WO2021153407A1 - Residual stress measurement method and residual stress measurement device - Google Patents

Residual stress measurement method and residual stress measurement device Download PDF

Info

Publication number
WO2021153407A1
WO2021153407A1 PCT/JP2021/001994 JP2021001994W WO2021153407A1 WO 2021153407 A1 WO2021153407 A1 WO 2021153407A1 JP 2021001994 W JP2021001994 W JP 2021001994W WO 2021153407 A1 WO2021153407 A1 WO 2021153407A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling
strain
resin molded
residual stress
molded product
Prior art date
Application number
PCT/JP2021/001994
Other languages
French (fr)
Japanese (ja)
Inventor
望月 章弘
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202180006074.4A priority Critical patent/CN114599950B/en
Priority to JP2021532932A priority patent/JP6944090B1/en
Publication of WO2021153407A1 publication Critical patent/WO2021153407A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

Provided is a method for measuring residual stress accurately by reducing the effect of heat generation and the like during piercing when residual stress inside a resin molded article is measured at a predetermined location therein by a piercing method. This residual stress measurement method determines residual stress inside a resin molded article by measuring the amount of release strain which is released in a main piercing step for providing a piercing portion in the resin molded article and piercing the piercing portion using a drill. The measurement of the amount of release strain includes performing, prior to the main piercing process, at least: a preliminary piercing step for piercing the piercing portion of the resin molded article by advancing the drill to a preliminary piercing depth location, and then retracting the drill out of the resin molded article; and a piercing condition setting step for setting at least one of the revolving speed and the feed rate of the drill in the main piercing step so that a strain difference Δε, which is the absolute value of a difference between a first strain amount ε1 detected upon completion of the preliminary piercing step and a second strain amount ε2 detected when or after the resin molded article has been left to stand until the amount of strain is stabilized after the preliminary piercing step is complete, is less than or equal to 50 μst.

Description

残留応力測定方法および残留応力測定装置Residual stress measuring method and residual stress measuring device
 本発明は、樹脂成形品の内部の残留応力を測定する、残留応力測定方法および残留応力測定装置に関する。 The present invention relates to a residual stress measuring method and a residual stress measuring device for measuring the residual stress inside a resin molded product.
 従来、樹脂成形品の内部における残留応力を測定する方法としては、樹脂成形品を破壊しながら測定する方法である穿孔法や表層逐次除去法のほか、樹脂成形品を破壊しない方法である光弾性法などが知られている。 Conventionally, as a method of measuring the residual stress inside the resin molded product, there are a perforation method and a surface layer sequential removal method which are methods of measuring while breaking the resin molded product, and a photoelasticity method which is a method of not destroying the resin molded product. The law is known.
 このうち、穿孔法は、測定対象である樹脂成形品のうち、歪量を測定する部分の周辺に予め歪ゲージを貼り付け、樹脂成形品を厚さ方向に沿って穿孔した際の歪量の変化を測定して残留応力を測定する方法であり、板状製品もしくは3次元立体形状製品の平面部分における残留応力の測定に主に用いられている。しかし、穿孔部と歪量を測定する歪ゲージとの間には距離が生じるため、成形加工時に発生する残留応力を正確に測定することができない。 Of these, in the drilling method, a strain gauge is attached in advance around the portion of the resin molded product to be measured to measure the strain amount, and the strain amount when the resin molded product is punched along the thickness direction. It is a method of measuring a change and measuring a residual stress, and is mainly used for measuring a residual stress in a flat portion of a plate-shaped product or a three-dimensional three-dimensional shape product. However, since there is a distance between the perforated portion and the strain gauge for measuring the amount of strain, it is not possible to accurately measure the residual stress generated during the molding process.
 表層逐次除去法は、板状の樹脂成形品の一方の面に歪ゲージを貼り付け、他方の面を薄く層状に除去しながら歪量を測定して、残留応力を求める方法である。この方法では、樹脂成形品の面内だけでなく、肉厚方向の残留応力を測定することができる。 The surface layer sequential removal method is a method in which a strain gauge is attached to one surface of a plate-shaped resin molded product, and the amount of strain is measured while removing the other surface in thin layers to obtain residual stress. In this method, not only the in-plane of the resin molded product but also the residual stress in the wall thickness direction can be measured.
 しかし、表層逐次除去法では、測定対象となる樹脂成形品が、板状、パイプ状などの簡単な形状に限定される。また、表層逐次除去法は、歪ゲージが樹脂成形品に完全に接着しない場合には適用できないこと、測定に手間と時間がかかることが、欠点として挙げられる。 However, in the surface layer sequential removal method, the resin molded product to be measured is limited to a simple shape such as a plate shape or a pipe shape. Further, the surface layer sequential removal method has drawbacks that it cannot be applied when the strain gauge does not completely adhere to the resin molded product, and that it takes time and effort to measure.
 光弾性法は、偏光板で偏光させた光を透明な樹脂成形品に当てて、透過光の縞模様から残留応力を評価する方法であり、面内の残留応力を簡単に測定することができる。しかし、光弾性法は、肉厚方向についての残留応力を測定できないこと、不透明な樹脂成形品には適用できないことが、欠点として挙げられる。 The photoelastic method is a method in which light polarized by a polarizing plate is applied to a transparent resin molded product to evaluate the residual stress from the striped pattern of transmitted light, and the residual stress in the plane can be easily measured. .. However, the photoelastic method has drawbacks that it cannot measure the residual stress in the wall thickness direction and cannot be applied to an opaque resin molded product.
 このように、樹脂成形品の内部の残留応力を測定する方法には、さらなる改善が求められている。そこで、特許文献1には、穿孔法を改良し、穿孔部を有する樹脂成形品の厚さ方向に、上記穿孔部を所定の第一穿孔深さまで穿孔したときの、上記樹脂成形品の歪み量を測定し、得られた歪み量から穿孔によって樹脂成形品に発生する第一応力を求め、次いで、穿孔部を上記厚さ方向に、所定の第二穿孔深さまで、さらに穿孔したときの、上記樹脂成形品の歪み量を測定し、得られた歪み量からこの穿孔により上記樹脂成形品に発生する第二応力を求め、その後、第二応力から第一応力を差し引くことにより得られる差分を、第一穿孔深さと第二穿孔深さとの中間深さにおける、およその残留応力の値として算出する残留応力算出手法が開示されている。この残留応力算出手法では、使用する樹脂材料の種類によらず、より簡便に、所定の位置での残留応力を算出し、樹脂成形品内部の残留応力分布を求めることが可能である。 As described above, further improvement is required for the method of measuring the residual stress inside the resin molded product. Therefore, in Patent Document 1, the drilling method is improved, and the amount of strain of the resin molded product when the drilled portion is drilled to a predetermined first drilling depth in the thickness direction of the resin molded product having the drilled portion. The first stress generated in the resin molded product by drilling was obtained from the obtained strain amount, and then the drilled portion was further drilled in the thickness direction to a predetermined second drilling depth. The strain amount of the resin molded product is measured, the second stress generated in the resin molded product by this drilling is obtained from the obtained strain amount, and then the difference obtained by subtracting the first stress from the second stress is obtained. A method for calculating residual stress, which is calculated as an approximate value of residual stress at an intermediate depth between the first drilling depth and the second drilling depth, is disclosed. In this residual stress calculation method, it is possible to more easily calculate the residual stress at a predetermined position and obtain the residual stress distribution inside the resin molded product regardless of the type of resin material used.
特開2010-243335号公報Japanese Unexamined Patent Publication No. 2010-2433335
 特許文献1に記載される穿孔法においても、測定誤差やバラつきを低減させて、測定精度を高める点において、さらに改善の余地がある。特に、同じ材料と同じ成形条件で製造された複数の樹脂成形品について、同じ個所の歪や残留応力の測定結果へのバラつきを低減させる点に、改善の余地があった。また、測定結果に基づき残留応力を低減させるための設計変更などを行った際の樹脂成形品の残留応力の測定値に、設計変更による影響が正しく反映されるようにする点でも、改善の余地があった。 The perforation method described in Patent Document 1 also has room for further improvement in terms of reducing measurement errors and variations and improving measurement accuracy. In particular, there is room for improvement in reducing variations in the measurement results of strain and residual stress at the same location for a plurality of resin molded products manufactured with the same material and under the same molding conditions. In addition, there is room for improvement in that the effect of the design change is correctly reflected in the measured value of the residual stress of the resin molded product when the design is changed to reduce the residual stress based on the measurement result. was there.
 ここで、樹脂成形品に残留応力が存在すると、製品寿命の低下や成形後の変形などの不具合が生じるため、残留応力を正確に把握し、適切な設計変更などの対策を施す必要がある。しかし、精度の高い測定を行うことができない場合には、適切な対策を行うことが困難となる。 Here, if residual stress exists in the resin molded product, problems such as shortening of product life and deformation after molding occur. Therefore, it is necessary to accurately grasp the residual stress and take measures such as appropriate design changes. However, if it is not possible to perform highly accurate measurement, it becomes difficult to take appropriate measures.
 本発明は、上述の実情に鑑みて提案されるものであって、樹脂成形品の所定の位置における内部の残留応力を、より精度よく測定することができるような残留応力測定方法、およびそのための測定装置を提供することを目的とする。 The present invention has been proposed in view of the above circumstances, and is a residual stress measuring method capable of measuring the internal residual stress at a predetermined position of a resin molded product with higher accuracy, and a method for measuring the residual stress therefor. It is an object of the present invention to provide a measuring device.
 本発明者は、上述の課題を解決すべく検討したところ、穿孔法により、ドリルやエンドミルなどの工具を用いた切削加工によって穿孔を行う際に、工具の回転に伴う摩擦熱が生じることで、残留応力の測定精度が低下することを見出した。より具体的には、工具の回転に伴う摩擦熱によって、穿孔部周囲の樹脂が加熱もしくは溶融されることで樹脂成形品内の歪が解放されて残留応力が減少すること、または、樹脂の(再)結晶化もしくは架橋が促進されることで樹脂成形品内に歪が発生して残留応力が増加することにより、残留応力の測定精度が低下することを見出した。すなわち、上述した残留応力の測定結果のバラつきは、このような穿孔時の発熱および冷却の過程、ひいては歪の発生状態およびその変化が必ずしも一定ではないことに起因するものと考えられる。そこで本発明者は、下記によって穿孔法の穿孔時における発熱を抑制することで、上記課題を解決した。 The present inventor has investigated to solve the above-mentioned problems, and found that the drilling method generates frictional heat due to the rotation of the tool when drilling by cutting with a tool such as a drill or an end mill. It was found that the measurement accuracy of residual stress decreases. More specifically, the frictional heat generated by the rotation of the tool heats or melts the resin around the perforated portion to release the strain in the resin molded product and reduce the residual stress, or the resin ( Re) It was found that the measurement accuracy of the residual stress is lowered because the residual stress is increased due to the strain generated in the resin molded product due to the promotion of crystallization or cross-linking. That is, it is considered that the above-mentioned variation in the measurement results of the residual stress is caused by the process of heat generation and cooling at the time of drilling, and by extension, the state of occurrence of strain and its change are not always constant. Therefore, the present inventor has solved the above-mentioned problems by suppressing heat generation at the time of drilling by the drilling method by the following.
[1]測定対象となる樹脂成形品に穿孔部を設け、前記穿孔部をドリルで穿孔する本穿孔工程の際に解放される解放歪量を測定し、得られる前記解放歪量から前記樹脂成形品の内部における残留応力を求める、穿孔法による残留応力測定方法であって、前記本穿孔工程の前に、前記樹脂成形品の表面に歪測定手段を設けた状態で、前記樹脂成形品の前記穿孔部を、前記表面から予備穿孔深さ位置まで前記ドリルを前進させて穿孔した後、前記ドリルを後退させて前記樹脂成形品から抜去する予備穿孔工程と、前記予備穿孔工程が完了した時点で検出される第一歪量εと、前記予備穿孔工程が完了した後に歪量が安定するまで静置した時点またはそれ以降に検出される第二歪量εとの差の絶対値である歪量差Δεが、50μst以下となるように、前記本穿孔工程における前記ドリルの回転数および送り速度のうち少なくとも一方を設定する穿孔条件設定工程と、を少なくとも行う、残留応力測定方法。
[2]前記穿孔条件設定工程は、2軸以上の多軸ゲージを用い、前記第一歪量ε、前記第二歪量εおよび前記歪量差Δεを、前記多軸ゲージの軸ごとに求め、前記軸ごとに求められる歪量差Δεが、すべて50μst以下となるように、前記本穿孔工程における前記ドリルの回転数および送り速度のうち少なくとも一方を設定する、前記[1]に記載の残留応力測定方法。
[3]前記予備穿孔工程を行う間、前記穿孔部の温度を計測し、前記穿孔条件設定工程では、前記温度が前記樹脂成形品を構成する樹脂のガラス転移温度以下となるように、前記本穿孔工程における前記ドリルの回転数および送り速度のうち少なくとも一方を設定する、前記[1]または[2]に記載の残留応力測定方法。
[4]前記穿孔条件設定工程は、前記ドリルの回転数が100rpm以下となるように設定する、前記[1]から[3]のいずれか1項に記載の残留応力測定方法。
[5]前記穿孔条件設定工程は、前記ドリルの送り速度が4.0mm/min以下となるように設定する、前記[1]から[4]のいずれか1項に記載の残留応力測定方法。
[6]前記穿孔部および前記歪測定部は、前記厚さ方向に対して垂直な面に設け、前記穿孔部は、前記予備穿孔工程で前記樹脂成形品を厚さ方向に穿孔するように構成し、かつ、前記歪測定部は、前記穿孔条件設定工程で、前記厚さ方向に対して垂直に発生する、前記第一歪量εおよび前記第二歪量εを測定するように構成する、前記[1]から[5]のいずれか1項に記載の残留応力測定方法。
[7]前記残留応力測定方法は、前記樹脂成形品の厚さ方向における内部残留応力を求める方法であり、前記本穿孔工程は、前記穿孔部を、前記厚さ方向に第一穿孔深さまで穿孔したときの、前記樹脂成形品における歪量を測定し、得られた歪量を用いて、前記第一穿孔深さまでの穿孔によって前記樹脂成形品に発生する第一応力を測定する第一応力測定工程と、前記穿孔部を、前記厚さ方向に、前記第一穿孔深さと異なる第二穿孔深さまで穿孔したときの、前記樹脂成形品における歪量を前記歪測定部で測定し、得られた歪量を用いて、前記第二穿孔深さまでの穿孔によって前記樹脂成形品に発生する第二応力を測定する第二応力測定工程と、前記第二応力から前記第一応力を差し引くことにより得られる差分を、前記第一穿孔深さと前記第二穿孔深さとの中間深さにおける残留応力として算出する残留応力算出工程と、を有する、前記[6]に記載の残留応力測定方法。
[8]前記[1]から[7]のいずれか1項に記載の残留応力測定方法に用いられる残留応力測定装置であり、前記残留応力測定装置は、前記ドリルを回動させて前記樹脂成形品を穿孔する穿孔手段と、前記樹脂成形品の歪量を検出する歪測定手段と、前記歪測定手段により検出された歪量を記録する記録手段と、を有し、前記穿孔手段は、前記ドリルと、前記ドリルの中心軸を中心に回動させる回動部と、前記中心軸に前記穿孔部が位置するように前記樹脂成形品を固定する保持部と、前記回動部および前記保持部のうち少なくとも一方を前記ドリルの中心軸に沿って前進または後退させる駆動部と、を備える、残留応力測定装置。
[1] A perforated portion is provided in a resin molded product to be measured, the amount of release strain released during the main drilling step of perforating the perforated portion with a drill is measured, and the resin molding is performed from the obtained release strain amount. A method for measuring residual stress by a drilling method for obtaining residual stress inside a product, wherein the strain measuring means is provided on the surface of the resin molded product before the main drilling step. When the pre-drilling step of advancing the drill from the surface to the pre-drilling depth position and then retreating the drill to remove the drilled portion from the resin molded product and the pre-drilling step are completed. It is the absolute value of the difference between the detected first strain amount ε 1 and the second strain amount ε 2 detected at the time of standing still until the strain amount stabilizes after the completion of the preliminary drilling step or thereafter. A method for measuring residual stress, wherein at least one of a drilling condition setting step of setting at least one of the rotation speed and the feed rate of the drill in the main drilling step is performed so that the strain amount difference Δε is 50 μst or less.
[2] In the drilling condition setting step, a multi-axis gauge having two or more axes is used, and the first strain amount ε 1 , the second strain amount ε 2, and the strain amount difference Δε are set for each axis of the multi-axis gauge. The above [1], wherein at least one of the rotation speed and the feed rate of the drill in the main drilling step is set so that the strain amount difference Δε obtained for each of the axes is 50 μst or less. Residual stress measurement method.
[3] During the preliminary drilling step, the temperature of the drilled portion is measured, and in the drilling condition setting step, the temperature is equal to or lower than the glass transition temperature of the resin constituting the resin molded product. The residual stress measuring method according to the above [1] or [2], wherein at least one of the rotation speed and the feed speed of the drill in the drilling step is set.
[4] The method for measuring residual stress according to any one of [1] to [3], wherein the drilling condition setting step is set so that the rotation speed of the drill is 100 rpm or less.
[5] The method for measuring residual stress according to any one of [1] to [4], wherein the drilling condition setting step is set so that the feed rate of the drill is 4.0 mm / min or less.
[6] The perforated portion and the strain measuring portion are provided on a surface perpendicular to the thickness direction, and the perforated portion is configured to perforate the resin molded product in the thickness direction in the preliminary drilling step. and, and, the strain measuring unit, in the drilling condition setting step, occurs perpendicular to the thickness direction, configured to measure the first amount of distortion epsilon 1 and the second amount of distortion epsilon 2 The method for measuring residual stress according to any one of the above [1] to [5].
[7] The residual stress measuring method is a method of obtaining an internal residual stress in the thickness direction of the resin molded product, and in the main drilling step, the drilled portion is drilled to the first drilling depth in the thickness direction. The first stress measurement is performed by measuring the amount of strain in the resin molded product and using the obtained strain amount to measure the first stress generated in the resin molded product by drilling to the first drilling depth. The step and the strain amount in the resin molded product when the drilled portion was drilled to a second drilling depth different from the first drilling depth in the thickness direction were measured by the strain measuring section and obtained. It is obtained by a second stress measuring step of measuring the second stress generated in the resin molded product by drilling to the second drilling depth using the strain amount, and by subtracting the first stress from the second stress. The residual stress measuring method according to the above [6], further comprising a residual stress calculation step of calculating the difference as a residual stress at an intermediate depth between the first drilling depth and the second drilling depth.
[8] A residual stress measuring device used in the residual stress measuring method according to any one of [1] to [7], wherein the residual stress measuring device rotates the drill to form the resin. The drilling means includes a punching means for punching an article, a strain measuring means for detecting the strain amount of the resin molded product, and a recording means for recording the strain amount detected by the strain measuring means. A drill, a rotating portion that rotates around the central axis of the drill, a holding portion that fixes the resin molded product so that the perforated portion is located on the central axis, the rotating portion, and the holding portion. A residual stress measuring device including a drive unit for advancing or retreating at least one of them along a central axis of the drill.
 本発明によれば、樹脂成形品の所定の位置における残留応力を、より精度よく測定することができる。このため、その影響を考慮した製品設計の変更を施すことが可能になり、それにより樹脂成形品の内部における残留応力の効果的な低減に繋げることができる。 According to the present invention, the residual stress at a predetermined position of the resin molded product can be measured more accurately. Therefore, it is possible to change the product design in consideration of the influence, which can lead to effective reduction of the residual stress inside the resin molded product.
図1は、樹脂成形品における、残留応力を測定する方向に垂直な面を示す平面図であって、図1(a)は歪測定部および穿孔部の位置関係を示す図であり、図1(b)は歪測定手段および穿孔部の位置関係を示す図である。FIG. 1 is a plan view showing a plane perpendicular to the direction in which the residual stress is measured in the resin molded product, and FIG. 1A is a view showing the positional relationship between the strain measuring portion and the perforated portion, and FIG. (B) is a diagram showing the positional relationship between the strain measuring means and the perforated portion. 図2は、歪量の測定に用いられる各数値の位置関係を示す樹脂成形品の側面断面図であって、図2(a)は穿孔前の樹脂成形品を示す図であり、図2(b)は穿孔後の樹脂成形品を示す図である。FIG. 2 is a side sectional view of the resin molded product showing the positional relationship of each numerical value used for measuring the strain amount, and FIG. 2 (a) is a view showing the resin molded product before drilling. b) is a figure which shows the resin molded article after drilling. 図3は、実施例1における3軸歪ゲージの各軸についての歪量を測定した結果を示すグラフである。FIG. 3 is a graph showing the results of measuring the amount of strain for each axis of the 3-axis strain gauge in Example 1. 図4は、実施例2における3軸歪ゲージの各軸についての歪量を測定した結果を示すグラフである。FIG. 4 is a graph showing the results of measuring the amount of strain for each axis of the 3-axis strain gauge in Example 2. 図5は、比較例1における3軸歪ゲージの各軸についての歪量を測定した結果を示すグラフである。FIG. 5 is a graph showing the results of measuring the amount of strain for each axis of the 3-axis strain gauge in Comparative Example 1. 図6は、比較例2における3軸歪ゲージの各軸についての歪量を測定した結果を示すグラフである。FIG. 6 is a graph showing the results of measuring the amount of strain for each axis of the 3-axis strain gauge in Comparative Example 2. 図7(a)および図7(b)は、実施例2における樹脂成形品の穿孔部の断面における微細構造を撮影した偏光顕微鏡写真であり、このうち、図7(b)は、図7(a)の枠囲い部を拡大した写真である。7 (a) and 7 (b) are polarizing microscope photographs of the microstructure in the cross section of the perforated portion of the resin molded product in Example 2, of which FIG. 7 (b) is FIG. 7 (b). It is an enlarged photograph of the frame enclosure part of a). 図8(a)および図8(b)は、比較例3における樹脂成形品の穿孔部の断面における微細構造微細構造を撮影した偏光顕微鏡写真であり、このうち、図8(b)は、図8(a)の枠囲い部を拡大した写真である。8 (a) and 8 (b) are polarizing microscope photographs of the microstructure in the cross section of the perforated portion of the resin molded product in Comparative Example 3, of which FIG. 8 (b) is a diagram. It is an enlarged photograph of the frame enclosure part of 8 (a).
 以下、本発明の一実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, one embodiment of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and may be carried out with appropriate modifications within the scope of the object of the present invention. can.
 本実施の形態では、測定対象となる樹脂成形品に穿孔部を設け、穿孔部をドリルで穿孔した際に歪が解放されることで生じる、樹脂成形品の表面における歪量の変化(穿孔によって解放される歪量)を歪測定手段で測定し、この歪量の変化を応力に換算することで、樹脂成形品の内部における所定の位置での残留応力を求める。ここで、残留応力を測定する前に、樹脂成形品を表面から予備穿孔深さ位置までドリルを前進させて穿孔した後、ドリルを後退させて樹脂成形品から抜去する予備穿孔工程と、予備穿孔工程が完了した時点で検出された第一歪量εと、予備穿孔工程が完了した後に第一歪量εが安定するまで静置した時点またはそれ以降に検出された第二歪量εとの差の絶対値である歪量差Δεが、50μst以下となるように、ドリルの回転数およびドリルの送り速度を設定する穿孔条件設定工程を、少なくとも行うことを特徴としている。これにより、ドリルの発熱による、穿孔部周辺にある樹脂の歪の発生状態や、その変化への影響が抑制されるため、樹脂成形品の残留応力を精度よく測定することができる。以下では、先ず、樹脂成形品について説明する。 In the present embodiment, a perforated portion is provided in the resin molded product to be measured, and the strain is released when the perforated portion is drilled with a drill, resulting in a change in the amount of strain on the surface of the resin molded product (due to perforation). The amount of strain released) is measured by a strain measuring means, and the change in the amount of strain is converted into stress to obtain the residual stress at a predetermined position inside the resin molded product. Here, before measuring the residual stress, a preliminary drilling step of advancing the drill from the surface to the pre-drilling depth position to drill the resin molded product, and then retracting the drill to remove the resin molded product from the resin molded product, and pre-drilling. The first strain amount ε 1 detected when the process is completed and the second strain amount ε detected when the first strain amount ε 1 is allowed to stabilize after the preliminary drilling process is completed or after that. It is characterized in that at least a drilling condition setting step for setting the number of rotations of the drill and the feed rate of the drill is performed so that the strain amount difference Δε, which is the absolute value of the difference from 2, is 50 μst or less. As a result, the state of generation of distortion of the resin around the perforated portion due to the heat generated by the drill and the influence on the change are suppressed, so that the residual stress of the resin molded product can be measured accurately. In the following, first, the resin molded product will be described.
<樹脂成形品>
 本実施の形態の樹脂成形品(以下、単に「成形品」ともいう)は、残留応力の測定対象となるものであり、所定の厚さを有する。この樹脂成形品には、歪測定部および穿孔部を設ける。好ましくは、穿孔部および歪測定部は、それぞれ樹脂成形品の厚さ方向に対して垂直な面に設け、穿孔部は、樹脂成形品を厚さ方向に穿孔するように構成され、かつ、歪測定部は、この穿孔によって樹脂成形品内部の応力が解放されることにより生じる歪量(以下、「解放歪量」ともいう)を測定するように構成される。また、歪測定部は、後述する穿孔条件設定工程において、厚さ方向に対して垂直に発生する、第一歪量εおよび第二歪量εを測定するように構成される。
<Resin molded product>
The resin molded product of the present embodiment (hereinafter, also simply referred to as “molded product”) is a target for measuring residual stress and has a predetermined thickness. This resin molded product is provided with a strain measuring portion and a perforated portion. Preferably, the perforated portion and the strain measuring portion are provided on a surface perpendicular to the thickness direction of the resin molded product, respectively, and the perforated portion is configured to perforate the resin molded product in the thickness direction and is strained. The measuring unit is configured to measure the amount of strain (hereinafter, also referred to as “release strain amount”) generated by releasing the stress inside the resin molded product by this drilling. Further, the strain measuring unit is configured to measure the first strain amount ε 1 and the second strain amount ε 2 generated perpendicularly to the thickness direction in the drilling condition setting step described later.
 本実施の形態は、樹脂成形品が結晶性熱可塑性樹脂の射出成形品である場合に、特に効果的である。射出成形により熱可塑性樹脂を成形する際には、一般に成形品の表面付近では冷却が速く進み、成形品の内部では比較的冷却がゆっくり進むため、金型内に注入された溶融樹脂の固化が不均一に進行する。その結果、成形品の内部では、溶融樹脂が先に固化した成形品の表面付近の樹脂の収縮により引っ張られながら固化するため、引張応力が発生する。一方、成形品の表面付近では、固化した後の樹脂が、成形品の内部にある溶融樹脂が固化する際の収縮により引っ張られるため圧縮応力が発生する。 This embodiment is particularly effective when the resin molded product is an injection-molded product of a crystalline thermoplastic resin. When molding a thermoplastic resin by injection molding, cooling generally proceeds quickly near the surface of the molded product, and cooling progresses relatively slowly inside the molded product, so that the molten resin injected into the mold solidifies. It progresses unevenly. As a result, inside the molded product, the molten resin solidifies while being pulled by the shrinkage of the resin near the surface of the molded product that has solidified earlier, so that tensile stress is generated. On the other hand, in the vicinity of the surface of the molded product, compressive stress is generated because the resin after solidification is pulled by shrinkage when the molten resin inside the molded product solidifies.
 実際の樹脂成形品においては、その形状や成形条件などによって応力分布は必ずしもはっきりした圧縮-引張の関係になるわけではないが、応力の種類や分布状態がどのようになっているのか、樹脂成形品の内部について、所定の領域での残留応力分布を正確に把握し、また、所定の位置での残留応力を正確に把握することができれば、それに起因する成形品の変形や破壊をより正確に予測することで、その対策に繋げることができる。 In an actual resin molded product, the stress distribution does not always have a clear compression-tension relationship depending on the shape and molding conditions, but what kind of stress and distribution state are, resin molding If the residual stress distribution in a predetermined region can be accurately grasped and the residual stress at a predetermined position can be accurately grasped inside the product, the deformation and fracture of the molded product due to it can be more accurately grasped. Predicting can lead to countermeasures.
 本実施の形態に用いる樹脂成形品は、所定の厚さを有する。ここで、本実施の形態は、樹脂成形品の内部における、上記厚さ方向に関する所定の位置(便宜的には、後述する穿孔部と歪測定部により特定される領域を指す。すなわち、厚さ方向の位置は穿孔部における孔の底部により特定され、表面方向の位置は歪測定部、例えば歪測定手段の中心部により特定される)での残留応力と、厚さ方向に関する所定の領域での残留応力分布を求める。 The resin molded product used in this embodiment has a predetermined thickness. Here, the present embodiment refers to a predetermined position (for convenience, a region specified by a perforated portion and a strain measuring portion described later) in the resin molded product in the thickness direction, that is, the thickness. The directional position is specified by the bottom of the hole in the perforation, and the surface position is specified by the strain measuring part, eg, the center of the strain measuring means) and the residual stress in a predetermined region with respect to the thickness direction. Find the residual stress distribution.
 どのような樹脂成形品であっても、全ての方向について厚さを持つが、厚さ方向の決め方は特に限定されず、樹脂成形品内の所望の方向を上記厚さ方向に設定することができる。 Any resin molded product has a thickness in all directions, but the method of determining the thickness direction is not particularly limited, and a desired direction in the resin molded product can be set in the above-mentioned thickness direction. can.
 図1は、z方向に延びる所定の厚さを有する樹脂成形品の、残留応力を測定する方向と垂直な面を示す平面図である。本発明に用いる樹脂成形品としては、図1(a)に示すように、厚さ方向と垂直な面に、樹脂成形品を厚さ方向に穿孔するための穿孔部と、穿孔したときにこの厚さ方向に垂直な面に発生する歪量を測定するための歪測定部とを備えたものを例示することができる。 FIG. 1 is a plan view showing a plane of a resin molded product having a predetermined thickness extending in the z direction, which is perpendicular to the direction in which the residual stress is measured. As shown in FIG. 1A, the resin molded product used in the present invention includes a perforated portion for perforating the resin molded product in the thickness direction on a surface perpendicular to the thickness direction, and the perforated portion when perforated. An example can be illustrated of one provided with a strain measuring unit for measuring the amount of strain generated on a surface perpendicular to the thickness direction.
 図1では、穿孔部は、上記厚さ方向と垂直な面の中央部に設けられている。穿孔部は、穿孔部を有する上記厚さ方向と垂直な面から、厚さ方向(図1のz方向)に穿孔される。穿孔部は、図1に円で表しているが、特に目印となるような模様などをつける必要はない。また、穿孔部は、上記厚さ方向と垂直な面の中央部に設ける必要はなく、所望の位置に設けることができる。 In FIG. 1, the perforated portion is provided in the central portion of the surface perpendicular to the thickness direction. The perforated portion is perforated in the thickness direction (z direction in FIG. 1) from the plane having the perforated portion perpendicular to the thickness direction. The perforated portion is represented by a circle in FIG. 1, but it is not necessary to add a pattern or the like to serve as a mark. Further, the perforated portion does not need to be provided at the central portion of the surface perpendicular to the thickness direction, and can be provided at a desired position.
 図1では、歪測定部は、上記穿孔部の周囲に三箇所設けられている。上記穿孔部が、厚さ方向に沿って穿孔された際に、穿孔によって解放される応力により発生する歪の量を測定する。ここで、歪測定部の数は、特に限定されず、単数の歪測定部であってもよいし、複数の歪測定部を設けてもよい。穿孔部と歪測定部との位置関係は、特に限定されないが、上述のとおり穿孔によって解放される応力により発生する歪量を測定するものであるため、測定感度の面から、できるだけ穿孔部と歪測定部を近接させつつ、樹脂成形品の形状や穿孔に用いる装置や工具のサイズなどを考慮して、穿孔時の作業性を損なわない範囲で、穿孔部の周囲に歪測定部を配置すればよい。また、歪測定部の異方的な残留応力を定量的に評価でき、特に、最大主応力の値と方向、及び最小主応力の値と方向を評価できるという理由から、穿孔部を2箇所以上の歪測定部で囲うことが好ましく、歪測定の精度およびデータ処理の簡便さの点から、3箇所の歪測定部で囲うことがより好ましい。 In FIG. 1, three strain measuring portions are provided around the perforated portion. When the perforated portion is perforated along the thickness direction, the amount of strain generated by the stress released by the perforation is measured. Here, the number of strain measuring units is not particularly limited, and may be a single strain measuring unit or may be provided with a plurality of strain measuring units. The positional relationship between the perforated portion and the strain measuring portion is not particularly limited, but as described above, since the amount of strain generated by the stress released by the perforation is measured, the perforated portion and the strain are measured as much as possible from the viewpoint of measurement sensitivity. If the strain measuring part is placed around the drilling part while keeping the measuring part close to each other, considering the shape of the resin molded product and the size of the device and tool used for drilling, within the range that does not impair the workability at the time of drilling. good. In addition, the eccentric residual stress of the strain measuring part can be quantitatively evaluated, and in particular, the value and direction of the maximum principal stress and the value and direction of the minimum principal stress can be evaluated. It is preferable to enclose it in the strain measuring unit of the above, and it is more preferable to enclose it in three strain measuring units from the viewpoint of the accuracy of strain measurement and the ease of data processing.
 樹脂成形品の厚さは、穿孔径(孔の直径)の1.2倍以下であることが好ましい。これにより、測定される残留応力を、より正確にすることができる。また、従来の方法では、厚さが穿孔径の1.2倍以下(3軸ロゼットタイプ歪ゲージにおける穿孔部の孔径の1.2倍以下)のような薄い樹脂成形品の厚さ方向の残留応力を測定することはASTMでの保証範囲外であり、実質上正確に求めることが困難であった。これに関し、本実施の形態によれば、上記のような非常に薄い厚さの樹脂成形品であっても、厚さ方向の残留応力を正確に求めることができる。 The thickness of the resin molded product is preferably 1.2 times or less of the drilling diameter (hole diameter). As a result, the measured residual stress can be made more accurate. Further, in the conventional method, the thickness of a thin resin molded product such as 1.2 times or less of the hole diameter (1.2 times or less of the hole diameter of the hole in the 3-axis rosette type strain gauge) remains in the thickness direction. Measuring the stress was outside the guaranteed range of ASTM, and it was difficult to obtain it substantially accurately. In this regard, according to the present embodiment, the residual stress in the thickness direction can be accurately obtained even for the resin molded product having a very thin thickness as described above.
 樹脂成形品の厚さを所定の厚さ以下にすることで、得られる残留応力の値は、より正確なものになる。なお、厚さ方向(z方向)の中央を対象軸とする線対称な形状を有し、厚さ方向の長さがLzの樹脂成形品であれば、表面から(1/2)Lzの厚さ位置までの残留応力分布を求めることで、厚さ方向の長さLzの全体についての残留応力分布を求めてもよい。これは、樹脂成形品が厚さ方向(z方向)の中央を対象軸とする線対称な形状を有していれば、残留応力分布も同様に線対称になるためである。 By reducing the thickness of the resin molded product to a predetermined thickness or less, the obtained residual stress value becomes more accurate. If the resin molded product has a line-symmetrical shape with the center in the thickness direction (z direction) as the target axis and the length in the thickness direction is Lz, the thickness is (1/2) Lz from the surface. By obtaining the residual stress distribution up to the vertical position, the residual stress distribution for the entire length Lz in the thickness direction may be obtained. This is because if the resin molded product has a line-symmetrical shape with the center in the thickness direction (z direction) as the target axis, the residual stress distribution is also line-symmetrical.
 本実施の形態で使用する樹脂成形品に含まれる樹脂は、特に限定されず、従来公知の一般的な樹脂を用いることができる。また、樹脂成形品には、複数の樹脂が含まれていてもよい。また、樹脂成形品には、核剤、カーボンブラック、無機焼成顔料などの顔料や、ガラスファイバーなどの強化材、タルクなどの無機フィラー、酸化防止剤、安定剤、可塑剤、滑剤、離型剤及び難燃剤などの添加剤を添加して、所望の特性を付与した組成物を成形してなる樹脂成形品も含まれる。 The resin contained in the resin molded product used in the present embodiment is not particularly limited, and a conventionally known general resin can be used. Further, the resin molded product may contain a plurality of resins. In addition, resin molded products include pigments such as nucleating agents, carbon black and inorganic fired pigments, reinforcing materials such as glass fibers, inorganic fillers such as talc, antioxidants, stabilizers, plasticizers, lubricants and mold release agents. Also included is a resin molded product obtained by adding an additive such as a flame retardant to form a composition imparted with desired properties.
 このように、本実施の形態は、樹脂材料の種類によらず適用することができるため、候補となる複数の樹脂材料の中から適切な材料を選択する場合に好ましく用いることができる。また、複数の樹脂材料で同じ方法で残留応力を求めて比較することで、樹脂材料による残留応力の差をより正確に評価することができる。 As described above, since this embodiment can be applied regardless of the type of resin material, it can be preferably used when an appropriate material is selected from a plurality of candidate resin materials. Further, by obtaining and comparing the residual stresses of a plurality of resin materials by the same method, the difference in the residual stresses of the resin materials can be evaluated more accurately.
 樹脂成形品は、どのような成形法で成形されていても、どのような使用履歴のものであってもよいが、残留応力が発生しやすい射出成形法により成形された樹脂成形品が、特に効果的である。また、本発明に用いる樹脂成形品は、所望の条件で成形されたものを用いることができる。 The resin molded product may be molded by any molding method and may have any usage history, but a resin molded product molded by an injection molding method in which residual stress is likely to occur is particularly preferable. It is effective. Further, as the resin molded product used in the present invention, a product molded under desired conditions can be used.
 樹脂成形品は、表面に穿孔部と歪測定部を設けられるものであればよく、単一の樹脂で作成されたものでも、複数の樹脂もしくは樹脂と他材質とで積層されていたり複合化されていたりしてもよい。また、樹脂成形品は、平面状、湾曲状、屈折状などの形状が組み合わさった形状であってもよく、どのような形状であってもよい。 The resin molded product may be provided with a perforated portion and a strain measuring portion on the surface, and even if it is made of a single resin, it may be laminated or composited with a plurality of resins or resins and other materials. You may be there. Further, the resin molded product may have a shape in which shapes such as a flat shape, a curved shape, and a refracted shape are combined, and may have any shape.
 樹脂成形品は、歪測定手段によって、樹脂成形品の歪量を検出できるようにした後、後述する残留応力の測定において、穿孔部をドリルで穿孔するように構成される。その一例として、樹脂成形品の歪測定部の表面に歪測定手段である歪ゲージを貼り付けることで設けた後、後述する残留応力の測定において、穿孔部をドリルで穿孔するように構成される。ここで、歪測定手段としては、歪ゲージを用いることが好ましく、2軸以上の多軸ゲージ(例えばロゼットタイプの3軸歪ゲージなど)を用いることがより好ましい。歪測定手段は、樹脂成形品の歪測定部のそれぞれの表面に貼り付けることが好ましい。 The resin molded product is configured so that the strain amount of the resin molded product can be detected by a strain measuring means, and then the perforated portion is drilled in the measurement of the residual stress described later. As an example, a strain gauge, which is a strain measuring means, is attached to the surface of a strain measuring portion of a resin molded product, and then the drilled portion is drilled in the residual stress measurement described later. .. Here, as the strain measuring means, it is preferable to use a strain gauge, and it is more preferable to use a multi-axis gauge having two or more axes (for example, a rosette type three-axis strain gauge). The strain measuring means is preferably attached to each surface of the strain measuring portion of the resin molded product.
<樹脂成形品に対する残留応力の測定>
 本発明の残留応力測定方法は、解放歪量を測定するために穿孔部をドリルで穿孔する本穿孔工程の前に、樹脂成形品の表面に歪測定手段を設けた状態で、樹脂成形品の穿孔部を、樹脂成形品の表面から予備穿孔深さ位置までドリルを前進させて穿孔した後、ドリルを後退させて樹脂成形品から抜去する予備穿孔工程と、予備穿孔工程が完了した時点で検出される第一歪量εと、予備穿孔工程が完了した後に歪量が安定するまで静置した時点またはそれ以降に検出された第二歪量εとの差の絶対値である歪量差Δεが、50μst以下となるように、前記本穿孔工程におけるドリルの回転数および送り速度のうち少なくとも一方を穿孔条件として設定する穿孔条件設定工程と、を少なくとも有する。このように設定される穿孔条件で本穿孔工程における穿孔を行うことで、穿孔時の発熱による樹脂の結晶化や歪の状態への影響が抑制されるため、樹脂成形品の内部における残留応力を精度よく測定することができる。
<Measurement of residual stress on resin molded products>
The residual stress measuring method of the present invention is a method of measuring a resin molded product in a state where a strain measuring means is provided on the surface of the resin molded product before the main drilling step of drilling the drilled portion with a drill to measure the release strain amount. The perforated portion is detected when the pre-drilling step of advancing the drill from the surface of the resin molded product to the pre-drilling depth position to perforate and then retracting the drill to remove it from the resin molded product and the pre-drilling process are completed. The strain amount which is the absolute value of the difference between the first strain amount ε 1 to be formed and the second strain amount ε 2 detected at the time when the strain amount is allowed to stabilize after the preliminary drilling process is completed or after that. It has at least a drilling condition setting step of setting at least one of the number of rotations and the feed rate of the drill in the main drilling step as a drilling condition so that the difference Δε is 50 μst or less. By performing perforation in the main perforation step under the perforation conditions set in this way, the influence of heat generated during perforation on the state of crystallization and strain of the resin is suppressed, so that the residual stress inside the resin molded product can be reduced. It can be measured accurately.
 本発明で用いられるドリルは、一般的な穿孔に用いるいわゆるドリルのみを指すものではなく、エンドミルなどのフライスであってもよく、ボール盤やフライス盤、マシニングセンタなどを用いて、樹脂成形品の穿孔に用いられる工具であれば、特に限定されない。ドリルは、樹脂成形品に対する刃の回動による切削や研削によって穿孔する工具であることから、穿孔する際に発熱や加圧が生じやすい。上述のとおり、この穿孔時の発熱や加圧が、樹脂成形品の結晶化や歪の状態、ひいては残留応力に影響を及ぼすことで、残留応力の測定精度を低下させうるため、本発明ではそのような残留応力への影響を抑える観点から、予備穿孔工程および穿孔条件設定工程を行う。 The drill used in the present invention does not only refer to a so-called drill used for general drilling, but may be a milling cutter such as an end mill, and is used for drilling a resin molded product using a drilling machine, a milling machine, a machining center, or the like. The tool is not particularly limited as long as it can be used. Since a drill is a tool for drilling by cutting or grinding by rotating a blade with respect to a resin molded product, heat generation and pressurization are likely to occur during drilling. As described above, the heat generation and pressurization during drilling affect the crystallization and strain state of the resin molded product, and eventually the residual stress, which can reduce the measurement accuracy of the residual stress. From the viewpoint of suppressing the influence on such residual stress, a preliminary drilling step and a drilling condition setting step are performed.
 以下、本発明の残留応力測定方法における予備穿孔工程および穿孔条件設定工程について説明する。 Hereinafter, the preliminary drilling step and the drilling condition setting step in the residual stress measuring method of the present invention will be described.
[予備穿孔工程]
 予備穿孔工程は、樹脂成形品の穿孔部を、ドリルを所定の回転数と送り速度にて回転および前進させて、樹脂成形品の表面から予備穿孔深さ位置まで穿孔してから、ドリルを後退させて、ドリルを孔から抜去する工程である。ここで、予備穿孔工程でドリルを前進させて穿孔する際、ドリルを一定の送り速度で前進させて穿孔することが好ましい。また、予備穿孔工程で穿孔する予備穿孔深さ位置は、樹脂成形品の表面から0.01mm以上0.50mm以下の範囲の深さ位置にあることが好ましく、樹脂成形品の表面から0.05mm以上0.30mm以下の深さ位置にあることが更に好ましく、樹脂成形品の表面から0.10mm以上0.20mm以下の深さ位置にあることが特に好ましい。また、ドリルを孔から抜去する際、ドリルは穿孔時と同じ回転方向に回転させてもよく、逆回転させてもよく、停止させていてもよい。その中でも、樹脂に余計な荷重が加わることによる歪量への影響を最小化する観点では、ドリルを孔から抜去する際は、穿孔する際の送り速度と同じ速度でドリルを後退させることが好ましい。このとき、穿孔時とは逆方向に、穿孔時と同じ回転数と同じ送り速度で回転させながら後退させることがより好ましい。
[Preliminary drilling process]
In the pre-drilling step, the drill is rotated and advanced at a predetermined rotation speed and feed rate to drill the drilled portion of the resin molded product from the surface of the resin molded product to the pre-drilling depth position, and then the drill is retracted. This is the process of removing the drill from the hole. Here, when the drill is advanced and drilled in the preliminary drilling step, it is preferable to advance the drill at a constant feed rate for drilling. Further, the preliminary drilling depth position for drilling in the preliminary drilling step is preferably a depth position in the range of 0.01 mm or more and 0.50 mm or less from the surface of the resin molded product, and 0.05 mm from the surface of the resin molded product. It is more preferably at a depth position of 0.30 mm or more, and particularly preferably at a depth position of 0.10 mm or more and 0.20 mm or less from the surface of the resin molded product. Further, when the drill is removed from the hole, the drill may be rotated in the same rotation direction as at the time of drilling, may be rotated in the reverse direction, or may be stopped. Among them, from the viewpoint of minimizing the influence on the amount of strain due to the extra load applied to the resin, when removing the drill from the hole, it is preferable to retract the drill at the same speed as the feed rate at the time of drilling. .. At this time, it is more preferable to retreat while rotating in the direction opposite to that at the time of drilling at the same rotation speed and the same feed rate as at the time of drilling.
 以下、図を用いて、予備穿孔工程の一例について詳細に説明する。 Hereinafter, an example of the preliminary drilling process will be described in detail with reference to the drawings.
 図2(a)には、穿孔前の樹脂成形品を示す。ここで、樹脂成形品1は、z方向に沿った長さLzを有し、x-y断面が半径Rの円となる円柱の形状を有する。樹脂成形品1の上端面11は、図1(b)に示すように、半径Rの円形になっている。この上端面11には、穿孔部111と歪測定手段112、112、112が設けられている。 FIG. 2A shows a resin molded product before drilling. Here, the resin molded product 1 has a length Lz along the z direction, and has a cylindrical shape having an xy cross section having a radius R. As shown in FIG. 1B, the upper end surface 11 of the resin molded product 1 has a circular radius R. The upper end surface 11 is provided with a perforated portion 111 and strain measuring means 112, 112, 112.
 穿孔部111は、図2(b)に示すように、半径rの円形であり、上端面11の中央部に設けられる。穿孔部111は、後述するとおり、厚さ方向(z方向)に沿って穿孔される部分である。なお、穿孔部111の形状、大きさなどは特に限定されず、所望の形状、大きさに適宜変更することができる。 As shown in FIG. 2B, the perforated portion 111 has a circular radius r and is provided at the center of the upper end surface 11. As will be described later, the perforated portion 111 is a portion that is perforated along the thickness direction (z direction). The shape and size of the perforated portion 111 are not particularly limited, and can be appropriately changed to a desired shape and size.
 ここで、歪測定手段として3軸ロゼットタイプの歪ゲージを用いる場合、各軸について歪を測定する歪測定手段112、112、112は、図1(b)に示すように、穿孔部111の周囲に、例えば90°、135°、135°の間隔で設けられる。ここで、歪測定手段112、112、112は、上記穿孔部111を厚さ方向(z方向)に穿孔した際に生じる、上端面11の穿孔部111を除いた部分(長さ(R-r)の部分)の歪量を測定することが可能なように構成される(以下、長さ(R-r)の部分を「歪量を測定する部分」という場合がある)。本実施形態において、歪測定手段112、112、112は、歪測定部に設けられる。歪測定部は、上記のような歪測定手段に限定されず、穿孔部111を穿孔した際に生じる上端面11の歪量を測定することが可能な、他の歪測定手段であってもよい。 Here, when a 3-axis rosette type strain gauge is used as the strain measuring means, the strain measuring means 112, 112, 112 for measuring the strain for each axis are around the perforated portion 111 as shown in FIG. 1 (b). Is provided at intervals of, for example, 90 °, 135 °, and 135 °. Here, the strain measuring means 112, 112, 112 are portions (length (Rr)) of the upper end surface 11 excluding the perforated portion 111, which is generated when the perforated portion 111 is perforated in the thickness direction (z direction). ) Part) is configured so that the amount of strain can be measured (hereinafter, the part of length (Rr) may be referred to as "the part for measuring the amount of strain"). In the present embodiment, the strain measuring means 112, 112, 112 are provided in the strain measuring unit. The strain measuring unit is not limited to the strain measuring means as described above, and may be another strain measuring means capable of measuring the amount of strain of the upper end surface 11 generated when the perforated portion 111 is perforated. ..
 他の歪測定手段としては、例えば、樹脂成形品の表面の変形を画像解析することにより歪量を算出するコリレーションシステムなどを用いて、間接的に歪量を測定する方法であってもよい。また、歪量を測定する位置が平坦でない場合には、従来公知の三次元画像解析手段を歪測定手段として用いてもよい。例えばコリレーションシステムでは、2台の撮像装置を組み合わせることで、3次元の測定を行うことが可能である。 As another strain measuring means, for example, a method of indirectly measuring the strain amount by using a correlation system that calculates the strain amount by image analysis of the deformation of the surface of the resin molded product may be used. .. Further, when the position for measuring the amount of strain is not flat, a conventionally known three-dimensional image analysis means may be used as the strain measuring means. For example, in a correlation system, it is possible to perform three-dimensional measurement by combining two imaging devices.
 図2(b)は、予備穿孔工程において穿孔した後の樹脂成形品の断面図を示す。図2(b)では、予備穿孔工程で、穿孔部111を厚さ方向(z方向)に穿孔深さzまで穿孔した例を示す。 FIG. 2B shows a cross-sectional view of the resin molded product after drilling in the preliminary drilling step. FIG. 2B shows an example in which the drilling portion 111 is drilled to a drilling depth z 2 in the thickness direction (z direction) in the preliminary drilling step.
 ここで、一定の送り速度でドリルを前進させて穿孔し、かつ、穿孔する際の送り速度と同じ速度でドリルを後退させて孔から抜去する場合、予備穿孔工程が完了する時点(ドリルが成形品の孔から脱離して抜去される時点)は、穿孔深さをドリルの送り速度で除してドリルの前進時間を算出し、これを2倍することでドリルの後退時間を含めた穿孔時間を求め、予備穿孔工程における穿孔を開始する時点から、当該穿孔時間が経過する時点を、予備穿孔工程の完了時点として把握することができる。また、ドリルで穿孔を行う場合、穿孔中はドリルの振動などの影響によって歪測定手段の検出値が大きく変動することが多いため、歪測定手段の検出値を経時的に記録した結果から、データの変動幅が大きく不安定となっている領域の開始時点と終了時点をもとに、穿孔開始時点と穿孔完了時点を読み取ることでこれらを把握してもよい。 Here, when the drill is advanced and drilled at a constant feed rate, and the drill is retracted and removed from the hole at the same rate as the feed rate at the time of drilling, the time when the preliminary drilling process is completed (the drill is formed). The drilling depth is divided by the drill feed speed to calculate the drill advance time, and by doubling this, the drilling time including the drill retreat time is calculated. The time point at which the drilling time elapses from the time point at which drilling in the preliminary drilling step is started can be grasped as the time point at which the preliminary drilling process is completed. Further, when drilling with a drill, the detection value of the strain measuring means often fluctuates greatly due to the influence of the vibration of the drill during drilling. Therefore, the data is obtained from the result of recording the detected value of the strain measuring means over time. These may be grasped by reading the drilling start time and the drilling completion time based on the start time and the end time of the region where the fluctuation range of is large and unstable.
 上記の穿孔を行うには、ドリルと、当該ドリルの中心軸を中心に回動させる回動部と、ドリルの中心軸に穿孔部が位置するように、樹脂成形品を固定する保持部と、回動部および保持部のうち少なくとも一方を、ドリルの中心軸に沿って前進または後退させる駆動部とを備える穿孔装置を用いることができ、後述する残留応力測定装置と同じ装置を用いることが好ましい。 To perform the above drilling, a drill, a rotating portion that rotates around the central axis of the drill, and a holding portion that fixes the resin molded product so that the drilled portion is located on the central axis of the drill. A drilling device including a driving unit for advancing or retreating at least one of the rotating portion and the holding portion along the central axis of the drill can be used, and it is preferable to use the same device as the residual stress measuring device described later. ..
[穿孔条件設定工程]
 穿孔条件設定工程は、予備穿孔工程が完了した時点で歪測定手段により検出される第一歪量εを求めた後、歪測定手段による歪量の測定を継続したまま樹脂成形品を静置し、検出される歪量が安定した時点またはそれ以降に検出される第二歪量εを求めて、これら第一歪量εおよび第二歪量εの差の絶対値である歪量差Δεを算出し、この歪量差Δεが50μst以下となるように、後述する本穿孔工程におけるドリルの回転数および送り速度のうち少なくとも一方を設定する工程である。これにより、樹脂成形品の結晶化や歪の状態に影響を及ぼしうる発熱や加圧を抑えた穿孔条件にて穿孔を行うことが可能になるため、後述する本穿孔工程において、残留応力を精度よく測定することができる。
[Punching condition setting process]
In the drilling condition setting step, after obtaining the first strain amount ε 1 detected by the strain measuring means when the preliminary drilling step is completed, the resin molded product is allowed to stand while the strain measuring means continues to measure the strain amount. and, seeking second strain amount epsilon 2 distortion amount detected is detected in the stable when or after the absolute value of the first strain of epsilon 1 and a second strain of epsilon 2 of the difference strain This is a step of calculating the quantity difference Δε and setting at least one of the drill rotation speed and the feed speed in the main drilling step described later so that the strain amount difference Δε is 50 μst or less. This makes it possible to perform drilling under drilling conditions that suppress heat generation and pressurization, which can affect the crystallization and strain state of the resin molded product. It can be measured well.
 ここで、樹脂成形品の表面から予備穿孔深さ位置までの間に残留していた樹脂成形品の内部歪は、穿孔条件設定工程で当該穿孔深さまで穿孔した時点で解放され、予備穿孔穿孔工程が完了した時点の第一歪量εとして検出される。そして、穿孔後の樹脂成形品に付加的に熱や荷重を与えなければ、穿孔後の樹脂成形品の歪量は安定するはずなので、本来ならば穿孔完了時点で測定される第一歪量εは、穿孔完了後に静置してから測定される第二歪量εと同等になる(歪量差Δεはゼロに近くなる)ものと考えられる。しかし、ドリルの回転数が過剰に高かったり、ドリルの送り速度が過剰に速かったりすると、樹脂成形品の穿孔部にドリルとの摩擦による発熱が生じたり、樹脂成形品がドリルにより加圧されたりするため、樹脂成形品の結晶化や歪の状態がその影響を受けることとなる。特に、発熱により穿孔部の樹脂が溶融する場合、その冷却固化の過程で歪量が大きく変化するため、穿孔完了時点の第一歪量εと静置後の第二歪量εの差の絶対値である歪量差Δεが大きくなりうる。 Here, the internal strain of the resin molded product remaining between the surface of the resin molded product and the position of the preliminary drilling depth is released at the time of drilling to the drilling depth in the drilling condition setting step, and is released in the preliminary drilling and drilling step. Is detected as the first strain amount ε 1 at the time of completion. The strain amount of the resin molded product after drilling should be stable unless additional heat or load is applied to the resin molded product after drilling. Therefore, the first strain amount ε normally measured at the completion of drilling. It is considered that 1 is equivalent to the second strain amount ε 2 measured after being allowed to stand after the completion of drilling (the strain amount difference Δε is close to zero). However, if the number of rotations of the drill is excessively high or the feed rate of the drill is excessively high, heat may be generated in the perforated portion of the resin molded product due to friction with the drill, or the resin molded product may be pressurized by the drill. Therefore, the state of crystallization and strain of the resin molded product is affected by it. In particular, when the resin in the perforated portion melts due to heat generation, the amount of strain changes significantly during the cooling and solidification process, so the difference between the first strain amount ε 1 at the time of completion of perforation and the second strain amount ε 2 after standing. The strain difference Δε, which is the absolute value of, can be large.
 このような場合、穿孔部における歪量の変化によって残留応力の測定に誤差が生じるため、本穿孔工程における穿孔によって上述のような発熱や加圧が生じないように、すなわち歪量差Δεが小さくなるように、より具体的には歪量差Δεが50μst以下になるように、穿孔条件(ドリルの回転数および送り速度のうち少なくとも一方)を設定する必要がある。ここで、歪量差Δεは、好ましくは40μst以下であり、より好ましくは30μst以下であり、さらに好ましくは20μst以下である。 In such a case, since an error occurs in the measurement of the residual stress due to the change in the strain amount in the drilling portion, the above-mentioned heat generation and pressurization are not generated by the drilling in the main drilling step, that is, the strain amount difference Δε is small. More specifically, it is necessary to set the drilling conditions (at least one of the drill rotation speed and the feed rate) so that the strain amount difference Δε is 50 μst or less. Here, the strain amount difference Δε is preferably 40 μst or less, more preferably 30 μst or less, and further preferably 20 μst or less.
 穿孔条件設定工程における第一歪量εおよび第二歪量εの測定は、歪測定手段によって行われる。歪測定手段としては、穿孔条件を設定した後、樹脂成形品の内部における残留応力を測定する際に用いられるものと同じ歪測定手段を用いてもよい。 The measurement of the first strain amount ε 1 and the second strain amount ε 2 in the drilling condition setting step is performed by the strain measuring means. As the strain measuring means, the same strain measuring means as that used for measuring the residual stress inside the resin molded product after setting the drilling conditions may be used.
 図2(b)を一例に説明すると、上述の予備穿孔工程における穿孔によって、歪量を測定する部分における長さ(R-r)は、実際には(R-r+δr2)になるため、歪量δr2の歪みが生じる。この歪量δr2を、上記歪測定手段112、112、112を用いて測定する。ここで、歪量δr2の測定は、予備穿孔工程が完了した時点で第一歪量εの測定を行い、その後、検出される歪量が安定した時点またはそれ以降に第二歪量εの測定を行う。そして、これら第一歪量εおよび第二歪量εの差の絶対値である、歪量差Δεを求めることができる。 Explaining FIG. 2B as an example, the length (Rr) in the portion where the amount of strain is measured is actually ( Rr + δ r2) due to the drilling in the preliminary drilling step described above, so that the strain is strained. A strain of quantity δ r2 occurs. The strain amount δ r2 is measured using the strain measuring means 112, 112, 112. Here, in the measurement of the strain amount δ r2 , the first strain amount ε 1 is measured when the preliminary drilling step is completed, and then the second strain amount ε is measured when the detected strain amount becomes stable or thereafter. Make the measurement of 2. Then, the strain amount difference Δε, which is the absolute value of the difference between the first strain amount ε 1 and the second strain amount ε 2, can be obtained.
 このとき、上述したように、歪測定手段としては、2軸以上の多軸ゲージを用いるなど、穿孔部の周囲に歪ゲージを複数設置することが好ましく、この場合、穿孔条件設定工程は、上記の第一歪量ε、第二歪量ε、およびそれらの差の絶対値である歪量差Δεを、歪ゲージごとに(多軸ゲージの場合は軸ごとに)それぞれを求め、歪ゲージごとに(多軸ゲージの場合は軸ごとに)求められる歪量差Δεが、すべて50μst以下になるように、本穿孔工程における穿孔条件(ドリルの回転数および/またはドリルの送り速度)を設定することが好ましい。また、歪ゲージ以外の歪測定手段を用いる場合も、測定方向についての歪量差Δεが、すべて50μst以下になるように、本穿孔工程における穿孔条件(ドリルの回転数および/またはドリルの送り速度)を設定することが好ましい。これにより、設定される歪量差Δεの精度が高められるため、本穿孔工程での穿孔による発熱や加圧を、より生じ難くすることができる。 At this time, as described above, it is preferable to install a plurality of strain gauges around the perforated portion, such as by using a multi-axis gauge having two or more axes as the strain measuring means. In this case, the perforation condition setting step is described above. The first strain amount ε 1 , the second strain amount ε 2 , and the strain amount difference Δε, which is the absolute value of the difference between them, are obtained for each strain gauge (for each axis in the case of a multi-axis gauge), and the strain is obtained. The drilling conditions (drill rotation speed and / or drill feed rate) in this drilling process are set so that the strain amount difference Δε obtained for each gauge (for each axis in the case of a multi-axis gauge) is 50 μst or less. It is preferable to set it. Also, when a strain measuring means other than the strain gauge is used, the drilling conditions (drill rotation speed and / or drill feed rate) in the main drilling step are such that the strain amount difference Δε in the measurement direction is 50 μst or less. ) Is preferably set. As a result, the accuracy of the set strain amount difference Δε is improved, so that heat generation and pressurization due to drilling in the main drilling step can be made less likely to occur.
 また、穿孔条件設定工程において第二歪量εを測定するタイミングは、予備穿孔工程が完了して第一歪量εを測定した後、歪量が安定するまで静置した時点で行う。このとき、測定環境や歪測定手段の感度の影響などにより、静置後も歪量の微小な変動(例えば、±5μst以下の変動)が継続的に発生することで、検出値の変動が完全にはゼロにならない場合もあり得る。この場合、当該微小な変動に移行した時点で歪量が安定したものとし、その時点における変動幅の中央値を第二歪量εとしてもよい。また、歪測定手段による歪量の測定を継続したまま樹脂成形品を静置し、歪量の変動幅が±5μst以下の状態を初めて1分間にわたって継続した時点(すなわち、歪量の最大値と最小値の差の絶対値が10μst以下となってから、当該差の絶対値が10μstを超えない状態のままで、初めて1分間が経過した時点)を基準に、その30秒前に歪量が安定したものとし、その時間における歪量を、第二歪量εとしてもよい。このとき、歪量が安定した時点から、少なくとも前後30秒ずつの計1分間は、歪量の変動幅が±5μst以下になる。この計1分間の歪量の平均値を、第二歪量εとしてもよい。なお、このような検出値の微小な変動の影響を抑制するには、樹脂成形品を静置する際、回動部と駆動部を停止させることが好ましい。 Further, the timing for measuring the second strain amount ε 2 in the drilling condition setting step is performed when the preliminary drilling step is completed, the first strain amount ε 1 is measured, and then the strain is allowed to stand until the strain amount becomes stable. At this time, due to the influence of the measurement environment and the sensitivity of the strain measuring means, minute fluctuations in the amount of strain (for example, fluctuations of ± 5 μst or less) continue to occur even after standing, and the fluctuations in the detected value are complete. May not be zero. In this case, it is assumed that the strain amount is stable at the time of shifting to the minute fluctuation, and the median value of the fluctuation width at that time may be set to the second strain amount ε 2. Further, when the resin molded product was allowed to stand while the strain amount measurement by the strain measuring means was continued and the strain amount fluctuation range was ± 5 μst or less for the first time for 1 minute (that is, the maximum value of the strain amount). After the absolute value of the difference between the minimum values becomes 10 μst or less, the amount of strain is 30 seconds before that (when 1 minute elapses for the first time without the absolute value of the difference exceeding 10 μst). It is assumed that the strain is stable, and the strain amount at that time may be the second strain amount ε 2. At this time, the fluctuation range of the strain amount is ± 5 μst or less for a total of 1 minute, at least 30 seconds before and after the time when the strain amount stabilizes. The average value of the strain amount for a total of 1 minute may be the second strain amount ε 2. In order to suppress the influence of such minute fluctuations in the detected value, it is preferable to stop the rotating portion and the driving portion when the resin molded product is allowed to stand still.
 通常、ドリルの回転数やドリルの送り速度は、高くする方が穿孔に要する時間を短縮できるため、穿孔法を用いて樹脂成形品の残留応力の測定を行おうとする当業者は、それらの穿孔条件を作業性の許す範囲で高く設定する傾向にある。これに対し、本発明においては、ドリルの回転数および送り速度のうち少なくとも一方を下げることによって、歪量差Δεを小さくして残留応力の測定精度を高められる傾向にある。したがって、本発明の効果を確実に得るためには、通常とは反対に、穿孔に時間を要する条件に近付ける方向となるため、残留応力の測定に時間が掛かり得る。そのため、特に残留応力の測定時間を短くする観点では、歪量差Δεを50μst以下に抑えられる範囲で、可能な限りドリルの回転数および送り速度のうち少なくとも一方を高めることが好ましい。あるいは、開発段階の試行における設計の最適化といった場面で、本発明を適用することも好ましい。 Generally, the higher the number of rotations of the drill and the feed rate of the drill, the shorter the time required for drilling. Therefore, those skilled in the art who intend to measure the residual stress of the resin molded product by using the drilling method can drill them. There is a tendency to set the conditions as high as the workability allows. On the other hand, in the present invention, by lowering at least one of the rotation speed and the feed rate of the drill, the strain amount difference Δε tends to be reduced and the measurement accuracy of the residual stress tends to be improved. Therefore, in order to surely obtain the effect of the present invention, contrary to the usual case, it tends to approach the condition that requires time for drilling, so that it may take time to measure the residual stress. Therefore, particularly from the viewpoint of shortening the measurement time of the residual stress, it is preferable to increase at least one of the rotation speed and the feed rate of the drill as much as possible within the range in which the strain amount difference Δε can be suppressed to 50 μst or less. Alternatively, it is also preferable to apply the present invention in situations such as design optimization in trials at the development stage.
 ここで、歪量差Δεが50μst以下になるように設定するための穿孔条件(ドリルの回転数および/またはドリルの送り速度)は、樹脂成形品の形状や用いる樹脂の種類によって異なるが、上述の傾向から、当業者であれば有限回数の試行により歪量差Δεが50以下となる穿孔条件を適宜設定することが可能である。歪量差Δεを小さくする観点で好ましい穿孔条件の具体例としては、ドリルの回転数が、100rpm以下であることが好ましく、75rpm以下であることがより好ましく、50rpmであることがさらに好ましく、30rpm以下であることが特に好ましく、20rpm以下であることが最も好ましい。また、ドリルの送り速度が、4.0mm/min以下であることが好ましく、3.0mm/min以下であることがより好ましく、2.0mm/min以下であることがさらに好ましく、1.0mm/min以下であることが特に好ましく、0.5mm/min以下であることが最も好ましい。 Here, the drilling conditions (drill rotation speed and / or drill feed rate) for setting the strain amount difference Δε to be 50 μst or less differ depending on the shape of the resin molded product and the type of resin used, but are described above. From this tendency, those skilled in the art can appropriately set the drilling conditions in which the strain amount difference Δε is 50 or less by a finite number of trials. As a specific example of the drilling conditions preferable from the viewpoint of reducing the strain difference Δε, the rotation speed of the drill is preferably 100 rpm or less, more preferably 75 rpm or less, further preferably 50 rpm, and 30 rpm. It is particularly preferably less than or equal to, and most preferably 20 rpm or less. Further, the feed rate of the drill is preferably 4.0 mm / min or less, more preferably 3.0 mm / min or less, further preferably 2.0 mm / min or less, and 1.0 mm / min or less. It is particularly preferably min or less, and most preferably 0.5 mm / min or less.
 また、上記の穿孔条件は、歪量差Δεが50μst以下になるように設定されていれば、一定の穿孔条件に固定しなくてもよい。例えば、外気温や、ドリルおよび穿孔装置における蓄熱(特に連続処理時など)などを考慮して、ドリルの回転数および送り速度のうち少なくとも一方を変動させてもよい。 Further, the above drilling conditions do not have to be fixed to a constant drilling condition as long as the strain amount difference Δε is set to be 50 μst or less. For example, at least one of the rotation speed and the feed rate of the drill may be changed in consideration of the outside air temperature, heat storage in the drill and the drilling device (particularly during continuous processing), and the like.
 本実施形態では、穿孔条件の設定をより効率的に行う観点から、上述の予備穿孔工程を行っている間、ドリルや穿孔装置に内蔵あるいは別途用意したセンサなどを用いて穿孔部の温度を計測し、その後の穿孔条件設定工程では、この温度が樹脂成形品を構成する樹脂のガラス転移温度以下になるように、ドリルの回転数および送り速度のうち少なくとも一方を低くして、穿孔条件を変更することも好ましい。ここで、樹脂として複数の樹脂成分を含む組成物を用いる場合、それらのうち最も含有量の多い樹脂(含有量が同程度である場合は、ガラス転移温度がより低い方の樹脂)のガラス転移温度をもとに、穿孔条件を設定すればよい。 In the present embodiment, from the viewpoint of more efficiently setting the drilling conditions, the temperature of the drilling portion is measured by using a sensor built in or separately prepared in a drill or a drilling device during the above-mentioned preliminary drilling process. Then, in the subsequent drilling condition setting step, the drilling condition is changed by lowering at least one of the drill rotation speed and the feed speed so that this temperature becomes equal to or lower than the glass transition temperature of the resin constituting the resin molded product. It is also preferable to do so. Here, when a composition containing a plurality of resin components is used as the resin, the glass transition of the resin having the highest content (the resin having the lower glass transition temperature when the contents are the same) is transferred to the glass. The drilling conditions may be set based on the temperature.
[本穿孔工程]
 本実施形態は、穿孔法によって残留応力の測定を行うものであり、本穿孔工程として、上述の穿孔条件設定工程によって設定されるドリルの回転数および送り速度のうち少なくとも一方の穿孔条件を用いて、予備穿孔工程で設けた孔をさらに穿孔する。予備穿孔工程と同じ孔をさらに穿孔して残留応力を測定することで、予備穿孔工程で設けた孔について求めた好適な穿孔条件で本穿孔工程が行われるため、より高精度に残留応力を測定することができる。
[Main drilling process]
In the present embodiment, the residual stress is measured by the drilling method, and as the main drilling step, at least one of the drilling speed and the feed rate set by the drilling condition setting step described above is used. , Further drill the holes provided in the preliminary drilling step. By further drilling the same holes as in the preliminary drilling step and measuring the residual stress, the main drilling process is performed under the suitable drilling conditions obtained for the holes provided in the preliminary drilling step, so that the residual stress is measured with higher accuracy. can do.
 本穿孔工程は、ドリルと、当該ドリルの中心軸を中心に回動させる回動部と、中心軸に穿孔部が位置するように樹脂成形品を固定する保持部と、回動部および保持部のうち少なくとも一方をドリルの中心軸に沿って前進または後退させる駆動部と、を穿孔手段として備える装置を用いることができる。この装置は、本穿孔工程と後述する残留応力測定工程を1台の装置で行う観点から、ドリルを回動させて樹脂成形品を穿孔する上述の穿孔手段と、樹脂成形品の歪量を検出する歪測定手段と、歪測定手段により検出された歪量を記録する記録手段と、を有する残留応力測定装置を構成することが好ましい。ここで、穿孔手段としては、いわゆるボール盤やフライス盤、マシニングセンタなどを用いることができる。特に、上述のとおり、本発明における穿孔条件は、当業者が通常設定しない傾向にある条件であるため、必要に応じて、回動部および駆動部のうち少なくとも一方に、減速機構を備えた穿孔装置を用いることも好ましい。 In this drilling step, a drill, a rotating portion that rotates around the central axis of the drill, a holding portion that fixes the resin molded product so that the drilling portion is located on the central axis, and a rotating portion and a holding portion. A device including a drive unit for advancing or retreating at least one of them along the central axis of the drill as a drilling means can be used. This device detects the above-mentioned drilling means for drilling a resin molded product by rotating a drill and the amount of strain of the resin molded product from the viewpoint of performing the main drilling step and the residual stress measuring step described later with one device. It is preferable to configure a residual stress measuring device having a strain measuring means and a recording means for recording the amount of strain detected by the strain measuring means. Here, as the drilling means, a so-called drilling machine, milling machine, machining center, or the like can be used. In particular, as described above, the drilling conditions in the present invention are conditions that are not normally set by those skilled in the art, and therefore, if necessary, drilling is provided in at least one of the rotating portion and the driving portion. It is also preferable to use an apparatus.
[残留応力測定工程]
 残留応力測定工程は、上述の本穿孔工程を行う際に解放される歪量(解放歪量)を、歪測定手段により測定し、得られる解放歪量から前記樹脂成形品の内部における残留応力を求める工程である。
[Residual stress measurement process]
In the residual stress measuring step, the strain amount (release strain amount) released when the above-mentioned main drilling step is performed is measured by a strain measuring means, and the residual stress inside the resin molded product is calculated from the obtained release strain amount. This is the desired process.
 ここで、穿孔法によって残留応力を測定する際、樹脂成形品の厚さ方向における内部残留応力を求めることが好ましい。その一例として、穿孔部を、厚さ方向に第一穿孔深さまで穿孔したときの樹脂成形品における歪量を歪測定手段で測定し、得られた歪量を用いて、第一穿孔深さまでの穿孔によって樹脂成形品に発生する第一応力を測定する第一応力測定工程と、穿孔部を厚さ方向に、第一穿孔深さと異なる第二穿孔深さまで穿孔したときの、樹脂成形品における歪量を測定し、得られた歪量を用いて、第二穿孔深さまでの穿孔によって樹脂成形品に発生する第二応力を測定する第二応力測定工程と、第二応力から第一応力を差し引くことにより得られる差分を、第一穿孔深さと第二穿孔深さとの中間深さにおける残留応力として算出する残留応力算出工程とを行うことにより、樹脂成形品の所定の位置における残留応力の測定を行うものである。上記各工程について、さらなる具体例を示す。 Here, when measuring the residual stress by the drilling method, it is preferable to obtain the internal residual stress in the thickness direction of the resin molded product. As an example, the amount of strain in the resin molded product when the perforated portion is perforated to the first perforation depth in the thickness direction is measured by a strain measuring means, and the obtained strain amount is used to reach the first perforation depth. The first stress measurement step that measures the first stress generated in the resin molded product by drilling, and the strain in the resin molded product when the drilled part is drilled to a second drilling depth different from the first drilling depth in the thickness direction. A second stress measurement step of measuring the amount and using the obtained strain amount to measure the second stress generated in the resin molded product by drilling to the second drilling depth, and subtracting the first stress from the second stress. By performing a residual stress calculation step of calculating the difference obtained as a residual stress at an intermediate depth between the first drilling depth and the second drilling depth, the residual stress at a predetermined position of the resin molded product can be measured. It is what you do. Further specific examples will be shown for each of the above steps.
(第一応力測定工程)
 このうち、第一応力測定工程は、全く穿孔しない場合も含む。全く穿孔しない場合、第一穿孔深さは0になる。すなわち、第一穿孔深さは0以上である。特に、全く穿孔しない場合、歪量(δr1)は0になり、穿孔により樹脂成形品から解放される応力も0になるため、第一応力は0になる。
(First stress measurement process)
Of these, the first stress measuring step includes the case where no drilling is performed. If no perforations are made, the first perforation depth will be zero. That is, the first drilling depth is 0 or more. In particular, when no drilling is performed, the strain amount (δ r1 ) becomes 0, and the stress released from the resin molded product by drilling also becomes 0, so that the first stress becomes 0.
 以下、樹脂成形品を用い、第一穿孔深さzが0の場合について説明する。なお、第一穿孔深さzが0でない場合には、以下の第二応力測定工程と同じ要領によって得られる応力が、第一応力になる。 Hereinafter, a case where the first drilling depth z 1 is 0 using a resin molded product will be described. When the first drilling depth z 1 is not 0, the stress obtained by the same procedure as the second stress measuring step below becomes the first stress.
(第二応力測定工程)
 第二応力測定工程では、第一応力測定工程で穿孔した穿孔部を、さらに厚さ方向に、所定の第二穿孔深さまで穿孔したときの、樹脂成形品の歪量を歪測定部で測定し、得られた歪量を用いて、第二穿孔深さまでの穿孔によって、樹脂成形品に発生する第二応力を測定する。
(Second stress measurement process)
In the second stress measuring step, the strain measuring section measures the amount of strain of the resin molded product when the drilled portion drilled in the first stress measuring step is further drilled to a predetermined second drilling depth in the thickness direction. Using the obtained strain amount, the second stress generated in the resin molded product by drilling to the second drilling depth is measured.
 第二応力測定工程における歪量の測定は、穿孔用の工具の振動などによる誤検出を避けるため、工具が樹脂成形品から脱離してから、あるいは工具が完全に停止してから、樹脂成形品の状態が安定するのを待って行う。すなわち、第二応力測定工程において測定される歪量は、上述の穿孔条件設定工程における第二歪量εと同じ要領で測定することができる。 In the measurement of the amount of strain in the second stress measurement process, in order to avoid erroneous detection due to vibration of the drilling tool, etc., the resin molded product is measured after the tool is detached from the resin molded product or after the tool is completely stopped. Wait for the condition to stabilize. That is, the strain amount measured in the second stress measuring step can be measured in the same manner as the second strain amount ε 2 in the above-mentioned drilling condition setting step.
 測定により得られる歪量は、従来公知の方法で応力に変換することができる。例えば、樹脂成形品1の上端面11に設けた歪測定手段112、112、112を、電気抵抗線歪計に接続して、上記穿孔の際に発生する応力に変換することができる。すなわち、穿孔部を厚さ方向に穿孔した際に、樹脂成形品から解放される樹脂成形品の内部応力を求めることができる。ここで得られる応力を第二応力とする。 The amount of strain obtained by measurement can be converted into stress by a conventionally known method. For example, the strain measuring means 112, 112, 112 provided on the upper end surface 11 of the resin molded product 1 can be connected to an electric resistance wire strain gauge and converted into the stress generated at the time of drilling. That is, when the perforated portion is perforated in the thickness direction, the internal stress of the resin molded product released from the resin molded product can be obtained. The stress obtained here is referred to as the second stress.
(残留応力算出工程)
 残留応力算出工程では、樹脂成形品の第一応力および第二応力の差分を算出する。例えば、上記第二応力から上記第一応力(本実施形態では0を含む)を差し引くことにより得られる差分を、上記穿孔部と上記第一穿孔深さとの間の深さにおける残留応力として算出する。以下、ここでの残留応力を第一残留応力、また第一残留応力を算出する工程を第一残留応力算出工程という場合がある。
(Residual stress calculation process)
In the residual stress calculation step, the difference between the first stress and the second stress of the resin molded product is calculated. For example, the difference obtained by subtracting the first stress (including 0 in this embodiment) from the second stress is calculated as the residual stress at the depth between the perforated portion and the first perforated depth. .. Hereinafter, the residual stress here may be referred to as a first residual stress, and the step of calculating the first residual stress may be referred to as a first residual stress calculation step.
 本実施の形態によれば、第一穿孔深さと第二穿孔深さとを調整することで、所望の深さにおける残留応力を求めることができる。すなわち、樹脂成形品内の所望の位置での残留応力を求めることができる。また、同じ深さにおける残留応力を求める場合であっても、第一穿孔深さと第二穿孔深さとの間の距離を調整することで、求められる残留応力の精度を調整することができる。その中でも、求められる残留応力の正確性を高められる観点では、第一穿孔深さと第二穿孔深さとの距離が短い方が好ましい。 According to the present embodiment, the residual stress at a desired depth can be obtained by adjusting the first drilling depth and the second drilling depth. That is, the residual stress at a desired position in the resin molded product can be obtained. Further, even when the residual stress at the same depth is obtained, the accuracy of the required residual stress can be adjusted by adjusting the distance between the first drilling depth and the second drilling depth. Among them, from the viewpoint of increasing the accuracy of the required residual stress, it is preferable that the distance between the first drilling depth and the second drilling depth is short.
 また、本実施の形態における残留応力測定方法は、樹脂成形品の厚さが小さいことが好ましい。樹脂成形品の厚さを小さくすることで、必然的に第一穿孔深さと第二穿孔深さとの厚さ方向の距離が短くなるため、正確に歪量を測定することができ、その歪量から得られる応力の測定精度も高めることができる。より具体的には、樹脂成形品の穿孔部における厚さは、穿孔する孔径の1.2倍以下であることが好ましい。 Further, in the residual stress measuring method in the present embodiment, it is preferable that the thickness of the resin molded product is small. By reducing the thickness of the resin molded product, the distance between the first drilling depth and the second drilling depth in the thickness direction is inevitably shortened, so that the strain amount can be measured accurately, and the strain amount can be measured accurately. The measurement accuracy of the stress obtained from the above can also be improved. More specifically, the thickness of the perforated portion of the resin molded product is preferably 1.2 times or less the diameter of the perforated hole.
 他方で、厚さが大きいものであっても、樹脂成形品が厚さ方向(z方向)に対称な形状であれば、残留応力も厚さ方向(z方向)に対称になるため、樹脂成形品が厚さ方向(z方向)の中央を対象軸とする線対称な形状を有していれば、厚さ方向の長さ(Lz)の半分(Lz/2)までの残留応力を測定することで、対象軸の反対側にある、より深い位置の残留応力を推定することができる。 On the other hand, even if the thickness is large, if the resin molded product has a shape symmetrical in the thickness direction (z direction), the residual stress is also symmetrical in the thickness direction (z direction), so that resin molding If the product has a line-symmetrical shape with the center in the thickness direction (z direction) as the target axis, the residual stress up to half (Lz / 2) of the length (Lz) in the thickness direction is measured. This makes it possible to estimate the residual stress at a deeper position on the opposite side of the target axis.
 上記残留応力測定方法に続けて、より深い第三穿孔深さzまで穿孔し、上記残留応力測定方法での第二応力測定工程と同様にして、上記樹脂成形品に発生する第三応力を測定する第三応力測定工程と、上記第三応力から上記第二応力を差し引くことにより得られる差分を、第二穿孔深さzと第三穿孔深さzとの中間深さにおける第二残留応力として算出することもでき、これを繰り返すことで樹脂成形品の厚さ方向(z方向)における残留応力分布を導出することもできる。 Following the above residual stress measuring method, drilling deeper third drilling depth z 3, in the same manner as the second stress measurement step with the residual stress measuring method, the third stress generated in the resin molded article The difference between the third stress measuring step to be measured and the difference obtained by subtracting the second stress from the third stress is the second at the intermediate depth between the second drilling depth z 2 and the third drilling depth z 3. It can also be calculated as the residual stress, and by repeating this, the residual stress distribution in the thickness direction (z direction) of the resin molded product can be derived.
<成形材料の検討>
 本実施の形態の残留応力測定方法により導出される残留応力を用いれば、任意の樹脂材料を成形してなる樹脂成形品において、樹脂成形品の内部にある所定の位置での残留応力を導出できる。さらに、異方性のある材料を成形してなる樹脂成形品においても、3方向の歪量を算出することで、残留応力の異方性を、より高い精度で定量的に評価できる。ここで、樹脂成形品は、着色剤を含む着色品であっても、着色剤を含まない無着色品であってもよい。異なる樹脂材料からなる樹脂成形品の残留応力を比較することで、樹脂材料の違いによる残留応力の発生しやすさを比較することができるため、樹脂材料(成形材料)の変更による残留応力の低減の検討に繋げることができる。
<Examination of molding materials>
By using the residual stress derived by the residual stress measuring method of the present embodiment, it is possible to derive the residual stress at a predetermined position inside the resin molded product in the resin molded product obtained by molding an arbitrary resin material. .. Further, even in a resin molded product obtained by molding an anisotropic material, the anisotropy of residual stress can be quantitatively evaluated with higher accuracy by calculating the amount of strain in three directions. Here, the resin molded product may be a colored product containing a colorant or a non-colored product containing no colorant. By comparing the residual stress of resin molded products made of different resin materials, it is possible to compare the likelihood of residual stress due to the difference in resin material, so the residual stress can be reduced by changing the resin material (molding material). It can be connected to the examination of.
<成形条件の検討における効果>
 本実施の形態の残留応力測定方法によって導出される残留応力の分布を用いれば、好ましい射出成形の条件を容易に決定することができる。即ち、本発明を用いることで、残留応力の少ない成形条件を容易に決定することができる。本発明の残留応力測定方法を用いて決定される成形条件は、樹脂成形品の内部の残留応力に影響を与えるものが好ましい。ここで、樹脂成形品の内部の残留応力に影響を与える成形条件としては、射出速度、金型温度などが挙げられる。
<Effects in examining molding conditions>
By using the distribution of residual stress derived by the residual stress measuring method of the present embodiment, preferable injection molding conditions can be easily determined. That is, by using the present invention, molding conditions with less residual stress can be easily determined. The molding conditions determined by using the residual stress measuring method of the present invention preferably affect the residual stress inside the resin molded product. Here, examples of molding conditions that affect the residual stress inside the resin molded product include injection speed, mold temperature, and the like.
<成形品の形状の検討における効果>
 射出成形は、複雑な形状の成形品を作製する際に好適な成形方法である。このため、複雑な形状の射出成形品は多く存在する。特に、偏肉部やウェルド部などがある樹脂成形品では、その形状によって成形収縮が促進あるいは抑制されるため、複雑な形状を持つ場合、複雑な形状の部分は、他の部分と残留応力分布が異なる。
<Effects in examining the shape of molded products>
Injection molding is a molding method suitable for producing a molded product having a complicated shape. Therefore, there are many injection-molded products having complicated shapes. In particular, in a resin molded product having an uneven thickness portion or a weld portion, molding shrinkage is promoted or suppressed depending on the shape. Therefore, when a complicated shape is formed, the part having a complicated shape has a residual stress distribution with other parts. Is different.
 このような複雑な形状(歪測定部に対し形状が変化する部位)を除去した切削片を用いる場合であっても、厚さ方向の収縮による残留応力と成形品形状による残留応力とを区別して測定することができ、かつ残留応力分布の測定方向を様々な方向に設定することができる。そのため、本発明の方法によることで、複雑な形状の部分と、それ以外の部分とを分けて残留応力分布を導出したり、成形品厚さによる残留応力分布の差を求めたりすることができる。 Even when using a cutting piece from which such a complicated shape (the part where the shape changes with respect to the strain measurement part) is used, the residual stress due to shrinkage in the thickness direction and the residual stress due to the shape of the molded product are distinguished. It can be measured, and the measurement direction of the residual stress distribution can be set in various directions. Therefore, according to the method of the present invention, it is possible to derive the residual stress distribution by separating the part having a complicated shape and the other part, and to obtain the difference in the residual stress distribution depending on the thickness of the molded product. ..
 したがって、本実施の形態は、成形品の設計などにおいて形状を検討する段階でも有用であり、上記射出成形条件の検討と併せて、所望の材料のデータを組み合わせることで、残留応力の予測技術として用いることも可能である。既存の成形品に関しても、残留応力の小さい樹脂成形品を容易に作製することができるとともに、成形品の故障解析において活用することも可能である。 Therefore, this embodiment is also useful at the stage of examining the shape in the design of a molded product, etc., and as a technique for predicting residual stress by combining the data of a desired material together with the examination of the above injection molding conditions. It can also be used. As for the existing molded product, a resin molded product having a small residual stress can be easily produced, and it can also be used for failure analysis of the molded product.
 ここでいう二次加工とは、樹脂成形品の内部における残留応力を緩和するための加工である。樹脂成形品の内部における残留応力を緩和するための方法として、アニーリング処理が挙げられる。アニーリング処理の効果の有用性は、従来は定量的に評価することができなかった。しかしながら、本発明の残留応力測定方法によることで、アニーリング処理前後の樹脂成形品内部の残留応力分布を導出できるため、アニーリング処理による残留応力の変化を確認することが可能になる。その結果、本発明によれば、アニーリング処理の効果の有用性を定量的に評価することができ、さらに、アニーリング処理の際の好ましい処理条件も容易に決定することができる。このように、本発明の残留応力測定方法によることで、樹脂成形品の二次加工の有用性についても、定量的に評価することができる。 The secondary processing referred to here is a processing for relaxing the residual stress inside the resin molded product. Annealing treatment can be mentioned as a method for relaxing the residual stress inside the resin molded product. Conventionally, the usefulness of the effect of the annealing treatment has not been quantitatively evaluated. However, by the residual stress measuring method of the present invention, the residual stress distribution inside the resin molded product before and after the annealing treatment can be derived, so that the change in the residual stress due to the annealing treatment can be confirmed. As a result, according to the present invention, the usefulness of the effect of the annealing treatment can be quantitatively evaluated, and further, preferable treatment conditions for the annealing treatment can be easily determined. As described above, the usefulness of the secondary processing of the resin molded product can be quantitatively evaluated by the residual stress measuring method of the present invention.
 また、本発明の残留応力測定方法によることで、樹脂成形品を使用するにあたり、残留応力が問題にならない、もしくは極力小さくなるように、使用する材料、形状、成形条件、成形品の二次加工などの樹脂成形品にかかわる設定を行うといった製品設計を、精度良く行うことが可能となる。また、製品を使用するにあたり、製品の残留応力をもとに短期的または長期的な破壊解析を行うことにより、精度良く故障を未然に防ぐことが可能となる。 In addition, according to the residual stress measuring method of the present invention, when using a resin molded product, the material, shape, molding conditions, and secondary processing of the molded product are used so that the residual stress does not become a problem or becomes as small as possible. It is possible to accurately perform product design such as setting related to resin molded products such as. Further, when using the product, it is possible to accurately prevent the failure by performing a short-term or long-term fracture analysis based on the residual stress of the product.
 以下、実施例を示し、本実施の形態を具体的に説明するが、この実施例に限定されるものではない。 Hereinafter, examples will be shown and the present embodiment will be specifically described, but the present embodiment is not limited to this example.
<樹脂成形品の準備>
 樹脂成形品としては、ポリプラスチックス社製のポリアセタール樹脂DURACON(登録商標)M90-44を材料として、標準的な成形条件にて射出成形を行い、100mm×100mm×3mmの平板状の樹脂成形品(6mm×3mmのサイドゲート)を作製し、これを測定対象として用いた。
<Preparation of resin molded products>
As the resin molded product, a polyacetal resin DURACON (registered trademark) M90-44 manufactured by Polyplastics Co., Ltd. is used as a material, and injection molding is performed under standard molding conditions to obtain a flat resin molded product of 100 mm × 100 mm × 3 mm. (6 mm × 3 mm side gate) was prepared and used as a measurement target.
<予備穿孔と、それに基づく穿孔条件の設定>
 この樹脂成形品の100mm×100mmの片面の中央部に、ドリル(型番「RS-200」、Vishay社製)で穿孔するための穿孔部を設け、歪測定手段として、穿孔部を中心に囲むように設けられた三つの歪ゲージを一枚の基材に設けた3軸歪ゲージ(ひとつのゲージ長2mm(歪ゲージ全体の半径D=5.13mm)、型番「FRS-2-11」、東京測器研究所社製)を貼付した。
<Preliminary drilling and setting of drilling conditions based on it>
A perforated portion for perforating with a drill (model number "RS-200", manufactured by Vishay Co., Ltd.) is provided in the center of one side of this resin molded product of 100 mm × 100 mm, and the perforated portion is surrounded as a strain measuring means. 3-axis strain gauge (one gauge length 2 mm (overall strain gauge radius D = 5.13 mm), model number "FRS-2-11", Tokyo (Made by Measuring Instruments Research Institute) is attached.
 次いで、ドリルの中心軸を中心に回動させる回動部と、中心軸に穿孔部が位置するように樹脂成形品を固定する保持部と、回動部をドリルの中心軸に沿って前進または後退させる駆動部と、を有する穿孔手段を備えたマシニングセンタの保持部に、上記樹脂成形品を固定するとともに、回動部に上記ドリルを装着した。それとともに、樹脂成形品に貼付した歪ゲージを、歪ゲージにより検出された歪量を記録する記録手段である、データロガー(「UCAM-60B」、共和電業社製)に接続した。 Next, a rotating portion that rotates around the central axis of the drill, a holding portion that fixes the resin molded product so that the perforated portion is located on the central axis, and a rotating portion that advances or advances along the central axis of the drill. The resin molded product was fixed to a holding portion of a machining center provided with a driving portion for retracting and a drilling means having the same, and the drill was attached to the rotating portion. At the same time, the strain gauge attached to the resin molded product was connected to a data logger (“UCAM-60B”, manufactured by Kyowa Electric Co., Ltd.), which is a recording means for recording the amount of strain detected by the strain gauge.
 続いて、ドリルの回転数とドリルの送り速度を、後述の各穿孔条件に設定した上で、ドリルを回動させつつ前進させて、樹脂成形品の穿孔部を、表面から0.2mmの予備穿孔深さ位置まで穿孔した。このとき、穿孔径(孔の直径)は、1.7mmであった。すなわち、ドリルの先端が成形品表面から厚さ方向に0.2mmまで達したところで、歪ゲージによる歪量の測定を行いながら、ドリルを上記と同じ回転数で逆向きに回動させつつ、上記と同じ送り速度で後退させて、ドリルを穿孔部の孔から脱離させ、歪ゲージによる歪量の測定を継続したまま、樹脂成形品を静置した。データロガーに記録されたデータから、ドリルを穿孔部の孔から脱離させた時点での歪量である第一歪量εと、歪量の変動幅が±5μst以下の状態を初めて1分間にわたって維持した時点を基準に、その30秒前にある歪量が安定したものと判断される時点での歪量である第二歪量εと、を測定した。このとき、データロガーとしては、3軸歪ゲージの各軸(それぞれch1、ch2、およびch3)の歪量を経時的に記録できるものを用い、軸(ch)ごとの歪量をリアルタイムで把握した。そして、上記各軸の歪量がすべて安定するまで、測定を継続しながら樹脂成形品を静置し、上記歪量が安定した時点での歪量の値を、第二歪量εとした。また、得られた第一歪量εと第二歪量εとの差の絶対値を求め、これを歪量差Δεとした。 Subsequently, after setting the number of rotations of the drill and the feed rate of the drill to the respective drilling conditions described later, the drill is advanced while rotating, and the drilled portion of the resin molded product is spared 0.2 mm from the surface. It was drilled to the drilling depth position. At this time, the drilling diameter (hole diameter) was 1.7 mm. That is, when the tip of the drill reaches 0.2 mm in the thickness direction from the surface of the molded product, while measuring the amount of strain with a strain gauge, the drill is rotated in the opposite direction at the same number of rotations as described above. The drill was detached from the hole of the perforated portion by retreating at the same feed rate as the above, and the resin molded product was allowed to stand while continuing to measure the amount of strain with the strain gauge. From the data recorded in the data logger, the first strain amount ε 1 which is the amount of strain when the drill is removed from the hole of the drilled part and the state where the fluctuation range of the strain amount is ± 5 μst or less for 1 minute for the first time. based on the time and maintained for, was measured with a second strain of epsilon 2 is a distortion amount at the time the amount of distortion in the 30 seconds before is determined to be stable, the. At this time, as a data logger, a data logger capable of recording the strain amount of each axis (ch1, ch2, and ch3, respectively) of the 3-axis strain gauge over time was used, and the strain amount of each axis (ch) was grasped in real time. .. Then, the resin molded product was allowed to stand while continuing the measurement until all the strain amounts of the above shafts became stable, and the value of the strain amount at the time when the strain amount became stable was set to the second strain amount ε 2 . .. Further, the absolute value of the difference between the obtained first strain amount ε 1 and the second strain amount ε 2 was obtained, and this was defined as the strain amount difference Δε.
 本実施例では、ドリルの回転数とドリルの送り速度を表1に示すようにそれぞれ設定し、データロガーに記録された各データ(図3から図6)から、各条件での第一歪量εおよび第二歪量εを求め、各軸における歪量差Δεを算出した。結果を表1に示す。ここで、図3から図6において、縦軸は3軸歪ゲージで測定された各軸(ch1~3)の歪量であり、横軸は穿孔開始からの経過時間である。また、各図に下向き矢印(↓印)で示した時間が穿孔完了時点であり、上向き矢印(↑印)で示した時間が静置後に歪量が安定した時点であり、これらの時点での歪量を、それぞれ第一歪量εおよび第二歪量εとなる。なお、上向き矢印で示した時間の後も、歪量の変動が完全にゼロにならない例については、当該上向き矢印で示した時間から前後30秒間(計1分間)の歪量の平均値を、第二歪量εとした。 In this embodiment, the rotation speed of the drill and the feed rate of the drill are set as shown in Table 1, and the first strain amount under each condition is obtained from each data (FIGS. 3 to 6) recorded in the data logger. ε 1 and the second strain amount ε 2 were obtained, and the strain amount difference Δε in each axis was calculated. The results are shown in Table 1. Here, in FIGS. 3 to 6, the vertical axis represents the strain amount of each axis (ch1 to 3) measured by the 3-axis strain gauge, and the horizontal axis represents the elapsed time from the start of drilling. In addition, the time indicated by the downward arrow (↓ mark) in each figure is the time when drilling is completed, and the time indicated by the upward arrow (↑ mark) is the time when the amount of strain stabilizes after standing. The strain amounts are the first strain amount ε 1 and the second strain amount ε 2 , respectively. In the case where the fluctuation of the strain amount does not become completely zero even after the time indicated by the upward arrow, the average value of the strain amount for 30 seconds (1 minute in total) before and after the time indicated by the upward arrow is used. The second strain amount was ε 2 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 そして、上記の歪量差Δεがすべて50μst以下になるように、ドリルの回転数および送り速度を設定することで、穿孔後の歪量の変動による誤差が生じ難くなるため、残留応力を精度よく測定することが可能になる。 By setting the rotation speed and feed rate of the drill so that the strain amount difference Δε is all 50 μst or less, an error due to the fluctuation of the strain amount after drilling is less likely to occur, so that the residual stress can be accurately adjusted. It becomes possible to measure.
<穿孔部の微細構造観察>
 上記の実施例2で穿孔された樹脂成形品について、樹脂成形品の穿孔部の断面を、ミクロトーム(ライカ社製「RM2265」)を用いて厚さ10μmの剥片状にサンプルを切り出し、このサンプルにおける穿孔部の微細構造を、偏光顕微鏡(オリンパス社製「BH-2」)を用いて観察した。また、比較例3として、ドリルの回転数を4000rpm、ドリルの送り速度を1.2mm/minとした以外は、実施例1と同じ条件で高速回転で穿孔した樹脂成形品についても、同様に穿孔部の微細構造を観察した。実施例2の穿孔部の断面における微細構造を撮影した偏光顕微鏡写真を図7に、比較例3の穿孔部の断面における微細構造を撮影した偏光顕微鏡写真を図8に、それぞれ示す。
<Observation of microstructure of perforated part>
With respect to the resin molded product perforated in Example 2 above, a sample was cut out from the cross section of the perforated portion of the resin molded product into strips having a thickness of 10 μm using a microtome (“RM2265” manufactured by Leica), and this sample was obtained. The fine structure of the perforated portion in the above was observed using a polarizing microscope (“BH-2” manufactured by Olympus Corporation). Further, as Comparative Example 3, a resin molded product perforated at high speed under the same conditions as in Example 1 except that the rotation speed of the drill was 4000 rpm and the feed rate of the drill was 1.2 mm / min was similarly perforated. The microstructure of the part was observed. FIG. 7 shows a polarizing micrograph in which the microstructure in the cross section of the perforated portion of Example 2 was photographed, and FIG. 8 shows a polarizing micrograph in which the microstructure in the cross section of the perforated portion of Comparative Example 3 was photographed.
 その結果、実施例2の樹脂成形品では、図7(a)に示すように、穿孔部の底部の両端に、ドリルのエッジのC面に沿った形状が明確に観察されていた。他方で、比較例3の樹脂成形品では、図8(a)に示すように、穿孔部の底面の両端が、緩やかな曲線の形状を有していた。さらに、これらを拡大して観察したところ、比較例3の樹脂成形品では、図8(b)に示すように、穿孔部の底面に再溶融層とみられる層構造が観察されたが、実施例2の樹脂成形品では、図7(b)に示すように、穿孔部の底面に層構造は観察されなかった。したがって、比較例の穿孔条件では、穿孔時の摩擦による発熱で穿孔部の樹脂が再溶融して結晶化や歪の状態に変化が生じる一方、実施例の穿孔条件ではそのような変化が生じていないことが分かり、この違いが表1の歪量差Δεに見られる穿孔直後の歪量の変動に繋がっていると考えられる。よって、この歪量差Δεが小さくなるような条件に穿孔条件を設定する穿孔条件設定工程を行い、この穿孔条件を用いて本穿孔工程を行って歪量の測定を行うことで、測定される残留応力には、穿孔直後の歪量の変動による誤差が生じ難くなるため、残留応力を精度よく測定できることは明らかである。 As a result, in the resin molded product of Example 2, as shown in FIG. 7A, the shape along the C surface of the edge of the drill was clearly observed at both ends of the bottom of the drilled portion. On the other hand, in the resin molded product of Comparative Example 3, as shown in FIG. 8A, both ends of the bottom surface of the perforated portion had a gently curved shape. Further, when these were magnified and observed, in the resin molded product of Comparative Example 3, as shown in FIG. 8 (b), a layer structure considered to be a remelted layer was observed on the bottom surface of the perforated portion. In the resin molded product of No. 2, as shown in FIG. 7B, no layer structure was observed on the bottom surface of the perforated portion. Therefore, under the drilling conditions of the comparative example, the resin in the drilled portion is remelted due to heat generated by friction during drilling, and the state of crystallization and strain occurs, while such a change occurs under the drilling conditions of the example. It was found that there was no such difference, and it is considered that this difference leads to the fluctuation of the strain amount immediately after drilling, which is seen in the strain amount difference Δε in Table 1. Therefore, it is measured by performing the drilling condition setting step of setting the drilling condition under the condition that the strain amount difference Δε becomes small, and performing the main drilling step using this drilling condition to measure the strain amount. It is clear that the residual stress can be measured accurately because an error due to the fluctuation of the strain amount immediately after drilling is unlikely to occur in the residual stress.
 以上の結果から、本発明の方法により、予備穿孔工程を行ってΔεが50μst以下になるように穿孔条件を設定する穿孔条件設定工程を行い、この穿孔条件を用いて本穿孔工程を行って歪量の測定を行うことで、穿孔時の発熱などの影響が抑制されるため、残留応力を精度よく測定することができる。 From the above results, according to the method of the present invention, a pre-drilling step is performed to set a drilling condition so that Δε is 50 μst or less, and a main drilling step is performed using this drilling condition to distort. By measuring the amount, the influence of heat generation during drilling is suppressed, so that the residual stress can be measured accurately.
1   樹脂成形品
11  樹脂成形品の上端面
111 穿孔部
112 歪測定手段

 
1 Resin molded product 11 Upper end surface of resin molded product 111 Perforated portion 112 Strain measuring means

Claims (8)

  1.  測定対象となる樹脂成形品に穿孔部を設け、前記穿孔部をドリルで穿孔する本穿孔工程の際に解放される解放歪量を測定し、得られる前記解放歪量から前記樹脂成形品の内部における残留応力を求める、穿孔法による残留応力測定方法であって、
     前記本穿孔工程の前に、
     前記樹脂成形品の表面に歪測定手段を設けた状態で、前記樹脂成形品の前記穿孔部を、前記表面から予備穿孔深さ位置まで前記ドリルを前進させて穿孔した後、前記ドリルを後退させて前記樹脂成形品から抜去する予備穿孔工程と、
     前記予備穿孔工程が完了した時点で検出される第一歪量εと、前記予備穿孔工程が完了した後に歪量が安定するまで静置した時点またはそれ以降に検出される第二歪量εとの差の絶対値である歪量差Δεが、50μst以下となるように、前記本穿孔工程における前記ドリルの回転数および送り速度のうち少なくとも一方を設定する穿孔条件設定工程と、
    を少なくとも行う、残留応力測定方法。
    A perforated portion is provided in the resin molded product to be measured, the amount of release strain released during the main drilling step of perforating the perforated portion with a drill is measured, and the inside of the resin molded product is obtained from the obtained release strain amount. It is a method of measuring residual stress by the drilling method, which obtains the residual stress in
    Before the main drilling step,
    With the strain measuring means provided on the surface of the resin molded product, the drill is drilled by advancing the drill from the surface to the preliminary drilling depth position, and then the drill is retracted. Preliminary drilling step to remove from the resin molded product
    The first strain amount ε 1 detected when the pre-drilling step is completed, and the second strain amount ε detected when the strain is allowed to stabilize after the pre-drilling step is completed or after that. A drilling condition setting step of setting at least one of the rotation speed and the feed speed of the drill in the main drilling step so that the strain amount difference Δε, which is the absolute value of the difference from 2, is 50 μst or less.
    At least a method for measuring residual stress.
  2.  前記穿孔条件設定工程は、2軸以上の多軸ゲージを用い、前記第一歪量ε、前記第二歪量εおよび前記歪量差Δεを、前記多軸ゲージの軸ごとに求め、前記軸ごとに求められる歪量差Δεが、すべて50μst以下となるように、前記本穿孔工程における前記ドリルの回転数および送り速度のうち少なくとも一方を設定する、請求項1に記載の残留応力測定方法。 In the drilling condition setting step, using a multi-axis gauge having two or more axes, the first strain amount ε 1 , the second strain amount ε 2, and the strain amount difference Δε are obtained for each axis of the multi-axis gauge. The residual stress measurement according to claim 1, wherein at least one of the rotation speed and the feed rate of the drill in the main drilling step is set so that the strain amount difference Δε obtained for each axis is 50 μst or less. Method.
  3.  前記予備穿孔工程を行う間、前記穿孔部の温度を計測し、
     前記穿孔条件設定工程では、前記温度が前記樹脂成形品を構成する樹脂のガラス転移温度以下となるように、前記本穿孔工程における前記ドリルの回転数および送り速度のうち少なくとも一方を設定する、請求項1または2に記載の残留応力測定方法。
    During the pre-drilling step, the temperature of the perforated portion is measured.
    In the drilling condition setting step, at least one of the rotation speed and the feed speed of the drill in the main drilling step is set so that the temperature is equal to or lower than the glass transition temperature of the resin constituting the resin molded product. Item 4. The method for measuring residual stress according to Item 1 or 2.
  4.  前記穿孔条件設定工程は、前記ドリルの回転数が100rpm以下となるように設定する、請求項1から3のいずれか1項に記載の残留応力測定方法。 The residual stress measuring method according to any one of claims 1 to 3, wherein the drilling condition setting step is set so that the rotation speed of the drill is 100 rpm or less.
  5.  前記穿孔条件設定工程は、前記ドリルの送り速度が4.0mm/min以下となるように設定する、請求項1から4のいずれか1項に記載の残留応力測定方法。 The residual stress measuring method according to any one of claims 1 to 4, wherein the drilling condition setting step is set so that the feed rate of the drill is 4.0 mm / min or less.
  6.  前記穿孔部および前記歪測定部は、前記厚さ方向に対して垂直な面に設け、
     前記穿孔部は、前記予備穿孔工程で前記樹脂成形品を厚さ方向に穿孔するように構成し、かつ、
     前記歪測定部は、前記穿孔条件設定工程で、前記厚さ方向に対して垂直に発生する、前記第一歪量εおよび前記第二歪量εを測定するように構成する、請求項1から5のいずれか1項に記載の残留応力測定方法。
    The perforated portion and the strain measuring portion are provided on a surface perpendicular to the thickness direction.
    The perforated portion is configured to perforate the resin molded product in the thickness direction in the pre-drilling step, and
    The strain measuring unit is configured to measure the first strain amount ε 1 and the second strain amount ε 2 generated perpendicularly to the thickness direction in the drilling condition setting step. The method for measuring residual stress according to any one of 1 to 5.
  7.  前記残留応力測定方法は、前記樹脂成形品の厚さ方向における内部残留応力を求める方法であり、
     前記本穿孔工程は、
     前記穿孔部を、前記厚さ方向に第一穿孔深さまで穿孔したときの、前記樹脂成形品における歪量を測定し、得られた歪量を用いて、前記第一穿孔深さまでの穿孔によって前記樹脂成形品に発生する第一応力を測定する第一応力測定工程と、
     前記穿孔部を、前記厚さ方向に、前記第一穿孔深さと異なる第二穿孔深さまで穿孔したときの、前記樹脂成形品における歪量を前記歪測定部で測定し、得られた歪量を用いて、前記第二穿孔深さまでの穿孔によって前記樹脂成形品に発生する第二応力を測定する第二応力測定工程と、
     前記第二応力から前記第一応力を差し引くことにより得られる差分を、前記第一穿孔深さと前記第二穿孔深さとの中間深さにおける残留応力として算出する残留応力算出工程と、
    を有する、請求項6に記載の残留応力測定方法。
    The residual stress measuring method is a method for obtaining an internal residual stress in the thickness direction of the resin molded product.
    The main drilling step is
    When the perforated portion is perforated to the first perforation depth in the thickness direction, the amount of strain in the resin molded product is measured, and the obtained strain amount is used to perforate to the first perforation depth. The first stress measurement process that measures the first stress generated in the resin molded product,
    When the perforated portion is perforated to a second perforated depth different from the first perforated depth in the thickness direction, the strain amount in the resin molded product is measured by the strain measuring portion, and the obtained strain amount is measured. A second stress measuring step of measuring the second stress generated in the resin molded product by drilling to the second drilling depth, and a second stress measuring step.
    A residual stress calculation step of calculating the difference obtained by subtracting the first stress from the second stress as a residual stress at an intermediate depth between the first drilling depth and the second drilling depth.
    The method for measuring residual stress according to claim 6.
  8.  請求項1から7のいずれか1項に記載の残留応力測定方法に用いられる残留応力測定装置であり、
     前記残留応力測定装置は、前記ドリルを回動させて前記樹脂成形品を穿孔する穿孔手段と、前記樹脂成形品の歪量を検出する歪測定手段と、前記歪測定手段により検出された歪量を記録する記録手段と、を有し、
     前記穿孔手段は、前記ドリルと、前記ドリルの中心軸を中心に回動させる回動部と、前記中心軸に前記穿孔部が位置するように前記樹脂成形品を固定する保持部と、前記回動部および前記保持部のうち少なくとも一方を前記ドリルの中心軸に沿って前進または後退させる駆動部と、を備える、残留応力測定装置。

     
    A residual stress measuring device used in the residual stress measuring method according to any one of claims 1 to 7.
    The residual stress measuring device includes a drilling means for drilling the resin molded product by rotating the drill, a strain measuring means for detecting the strain amount of the resin molded product, and a strain amount detected by the strain measuring means. With a recording means to record,
    The drilling means includes the drill, a rotating portion that rotates around the central axis of the drill, a holding portion that fixes the resin molded product so that the drilled portion is located on the central axis, and the rotation. A residual stress measuring device comprising a driving portion that moves at least one of a moving portion and the holding portion forward or backward along a central axis of the drill.

PCT/JP2021/001994 2020-01-29 2021-01-21 Residual stress measurement method and residual stress measurement device WO2021153407A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180006074.4A CN114599950B (en) 2020-01-29 2021-01-21 Residual stress measuring method and residual stress measuring device
JP2021532932A JP6944090B1 (en) 2020-01-29 2021-01-21 Residual stress measuring method and residual stress measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-012780 2020-01-29
JP2020012780 2020-01-29

Publications (1)

Publication Number Publication Date
WO2021153407A1 true WO2021153407A1 (en) 2021-08-05

Family

ID=77079884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001994 WO2021153407A1 (en) 2020-01-29 2021-01-21 Residual stress measurement method and residual stress measurement device

Country Status (3)

Country Link
JP (1) JP6944090B1 (en)
CN (1) CN114599950B (en)
WO (1) WO2021153407A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243335A (en) * 2009-04-06 2010-10-28 Polyplastics Co Residual stress calculation method and residual stress distribution derivation method
JP2018091746A (en) * 2016-12-05 2018-06-14 東京電力ホールディングス株式会社 Stress evaluation method of structural member
CN109460632A (en) * 2018-12-19 2019-03-12 南京工程学院 A kind of residual stress test calculation method along depth non-uniform Distribution
JP2019109099A (en) * 2017-12-16 2019-07-04 株式会社山本金属製作所 Optimal measuring method of residual stress

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0416517D0 (en) * 2004-07-23 2004-08-25 Isis Innovation Method of determining residual stress within an object
CN101929897A (en) * 2009-06-18 2010-12-29 宝理塑料株式会社 The method of the stress-strain curve of local stress measuring method, derivation resin material and the life-span prediction method of resin forming product
CN106289582A (en) * 2015-05-13 2017-01-04 中国科学院金属研究所 A kind of boring method residual stress measurement system
CN105371996B (en) * 2015-10-16 2018-09-18 上海应用技术学院 A kind of measurement method for the residual stress that metallic material pressure processing generates
JP6803728B2 (en) * 2015-12-15 2020-12-23 ポリプラスチックス株式会社 Residual stress calculation method
CN107036744B (en) * 2016-12-30 2020-05-15 西北工业大学 Residual stress blind hole testing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243335A (en) * 2009-04-06 2010-10-28 Polyplastics Co Residual stress calculation method and residual stress distribution derivation method
JP2018091746A (en) * 2016-12-05 2018-06-14 東京電力ホールディングス株式会社 Stress evaluation method of structural member
JP2019109099A (en) * 2017-12-16 2019-07-04 株式会社山本金属製作所 Optimal measuring method of residual stress
CN109460632A (en) * 2018-12-19 2019-03-12 南京工程学院 A kind of residual stress test calculation method along depth non-uniform Distribution

Also Published As

Publication number Publication date
CN114599950A (en) 2022-06-07
JP6944090B1 (en) 2021-10-06
JPWO2021153407A1 (en) 2021-08-05
CN114599950B (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP5356894B2 (en) Residual stress calculation method and residual stress distribution derivation method
Wu Study on optimization of 3D printing parameters
Rahman et al. Effect of machining parameters on hole quality of micro drilling for brass
US20180117725A1 (en) Method for monitoring a milling method
WO2021153407A1 (en) Residual stress measurement method and residual stress measurement device
JP6803728B2 (en) Residual stress calculation method
Liang et al. Mechanical drilling of PCB micro hole and its application in micro ultrasonic powder molding
JP7075322B2 (en) Residual stress calculation method
JP2022069103A (en) Residual stress measurement method for resin molded product and method for identifying fracture site
JP2009045675A (en) Device for measuring center height of cutter
Egashira et al. Diamond cutting of ultrasmall-diameter micropins of difficult-to-cut material
Caggiano et al. Improved tool geometry to enhance surface quality and integrity in trimming of CFRP composite materials
AU613504B2 (en) Tire grooving apparatus
JPS5942408A (en) Measuring device for bend in central hole
Kim Investigation on the hole-producing techniques of residual-stress measurement by incremental hole-drilling method in injection molded part
JPH0535817B2 (en)
Xian EFFECT OF MACHINING PARAMETERS ON THE SURFACE FINISH QUALITY OF NATURAL FIBER COMPOSITES
KONDO et al. A004 An Improved Approach to Real-Time Compensation of Machining Error Caused by Deflection of Two-Flute End Mill at Cutting Point
Fernandes Intelligent automated drilling and reaming of carbon composites
Creţu et al. Contributions on the influence of the cutting parameters and constructive geometrical parameters of the tool on the precision of the worm gears manufactured using whirling thread cutting
Böhland et al. Analysis of subsurface damage during milling of CFRP due to spatial fibre cutting angle, tool geometry and cutting parameters
JP5483227B2 (en) Eyeglass lens manufacturing equipment
JP2009241156A (en) Manufacturing apparatus of spectacle lens, and sensor for the apparatus
CN106679852A (en) Surface layer internal stress measurement method based on microhardness indentation distance change
Schwicker et al. Development of Tensile Test Specimens for Fused Deposition Modeling

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021532932

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747521

Country of ref document: EP

Kind code of ref document: A1