefin resin include polymers and copolymers containing a fluoroethylene structure. Specific examples thereof include difluoroethylene resin, tetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin and the like. Of these, tetrafluoroethylene resin and the like are preferable.
  • the fluoroethylene resin a tetrafluoroethylene resin having a fibril forming ability is preferable.
  • an aqueous dispersion of a fluoroethylene resin and a fluoroethylene polymer having a multilayer structure formed by polymerizing a vinyl-based monomer can also be used as the fluoropolymer.
  • the content of the anti-dripping agent is preferably 0.05 to 1 part by mass, more preferably 0.1 part by mass, based on 100 parts by mass of the total of (A) polybutylene terephthalate resin and (B) polycarbonate resin.
  • the above is more preferably 0.12 parts by mass or more, particularly preferably 0.15 parts by mass or more, more preferably 0.6 parts by mass or less, still more preferably 0.45 parts by mass or less, and particularly preferably 0.35 parts by mass. It is less than a part by mass. If the content of the anti-dripping agent is too small, the flame retardancy of the resin composition may be insufficient, and conversely, if the content is too large, the appearance of the molded product of the resin composition may be poor and the mechanical strength may be reduced. It can occur.
  • the polybutylene terephthalate resin composition preferably further contains a pigment in order to improve colorability and weather resistance.
  • the pigment include black pigments such as inorganic pigments (carbon black, for example, acetylene black, lamp black, thermal black, furnace black, channel black, Ketjen black, etc.), white pigments such as titanium oxide, iron red oxide and the like. Examples thereof include red pigments, orange pigments such as molybdate orange, and organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.).
  • carbon black is preferable from the viewpoint of colorability and weather resistance
  • titanium oxide is preferably blended from the viewpoint of impact resistance, flame retardancy, and hydrolysis resistance.
  • the titanium oxide used is not particularly limited in terms of production method, crystal morphology, average particle size, and the like.
  • the average particle size of titanium oxide is preferably 0.01 to 3 ⁇ m, more preferably 0.05 to 1 ⁇ m, further preferably 0.1 to 0.7 ⁇ m, and particularly preferably 0. It is 1 to 0.4 ⁇ m. If the average particle size is less than 0.01 ⁇ m, the workability during production of the resin composition is poor, and if it exceeds 3 ⁇ m, the surface of the molded product is liable to be roughened and the mechanical strength of the molded product is likely to decrease. Two or more types of titanium oxide having different average particle diameters may be mixed and used.
  • Titanium oxide is preferably surface-treated with an organosiloxane-based surface treatment agent.
  • the content of the pigment is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. If it is less than 0.05 parts by mass, a desired color may not be obtained, or the effect of improving weather resistance may not be sufficient, and if it exceeds 10 parts by mass, mechanical properties may be deteriorated.
  • the content of the pigment is more preferably 0.05 to 7 parts by mass, still more preferably 0.1 to 5 parts by mass.
  • the preferable content of titanium oxide is 0.05 to 10 parts by mass, more preferably 0.05 to 7 parts by mass, based on 100 parts by mass of the total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. More preferably, it is 0.1 to 5 parts by mass.
  • the polybutylene terephthalate resin composition contains a stabilizer because it has an effect of improving thermal stability and preventing deterioration of mechanical strength, transparency and hue.
  • a stabilizer one type may be contained, or two or more types may be contained in any combination and ratio.
  • the content of the stabilizer is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. If the content of the stabilizer is less than 0.001 part by mass, it is difficult to expect improvement in thermal stability and compatibility of the resin composition, and a decrease in molecular weight and deterioration of hue during molding are likely to occur, and 2 parts by mass is used. If it exceeds the amount, the amount becomes excessive, and the generation of silver and the deterioration of hue tend to occur more easily.
  • the content of the stabilizer is more preferably 0.001 to 1.5 parts by mass, still more preferably 0.005 to 1.0 parts by mass.
  • a phosphorus-based stabilizer and a phenol-based stabilizer are preferable.
  • Examples of the phosphorus-based stabilizer include phosphorous acid, phosphoric acid, phosphorous acid ester, phosphoric acid ester and the like, and among them, an organic phosphoric acid ester compound is preferable.
  • the organic phosphoric acid ester compound has a partial structure in which 1 to 3 alkoxy groups or aryloxy groups are bonded to a phosphorus atom. A substituent may be further bonded to these alkoxy groups and aryloxy groups.
  • an organic phosphoric acid ester compound represented by any of the following general formulas (1) to (5) is used. Two or more kinds of organic phosphoric acid ester compounds may be used in combination.
  • R 1 to R 4 independently represent an alkyl group or an aryl group.
  • M represents an alkaline earth metal or zinc.
  • R 5 represents an alkyl group or an aryl group
  • M represents an alkaline earth metal or zinc.
  • R 6 to R 11 independently represent an alkyl group or an aryl group.
  • M' represents a metal atom that becomes a trivalent metal ion.
  • R 12 to R 14 independently represent an alkyl group or an aryl group.
  • M' represents a metal atom that becomes a trivalent metal ion, and the two M's may be the same or different.
  • R 15 represents an alkyl group or an aryl group.
  • n represents an integer of 0 to 2. When n is 0, the three R 15s may be the same or different, and when n is 1, the two R 15s may be the same or different.
  • R 1 to R 15 are usually alkyl groups having 1 to 30 carbon atoms or aryl groups having 6 to 30 carbon atoms. From the viewpoint of heat retention stability, chemical resistance, moisture heat resistance, etc., an alkyl group having 2 to 25 carbon atoms is preferable, and an alkyl group having 6 to 23 carbon atoms is most preferable.
  • alkyl group examples include an octyl group, a 2-ethylhexyl group, an isooctyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, a dodecyl group, a tridecyl group, an isotridecyl group, a tetradecyl group, a hexadecyl group and an octadecyl group.
  • M of the general formulas (1) and (2) is preferably zinc
  • M'of the general formulas (3) and (4) is preferably aluminum.
  • the compound of the general formula (1) is a bis (distearyl acid phosphate) zinc salt
  • the compound of the general formula (2) is a monostearyl acid phosphate zinc salt
  • the general formula (3) is an aluminum salt of tris (disteallyl acid phosphate)
  • the compound of general formula (4) is a salt of one monostearyl acid phosphate and two monostearyl acid phosphate aluminum salts.
  • the compound (5) include monostearyl acid phosphate and distearyl acid phosphate. These may be used alone or as a mixture.
  • an organic phosphate ester compound As an organic phosphate ester compound, it has a very high effect of suppressing ester exchange, has good thermal stability during molding, and has excellent moldability, and it is possible to set the temperature of the measuring part in the injection molding machine higher.
  • Bis (disteallyl acid phosphate) zinc which is a zinc salt of the organic phosphoric acid ester compound represented by the general formula (1), from the viewpoint of stable molding and excellent hydrolysis resistance and impact resistance. It is preferable to use a salt, a zinc salt of stearyl acid phosphate such as a zinc salt of a monostearyl acid phosphate which is a zinc salt of an organic phosphate compound represented by the general formula (2). Examples of these commercially available products include "JP-518Zn" manufactured by Johoku Chemical Industry Co., Ltd.
  • the content of the organic phosphoric acid ester compound is preferably 0.001 to 1 part by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. If the content is less than 0.001 part by mass, it is difficult to expect improvement in thermal stability and compatibility of the resin composition, and a decrease in molecular weight and deterioration of hue during molding are likely to occur, and if it exceeds 1 part by mass, There is a tendency for the amount to be excessive and the generation of silver and the deterioration of hue to occur more easily.
  • the content of the organic phosphate compound is more preferably 0.01 to 0.8 parts by mass, further preferably 0.05 to 0.7 parts by mass, and particularly preferably 0.1 to 0.5 parts by mass. It is a department.
  • phenolic stabilizer examples include pentaerythritol tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) and octadecyl-3- (3,5-di-tert-butyl-4).
  • -Hydroxyphenyl) propionate thiodiethylenebis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), pentaerythritol tetrakis (3- (3,5-di-neopentyl-4-hydroxyphenyl) ) Propionate) and the like.
  • pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) and octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate
  • the content of the phenolic stabilizer is preferably 0.001 to 1 part by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. If the content is less than 0.001 part by mass, it is difficult to expect improvement in thermal stability and compatibility of the resin composition, and a decrease in molecular weight and deterioration of hue during molding are likely to occur, and if it exceeds 1 part by mass, There is a tendency for the amount to be excessive and the generation of silver and the deterioration of hue to occur more easily.
  • the content of the phenolic stabilizer is more preferably 0.001 to 0.7 parts by mass, still more preferably 0.005 to 0.5 parts by mass.
  • the polybutylene terephthalate resin composition preferably contains a mold release agent.
  • a mold release agent known release agents usually used for polyester resins can be used. Among them, polyolefin-based compounds and fatty acid ester-based compounds are preferable, and polyolefin-based compounds are particularly preferable, because they have good alkali resistance. Compounds are preferred.
  • polyolefin compound examples include compounds selected from paraffin wax and polyethylene wax, and among them, those having a weight average molecular weight of 700 to 10000, more preferably 900 to 8000 are preferable.
  • fatty acid ester compounds include saturated or unsaturated monovalent or divalent aliphatic carboxylic acid esters, glycerin fatty acid esters, sorbitan fatty acid esters and other fatty acid esters, and partial saponifications thereof.
  • a mono-fatty acid ester composed of a fatty acid having 11 to 28 carbon atoms, preferably 17 to 21 carbon atoms and an alcohol is preferable.
  • fatty acids examples include palmitic acid, stearic acid, caproic acid, caproic acid, lauric acid, araquinic acid, behenic acid, lignoceric acid, cerotic acid, melissic acid, tetrariacontanic acid, montanic acid, adipic acid, azelaic acid and the like. Be done. Further, the fatty acid may be an alicyclic type.
  • the alcohol examples include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monohydric or polyhydric saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable. Here, the aliphatic term also contains an alicyclic compound.
  • alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol and the like. Can be mentioned.
  • the above ester compound may contain an aliphatic carboxylic acid and / or an alcohol as an impurity, or may be a mixture of a plurality of compounds.
  • fatty acid ester compound examples include glycerin monostearate, glycerin monobehenate, glycerin dibehenate, glycerin-12-hydroxymonostearate, sorbitan monobehenate, pentaerythritol monostearate, and pentaerythritol distea.
  • examples include rate, stearyl stearate, ethylene glycol montanic acid ester and the like.
  • the content of the release agent is preferably 0.1 to 3 parts by mass, but 0.2 to 2.5 parts by mass, based on 100 parts by mass of the total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. It is more preferably parts by mass, and even more preferably 0.5 to 2 parts by mass. If it is less than 0.1 part by mass, the surface property tends to be deteriorated due to poor mold release during melt molding, while if it exceeds 3 parts by mass, the kneading workability of the resin composition is likely to be deteriorated, and the molded product is formed. The appearance of the product tends to deteriorate.
  • the polybutylene terephthalate resin composition may contain other resin additives other than those described above, if necessary, as long as the effects of the present invention are not impaired.
  • resin additives include reinforced fillers, anti-dripping agents, UV absorbers, weather-resistant stabilizers, lubricants, catalyst deactivators, antistatic agents, foaming agents, plasticizers, crystal nucleating agents, crystallization accelerators, etc. Can be mentioned.
  • the polybutylene terephthalate resin composition contains, if necessary, other thermoplastic resin, thermosetting resin, etc. other than the above-mentioned essential component resin as long as the effect of the present invention is not impaired. can do.
  • other thermoplastic resins include polyamide resins, polyacetal resins, polyphenylene oxide resins, polyphenylene sulfide resins, liquid crystal polyester resins, acrylic resins, and the like
  • thermosetting resins include phenol resins, melamine resins, and silicone resins.
  • examples include epoxy resin. These may be one kind or two or more kinds.
  • the content is preferably 40 parts by mass or less with respect to 100 parts by mass in total of the polybutylene terephthalate resin and the (B) polycarbonate resin. More preferably, it is 30 parts by mass or less, more preferably 20 parts by mass or less, particularly 10 parts by mass or less, particularly 5 parts by mass or less, and 2 parts by mass or less.
  • the polybutylene terephthalate resin composition is not limited to a specific method, but is formulated with (A) polybutylene terephthalate resin, (B) polycarbonate resin and (C) elastomer, and if necessary. Other ingredients are mixed, and then melted and kneaded.
  • the above-mentioned essential components and other components to be blended as necessary are uniformly mixed with a Henschel mixer, a ribbon blender, a V-type blender, a tumbler, or the like, and then uniaxial or multiaxial.
  • a method of melting and kneading with a kneading extruder, a roll, a Banbury mixer, a lab plast mill (lavender), or the like From the viewpoint of easily forming the morphological structure of the present invention, it is preferable to melt and knead with a twin-screw extruder.
  • the temperature at the time of melting and kneading is preferably in the range of 200 to 300 ° C., and more preferably in the range of 220 to 280 ° C. from the viewpoint of easily forming the morphological structure of the present invention.
  • any molding method generally used for the polybutylene terephthalate resin composition can be arbitrarily adopted, and an injection molding method, an ultra-high-speed injection molding method, or injection can be used.
  • the obtained polybutylene terephthalate resin composition molded body has (A) a polybutylene terephthalate resin phase (a) and (B) a polycarbonate resin phase (b) as described above, and (C) an elastomer is a phase. It has a sea-island structure existing in both the phases (a) and the phase (b), the phase (a) of the polybutylene terephthalate resin (A) forms a matrix phase, and the phase (b) of the polycarbonate resin (B). Has a morphology with a sea-island structure that exists in an island shape.
  • the resin composition molded product preferably has (C) a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, so that both phases (a) and (b) can be formed.
  • C a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell
  • the core / shell type elastomer having a polysiloxane rubber core and a styrene shell is (A) a polybutylene terephthalate resin phase (a).
  • the core / shell elastomer present in both the (B) polycarbonate resin phase (b) and having the polysiloxane rubber core and the acrylic shell is present only in the polycarbonate resin phase (b), so that the (B) polycarbonate
  • the impact resistance at low temperatures can be further improved.
  • the dark gray portion is the phase (a) of the (A) polybutylene terephthalate resin
  • the phase (a) forms the matrix phase
  • the gray layer lighter than the phase (a) is (B).
  • it is the phase (b) of the polycarbonate resin and exists in an island shape in the sea of the phase (a) of the polybutylene terephthalate resin (A) to form a sea-island structure.
  • the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell is present in the form of particles indicated by solid circles in FIG.
  • the phases indicated by the arrows are the phase of the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and are present in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a). You can see that. Further, in FIG. 1, it can be seen that the broken line circle is a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell, and is present only in the polycarbonate resin phase (b).
  • the dark gray portion is the phase (a) of the (A) polybutylene terephthalate resin, the phase (a) forms the matrix phase, and the gray layer lighter than the phase (a) is formed.
  • It is the phase (b) of the polycarbonate resin (B), and exists in an island shape in the sea of the phase (a) of the polybutylene terephthalate resin (A) to form a sea-island structure.
  • the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell exists in the form of particles indicated by solid circles in FIG.
  • the phases indicated by the arrows are the phase of the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and are present in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a). You can see that.
  • FIG. 3 is an SEM photograph of the core portion of the molded product obtained in Comparative Example 2.
  • the dark gray portion is the phase (a) of the polybutylene terephthalate resin (A) and forms the matrix phase.
  • the gray layer lighter than the phase (a) is the phase (b) of the (B) polycarbonate resin, and exists in an island shape in the sea of the phase (a) of the (A) polybutylene terephthalate resin to form a sea-island structure. ing.
  • FIG. 3 is a core / shell type elastomer having a polysiloxane-acrylate-based core and an acrylate-based shell, and is a polycarbonate resin phase. It can be seen that it exists only in (b) and does not exist in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a).
  • the polybutylene terephthalate resin composition molded product of the present invention is excellent in impact resistance, toughness, flame retardancy, fluidity, surface appearance, and hydrolysis resistance at low temperature and normal temperature.
  • Examples of the molded product here include an injection molded product, an extrusion molded product, a sheet, a pipe, and various films. The shape, size, thickness, etc. of these molded bodies are arbitrary.
  • the molded body includes electric / electronic parts, automobile parts and other electrical parts, mechanical parts, cooking utensils, and other household appliances, for example, a charger connector for an electric vehicle, a holder for a battery capacitor, a housing for a battery capacitor, or electricity. It can be suitably used for housings for automobile charging stands, housings for electronic and electrical equipment parts, connectors, relays, switches, sensors, actuators, terminal switches, rice cooker-related parts, grill cooking equipment parts, and the like. In particular, it can be suitably used as a charger connector for an electric vehicle, a holder for a battery capacitor, a housing for a battery capacitor, or a housing for a charging stand for an electric vehicle, especially when these are used in a low temperature environment such as -30 ° C. Suitable.
  • the holding pressure value is a cylinder temperature of 260 ° C., a mold temperature of 80 ° C., a cooling time of 20 seconds, a filling time of 1.0 second, and 50% of the injection peak pressure.
  • the injection molding was performed under the conditions of.
  • the observation surface of the obtained sample was stained with ruthenium tetroxide in a gas phase at room temperature for 120 minutes, and then using a scanning electron microscope (“SU8020” manufactured by Hitachi High-Tech), an acceleration voltage of 1 kV, a signal LA100 (U), An SEM image with a magnification of 30,000 times was acquired under the conditions of an emission current of 10 ⁇ A and a probe current of Normal. From the obtained SEM image, observe the morphology of (A) polybutylene terephthalate resin phase (a), (B) polycarbonate resin phase (b), and (C) elastomer, and determine in which phase each elastomer is present. confirmed.
  • an SEM image having a magnification of 10000 times was acquired under the conditions of an acceleration voltage of 1 kV, a signal LA100 (U), an elastomer current of 10 ⁇ A, and a probe current: Normal.
  • the elastomer inside and the elastomer in the (B) polycarbonate resin phase (b) were binarized and distinguished.
  • image processing "Image Pro Plus” manufactured by Nippon Roper Co., Ltd. was used.
  • the total cross-sectional area Sa1 of the elastomer C1 in the (A) polybutylene terephthalate resin phase (a) and the total cross-sectional area Sa2 of the elastomer C1 in the (B) polycarbonate resin phase (b) were obtained, and the total of Sa1 and Sa2 was obtained.
  • the area ratio (unit:%) "Sa" of Sa1 to 100% of the area was calculated. Further, a value obtained by dividing Sa by the mass part "W" of the polybutylene terephthalate resin was calculated.
  • Sa / W is preferably 0.75 to 1.30, more preferably 0.75 to 1.20, and even more preferably 0.75 to 1.10. Within the above range, both notched Charpy at room temperature and low temperature are improved.
  • the total cross-sectional area Sb1 of all the elastomers in the (A) polybutylene terephthalate resin phase (a) and the total cross-sectional area Sb2 of all the elastomers in the (B) polycarbonate resin phase (b) were obtained, and Sb1 and Sb2 were obtained.
  • the area ratio (unit:%) of Sb1 to 100% of the total area of Sb1 was calculated.
  • a value obtained by dividing Sb by the mass part "W" of the polybutylene terephthalate resin was calculated.
  • Sb / W is preferably 0.35 to 0.90. Within the above range, both notched Charpy at room temperature and low temperature are improved. Sa, Sa / W, Sb and Sb / W are listed in Table 2.
  • the shape of the evaluated spiral molded product is 105 mm in length, 90 mm in width, 1.0 mm in wall thickness in cross section, and 5 mm in width (gate portion is 1.0 mm in wall thickness and 1.5 mm in width), and is a long resin molded product. It is a spiral shape. The larger the value of this spiral flow length, the better the fluidity.
  • the polybutylene terephthalate resin composition molded product and the resin composition of the present invention are excellent in impact resistance, toughness, fluidity, surface appearance, hydrolysis resistance, and flame retardancy, and therefore, various electrical and electronic equipment parts, automobiles, etc.
  • For home appliances such as parts, other electrical parts, mechanical parts, cookware, etc., especially for electric vehicle charger connectors, battery capacitor holders, battery capacitor housings or electric vehicle charging stand housings. These are also suitable when used in a low temperature environment such as ⁇ 30 ° C., and some of them have very high industrial utility.

Abstract

A molded object of a poly(butylene terephthalate) resin composition comprising (A) a poly(butylene terephthalate) resin, (B) a polycarbonate resin, and (C) an elastomer, characterized by including the poly(butylene terephthalate) resin (A) and the polycarbonate resin (B) in amounts of 30-75 parts by mass, excluding 30 parts by mass, and of 25-70 parts by mass, excluding 70 parts by mass, respectively, per 100 parts by mass of the sum of (A) and (B) and by having a morphology which includes a phase (a) of the poly(butylene terephthalate) resin (A) and a phase (b) of the polycarbonate resin (B) and in which the elastomer (C) is present in both the phase (a) and the phase (b).

Description

ポリブチレンテレフタレート樹脂組成物及び成形体Polybutylene terephthalate resin composition and molded article
 本発明は、ポリブチレンテレフタレート樹脂組成物及び成形体に関し、詳しくは、耐衝撃性、靱性、難燃性、流動性、表面外観性、耐加水分解性に優れたポリブチレンテレフタレート樹脂組成物及びその成形体に関する。 The present invention relates to a polybutylene terephthalate resin composition and a molded product. Specifically, the present invention relates to a polybutylene terephthalate resin composition having excellent impact resistance, toughness, flame retardancy, fluidity, surface appearance, and hydrolysis resistance, and a polybutylene terephthalate resin composition thereof. Regarding molded products.
 ポリブチレンテレフタレート樹脂は、優れた耐熱性、成形性、耐薬品性及び電気絶縁性等エンジニアリングプラスチックとして好適な性質を有していることから、電気電子部品、自動車部品その他の電装部品、機械部品等に好適に使用されている。 Polybutylene terephthalate resin has excellent heat resistance, moldability, chemical resistance, electrical insulation, and other properties suitable for engineering plastics. Therefore, electrical and electronic parts, automobile parts, other electrical parts, mechanical parts, etc. It is preferably used in.
 ポリブチレンテレフタレート樹脂は、結晶特性に優れるため、衝撃強度に代表される靭性が不十分であるという課題を有しており、この課題を解決するためにポリマーアロイの研究が従来から行われ、その難燃処方についても各種の提案がなされている。
 例えば、特許文献1では、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ハロゲン系難燃剤、難燃助剤およびエステル交換防止剤を構成成分とする難燃性ポリエステル樹脂組成物が開示され、また、特許文献2には、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、エラストマー、難燃剤及び難燃助剤からなる難燃性ポリエステル樹脂組成物が開示されている。さらに、特許文献3には、ポリエステル樹脂、ポリスチレン系ゴム及び難燃剤からなるポリエステル樹脂組成物が開示されている。
Since polybutylene terephthalate resin has excellent crystal properties, it has a problem of insufficient toughness represented by impact strength, and in order to solve this problem, research on polymer alloys has been conventionally conducted. Various proposals have also been made for flame-retardant formulations.
For example, Patent Document 1 discloses a flame-retardant polyester resin composition containing a polybutylene terephthalate resin, a polycarbonate resin, a halogen-based flame retardant, a flame retardant aid, and an ester exchange inhibitor as constituents, and Patent Document 2 Discloses a flame-retardant polyester resin composition comprising a polybutylene terephthalate resin, a polycarbonate resin, an elastomer, a flame retardant and a flame retardant aid. Further, Patent Document 3 discloses a polyester resin composition composed of a polyester resin, a polystyrene-based rubber and a flame retardant.
 また、ポリブチレンテレフタレート樹脂は、高温では水や水蒸気によって加水分解が起きやすく、電気部品や電子部品、自動車部品、機械部品などの工業用材料として使用するためには、一般の化学的および物理的諸特性のバランスに加えて、優れた耐加水分解性を有することが求められている。
 また、近年では、電気電子機器分野における要求物性は、益々高度化してきており、耐衝撃性、靱性、難燃性、流動性、表面外観性、耐加水分解性等に優れた材料が求められている。さらには、例えば-30℃というような低温環境下での耐衝撃性が求められるニーズも出てきている。
In addition, polybutylene terephthalate resin is easily hydrolyzed by water and water vapor at high temperatures, and is generally chemically and physically used as an industrial material for electrical parts, electronic parts, automobile parts, mechanical parts, etc. In addition to the balance of various properties, it is required to have excellent hydrolysis resistance.
Further, in recent years, the required physical properties in the field of electrical and electronic equipment have become more and more sophisticated, and materials having excellent impact resistance, toughness, flame retardancy, fluidity, surface appearance, hydrolysis resistance, etc. are required. ing. Furthermore, there is a need for impact resistance in a low temperature environment such as −30 ° C.
特開2007-314664号公報Japanese Unexamined Patent Publication No. 2007-314664 特開平6-100713号公報Japanese Unexamined Patent Publication No. 6-100713 特開2005-112994号公報Japanese Unexamined Patent Publication No. 2005-112994
 本発明の課題(目的)は、上記問題点を解決し、耐衝撃性、靱性、難燃性、流動性、表面外観性、耐加水分解性に優れたポリブチレンテレフタレート樹脂組成物及びその成形体を提供することにある。 An object (objective) of the present invention is to solve the above-mentioned problems, and to obtain a polybutylene terephthalate resin composition having excellent impact resistance, toughness, flame retardancy, fluidity, surface appearance, and hydrolysis resistance, and a molded product thereof. Is to provide.
 本発明者は、上記課題を解決するため鋭意検討を重ねてきた結果、ポリブチレンテレフタレート樹脂にポリカーボネート樹脂を特定量配合したアロイに、エラストマーを配合したポリブチレンテレフタレート樹脂組成物からなり、ポリブチレンテレフタレート樹脂の相(a)及びポリカーボネート樹脂の相(b)を有し、エラストマーが相(a)及び相(b)の両方の相に存在するモルフォロジーを有する成形体が、低温及び常温時の耐衝撃性、靱性、難燃性、が向上することを見出し、本発明に到達した。
 本発明は、以下のポリブチレンテレフタレート樹脂組成物成形体及びポリブチレンテレフタレート樹脂組成物に関する。
As a result of diligent studies to solve the above problems, the present inventor comprises a polybutylene terephthalate resin composition in which a specific amount of a polycarbonate resin is mixed with a polybutylene terephthalate resin and an elastomer is mixed with the polybutylene terephthalate resin. A molded body having a resin phase (a) and a polycarbonate resin phase (b) and having a morphology in which an elastomer is present in both the phases (a) and the phase (b) is impact resistant at low temperature and normal temperature. We have found that the properties, toughness, and flame retardancy are improved, and have reached the present invention.
The present invention relates to the following polybutylene terephthalate resin composition molded article and polybutylene terephthalate resin composition.
1.(A)ポリブチレンテレフタレート樹脂、(B)ポリカーボネート樹脂、および(C)エラストマーを含有する樹脂組成物からなる成形体であって、
 (A)と(B)の合計100質量部基準で、(A)ポリブチレンテレフタレート樹脂を30質量部超75質量部以下、(B)ポリカーボネート樹脂を25質量部以上70質量部未満含有し、
 (A)ポリブチレンテレフタレート樹脂の相(a)及び(B)ポリカーボネート樹脂の相(b)を有し、(C)エラストマーが相(a)及び相(b)の両方の相に存在するモルフォロジーを有することを特徴とするポリブチレンテレフタレート樹脂組成物成形体。
2.(A)ポリブチレンテレフタレート樹脂の相(a)がマトリックス相を形成し、(B)ポリカーボネート樹脂の相(b)が島状に存在する海島構造を有する上記1に記載の成形体。
3.(C)エラストマーがポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーであり、その含有量が、(A)と(B)の合計100質量部基準で、3~30質量部である上記1または2に記載の成形体。
4.樹脂組成物成形体を構成する樹脂組成物が、さらに、エラストマーとしてポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーを含有する上記1~3のいずれかに記載の成形体。
5.ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーが、ポリカーボネート樹脂の相(b)に存在する上記4に記載の成形体。
6.ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーの含有量が、(A)と(B)の合計100質量部基準で、3~30質量部である上記4または5に記載の成形体。
7.樹脂組成物成形体を構成する樹脂組成物が、さらに、難燃剤(E)を、(A)と(B)の合計100質量部に対し、3~30質量部含有する上記1~6のいずれかに記載の成形体。
8.難燃剤(E)が臭素化ポリカーボネートである上記7に記載の成形体。
9.樹脂組成物成形体を構成する樹脂組成物が、さらに、酸化チタン(F)を、(A)と(B)の合計100質量部に対し、0.05~10質量部含有する上記1~8のいずれかに記載の成形体。
10.筐体である上記1~9のいずれかに記載の成形体。
1. 1. A molded product composed of a resin composition containing (A) polybutylene terephthalate resin, (B) polycarbonate resin, and (C) elastomer.
Based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is contained in an amount of more than 30 parts by mass and 75 parts by mass or less, and (B) polycarbonate resin is contained in an amount of 25 parts by mass or more and less than 70 parts by mass.
A morphology having (A) a polybutylene terephthalate resin phase (a) and (B) a polycarbonate resin phase (b), and (C) an elastomer present in both the phases (a) and (b). A molded body of a polybutylene terephthalate resin composition characterized by having.
2. The molded product according to 1 above, which has a sea-island structure in which the phase (a) of the polybutylene terephthalate resin (A) forms a matrix phase and the phase (b) of the polycarbonate resin (B) exists in an island shape.
3. 3. (C) The elastomer is a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and the content thereof is 3 to 30 parts by mass based on a total of 100 parts by mass of (A) and (B). The molded product according to 1 or 2 above.
4. Resin composition The molded product according to any one of 1 to 3 above, wherein the resin composition constituting the molded product further contains a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell as an elastomer.
5. The molded product according to 4 above, wherein the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is present in the polycarbonate resin phase (b).
6. The molding according to 4 or 5 above, wherein the content of the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is 3 to 30 parts by mass based on a total of 100 parts by mass of (A) and (B). body.
7. Resin composition Any of the above 1 to 6 in which the resin composition constituting the molded product further contains the flame retardant (E) in an amount of 3 to 30 parts by mass with respect to a total of 100 parts by mass of (A) and (B). The molded product described in Crab.
8. The molded product according to 7 above, wherein the flame retardant (E) is brominated polycarbonate.
9. Resin composition The resin composition constituting the molded product further contains 0.05 to 10 parts by mass of titanium oxide (F) with respect to 100 parts by mass in total of (A) and (B). The molded product according to any one of.
10. The molded product according to any one of 1 to 9 above, which is a housing.
11.(A)と(B)の合計100質量部基準で、(A)ポリブチレンテレフタレート樹脂を30質量部超75質量部以下、(B)ポリカーボネート樹脂を25質量部以上70質量部未満、およびポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーを3~30質量部含有することを特徴とするポリブチレンテレフタレート樹脂組成物。
12.さらに、ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーを、(A)と(B)の合計100質量部に対し、3~30質量部含有する上記11に記載の樹脂組成物。
13.さらに、難燃剤(E)を、(A)と(B)の合計100質量部に対し、3~30質量部含有する上記11または12に記載の樹脂組成物。
14.難燃剤(E)が臭素化ポリカーボネートである上記13に記載の樹脂組成物。
15.さらに、酸化チタン(F)を、(A)と(B)の合計100質量部に対し、0.05~10質量部含有する上記11~14のいずれかに記載の樹脂組成物。
11. Based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is more than 30 parts by mass and 75 parts by mass or less, (B) polycarbonate resin is 25 parts by mass or more and less than 70 parts by mass, and polysiloxane. A polybutylene terephthalate resin composition containing 3 to 30 parts by mass of a core / shell type elastomer having a rubber core and a styrene-based shell.
12. The resin composition according to 11 above, further containing 3 to 30 parts by mass of a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell with respect to a total of 100 parts by mass of (A) and (B).
13. The resin composition according to 11 or 12 above, further containing 3 to 30 parts by mass of the flame retardant (E) with respect to 100 parts by mass in total of (A) and (B).
14. The resin composition according to 13 above, wherein the flame retardant (E) is brominated polycarbonate.
15. The resin composition according to any one of 11 to 14 above, further containing 0.05 to 10 parts by mass of titanium oxide (F) with respect to 100 parts by mass in total of (A) and (B).
 本発明のポリブチレンテレフタレート樹脂組成物成形体及びポリブチレンテレフタレート樹脂組成物は、-30℃等の極低温での耐衝撃性及び常温時の耐衝撃性が極めて高く、かつ靱性にも優れ、かつ、優れた流動性、表面外観性、耐加水分解性、難燃性を有する。 The polybutylene terephthalate resin composition molded product and the polybutylene terephthalate resin composition of the present invention have extremely high impact resistance at extremely low temperatures such as −30 ° C. and impact resistance at room temperature, and are also excellent in toughness. Has excellent fluidity, surface appearance, hydrolysis resistance, and flame retardancy.
図1は、実施例1で得た成形体のSEM写真である。FIG. 1 is an SEM photograph of the molded product obtained in Example 1. 図2は、実施例2で得た成形体のSEM写真である。FIG. 2 is an SEM photograph of the molded product obtained in Example 2. 図3は、比較例2で得た成形体のSEM写真である。FIG. 3 is an SEM photograph of the molded product obtained in Comparative Example 2. 図4は、実施例及び比較例で作成したスパイラル状樹脂成形品を示す概略図である。FIG. 4 is a schematic view showing a spiral resin molded product produced in Examples and Comparative Examples.
 以下において、本発明の内容について詳細に説明する。尚、本明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。 The contents of the present invention will be described in detail below. In addition, in this specification, "-" is used in the meaning that the numerical values described before and after it are included as the lower limit value and the upper limit value.
 本発明のポリブチレンテレフタレート樹脂組成物成形体は、(A)ポリブチレンテレフタレート樹脂、(B)ポリカーボネート樹脂、および(C)エラストマーを含有する樹脂組成物からなる成形体であって、
 (A)と(B)の合計100質量部基準で、(A)ポリブチレンテレフタレート樹脂を30質量部超75質量部以下、(B)ポリカーボネート樹脂を25質量部以上70質量部未満含有し、
 (A)ポリブチレンテレフタレート樹脂の相(a)及び(B)ポリカーボネート樹脂の相(b)を有し、(C)エラストマーが相(a)及び相(b)の両方の相に存在するモルフォロジーを有することを特徴とする。
The polybutylene terephthalate resin composition molded article of the present invention is a molded article composed of a resin composition containing (A) polybutylene terephthalate resin, (B) polycarbonate resin, and (C) elastomer.
Based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is contained in an amount of more than 30 parts by mass and 75 parts by mass or less, and (B) polycarbonate resin is contained in an amount of 25 parts by mass or more and less than 70 parts by mass.
A morphology having (A) a polybutylene terephthalate resin phase (a) and (B) a polycarbonate resin phase (b), and (C) an elastomer present in both the phases (a) and (b). It is characterized by having.
 本発明のポリブチレンテレフタレート樹脂組成物成形体は、海島構造を有し、(A)ポリブチレンテレフタレート樹脂の相(a)がマトリックス相を形成し、(B)ポリカーボネート樹脂の相(b)が島状に存在する海島構造を有するモルフォロジーを有する。そして、(C)エラストマーが相(a)及び相(b)の両方の相に存在することで、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の耐衝撃性の補強効果が著しく発現し、-30℃というような極低温時においても優れた耐衝撃性を向上させることができる。常温及び低温における耐衝撃性を向上させるために、成形体中の(C)エラストマーは、モルフォロジー観察により、(A)ポリブチレンテレフタレート樹脂の相(a)中の断面面積と、(B)ポリカーボネート樹脂の相(b)の断面面積との合計面積100%に対しての、相(a)中の断面面積の面積率(単位:%)が10~60%であることが好ましく、特に20~50%であることが好ましい。 The polybutylene terephthalate resin composition molded article of the present invention has a sea-island structure, (A) the polybutylene terephthalate resin phase (a) forms a matrix phase, and (B) the polycarbonate resin phase (b) is an island. It has a morphology with a sea-island structure that exists in a shape. When the (C) elastomer is present in both the phases (a) and (b), the impact-resistant reinforcing effect of the (A) polybutylene terephthalate resin and the (B) polycarbonate resin is remarkably exhibited. , Excellent impact resistance can be improved even at extremely low temperatures such as −30 ° C. In order to improve the impact resistance at room temperature and low temperature, the (C) elastomer in the molded product was determined by morphological observation to determine the cross-sectional area in the phase (a) of the (A) polybutylene terephthalate resin and (B) the polycarbonate resin. The area ratio (unit:%) of the cross-sectional area in the phase (a) is preferably 10 to 60%, particularly 20 to 50, with respect to 100% of the total area of the phase (b) with the cross-sectional area. It is preferably%.
 本発明のポリブチレンテレフタレート樹脂組成物成形体のモルフォロジーの観察は、光学顕微鏡、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)等により成形体断面を観察することで測定できる。
 具体的には、SEM、STEM、TEM分析装置を用い、成形体断面のコア部(深さ20μm未満の表層部を除く部分で、断面の中心部、樹脂組成物流動方向に平行な断面。)を、20kVの加速電圧下で、倍率3,000~100,000倍の倍率により観察される。
The morphology of the polybutylene terephthalate resin composition molded product of the present invention can be measured by observing the cross section of the molded product with an optical microscope, SEM (scanning electron microscope), TEM (transmission electron microscope) or the like.
Specifically, using an SEM, STEM, or TEM analyzer, the core portion of the cross section of the molded product (the portion excluding the surface layer portion having a depth of less than 20 μm, the central portion of the cross section, and the cross section parallel to the flow direction of the resin composition). Is observed at a magnification of 3,000 to 100,000 times under an acceleration voltage of 20 kV.
 図1は、本発明の成形体のモルフォロジーの一例を示すものであって、本発明の実施例1で得られた成形体のコア部のSEM写真(倍率:30000倍)である。
 図1中、濃い灰色部分が(A)ポリブチレンテレフタレート樹脂の相(a)であり、マトリックス相を形成していることが分かる。相(a)より薄い灰色の層が(B)ポリカーボネート樹脂の相(b)であり、(A)ポリブチレンテレフタレート樹脂の相(a)の海に島状に存在して、海島構造を形成しているのが分かる。
 その薄い灰色のポリカーボネート樹脂相(b)中に、図1中、実線の丸で示した粒子状に存在しているのが(C)エラストマーであり、ポリカーボネート樹脂相(b)中に存在していることが分かる。また、図1中、矢印で示したのが(C)エラストマーの相であり、ポリブチレンテレフタレート樹脂相(a)のマトリックス相中に粒子状に存在していることが分かる。
FIG. 1 shows an example of the morphology of the molded product of the present invention, and is an SEM photograph (magnification: 30,000 times) of the core portion of the molded product obtained in Example 1 of the present invention.
In FIG. 1, it can be seen that the dark gray portion is the phase (a) of the polybutylene terephthalate resin (A) and forms the matrix phase. The gray layer lighter than the phase (a) is the phase (b) of the (B) polycarbonate resin, and exists in an island shape in the sea of the phase (a) of the (A) polybutylene terephthalate resin to form a sea-island structure. You can see that.
In the light gray polycarbonate resin phase (b), the elastomer (C) is present in the form of particles indicated by solid circles in FIG. 1, and is present in the polycarbonate resin phase (b). You can see that there is. Further, it can be seen that the phase indicated by the arrow in FIG. 1 is the phase of the elastomer (C), which is present in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a).
 図2は、本発明の成形体のモルフォロジーの他の一例を示すものであって、本発明の実施例2で得られた成形体のコア部のSEM写真(倍率:30000倍)である。
 図2中、濃い灰色部分が(A)ポリブチレンテレフタレート樹脂の相(a)であり、マトリックス相を形成していることが分かる。相(a)より薄い灰色の層が(B)ポリカーボネート樹脂の相(b)であり、(A)ポリブチレンテレフタレート樹脂の相(a)の海に島状に存在して、海島構造を形成しているのが分かる。
 その薄い灰色のポリカーボネート樹脂相(b)中に、図2中、実線の丸で示した粒子状に存在しているのが(C)エラストマーであり、ポリカーボネート樹脂相(b)中に存在していることが分かる。また、図2中、矢印で示したのが(C)エラストマーの相であり、ポリブチレンテレフタレート樹脂相(a)のマトリックス相中に粒子状に存在していることが分かる。
FIG. 2 shows another example of the morphology of the molded product of the present invention, and is an SEM photograph (magnification: 30,000 times) of the core portion of the molded product obtained in Example 2 of the present invention.
In FIG. 2, it can be seen that the dark gray portion is the phase (a) of the polybutylene terephthalate resin (A) and forms the matrix phase. The gray layer lighter than the phase (a) is the phase (b) of the (B) polycarbonate resin, and exists in an island shape in the sea of the phase (a) of the (A) polybutylene terephthalate resin to form a sea-island structure. You can see that.
In the light gray polycarbonate resin phase (b), the elastomer (C) is present in the form of particles indicated by solid circles in FIG. 2, and is present in the polycarbonate resin phase (b). You can see that there is. Further, in FIG. 2, it can be seen that the phase indicated by the arrow is the phase of the elastomer (C), which is present in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a).
 本発明の成形体は、(A)ポリブチレンテレフタレート樹脂の相(a)がマトリックス相を形成し、(B)ポリカーボネート樹脂の相(b)が島状に存在する海島構造を有することが好ましい。
 また、本発明の成形体は、(C)エラストマーがポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーであることが好ましく、その含有量が、(A)と(B)の合計100質量部基準で、3~30質量部であることが好ましい。
The molded product of the present invention preferably has a sea-island structure in which the phase (a) of the polybutylene terephthalate resin (A) forms a matrix phase and the phase (b) of the polycarbonate resin (B) is present in an island shape.
Further, in the molded product of the present invention, the (C) elastomer is preferably a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and the content thereof is 100 in total of (A) and (B). It is preferably 3 to 30 parts by mass on the basis of parts by mass.
 樹脂組成物成形体を構成する樹脂組成物は、さらに、エラストマーとしてポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーを含有することが好ましく、好ましくはポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーは、ポリカーボネート樹脂の相(b)に存在する。ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーの含有量は、(A)と(B)の合計100質量部基準で、3~30質量部であることが好ましい。 Resin Composition The resin composition constituting the molded product preferably further contains a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell as an elastomer, preferably a polysiloxane rubber core and an acrylic shell. The core / shell type elastomer to have is present in the polycarbonate resin phase (b). The content of the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is preferably 3 to 30 parts by mass based on a total of 100 parts by mass of (A) and (B).
 樹脂組成物成形体が(C)エラストマーがポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーとさらにポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーを含有する際には、ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーが(A)ポリブチレンテレフタレート樹脂相(a)及び(B)ポリカーボネート樹脂相(b)の両方に存在し、ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーはポリカーボネート樹脂の相(b)に存在するモルフォロジーを有する。ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーはポリカーボネート樹脂の相(b)にのみ存在することで、(B)ポリカーボネート樹脂の耐衝撃性の補強効果がより発現することで、さらに低温時の耐衝撃性を向上させることができる。 When the resin composition molded product (C) contains a core / shell type elastomer having a polysiloxane rubber core and a styrene shell and a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell as the elastomer (C), A core / shell-type elastomer having a polysiloxane rubber core and a styrene-based shell is present in both the (A) polybutylene terephthalate resin phase (a) and the (B) polycarbonate resin phase (b), and the polysiloxane rubber core and the acrylic-based elastomer are present. The core / shell-type elastomer having a shell has the morphology present in the polycarbonate resin phase (b). The core / shell type elastomer having a polysiloxane rubber core and an acrylic shell exists only in the polycarbonate resin phase (b), and (B) the impact resistance reinforcing effect of the polycarbonate resin is further exhibited. Impact resistance at low temperatures can be improved.
 樹脂組成物成形体を構成する樹脂組成物は、さらに、難燃剤(E)を、(A)と(B)の合計100質量部に対し、3~30質量部含有することが好ましく、難燃剤(E)は臭素化ポリカーボネートであることが好ましい。
 また、樹脂組成物成形体を構成する樹脂組成物は、さらに、酸化チタン(F)を含有することが好ましく、その含有量は(A)と(B)の合計100質量部に対し、0.05~10質量部であることが好ましい。
Resin composition The resin composition constituting the molded product preferably further contains the flame retardant (E) in an amount of 3 to 30 parts by mass with respect to a total of 100 parts by mass of (A) and (B). (E) is preferably brominated polycarbonate.
Further, the resin composition constituting the resin composition molded product preferably further contains titanium oxide (F), and the content thereof is 0. It is preferably 05 to 10 parts by mass.
 上記したモルフォロジーを有する樹脂組成物成形体を構成する樹脂組成物は、以下のポリブチレンテレフタレート樹脂組成物であることが好ましい。 The resin composition constituting the resin composition molded product having the above-mentioned morphology is preferably the following polybutylene terephthalate resin composition.
 本発明のポリブチレンテレフタレート樹脂組成物は、(A)と(B)の合計100質量部基準で、(A)ポリブチレンテレフタレート樹脂を30質量部超75質量部以下、(B)ポリカーボネート樹脂を25質量部以上70質量部未満、および(C)エラストマーとしてポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーを3~30質量部含有することを特徴とする。 The polybutylene terephthalate resin composition of the present invention is based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is more than 30 parts by mass and 75 parts by mass or less, and (B) polycarbonate resin is 25 parts by mass. It is characterized by containing 3 to 30 parts by mass of a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell as the (C) elastomer.
[(A)ポリブチレンテレフタレート樹脂]
 本発明において、ポリブチレンテレフタレート樹脂組成物は、(A)ポリブチレンテレフタレート樹脂を含有する。
 (A)ポリブチレンテレフタレート樹脂は、テレフタル酸単位及び1,4-ブタンジオール単位がエステル結合した構造を有するポリエステル樹脂であって、ポリブチレンテレフタレート樹脂(ホモポリマー)の他に、テレフタル酸単位及び1,4-ブタンジオール単位以外の、他の共重合成分を含むポリブチレンテレフタレート共重合体や、ホモポリマーと当該共重合体との混合物を含む。
[(A) Polybutylene terephthalate resin]
In the present invention, the polybutylene terephthalate resin composition contains (A) polybutylene terephthalate resin.
The polybutylene terephthalate resin (A) is a polyester resin having a structure in which a terephthalic acid unit and a 1,4-butanediol unit are ester-bonded, and in addition to the polybutylene terephthalate resin (copolymer), a terephthalic acid unit and 1 Includes polybutylene terephthalate copolymers containing other copolymerization components other than the 4-butanediol unit, and mixtures of homopolymers and the copolymers.
 (A)ポリブチレンテレフタレート樹脂は、テレフタル酸以外のジカルボン酸単位を含んでいてもよく、他のジカルボン酸の具体例としては、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ビス(4,4’-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸類、1,4-シクロへキサンジカルボン酸、4,4’-ジシクロヘキシルジカルボン酸等の脂環族ジカルボン酸類、および、アジピン酸、セバシン酸、アゼライン酸、ダイマー酸等の脂肪族ジカルボン酸類等が挙げられる。 The (A) polybutylene terephthalate resin may contain a dicarboxylic acid unit other than terephthalic acid, and specific examples of other dicarboxylic acids include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, and 2,5. -Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-2,2'-dicarboxylic acid, biphenyl-3,3'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, bis (4,4'- Carboxyphenyl) Aromatic dicarboxylic acids such as methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 4,4'-dicyclohexyldicarboxylic acid, Examples thereof include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid and dimer acid.
 ジオール単位としては、1,4-ブタンジオールの外に他のジオール単位を含んでいてもよく、他のジオール単位の具体例としては、炭素原子数2~20の脂肪族又は脂環族ジオール類、ビスフェノール誘導体類等が挙げられる。具体例としては、エチレングリコール、プロピレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオペンチルグリコール、デカメチレングリコール、シクロヘキサンジメタノール、4,4’-ジシクロヘキシルヒドロキシメタン、4,4’-ジシクロヘキシルヒドロキシプロパン、ビスフェノールAのエチレンオキシド付加ジオール等が挙げられる。また、上記のような二官能性モノマー以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等の三官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。 The diol unit may contain other diol units in addition to 1,4-butanediol, and specific examples of the other diol units include aliphatic or alicyclic diols having 2 to 20 carbon atoms. , Bisphenol derivatives and the like. Specific examples include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexanedimethanol, 4,4'-dicyclohexylhydroxymethane, 4,4. '-Dicyclohexylhydroxypropane, ethylene oxide-added diol of bisphenol A and the like can be mentioned. In addition to the bifunctional monomers as described above, trifunctional monomers such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane for introducing a branched structure, and fatty acids for adjusting the molecular weight, etc. A small amount of the monofunctional compound can also be used in combination.
 (A)ポリブチレンテレフタレート樹脂は、上記した通り、テレフタル酸と1,4-ブタンジオールとを重縮合させたポリブチレンテレフタレート単独重合体が好ましいが、また、カルボン酸単位として、前記のテレフタル酸以外のジカルボン酸1種以上及び/又はジオール単位として、前記1,4-ブタンジオール以外のジオール1種以上を含むポリブチレンテレフタレート共重合体であってもよく、(A)ポリブチレンテレフタレート樹脂が、共重合により変性したポリブチレンテレフタレート樹脂である場合、その具体的な好ましい共重合体としては、ポリアルキレングリコール類、特にはポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂や、ダイマー酸共重合ポリブチレンテレフタレート樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が挙げられる。中でも、ポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂を用いることが好ましい。
 なお、これらの共重合体は、共重合量が、ポリブチレンテレフタレート樹脂全セグメント中の1モル%以上、50モル%未満のものをいう。中でも、共重合量が好ましくは2モル%以上50モル%未満、より好ましくは3~40モル%、特に好ましくは5~20モル%である。このような共重合割合とすることにより、流動性、靱性、耐トラッキング性が向上しやすい傾向にあり、好ましい。
As the polybutylene terephthalate resin (A), as described above, a polybutylene terephthalate copolymer obtained by polycondensing terephthalic acid and 1,4-butanediol is preferable, but the carboxylic acid unit is other than the above-mentioned terephthalic acid. A polybutylene terephthalate copolymer containing one or more dicarboxylic acids and / or one or more diols other than the 1,4-butanediol may be used, and the (A) polybutylene terephthalate resin may be used together. In the case of a polybutylene terephthalate resin modified by polymerization, specific preferable copolymers thereof include polyalkylene glycols, particularly polyester ether resin copolymerized with polytetramethylene glycol, and dimer acid copolymerized polybutylene terephthalate. Examples thereof include resins and isophthalic acid copolymer polybutylene terephthalate resins. Above all, it is preferable to use a polyester ether resin copolymerized with polytetramethylene glycol.
In addition, these copolymers have a copolymerization amount of 1 mol% or more and less than 50 mol% in all segments of polybutylene terephthalate resin. Among them, the copolymerization amount is preferably 2 mol% or more and less than 50 mol%, more preferably 3 to 40 mol%, and particularly preferably 5 to 20 mol%. With such a copolymerization ratio, fluidity, toughness, and tracking resistance tend to be improved, which is preferable.
 (A)ポリブチレンテレフタレート樹脂の固有粘度は、0.5~2dl/gであるのが好ましい。固有粘度が0.5dl/gより低いものを用いると、得られるポリブチレンテレフタレート樹脂材料が機械強度の低いものとなりやすい。また2dl/gより高いものでは、ポリブチレンテレフタレート樹脂材料の流動性が悪くなり成形性が悪化する場合がある。固有粘度は0.8dl/g以上であるものがより好ましく、また1.8dl/g以下であることが好ましい。
 なお、固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定するものとする。
The intrinsic viscosity of the polybutylene terephthalate resin (A) is preferably 0.5 to 2 dl / g. If an intrinsic viscosity of less than 0.5 dl / g is used, the obtained polybutylene terephthalate resin material tends to have low mechanical strength. If the value is higher than 2 dl / g, the fluidity of the polybutylene terephthalate resin material may be deteriorated and the moldability may be deteriorated. The intrinsic viscosity is more preferably 0.8 dl / g or more, and more preferably 1.8 dl / g or less.
The intrinsic viscosity shall be measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
 (A)ポリブチレンテレフタレート樹脂は、末端カルボキシル基量は、適宜選択して決定すればよいが、通常、60eq/ton以下であり、50eq/ton以下であることが好ましく、30eq/ton以下であることがさらに好ましい。60eq/tonを超えると、耐アルカリ性及び耐加水分解性が低下し、また樹脂組成物の溶融成形時にガスが発生しやすくなる。末端カルボキシル基量の下限値は特に定めるものではないが、ポリブチレンテレフタレート樹脂の製造の生産性を考慮し、通常、10eq/tonである。 The amount of the terminal carboxyl group of the polybutylene terephthalate resin (A) may be appropriately selected and determined, but is usually 60 eq / ton or less, preferably 50 eq / ton or less, and 30 eq / ton or less. Is even more preferable. If it exceeds 60 eq / ton, the alkali resistance and hydrolysis resistance are lowered, and gas is likely to be generated during melt molding of the resin composition. The lower limit of the amount of the terminal carboxyl group is not particularly determined, but is usually 10 eq / ton in consideration of the productivity of producing the polybutylene terephthalate resin.
 なお、ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、ベンジルアルコール25mLにポリアルキレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を用いて滴定により測定する値である。末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。 The amount of terminal carboxyl groups in the polybutylene terephthalate resin is a value measured by titration using a 0.01 mol / l benzyl alcohol solution of sodium hydroxide in which 0.5 g of the polyalkylene terephthalate resin is dissolved in 25 mL of benzyl alcohol. be. As a method for adjusting the amount of the terminal carboxyl group, a conventionally known arbitrary method such as a method for adjusting the polymerization conditions such as the raw material charging ratio at the time of polymerization, the polymerization temperature, and the depressurization method, and a method for reacting the terminal sequestering agent can be used. Just do it.
 (A)ポリブチレンテレフタレート樹脂は、テレフタル酸を主成分とするジカルボン酸成分又はこれらのエステル誘導体と、1,4-ブタンジオールを主成分とするジオール成分を、回分式又は連続式で溶融重合させて製造することができる。また、溶融重合で低分子量のポリブチレンテレフタレート樹脂を製造した後、さらに窒素気流下又は減圧下固相重合させることにより、重合度(又は分子量)を所望の値まで高めることもできる。
 (A)ポリブチレンテレフタレート樹脂は、テレフタル酸を主成分とするジカルボン酸成分と1,4-ブタンジオールを主成分とするジオール成分とを、連続式で溶融重縮合する製造法で得られたものが好ましい。
In the polybutylene terephthalate resin, a dicarboxylic acid component containing terephthalic acid as a main component or an ester derivative thereof and a diol component containing 1,4-butanediol as a main component are melt-polymerized in a batch or continuous manner. Can be manufactured. Further, the degree of polymerization (or molecular weight) can be increased to a desired value by producing a low molecular weight polybutylene terephthalate resin by melt polymerization and then performing solid phase polymerization under a nitrogen stream or under reduced pressure.
The polybutylene terephthalate resin (A) is obtained by a production method in which a dicarboxylic acid component containing terephthalic acid as a main component and a diol component containing 1,4-butanediol as a main component are continuously melt-polycondensed. Is preferable.
 エステル化反応を遂行する際に使用される触媒は、従来から知られているものであってよく、例えば、チタン化合物、錫化合物、マグネシウム化合物、カルシウム化合物等を挙げることができる。これらの中で特に好適なものは、チタン化合物である。エステル化触媒としてのチタン化合物の具体例としては、例えば、テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタンアルコラート、テトラフェニルチタネート等のチタンフェノラート等を挙げることができる。 The catalyst used in carrying out the esterification reaction may be a conventionally known catalyst, and examples thereof include titanium compounds, tin compounds, magnesium compounds, and calcium compounds. Of these, particularly suitable ones are titanium compounds. Specific examples of the titanium compound as an esterification catalyst include titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate and tetrabutyl titanate, and titanium phenolates such as tetraphenyl titanate.
[(B)ポリカーボネート樹脂]
 本発明において、ポリブチレンテレフタレート樹脂組成物は、(A)ポリブチレンテレフタレート樹脂と共に(B)ポリカーボネート樹脂を含有する。
 ポリカーボネート樹脂は、ジヒドロキシ化合物又はこれと少量のポリヒドロキシ化合物を、ホスゲン又は炭酸ジエステルと反応させることによって得られる、分岐していてもよい熱可塑性重合体又は共重合体である。ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができる。
[(B) Polycarbonate resin]
In the present invention, the polybutylene terephthalate resin composition contains (A) a polycarbonate resin together with (A) a polybutylene terephthalate resin.
The polycarbonate resin is a optionally branched thermoplastic polymer or copolymer obtained by reacting a dihydroxy compound or a small amount of a polyhydroxy compound with phosgene or a carbonic acid diester. The method for producing the polycarbonate resin is not particularly limited, and those produced by a conventionally known phosgene method (interfacial polymerization method) or melting method (transesterification method) can be used.
 原料のジヒドロキシ化合物は、実質的に臭素原子を含まないものであり、芳香族ジヒドロキシ化合物が好ましい。具体的には、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられ、好ましくはビスフェノールAが挙げられる。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。 The raw material dihydroxy compound does not substantially contain a bromine atom, and an aromatic dihydroxy compound is preferable. Specifically, 2,2-bis (4-hydroxyphenyl) propane (= bisphenol A), tetramethylbisphenol A, bis (4-hydroxyphenyl) -p-diisopropylbenzene, hydroquinone, resorcinol, 4,4-dihydroxy Examples thereof include diphenyl and the like, preferably bisphenol A. Further, a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
 ポリカーボネート樹脂としては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される芳香族ポリカーボネート樹脂、又は、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導される芳香族ポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマー又はオリゴマーとの共重合体等の、芳香族ポリカーボネート樹脂を主体とする共重合体であってもよい。更には、上述したポリカーボネート樹脂の2種以上を混合して用いてもよい。 Among the above-mentioned polycarbonate resins, the aromatic polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxys. Aromatic polycarbonate copolymers derived from compounds are preferred. Further, it may be a copolymer mainly composed of an aromatic polycarbonate resin, such as a polymer having a siloxane structure or a copolymer with an oligomer. Furthermore, two or more of the above-mentioned polycarbonate resins may be mixed and used.
 ポリカーボネート樹脂の分子量を調節するには、一価の芳香族ヒドロキシ化合物を用いればよく、例えば、m-及びp-メチルフェノール、m-及びp-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等が挙げられる。 To adjust the molecular weight of the polycarbonate resin, a monovalent aromatic hydroxy compound may be used, for example, m- and p-methylphenol, m- and p-propylphenol, p-tert-butylphenol, p-long chain. Examples thereof include alkyl-substituted phenols.
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、15000以上であることが好ましく、20000以上であることがより好ましく、さらに好ましくは23000以上、特に好ましくは25000以上、特に28000を超えるものであることが最も好ましい。粘度平均分子量が15000より低いものを用いると、得られる樹脂組成物が耐衝撃性等の機械的強度の低いものとなりやすい。またMvは60000以下であることが好ましく、40000以下であることがより好ましく、35000以下であることがさらに好ましい。60000より高いものでは、樹脂組成物の流動性が悪くなり成形性が悪化する場合がある。 The viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 15,000 or more, more preferably 20,000 or more, still more preferably 23,000 or more, particularly preferably 25,000 or more, and particularly most preferably more than 28,000. preferable. If a resin composition having a viscosity average molecular weight lower than 15,000 is used, the obtained resin composition tends to have low mechanical strength such as impact resistance. The Mv is preferably 60,000 or less, more preferably 40,000 or less, and even more preferably 35,000 or less. If it is higher than 60,000, the fluidity of the resin composition may be deteriorated and the moldability may be deteriorated.
 なお、本発明において、ポリカーボネート樹脂の粘度平均分子量(Mv)は、ウベローデ粘度計を用いて、25℃にて、ポリカーボネート樹脂のメチレンクロライド溶液の粘度を測定し極限粘度([η])を求め、次のSchnellの粘度式から算出される値を示す。
  [η]=1.23×10-4Mv0.83
In the present invention, the viscosity average molecular weight (Mv) of the polycarbonate resin is determined by measuring the viscosity of the methylene chloride solution of the polycarbonate resin at 25 ° C. using an Ubbelohde viscometer to obtain the ultimate viscosity ([η]). The value calculated from the following Schnell viscosity formula is shown.
[Η] = 1.23 × 10 -4 Mv 0.83
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、ホスゲン法(界面重合法)及び溶融法(エステル交換法)のいずれの方法で製造したポリカーボネート樹脂も使用することができる。また、溶融法で製造したポリカーボネート樹脂に、末端のOH基量を調整する後処理を施したポリカーボネート樹脂も好ましい。 The method for producing the polycarbonate resin is not particularly limited, and a polycarbonate resin produced by any of the phosgene method (interfacial polymerization method) and the melting method (transesterification method) can be used. Further, a polycarbonate resin produced by the melting method and subjected to post-treatment for adjusting the amount of OH groups at the ends is also preferable.
 (B)ポリカーボネート樹脂の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部基準で、(B)ポリカーボネート樹脂が25質量部以上70質量部未満であり、好ましくは27質量部以上、より好ましくは28質量部以上、さらに好ましくは30質量部以上であり、好ましくは65質量部以下、より好ましくは63質量部以下、さらに好ましくは60質量部以下、中でも55質量部以下、50質量部以下、48質量部以下、46質量部以下が好ましく、特に好ましくは45質量部以下である。(B)ポリカーボネート樹脂の含有量が上記範囲にあることで、耐衝撃性や靭性、耐薬品性、さらに寸法安定性が優れ、流動性・成形性に優れ、前記したモルフォロジーとすることが容易となる。上記下限値を下回ると、耐衝撃性や靭性の改良効果が小さく、さらに、寸法安定性が低下する。また、上記上限値を上回ると流動性が悪くなり成形性が悪化する。さらに後述するモルフォロジーとすることが難しくなりやすく、耐薬品性が低下しやすくなる。
 (A)ポリブチレンテレフタレート樹脂の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部基準で、30質量部超75質量部以下であり、好ましくは73質量部以下、より好ましくは72質量部以下、さらに好ましくは70質量部以下であり、好ましくは35質量部以上、より好ましくは37質量部以上、さらに好ましくは40質量部以上、中でも45質量部以上、50質量部以上、52質量部以上、54質量部以上が好ましく、特に好ましくは55質量部以上である。
The content of (B) polycarbonate resin is based on 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin, and (B) polycarbonate resin is 25 parts by mass or more and less than 70 parts by mass, preferably. 27 parts by mass or more, more preferably 28 parts by mass or more, further preferably 30 parts by mass or more, preferably 65 parts by mass or less, more preferably 63 parts by mass or less, still more preferably 60 parts by mass or less, particularly 55 parts by mass. Hereinafter, it is preferably 50 parts by mass or less, 48 parts by mass or less, 46 parts by mass or less, and particularly preferably 45 parts by mass or less. (B) When the content of the polycarbonate resin is within the above range, the impact resistance, toughness, chemical resistance, dimensional stability are excellent, the fluidity and moldability are excellent, and the above-mentioned morphology can be easily obtained. Become. If it is less than the above lower limit, the effect of improving the impact resistance and toughness is small, and the dimensional stability is further lowered. Further, if it exceeds the above upper limit value, the fluidity deteriorates and the moldability deteriorates. Further, it tends to be difficult to obtain the morphology described later, and the chemical resistance tends to decrease.
The content of (A) polybutylene terephthalate resin is more than 30 parts by mass and 75 parts by mass or less, preferably 73 parts by mass or less, based on a total of 100 parts by mass of (A) polybutylene terephthalate resin and (B) polycarbonate resin. , More preferably 72 parts by mass or less, further preferably 70 parts by mass or less, preferably 35 parts by mass or more, more preferably 37 parts by mass or more, still more preferably 40 parts by mass or more, especially 45 parts by mass or more, 50 parts by mass. Parts or more, 52 parts by mass or more, 54 parts by mass or more are preferable, and 55 parts by mass or more is particularly preferable.
[(C)エラストマー]
 本発明のポリブチレンテレフタレート樹脂組成物成形体において、ポリブチレンテレフタレート樹脂組成物は、(C)エラストマーを含有する。(C)エラストマーは、(A)ポリブチレンテレフタレート樹脂の相(a)及び(B)ポリカーボネート樹脂の相(b)の両方の相に存在するモルフォロジーを形成できるものであれば、いずれの種類でも使用可能である。特に、ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーが好ましい。ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーを含有することにより、前記したモルフォロジーを形成しやすくなり、常温及び低温での耐衝撃性、さらに、靱性、耐加水分解性、滞留熱安定性を優れたものとすることができる。以下、(C)エラストマーの好ましい例である、ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーについて説明する。
[(C) Elastomer]
In the polybutylene terephthalate resin composition molded article of the present invention, the polybutylene terephthalate resin composition contains (C) an elastomer. Any type of (C) elastomer can be used as long as it can form morphology existing in both the phase (a) of the polybutylene terephthalate resin (A) and the phase (b) of the polycarbonate resin. It is possible. In particular, a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell is preferable. By containing a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, the above-mentioned morphology can be easily formed, impact resistance at room temperature and low temperature, toughness, hydrolysis resistance, and heat retention. The stability can be made excellent. Hereinafter, a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, which is a preferable example of the (C) elastomer, will be described.
 コア/シェル型エラストマーは、ゴム成分にこれと共重合可能な単量体成分とをグラフト共重合したグラフト共重合体が好ましく、グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。
 なお、本発明におけるコア/シェル型とは必ずしもコア層とシェル層が明確に区別できるものでなくてもよく、コアとなる部分の周囲にゴム成分をグラフト重合して得られる化合物を広く含む趣旨である。
The core / shell type elastomer is preferably a graft copolymer obtained by graft-copolymerizing a rubber component with a copolymerizable monomer component, and the method for producing the graft copolymer includes bulk polymerization, solution polymerization, and suspension. Any production method such as turbid polymerization or emulsion polymerization may be used, and the copolymerization method may be a one-step graft or a multi-step graft.
The core / shell type in the present invention does not necessarily mean that the core layer and the shell layer can be clearly distinguished, and the purpose is to broadly include a compound obtained by graft-polymerizing a rubber component around the core portion. Is.
 ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーのコア層を構成するポリシロキサンゴムは、オルガノポリシロキサン等のポリシロキサンゴム(すなわち、シリコーンゴム)であり、アクリル-シリコーン複合ゴムであることも好ましい。
 アクリル-シリコーン複合ゴムに用いるアクリル化合物としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸オクチル、アクリル酸オクチル2-エチルヘキシル等のアクリル酸エステル、またメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸オクチル等のメタクリル酸エステルを好ましく挙げることができ、これらは単独または複数を組み合わせて使用することができる。
The polysiloxane rubber constituting the core layer of the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell is a polysiloxane rubber (that is, silicone rubber) such as organopolysiloxane, and is an acrylic-silicone composite rubber. It is also preferable.
Acrylic compounds used for acrylic-silicone composite rubber include acrylic acids such as methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, cyclohexyl acrylate, octyl acrylate, and octyl 2-ethylhexyl acrylate. Esters and methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and octyl methacrylate can be preferably mentioned, and these can be used alone or in combination of two or more.
 なお、本発明において、コア/シェル型エラストマーのゴムは、そのガラス転移温度が好ましくは-10℃以下、より好ましくは-30℃以下であるものが好ましい。 In the present invention, the rubber of the core / shell type elastomer preferably has a glass transition temperature of −10 ° C. or lower, more preferably −30 ° C. or lower.
 ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーのシェル層を構成するスチレン系成分としては、スチレン、α-メチルスチレン、p-メチルスチレン、アルコキシスチレン、ハロゲン化スチレン等のスチレン系単量体の重合体であり、またアクリロニトリル等のシアン化ビニル化合物との共重合体であることも好ましい。
 シェル層を構成するスチレン系成分としては、スチレン-アクリロニトリル共重合体が特に好ましい。
Examples of the styrene-based component constituting the shell layer of the core / shell-type elastomer having a polysiloxane rubber core and a styrene-based shell include styrene-based components such as styrene, α-methylstyrene, p-methylstyrene, alkoxystyrene, and halogenated styrene. It is a polymer of a metric, and is also preferably a copolymer with a vinyl cyanide compound such as acrylonitrile.
As the styrene-based component constituting the shell layer, a styrene-acrylonitrile copolymer is particularly preferable.
 ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーにおいて、ポリシロキサンゴム成分は40質量%以上含有するものが好ましく、60質量%以上含有するものがさらに好ましい。 In the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, the polysiloxane rubber component is preferably contained in an amount of 40% by mass or more, and more preferably 60% by mass or more.
 コア/シェル型エラストマーの含有量は、(A)ポリブチレンテレフタレート樹脂と(B)ポリカーボネート樹脂の合計100質量部に対し、3~30質量部である。含有量がこのような範囲にあることで、常温及び低温での耐衝撃性、さらには靱性、耐加水分解性、滞留熱安定性を優れたものとすることができる。含有量は、好ましくは5質量部以上、より好ましくは7質量部以上、さらに好ましくは9質量部以上であり、好ましくは25質量部以下、より好ましくは20質量部以下である。
 常温及び低温における耐衝撃性を向上させるために、ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーは、モルフォロジー観察により、(A)ポリブチレンテレフタレート樹脂の相(a)中の断面面積と、(B)ポリカーボネート樹脂の相(b)の断面面積との合計面積100%に対しての、相(a)中の断面面積の面積率(単位:%)が30~70%であることが好ましく、特に40~60%であることが好ましい。
The content of the core / shell type elastomer is 3 to 30 parts by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. When the content is in such a range, the impact resistance at room temperature and low temperature, as well as the toughness, hydrolysis resistance, and heat retention stability can be made excellent. The content is preferably 5 parts by mass or more, more preferably 7 parts by mass or more, further preferably 9 parts by mass or more, preferably 25 parts by mass or less, and more preferably 20 parts by mass or less.
In order to improve the impact resistance at room temperature and low temperature, the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell has a cross-sectional area in the phase (a) of the (A) polybutylene terephthalate resin according to morphology observation. The area ratio (unit:%) of the cross-sectional area in the phase (a) to 100% of the total area of the cross-sectional area of the phase (b) of the polycarbonate resin (B) is 30 to 70%. Is preferable, and particularly preferably 40 to 60%.
 本発明のポリブチレンテレフタレート樹脂組成物は、さらに、ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーを含有することも好ましい。 The polybutylene terephthalate resin composition of the present invention further preferably contains a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell.
 コア層を構成するポリシロキサンゴムは、オルガノポリシロキサン等のポリシロキサンゴム(すなわち、シリコーンゴム)であり、アクリル-シリコーン複合ゴムであることも好ましい。
 アクリル-シリコーン複合ゴムに用いるアクリル化合物としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸オクチル、アクリル酸オクチル2-エチルヘキシル等のアクリル酸エステル、またメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸オクチル等のメタクリル酸エステルを好ましく挙げることができ、これらは単独または複数を組み合わせて使用することができる。
The polysiloxane rubber constituting the core layer is a polysiloxane rubber (that is, silicone rubber) such as organopolysiloxane, and is preferably an acrylic-silicone composite rubber.
Acrylic compounds used for acrylic-silicone composite rubber include acrylic acids such as methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, cyclohexyl acrylate, octyl acrylate, and octyl 2-ethylhexyl acrylate. Esters and methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and octyl methacrylate can be preferably mentioned, and these can be used alone or in combination of two or more.
 シェル層を構成するアクリル系成分のアクリル系化合物としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸オクチル、アクリル酸オクチル2-エチルヘキシル等のアクリル酸エステル、またメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸オクチル等のメタクリル酸エステルを好ましく挙げることができ、特にメタクリル酸メチルが好ましい。
 アクリル系化合物は単独または複数を組み合わせて使用することができる。
Examples of the acrylic compound of the acrylic component constituting the shell layer include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, cyclohexyl acrylate, octyl acrylate, octyl 2-ethylhexyl acrylate and the like. Acrylic acid esters of the above, and methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and octyl methacrylate can be preferably mentioned, and methyl methacrylate is particularly preferable.
The acrylic compound may be used alone or in combination of two or more.
 ポリシロキサンゴム成分は40質量%以上含有するものが好ましく、60質量%以上含有するものがさらに好ましい。 The polysiloxane rubber component preferably contains 40% by mass or more, and more preferably 60% by mass or more.
 ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーの含有量は、(A)ポリブチレンテレフタレート樹脂と(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは3~30質量部である。含有量がこのような範囲にあることで、前記したモルフォロジーを形成しやすくなり、耐衝撃性、特に低温での耐衝撃性をさらに向上させることができ、さらには靱性、耐加水分解性を優れたものとすることができる。含有量は、より好ましくは5質量部以上、さらに好ましくは7質量部以上、特に好ましくは9質量部以上であり、より好ましくは25質量部以下、さらに好ましくは20質量部以下、中でも15質量部以下、特に10質量部以下が好ましい。 The content of the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is preferably 3 to 30 parts by mass with respect to 100 parts by mass in total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. .. When the content is in such a range, the above-mentioned morphology can be easily formed, the impact resistance, particularly the impact resistance at a low temperature can be further improved, and the toughness and hydrolysis resistance are excellent. Can be tough. The content is more preferably 5 parts by mass or more, further preferably 7 parts by mass or more, particularly preferably 9 parts by mass or more, more preferably 25 parts by mass or less, still more preferably 20 parts by mass or less, and particularly 15 parts by mass. Below, 10 parts by mass or less is particularly preferable.
[難燃剤(E)]
 本発明において、ポリブチレンテレフタレート樹脂組成物は、難燃剤(E)を含有することが好ましい。
 難燃剤としては、既知のプラスチック用難燃剤が使用可能であり、具体的には、ハロゲン系難燃剤、リン系難燃剤(ポリリン酸メラミン等)、窒素系難燃剤(シアヌル酸メラミン等)、金属水酸化物(水酸化マグネシウム等)である。
 ハロゲン系難燃剤としては、臭素系難燃剤がより好ましい。
[Flame Retardant (E)]
In the present invention, the polybutylene terephthalate resin composition preferably contains a flame retardant (E).
As the flame retardant, known flame retardants for plastics can be used. Specifically, halogen-based flame retardants, phosphorus-based flame retardants (melamine polyphosphate, etc.), nitrogen-based flame retardants (melamine cyanurate, etc.), metals. It is a hydroxide (magnesium hydroxide, etc.).
As the halogen-based flame retardant, a bromine-based flame retardant is more preferable.
 臭素系難燃剤としては、従来公知の任意の、熱可塑性樹脂に使用される臭素系難燃剤を用いることが出来る。このような臭素系難燃性としては、芳香族系化合物が挙げられ、具体的には例えば、ペンタブロモベンジルポリアクリレート等のポリ臭素化ベンジル(メタ)アクリレート、ポリブロモフェニレンエーテル、臭素化ポリスチレン、テトラブロモビスフェノールAのエポキシオリゴマー等の臭素化エポキシ化合物、N,N’-エチレンビス(テトラブロモフタルイミド)(EBTPI)等の臭素化イミド化合物、臭素化ポリカーボネート等が挙げられる。 As the brominated flame retardant, any conventionally known brominated flame retardant used for thermoplastic resins can be used. Examples of such bromine-based flame retardant include aromatic compounds, and specifically, for example, polybrominated benzyl (meth) acrylate such as pentabromobenzyl polyacrylate, polybromophenylene ether, brominated polystyrene, and the like. Examples thereof include brominated epoxy compounds such as the epoxy oligomer of tetrabromobisphenol A, brominated imide compounds such as N, N'-ethylenebis (tetrabromophthalimide) (EBTPI), and brominated polycarbonate.
 中でも熱安定性の良好な点より、ペンタブロモベンジルポリアクリレート等のポリブロモ化ベンジル(メタ)アクリレート、テトラブロモビスフェノールAのエポキシオリゴマー等の臭素化エポキシ化合物、臭素化ポリスチレン、臭素化ポリカーボネートが好ましく、特に臭素化ポリカーボネートが耐衝撃性、難燃性の点から好ましい。 Among them, polybromoated benzyl (meth) acrylate such as pentabromobenzyl polyacrylate, brominated epoxy compound such as tetrabromobisphenol A epoxy oligomer, brominated polystyrene, and brominated polycarbonate are preferable from the viewpoint of good thermal stability. Brominated polycarbonate is preferable from the viewpoint of impact resistance and flame retardancy.
 臭素化ポリカーボネート系難燃剤としては、具体的には例えば、臭素化ビスフェノールA、特にテトラブロモビスフェノールAから得られる、臭素化ポリカーボネートであることが好ましい。その末端構造は、フェニル基、4-t-ブチルフェニル基や2,4,6-トリブロモフェニル基等が挙げられ、特に、末端基構造に2,4,6-トリブロモフェニル基を有するものが好ましい。 As the brominated polycarbonate-based flame retardant, specifically, for example, brominated polycarbonate obtained from brominated bisphenol A, particularly tetrabromobisphenol A, is preferable. Examples of the terminal structure include a phenyl group, a 4-t-butylphenyl group, a 2,4,6-tribromophenyl group, and the like, and in particular, those having a 2,4,6-tribromophenyl group in the terminal group structure. Is preferable.
 臭素化ポリカーボネート系難燃剤における、カーボネート繰り返し単位数の平均は適宜選択して決定すればよいが、通常、2~30である。カーボネート繰り返し単位数の平均が小さいと、溶融時に(A)ポリブチレンテレフタレート樹脂の分子量低下を引き起こす場合がある。逆に大きすぎても(B)ポリカーボネート樹脂の溶融粘度が高くなり、成形体内の分散不良を引き起こし、成形体外観、特に光沢性が低下する場合がある。よってこの繰り返し単位数の平均は、中でも3~15、特に3~10であることが好ましい。 The average number of repeating units of carbonate in the brominated polycarbonate-based flame retardant may be appropriately selected and determined, but is usually 2 to 30. If the average number of repeating units of carbonate is small, the molecular weight of the (A) polybutylene terephthalate resin may decrease during melting. On the contrary, if it is too large, the melt viscosity of the polycarbonate resin (B) becomes high, causing poor dispersion in the molded product, and the appearance of the molded product, particularly the glossiness, may be deteriorated. Therefore, the average number of repeating units is preferably 3 to 15, particularly preferably 3 to 10.
 臭素化ポリカーボネート系難燃剤の分子量は任意であり、適宜選択して決定すればよいが、好ましくは、粘度平均分子量で1000~20000、中でも2000~10000であることが好ましい。なお、臭素化ポリカーボネート系難燃剤の粘度平均分子量は、(B)ポリカーボネート樹脂の粘度平均分子量の測定と同様の方法で求めることができる。 The molecular weight of the brominated polycarbonate-based flame retardant is arbitrary and may be appropriately selected and determined, but the viscosity average molecular weight is preferably 1000 to 20000, and more preferably 2000 to 10000. The viscosity average molecular weight of the brominated polycarbonate flame retardant can be determined by the same method as in the measurement of the viscosity average molecular weight of the polycarbonate resin (B).
 上記臭素化ビスフェノールAから得られる臭素化ポリカーボネート系難燃剤は、例えば、臭素化ビスフェノールとホスゲンとを反応させる通常の方法で得ることができる。末端封鎖剤としては芳香族モノヒドロキシ化合物が挙げられ、これはハロゲン又は有機基で置換されていてもよい。 The brominated polycarbonate flame retardant obtained from the above brominated bisphenol A can be obtained, for example, by a usual method of reacting brominated bisphenol with phosgene. Examples of the terminal sequestering agent include aromatic monohydroxy compounds, which may be substituted with halogens or organic groups.
 ポリ臭素化ベンジル(メタ)アクリレートとしては、臭素原子を含有するベンジル(メタ)アクリレートを単独で重合、又は2種以上を共重合、もしくは他のビニル系モノマーと共重合させることによって得られる重合体であることが好ましく、該臭素原子は、ベンゼン環に付加しており、付加数はベンゼン環1個あたり1~5個、中でも4~5個付加したものであることが好ましい。 As the polybrominated benzyl (meth) acrylate, a polymer obtained by polymerizing a benzyl (meth) acrylate containing a bromine atom alone, copolymerizing two or more kinds, or copolymerizing with another vinyl-based monomer. The bromine atom is added to the benzene ring, and the number of additions is preferably 1 to 5, particularly 4 to 5 per benzene ring.
 該臭素原子を含有するベンジルアクリレートとしては、ペンタブロムベンジルアクリレート、テトラブロムベンジルアクリレート、トリブロムベンジルアクリレート、又はそれらの混合物等が挙げられる。また、臭素原子を含有するベンジルメタクリレートとしては、上記したアクリレートに対応するメタクリレートが挙げられる。 Examples of the benzyl acrylate containing the bromine atom include pentabrombenzyl acrylate, tetrabrombenzyl acrylate, tribrombenzyl acrylate, and a mixture thereof. Further, as the benzyl methacrylate containing a bromine atom, a methacrylate corresponding to the above-mentioned acrylate can be mentioned.
 臭素原子を含有するベンジル(メタ)アクリレートと共重合させるために使用される他のビニル系モノマーとしては、具体的には例えば、アクリル酸、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレートのようなアクリル酸エステル類;メタクリル酸、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ベンジルメタクリレートのようなメタクリル酸エステル類;スチレン、アクリロニトリル、フマル酸、マレイン酸のような不飽和カルボン酸又はその無水物;酢酸ビニル、塩化ビニル、等が挙げられる。 Other vinyl-based monomers used for copolymerizing with benzyl (meth) acrylate containing a bromine atom include, for example, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, and benzyl acrylate. Acrylate esters; Methacrylic acid esters such as methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate; unsaturated carboxylic acids such as styrene, acrylonitrile, fumaric acid, maleic acid or anhydrides thereof; vinyl acetate , Vinyl chloride, etc.
 これらは通常、臭素原子を含有するベンジル(メタ)アクリレートに対して等モル量以下、中でも0.5倍モル量以下が用いることが好ましい。 Usually, it is preferable to use these in an equimolar amount or less, particularly 0.5 times the molar amount or less, with respect to the benzyl (meth) acrylate containing a bromine atom.
 また、ビニル系モノマーとしては、キシレンジアクリレート、キシレンジメタクリレート、テトラブロムキシレンジアクリレート、テトラブロムキシレンジメタクリレート、ブタジエン、イソプレン、ジビニルベンゼン等を使用することもでき、これらは通常、臭素原子を含有するベンジルアクリレート又はベンジルメタクリレートに対し、0.5倍モル量以下が使用できる。 Further, as the vinyl-based monomer, xylenediacrylate, xylenedimethacrylate, tetrabromxylenediacrylate, tetrabromxylene dimethacrylate, butadiene, isoprene, divinylbenzene and the like can also be used, and these usually contain a bromine atom. 0.5 times the molar amount or less can be used with respect to benzyl acrylate or benzyl methacrylate.
 該ポリブロム化ベンジル(メタ)アクリレートとしては、ペンタブロモベンジルポリアクリレートが、高臭素含有量であること、電気絶縁特性(耐トラッキング特性)が高い観点で好ましい。 As the polybrominated benzyl (meth) acrylate, pentabromobenzyl polyacrylate is preferable from the viewpoint of having a high bromine content and high electrical insulation characteristics (tracking resistance characteristics).
 臭素化エポキシ化合物としては、具体的には、テトラブロモビスフェノールAエポキシ化合物に代表されるビスフェノールA型ブロモ化エポキシ化合物が挙げられる。 Specific examples of the brominated epoxy compound include a bisphenol A type bromoated epoxy compound represented by a tetrabromobisphenol A epoxy compound.
 臭素化エポキシ化合物の分子量は任意であり、適宜選択して決定すればよいが、好ましくは、質量平均分子量(Mw)で3000~100000であり、中でも分子量が高い方が好ましく、具体的にはMwとして15000~80000、中でも18000~78000(Mw)、更には20000~75000(Mw)、特に22000~70000であることが好ましく、この範囲内に於いても分子量の高いものが好ましい。
 臭素化エポキシ化合物は、そのエポキシ当量が3000~40000g/eqであることが好ましく、中でも4000~35000g/eqが好ましく、特に10000~30000g/eqであることが好ましい。
The molecular weight of the brominated epoxy compound is arbitrary and may be appropriately selected and determined, but the mass average molecular weight (Mw) is preferably 3000 to 100,000, and the higher the molecular weight is preferable, and specifically, Mw. It is preferably 15,000 to 80,000, particularly 18,000 to 78,000 (Mw), further 20,000 to 75,000 (Mw), particularly 22,000 to 70,000, and even within this range, a compound having a high molecular weight is preferable.
The brominated epoxy compound preferably has an epoxy equivalent of 3000 to 40,000 g / eq, particularly preferably 4000 to 35000 g / eq, and particularly preferably 10000 to 30000 g / eq.
 また、臭素化エポキシ化合物系難燃剤として臭素化エポキシオリゴマーを併用することもできる。この際、例えばMwが5000以下のオリゴマーを0~50質量%程度用いることで、難燃性、離型性および流動性を適宜調整することができる。臭素化エポキシ化合物における臭素原子含有量は任意だが、十分な難燃性を付与する上で、通常10質量%以上であり、中でも20質量%以上、特に30質量%以上であることが好ましく、その上限は60質量%、中でも55質量%以下であることが好ましい。 In addition, a brominated epoxy oligomer can be used in combination as a brominated epoxy compound-based flame retardant. At this time, for example, by using about 0 to 50% by mass of an oligomer having Mw of 5000 or less, flame retardancy, releasability and fluidity can be appropriately adjusted. The content of the bromine atom in the brominated epoxy compound is arbitrary, but in order to impart sufficient flame retardancy, it is usually 10% by mass or more, and more preferably 20% by mass or more, particularly 30% by mass or more. The upper limit is 60% by mass, preferably 55% by mass or less.
 難燃剤の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは3~30質量部であり、より好ましくは7質量部以上であり、さらに好ましくは10質量部以上であり、より好ましくは25質量部以下であり、さらに好ましくは20質量部以下である。難燃剤の含有量が少なすぎると本発明に用いる樹脂組成物の難燃性が不十分となり、逆に多すぎても機械的特性、離型性の低下や難燃剤のブリードアウトの問題が生ずる。 The content of the flame retardant is preferably 3 to 30 parts by mass, more preferably 7 parts by mass or more, still more preferably 7 parts by mass, based on 100 parts by mass of the total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. Is 10 parts by mass or more, more preferably 25 parts by mass or less, and further preferably 20 parts by mass or less. If the content of the flame retardant is too small, the flame retardancy of the resin composition used in the present invention becomes insufficient, and conversely, if the content is too large, problems such as deterioration of mechanical properties and releasability and bleed-out of the flame retardant occur. ..
[アンチモン化合物]
 本発明において、ポリブチレンテレフタレート樹脂組成物は、難燃剤助剤であるアンチモン化合物を含有することが好ましい。
 アンチモン化合物としては、三酸化アンチモン(Sb)、五酸化アンチモン(Sb)およびアンチモン酸ナトリウムが好ましい例として挙げられる。これらの中でも、耐衝撃性の点から三酸化アンチモンが好ましい。
[Antimony compound]
In the present invention, the polybutylene terephthalate resin composition preferably contains an antimony compound which is a flame retardant auxiliary.
Preferred examples of the antimony compound include antimony trioxide (Sb 2 O 3 ), antimony pentoxide (Sb 2 O 5 ) and sodium antimonate. Among these, antimony trioxide is preferable from the viewpoint of impact resistance.
 アンチモン化合物は、(A)ポリブチレンテレフタレート樹脂とのマスターバッチとして配合することが好ましい。これにより、アンチモン化合物が(A)ポリブチレンテレフタレート樹脂相に存在しやすくなり、(B)ポリカーボネート樹脂に対する悪影響が抑制でき、耐衝撃性の低下が抑えられる傾向となる。
 マスターバッチ中のアンチモン化合物の含有量は20~90質量%であることが好ましい。アンチモン化合物が20質量%未満の場合は、難燃剤マスターバッチ中のアンチモン化合物の割合が少なく、これを配合するポリブチレンテレフタレート樹脂への難燃性向上効果が小さい。一方、アンチモン化合物が90質量%を超える場合は、アンチモン化合物の分散性が低下しやすく、これをポリブチレンテレフタレート樹脂に配合すると樹脂組成物の難燃性が不安定になり、また難燃剤マスターバッチ製造時の作業性も著しく低下する、例えば、押出機を使用して製造する際に、ストランドが安定せず、切れやすい等の問題が発生しやすいため好ましくない。
 マスターバッチ中のアンチモン化合物の含有量は、好ましくは30~85質量%であり、より好ましくは40~80質量%、さらに好ましくは50~75質量%である。
The antimony compound is preferably blended as a masterbatch with the (A) polybutylene terephthalate resin. As a result, the antimony compound is likely to be present in the (A) polybutylene terephthalate resin phase, the adverse effect on the (B) polycarbonate resin can be suppressed, and the decrease in impact resistance tends to be suppressed.
The content of the antimony compound in the masterbatch is preferably 20 to 90% by mass. When the amount of the antimony compound is less than 20% by mass, the proportion of the antimony compound in the flame retardant masterbatch is small, and the effect of improving the flame retardancy of the polybutylene terephthalate resin containing the antimony compound is small. On the other hand, when the antimony compound exceeds 90% by mass, the dispersibility of the antimony compound tends to decrease, and when this is blended with the polybutylene terephthalate resin, the flame retardancy of the resin composition becomes unstable, and the flame retardant masterbatch Workability during manufacturing is also significantly reduced, for example, when manufacturing using an extruder, problems such as unstable strands and easy cutting are likely to occur, which is not preferable.
The content of the antimony compound in the masterbatch is preferably 30 to 85% by mass, more preferably 40 to 80% by mass, and further preferably 50 to 75% by mass.
 アンチモン化合物の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは1~15質量部であり、より好ましくは2質量部以上、さらに好ましくは2.5質量部以上であり、より好ましくは10質量部以下、さらに好ましくは7質量部以下、なかでも6質量部以下、特に好ましくは5質量部以下である。上記下限値を下回ると難燃性が低下しやすく、上記上限値を上回ると、結晶化温度が低下し離型性が悪化したり、耐衝撃性等の機械的物性が低下する。 The content of the antimony compound is preferably 1 to 15 parts by mass, more preferably 2 parts by mass or more, still more preferably 2 parts by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. It is .5 parts by mass or more, more preferably 10 parts by mass or less, further preferably 7 parts by mass or less, and particularly preferably 6 parts by mass or less, particularly preferably 5 parts by mass or less. If it is below the above lower limit, the flame retardancy is likely to decrease, and if it exceeds the above upper limit, the crystallization temperature is lowered, the releasability is deteriorated, and the mechanical properties such as impact resistance are lowered.
[滴下防止剤]
 本発明において、ポリブチレンテレフタレート樹脂組成物は、滴下防止剤を含有することも好ましい。
 滴下防止剤としては、フルオロポリマーが好ましい。フルオロポリマーとしては、フッ素を有する公知のポリマーを任意に選択して使用できるが、中でもフルオロオレフィン樹脂が好ましい。
 フルオロオレフィン樹脂としては、例えば、フルオロエチレン構造を含む重合体や共重合体が挙げられる。その具体例を挙げると、ジフルオロエチレン樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂等が挙げられる。中でもテトラフルオロエチレン樹脂等が好ましい。このフルオロエチレン樹脂としては、フィブリル形成能を有するテトラフルオロエチレン樹脂が好ましい。
[Dripping inhibitor]
In the present invention, the polybutylene terephthalate resin composition preferably contains a dropping inhibitor.
As the dripping inhibitor, a fluoropolymer is preferable. As the fluoropolymer, a known polymer having fluorine can be arbitrarily selected and used, and among them, a fluoroolefin resin is preferable.
Examples of the fluoroolefin resin include polymers and copolymers containing a fluoroethylene structure. Specific examples thereof include difluoroethylene resin, tetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin and the like. Of these, tetrafluoroethylene resin and the like are preferable. As the fluoroethylene resin, a tetrafluoroethylene resin having a fibril forming ability is preferable.
 また、フルオロエチレン樹脂の水性分散液や、さらに、ビニル系単量体を重合してなる多層構造を有するフルオロエチレン重合体も、フルオロポリマーとして使用することができる。 Further, an aqueous dispersion of a fluoroethylene resin and a fluoroethylene polymer having a multilayer structure formed by polymerizing a vinyl-based monomer can also be used as the fluoropolymer.
 滴下防止剤の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、0.05~1質量部であることが好ましく、より好ましくは0.1質量部以上、さらに好ましくは0.12質量部以上、特に好ましくは0.15質量部以上であり、より好ましくは0.6質量部以下、さらに好ましくは0.45質量部以下、特に好ましくは0.35質量部以下である。滴下防止剤の含有量が少なすぎると、樹脂組成物の難燃性が不十分となる可能性があり、逆に多すぎても樹脂組成物の成形品の外観不良や機械的強度の低下が生じる可能性がある。 The content of the anti-dripping agent is preferably 0.05 to 1 part by mass, more preferably 0.1 part by mass, based on 100 parts by mass of the total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. The above is more preferably 0.12 parts by mass or more, particularly preferably 0.15 parts by mass or more, more preferably 0.6 parts by mass or less, still more preferably 0.45 parts by mass or less, and particularly preferably 0.35 parts by mass. It is less than a part by mass. If the content of the anti-dripping agent is too small, the flame retardancy of the resin composition may be insufficient, and conversely, if the content is too large, the appearance of the molded product of the resin composition may be poor and the mechanical strength may be reduced. It can occur.
[顔料]
 本発明において、ポリブチレンテレフタレート樹脂組成物は、着色性、耐候性改良のために、さらに顔料を含有することも好ましい。顔料としては、例えば、無機顔料(カーボンブラック、例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等)等の黒色顔料、酸化チタン等の白色顔料、酸化鉄赤等の赤色顔料、モリブデートオレンジ等の橙色顔料、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料等)等が挙げられる。なかでも、着色性、耐候性の点から、カーボンブラックが好ましく、耐衝撃性、難燃性、耐加水分解性の点から酸化チタンを配合することが好ましい。
 酸化チタンを含有することにより、(A)ポリブチレンテレフタレート樹脂の結晶化が適度に遅延し、より高い耐衝撃性を達成でき、また難燃性もより向上する。
[Pigment]
In the present invention, the polybutylene terephthalate resin composition preferably further contains a pigment in order to improve colorability and weather resistance. Examples of the pigment include black pigments such as inorganic pigments (carbon black, for example, acetylene black, lamp black, thermal black, furnace black, channel black, Ketjen black, etc.), white pigments such as titanium oxide, iron red oxide and the like. Examples thereof include red pigments, orange pigments such as molybdate orange, and organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.). Of these, carbon black is preferable from the viewpoint of colorability and weather resistance, and titanium oxide is preferably blended from the viewpoint of impact resistance, flame retardancy, and hydrolysis resistance.
By containing titanium oxide, the crystallization of the polybutylene terephthalate resin (A) is appropriately delayed, higher impact resistance can be achieved, and flame retardancy is further improved.
 用いられる酸化チタンは、製造方法、結晶形態および平均粒子径などは、特に限定されるものではない。酸化チタンの製造方法には硫酸法および塩素法があるが、硫酸法で製造された酸化チタンは、これを添加した組成物の白度が劣る傾向があるため、本発明の目的を効果的に達成するには、塩素法で製造されたものが好適である。 The titanium oxide used is not particularly limited in terms of production method, crystal morphology, average particle size, and the like. There are two methods for producing titanium oxide, the sulfuric acid method and the chlorine method. Titanium oxide produced by the sulfuric acid method tends to have inferior whiteness in the composition to which the titanium oxide is added, so that the object of the present invention is effectively used. To achieve this, those produced by the chlorine method are suitable.
 また、酸化チタンの結晶形態には、ルチル型とアナターゼ型があるが、耐光性の観点からルチル型の結晶形態のものが好適である。酸化チタンの平均粒子径は、0.01~3μmであることが好ましく、0.05~1μmであることがより好ましく、0.1~0.7μmであることがさらに好ましく、特に好ましくは0.1~0.4μmである。平均粒子径が0.01μm未満では樹脂組成物製造時の作業性に劣り、3μmを超える場合は、成形品表面に肌荒れを起こしたり、成形品の機械的強度が低下したりしやすい。なお、平均粒子径の異なる酸化チタンを2種類以上混合して使用してもよい。 There are two types of titanium oxide crystal morphology, rutile type and anatase type, but the rutile type crystal form is preferable from the viewpoint of light resistance. The average particle size of titanium oxide is preferably 0.01 to 3 μm, more preferably 0.05 to 1 μm, further preferably 0.1 to 0.7 μm, and particularly preferably 0. It is 1 to 0.4 μm. If the average particle size is less than 0.01 μm, the workability during production of the resin composition is poor, and if it exceeds 3 μm, the surface of the molded product is liable to be roughened and the mechanical strength of the molded product is likely to decrease. Two or more types of titanium oxide having different average particle diameters may be mixed and used.
 酸化チタンは、オルガノシロキサン系の表面処理剤で表面処理することが好ましい。 Titanium oxide is preferably surface-treated with an organosiloxane-based surface treatment agent.
 顔料の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対して、好ましくは、0.05~10質量部である。0.05質量部未満であると、所望の色が得られなかったり、耐候性改良効果が十分でない場合があり、10質量部を超えると機械的物性が低下する場合がある。顔料の含有量は、より好ましくは0.05~7質量部、さらに好ましくは0.1~5質量部である。
 酸化チタンの好ましい含有量は、(A)ポリブチレンテレフタレート樹脂と(B)ポリカーボネート樹脂の合計100質量部に対し、0.05~10質量部であり、より好ましくは0.05~7質量部、さらに好ましくは0.1~5質量部である。
The content of the pigment is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. If it is less than 0.05 parts by mass, a desired color may not be obtained, or the effect of improving weather resistance may not be sufficient, and if it exceeds 10 parts by mass, mechanical properties may be deteriorated. The content of the pigment is more preferably 0.05 to 7 parts by mass, still more preferably 0.1 to 5 parts by mass.
The preferable content of titanium oxide is 0.05 to 10 parts by mass, more preferably 0.05 to 7 parts by mass, based on 100 parts by mass of the total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. More preferably, it is 0.1 to 5 parts by mass.
[安定剤]
 本発明において、ポリブチレンテレフタレート樹脂組成物は、安定剤を含有することが、熱安定性改良や、機械的強度、透明性や色相の悪化を防止する効果を有するという点で好ましい。安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
[Stabilizer]
In the present invention, it is preferable that the polybutylene terephthalate resin composition contains a stabilizer because it has an effect of improving thermal stability and preventing deterioration of mechanical strength, transparency and hue. As the stabilizer, one type may be contained, or two or more types may be contained in any combination and ratio.
 安定剤の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは0.001~2質量部である。安定剤の含有量が0.001質量部未満であると、樹脂組成物の熱安定性や相溶性の改良が期待しにくく、成形時の分子量の低下や色相悪化が起こりやすく、2質量部を超えると、過剰量となりシルバーの発生や、色相悪化が更に起こりやすくなる傾向がある。安定剤の含有量は、より好ましくは0.001~1.5質量部であり、更に好ましくは、0.005~1.0質量部である。 The content of the stabilizer is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. If the content of the stabilizer is less than 0.001 part by mass, it is difficult to expect improvement in thermal stability and compatibility of the resin composition, and a decrease in molecular weight and deterioration of hue during molding are likely to occur, and 2 parts by mass is used. If it exceeds the amount, the amount becomes excessive, and the generation of silver and the deterioration of hue tend to occur more easily. The content of the stabilizer is more preferably 0.001 to 1.5 parts by mass, still more preferably 0.005 to 1.0 parts by mass.
 安定剤としては、リン系安定剤およびフェノール系安定剤が好ましい。特に、両者を併用するのが、耐衝撃性等の機械的特性が良好となる傾向にあり好ましい。 As the stabilizer, a phosphorus-based stabilizer and a phenol-based stabilizer are preferable. In particular, it is preferable to use both in combination because mechanical properties such as impact resistance tend to be good.
 リン系安定剤としては、亜リン酸、リン酸、亜リン酸エステル、リン酸エステル等が挙げられ、中でも有機リン酸エステル化合物が好ましい。 Examples of the phosphorus-based stabilizer include phosphorous acid, phosphoric acid, phosphorous acid ester, phosphoric acid ester and the like, and among them, an organic phosphoric acid ester compound is preferable.
 有機リン酸エステル化合物は、リン原子にアルコキシ基又はアリールオキシ基が1~3個結合した部分構造を有するものである。なお、これらのアルコキシ基やアリールオキシ基には、さらに置換基が結合していてもよい。好ましくは、下記一般式(1)~(5)のいずれかで表される有機リン酸エステル化合物を用いる。有機リン酸エステル化合物は二種以上を組み合わせて用いてもよい。 The organic phosphoric acid ester compound has a partial structure in which 1 to 3 alkoxy groups or aryloxy groups are bonded to a phosphorus atom. A substituent may be further bonded to these alkoxy groups and aryloxy groups. Preferably, an organic phosphoric acid ester compound represented by any of the following general formulas (1) to (5) is used. Two or more kinds of organic phosphoric acid ester compounds may be used in combination.
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R~Rは、それぞれ独立して、アルキル基又はアリール基を表す。Mはアルカリ土類金属又は亜鉛を表す。
Figure JPOXMLDOC01-appb-C000001
In the general formula (1), R 1 to R 4 independently represent an alkyl group or an aryl group. M represents an alkaline earth metal or zinc.
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、Rはアルキル基又はアリール基を表し、Mはアルカリ土類金属又は亜鉛を表す。
Figure JPOXMLDOC01-appb-C000002
In the general formula (2), R 5 represents an alkyl group or an aryl group, and M represents an alkaline earth metal or zinc.
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、R~R11は、それぞれ独立して、アルキル基又はアリール基を表す。M’は3価の金属イオンとなる金属原子を表す。
Figure JPOXMLDOC01-appb-C000003
In the general formula (3), R 6 to R 11 independently represent an alkyl group or an aryl group. M'represents a metal atom that becomes a trivalent metal ion.
Figure JPOXMLDOC01-appb-C000004
 一般式(4)中、R12~R14は、それぞれ独立して、アルキル基又はアリール基を表す。M’は3価の金属イオンとなる金属原子を表し、2つのM’はそれぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000004
In the general formula (4), R 12 to R 14 independently represent an alkyl group or an aryl group. M'represents a metal atom that becomes a trivalent metal ion, and the two M's may be the same or different.
Figure JPOXMLDOC01-appb-C000005
 一般式(5)中、R15はアルキル基又はアリール基を表す。nは0~2の整数を表す。なお、nが0のとき3つのR15は同一でも異なっていてもよく、nが1のとき2つのR15は同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005
In the general formula (5), R 15 represents an alkyl group or an aryl group. n represents an integer of 0 to 2. When n is 0, the three R 15s may be the same or different, and when n is 1, the two R 15s may be the same or different.
 一般式(1)~(5)中、R~R15は、通常は炭素数1~30のアルキル基又は炭素数6~30のアリール基である。滞留熱安定性、耐薬品性、耐湿熱性等の観点からは、炭素数2~25のアルキル基であるのが好ましく、更には炭素数6~23のアルキル基であるのが最も好ましい。アルキル基としては、オクチル基、2-エチルヘキシル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等が挙げられる。また、一般式(1)、(2)のMは亜鉛であるのが好ましく、一般式(3)、(4)のM’はアルミニウムであるのが好ましい。 In the general formulas (1) to (5), R 1 to R 15 are usually alkyl groups having 1 to 30 carbon atoms or aryl groups having 6 to 30 carbon atoms. From the viewpoint of heat retention stability, chemical resistance, moisture heat resistance, etc., an alkyl group having 2 to 25 carbon atoms is preferable, and an alkyl group having 6 to 23 carbon atoms is most preferable. Examples of the alkyl group include an octyl group, a 2-ethylhexyl group, an isooctyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, a dodecyl group, a tridecyl group, an isotridecyl group, a tetradecyl group, a hexadecyl group and an octadecyl group. Further, M of the general formulas (1) and (2) is preferably zinc, and M'of the general formulas (3) and (4) is preferably aluminum.
 有機リン酸エステル化合物の好ましい具体例としては一般式(1)の化合物としてはビス(ジステアリルアシッドホスフェート)亜鉛塩、一般式(2)の化合物としてはモノステアリルアシッドホスフェート亜鉛塩、一般式(3)の化合物としてはトリス(ジステアリルアッシドホスフェート)アルミニウム塩、一般式(4)の化合物としては1個のモノステアリルアッシドホスフェートと2個のモノステアリルアッシドホスフェートアルミニウム塩との塩、一般式(5)の化合物としてはモノステアリルアシッドホスフェートやジステアリルアシッドホスフェート等が挙げられる。これらは単独で用いてもよく、また混合物として用いてもよい。 As a preferable specific example of the organic phosphate compound, the compound of the general formula (1) is a bis (distearyl acid phosphate) zinc salt, the compound of the general formula (2) is a monostearyl acid phosphate zinc salt, and the general formula (3). ) Is an aluminum salt of tris (disteallyl acid phosphate), and the compound of general formula (4) is a salt of one monostearyl acid phosphate and two monostearyl acid phosphate aluminum salts. Examples of the compound (5) include monostearyl acid phosphate and distearyl acid phosphate. These may be used alone or as a mixture.
 有機リン酸エステル化合物としては、エステル交換抑制効果が非常に高く、成形加工時の熱安定性がよく成形性に優れ、射出成形機での計量部の設定温度を高めに設定することが可能となって成形が安定すること、また耐加水分解性、耐衝撃性が優れる観点から、前記一般式(1)で表される有機リン酸エステル化合物の亜鉛塩であるビス(ジステアリルアシッドホスフェート)亜鉛塩、前記一般式(2)で表される有機リン酸エステル化合物の亜鉛塩であるモノステアリルアシッドホスフェート亜鉛塩等のステアリルアシッドホスフェートの亜鉛塩を用いるのが好ましい。これらの市販のものとしては、城北化学工業製「JP-518Zn」等がある。 As an organic phosphate ester compound, it has a very high effect of suppressing ester exchange, has good thermal stability during molding, and has excellent moldability, and it is possible to set the temperature of the measuring part in the injection molding machine higher. Bis (disteallyl acid phosphate) zinc, which is a zinc salt of the organic phosphoric acid ester compound represented by the general formula (1), from the viewpoint of stable molding and excellent hydrolysis resistance and impact resistance. It is preferable to use a salt, a zinc salt of stearyl acid phosphate such as a zinc salt of a monostearyl acid phosphate which is a zinc salt of an organic phosphate compound represented by the general formula (2). Examples of these commercially available products include "JP-518Zn" manufactured by Johoku Chemical Industry Co., Ltd.
 有機リン酸エステル化合物の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは0.001~1質量部である。含有量が0.001質量部未満であると、樹脂組成物の熱安定性や相溶性の改良が期待しにくく、成形時の分子量の低下や色相悪化が起こりやすく、1質量部を超えると、過剰量となりシルバーの発生や、色相悪化が更に起こりやすくなる傾向がある。有機リン酸エステル化合物の含有量は、より好ましくは0.01~0.8質量部であり、更に好ましくは、0.05~0.7質量部、特に好ましくは0.1~0.5質量部である。 The content of the organic phosphoric acid ester compound is preferably 0.001 to 1 part by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. If the content is less than 0.001 part by mass, it is difficult to expect improvement in thermal stability and compatibility of the resin composition, and a decrease in molecular weight and deterioration of hue during molding are likely to occur, and if it exceeds 1 part by mass, There is a tendency for the amount to be excessive and the generation of silver and the deterioration of hue to occur more easily. The content of the organic phosphate compound is more preferably 0.01 to 0.8 parts by mass, further preferably 0.05 to 0.7 parts by mass, and particularly preferably 0.1 to 0.5 parts by mass. It is a department.
 フェノール系安定剤としては、例えば、ペンタエリスリトールテトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、ペンタエリスリトールテトラキス(3-(3,5-ジ-ネオペンチル-4-ヒドロキシフェニル)プロピオネート)等が挙げられる。これらの中でも、ペンタエリスリトールテトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。 Examples of the phenolic stabilizer include pentaerythritol tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) and octadecyl-3- (3,5-di-tert-butyl-4). -Hydroxyphenyl) propionate, thiodiethylenebis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), pentaerythritol tetrakis (3- (3,5-di-neopentyl-4-hydroxyphenyl) ) Propionate) and the like. Among these, pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) and octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate Is preferable.
 フェノール系安定剤の含有量は、(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、好ましくは0.001~1質量部である。含有量が0.001質量部未満であると、樹脂組成物の熱安定性や相溶性の改良が期待しにくく、成形時の分子量の低下や色相悪化が起こりやすく、1質量部を超えると、過剰量となりシルバーの発生や、色相悪化が更に起こりやすくなる傾向がある。フェノール系安定剤の含有量は、より好ましくは0.001~0.7質量部であり、更に好ましくは、0.005~0.5質量部である。 The content of the phenolic stabilizer is preferably 0.001 to 1 part by mass with respect to 100 parts by mass in total of the (A) polybutylene terephthalate resin and (B) polycarbonate resin. If the content is less than 0.001 part by mass, it is difficult to expect improvement in thermal stability and compatibility of the resin composition, and a decrease in molecular weight and deterioration of hue during molding are likely to occur, and if it exceeds 1 part by mass, There is a tendency for the amount to be excessive and the generation of silver and the deterioration of hue to occur more easily. The content of the phenolic stabilizer is more preferably 0.001 to 0.7 parts by mass, still more preferably 0.005 to 0.5 parts by mass.
[離型剤]
 本発明において、ポリブチレンテレフタレート樹脂組成物は、離型剤を含有することが好ましい。離型剤としては、ポリエステル樹脂に通常使用される既知の離型剤が利用可能であるが、中でも、耐アルカリ性が良好な点で、ポリオレフィン系化合物、脂肪酸エステル系化合物が好ましく、特に、ポリオレフィン系化合物が好ましい。
[Release agent]
In the present invention, the polybutylene terephthalate resin composition preferably contains a mold release agent. As the release agent, known release agents usually used for polyester resins can be used. Among them, polyolefin-based compounds and fatty acid ester-based compounds are preferable, and polyolefin-based compounds are particularly preferable, because they have good alkali resistance. Compounds are preferred.
 ポリオレフィン系化合物としては、パラフィンワックス及びポリエチレンワックスから選ばれる化合物が挙げられ、中でも、重量平均分子量が、700~10000、更には900~8000のものが好ましい。 Examples of the polyolefin compound include compounds selected from paraffin wax and polyethylene wax, and among them, those having a weight average molecular weight of 700 to 10000, more preferably 900 to 8000 are preferable.
 脂肪酸エステル系化合物としては、飽和又は不飽和の1価又は2価の脂肪族カルボン酸エステル類、グリセリン脂肪酸エステル類、ソルビタン脂肪酸エステル類等の脂肪酸エステル類やその部分鹸化物等が挙げられる。中でも、炭素数11~28、好ましくは炭素数17~21の脂肪酸とアルコールで構成されるモノ又はジ脂肪酸エステルが好ましい。 Examples of fatty acid ester compounds include saturated or unsaturated monovalent or divalent aliphatic carboxylic acid esters, glycerin fatty acid esters, sorbitan fatty acid esters and other fatty acid esters, and partial saponifications thereof. Among them, a mono-fatty acid ester composed of a fatty acid having 11 to 28 carbon atoms, preferably 17 to 21 carbon atoms and an alcohol is preferable.
 脂肪酸としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸等が挙げられる。また、脂肪酸は、脂環式であってもよい。 Examples of fatty acids include palmitic acid, stearic acid, caproic acid, caproic acid, lauric acid, araquinic acid, behenic acid, lignoceric acid, cerotic acid, melissic acid, tetrariacontanic acid, montanic acid, adipic acid, azelaic acid and the like. Be done. Further, the fatty acid may be an alicyclic type.
 アルコールとしては、飽和又は不飽和の1価又は多価アルコールを挙げることができる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の1価又は多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和1価アルコール又は多価アルコールが更に好ましい。ここで脂肪族とは、脂環式化合物も含有する。
 かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
Examples of the alcohol include saturated or unsaturated monohydric or polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom or an aryl group. Among these, monohydric or polyhydric saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable. Here, the aliphatic term also contains an alicyclic compound.
Specific examples of such alcohols include octanol, decanol, dodecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol and the like. Can be mentioned.
 なお、上記のエステル化合物は、不純物として脂肪族カルボン酸及び/又はアルコールを含有していてもよく、複数の化合物の混合物であってもよい。 The above ester compound may contain an aliphatic carboxylic acid and / or an alcohol as an impurity, or may be a mixture of a plurality of compounds.
 脂肪酸エステル系化合物の具体例としては、グリセリンモノステアレート、グリセリンモノベヘネート、グリセリンジベヘネート、グリセリン-12-ヒドロキシモノステアレート、ソルビタンモノベヘネート、ぺンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ステアリルステアレート、エチレングリコールモンタン酸エステル等が挙げられる。 Specific examples of the fatty acid ester compound include glycerin monostearate, glycerin monobehenate, glycerin dibehenate, glycerin-12-hydroxymonostearate, sorbitan monobehenate, pentaerythritol monostearate, and pentaerythritol distea. Examples include rate, stearyl stearate, ethylene glycol montanic acid ester and the like.
 離型剤の含有量は、(A)ポリブチレンテレフタレート樹脂と(B)ポリカーボネート樹脂の合計100質量部に対して、好ましくは0.1~3質量部であるが、0.2~2.5質量部であることがより好ましく、更に好ましくは0.5~2質量部である。0.1質量部未満であると、溶融成形時の離型不良により表面性が低下しやすく、一方、3質量部を超えると、樹脂組成物の練り込み作業性が低下しやすく、また成形体の外観が悪化しやすい。 The content of the release agent is preferably 0.1 to 3 parts by mass, but 0.2 to 2.5 parts by mass, based on 100 parts by mass of the total of (A) polybutylene terephthalate resin and (B) polycarbonate resin. It is more preferably parts by mass, and even more preferably 0.5 to 2 parts by mass. If it is less than 0.1 part by mass, the surface property tends to be deteriorated due to poor mold release during melt molding, while if it exceeds 3 parts by mass, the kneading workability of the resin composition is likely to be deteriorated, and the molded product is formed. The appearance of the product tends to deteriorate.
[その他成分]
 本発明において、ポリブチレンテレフタレート樹脂組成物には、必要に応じて本発明の効果を阻害しない範囲内で、上記した以外の他の樹脂添加剤を含有することもできる。他の樹脂添加剤としては、強化充填材、滴下防止剤、紫外線吸収剤、耐候安定剤、滑剤、触媒失活剤、帯電防止剤、発泡剤、可塑剤、結晶核剤、結晶化促進剤等が挙げられる。
[Other ingredients]
In the present invention, the polybutylene terephthalate resin composition may contain other resin additives other than those described above, if necessary, as long as the effects of the present invention are not impaired. Other resin additives include reinforced fillers, anti-dripping agents, UV absorbers, weather-resistant stabilizers, lubricants, catalyst deactivators, antistatic agents, foaming agents, plasticizers, crystal nucleating agents, crystallization accelerators, etc. Can be mentioned.
 本発明において、ポリブチレンテレフタレート樹脂組成物には、必要に応じて本発明の効果を阻害しない範囲内で、前記した必須成分の樹脂以外の、他の熱可塑性樹脂や熱硬化性樹脂等を含有することができる。他の熱可塑性樹脂としては、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、液晶ポリエステル樹脂、アクリル系樹脂等が挙げられ、熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等が挙げられる。これらは、1種でも2種類以上であってもよい。 In the present invention, the polybutylene terephthalate resin composition contains, if necessary, other thermoplastic resin, thermosetting resin, etc. other than the above-mentioned essential component resin as long as the effect of the present invention is not impaired. can do. Examples of other thermoplastic resins include polyamide resins, polyacetal resins, polyphenylene oxide resins, polyphenylene sulfide resins, liquid crystal polyester resins, acrylic resins, and the like, and examples of thermosetting resins include phenol resins, melamine resins, and silicone resins. Examples include epoxy resin. These may be one kind or two or more kinds.
 ただし、前記した必須成分の樹脂以外の、他の樹脂を含有する場合の含有量は、ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の合計100質量部に対し、40質量部以下とすることが好ましく、より好ましくは30質量部以下、さらには20質量部以下、中でも10質量部以下、特には5質量部以下、2質量部以下とすることが最も好ましい。 However, when other resins other than the above-mentioned essential component resin are contained, the content is preferably 40 parts by mass or less with respect to 100 parts by mass in total of the polybutylene terephthalate resin and the (B) polycarbonate resin. More preferably, it is 30 parts by mass or less, more preferably 20 parts by mass or less, particularly 10 parts by mass or less, particularly 5 parts by mass or less, and 2 parts by mass or less.
[ポリブチレンテレフタレート樹脂組成物の製造]
 ポリブチレンテレフタレート樹脂組成物を製造するには、特定の方法に限定されるものではないが、(A)ポリブチレンテレフタレート樹脂、(B)ポリカーボネート樹脂及び(C)エラストマー、並び必要に応じて配合されるその他成分を混合し、次いで溶融・混練する。
[Manufacturing of polybutylene terephthalate resin composition]
The polybutylene terephthalate resin composition is not limited to a specific method, but is formulated with (A) polybutylene terephthalate resin, (B) polycarbonate resin and (C) elastomer, and if necessary. Other ingredients are mixed, and then melted and kneaded.
 溶融・混練方法としては、例えば、前記した必須成分、並びに、必要に応じて配合されるその他の成分をヘンシェルミキサー、リボンブレンダー、V型ブレンダー、タンブラー等により均一に混合した後、一軸又は多軸混練押出機、ロール、バンバリーミキサー、ラボプラストミル(ブラベンダー)等で溶融・混練する方法が挙げられる。本発明のモルフォロジー構造を形成しやすい点から二軸押出機で溶融・混練することが好ましい。溶融・混練する際の温度は200~300℃の範囲が好ましく、本発明のモルフォロジー構造を形成しやすい点から220~280℃の範囲がより好ましい。 As a melting / kneading method, for example, the above-mentioned essential components and other components to be blended as necessary are uniformly mixed with a Henschel mixer, a ribbon blender, a V-type blender, a tumbler, or the like, and then uniaxial or multiaxial. Examples thereof include a method of melting and kneading with a kneading extruder, a roll, a Banbury mixer, a lab plast mill (lavender), or the like. From the viewpoint of easily forming the morphological structure of the present invention, it is preferable to melt and knead with a twin-screw extruder. The temperature at the time of melting and kneading is preferably in the range of 200 to 300 ° C., and more preferably in the range of 220 to 280 ° C. from the viewpoint of easily forming the morphological structure of the present invention.
[成形体]
 上記したポリブチレンテレフタレート樹脂組成物を用いて成形体を製造する方法は、ポリブチレンテレフタレート樹脂組成物について一般に採用されている成形法を任意に採用でき、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法等が挙げられるが、射出成形法が特に好ましい。
[Molded product]
As a method for producing a molded product using the above-mentioned polybutylene terephthalate resin composition, any molding method generally used for the polybutylene terephthalate resin composition can be arbitrarily adopted, and an injection molding method, an ultra-high-speed injection molding method, or injection can be used. Compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulating mold, molding method using rapid heating mold, insert molding, IMC (in-mold coating molding) molding method, extrusion Examples thereof include a molding method and a sheet molding method, but an injection molding method is particularly preferable.
 得られたポリブチレンテレフタレート樹脂組成物成形体は、前記したように(A)ポリブチレンテレフタレート樹脂の相(a)及び(B)ポリカーボネート樹脂の相(b)を有し、(C)エラストマーが相(a)及び相(b)の両方の相に存在する海島構造を有し、(A)ポリブチレンテレフタレート樹脂の相(a)がマトリックス相を形成し、(B)ポリカーボネート樹脂の相(b)が島状に存在する海島構造を有するモルフォロジーを有する。 The obtained polybutylene terephthalate resin composition molded body has (A) a polybutylene terephthalate resin phase (a) and (B) a polycarbonate resin phase (b) as described above, and (C) an elastomer is a phase. It has a sea-island structure existing in both the phases (a) and the phase (b), the phase (a) of the polybutylene terephthalate resin (A) forms a matrix phase, and the phase (b) of the polycarbonate resin (B). Has a morphology with a sea-island structure that exists in an island shape.
 また、樹脂組成物成形体が、好ましくは(C)エラストマーがポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーであることで、相(a)及び相(b)の両方の相に存在して(A)ポリブチレンテレフタレート樹脂及び(B)ポリカーボネート樹脂の耐衝撃性の補強効果が著しく発現し、-30℃というような極低温時においても優れた耐衝撃性を向上させることができる。
 さらにポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーを含有する際には、ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーが(A)ポリブチレンテレフタレート樹脂相(a)及び(B)ポリカーボネート樹脂相(b)の両方に存在し、ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーはポリカーボネート樹脂の相(b)にのみ存在することで、(B)ポリカーボネート樹脂の耐衝撃性の補強効果がより発現することで、さらに低温時の耐衝撃性を向上させることができる。
Further, the resin composition molded product preferably has (C) a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, so that both phases (a) and (b) can be formed. Existence, the effect of reinforcing the impact resistance of (A) polybutylene terephthalate resin and (B) polycarbonate resin is remarkably exhibited, and excellent impact resistance can be improved even at an extremely low temperature such as −30 ° C. ..
Further, when a core / shell type elastomer having a polycarbonate rubber core and an acrylic shell is contained, the core / shell type elastomer having a polysiloxane rubber core and a styrene shell is (A) a polybutylene terephthalate resin phase (a). The core / shell elastomer present in both the (B) polycarbonate resin phase (b) and having the polysiloxane rubber core and the acrylic shell is present only in the polycarbonate resin phase (b), so that the (B) polycarbonate By further exhibiting the effect of reinforcing the impact resistance of the resin, the impact resistance at low temperatures can be further improved.
 前記した通り、図1中、濃い灰色部分が(A)ポリブチレンテレフタレート樹脂の相(a)であり、相(a)がマトリックス相を形成し、相(a)より薄い灰色の層が(B)ポリカーボネート樹脂の相(b)であり、(A)ポリブチレンテレフタレート樹脂の相(a)の海に島状に存在して、海島構造を形成しているのが分かる。
 その薄い灰色のポリカーボネート樹脂相(b)中に、図1中、実線の丸で示した粒子状に存在しているのがポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーであり、ポリカーボネート樹脂相(b)中に存在していることが分かる。また、図1中、矢印で示したのがポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーの相であり、ポリブチレンテレフタレート樹脂相(a)のマトリックス相中に粒子状に存在していることが分かる。
 さらに、図1中、破線の丸がポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーであり、ポリカーボネート樹脂相(b)中にのみ存在していることが分かる。
As described above, in FIG. 1, the dark gray portion is the phase (a) of the (A) polybutylene terephthalate resin, the phase (a) forms the matrix phase, and the gray layer lighter than the phase (a) is (B). ) It can be seen that it is the phase (b) of the polycarbonate resin and exists in an island shape in the sea of the phase (a) of the polybutylene terephthalate resin (A) to form a sea-island structure.
In the light gray polycarbonate resin phase (b), the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell is present in the form of particles indicated by solid circles in FIG. It can be seen that it is present in the polycarbonate resin phase (b). Further, in FIG. 1, the phases indicated by the arrows are the phase of the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and are present in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a). You can see that.
Further, in FIG. 1, it can be seen that the broken line circle is a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell, and is present only in the polycarbonate resin phase (b).
 また、前記した通り、図2中、濃い灰色部分が(A)ポリブチレンテレフタレート樹脂の相(a)であり、相(a)がマトリックス相を形成し、相(a)より薄い灰色の層が(B)ポリカーボネート樹脂の相(b)であり、(A)ポリブチレンテレフタレート樹脂の相(a)の海に島状に存在して、海島構造を形成している。
 そして、その薄い灰色のポリカーボネート樹脂相(b)中に、図2中、実線の丸で示した粒子状に存在しているのがポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーであり、ポリカーボネート樹脂相(b)中に存在していることが分かる。また、図2中、矢印で示したのがポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーの相であり、ポリブチレンテレフタレート樹脂相(a)のマトリックス相中に粒子状に存在していることが分かる。
Further, as described above, in FIG. 2, the dark gray portion is the phase (a) of the (A) polybutylene terephthalate resin, the phase (a) forms the matrix phase, and the gray layer lighter than the phase (a) is formed. It is the phase (b) of the polycarbonate resin (B), and exists in an island shape in the sea of the phase (a) of the polybutylene terephthalate resin (A) to form a sea-island structure.
Then, in the light gray polycarbonate resin phase (b), the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell exists in the form of particles indicated by solid circles in FIG. It can be seen that it is present in the polycarbonate resin phase (b). Further, in FIG. 2, the phases indicated by the arrows are the phase of the core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and are present in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a). You can see that.
 図3は、比較例2で得られた成形体のコア部のSEM写真である。
 図3中、濃い灰色部分が(A)ポリブチレンテレフタレート樹脂の相(a)であり、マトリックス相を形成していることが分かる。相(a)より薄い灰色の層が(B)ポリカーボネート樹脂の相(b)であり、(A)ポリブチレンテレフタレート樹脂の相(a)の海に島状に存在して、海島構造を形成している。
 その薄い灰色のポリカーボネート樹脂相(b)中に、図3中、破線の丸で示した真っ黒の相がポリシロキサン-アクリレート系コアとアクリレート系シェルを有するコア/シェル型エラストマーであり、ポリカーボネート樹脂相(b)中にのみ存在し、ポリブチレンテレフタレート樹脂相(a)のマトリックス相中には粒子状に存在していないことが分かる。
FIG. 3 is an SEM photograph of the core portion of the molded product obtained in Comparative Example 2.
In FIG. 3, it can be seen that the dark gray portion is the phase (a) of the polybutylene terephthalate resin (A) and forms the matrix phase. The gray layer lighter than the phase (a) is the phase (b) of the (B) polycarbonate resin, and exists in an island shape in the sea of the phase (a) of the (A) polybutylene terephthalate resin to form a sea-island structure. ing.
In the light gray polycarbonate resin phase (b), the black phase indicated by the broken circle in FIG. 3 is a core / shell type elastomer having a polysiloxane-acrylate-based core and an acrylate-based shell, and is a polycarbonate resin phase. It can be seen that it exists only in (b) and does not exist in the form of particles in the matrix phase of the polybutylene terephthalate resin phase (a).
 本発明のポリブチレンテレフタレート樹脂組成物成形体は、低温時および常温時の耐衝撃性、靱性、難燃性、流動性、表面外観性、耐加水分解性に優れる。ここでいう成形体としては、射出成形体、押出成形体、シート、パイプ、各種フィルム等が挙げられる。これら成形体の形状、大きさ、厚み等は任意である。 The polybutylene terephthalate resin composition molded product of the present invention is excellent in impact resistance, toughness, flame retardancy, fluidity, surface appearance, and hydrolysis resistance at low temperature and normal temperature. Examples of the molded product here include an injection molded product, an extrusion molded product, a sheet, a pipe, and various films. The shape, size, thickness, etc. of these molded bodies are arbitrary.
 成形体としては、電気電子部品、自動車部品その他の電装部品、機械部品、調理器具等の家電製品の部品として、例えば、電気自動車用充電器コネクター、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体、電子電気機器部品の筐体、コネクター、リレー、スイッチ、センサー、アクチュエーター、ターミナルスイッチ、炊飯器関連部品、グリル調理機器部品等に好適に使用できる。特には電気自動車用充電器コネクター、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体として好適に使用でき、特にこれらが-30℃のような低温環境で使用される場合に好適である。 The molded body includes electric / electronic parts, automobile parts and other electrical parts, mechanical parts, cooking utensils, and other household appliances, for example, a charger connector for an electric vehicle, a holder for a battery capacitor, a housing for a battery capacitor, or electricity. It can be suitably used for housings for automobile charging stands, housings for electronic and electrical equipment parts, connectors, relays, switches, sensors, actuators, terminal switches, rice cooker-related parts, grill cooking equipment parts, and the like. In particular, it can be suitably used as a charger connector for an electric vehicle, a holder for a battery capacitor, a housing for a battery capacitor, or a housing for a charging stand for an electric vehicle, especially when these are used in a low temperature environment such as -30 ° C. Suitable.
 以下、本発明を実施例及び比較例に基づいてさらに詳細に説明するが、本発明は以下の記載例に限定して解釈されるものではない。
 実施例及び比較例で使用した原料成分は、下記の表1の通りである。
Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not construed as being limited to the following description examples.
The raw material components used in Examples and Comparative Examples are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔実施例1~7、比較例1~4〕
<ポリブチレンテレフタレート樹脂組成物の製造>
 表1に記載の各成分を、下記の表2に示される割合(全て質量部)にて、ブレンドし、これを30mmのベントタイプ二軸押出機(日本製鋼所社製、二軸押出機TEX30α)を使用して、バレル温度270℃にて溶融混練し、ストランドに押し出した後、ストランドカッターによりペレット化し、ポリブチレンテレフタレート樹脂組成物のペレットを得た。
 次いで得られたポリブチレンテレフタレート樹脂組成物のペレットを、熱風乾燥機を使用して120℃で8時間乾燥させ、縦100mm×横100mm×厚さ3mmの平板を、射出成形機(日精樹脂工業社製「NEX80」)にて、フィルムゲート金型を用い、シリンダー温度260℃、金型温度80℃、冷却時間20秒、充填時間1.0秒、射出ピーク圧の5割の値を保圧値とする条件で、射出成形した。
[Examples 1 to 7, Comparative Examples 1 to 4]
<Manufacturing of polybutylene terephthalate resin composition>
Each component shown in Table 1 is blended at the ratio shown in Table 2 below (all by mass), and this is blended in a 30 mm bent type twin-screw extruder (manufactured by Japan Steel Works, Ltd., twin-screw extruder TEX30α). ) Was melt-kneaded at a barrel temperature of 270 ° C., extruded into strands, and then pelletized with a strand cutter to obtain pellets of a polybutylene terephthalate resin composition.
Next, the obtained pellets of the polybutylene terephthalate resin composition were dried at 120 ° C. for 8 hours using a hot air dryer, and a flat plate having a length of 100 mm, a width of 100 mm, and a thickness of 3 mm was formed by an injection molding machine (Nissei Resin Industry Co., Ltd.). Using a film gate mold, the holding pressure value is a cylinder temperature of 260 ° C., a mold temperature of 80 ° C., a cooling time of 20 seconds, a filling time of 1.0 second, and 50% of the injection peak pressure. The injection molding was performed under the conditions of.
<測定評価方法>
 実施例及び比較例における各種の物性・性能の測定評価は、以下の方法により実施した。
<Measurement evaluation method>
The measurement and evaluation of various physical properties and performances in Examples and Comparative Examples were carried out by the following methods.
[モルフォロジー観察]
 上記で得られた平板の縦50mm、横50mmの位置にあって、厚さが1.5mmである中心点を含む、成形時の流動方向に平行な断面から、Leica社製「UC7」を用い、ダイヤモンドナイフにて、観察面が縦500μm×横500μm、厚み約1cmのブロック形状の試料を切り出した。得られた試料の観察面を四酸化ルテニウムで、気相、室温にて120分染色後、走査電子顕微鏡(日立ハイテク社製、「SU8020」)を用い、加速電圧1kV、信号LA100(U)、エミッション電流10μA、プローブ電流:Normalの条件で、倍率30000倍のSEM画像を取得した。
 得られたSEM画像から、(A)ポリブチレンテレフタレート樹脂相(a)、(B)ポリカーボネート樹脂相(b)、(C)エラストマーのモルフォロジーを観察し、各エラストマーがどの相に存在しているかを確認した。
[Morphology observation]
Using "UC7" manufactured by Leica from a cross section parallel to the flow direction at the time of molding, including a center point having a thickness of 1.5 mm at a position of 50 mm in length and 50 mm in width of the flat plate obtained above. A block-shaped sample having an observation surface of 500 μm in length × 500 μm in width and a thickness of about 1 cm was cut out with a diamond knife. The observation surface of the obtained sample was stained with ruthenium tetroxide in a gas phase at room temperature for 120 minutes, and then using a scanning electron microscope (“SU8020” manufactured by Hitachi High-Tech), an acceleration voltage of 1 kV, a signal LA100 (U), An SEM image with a magnification of 30,000 times was acquired under the conditions of an emission current of 10 μA and a probe current of Normal.
From the obtained SEM image, observe the morphology of (A) polybutylene terephthalate resin phase (a), (B) polycarbonate resin phase (b), and (C) elastomer, and determine in which phase each elastomer is present. confirmed.
 また、加速電圧1kV、信号LA100(U)、エミッション電流10μA、プローブ電流:Normalの条件で倍率10000倍のSEM画像を取得し、その画像に対して、(A)ポリブチレンテレフタレート樹脂相(a)中のエラストマー及び(B)ポリカーボネート樹脂相(b)中のエラストマーを2値化処理し、区別した。画像処理は、株式会社日本ローパー製「Image Pro Plus」を用いた。
 (A)ポリブチレンテレフタレート樹脂相(a)中のエラストマーC1の断面面積の合計Sa1および、(B)ポリカーボネート樹脂相(b)中のエラストマーC1の断面面積の合計Sa2を求め、Sa1とSa2の合計面積100%に対するSa1の面積率(単位:%)「Sa」を算出した。また、Saをポリブチレンテレフタレート樹脂の質量部「W」で除した値を算出した。Sa/Wは、0.75~1.30であることが好ましく、0.75~1.20であることがより好ましく、0.75~1.10であることがさらに好ましい。上記範囲であると、常温および低温でのノッチ付きシャルピーの双方が向上する。
 更に、(A)ポリブチレンテレフタレート樹脂相(a)中の全エラストマーの断面面積の合計Sb1および、(B)ポリカーボネート樹脂相(b)中の全エラストマーの断面面積の合計Sb2を求め、Sb1とSb2の合計面積100%に対するSb1の面積率(単位:%)「Sb」を算出した。また、Sbをポリブチレンテレフタレート樹脂の質量部「W」で除した値を算出した。Sb/Wは、0.35~0.90であることが好ましい。上記範囲であると、常温および低温でのノッチ付きシャルピーの双方が向上する。
 Sa,Sa/W,Sb及びSb/Wを表2に記載した。
Further, an SEM image having a magnification of 10000 times was acquired under the conditions of an acceleration voltage of 1 kV, a signal LA100 (U), an elastomer current of 10 μA, and a probe current: Normal. The elastomer inside and the elastomer in the (B) polycarbonate resin phase (b) were binarized and distinguished. For image processing, "Image Pro Plus" manufactured by Nippon Roper Co., Ltd. was used.
The total cross-sectional area Sa1 of the elastomer C1 in the (A) polybutylene terephthalate resin phase (a) and the total cross-sectional area Sa2 of the elastomer C1 in the (B) polycarbonate resin phase (b) were obtained, and the total of Sa1 and Sa2 was obtained. The area ratio (unit:%) "Sa" of Sa1 to 100% of the area was calculated. Further, a value obtained by dividing Sa by the mass part "W" of the polybutylene terephthalate resin was calculated. Sa / W is preferably 0.75 to 1.30, more preferably 0.75 to 1.20, and even more preferably 0.75 to 1.10. Within the above range, both notched Charpy at room temperature and low temperature are improved.
Further, the total cross-sectional area Sb1 of all the elastomers in the (A) polybutylene terephthalate resin phase (a) and the total cross-sectional area Sb2 of all the elastomers in the (B) polycarbonate resin phase (b) were obtained, and Sb1 and Sb2 were obtained. The area ratio (unit:%) of Sb1 to 100% of the total area of Sb1 was calculated. Further, a value obtained by dividing Sb by the mass part "W" of the polybutylene terephthalate resin was calculated. Sb / W is preferably 0.35 to 0.90. Within the above range, both notched Charpy at room temperature and low temperature are improved.
Sa, Sa / W, Sb and Sb / W are listed in Table 2.
[耐衝撃性 ノッチ付シャルピー衝撃強度(単位:kJ/m)]
 得られたペレットを120℃で6時間乾燥後、日精樹脂工業社製射出成形機「NEX80-9E」を使用して、シリンダー温度250℃、金型温度80℃の条件で、シャルピー衝撃強度測定用ISO試験片を成形し、ISO179に準拠して、常温時(23℃)と、低温時(-30℃)でのノッチ付シャルピー衝撃強度を測定した。
[Impact resistance Charpy impact strength with notch (unit: kJ / m 2 )]
The obtained pellets are dried at 120 ° C. for 6 hours, and then used for measuring the impact strength of Charpy under the conditions of a cylinder temperature of 250 ° C. and a mold temperature of 80 ° C. using an injection molding machine "NEX80-9E" manufactured by Nissei Resin Industry Co., Ltd. The ISO test piece was molded, and the notched Charpy impact strength at room temperature (23 ° C.) and low temperature (-30 ° C.) was measured according to ISO179.
[燃焼性 UL94(1.5mmt)]
 得られたペレットを、射出成形機(日精樹脂工業社製「NEX80」)にて、シリンダー温度250℃、金型温度80℃の条件で、12.5mm×125mm×1.5mm厚みの燃焼試験片を射出成形した。
 難燃性の評価を、以下のようにして行った。
 アンダーライターズ・ラボラトリーズのサブジェクト94(UL94)の方法に準じ、上記で得られた燃焼試験片(厚み1.5mm)5本を用いて、燃焼性を試験し、V-0、V-1、V-2及び不適合に分類した。
 燃焼試験片5本の1回目の10秒間の接炎後の燃焼時間t1(秒)の平均秒数を求めた。
[Combustibility UL94 (1.5 mmt)]
The obtained pellets are subjected to a combustion test piece having a thickness of 12.5 mm × 125 mm × 1.5 mm in an injection molding machine (“NEX80” manufactured by Nissei Resin Industry Co., Ltd.) under the conditions of a cylinder temperature of 250 ° C. and a mold temperature of 80 ° C. Was injection molded.
The flame retardancy was evaluated as follows.
Combustibility was tested using the five combustion test pieces (thickness 1.5 mm) obtained above according to the method of Subject 94 (UL94) of Underwriters Laboratories, and V-0, V-1, Classified as V-2 and non-conforming.
The average number of seconds of combustion time t1 (seconds) after the first 10 seconds of contact with the five combustion test pieces was determined.
[流動特性 スパイラル流動長(単位:mm)]
 流動性の評価として、樹脂組成物のスパイラルフロー流動長を測定した。
 得られたペレットを用い、射出成形機(ファナック社製「α100iA型」)を使用して、シリンダー温度250℃、金型温調機設定温度80℃、射出圧力168MPa、射出時間2sec、冷却7sec、サックバック1mmの条件で、樹脂を注入して成形し、図4に示すようなスパイラル状成形品を得、得られた成形品の長さをスパイラル流動長(mm)として測定した。
 評価したスパイラル状成形品の形状は、縦105mm、横90mm、断面の肉厚1.0mmで幅5mm(ゲート部は肉厚1.0mm、幅1.5mm)であり、長尺状樹脂成形品であり、渦巻き状となったものである。
 このスパイラルフロー長さは、数値が大きいほど、流動性に優れることを表している。
[Flow characteristics Spiral flow length (unit: mm)]
As an evaluation of fluidity, the spiral flow flow length of the resin composition was measured.
Using the obtained pellets, using an injection molding machine (“α100iA type” manufactured by FANUC), cylinder temperature 250 ° C., mold temperature controller set temperature 80 ° C., injection pressure 168 MPa, injection time 2 sec, cooling 7 sec, A resin was injected and molded under the condition of a suckback of 1 mm to obtain a spiral molded product as shown in FIG. 4, and the length of the obtained molded product was measured as a spiral flow length (mm).
The shape of the evaluated spiral molded product is 105 mm in length, 90 mm in width, 1.0 mm in wall thickness in cross section, and 5 mm in width (gate portion is 1.0 mm in wall thickness and 1.5 mm in width), and is a long resin molded product. It is a spiral shape.
The larger the value of this spiral flow length, the better the fluidity.
[総合評価]
 以上の結果を基に、以下の基準A~Dにより、総合評価を行った。
総合評価A:
 シャルピー衝撃強度が常温時50kJ/m以上で-30℃時15kJ/m以上、UL94がV-0、且つt1燃焼平均時間が3秒以下、スパイラル流動長が100mm以上
総合評価B:
 シャルピー衝撃強度が常温時50kJ/m以上で-30℃時15kJ/m以上、UL94がV-0、且つt1燃焼平均時間が3秒以下、スパイラル流動長が100mm未満
総合評価C:
 シャルピー衝撃強度が常温時50kJ/m以上で-30℃時15kJ/m以上、UL94がV-0、且つt1燃焼平均時間が3秒超
総合評価D:
 シャルピー衝撃強度が常温時50kJ/m以上で-30℃時15kJ/m未満、UL94がV-0、且つt1燃焼平均時間が3秒超
総合評価 E:
 シャルピー衝撃強度が常温時50kJ/m未満で-30℃時15kJ/m未満
 結果を以下の表2に示す。
[comprehensive evaluation]
Based on the above results, a comprehensive evaluation was performed according to the following criteria A to D.
Comprehensive evaluation A:
Charpy impact strength at normal temperature 50 kJ / m 2 or more at -30 ° C. at 15 kJ / m 2 or more, UL94 is V-0, and t1 combustion average time is 3 seconds or less, the spiral flow length is overall evaluation than 100 mm B:
Charpy impact strength at normal temperature 50 kJ / m 2 or more at -30 ° C. at 15 kJ / m 2 or more, UL94 is V-0, and t1 combustion average time is 3 seconds or less, a spiral flow length of less than 100mm Overall Rating C:
Charpy impact strength at room temperature during 50 kJ / m 2 or more -30 ° C. at 15 kJ / m 2 or more, UL94 is V-0, and t1 combustion Average time 3 seconds super Overall Rating D:
Sharpy impact strength is 50 kJ / m 2 or more at room temperature and less than 15 kJ / m 2 at -30 ° C, UL94 is V-0, and t1 combustion average time is over 3 seconds. Comprehensive evaluation E:
Charpy impact strength is shown in Table 2 below -30 ° C. at 15 kJ / m 2 less results in less than normal temperature during 50 kJ / m 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明のポリブチレンテレフタレート樹脂組成物成形体及び樹脂組成物は、耐衝撃性、靱性、流動性、表面外観性、耐加水分解性、難燃性に優れるので、各種の電気電子機器部品、自動車用部品、その他の電装部品、機械部品、調理器具等の家電製品用として、特に、電気自動車用充電器コネクター、電池キャパシタ用ホルダー、電池キャパシタ用筐体あるいは電気自動車用充電スタンド用筺体に、特にこれらが-30℃のような低温環境で使用される場合にも好適であり、産業上の利用性は非常に高いものがある。 The polybutylene terephthalate resin composition molded product and the resin composition of the present invention are excellent in impact resistance, toughness, fluidity, surface appearance, hydrolysis resistance, and flame retardancy, and therefore, various electrical and electronic equipment parts, automobiles, etc. For home appliances such as parts, other electrical parts, mechanical parts, cookware, etc., especially for electric vehicle charger connectors, battery capacitor holders, battery capacitor housings or electric vehicle charging stand housings. These are also suitable when used in a low temperature environment such as −30 ° C., and some of them have very high industrial utility.

Claims (15)

  1.  (A)ポリブチレンテレフタレート樹脂、(B)ポリカーボネート樹脂、および(C)エラストマーを含有する樹脂組成物からなる成形体であって、
     (A)と(B)の合計100質量部基準で、(A)ポリブチレンテレフタレート樹脂を30質量部超75質量部以下、(B)ポリカーボネート樹脂を25質量部以上70質量部未満含有し、
     (A)ポリブチレンテレフタレート樹脂の相(a)及び(B)ポリカーボネート樹脂の相(b)を有し、(C)エラストマーが相(a)及び相(b)の両方の相に存在するモルフォロジーを有することを特徴とするポリブチレンテレフタレート樹脂組成物成形体。
    A molded product composed of a resin composition containing (A) polybutylene terephthalate resin, (B) polycarbonate resin, and (C) elastomer.
    Based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is contained in an amount of more than 30 parts by mass and 75 parts by mass or less, and (B) polycarbonate resin is contained in an amount of 25 parts by mass or more and less than 70 parts by mass.
    A morphology having (A) a polybutylene terephthalate resin phase (a) and (B) a polycarbonate resin phase (b), and (C) an elastomer present in both the phases (a) and (b). A molded body of a polybutylene terephthalate resin composition characterized by having.
  2.  (A)ポリブチレンテレフタレート樹脂の相(a)がマトリックス相を形成し、(B)ポリカーボネート樹脂の相(b)が島状に存在する海島構造を有する請求項1に記載の成形体。 The molded product according to claim 1, wherein the phase (a) of the polybutylene terephthalate resin (A) forms a matrix phase, and the phase (b) of the polycarbonate resin (B) has an island-like structure.
  3.  (C)エラストマーが、ポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーであり、(C)の含有量が、(A)と(B)の合計100質量部基準で、3~30質量部である請求項1または2に記載の成形体。 The elastomer (C) is a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell, and the content of (C) is 3 to 30 based on a total of 100 parts by mass of (A) and (B). The molded product according to claim 1 or 2, which is a part by mass.
  4.  樹脂組成物成形体を構成する樹脂組成物が、さらに、ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーを含有する請求項1~3のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 3, wherein the resin composition constituting the resin composition molded product further contains a core / shell type elastomer having a polysiloxane rubber core and an acrylic shell.
  5.  ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーが、ポリカーボネート樹脂の相(b)に存在する請求項4に記載の成形体。 The molded product according to claim 4, wherein the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is present in the polycarbonate resin phase (b).
  6.  ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーの含有量が、(A)と(B)の合計100質量部基準で、3~30質量部である請求項4または5に記載の成形体。 The fourth or fifth claim, wherein the content of the core / shell type elastomer having a polysiloxane rubber core and an acrylic shell is 3 to 30 parts by mass based on a total of 100 parts by mass of (A) and (B). Molded body.
  7.  樹脂組成物成形体を構成する樹脂組成物が、さらに、難燃剤(E)を、(A)と(B)の合計100質量部に対し、3~30質量部含有する請求項1~6のいずれかに記載の成形体。 Resin composition The resin composition constituting the molded product further contains the flame retardant (E) in an amount of 3 to 30 parts by mass based on 100 parts by mass in total of (A) and (B). The molded product according to any one.
  8.  難燃剤(E)が臭素化ポリカーボネートである請求項7に記載の成形体。 The molded product according to claim 7, wherein the flame retardant (E) is brominated polycarbonate.
  9.  樹脂組成物成形体を構成する樹脂組成物が、さらに、酸化チタン(F)を、(A)と(B)の合計100質量部に対し、0.05~10質量部含有する請求項1~8のいずれかに記載の成形体。 Resin composition The resin composition constituting the molded product further contains 0.05 to 10 parts by mass of titanium oxide (F) with respect to 100 parts by mass in total of (A) and (B). The molded product according to any one of 8.
  10.  筐体である請求項1~9のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 9, which is a housing.
  11.  (A)と(B)の合計100質量部基準で、(A)ポリブチレンテレフタレート樹脂を30質量部超75質量部以下、(B)ポリカーボネート樹脂を25質量部以上70質量部未満、および(C)エラストマーとしてポリシロキサンゴムコアとスチレン系シェルを有するコア/シェル型エラストマーを3~30質量部含有することを特徴とするポリブチレンテレフタレート樹脂組成物。 Based on a total of 100 parts by mass of (A) and (B), (A) polybutylene terephthalate resin is more than 30 parts by mass and 75 parts by mass or less, (B) polycarbonate resin is 25 parts by mass or more and less than 70 parts by mass, and (C). ) A polybutylene terephthalate resin composition containing 3 to 30 parts by mass of a core / shell type elastomer having a polysiloxane rubber core and a styrene-based shell as an elastomer.
  12.  さらに、エラストマーとして、ポリシロキサンゴムコアとアクリル系シェルを有するコア/シェル型エラストマーを、(A)と(B)の合計100質量部に対し、3~30質量部含有する請求項11に記載の樹脂組成物。 The 11. Resin composition.
  13.  さらに、難燃剤(E)を、(A)と(B)の合計100質量部に対し、3~30質量部含有する請求項11または12に記載の樹脂組成物。 The resin composition according to claim 11 or 12, further containing 3 to 30 parts by mass of the flame retardant (E) with respect to a total of 100 parts by mass of (A) and (B).
  14.  難燃剤(E)が臭素化ポリカーボネートである請求項13に記載の樹脂組成物。 The resin composition according to claim 13, wherein the flame retardant (E) is brominated polycarbonate.
  15.  さらに、酸化チタン(F)を、(A)と(B)の合計100質量部に対し、0.05~10質量部含有する請求項11~14のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 11 to 14, further containing 0.05 to 10 parts by mass of titanium oxide (F) with respect to 100 parts by mass in total of (A) and (B).
PCT/JP2021/002412 2020-01-27 2021-01-25 Poly(butylene terephthalate) resin composition and molded object WO2021153492A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180010968.0A CN114981357B (en) 2020-01-27 2021-01-25 Polybutylene terephthalate resin composition and molded article
JP2021574015A JP7133731B2 (en) 2020-01-27 2021-01-25 Polybutylene terephthalate resin composition and molded article
JP2022136089A JP2022174130A (en) 2020-01-27 2022-08-29 Polybutylene terephthalate resin composition and compact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010537 2020-01-27
JP2020010537 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153492A1 true WO2021153492A1 (en) 2021-08-05

Family

ID=77079001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002412 WO2021153492A1 (en) 2020-01-27 2021-01-25 Poly(butylene terephthalate) resin composition and molded object

Country Status (3)

Country Link
JP (2) JP7133731B2 (en)
CN (1) CN114981357B (en)
WO (1) WO2021153492A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156181B1 (en) 2021-05-21 2021-10-26 Southwest Research Institute Multiple mode operation of hydrogen-fueled internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108108A (en) * 2013-10-24 2015-06-11 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition and molded article
JP2016056314A (en) * 2014-09-11 2016-04-21 三菱エンジニアリングプラスチックス株式会社 Thermoplastic polyester resin composition
JP2016117867A (en) * 2014-12-24 2016-06-30 三菱レイヨン株式会社 Polybutylene terephthalate resin composition and molded body
JP2017193707A (en) * 2016-04-15 2017-10-26 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition, and molding prepared therewith
WO2018225582A1 (en) * 2017-06-06 2018-12-13 三菱ケミカル株式会社 Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded article
JP2019218419A (en) * 2018-06-15 2019-12-26 三菱ケミカル株式会社 Polyorganosiloxane-containing graft copolymer, resin composition using the same, and molded product comprising the composition
JP2020189942A (en) * 2019-05-23 2020-11-26 帝人株式会社 Flame-retardant polycarbonate resin composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017888B2 (en) * 2006-03-06 2012-09-05 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition and resin molded body
US9127154B2 (en) * 2006-10-13 2015-09-08 Bayer Materialscience Llc Impact resistant, flame retardant thermoplastic molding composition
JP2009001621A (en) * 2007-06-19 2009-01-08 Mitsubishi Chemicals Corp Thermoplastic resin composition and resin molded product
WO2014109352A1 (en) * 2013-01-10 2014-07-17 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition, and molded article
US10472536B2 (en) * 2014-06-30 2019-11-12 Mitsubishi Engineering-Plastics Corporation Composition for forming laser direct structuring layer, kit, and method for manufacturing resin molded article with plated layer
US10604649B2 (en) * 2015-09-03 2020-03-31 Mitsubishi Engineering-Plastics Corporation Polyester resin composition for laser direct structuring
WO2019225558A1 (en) * 2018-05-22 2019-11-28 帝人株式会社 Flame-retardant polycarbonate resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108108A (en) * 2013-10-24 2015-06-11 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition and molded article
JP2016056314A (en) * 2014-09-11 2016-04-21 三菱エンジニアリングプラスチックス株式会社 Thermoplastic polyester resin composition
JP2016117867A (en) * 2014-12-24 2016-06-30 三菱レイヨン株式会社 Polybutylene terephthalate resin composition and molded body
JP2017193707A (en) * 2016-04-15 2017-10-26 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition, and molding prepared therewith
WO2018225582A1 (en) * 2017-06-06 2018-12-13 三菱ケミカル株式会社 Polyorganosiloxane-containing graft copolymer, thermoplastic resin composition, and molded article
JP2019218419A (en) * 2018-06-15 2019-12-26 三菱ケミカル株式会社 Polyorganosiloxane-containing graft copolymer, resin composition using the same, and molded product comprising the composition
JP2020189942A (en) * 2019-05-23 2020-11-26 帝人株式会社 Flame-retardant polycarbonate resin composition

Also Published As

Publication number Publication date
CN114981357A (en) 2022-08-30
JP2022174130A (en) 2022-11-22
JP7133731B2 (en) 2022-09-08
JPWO2021153492A1 (en) 2021-08-05
CN114981357B (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP5848556B2 (en) Polyester resin composition and molded body
US8080599B2 (en) Thermoplastic polyester compositions, methods of manufacture, and articles thereof
JP6010464B2 (en) Molding
KR20110044279A (en) Ignition resistant carbonate polymer composition
US10626269B2 (en) Polyester resin composition and method for producing same
TW201137033A (en) Improved flow ignition resistant carbonate polymer composition
WO2021153492A1 (en) Poly(butylene terephthalate) resin composition and molded object
JP6694977B2 (en) Polybutylene terephthalate resin composition and molded article
JP6071623B2 (en) Polybutylene terephthalate-based resin composition molded body
JP2012136558A (en) Method of reducing metal adhesion of thermoplastic resin
JP2005232410A (en) Insulation material part
KR20150093748A (en) Flame-retardant polycarbonate molding materials iii
JP2001072843A (en) Resin composition
JP6071808B2 (en) Polyester resin composition molded body
JP7210345B2 (en) Polyester resin composition
CN113166490B (en) Thermoplastic resin composition and molded article
JP7288789B2 (en) Thermoplastic resin composition and molded article
JP7411148B2 (en) Polybutylene terephthalate resin composition and molded article
JP2013173821A (en) Polyester resin composition molding
JP6039372B2 (en) Polybutylene terephthalate resin composition
JP5848555B2 (en) Polyester resin composition and molded body
JP5762506B2 (en) Polybutylene terephthalate resin composition and molded article
JP6837336B2 (en) Polyester resin composition
KR20180067291A (en) Polymer resin composition and molded product of the same
JP7334732B2 (en) Resin composition, method for producing resin composition, and method for producing resin molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748125

Country of ref document: EP

Kind code of ref document: A1