WO2021153411A1 - Moving trolley - Google Patents

Moving trolley Download PDF

Info

Publication number
WO2021153411A1
WO2021153411A1 PCT/JP2021/002023 JP2021002023W WO2021153411A1 WO 2021153411 A1 WO2021153411 A1 WO 2021153411A1 JP 2021002023 W JP2021002023 W JP 2021002023W WO 2021153411 A1 WO2021153411 A1 WO 2021153411A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile trolley
force
cop
wheels
wheel
Prior art date
Application number
PCT/JP2021/002023
Other languages
French (fr)
Japanese (ja)
Inventor
厚太 鍋嶌
悠輔 田中
Original Assignee
株式会社Preferred Networks
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Preferred Networks filed Critical 株式会社Preferred Networks
Priority to JP2021574690A priority Critical patent/JPWO2021153411A1/ja
Publication of WO2021153411A1 publication Critical patent/WO2021153411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering

Definitions

  • This disclosure relates to a mobile trolley.
  • Patent Document 1 proposes a mobile trolley capable of moving the trolley body in an arbitrary direction on a floor contact surface while maintaining the posture of the trolley body at an arbitrary posture angle.
  • the purpose of this disclosure is to provide a mobile trolley that can improve stability.
  • the mobile trolley according to one aspect of the embodiment of the present invention is a mobile trolley having at least one of a wheel and an endless track, and is said to be from the vehicle support surface of the moving trolley via the wheel or the endless track.
  • An index of stability obtained based on a measuring unit that measures information on the force received by the moving carriage, information on the force measured by the measuring unit, and position information on the wheel or the endless track with respect to the vehicle support surface.
  • FIG. 1 A plan view showing a schematic configuration of a mobile carriage according to an embodiment.
  • Side view of the mobile trolley shown in FIG. Perspective view showing an example of the installation mode of the force sensor
  • Functional block diagram of the controller according to the embodiment Controller hardware configuration diagram
  • Flowchart of operation control of mobile trolley using CoP according to the embodiment Schematic diagram showing the positional relationship between each wheel of the mobile trolley and CoP Schematic diagram showing the schematic configuration of the first modification
  • the x direction, the y direction, and the z direction are perpendicular to each other.
  • the x and y directions are horizontal and the z direction is typically vertical.
  • the x direction is the front-rear direction of the moving carriage 1.
  • the y direction is the left-right direction of the moving carriage 1.
  • the z positive direction side may be expressed as the upper side and the z negative direction side may be expressed as the lower side.
  • FIG. 1 is a plan view showing a schematic configuration of the mobile carriage 1 according to the embodiment.
  • FIG. 2 is a side view of the moving carriage 1 shown in FIG. 1, and is a schematic view showing the positional relationship between the wheels 2, the force sensor 4, and the base 5.
  • the mobile trolley 1 is a device that can autonomously move, for example, by loading a load or mounting a device such as a robot arm. Further, when a device such as a robot arm is mounted, the mobile trolley 1 is a device capable of driving the mounted device to execute various tasks. As shown in FIGS. 1 and 2, the mobile carriage 1 includes a plurality of wheels 2, a plurality of force sensors 4 (measurement units), a base 5, and a controller 10. In the example shown in FIG. 1, the moving carriage 1 advances in the x positive direction side and retreats in the x negative direction side.
  • the mobile carriage 1 includes four wheels 2A, 2B, 2C, and 2D as a plurality of wheels 2.
  • the wheels 2 two wheels 2A and 2B are arranged on the vehicle body rear side (x negative direction side), and the other two wheels 2C and 2D are arranged on the vehicle body front side (x positive direction side).
  • the two wheels 2A and 2B on the rear side of the vehicle body are driving wheels, and actuators 3A and 3B for supplying driving force to the respective wheels 2A and 2B are connected.
  • Actuators 3A and 3B include a power source such as a motor.
  • the number of wheels 2 included in the mobile carriage 1 is not limited to four, and a plurality of wheels 2 may be provided.
  • the number of wheels 2 is at least three, and these wheels 2 have a support polygon of the mobile carriage 1 (support area of the mobile carriage 1) when the contact points with the floor (vehicle support surface of the mobile carriage 1) are connected. ) Is formed.
  • the number of drive wheels is not limited to two, and at least one of the plurality of wheels 2 may be a drive wheel. Also, the wheels may be replaced with tracks.
  • the plurality of force sensors 4 measure the floor reaction force received by each of the plurality of wheels 2.
  • the mobile carriage 1 includes four force sensors 4A, 4B, 4C, and 4D as a plurality of force sensors 4.
  • the force sensors 4A, 4B, 4C, and 4D are installed in association with the four wheels 2A, 2B, 2C, and 2D, respectively, and the floor reaction force received by the wheels 2A, 2B, 2C, and 2D (at least in the z direction of the floor reaction force). (Vertical direction) component) is measured.
  • the plurality of force sensors 4 function as a measuring unit that measures information on the force received by the moving carriage 1 from the vehicle support surface of the moving carriage 1 via the wheels 2 (or endless track).
  • the number of the plurality of force sensors 4 is the same as the number of the wheels 2 included in the moving carriage 1. Even with a configuration including a number of force sensors smaller than the number of wheels 2, it is possible to calculate the force received by the moving carriage 1 from the contact surface of the wheels 2 (the vehicle supporting surface of the moving carriage 1). Such a configuration will be described later with reference to FIGS. 8 and 9.
  • each of the plurality of force sensors 4 is a uniaxial compressive force sensor, and the plurality of force sensors 4 are installed so that their detection directions are in the vertical direction (z direction).
  • the plurality of force sensors 4 can measure the floor reaction force (force shown by f1 and f2 in FIG. 2) applied to each wheel 2, respectively.
  • a tensile compression sensor capable of detecting both a tensile force and a compressive force may be used.
  • each force sensor 4 can detect a value closer to the floor reaction force actually received by each wheel 2. Further, each force sensor 4 can be made less likely to receive a moment due to the floor reaction force received by each wheel 2.
  • FIG. 3 is a perspective view showing an example of the installation mode of the force sensor 4.
  • the component group that holds the wheel 2 has a structure that can be rotated by the shaft 6A held by the bearing 6G.
  • the bearing 6G of the shaft 6A it is preferable to use a sliding bearing instead of a rolling bearing for simplification of the structure.
  • a load cell (force sensor 4) and a seat 6E are arranged directly above the axle 6D of the wheel 2, and the output of the load cell 4 changes depending on the reaction force received from the seat 6E. If the seat 6E is deformed due to an impact or the like, the contact state with the load cell 4 changes, and the output reproducibility of the load cell 4 is lost. Therefore, it is desirable to use a steel material instead of an aluminum material for the seat 6E.
  • the stopper 6F is used to restrain the rotation. This prevents the wheel 2 from falling.
  • the shaft 6A has an axial direction in the y direction like the axle 6D, and is arranged parallel to the axle 6D. Both the shaft 6A and the axle 6D are rotatably connected to the member 6B whose longitudinal direction is the x direction.
  • a receiving seat 6E is installed directly above the axle 6D on the upper surface of the member 6B.
  • the member 6C having the x direction as the longitudinal direction is arranged above the member 6B, and the force sensor 4 (load cell) is installed at a position on the lower surface of the member 6C facing the receiving seat 6E. ..
  • the member 6C is fixed to, for example, the base 5. As shown in FIG.
  • the stopper 6F has a convex portion 6F1 projecting upward from the upper surface of the member 6B and a concave portion 6F2 provided on the member 6C into which the convex portion 6F1 is slidably fitted. It is configured to prevent the member 6B from rotating downward about the shaft 6A when the wheel 2 has no load.
  • the holding structure of the wheel 2 illustrated in FIG. 3 has the same structure for the driving wheels 2A and 2B and the driven wheels 2C and 2D.
  • the controller 10 controls the overall operation of the mobile carriage 1.
  • the controller 10 acquires the measured values of the floor reaction forces received by the four wheels 2A, 2B, 2C, and 2D from the four force sensors 4A, 4B, 4C, and 4D, and these acquired floor reaction forces. And, an index obtained based on the wheel position information, specifically, CoP (Center of Pressure) is calculated.
  • CoP is the position coordinate of the pressure center of the floor reaction force received by each of the plurality of wheels 2A, 2B, 2C, and 2D (see coordinate P in FIG. 7).
  • CoP the total of the moments generated by each floor reaction force, gravity, etc. becomes zero. That is, in the mobile carriage 1 provided with the plurality of wheels 2, the CoP coincides with the so-called ZMP (Zero Moment Point).
  • CoP is an index (numerical information) used for calculating the stability of the mobile carriage 1.
  • the controller 10 can execute an operation of evaluating the stability of the mobile carriage 1 based on the calculated CoP. Further, the controller 10 outputs a control command to the actuators 3A and 3B of the drive wheels 2A and 2B and the actuators such as the in-vehicle robot hand (end effector), and the position of the CoP can be more stabilized by the moving carriage 1. It is possible to execute an operation (stabilization control) that causes a transition to.
  • FIG. 4 is a functional block diagram of the controller 10 according to the present embodiment.
  • the controller 10 includes a floor reaction force calculation unit 11 (measurement unit), a CoP calculation unit 12, a stability evaluation unit 13, and a stabilization control unit 14 with respect to the above-mentioned functions.
  • the floor reaction force calculation unit 11 calculates the floor reaction force received by the four wheels 2A, 2B, 2C, and 2D based on the output signals of the four force sensors 4A, 4B, 4C, and 4D.
  • the floor reaction force calculation unit 11 is a measuring unit that measures information on the force received by the moving carriage 1 from the vehicle support surface (contact surface of the wheels 2 with the ground) of the moving carriage 1 via the wheels 2 (or endless track). Function.
  • the CoP calculation unit 12 calculates CoP based on the floor reaction force of each wheel 2A, 2B, 2C, 2D calculated by the floor reaction force calculation unit 11 and the position information of each wheel 2A, 2B, 2C, 2D. do.
  • the stability evaluation unit 13 calculates the current stability (stability index) of the mobile trolley 1 based on the support polygon A (see FIG. 7) of the CoP and the mobile trolley 1 calculated by the CoP calculation unit 12. .. Further, the mobile trolley 1 is provided with a notification device 15 such as a display screen and a microphone, and notifies the user of the mobile trolley 1 of the evaluation result by the stability evaluation unit 13 via the notification device 15, thereby causing the mobile trolley 1 to notify the user.
  • the configuration may be such that the stability can be monitored by the user.
  • the stability evaluation unit 13 calculates a stability index obtained based on the force information measured by the floor reaction force calculation unit 11 and the position information of the wheel 2 (or track) with respect to the vehicle support surface. Functions as a department.
  • the stability evaluation unit 13 also functions as a control unit that controls the operation of the mobile carriage 1 based on the calculated stability index.
  • the stabilization control unit 14 controls the actuators 3A and 3B so that the mobile carriage 1 is stabilized based on the CoP calculated by the CoP calculation unit 12.
  • the stabilization control unit 14 may control the actuators 3A and 3B based on the stability (an index of the current stability of the mobile carriage 1) calculated by the stability evaluation unit 13.
  • the stabilization control unit 14 functions as a control unit that controls the operation of the mobile carriage 1 based on the calculated stability index.
  • the controller 10 only needs to be able to control some operation of the mobile carriage 1 by using at least the CoP calculated by the CoP calculation unit 12, and includes only one of the stability evaluation unit 13 and the stabilization control unit 14. It may be configured. Specific examples of stability evaluation and stabilization control will be described later with reference to the flowcharts of FIG. 6 (particularly steps S03 to S05).
  • FIG. 5 is a hardware configuration diagram of the controller 10.
  • the controller 10 physically includes a CPU (Central Processing Unit) 101, a RAM (Random Access Memory) 102 and a ROM (Read Only Memory) 103 as main storage devices, and a keyboard as an input device. It can be configured as a computer system including an input device 104 such as a mouse, an output device 105 such as a display, a communication module 106 which is a data transmission / reception device such as a network card, and an auxiliary storage device 107.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • Each function of the controller 10 shown in FIG. 4 is input to the communication module 106 under the control of the CPU 101 by loading predetermined computer software (operation control program of the mobile carriage) on the hardware such as the CPU 101 and the RAM 102. This is realized by operating the device 104 and the output device 105, and reading and writing data in the RAM 102 and the auxiliary storage device 107. That is, by executing the operation control program of the mobile trolley according to the present embodiment on the computer, the controller 10 has the floor reaction force calculation unit 11, the CoP calculation unit 12, the stability evaluation unit 13, and the stabilization control in FIG. It functions as a unit 14.
  • each function of the controller 10 may be a circuit composed of an analog circuit, a digital circuit, or an analog / digital mixed circuit. Further, a control circuit for controlling each function may be provided. The implementation of each circuit may be by ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), or the like.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • each function of the controller 10 may be configured by hardware, or may be configured by software and executed by a CPU or the like by information processing of the software.
  • the controller 10 and a program that realizes at least a part of the functions may be stored in a storage medium such as a flexible disk or a CD-ROM, read by a computer, and executed. ..
  • the storage medium is not limited to a removable one such as a magnetic disk or an optical disk, and may be a fixed storage medium such as a hard disk device or a memory. That is, information processing by software may be concretely implemented using hardware resources.
  • the processing by software may be implemented in a circuit such as FPGA and executed by hardware such as a processor.
  • the job may be executed by using an accelerator such as a GPU (Graphics Processing Unit), for example.
  • the computer can be used as the device of the above embodiment by reading the dedicated software stored in the storage medium that can be read by the computer.
  • the type of storage medium is not particularly limited.
  • the computer can be used as the device of the above-described embodiment by installing the dedicated software downloaded via the communication network on the computer. In this way, information processing by software is concretely implemented using hardware resources.
  • one or more hardware such as a memory, a processor, and a computer may be provided.
  • the controller 10 may be mounted on the mobile trolley 1, or may be configured to be connected to the mobile trolley 1 by wire or wirelessly at a position distant from the mobile trolley 1.
  • FIG. 6 is a flowchart of operation control of the mobile carriage 1 using CoP according to the embodiment.
  • the flowchart shown in FIG. 6 is implemented by the controller 10.
  • step S01 the floor reaction force calculation unit 11 calculates the floor reaction force of each wheel 2A to 2D based on the measured values of the force sensors 4A to 4D.
  • the floor reaction force calculation unit 11 outputs the detected values of the force sensors 4A to 4D to the CoP calculation unit 12 as the floor reaction force of each wheel 2A to 2D.
  • the CoP calculation unit 12 calculates the CoP of the moving carriage 1 based on the floor reaction force of each wheel 2A to 2D.
  • the subscripts associated with the wheels 2A to 2D are i
  • the floor reaction force of the wheels 2A to 2D is f_i
  • FIG. 7 is a schematic view showing the positional relationship between each wheel 2A to 2D of the mobile carriage 1 and CoP.
  • the support polygon A is calculated based on, for example, the position information of the wheel 2 (or track) with respect to the vehicle support surface.
  • step S03 and S04 are performed using the CoP calculated in step S02.
  • the stability evaluation unit 13 evaluates the stability of the mobile carriage 1 based on CoP.
  • the stability evaluation unit 13 evaluates the stability by observing, for example, the position of the CoP calculated by the CoP calculation unit 12 in the support polygon A. For example, as shown in FIG. 7, it can be evaluated that the current stability of the mobile trolley 1 is lower as the calculated position of CoP is closer to the side of the support polygon A (the possibility that the mobile trolley 1 falls is relatively low). expensive). Further, it can be evaluated that the closer the calculated position of CoP is to the center of gravity G of the support polygon A, the higher the current stability of the mobile carriage 1 (the possibility that the mobile carriage 1 falls is relatively low).
  • the stability of the moving carriage 1 can be quantified based on the positional relationship between the coordinates P of CoP and the supporting polygon A.
  • the stability evaluation unit 13 calculates the distance between CoP in the support polygon A and each side of the support polygon A as stability (an index of stability of the moving carriage 1), and the distance is less than a predetermined value. Evaluate whether or not. When the distance is less than a predetermined value, it can be judged that the stability is low.
  • the stability evaluation unit 13 can output the evaluation result to the in-vehicle notification device 15.
  • the notification device 15 notifies the user of the stability of the mobile trolley 1 by using an arbitrary notification method such as an image or sound. Further, in step S04, the notification device 15 may visually display the positional relationship between the coordinates P of CoP and the support polygon A as shown in FIG. 7.
  • the stability evaluation unit 13 may transmit the evaluation result to an external device of the mobile carriage 1.
  • the stability evaluation unit 13 detects that the corresponding wheel 2 is floating from the ground when the detection value is zero among the plurality of force sensors 4A to 4D.
  • the processing for notifying may also be carried out.
  • considering the duration during which the detection value of the force sensor 4 becomes zero whether the corresponding wheel 2 has been removed or is temporarily floating, or whether it hits the bottom (under the chassis to which the wheel 2 is attached). It can be detected whether the road surface is in contact with the vehicle.
  • the CoP calculation unit 12 calculates another index for calculating the stability in addition to the CoP obtained based on the floor reaction forces of the plurality of wheels 2, and the stability evaluation unit 13 calculates this other index.
  • the stability may be evaluated based on the above. For example, based on the inertial parameters (mass, center of gravity position, moment of inertia, etc.) of the moving trolley 1 and the load of the moving trolley 1, the inertial force obtained from the acceleration / deceleration or turning information that the moving trolley 1 intends to execute is obtained.
  • the added virtual CoP may be calculated as another index.
  • this virtual CoP is based on information on the force received by the mobile carriage 1 from the vehicle support surface, the inertial parameters of the load of the mobile carriage 1, and the inertial force generated by the planned operation of the mobile carriage 1. It is calculated. These inertial parameters may be calculated in advance using design values or based on the floor reaction forces of each wheel 2A-2D. In this case, when the distance between the calculated position of the virtual CoP and the side of the support polygon A is less than a predetermined value, the stability evaluation unit 13 controls stabilization so as not to accelerate / decelerate or turn. Limits can be given to unit 14.
  • the mobile trolley 1 includes a manipulator and a hand mounted on the tip of the manipulator and gripping an object, for example, the mobile trolley 1 and the manipulator, the hand, and an object gripped by the hand.
  • the inertial parameters mass, center of gravity position, moment of inertia, etc.
  • the virtual CoP in consideration of the reaction force obtained from the above may be calculated as an index for calculating the stability.
  • this virtual CoP contains information on the force that the mobile carriage 1 receives from the vehicle support surface, the inertial parameters of the load of the mobile carriage 1, the inertial force generated by the planned operation of the mobile carriage 1, and the manual. It is calculated based on the reaction force that the moving carriage 1 receives from the manipulator with the operation of the purator.
  • These inertial parameters may be calculated using design values or based on, for example, the floor reaction forces of a plurality of wheels 2, the position information of each wheel 2, and the attitude of the manipulator.
  • the inertial parameters of the manipulator, the hand, and the gripping object change according to the posture of the manipulator and the shape of the attached hand and the gripping object.
  • the inertial parameters of the manipulator and the like can be estimated by using the information such as the attitude of the manipulator and the measured value of the force sensor 4. Further, if the inertial parameter can be estimated, it can be used for estimating the external force applied to the manipulator, and the reaction force received from the manipulator by the moving carriage 1 due to the operation of the manipulator can be estimated.
  • the output value of the inclinometer is set to the output value of the inclinometer.
  • Information on the degree of inclination of the ground may be acquired accordingly, and a predetermined value used for stability evaluation may be adjusted according to the degree of inclination. With this configuration, it is possible to evaluate the stability more suitable for the driving environment. Further, by using the information on the degree of inclination, the total weight and the inertial parameters of the moving trolley 1 can be calculated even when the moving trolley 1 is traveling on the slope. Further, by using the information on the degree of inclination, it is possible to easily filter the value of the force sensor 4 so as not to be affected by the uneven road surface.
  • the user of the mobile trolley 1 manually stops the operation of the mobile trolley 1 or slows down the operation in order to avoid the mobile trolley 1 from tipping over, for example. You can perform operations. Alternatively, it is possible to perform work such as transshipping the luggage loaded on the mobile carriage 1 so as to improve the stability.
  • the stability evaluation unit 13 may output an alert when the calculated CoP coordinates and the distance between each side of the support polygon A are less than a predetermined value.
  • step S05 the stabilization control unit 14 executes stabilization control of the mobile carriage 1 based on CoP.
  • the stabilization control unit 14 shifts the position of CoP in the direction of the center of gravity G of the center of the support polygon A.
  • the operation of the moving carriage 1 can be controlled by adjusting the control commands to the drive wheels 2A and 2B so that the stability is improved. That is, the stabilization control unit 14 controls the operation of the moving carriage 1 so that the calculated CoP coordinates and the distance between each side of the support polygon A do not fall below a predetermined value.
  • the stabilization control unit 14 determines that the distance between the calculated CoP coordinates and each side of the support polygon A does not fall below a predetermined value. It may be configured to control the operation.
  • the stabilization control unit 14 receives the detection value of the compressive force sensor 4 from the vehicle support surface based on the floor reaction force of the plurality of wheels 2 or while observing the value of the force sensor 4. It is also possible to control the torque of each wheel 2 so that the frictional force of each wheel 2 with the vehicle support surface is within an appropriate range). This makes it possible to cope with the change in frictional force in proportion to the normal force.
  • the CoP calculation unit 12 obtains the inertial force obtained from the acceleration / deceleration or turning information that the mobile carriage 1 intends to execute based on the inertial parameters of the mobile carriage 1 and the load of the mobile carriage 1.
  • the stabilization control unit 14 can also perform stabilization control based on the calculated virtual CoP.
  • This inertial parameter can also be calculated in advance based on the floor reaction force of each wheel 2A to 2D.
  • acceleration / deceleration, rotation speed, and radius of gyration can be adjusted so that the inertial force is within an appropriate range. In other words, the cruising speed can be maximized while guaranteeing stability.
  • the stabilization control unit 14 at least stops, suppresses acceleration / deceleration, or expands the turning radius. It may be configured to perform one.
  • step S04 or S05 When the process of step S04 or S05 is completed, this control flow ends.
  • the CoP calculation unit 12 of the controller 10 obtains a numerical value based on the floor reaction forces of the plurality of wheels 2 measured by the plurality of force sensors 4 and the position information of the wheels 2. CoP is calculated as information, and the stability evaluation unit 13 and the stabilization control unit 14 control the operation of the mobile trolley 1 based on the calculated CoP.
  • the number of the plurality of force sensors 4 is the same as the number of the wheels 2 included in the moving carriage 1, but the configuration including the number of force sensors smaller than the number of the wheels 2 is also included in each wheel. It is possible to calculate the floor reaction force.
  • FIG. 8 is a schematic diagram showing a schematic configuration of the first modification.
  • a base portion 5 on which a plurality of wheels 2 are installed and a main body portion 21 installed above the base portion 5 are provided, and between the base portion 5 and the main body portion 21.
  • One 3-axis force sensor 22 is provided.
  • the 3-axis force sensor 22 measures the compressive force in the z-axis direction and the moments around the x-axis and the y-axis.
  • the detected value of the three-axis force sensor 22 is output as information on the force received by the moving carriage 1.
  • the floor reaction force calculation unit 11 and the CoP calculation unit 12 of the controller 10 can calculate CoP from the detected values of the triaxial force sensor 22. Further, the floor reaction force can be calculated by decomposing the floor reaction forces f1 and f2 of the plurality of wheels 2.
  • FIG. 9 is a schematic diagram showing a schematic configuration of the second modification.
  • a base portion 5 on which a plurality of wheels 2 are installed and a main body portion 21 installed above the base portion 5 are provided, and between the base portion 5 and the main body portion 21.
  • the three uniaxial compressive force sensors 23A, 23B, and 23C measure the compressive force in the z direction at each installation position.
  • the three uniaxial compressive force sensors 23A, 23B, and 23C are not provided at positions corresponding to the wheels 2, and are arranged at substantially equal intervals inside the support polygon A formed by the ground contact points of the wheels 2, for example. Will be done.
  • the floor reaction force calculation unit 11 of the controller 10 can calculate CoP from the detected values of the uniaxial compressive force sensors 23A, 23B, and 23C. Further, the floor reaction force can be calculated by decomposing the floor reaction forces f1 and f2 of the plurality of wheels 2.
  • the floor surface of each wheel 2 does not necessarily have to be provided for each wheel 2.
  • the force can be calculated.
  • the number and installation position of the force sensor can be adjusted arbitrarily, so that the adjustment can be performed with a high degree of freedom.
  • the design of the mobile trolley 1 can be facilitated while reducing the size and weight of the mobile trolley 1.
  • the number of uniaxial compressive force sensors 23A, 23B, 23C may be less than the number of wheels 2, and when the number of wheels 2 is 5 or more, the number of force sensors is 3. The above may be sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Handcart (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

A moving trolley having at least one of wheels and endless tracks. The moving trolley includes: a measurement unit for measuring information about force that is received by the moving trolley from a vehicle support surface of the moving trolley via the wheels or the endless tracks; a calculation unit for calculating an index of stability that is obtained on the basis of the information about the force measured by the measurement unit and positional information about the wheels or the endless tracks relative to the vehicle support surface; and a control unit for controlling a movement of the moving trolley on the basis of the calculated index.

Description

移動台車Mobile trolley
 本開示は、移動台車に関する。 This disclosure relates to a mobile trolley.
 複数の車輪または無限軌道を有し自律的に移動可能な移動台車が知られている。このような移動台車の利便性向上のため、さまざまな制御が適用されている。例えば特許文献1には、台車本体の姿勢を任意の姿勢角に保ちつつ、この台車本体が接床面上で任意の方向に移動することが可能な移動台車が提案されている。 A mobile trolley that has multiple wheels or tracks and can move autonomously is known. Various controls are applied to improve the convenience of such a mobile trolley. For example, Patent Document 1 proposes a mobile trolley capable of moving the trolley body in an arbitrary direction on a floor contact surface while maintaining the posture of the trolley body at an arbitrary posture angle.
特開2010-76630号公報Japanese Unexamined Patent Publication No. 2010-76630
 このような移動台車を人共存環境に適用する場合、より一層の安定性の向上が求められる。 When applying such a mobile trolley to a human coexistence environment, further improvement in stability is required.
 本開示は、安定性を向上できる移動台車を提供することを目的とする。 The purpose of this disclosure is to provide a mobile trolley that can improve stability.
 本発明の実施形態の一観点に係る移動台車は、少なくとも車輪および無限軌道のいずれか1つを有する移動台車であって、前記車輪または前記無限軌道を介して前記移動台車の車両支持面から前記移動台車が受ける力の情報を計測する計測部と、前記計測部により計測された力の情報と、前記車両支持面に対する前記車輪または前記無限軌道の位置情報と、に基づき求められる安定性の指標を算出する算出部と、前記算出された前記指標に基づき当該移動台車の動作を制御する制御部と、を備える。 The mobile trolley according to one aspect of the embodiment of the present invention is a mobile trolley having at least one of a wheel and an endless track, and is said to be from the vehicle support surface of the moving trolley via the wheel or the endless track. An index of stability obtained based on a measuring unit that measures information on the force received by the moving carriage, information on the force measured by the measuring unit, and position information on the wheel or the endless track with respect to the vehicle support surface. A calculation unit for calculating the above, and a control unit for controlling the operation of the mobile trolley based on the calculated index.
 本開示によれば、安定性を向上できる移動台車を提供することができる。 According to the present disclosure, it is possible to provide a mobile trolley that can improve stability.
実施形態に係る移動台車の概略構成を示す平面図A plan view showing a schematic configuration of a mobile carriage according to an embodiment. 図1に示す移動台車の側面図Side view of the mobile trolley shown in FIG. 力センサの設置態様の一例を示す斜視図Perspective view showing an example of the installation mode of the force sensor 実施形態に係るコントローラの機能ブロック図Functional block diagram of the controller according to the embodiment コントローラのハードウェア構成図Controller hardware configuration diagram 実施形態に係るCoPを利用した移動台車の動作制御のフローチャートFlowchart of operation control of mobile trolley using CoP according to the embodiment 移動台車の各車輪とCoPとの位置関係を示す模式図Schematic diagram showing the positional relationship between each wheel of the mobile trolley and CoP 第1変形例の概略構成を示す模式図Schematic diagram showing the schematic configuration of the first modification 第2変形例の概略構成を示す模式図Schematic diagram showing the schematic configuration of the second modification
 以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
 なお、以下の説明において、x方向、y方向、z方向は互いに垂直な方向である。x方向及びy方向は水平方向であり、z方向は典型的には鉛直方向である。x方向は移動台車1の前後方向である。y方向は、移動台車1の左右方向である。また、以下では説明の便宜上、z正方向側を上側、z負方向側を下側とも表現する場合がある。 In the following description, the x direction, the y direction, and the z direction are perpendicular to each other. The x and y directions are horizontal and the z direction is typically vertical. The x direction is the front-rear direction of the moving carriage 1. The y direction is the left-right direction of the moving carriage 1. Further, in the following, for convenience of explanation, the z positive direction side may be expressed as the upper side and the z negative direction side may be expressed as the lower side.
 図1は、実施形態に係る移動台車1の概略構成を示す平面図である。図2は、図1に示す移動台車1の側面図であり、車輪2、力センサ4、及び基部5の位置関係を示す模式図である。 FIG. 1 is a plan view showing a schematic configuration of the mobile carriage 1 according to the embodiment. FIG. 2 is a side view of the moving carriage 1 shown in FIG. 1, and is a schematic view showing the positional relationship between the wheels 2, the force sensor 4, and the base 5.
 実施形態に係る移動台車1は、例えば荷物を積載したり、ロボットアームなどの機器を搭載して、自律的に移動可能な装置である。また、移動台車1は、ロボットアームなどの機器を搭載する場合には、搭載している機器を駆動させてさまざまなタスクを実行することもできる装置である。図1、図2に示すように、移動台車1は、複数の車輪2と、複数の力センサ4(計測部)と、基部5と、コントローラ10とを備える。図1に示す例では、移動台車1は、x正方向側に前進し、x負方向側に後退する。 The mobile trolley 1 according to the embodiment is a device that can autonomously move, for example, by loading a load or mounting a device such as a robot arm. Further, when a device such as a robot arm is mounted, the mobile trolley 1 is a device capable of driving the mounted device to execute various tasks. As shown in FIGS. 1 and 2, the mobile carriage 1 includes a plurality of wheels 2, a plurality of force sensors 4 (measurement units), a base 5, and a controller 10. In the example shown in FIG. 1, the moving carriage 1 advances in the x positive direction side and retreats in the x negative direction side.
 本実施形態では、移動台車1は、複数の車輪2として4つの車輪2A、2B、2C、2Dを備える。車輪2のうち2つの車輪2A、2Bは車体後方側(x負方向側)に配置され、別の2つの車輪2C、2Dは車体前方側(x正方向側)に配置されている。また、車体後方側の2つの車輪2A、2Bは駆動輪であり、それぞれの車輪2A、2Bに駆動力を供給するアクチュエータ3A、3Bが接続されている。アクチュエータ3A、3Bは、例えばモータ等の動力源を含む。 In the present embodiment, the mobile carriage 1 includes four wheels 2A, 2B, 2C, and 2D as a plurality of wheels 2. Of the wheels 2, two wheels 2A and 2B are arranged on the vehicle body rear side (x negative direction side), and the other two wheels 2C and 2D are arranged on the vehicle body front side (x positive direction side). Further, the two wheels 2A and 2B on the rear side of the vehicle body are driving wheels, and actuators 3A and 3B for supplying driving force to the respective wheels 2A and 2B are connected. Actuators 3A and 3B include a power source such as a motor.
 なお、移動台車1が備える車輪2の数は4つに限られず、複数個あればよい。好適には車輪2の数は少なくとも3つであり、それら車輪2は、床(移動台車1の車両支持面)との接触点を結ぶと移動台車1の支持多角形(移動台車1の支持領域)が形成されるように配置されている。また、駆動輪の数は2つに限られず、複数の車輪2のうち少なくとも1つが駆動輪であればよい。また、車輪は無限軌道に置き換えてもよい。 The number of wheels 2 included in the mobile carriage 1 is not limited to four, and a plurality of wheels 2 may be provided. Preferably, the number of wheels 2 is at least three, and these wheels 2 have a support polygon of the mobile carriage 1 (support area of the mobile carriage 1) when the contact points with the floor (vehicle support surface of the mobile carriage 1) are connected. ) Is formed. Further, the number of drive wheels is not limited to two, and at least one of the plurality of wheels 2 may be a drive wheel. Also, the wheels may be replaced with tracks.
 複数の力センサ4は、複数の車輪2のそれぞれが受ける床反力を計測する。本実施形態では、移動台車1は、複数の力センサ4として4つの力センサ4A、4B、4C、4Dを備える。力センサ4A、4B、4C、4Dは、それぞれ4つの車輪2A、2B、2C、2Dに対応付けて設置され、車輪2A、2B、2C、2Dが受ける床反力(少なくとも床反力のz方向(鉛直方向)成分)を計測する。複数の力センサ4は、車輪2(または無限軌道)を介して移動台車1の車両支持面から移動台車1が受ける力の情報を計測する計測部として機能する。 The plurality of force sensors 4 measure the floor reaction force received by each of the plurality of wheels 2. In the present embodiment, the mobile carriage 1 includes four force sensors 4A, 4B, 4C, and 4D as a plurality of force sensors 4. The force sensors 4A, 4B, 4C, and 4D are installed in association with the four wheels 2A, 2B, 2C, and 2D, respectively, and the floor reaction force received by the wheels 2A, 2B, 2C, and 2D (at least in the z direction of the floor reaction force). (Vertical direction) component) is measured. The plurality of force sensors 4 function as a measuring unit that measures information on the force received by the moving carriage 1 from the vehicle support surface of the moving carriage 1 via the wheels 2 (or endless track).
 つまり本実施形態では、複数の力センサ4の数は、移動台車1が備える車輪2の数と同数となる。なお、車輪2の数より少ない数の力センサを備える構成でも、移動台車1が車輪2の接触面(移動台車1の車両支持面)から受ける力を算出することは可能である。このような構成については、図8、図9を参照して後述する。 That is, in the present embodiment, the number of the plurality of force sensors 4 is the same as the number of the wheels 2 included in the moving carriage 1. Even with a configuration including a number of force sensors smaller than the number of wheels 2, it is possible to calculate the force received by the moving carriage 1 from the contact surface of the wheels 2 (the vehicle supporting surface of the moving carriage 1). Such a configuration will be described later with reference to FIGS. 8 and 9.
 本実施形態では、移動台車1は、例えば図2に示すように、各車輪2の上方に、荷物や装置等を設置する基部5が積層配置される。そして、複数の力センサ4は、床反力を計測するよう対応付けられた車輪2と、基部5との間に設置される。この構成では、複数の力センサ4は、それぞれが1軸の圧縮力センサであり、その検出方向が上下方向(z方向)となるよう設置される。これにより、複数の力センサ4は、各車輪2に付加される床反力(図2にf1、f2で示す力)をそれぞれ計測できる。なお、力センサ4には、引張力と圧縮力の両方を検出できる引張圧縮センサを用いてもよい。 In the present embodiment, as shown in FIG. 2, for example, in the mobile carriage 1, a base 5 for installing luggage, devices, and the like is laminated above each wheel 2. Then, the plurality of force sensors 4 are installed between the wheel 2 associated with measuring the floor reaction force and the base 5. In this configuration, each of the plurality of force sensors 4 is a uniaxial compressive force sensor, and the plurality of force sensors 4 are installed so that their detection directions are in the vertical direction (z direction). As a result, the plurality of force sensors 4 can measure the floor reaction force (force shown by f1 and f2 in FIG. 2) applied to each wheel 2, respectively. As the force sensor 4, a tensile compression sensor capable of detecting both a tensile force and a compressive force may be used.
 複数の力センサ4は、各車輪2の回転軸(車軸6D、図6参照)のそれぞれの直上に配置されるのが好ましい。これにより、各力センサ4は、各車輪2が実際に受ける床反力により近い値を検出することができる。また、各力センサ4は、各車輪2が受ける床反力に起因するモーメントを受けにくくできる。 It is preferable that the plurality of force sensors 4 are arranged directly above each of the rotation axes (axle 6D, see FIG. 6) of each wheel 2. As a result, each force sensor 4 can detect a value closer to the floor reaction force actually received by each wheel 2. Further, each force sensor 4 can be made less likely to receive a moment due to the floor reaction force received by each wheel 2.
 図3は、力センサ4の設置態様の一例を示す斜視図である。図3に示すように、車輪2を保持する部品群は、軸受け6Gで保持されたシャフト6Aにより回転可能な構造となっている。シャフト6Aの軸受け6Gには、構造の簡略化のために転がり軸受ではなく滑り軸受けを用いるのが好ましい。車輪2の車軸6Dの直上には、ロードセル(力センサ4)と受座6Eが配置されており、ロードセル4は受座6Eから受ける反力により出力が変化する。受座6Eが衝撃等により変形してしまうと、ロードセル4との接触状態が変わり、ロードセル4の出力の再現性がなくなってしまう。このため受座6Eには、アルミ材ではなく鋼材を用いることが望ましい。 FIG. 3 is a perspective view showing an example of the installation mode of the force sensor 4. As shown in FIG. 3, the component group that holds the wheel 2 has a structure that can be rotated by the shaft 6A held by the bearing 6G. For the bearing 6G of the shaft 6A, it is preferable to use a sliding bearing instead of a rolling bearing for simplification of the structure. A load cell (force sensor 4) and a seat 6E are arranged directly above the axle 6D of the wheel 2, and the output of the load cell 4 changes depending on the reaction force received from the seat 6E. If the seat 6E is deformed due to an impact or the like, the contact state with the load cell 4 changes, and the output reproducibility of the load cell 4 is lost. Therefore, it is desirable to use a steel material instead of an aluminum material for the seat 6E.
 車輪2に床からの反力がかからない場合には、ロードセル4と受座6Eの間には隙間が空き、車輪2が重力により下方向に回転してしまうため、ストッパー6Fを用いて回転を拘束して車輪2の落下を防止する。 If the reaction force from the floor is not applied to the wheel 2, there is a gap between the load cell 4 and the seat 6E, and the wheel 2 rotates downward due to gravity. Therefore, the stopper 6F is used to restrain the rotation. This prevents the wheel 2 from falling.
 シャフト6Aは軸方向が車軸6Dと同様にy方向であり、車軸6Dと平行に配置される。シャフト6Aと車軸6Dとは、共にx方向を長手方向とする部材6Bに回動可能に連結されている。部材6Bの上面のうち車軸6Dの直上には受座6Eが設置されている。部材6Bの上方には、部材6Bと同様にx方向を長手方向とする部材6Cが配置され、部材6Cの下面のうち受座6Eと対向する位置に力センサ4(ロードセル)が設置されている。部材6Cは、例えば基部5などに固定される。ストッパー6Fは、例えば図3に示すように、部材6Bの上面から上方に突設される凸部6F1と、部材6Cに設けられ、凸部6F1が摺動可能に嵌合される凹部6F2とを有し、車輪2が無負荷のときに部材6Bがシャフト6Aを中心として下方に回動するのを防止するよう構成されている。 The shaft 6A has an axial direction in the y direction like the axle 6D, and is arranged parallel to the axle 6D. Both the shaft 6A and the axle 6D are rotatably connected to the member 6B whose longitudinal direction is the x direction. A receiving seat 6E is installed directly above the axle 6D on the upper surface of the member 6B. Similar to the member 6B, the member 6C having the x direction as the longitudinal direction is arranged above the member 6B, and the force sensor 4 (load cell) is installed at a position on the lower surface of the member 6C facing the receiving seat 6E. .. The member 6C is fixed to, for example, the base 5. As shown in FIG. 3, for example, the stopper 6F has a convex portion 6F1 projecting upward from the upper surface of the member 6B and a concave portion 6F2 provided on the member 6C into which the convex portion 6F1 is slidably fitted. It is configured to prevent the member 6B from rotating downward about the shaft 6A when the wheel 2 has no load.
 なお、図3に例示する車輪2の保持構造は、駆動輪2A、2B、従動輪2C、2Dともに同様の構造である。 The holding structure of the wheel 2 illustrated in FIG. 3 has the same structure for the driving wheels 2A and 2B and the driven wheels 2C and 2D.
 図1に戻り、コントローラ10は、移動台車1の動作全般を制御する。本実施形態では、コントローラ10は、4つの力センサ4A、4B、4C、4Dから4つの車輪2A、2B、2C、2Dが受ける床反力の計測値を取得し、これらの取得した床反力と、車輪の位置情報に基づき求められる指標、具体的にはCoP(Center of Pressure)を算出する。CoPとは、複数の車輪2A、2B、2C、2Dがそれぞれ受ける床反力の圧力中心の位置座標である(図7の座標Pを参照)。CoPでは、各床反力や重力等によって発生するモーメントの合計がゼロとなる。すなわち、複数の車輪2を備える移動台車1においては、CoPは所謂ZMP(Zero Moment Point)と一致する。本開示においてCoPは、移動台車1の安定度を算出するために用いられる指標(数値情報)である。 Returning to FIG. 1, the controller 10 controls the overall operation of the mobile carriage 1. In the present embodiment, the controller 10 acquires the measured values of the floor reaction forces received by the four wheels 2A, 2B, 2C, and 2D from the four force sensors 4A, 4B, 4C, and 4D, and these acquired floor reaction forces. And, an index obtained based on the wheel position information, specifically, CoP (Center of Pressure) is calculated. CoP is the position coordinate of the pressure center of the floor reaction force received by each of the plurality of wheels 2A, 2B, 2C, and 2D (see coordinate P in FIG. 7). In CoP, the total of the moments generated by each floor reaction force, gravity, etc. becomes zero. That is, in the mobile carriage 1 provided with the plurality of wheels 2, the CoP coincides with the so-called ZMP (Zero Moment Point). In the present disclosure, CoP is an index (numerical information) used for calculating the stability of the mobile carriage 1.
 コントローラ10は、算出したCoPに基づき、移動台車1の安定度の評価を行う動作を実行することができる。また、コントローラ10は、駆動輪2A、2Bのアクチュエータ3A、3Bや、車載のロボットハンド(エンドエフェクタ)などのアクチュエータに制御指令を出力して、CoPの位置を移動台車1がより安定化できる位置に遷移させるような動作(安定化制御)を実行することができる。 The controller 10 can execute an operation of evaluating the stability of the mobile carriage 1 based on the calculated CoP. Further, the controller 10 outputs a control command to the actuators 3A and 3B of the drive wheels 2A and 2B and the actuators such as the in-vehicle robot hand (end effector), and the position of the CoP can be more stabilized by the moving carriage 1. It is possible to execute an operation (stabilization control) that causes a transition to.
 図4は、本実施形態に係るコントローラ10の機能ブロック図である。コントローラ10は、上述の機能に関して、図4に示すように床反力算出部11(計測部)と、CoP算出部12と、安定度評価部13と、安定化制御部14とを備える。 FIG. 4 is a functional block diagram of the controller 10 according to the present embodiment. As shown in FIG. 4, the controller 10 includes a floor reaction force calculation unit 11 (measurement unit), a CoP calculation unit 12, a stability evaluation unit 13, and a stabilization control unit 14 with respect to the above-mentioned functions.
 床反力算出部11は、4つの力センサ4A、4B、4C、4Dの出力信号に基づき、4つの車輪2A、2B、2C、2Dが受ける床反力を算出する。床反力算出部11は、車輪2(または無限軌道)を介して移動台車1の車両支持面(車輪2の地面との接触面)から移動台車1が受ける力の情報を計測する計測部として機能する。 The floor reaction force calculation unit 11 calculates the floor reaction force received by the four wheels 2A, 2B, 2C, and 2D based on the output signals of the four force sensors 4A, 4B, 4C, and 4D. The floor reaction force calculation unit 11 is a measuring unit that measures information on the force received by the moving carriage 1 from the vehicle support surface (contact surface of the wheels 2 with the ground) of the moving carriage 1 via the wheels 2 (or endless track). Function.
 CoP算出部12は、床反力算出部11により算出された各車輪2A、2B、2C、2Dの床反力と、各車輪2A、2B、2C、2Dの位置情報とに基づき、CoPを算出する。 The CoP calculation unit 12 calculates CoP based on the floor reaction force of each wheel 2A, 2B, 2C, 2D calculated by the floor reaction force calculation unit 11 and the position information of each wheel 2A, 2B, 2C, 2D. do.
 安定度評価部13は、CoP算出部12により算出されたCoPおよび移動台車1の支持多角形A(図7参照)に基づき、現在の移動台車1の安定度(安定性の指標)を算出する。また、移動台車1は、表示画面やマイクなどの報知装置15を備え、報知装置15を介して安定度評価部13による評価結果を移動台車1のユーザに報知して、これにより移動台車1の安定性をユーザがモニタリングできる構成としてもよい。安定度評価部13は、床反力算出部11により計測された力の情報と、車両支持面に対する車輪2(または無限軌道)の位置情報と、に基づき求められる安定性の指標を算出する算出部として機能する。また、安定度評価部13は、算出された安定性の指標に基づき当該移動台車1の動作を制御する制御部としても機能する。 The stability evaluation unit 13 calculates the current stability (stability index) of the mobile trolley 1 based on the support polygon A (see FIG. 7) of the CoP and the mobile trolley 1 calculated by the CoP calculation unit 12. .. Further, the mobile trolley 1 is provided with a notification device 15 such as a display screen and a microphone, and notifies the user of the mobile trolley 1 of the evaluation result by the stability evaluation unit 13 via the notification device 15, thereby causing the mobile trolley 1 to notify the user. The configuration may be such that the stability can be monitored by the user. The stability evaluation unit 13 calculates a stability index obtained based on the force information measured by the floor reaction force calculation unit 11 and the position information of the wheel 2 (or track) with respect to the vehicle support surface. Functions as a department. The stability evaluation unit 13 also functions as a control unit that controls the operation of the mobile carriage 1 based on the calculated stability index.
 安定化制御部14は、CoP算出部12により算出されたCoPに基づき、移動台車1が安定化するようにアクチュエータ3A、3Bの制御を行う。安定化制御部14は、安定度評価部13により算出された安定度(移動台車1の現在の安定性の指標)に基づき、アクチュエータ3A、3Bの制御を行ってもよい。安定化制御部14は、算出された安定性の指標に基づき当該移動台車1の動作を制御する制御部として機能する。 The stabilization control unit 14 controls the actuators 3A and 3B so that the mobile carriage 1 is stabilized based on the CoP calculated by the CoP calculation unit 12. The stabilization control unit 14 may control the actuators 3A and 3B based on the stability (an index of the current stability of the mobile carriage 1) calculated by the stability evaluation unit 13. The stabilization control unit 14 functions as a control unit that controls the operation of the mobile carriage 1 based on the calculated stability index.
 なお、コントローラ10は、少なくともCoP算出部12により算出したCoPを利用して移動台車1の何らか動作を制御することができればよく、安定度評価部13及び安定化制御部14の一方のみを備える構成でもよい。安定度評価や安定化制御の具体例については、図6のフローチャート(特にステップS03~S05)を参照して後述する。 The controller 10 only needs to be able to control some operation of the mobile carriage 1 by using at least the CoP calculated by the CoP calculation unit 12, and includes only one of the stability evaluation unit 13 and the stabilization control unit 14. It may be configured. Specific examples of stability evaluation and stabilization control will be described later with reference to the flowcharts of FIG. 6 (particularly steps S03 to S05).
 図5は、コントローラ10のハードウェア構成図である。図5に示すように、コントローラ10は、物理的には、CPU(Central Processing Unit)101、主記憶装置であるRAM(Random Access Memory)102およびROM(Read Only Memory)103、入力デバイスであるキーボード及びマウス等の入力装置104、ディスプレイ等の出力装置105、ネットワークカード等のデータ送受信デバイスである通信モジュール106、補助記憶装置107、などを含むコンピュータシステムとして構成することができる。 FIG. 5 is a hardware configuration diagram of the controller 10. As shown in FIG. 5, the controller 10 physically includes a CPU (Central Processing Unit) 101, a RAM (Random Access Memory) 102 and a ROM (Read Only Memory) 103 as main storage devices, and a keyboard as an input device. It can be configured as a computer system including an input device 104 such as a mouse, an output device 105 such as a display, a communication module 106 which is a data transmission / reception device such as a network card, and an auxiliary storage device 107.
 図4に示すコントローラ10の各機能は、CPU101、RAM102等のハードウェア上に所定のコンピュータソフトウェア(移動台車の動作制御プログラム)を読み込ませることにより、CPU101の制御のもとで通信モジュール106、入力装置104、出力装置105を動作させるとともに、RAM102や補助記憶装置107におけるデータの読み出し及び書き込みを行うことで実現される。すなわち、本実施形態に係る移動台車の動作制御プログラムをコンピュータ上で実行させることで、コントローラ10は、図4の床反力算出部11、CoP算出部12、安定度評価部13、安定化制御部14として機能する。 Each function of the controller 10 shown in FIG. 4 is input to the communication module 106 under the control of the CPU 101 by loading predetermined computer software (operation control program of the mobile carriage) on the hardware such as the CPU 101 and the RAM 102. This is realized by operating the device 104 and the output device 105, and reading and writing data in the RAM 102 and the auxiliary storage device 107. That is, by executing the operation control program of the mobile trolley according to the present embodiment on the computer, the controller 10 has the floor reaction force calculation unit 11, the CoP calculation unit 12, the stability evaluation unit 13, and the stabilization control in FIG. It functions as a unit 14.
 また、コントローラ10の各機能は、アナログ回路、デジタル回路又はアナログ・デジタル混合回路で構成された回路であってもよい。また、各機能の制御を行う制御回路を備えていてもよい。各回路の実装は、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等によるものであってもよい。 Further, each function of the controller 10 may be a circuit composed of an analog circuit, a digital circuit, or an analog / digital mixed circuit. Further, a control circuit for controlling each function may be provided. The implementation of each circuit may be by ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), or the like.
 コントローラ10の各機能の少なくとも一部はハードウェアで構成されていてもよいし、ソフトウェアで構成され、ソフトウェアの情報処理によりCPU等が実施をしてもよい。ソフトウェアで構成される場合には、コントローラ10及びその少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記憶媒体に収納し、コンピュータに読み込ませて実行させるものであってもよい。記憶媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記憶媒体であってもよい。すなわち、ソフトウェアによる情報処理がハードウェア資源を用いて具体的に実装されるものであってもよい。さらに、ソフトウェアによる処理は、FPGA等の回路に実装され、プロセッサ等のハードウェアが実行するものであってもよい。ジョブの実行は、例えば、GPU(Graphics Processing Unit)等のアクセラレータを使用して行ってもよい。 At least a part of each function of the controller 10 may be configured by hardware, or may be configured by software and executed by a CPU or the like by information processing of the software. When composed of software, the controller 10 and a program that realizes at least a part of the functions may be stored in a storage medium such as a flexible disk or a CD-ROM, read by a computer, and executed. .. The storage medium is not limited to a removable one such as a magnetic disk or an optical disk, and may be a fixed storage medium such as a hard disk device or a memory. That is, information processing by software may be concretely implemented using hardware resources. Further, the processing by software may be implemented in a circuit such as FPGA and executed by hardware such as a processor. The job may be executed by using an accelerator such as a GPU (Graphics Processing Unit), for example.
 例えば、コンピュータが読み取り可能な記憶媒体に記憶された専用のソフトウェアをコンピュータが読み出すことにより、コンピュータを上記の実施形態の装置とすることができる。記憶媒体の種類は特に限定されるものではない。また、通信ネットワークを介してダウンロードされた専用のソフトウェアをコンピュータがインストールすることにより、コンピュータを上記の実施形態の装置とすることができる。こうして、ソフトウェアによる情報処理が、ハードウェア資源を用いて、具体的に実装される。なお、メモリ、プロセッサ、コンピュータ等のハードウェアは、それぞれ1つ、または1つ以上備えられてもよい。 For example, the computer can be used as the device of the above embodiment by reading the dedicated software stored in the storage medium that can be read by the computer. The type of storage medium is not particularly limited. Further, the computer can be used as the device of the above-described embodiment by installing the dedicated software downloaded via the communication network on the computer. In this way, information processing by software is concretely implemented using hardware resources. Note that one or more hardware such as a memory, a processor, and a computer may be provided.
 コントローラ10は、移動台車1に搭載される構成でもよいし、移動台車1と離れた位置にあって有線または無線で移動台車1と通信可能に接続される構成でもよい。 The controller 10 may be mounted on the mobile trolley 1, or may be configured to be connected to the mobile trolley 1 by wire or wirelessly at a position distant from the mobile trolley 1.
 図6は、実施形態に係るCoPを利用した移動台車1の動作制御のフローチャートである。図6に示すフローチャートはコントローラ10により実施される。 FIG. 6 is a flowchart of operation control of the mobile carriage 1 using CoP according to the embodiment. The flowchart shown in FIG. 6 is implemented by the controller 10.
 ステップS01では、床反力算出部11により、力センサ4A~4Dの計測値に基づき、各車輪2A~2Dの床反力が算出される。床反力算出部11は、各力センサ4A~4Dの検出値を、各車輪2A~2Dの床反力としてCoP算出部12に出力する。 In step S01, the floor reaction force calculation unit 11 calculates the floor reaction force of each wheel 2A to 2D based on the measured values of the force sensors 4A to 4D. The floor reaction force calculation unit 11 outputs the detected values of the force sensors 4A to 4D to the CoP calculation unit 12 as the floor reaction force of each wheel 2A to 2D.
 ステップS02では、CoP算出部12により、各車輪2A~2Dの床反力に基づき、移動台車1のCoPが算出される。CoP算出部12は、例えば下記の(1)式を用いてCoPの座標P=(xp、yp)を算出できる。なお、(1)式では、各車輪2A~2Dに対応付けられる添え字をiとして、各車輪2A~2Dの床反力がf_i、各車輪2A~2Dの平面位置座標をp_i=(x_i、y_i)とする。 In step S02, the CoP calculation unit 12 calculates the CoP of the moving carriage 1 based on the floor reaction force of each wheel 2A to 2D. The CoP calculation unit 12 can calculate the CoP coordinates P = (xp, yp) using, for example, the following equation (1). In the equation (1), the subscripts associated with the wheels 2A to 2D are i, the floor reaction force of the wheels 2A to 2D is f_i, and the plane position coordinates of the wheels 2A to 2D are p_i = (x_i, y_i).
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 図7は、移動台車1の各車輪2A~2DとCoPとの位置関係を示す模式図である。図7に示すように、平面視において各車輪2A~2Dの接地点7A~7Dを結んで形成される支持多角形Aの中にCoPの座標P=(xp、yp)は配置される。このCoPの座標Pが支持多角形Aの重心位置Gに近いほど、移動台車1は安定した状態であり、転倒しにくい状態であるといえる。支持多角形Aは、例えば、車輪2(または無限軌道)の車両支持面に対する位置情報に基づいて算出される。 FIG. 7 is a schematic view showing the positional relationship between each wheel 2A to 2D of the mobile carriage 1 and CoP. As shown in FIG. 7, the coordinates P = (xp, yp) of CoP are arranged in the support polygon A formed by connecting the ground contact points 7A to 7D of the wheels 2A to 2D in a plan view. It can be said that the closer the coordinate P of the CoP is to the position G of the center of gravity of the support polygon A, the more stable the moving carriage 1 is and the less likely it is to tip over. The support polygon A is calculated based on, for example, the position information of the wheel 2 (or track) with respect to the vehicle support surface.
 図6に戻り、以降は、ステップS02で算出したCoPを用いて、安定度評価(ステップS03、S04)と、安定化制御(ステップS05)の一方または両方を実施する。 Returning to FIG. 6, after that, one or both of the stability evaluation (steps S03 and S04) and the stabilization control (step S05) are performed using the CoP calculated in step S02.
 ステップS03では、安定度評価部13により、CoPに基づき移動台車1の安定度が評価される。安定度評価部13は、例えばCoP算出部12により算出されたCoPが支持多角形A内のどの位置にあるかを観測して安定性を評価する。例えば図7に示すように、算出したCoPの位置が支持多角形Aの辺に近いほど、移動台車1の現在の安定度は低いと評価できる(移動台車1が転倒する可能性が相対的に高い)。また、算出したCoPの位置が支持多角形Aの重心Gに近いほど、移動台車1の現在の安定度は高い(移動台車1が転倒する可能性が相対的に低い)と評価できる。このようにCoPの座標Pと支持多角形Aとの位置関係に基づき、移動台車1の安定性を数値化できる。例えば安定度評価部13は、支持多角形A内のCoPと支持多角形Aの各辺との距離を安定度(移動台車1の安定性の指標)として算出し、その距離が所定値を下回るかどうかを評価する。距離が所定値を下回る場合に安定性が低いと判断することができる。 In step S03, the stability evaluation unit 13 evaluates the stability of the mobile carriage 1 based on CoP. The stability evaluation unit 13 evaluates the stability by observing, for example, the position of the CoP calculated by the CoP calculation unit 12 in the support polygon A. For example, as shown in FIG. 7, it can be evaluated that the current stability of the mobile trolley 1 is lower as the calculated position of CoP is closer to the side of the support polygon A (the possibility that the mobile trolley 1 falls is relatively low). expensive). Further, it can be evaluated that the closer the calculated position of CoP is to the center of gravity G of the support polygon A, the higher the current stability of the mobile carriage 1 (the possibility that the mobile carriage 1 falls is relatively low). In this way, the stability of the moving carriage 1 can be quantified based on the positional relationship between the coordinates P of CoP and the supporting polygon A. For example, the stability evaluation unit 13 calculates the distance between CoP in the support polygon A and each side of the support polygon A as stability (an index of stability of the moving carriage 1), and the distance is less than a predetermined value. Evaluate whether or not. When the distance is less than a predetermined value, it can be judged that the stability is low.
 CoPで安定性を評価できる理由をさらに説明する。CoPが支持多角形Aの辺の上にあるとき、総重量のすべてがその辺を構成する車輪(例えば車輪2A)に掛かっている状態となっている。これは即ち、対向側の車輪(例えば車輪2D)の床反力が0となっており、車輪2Dが浮き始めている状態である。CoPが支持多角形Aの内部から外側に向かっていて、それが止まらない場合、車輪2Aを中心に転倒していくことになる。一方、CoPが支持多角形Aの中央寄りにあればあるほど安定性は高いといえる。また、外乱があった場合や、積み荷のバランスが変わった場合、加減速、旋回による慣性力が働いた場合に、CoPの位置Pが変動するため、CoPの位置Pをモニターすることで安定性を評価することができる。 The reason why stability can be evaluated by CoP will be further explained. When CoP is on the side of the supporting polygon A, all of the total weight is hung on the wheels (for example, wheel 2A) constituting the side. This is a state in which the floor reaction force of the wheels on the opposite side (for example, wheels 2D) is 0, and the wheels 2D are starting to float. If the CoP is from the inside to the outside of the support polygon A and it does not stop, it will fall around the wheel 2A. On the other hand, it can be said that the closer the CoP is to the center of the supporting polygon A, the higher the stability. In addition, since the CoP position P fluctuates when there is a disturbance, when the load balance changes, or when an inertial force due to acceleration / deceleration or turning is applied, stability is achieved by monitoring the CoP position P. Can be evaluated.
 安定度評価部13は、評価結果を車載の報知装置15に出力することができる。この場合、ステップS04では、報知装置15により、例えば画像や音などの任意の報知手法を用いて、移動台車1の安定度がユーザに報知される。また、ステップS04では、報知装置15により、図7に示すようなCoPの座標Pと支持多角形Aとの位置関係を視覚的に表示してもよい。なお、安定度評価部13は、評価結果を移動台車1の外部の装置に送信してもよい。 The stability evaluation unit 13 can output the evaluation result to the in-vehicle notification device 15. In this case, in step S04, the notification device 15 notifies the user of the stability of the mobile trolley 1 by using an arbitrary notification method such as an image or sound. Further, in step S04, the notification device 15 may visually display the positional relationship between the coordinates P of CoP and the support polygon A as shown in FIG. 7. The stability evaluation unit 13 may transmit the evaluation result to an external device of the mobile carriage 1.
 また、ステップS03、S04では、安定度評価部13は、複数の力センサ4A~4Dの中に検出値がゼロのものがあるとき、該当する車輪2が地面から浮いていることを検出して報知する処理を併せて実施してもよい。また、力センサ4の検出値がゼロとなる継続時間などを考慮すれば、該当する車輪2が脱輪したのか、一時的に浮いているのか、底当たり(車輪2が取り付けられるシャーシの下に路面が当たっている状態)しているのかが検出できる。 Further, in steps S03 and S04, the stability evaluation unit 13 detects that the corresponding wheel 2 is floating from the ground when the detection value is zero among the plurality of force sensors 4A to 4D. The processing for notifying may also be carried out. In addition, considering the duration during which the detection value of the force sensor 4 becomes zero, whether the corresponding wheel 2 has been removed or is temporarily floating, or whether it hits the bottom (under the chassis to which the wheel 2 is attached). It can be detected whether the road surface is in contact with the vehicle.
 また、CoP算出部12は、複数の車輪2の床反力に基づき求められるCoPの他に、安定度を算出するための別の指標を算出して、安定度評価部13がこの別の指標に基づき安定度の評価を行ってもよい。例えば、移動台車1と、当該移動台車1の積載物の慣性パラメータ(質量、重心位置、慣性モーメントなど)に基づき、移動台車1が実行しようとする加減速または旋回の情報から求められる慣性力を加味した仮想CoPを、別の指標として算出してもよい。すなわち、この仮想CoPは、移動台車1が車両支持面から受ける力の情報、および、移動台車1の積載物の慣性パラメータ、および、移動台車1の予定される動作によって生じる慣性力、に基づいて算出される。これらの慣性パラメータは、設計値を利用するか、各車輪2A~2Dの床反力に基づき、事前に算出してもよい。この場合、安定度評価部13が、例えば、算出された仮想CoPの位置と支持多角形Aの辺との距離が所定値を下回る場合には、当該加減速または旋回をしないように安定化制御部14に制限を与えることができる。 Further, the CoP calculation unit 12 calculates another index for calculating the stability in addition to the CoP obtained based on the floor reaction forces of the plurality of wheels 2, and the stability evaluation unit 13 calculates this other index. The stability may be evaluated based on the above. For example, based on the inertial parameters (mass, center of gravity position, moment of inertia, etc.) of the moving trolley 1 and the load of the moving trolley 1, the inertial force obtained from the acceleration / deceleration or turning information that the moving trolley 1 intends to execute is obtained. The added virtual CoP may be calculated as another index. That is, this virtual CoP is based on information on the force received by the mobile carriage 1 from the vehicle support surface, the inertial parameters of the load of the mobile carriage 1, and the inertial force generated by the planned operation of the mobile carriage 1. It is calculated. These inertial parameters may be calculated in advance using design values or based on the floor reaction forces of each wheel 2A-2D. In this case, when the distance between the calculated position of the virtual CoP and the side of the support polygon A is less than a predetermined value, the stability evaluation unit 13 controls stabilization so as not to accelerate / decelerate or turn. Limits can be given to unit 14.
 また、移動台車1が、マニピュレータと、このマニピュレータの先端に搭載され物体を把持するハンドと、を備える構成の場合には、例えば、移動台車1と、マニピュレータ、ハンド、及びハンドに把持される物体の慣性パラメータ(質量、重心位置、慣性モーメントなど)に基づき、移動台車1が実行しようとする加減速または旋回の情報から求められる慣性力と、マニピュレータの各軸が実行しようとする加減速の情報から求められる反力と、を加味した仮想CoPを、安定度を算出するための指標として算出してもよい。すなわち、この仮想CoPは、移動台車1が車両支持面から受ける力の情報、および、移動台車1の積載物の慣性パラメータ、および、移動台車1の予定される動作によって生じる慣性力、および、マニュピュレータの動作に伴って移動台車1がマニュピュレータから受ける反力、に基づいて算出される。これらの慣性パラメータは、設計値を利用するか、例えば、複数の車輪2の床反力と、各車輪2の位置情報と、マニピュレータの姿勢と、に基づき算出してもよい。マニピュレータの姿勢や、取り付けられたハンドや把持物体の形状などに応じて、マニピュレータ、ハンド、把持物体の慣性パラメータが変化する。そこで本実施形態の手法に基づき、マニピュレータの姿勢や力センサ4の測定値などの情報を使えば、マニピュレータ等の慣性パラメータを推定できる。また、慣性パラメータを推定できれば、マニピュレータへ加えられる外力の推定にも利用でき、かつ、マニュピュレータの動作に伴って移動台車1がマニュピュレータから受ける反力を推定することができる。 Further, in the case where the mobile trolley 1 includes a manipulator and a hand mounted on the tip of the manipulator and gripping an object, for example, the mobile trolley 1 and the manipulator, the hand, and an object gripped by the hand. Based on the inertial parameters (mass, center of gravity position, moment of inertia, etc.), the inertial force obtained from the acceleration / deceleration or turning information that the moving carriage 1 intends to execute, and the acceleration / deceleration information that each axis of the manipulator intends to execute. The virtual CoP in consideration of the reaction force obtained from the above may be calculated as an index for calculating the stability. That is, this virtual CoP contains information on the force that the mobile carriage 1 receives from the vehicle support surface, the inertial parameters of the load of the mobile carriage 1, the inertial force generated by the planned operation of the mobile carriage 1, and the manual. It is calculated based on the reaction force that the moving carriage 1 receives from the manipulator with the operation of the purator. These inertial parameters may be calculated using design values or based on, for example, the floor reaction forces of a plurality of wheels 2, the position information of each wheel 2, and the attitude of the manipulator. The inertial parameters of the manipulator, the hand, and the gripping object change according to the posture of the manipulator and the shape of the attached hand and the gripping object. Therefore, based on the method of the present embodiment, the inertial parameters of the manipulator and the like can be estimated by using the information such as the attitude of the manipulator and the measured value of the force sensor 4. Further, if the inertial parameter can be estimated, it can be used for estimating the external force applied to the manipulator, and the reaction force received from the manipulator by the moving carriage 1 due to the operation of the manipulator can be estimated.
 また、移動台車1が、複数の車輪2が設置される台車部、または、台車部の上方に設置される基部5に設置される傾斜計を備える構成の場合には、傾斜計の出力値に応じて地面の傾斜度合の情報を取得して、傾斜度合に応じて安定度評価に用いる所定値を調整する構成としてもよい。この構成により、走行環境により適した安定度の評価を行うことができる。また、傾斜度合の情報を利用して、移動台車1が斜面を走行している状態でも、移動台車1の総重量や慣性パラメータを計算できる。また、傾斜度合の情報を利用すれば、力センサ4の値について、凹凸な路面の影響を受けないようなフィルタリングをしやすくできる。 Further, in the case where the mobile trolley 1 is provided with a trolley portion on which a plurality of wheels 2 are installed or an inclinometer installed on a base portion 5 installed above the trolley portion, the output value of the inclinometer is set to the output value of the inclinometer. Information on the degree of inclination of the ground may be acquired accordingly, and a predetermined value used for stability evaluation may be adjusted according to the degree of inclination. With this configuration, it is possible to evaluate the stability more suitable for the driving environment. Further, by using the information on the degree of inclination, the total weight and the inertial parameters of the moving trolley 1 can be calculated even when the moving trolley 1 is traveling on the slope. Further, by using the information on the degree of inclination, it is possible to easily filter the value of the force sensor 4 so as not to be affected by the uneven road surface.
 移動台車1のユーザは、報知装置15を介して報知される安定度の評価結果に基づき、例えば移動台車1の転倒を回避すべく移動台車1の動作を停止させたり、速度を落とすなどの手動操作を行うことができる。または、移動台車1に積載されている荷物を安定度が向上するように積み替えるなどの作業を行うことができる。 Based on the stability evaluation result notified via the notification device 15, the user of the mobile trolley 1 manually stops the operation of the mobile trolley 1 or slows down the operation in order to avoid the mobile trolley 1 from tipping over, for example. You can perform operations. Alternatively, it is possible to perform work such as transshipping the luggage loaded on the mobile carriage 1 so as to improve the stability.
 また、ステップS03、S04では、安定度評価部13は、算出されたCoPの座標と支持多角形Aの各辺の距離が所定値を下回った場合に、アラートを出力してもよい。 Further, in steps S03 and S04, the stability evaluation unit 13 may output an alert when the calculated CoP coordinates and the distance between each side of the support polygon A are less than a predetermined value.
 ステップS05では、安定化制御部14により、CoPに基づき移動台車1の安定化制御が実施される。安定化制御部14は、例えば図7に示すように、CoPの位置が支持多角形Aの辺に近い場合には、CoPの位置が支持多角形Aの中央の重心Gの方向に遷移して安定度が向上するように、駆動輪2A、2Bへの制御指令を調整するなど移動台車1の動作を制御することができる。つまり、安定化制御部14は、算出されたCoPの座標と支持多角形Aの各辺の距離が所定値を下回らないように、当該移動台車1の動作を制御する。 In step S05, the stabilization control unit 14 executes stabilization control of the mobile carriage 1 based on CoP. As shown in FIG. 7, for example, when the position of CoP is close to the side of the support polygon A, the stabilization control unit 14 shifts the position of CoP in the direction of the center of gravity G of the center of the support polygon A. The operation of the moving carriage 1 can be controlled by adjusting the control commands to the drive wheels 2A and 2B so that the stability is improved. That is, the stabilization control unit 14 controls the operation of the moving carriage 1 so that the calculated CoP coordinates and the distance between each side of the support polygon A do not fall below a predetermined value.
 また移動台車1が、マニピュレータを備える構成の場合には、安定化制御部14は、算出されたCoPの座標と支持多角形Aの各辺の距離が所定値を下回らないように、当該マニピュレータの動作を制御する構成でもよい。 When the mobile carriage 1 is configured to include a manipulator, the stabilization control unit 14 determines that the distance between the calculated CoP coordinates and each side of the support polygon A does not fall below a predetermined value. It may be configured to control the operation.
 また、安定化制御部14は、複数の車輪2の床反力に基づき、または力センサ4の値を見ながら(圧縮力センサ4の検出値を、対応する車輪2が車両支持面から受ける反力とみなして)、各車輪2の車両支持面との摩擦力が適正範囲となるように各車輪2のトルクを制御することもできる。これにより、垂直抗力に比例して摩擦力が変わるのに対応できる。 Further, the stabilization control unit 14 receives the detection value of the compressive force sensor 4 from the vehicle support surface based on the floor reaction force of the plurality of wheels 2 or while observing the value of the force sensor 4. It is also possible to control the torque of each wheel 2 so that the frictional force of each wheel 2 with the vehicle support surface is within an appropriate range). This makes it possible to cope with the change in frictional force in proportion to the normal force.
 また、上述のようにCoP算出部12が、移動台車1と、当該移動台車1の積載物の慣性パラメータに基づき、移動台車1が実行しようとする加減速または旋回の情報から求められる慣性力を加味した仮想CoPを、安定度を算出するための指標として算出する場合には、安定化制御部14は、算出される仮想CoPに基づいて安定化制御を行うこともできる。この慣性パラメータは、各車輪2A~2Dの床反力に基づき、事前に算出することもできる。これにより、例えば、走行中に積載物が移動したり、一部が台車から降ろされるなど、積載物がどう置かれているか、何を置かれているかがわからない場合や、途中で負荷が変わる場合でも、適切な範囲に慣性力を納めるように、加減速、回転速度、回転半径を調節することができる。つまり、安定性を保証したまま、巡航速度を最大限に上げられる。 Further, as described above, the CoP calculation unit 12 obtains the inertial force obtained from the acceleration / deceleration or turning information that the mobile carriage 1 intends to execute based on the inertial parameters of the mobile carriage 1 and the load of the mobile carriage 1. When the added virtual CoP is calculated as an index for calculating the stability, the stabilization control unit 14 can also perform stabilization control based on the calculated virtual CoP. This inertial parameter can also be calculated in advance based on the floor reaction force of each wheel 2A to 2D. As a result, for example, when the load moves while driving, or when a part of the load is unloaded from the trolley, it is unknown how the load is placed or what is placed, or when the load changes on the way. However, acceleration / deceleration, rotation speed, and radius of gyration can be adjusted so that the inertial force is within an appropriate range. In other words, the cruising speed can be maximized while guaranteeing stability.
 また、安定化制御部14は、算出されたCoPの座標と支持多角形Aの各辺の距離が所定値を下回った場合に、少なくとも停止、加減速の抑制、旋回半径の拡大のいずれか1つを行う構成でもよい。 Further, when the calculated CoP coordinates and the distance between each side of the support polygon A are less than a predetermined value, the stabilization control unit 14 at least stops, suppresses acceleration / deceleration, or expands the turning radius. It may be configured to perform one.
 ステップS04またはS05の処理が完了すると本制御フローを終了する。 When the process of step S04 or S05 is completed, this control flow ends.
 このように本実施形態の移動台車1では、コントローラ10のCoP算出部12が、複数の力センサ4により計測された複数の車輪2の床反力と、車輪2の位置情報に基づき求められる数値情報としてCoPを算出し、安定度評価部13及び安定化制御部14が、算出されたCoPに基づき当該移動台車1の動作を制御する。 As described above, in the mobile carriage 1 of the present embodiment, the CoP calculation unit 12 of the controller 10 obtains a numerical value based on the floor reaction forces of the plurality of wheels 2 measured by the plurality of force sensors 4 and the position information of the wheels 2. CoP is calculated as information, and the stability evaluation unit 13 and the stabilization control unit 14 control the operation of the mobile trolley 1 based on the calculated CoP.
 この構成により、安定性に係る指標であるCoPに基づき移動台車1の動作を制御することが可能となり、この結果、移動台車1の安定性を向上できる。従来の移動台車では、制御だけでは安定性を担保しきれない虞があるため、接地面積を増やしたり、支持多角形Aを大きくすべくフットプリントを大きくしたり、重量を増やすなど、物理的に安定化を図る傾向がある。これに対して本実施形態の移動台車1では、上述のとおり移動台車の動作制御によってフットプリントが小さくても、または軽量であっても十分に安定性を向上できるので、物理的に安定化を図ることが不要となり、移動台車1の体格の小型化や軽量化を図れる。 With this configuration, it is possible to control the operation of the mobile carriage 1 based on CoP, which is an index related to stability, and as a result, the stability of the mobile carriage 1 can be improved. With conventional mobile trolleys, there is a risk that stability cannot be ensured by control alone, so physically, such as increasing the ground contact area, increasing the footprint to increase the supporting polygon A, and increasing the weight, etc. There is a tendency to stabilize. On the other hand, in the mobile trolley 1 of the present embodiment, the stability can be sufficiently improved even if the footprint is small or lightweight by controlling the operation of the mobile trolley as described above, so that the stability can be physically improved. It is not necessary to plan, and the physique of the mobile carriage 1 can be reduced in size and weight.
 図8、図9を参照して上記実施形態の変形例を説明する。上記実施形態では、複数の力センサ4の数は、移動台車1が備える車輪2の数と同数となる構成を例示したが、車輪2の数より少ない数の力センサを備える構成でも各車輪の床反力を算出することは可能である。 A modified example of the above embodiment will be described with reference to FIGS. 8 and 9. In the above embodiment, the number of the plurality of force sensors 4 is the same as the number of the wheels 2 included in the moving carriage 1, but the configuration including the number of force sensors smaller than the number of the wheels 2 is also included in each wheel. It is possible to calculate the floor reaction force.
 図8は、第1変形例の概略構成を示す模式図である。図8に示すように、第1変形例では、複数の車輪2が設置される基部5と、基部5の上方に設置される本体部21とを備え、基部5と本体部21との間に1つの3軸力センサ22が設けられる。3軸力センサ22は、z軸方向の圧縮力と、x軸およびy軸まわりのモーメントを計測する。第1変形例では、3軸力センサ22の検出値を、移動台車1が受ける力の情報として出力する。なお、少なくともz方向の圧縮力並びにx方向及びy方向周りのモーメントの3軸を計測可能であれば、3軸より多い多軸力センサを用いてもよい。第1変形例の構成では、コントローラ10の床反力算出部11及びCoP算出部12は、3軸力センサ22の検出値からCoPを算出することができる。また、複数の車輪2の床反力f1、f2に分解することで、床反力を算出することができる。 FIG. 8 is a schematic diagram showing a schematic configuration of the first modification. As shown in FIG. 8, in the first modification, a base portion 5 on which a plurality of wheels 2 are installed and a main body portion 21 installed above the base portion 5 are provided, and between the base portion 5 and the main body portion 21. One 3-axis force sensor 22 is provided. The 3-axis force sensor 22 measures the compressive force in the z-axis direction and the moments around the x-axis and the y-axis. In the first modification, the detected value of the three-axis force sensor 22 is output as information on the force received by the moving carriage 1. If it is possible to measure at least the three axes of the compressive force in the z direction and the moments in the x direction and the y direction, a multiaxial force sensor having more than the three axes may be used. In the configuration of the first modification, the floor reaction force calculation unit 11 and the CoP calculation unit 12 of the controller 10 can calculate CoP from the detected values of the triaxial force sensor 22. Further, the floor reaction force can be calculated by decomposing the floor reaction forces f1 and f2 of the plurality of wheels 2.
 第1変形例におけるCoPの算出手法についてさらに説明する。3軸力センサ22などの多軸力センサを用いる構成では、CoP算出部12は、例えば、多軸力センサの検出値のうちz方向の圧縮力をFz、x方向及びy方向周りのモーメントをそれぞれM_x及びM_yとすると、下記の(2)式でCoPの座標p=(p_x,p_y)を算出する。 The CoP calculation method in the first modification will be further described. In a configuration using a multi-axial force sensor such as the 3-axial force sensor 22, the CoP calculation unit 12 calculates, for example, the compressive force in the z direction among the detected values of the multi-axial force sensor in the Fz, x-direction, and y-direction moments. Assuming that M_x and M_y are used, respectively, the CoP coordinates p = (p_x, p_y) are calculated by the following equation (2).
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 図9は、第2変形例の概略構成を示す模式図である。図9に示すように、第2変形例では、複数の車輪2が設置される基部5と、基部5の上方に設置される本体部21とを備え、基部5と本体部21との間には、複数の車輪2の数より少ない3つの1軸圧縮力センサ23A、23B、23Cが設けられる。3つの1軸圧縮力センサ23A、23B、23Cは、各設置位置におけるz方向の圧縮力を計測する。3つの1軸圧縮力センサ23A、23B、23Cは、各車輪2に対応する位置には設けられず、例えば各車輪2の接地点により形成される支持多角形Aの内部に略等間隔で配置される。第2変形例の構成では、コントローラ10の床反力算出部11は、1軸圧縮力センサ23A、23B、23Cの検出値からCoPを算出することができる。また、複数の車輪2の床反力f1、f2に分解することで、床反力を算出することができる。 FIG. 9 is a schematic diagram showing a schematic configuration of the second modification. As shown in FIG. 9, in the second modification, a base portion 5 on which a plurality of wheels 2 are installed and a main body portion 21 installed above the base portion 5 are provided, and between the base portion 5 and the main body portion 21. Is provided with three uniaxial compressive force sensors 23A, 23B, 23C, which is less than the number of wheels 2. The three uniaxial compressive force sensors 23A, 23B, and 23C measure the compressive force in the z direction at each installation position. The three uniaxial compressive force sensors 23A, 23B, and 23C are not provided at positions corresponding to the wheels 2, and are arranged at substantially equal intervals inside the support polygon A formed by the ground contact points of the wheels 2, for example. Will be done. In the configuration of the second modification, the floor reaction force calculation unit 11 of the controller 10 can calculate CoP from the detected values of the uniaxial compressive force sensors 23A, 23B, and 23C. Further, the floor reaction force can be calculated by decomposing the floor reaction forces f1 and f2 of the plurality of wheels 2.
 第1、第2変形例に示す車輪2の数より少ない数の力センサ22,23A~23Cを設ける構成のように、必ずしも各車輪2ごとに力センサを設けなくても各車輪2の床反力を算出することができる。これにより、例えば車輪2の周囲に力センサを設置するスペースが無いなどの設計上の制約がある場合にも、力センサの数や設置位置を任意に調整できるので、高い自由度で調整可能なので、移動台車1の体格の小型化や軽量化を図りつつ、移動台車1の設計を容易にできる。なお、第2変形例では、1軸圧縮力センサ23A、23B、23Cの個数は、車輪2の数より少なければよく、車輪2の数が5つ以上の場合には力センサの数は3つ以上でもよい。 As in the configuration in which the force sensors 22, 23A to 23C are provided in a number smaller than the number of the wheels 2 shown in the first and second modifications, the floor surface of each wheel 2 does not necessarily have to be provided for each wheel 2. The force can be calculated. As a result, even if there are design restrictions such as no space for installing the force sensor around the wheel 2, the number and installation position of the force sensor can be adjusted arbitrarily, so that the adjustment can be performed with a high degree of freedom. The design of the mobile trolley 1 can be facilitated while reducing the size and weight of the mobile trolley 1. In the second modification, the number of uniaxial compressive force sensors 23A, 23B, 23C may be less than the number of wheels 2, and when the number of wheels 2 is 5 or more, the number of force sensors is 3. The above may be sufficient.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those skilled in the art with appropriate design changes to these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, its arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.
 本国際出願は2020年1月27日に出願された日本国特許出願2020-010526号に基づく優先権を主張するものであり、2020-010526号の全内容をここに本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2020-01526 filed on January 27, 2020, and the entire contents of No. 2020-01526 are incorporated herein by reference.

Claims (16)

  1.  少なくとも車輪および無限軌道のいずれか1つを有する移動台車であって、
     前記車輪または前記無限軌道を介して前記移動台車の車両支持面から前記移動台車が受ける力の情報を計測する計測部と、
     前記計測部により計測された力の情報と、前記車両支持面に対する前記車輪または前記無限軌道の位置情報と、に基づき求められる安定性の指標を算出する算出部と、
     前記算出された前記指標に基づき当該移動台車の動作を制御する制御部と、
     を備える移動台車。
    A mobile trolley with at least one of wheels and tracks.
    A measuring unit that measures information on the force received by the moving carriage from the vehicle support surface of the moving carriage via the wheels or the endless track.
    A calculation unit that calculates a stability index obtained based on the force information measured by the measurement unit and the position information of the wheel or the endless track with respect to the vehicle support surface.
    A control unit that controls the operation of the mobile trolley based on the calculated index, and
    A mobile trolley equipped with.
  2.  前記計測部は、圧縮力センサを含み、前記圧縮力センサの検出値を、前記移動台車が受ける力の情報として出力する、
    請求項1に記載の移動台車。
    The measuring unit includes a compressive force sensor, and outputs a detection value of the compressive force sensor as information on the force received by the moving carriage.
    The mobile trolley according to claim 1.
  3.  前記圧縮力センサは、前記車輪のそれぞれの車軸の直上に設けられる、
    請求項2に記載の移動台車。
    The compressive force sensor is provided directly above each axle of the wheel.
    The mobile trolley according to claim 2.
  4.  前記車輪または前記無限軌道が設置される基部と、
     前記基部の上方に設置される本体部とを備え、
     前記計測部は、前記基部と前記本体部との間に設けられ、少なくともz方向の圧縮力並びにx方向及びy方向周りのモーメントの3軸を計測可能な1つの多軸力センサを含み、前記多軸力センサの検出値を、前記移動台車が受ける力の情報として出力する、
    請求項1に記載の移動台車。
    With the base on which the wheels or tracks are installed,
    It is provided with a main body portion installed above the base portion, and is provided with a main body portion.
    The measuring unit includes one multi-axial force sensor provided between the base unit and the main body unit and capable of measuring at least three axes of a compressive force in the z direction and moments in the x and y directions. The detection value of the multi-axial force sensor is output as information on the force received by the moving carriage.
    The mobile trolley according to claim 1.
  5.  前記指標は、前記車輪または前記無限軌道が前記車両支持面から受ける力の中心であるCoP(Center of Pressure)から、前記車輪または前記無限軌道の前記車両支持面に対する位置情報に基づいて算出される支持多角形の各辺まで距離であり、
     前記算出部は、前記圧縮力センサの検出値をf_i、前記圧縮力センサの平面位置座標をp_i=(x_i、y_i)とすると、下記の(1)式で前記CoPの座標Pを算出する、請求項2に記載の移動台車。
    Figure JPOXMLDOC01-appb-M000001
     
    The index is calculated from CoP (Center of Pressure), which is the center of the force that the wheel or the endless track receives from the vehicle support surface, based on the position information of the wheel or the endless track with respect to the vehicle support surface. The distance to each side of the supporting polygon,
    Assuming that the detection value of the compressive force sensor is f_i and the plane position coordinates of the compressive force sensor are p_i = (x_i, y_i), the calculation unit calculates the coordinates P of the CoP by the following equation (1). The mobile trolley according to claim 2.
    Figure JPOXMLDOC01-appb-M000001
  6.  前記指標は、前記車輪又は無限軌道が前記車両支持面から受ける圧力の中心であるCoP(Center of Pressure)から、前記車輪または前記無限軌道の前記車両支持面に対する位置情報に基づいて算出される支持多角形の各辺まで距離であり、
     前記算出部は、前記多軸力センサの検出値のうちz方向の圧縮力をFz、x方向及びy方向周りのモーメントをそれぞれM_x及びM_yとすると、下記の(2)式で前記CoPの座標p=(p_x,p_y)を算出する、請求項4に記載の移動台車。
    Figure JPOXMLDOC01-appb-M000002
     
    The index is a support calculated from CoP (Center of Pressure), which is the center of pressure that the wheel or track receives from the vehicle support surface, based on the position information of the wheel or track with respect to the vehicle support surface. The distance to each side of the polygon,
    Assuming that the compressive force in the z direction is Fz and the moments around the x and y directions are M_x and M_y, respectively, among the detected values of the multiaxial force sensor, the calculation unit uses the following equation (2) to determine the coordinates of the CoP. The mobile trolley according to claim 4, wherein p = (p_x, p_y) is calculated.
    Figure JPOXMLDOC01-appb-M000002
  7.  前記算出部は、前記移動台車が受ける力の情報に基づいて事前に算出される積載物の慣性パラメータと、前記移動台車が実行しようとする加減速または旋回の情報から求められる慣性力と、前記移動台車が受ける力の情報と、に基づいて、前記CoPを算出する
    請求項5に記載の移動台車。
    The calculation unit includes an inertial parameter of the load calculated in advance based on information on the force received by the mobile carriage, an inertial force obtained from information on acceleration / deceleration or turning that the mobile carriage intends to execute, and the above-mentioned inertial force. The mobile trolley according to claim 5, wherein the CoP is calculated based on the information of the force received by the mobile trolley.
  8.  当該移動台車に搭載されるマニピュレータと、
     前記マニピュレータの先端に搭載され物体を把持するエンドエフェクタと、
    を備え、
     前記算出部は、
      前記マニピュレータの各リンク、前記エンドエフェクタ、又は、前記エンドエフェクタに把持される前記物体の少なくとも1つ以上の慣性パラメータと、
      前記移動台車が実行しようとする加減速または旋回の情報から求められる慣性力と、
      前記マニピュレータの各軸が実行しようとする加減速の情報から求められる反力と、
      前記移動台車が受ける力の情報と、
     に基づいて、前記CoPを算出する
    請求項5に記載の移動台車。
    The manipulator mounted on the mobile trolley and
    An end effector mounted on the tip of the manipulator to grip an object,
    With
    The calculation unit
    Each link of the manipulator, the end effector, or at least one or more inertial parameters of the object gripped by the end effector.
    The inertial force obtained from the acceleration / deceleration or turning information that the mobile trolley intends to execute, and
    The reaction force obtained from the acceleration / deceleration information that each axis of the manipulator intends to execute, and
    Information on the force received by the mobile trolley and
    The mobile trolley according to claim 5, wherein the CoP is calculated based on the above.
  9.  前記車輪または前記無限軌道が設置される基部、または、前記基部の上方に設置される本体部に設置される傾斜計を備える、
    請求項1に記載の移動台車。
    An inclinometer installed on a base on which the wheels or tracks are installed, or on a main body installed above the base.
    The mobile trolley according to claim 1.
  10.  前記制御部は、前記算出された前記CoPの座標と前記支持多角形の各辺の距離が所定値を下回った場合に、少なくとも停止、加減速の抑制、旋回半径の拡大のいずれか1つを行う、
    請求項5に記載の移動台車。
    When the distance between the calculated coordinates of the CoP and each side of the supporting polygon falls below a predetermined value, the control unit performs at least one of stopping, suppressing acceleration / deceleration, and expanding the turning radius. conduct,
    The mobile trolley according to claim 5.
  11.  前記制御部は、前記圧縮力センサの中に検出値がゼロのものがあるとき、車輪が浮いていることを検出する、
    請求項2に記載の移動台車。
    The control unit detects that the wheel is floating when the detection value of the compressive force sensor is zero.
    The mobile trolley according to claim 2.
  12.  前記制御部は、前記算出された前記CoPの座標と前記支持多角形の各辺の距離が所定値を下回った場合に、アラートを出力する、
    請求項5に記載の移動台車。
    The control unit outputs an alert when the calculated coordinates of the CoP and the distance between each side of the supporting polygon are less than a predetermined value.
    The mobile trolley according to claim 5.
  13.  前記制御部は、前記算出された前記CoPの座標と前記支持多角形の各辺の距離が所定値を下回らないように、当該移動台車の動作を制御する、
    請求項5に記載の移動台車。
    The control unit controls the operation of the moving carriage so that the calculated coordinates of the CoP and the distance between each side of the supporting polygon do not fall below a predetermined value.
    The mobile trolley according to claim 5.
  14.  前記制御部は、前記算出された前記CoPの座標と前記支持多角形の各辺の距離が所定値を下回らないように、当該マニピュレータの動作を制御する、
    請求項8に記載の移動台車。
    The control unit controls the operation of the manipulator so that the calculated coordinates of the CoP and the distance between each side of the supporting polygon do not fall below a predetermined value.
    The mobile trolley according to claim 8.
  15.  前記制御部は、前記計測部により計測された前記圧縮力センサの検出値を、対応する前記車輪が前記車両支持面から受ける反力とみなして、各車輪の前記車両支持面との摩擦力が適正範囲となるように各車輪のトルクを制御する、
    請求項2に記載の移動台車。
    The control unit regards the detection value of the compression force sensor measured by the measurement unit as a reaction force received by the corresponding wheel from the vehicle support surface, and the frictional force of each wheel with the vehicle support surface is generated. Control the torque of each wheel so that it is within the proper range,
    The mobile trolley according to claim 2.
  16.  移動台車であって、
     駆動輪を含む複数の車輪と、
     前記複数の車輪を介して前記移動台車の車両支持面から前記移動台車が受ける力を計測するセンサと、
     前記計測された力の中心の位置を計算し、当該計算された力の中心の位置および前記移動台車の支持領域に基づいて、当該移動台車の動作を制御するコントローラと、
     を備える移動台車。
    It ’s a mobile trolley,
    With multiple wheels, including drive wheels,
    A sensor that measures the force received by the moving carriage from the vehicle support surface of the moving carriage via the plurality of wheels, and
    A controller that calculates the position of the measured center of force and controls the operation of the moving trolley based on the calculated position of the center of force and the support area of the moving trolley.
    A mobile trolley equipped with.
PCT/JP2021/002023 2020-01-27 2021-01-21 Moving trolley WO2021153411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574690A JPWO2021153411A1 (en) 2020-01-27 2021-01-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010526 2020-01-27
JP2020010526 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153411A1 true WO2021153411A1 (en) 2021-08-05

Family

ID=77079850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002023 WO2021153411A1 (en) 2020-01-27 2021-01-21 Moving trolley

Country Status (2)

Country Link
JP (1) JPWO2021153411A1 (en)
WO (1) WO2021153411A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187029A (en) * 1993-12-28 1995-07-25 Denken:Kk Carrier
JP2004001705A (en) * 2002-03-29 2004-01-08 Sanyo Electric Co Ltd Movable carriage
JP2009297876A (en) * 2008-06-17 2009-12-24 Nsk Ltd Wheel robot
US20160060084A1 (en) * 2013-05-08 2016-03-03 Hoerbiger Holding Ag Loading apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187029A (en) * 1993-12-28 1995-07-25 Denken:Kk Carrier
JP2004001705A (en) * 2002-03-29 2004-01-08 Sanyo Electric Co Ltd Movable carriage
JP2009297876A (en) * 2008-06-17 2009-12-24 Nsk Ltd Wheel robot
US20160060084A1 (en) * 2013-05-08 2016-03-03 Hoerbiger Holding Ag Loading apparatus

Also Published As

Publication number Publication date
JPWO2021153411A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
KR101156822B1 (en) Mobile and control method of mobile
JP5064779B2 (en) Attitude control device
US8060253B2 (en) Systems and methods for controlling a legged robot based on rate of change of angular momentum
JP5024652B2 (en) vehicle
JP4760162B2 (en) Control method of mobile cart and mobile cart
JP4005618B2 (en) Tire braking characteristics testing device
CN101844559B (en) System and method for dynamically maintaining the stability of material handling vehicle having vertical lift
WO2011067939A1 (en) Inclination computation device
US8505373B2 (en) Device and method for determining the intertial parameters of a body
CN110872088A (en) Dynamic stability determination system for a lift truck
JP4138546B2 (en) Mobile cart and control method of mobile cart
JP5454333B2 (en) Mobile device and movement control program
WO2021153411A1 (en) Moving trolley
JPWO2019235020A1 (en) Information processing equipment, information processing methods and programs
KR101776819B1 (en) Turnover Prediction Method of Excavator
JP2008215958A (en) Apparatus for testing tire
JP2006205839A (en) Mobile carriage and control method of mobile carriage
JP5167077B2 (en) Mobile body and control method thereof
JP2007038962A (en) Vehicle
US20210147205A1 (en) Movable platform and control method thereof
JP2008154346A (en) Vehicle attitude control device and traveling device
WO2022079973A1 (en) Wheel load estimation device and program
US20120111110A1 (en) Shock absorption platform
WO2022201376A1 (en) Vehicle attitude angle estimation device and optical axis control device for vehicle lamp
JP2005291860A (en) Failure detection method of acceleration sensor for automobile, and acceleration sensor for automobile having failure detection function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747392

Country of ref document: EP

Kind code of ref document: A1