WO2021153193A1 - Duct - Google Patents

Duct Download PDF

Info

Publication number
WO2021153193A1
WO2021153193A1 PCT/JP2021/000461 JP2021000461W WO2021153193A1 WO 2021153193 A1 WO2021153193 A1 WO 2021153193A1 JP 2021000461 W JP2021000461 W JP 2021000461W WO 2021153193 A1 WO2021153193 A1 WO 2021153193A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
main body
duct main
internal
inner pipe
Prior art date
Application number
PCT/JP2021/000461
Other languages
French (fr)
Japanese (ja)
Inventor
龍介 木村
裕章 森川
Original Assignee
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ紡織株式会社 filed Critical トヨタ紡織株式会社
Publication of WO2021153193A1 publication Critical patent/WO2021153193A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/14Combined air cleaners and silencers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • This disclosure relates to a duct through which gas passes.
  • Patent Document 1 describes an intake duct that has a tubular shape and allows intake air of an internal combustion engine to pass through the inside.
  • the purpose of this disclosure is to provide a duct that can suppress the generation of noise.
  • the duct for solving the above-mentioned problems has an annular cross-sectional shape, has a duct main body through which gas can pass, and has a plurality of partition walls extending in the extending direction of the duct main body, and the plurality of partitions.
  • the walls are arranged in a direction intersecting the extension direction at intervals from each other, and are provided in a non-dispersed portion inside the duct body that does not have an expander, and the walls are provided in the non-dispersed portion of the duct body.
  • An internal duct through which gas can pass is formed in the middle of the extension direction.
  • a resonance phenomenon can be generated inside the internal duct. Then, by interfering the sound wave of the resonance frequency generated in the internal duct with the sound wave passing through the portion other than the internal duct in the duct, the sound wave of each frequency passing through the duct is of the resonance frequency. The sound pressure level of sound waves can be lowered. According to the above configuration, noise generation can be suppressed in this way.
  • FIG. 1A is a side sectional view of the duct of the first embodiment
  • FIG. 1B is a side view of the duct.
  • 2A and 2B are explanatory views for explaining the operation of the duct.
  • FIG. 3 is a cross-sectional view taken along the line 4-4 of FIG. Explanatory drawing for explaining the operation of the duct.
  • the duct 10 includes a cylindrical duct main body 11, a cylindrical inner pipe portion 12 provided inside the duct main body 11, and the duct main body 11 and the inner pipe portion 12. It has a plurality of connection wall portions 13 for connecting the above.
  • the duct main body 11, the inner pipe portion 12, and the connecting wall portion 13 are integrally formed of a hard synthetic resin material.
  • the duct 10 is an intake duct that forms a part of the intake passage of the internal combustion engine, and is configured so that the intake air of the internal combustion engine passes through the inside.
  • the duct body 11 has the same cross-sectional shape in the direction orthogonal to the center line Lc1 in each part in the extension direction.
  • the entire duct body 11 is a non-dispersed portion that does not have an expander (specifically, an air cleaner or a surge tank).
  • the inner pipe portion 12 has a cylindrical shape thinner than the duct main body 11.
  • the inner pipe portion 12 is provided inside the duct main body 11 in such a manner that the center line of the inner pipe portion 12 and the center line Lc1 of the duct main body 11 coincide with each other.
  • the inner pipe portion 12 is arranged in the middle of the duct main body 11 in the extension direction, specifically in the center of the extension direction.
  • the inner pipe portion 12 is provided inside the duct main body 11 in such a manner that the position corresponding to the center in the extension direction of the duct main body 11 and the position corresponding to the center in the extension direction of the inner pipe portion 12 coincide with each other.
  • the inner pipe portion 12 includes a first wall portion 12A, a second wall portion 12B, a third wall portion 12C, and a fourth wall portion 12D.
  • the first wall portion 12A and the second wall portion 12B are located so as to be arranged at intervals from each other in a direction intersecting the extending direction of the duct main body 11.
  • the third wall portion 12C and the fourth wall portion 12D are positioned so as to be arranged at intervals from each other in a direction intersecting the extending direction of the duct main body 11.
  • the wall portions 12A to 12D extend in the extending direction of the duct main body 11 that coincides with the extending direction of the inner pipe portion 12. Due to these wall portions 12A to 12D, the inner pipe portion 12 is formed in a cylindrical shape thinner than the duct main body 11.
  • the wall portions 12A to 12D are integrally formed with each other so as to form a cylindrical shape. That is, the inner tube portion 12 is formed as a one-piece product.
  • the inside of the inner pipe portion 12 corresponds to the inner duct 14.
  • the inner pipe portion 12, specifically, the wall portions 12A to 12D of the inner pipe portion 12 correspond to a plurality of partition walls forming the inner duct 14 in the middle in the extending direction of the duct main body 11.
  • Each connecting wall portion 13 has a flat plate shape extending in the extending direction and the radial direction of the duct main body 11.
  • the plurality of connecting wall portions 13 are arranged so as to be arranged at equal intervals in the circumferential direction of the duct main body 11.
  • four connecting wall portions 13 are provided.
  • Each connecting wall portion 13 extends in a manner of connecting the inner surface of the duct main body 11 and the outer surface of the inner pipe portion 12.
  • the duct 10 of the present embodiment has a double pipe structure in which the inner pipe portion 12 is supported inside the duct main body 11 via these connecting wall portions 13.
  • the duct 10 has a first end 15 (left end in FIG. 2A) and a second end 16 (right end in FIG. 2A). Inside the duct 10, the intake air of the internal combustion engine flows from the first end portion 15 to the second end portion 16. Along with this, the sound wave that causes the intake noise travels inside the duct 10 in the direction opposite to the flow of the intake air, specifically from the second end 16 to the first end 15. Become.
  • a resonance phenomenon is generated inside the inner pipe portion 12 (internal duct 14). be able to. Then, a sound wave having a resonance frequency (specifically, a primary, secondary, ... Nth resonance frequency) generated in the internal duct 14 and a sound wave passing through a portion other than the internal duct 14 in the duct 10 (FIG. 2A). By interfering with each other, the sound pressure level of the sound wave of the resonance frequency among the sound waves of each frequency passing through the duct 10 can be lowered.
  • a resonance frequency specifically, a primary, secondary, ... Nth resonance frequency
  • the length L1 of the inner pipe portion 12 in the extension direction is half of the length L2 of the duct main body 11 in the extension direction, and the inner pipe portion 12 is the duct. It is arranged at the center of the main body 11 in the extending direction. Therefore, in the portion corresponding to both ends of the internal duct 14 in the extending direction (the portion indicated by the arrow C in FIG. 2B), that is, the internal duct at the boundary portion between the internal duct 14 and the portion other than the internal duct 14 in the duct main body 11.
  • the node of the standing wave Fi of the sound wave of the resonance frequency in 14 and the antinode of the standing wave Fb (FIG.
  • the sound wave of the secondary resonance frequency in the portion other than the internal duct 14 in the duct 10 come to coincide with each other.
  • the sound wave of the resonance frequency in the internal duct 14 and the sound wave of the secondary resonance frequency in the duct body 11 interfere with each other in the vicinity of the boundary portion, so that the sound wave of the sound wave of the secondary resonance frequency in the duct body 11 interferes.
  • the pressure level can be kept low.
  • the generation of intake noise can be suppressed in this way.
  • the internal duct 14 is partitioned in the middle of the extension direction of the duct main body 11 inside the cylindrical duct main body 11. Therefore, the generation of intake noise can be suppressed.
  • the inside of the inner pipe portion 12 can be made into an internal duct 14.
  • the duct 20 has a cylindrical duct main body 21 and two ribs 22 and 23 provided inside the duct main body 21.
  • the duct body 21 and the ribs 22 and 23 are integrally formed of a hard synthetic resin material.
  • the duct 20 is an intake duct that forms a part of the intake passage of the internal combustion engine, and is configured so that the intake air of the internal combustion engine passes through the inside.
  • the duct body 21 has the same cross section in the direction orthogonal to the center line Lc2 in each part in the extension direction. As a result, in the present embodiment, the entire duct body 21 is a non-dispersed portion that does not have an expander (specifically, an air cleaner or a surge tank).
  • the duct main body 21 has a curved portion 24 in an intermediate portion in the extending direction. The curved portion 24 is curved and extends in an arcuate manner. The duct main body 21 is extended so as to bend 90 degrees at the curved portion 24.
  • the two ribs 22 and 23 are arranged in the middle of the extension direction of the duct main body 21, specifically inside the curved portion 24.
  • Each of the ribs 22 and 23 has a curved plate shape that is curved and extends along the center line Lc2 of the duct main body 11 in a manner of connecting the opposing portions on the inner surface of the curved portion 24.
  • the ribs 22 and 23 are arranged inside the curved portion 24 of the duct main body 21 so as to be arranged from the inside to the outside in the bending direction of the curved portion 24.
  • the ribs 22 and 23 extend so as to partition the inside of the duct body 11 into an inner portion and an outer portion in the bending direction.
  • a pair of internal ducts 25 and 26 are partitioned inside the duct main body 21 by the inner surface of the duct main body 21 and the ribs 22 and 23.
  • the outer inner duct 25 is partitioned by the rib 22 on the outer side in the bending direction and the portion of the duct body 21 on the outer side in the bending direction with respect to the rib 22.
  • the inner duct 26 is partitioned by the rib 23 on the inner side in the bending direction and the portion on the inner side of the duct main body 21 in the bending direction.
  • the ribs 22 and 23 correspond to a plurality of partition walls forming the internal ducts 25 and 26 in the middle of the duct main body 21 in the extending direction.
  • the duct 20 has a first end 27 (the left end in FIG. 5) and a second end 28 (the right end in FIG. 5). Inside the duct 20, the intake air of the internal combustion engine flows from the first end 27 to the second end 28. Along with this, the sound wave that causes the intake noise travels inside the duct 20 in the direction opposite to the flow of the intake air, specifically from the second end 28 to the first end 27. Note that FIG. 5 shows a duct 20 in a state in which the entire duct is linearly extended in order to facilitate understanding of the traveling mode of the sound wave.
  • a resonance phenomenon is generated in the internal ducts 25 and 26.
  • the sound waves of the resonance frequencies (specifically, the primary, secondary, ... Nth-order resonance frequencies) generated in the internal ducts 25 and 26 and the sound waves passing through the parts other than the internal ducts 25 and 26 in the duct 20
  • the sound pressure level of the sound wave of the resonance frequency among the sound waves of each frequency passing through the duct 20 can be lowered.
  • the length of the rib 22 that defines the length of the outer inner duct 25 in the extending direction and the length of the rib 23 that defines the length of the inner inner duct 26 are defined.
  • the length in the extension direction is different. Therefore, as shown in FIG. 5, the resonance frequency of the sound wave F1 passing through the inner duct 25 and the resonance frequency of the sound wave F2 passing through the inner inner duct 26 can be set to different values. Then, the sound wave F1 having a resonance frequency generated in the outer inner duct 25 and the sound wave F2 having a resonance frequency generated in the inner inner duct 26 are separately separated into sound waves passing through a portion other than the inner ducts 25 and 26 in the duct 20. Can interfere with. Therefore, among the sound waves of each frequency passing through the duct 20, the sound pressure levels of the sound waves F1 and F2 of the frequencies corresponding to the resonance frequencies can be lowered separately.
  • the generation of intake noise can be suppressed in this way.
  • FIG. 6 shows the flow of intake air in the duct 20 of the present embodiment.
  • the distance between the outer portion of the duct main body 21 in the bending direction and the inner portion of the duct main body 21 facing the outer portion in the bending direction becomes longer.
  • the outer portion of the duct main body 21 in the bending direction corresponds to a portion where a gas flow that travels straight without bending inside the curved portion 24 of the duct main body 21 abuts. Therefore, in the duct of the comparative example, it is difficult for the gas flow that hits the outer portion of the duct main body 21 in the bending direction and is deflected to reach the inner portion of the duct main body 21 in the bending direction. Therefore, in the duct of the comparative example, the vortex generation region (Sb in FIG. 6) in which the vortex is generated tends to be large inside the duct main body 21 in the bending direction.
  • the inside of the curved portion 24 of the duct main body 21 is divided into three passages P1 to P3 by two ribs 22 and 23. Therefore, as compared with the above distance (L3) in the duct of the comparative example, the distance between the outer portion in the bending direction and the inner portion in the bending direction where the straight gas flow without bending hits the individual compartment passages P1 to P3 ( L4) in FIG. 6 can be shortened. As a result, the gas flow deflected by hitting the outer portion in the bending direction in the compartment passages P1 to P3 can easily reach the inner portion in the bending direction in the compartment passages P1 to P3.
  • the vortex generation region (specifically, the sum of the regions S1 to S3) in which the gas is difficult to flow can be made smaller than that of the duct of the comparative example.
  • the flow path resistance of the above can be reduced.
  • the ribs 22 and 23 are arranged inside the curved portion 24 of the duct main body 21 so as to be arranged from the inside to the outside in the bending direction of the curved portion 24. As a result, the vortex generation region inside the duct main body 21 can be reduced, so that the flow path resistance of the duct 20 can be reduced.
  • a plurality of cylindrical inner pipe portions 12 may be provided inside the duct main body 11.
  • the resonance frequency of the sound wave passing through each inner tube portion can be set to a different value.
  • the sound pressure level of the sound waves corresponding to the resonance frequencies can be lowered separately.
  • the shape of the duct main body 11 and the inner pipe portion 12 is not limited to a cylindrical shape, and can be any cylindrical shape such as a polygonal tubular shape or an elliptical tubular shape.
  • the shape of the duct main body 21 is not limited to a cylindrical shape, and can be any cylindrical shape such as a polygonal cylinder shape or an elliptical cylinder shape. That is, the duct main body 11 and the inner pipe portion 12 of the first embodiment and the duct main body 21 of the second embodiment may have an annular cross-sectional shape.
  • the term "annular” refers to any structure that forms a loop, i.e. a continuous shape without ends.
  • “Circular” shapes include, but are not limited to, circular, elliptical, and polygons with sharp or rounded corners.
  • three or more ribs extending so as to connect the facing portions on the inner surface of the duct main body 21 may be provided.
  • ribs extending so as to connect the opposing portions on the inner surface of the duct main body 21 may be provided on the linearly extending portions of the duct main body 21.
  • the shape of the plurality of ribs can be arbitrarily changed as long as it can form an internal duct through which gas can pass in the middle of the extension direction of the duct main body 21. can.
  • the plurality of ribs are not limited to the arrangement arranged from the inside to the outside in the bending direction of the curved portion 24, and can be arranged in an arrangement in any direction.
  • a slight gap may be provided between the ribs 22 and 23 and the inner surface of the duct body 21.
  • the inside of the duct main body 21 may be partitioned by the ribs 22 and 23 to the extent that a resonance phenomenon occurs inside the internal ducts 25 and 26.
  • the shape is such that the expander is not arranged in the arranged portion of the internal ducts 14, 25, 26 in the duct main bodies 11 and 21, the direction orthogonal to the center line of the duct main bodies 11 and 21
  • the cross-sectional shape of the duct main body 11 and 21 may be different in each part in the extending direction. In this case, it is preferable that the inner surfaces of the duct bodies 11 and 21 are formed of smooth surfaces having no steps.
  • At least one of the duct main body 11 and the inner pipe portion 12 may be formed of a fiber molded body made of a non-woven fabric.
  • at least one of the duct body 21 and the ribs 22 and 23 may be formed of a fiber molded body. That is, a part or all of the ducts 10 and 20 may be formed by the fiber molded body.
  • the ducts 10 and 20 can be formed by molding a plurality of divided bodies and joining (adhering, welding) the divided bodies. can.
  • the duct according to each of the above embodiments can be applied to a duct other than the intake duct of an internal combustion engine, for example, a duct for an air conditioner, as long as the duct allows gas to pass through the inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipe Accessories (AREA)
  • Duct Arrangements (AREA)

Abstract

A duct (10) has a duct body (11) through which gas can pass. The duct body (11) is internally provided with a plurality of partition walls (12A to 12D) disposed midway along an extending direction of the duct body (11) and extending in the extending direction. Inside the duct body (11), an inner duct (14) through which gas can pass is defined and formed by the plurality of partition walls (12A to 12D).

Description

ダクトduct
 本開示は、内部を気体が通過するダクトに関するものである。 This disclosure relates to a duct through which gas passes.
 特許文献1には、筒状をなして、内部を内燃機関の吸入空気が通過する吸気ダクトが記載されている。 Patent Document 1 describes an intake duct that has a tubular shape and allows intake air of an internal combustion engine to pass through the inside.
特開2016-125379号公報Japanese Unexamined Patent Publication No. 2016-125379
 上記吸気ダクトのように内部を気体が通過するダクトにおいては、気体の通過に際して生じる騒音が問題になる。 In a duct through which gas passes, such as the above intake duct, noise generated when gas passes becomes a problem.
 本開示の目的は、騒音発生を抑えることのできるダクトを提供することにある。 The purpose of this disclosure is to provide a duct that can suppress the generation of noise.
 上記課題を解決するためのダクトは、環状の断面形状を有し、気体が通過可能なダクト本体と、前記ダクト本体の延設方向に延びる複数の仕切り壁と、を有し、前記複数の仕切り壁は、前記延設方向と交差する方向に互いに間隔を置いて並ぶ態様で、前記ダクト本体の内部における膨張器を有していない非配設部分に設けられており、前記非配設部分の延設方向における途中に気体が通過可能な内部ダクトを区画形成する。 The duct for solving the above-mentioned problems has an annular cross-sectional shape, has a duct main body through which gas can pass, and has a plurality of partition walls extending in the extending direction of the duct main body, and the plurality of partitions. The walls are arranged in a direction intersecting the extension direction at intervals from each other, and are provided in a non-dispersed portion inside the duct body that does not have an expander, and the walls are provided in the non-dispersed portion of the duct body. An internal duct through which gas can pass is formed in the middle of the extension direction.
 上記構成によれば、ダクト本体および内部ダクトを有するダクトを気体が通過する際に、内部ダクトの内部において共鳴現象を発生させることができる。そして、そうした内部ダクト内において発生する共鳴周波数の音波と、ダクト内における内部ダクト以外の部分を通過する音波とを干渉させることによって、ダクト内を通過する各周波数の音波のうちの上記共鳴周波数の音波の音圧レベルを低下させることができる。上記構成によれば、このようにして騒音発生を抑えることができる。 According to the above configuration, when a gas passes through the duct body and the duct having the internal duct, a resonance phenomenon can be generated inside the internal duct. Then, by interfering the sound wave of the resonance frequency generated in the internal duct with the sound wave passing through the portion other than the internal duct in the duct, the sound wave of each frequency passing through the duct is of the resonance frequency. The sound pressure level of sound waves can be lowered. According to the above configuration, noise generation can be suppressed in this way.
図1Aは第1実施形態のダクトの側断面図、図1Bは同ダクトの側面図。FIG. 1A is a side sectional view of the duct of the first embodiment, and FIG. 1B is a side view of the duct. 図2Aおよび図2Bは同ダクトの作用を説明するための説明図。2A and 2B are explanatory views for explaining the operation of the duct. 第2実施形態のダクトの側断面図。A side sectional view of the duct of the second embodiment. 図3の4-4線に沿った断面図。FIG. 3 is a cross-sectional view taken along the line 4-4 of FIG. 同ダクトの作用を説明するための説明図。Explanatory drawing for explaining the operation of the duct. 同ダクトの湾曲部およびその周辺の側断面図。A side sectional view of the curved portion of the duct and its surroundings.
 (第1実施形態)
 以下、第1実施形態のダクト10について説明する。
(First Embodiment)
Hereinafter, the duct 10 of the first embodiment will be described.
 図1Aおよび図1Bに示すように、ダクト10は、円筒状のダクト本体11と、同ダクト本体11の内部に設けられた円筒状の内管部12と、それらダクト本体11および内管部12を接続する複数の接続壁部13とを有している。このダクト10においては、ダクト本体11、内管部12、および接続壁部13が硬質の合成樹脂材料によって一体に形成されている。ダクト10は、内燃機関の吸気通路の一部を構成する吸気ダクトであり、内部を内燃機関の吸入空気が通過するように構成されている。 As shown in FIGS. 1A and 1B, the duct 10 includes a cylindrical duct main body 11, a cylindrical inner pipe portion 12 provided inside the duct main body 11, and the duct main body 11 and the inner pipe portion 12. It has a plurality of connection wall portions 13 for connecting the above. In the duct 10, the duct main body 11, the inner pipe portion 12, and the connecting wall portion 13 are integrally formed of a hard synthetic resin material. The duct 10 is an intake duct that forms a part of the intake passage of the internal combustion engine, and is configured so that the intake air of the internal combustion engine passes through the inside.
 ダクト本体11は、中心線Lc1と直交する方向における断面形状が、延設方向の各部において同一になっている。これにより本実施形態では、ダクト本体11の全体が膨張器(具体的には、エアクリーナやサージタンク)を有していない非配設部分になっている。 The duct body 11 has the same cross-sectional shape in the direction orthogonal to the center line Lc1 in each part in the extension direction. As a result, in the present embodiment, the entire duct body 11 is a non-dispersed portion that does not have an expander (specifically, an air cleaner or a surge tank).
 内管部12は、ダクト本体11よりも細い円筒状をなしている。内管部12の中心線と上記ダクト本体11の中心線Lc1とが一致する態様で、内管部12はダクト本体11の内部に設けられている。内管部12の延設方向の長さL1は、ダクト本体11の延設方向の長さL2の半分(L1×2=L2)になっている。そして、内管部12は、ダクト本体11の延設方向における途中、詳しくは延設方向の中央に配置されている。具体的には、ダクト本体11の延設方向における中央にあたる位置と内管部12の延設方向における中央にあたる位置とが一致する態様で、内管部12はダクト本体11の内部に設けられている。図1Bに示すように、内管部12は、第1壁部12A、第2壁部12B、第3壁部12C、及び第4壁部12Dを備えている。第1壁部12A及び第2壁部12Bは、ダクト本体11の延設方向と交差する方向に互いに間隔を置いて並ぶ態様で位置している。同様に、第3壁部12C及び第4壁部12Dは、ダクト本体11の延設方向と交差する方向に互いに間隔を置いて並ぶ態様で位置している。各壁部12A~12Dは、内管部12の延設方向に一致するダクト本体11の延設方向に延びている。これらの壁部12A~12Dにより、内管部12は、ダクト本体11よりも細い円筒状に形成されている。詳しくは、壁部12A~12Dは円筒状をなすように互いに一体に形成されている。すなわち、内管部12はワンピース品として形成されている。なお本実施形態では、内管部12の内部が内部ダクト14に相当する。内管部12、詳しくは、内管部12の壁部12A~12Dがダクト本体11の延設方向における途中に内部ダクト14を区画形成する複数の仕切り壁に相当する。 The inner pipe portion 12 has a cylindrical shape thinner than the duct main body 11. The inner pipe portion 12 is provided inside the duct main body 11 in such a manner that the center line of the inner pipe portion 12 and the center line Lc1 of the duct main body 11 coincide with each other. The length L1 of the inner pipe portion 12 in the extending direction is half (L1 × 2 = L2) of the length L2 of the duct main body 11 in the extending direction. The inner pipe portion 12 is arranged in the middle of the duct main body 11 in the extension direction, specifically in the center of the extension direction. Specifically, the inner pipe portion 12 is provided inside the duct main body 11 in such a manner that the position corresponding to the center in the extension direction of the duct main body 11 and the position corresponding to the center in the extension direction of the inner pipe portion 12 coincide with each other. There is. As shown in FIG. 1B, the inner pipe portion 12 includes a first wall portion 12A, a second wall portion 12B, a third wall portion 12C, and a fourth wall portion 12D. The first wall portion 12A and the second wall portion 12B are located so as to be arranged at intervals from each other in a direction intersecting the extending direction of the duct main body 11. Similarly, the third wall portion 12C and the fourth wall portion 12D are positioned so as to be arranged at intervals from each other in a direction intersecting the extending direction of the duct main body 11. The wall portions 12A to 12D extend in the extending direction of the duct main body 11 that coincides with the extending direction of the inner pipe portion 12. Due to these wall portions 12A to 12D, the inner pipe portion 12 is formed in a cylindrical shape thinner than the duct main body 11. Specifically, the wall portions 12A to 12D are integrally formed with each other so as to form a cylindrical shape. That is, the inner tube portion 12 is formed as a one-piece product. In this embodiment, the inside of the inner pipe portion 12 corresponds to the inner duct 14. The inner pipe portion 12, specifically, the wall portions 12A to 12D of the inner pipe portion 12 correspond to a plurality of partition walls forming the inner duct 14 in the middle in the extending direction of the duct main body 11.
 各接続壁部13は、ダクト本体11の延設方向および径方向において延びる平板状をなしている。複数の接続壁部13は、ダクト本体11の周方向において等間隔で並ぶように配置されている。本実施形態では4つの接続壁部13が設けられている。各接続壁部13は、ダクト本体11の内面と内管部12の外面とを接続する態様で延びている。本実施形態のダクト10は、これら接続壁部13を介してダクト本体11の内部に内管部12が支持された二重管構造を有している。 Each connecting wall portion 13 has a flat plate shape extending in the extending direction and the radial direction of the duct main body 11. The plurality of connecting wall portions 13 are arranged so as to be arranged at equal intervals in the circumferential direction of the duct main body 11. In this embodiment, four connecting wall portions 13 are provided. Each connecting wall portion 13 extends in a manner of connecting the inner surface of the duct main body 11 and the outer surface of the inner pipe portion 12. The duct 10 of the present embodiment has a double pipe structure in which the inner pipe portion 12 is supported inside the duct main body 11 via these connecting wall portions 13.
 以下、本実施形態のダクト10による作用について説明する。 Hereinafter, the operation of the duct 10 of the present embodiment will be described.
 図2Aに示すように、ダクト10は、第1端部15(図2Aでは左側の端部)及び第2端部16(図2Aでは右側の端部)を有している。ダクト10の内部には、第1端部15から第2端部16に向けて内燃機関の吸入空気が流れる。これに伴って、吸気騒音のもとになる音波は、ダクト10の内部において、吸入空気の流れと反対の方向、詳しくは第2端部16から第1端部15に向けて進行するようになる。 As shown in FIG. 2A, the duct 10 has a first end 15 (left end in FIG. 2A) and a second end 16 (right end in FIG. 2A). Inside the duct 10, the intake air of the internal combustion engine flows from the first end portion 15 to the second end portion 16. Along with this, the sound wave that causes the intake noise travels inside the duct 10 in the direction opposite to the flow of the intake air, specifically from the second end 16 to the first end 15. Become.
 図2Bに示すように、本実施形態のダクト10では、ダクト本体11の内部に内管部12が設けられているため、この内管部12の内部(内部ダクト14)において共鳴現象を発生させることができる。そして、そうした内部ダクト14内において発生する共鳴周波数(詳しくは、一次、二次、…N次共振周波数)の音波と、ダクト10内における内部ダクト14以外の部分を通過する音波(図2A)とを干渉させることによって、ダクト10内を通過する各周波数の音波のうちの上記共鳴周波数の音波の音圧レベルを低下させることができる。 As shown in FIG. 2B, in the duct 10 of the present embodiment, since the inner pipe portion 12 is provided inside the duct main body 11, a resonance phenomenon is generated inside the inner pipe portion 12 (internal duct 14). be able to. Then, a sound wave having a resonance frequency (specifically, a primary, secondary, ... Nth resonance frequency) generated in the internal duct 14 and a sound wave passing through a portion other than the internal duct 14 in the duct 10 (FIG. 2A). By interfering with each other, the sound pressure level of the sound wave of the resonance frequency among the sound waves of each frequency passing through the duct 10 can be lowered.
 本実施形態のダクト10では、内管部12の延設方向の長さL1(図1A参照)がダクト本体11の延設方向の長さL2の半分になっており、内管部12がダクト本体11の延設方向の中央に配置されている。そのため、内部ダクト14の延設方向における両端にあたる部分(図2Bに矢印Cで示す部分)、すなわち内部ダクト14とダクト本体11内における内部ダクト14以外の部分との境界にあたる境界部分において、内部ダクト14内における共鳴周波数の音波の定常波Fiの節と、ダクト10内の内部ダクト14以外の部分における二次共鳴周波数の音波の定常波Fb(図2A)の腹とが一致するようになる。これにより、上記境界部分の付近において内部ダクト14内における共鳴周波数の音波とダクト本体11内における二次共鳴周波数の音波とが干渉することによって、ダクト本体11内における二次共鳴周波数の音波の音圧レベルが低く抑えられるようになる。 In the duct 10 of the present embodiment, the length L1 of the inner pipe portion 12 in the extension direction (see FIG. 1A) is half of the length L2 of the duct main body 11 in the extension direction, and the inner pipe portion 12 is the duct. It is arranged at the center of the main body 11 in the extending direction. Therefore, in the portion corresponding to both ends of the internal duct 14 in the extending direction (the portion indicated by the arrow C in FIG. 2B), that is, the internal duct at the boundary portion between the internal duct 14 and the portion other than the internal duct 14 in the duct main body 11. The node of the standing wave Fi of the sound wave of the resonance frequency in 14 and the antinode of the standing wave Fb (FIG. 2A) of the sound wave of the secondary resonance frequency in the portion other than the internal duct 14 in the duct 10 come to coincide with each other. As a result, the sound wave of the resonance frequency in the internal duct 14 and the sound wave of the secondary resonance frequency in the duct body 11 interfere with each other in the vicinity of the boundary portion, so that the sound wave of the sound wave of the secondary resonance frequency in the duct body 11 interferes. The pressure level can be kept low.
 本実施形態のダクト10によれば、このようにして吸気騒音の発生を抑えることができる。 According to the duct 10 of the present embodiment, the generation of intake noise can be suppressed in this way.
 以上説明したように、本実施形態によれば、以下に記載する効果が得られる。 As described above, according to the present embodiment, the effects described below can be obtained.
 (1)円筒状のダクト本体11の内部における同ダクト本体11の延設方向の途中に内部ダクト14を区画形成するようにした。そのため、吸気騒音の発生を抑えることができる。 (1) The internal duct 14 is partitioned in the middle of the extension direction of the duct main body 11 inside the cylindrical duct main body 11. Therefore, the generation of intake noise can be suppressed.
 (2)ダクト10をダクト本体11とその内部の内管部12とからなる二重管構造にすることにより、同内管部12の内部を内部ダクト14にすることができる。 (2) By forming the duct 10 into a double pipe structure including a duct main body 11 and an inner pipe portion 12 inside the duct main body 11, the inside of the inner pipe portion 12 can be made into an internal duct 14.
 (第2実施形態)
 以下、第2実施形態のダクト20について説明する。
(Second Embodiment)
Hereinafter, the duct 20 of the second embodiment will be described.
 図3および図4に示すように、ダクト20は、円筒状のダクト本体21と、同ダクト本体21の内部に設けられた2本のリブ22,23とを有している。このダクト20においては、ダクト本体21およびリブ22,23が硬質の合成樹脂材料によって一体形成されている。ダクト20は、内燃機関の吸気通路の一部を構成する吸気ダクトであり、内部を内燃機関の吸入空気が通過するように構成されている。 As shown in FIGS. 3 and 4, the duct 20 has a cylindrical duct main body 21 and two ribs 22 and 23 provided inside the duct main body 21. In the duct 20, the duct body 21 and the ribs 22 and 23 are integrally formed of a hard synthetic resin material. The duct 20 is an intake duct that forms a part of the intake passage of the internal combustion engine, and is configured so that the intake air of the internal combustion engine passes through the inside.
 ダクト本体21は、中心線Lc2と直交する方向における断面が、延設方向の各部において同一の形状になっている。これにより本実施形態では、ダクト本体21の全体が膨張器(具体的には、エアクリーナやサージタンク)を有していない非配設部分になっている。ダクト本体21は、湾曲部24を、延設方向における中間部分に有している。湾曲部24は、円弧状をなす態様で湾曲して延びている。ダクト本体21は、湾曲部24において90度曲がる態様で延設されている。 The duct body 21 has the same cross section in the direction orthogonal to the center line Lc2 in each part in the extension direction. As a result, in the present embodiment, the entire duct body 21 is a non-dispersed portion that does not have an expander (specifically, an air cleaner or a surge tank). The duct main body 21 has a curved portion 24 in an intermediate portion in the extending direction. The curved portion 24 is curved and extends in an arcuate manner. The duct main body 21 is extended so as to bend 90 degrees at the curved portion 24.
 2本のリブ22,23は、ダクト本体21の延設方向における途中、詳しくは湾曲部24の内部に配置されている。各リブ22,23は、湾曲部24の内面における対向する部分同士を繋ぐ態様で、同ダクト本体11の中心線Lc2に沿って湾曲して延びる湾曲板状をなしている。リブ22,23は、ダクト本体21の湾曲部24の内部において、同湾曲部24の曲げ方向の内側から外側にかけて並ぶ態様で配設されている。各リブ22,23は、ダクト本体11の内部を曲げ方向の内側部分と外側部分とに仕切る態様で延びている。 The two ribs 22 and 23 are arranged in the middle of the extension direction of the duct main body 21, specifically inside the curved portion 24. Each of the ribs 22 and 23 has a curved plate shape that is curved and extends along the center line Lc2 of the duct main body 11 in a manner of connecting the opposing portions on the inner surface of the curved portion 24. The ribs 22 and 23 are arranged inside the curved portion 24 of the duct main body 21 so as to be arranged from the inside to the outside in the bending direction of the curved portion 24. The ribs 22 and 23 extend so as to partition the inside of the duct body 11 into an inner portion and an outer portion in the bending direction.
 本実施形態のダクト20においては、ダクト本体21の内部に、同ダクト本体21の内面とリブ22,23とによって一対の内部ダクト25,26が区画形成されている。詳しくは、曲げ方向外側のリブ22とダクト本体21における同リブ22よりも曲げ方向外側の部分とによって外側内部ダクト25が区画形成されている。また、曲げ方向内側のリブ23とダクト本体21における同リブ23よりも曲げ方向内側の部分とによって内側内部ダクト26が区画形成されている。なお本実施形態では、リブ22,23が、ダクト本体21の延設方向における途中に内部ダクト25,26を区画形成する複数の仕切り壁に相当する。 In the duct 20 of the present embodiment, a pair of internal ducts 25 and 26 are partitioned inside the duct main body 21 by the inner surface of the duct main body 21 and the ribs 22 and 23. Specifically, the outer inner duct 25 is partitioned by the rib 22 on the outer side in the bending direction and the portion of the duct body 21 on the outer side in the bending direction with respect to the rib 22. Further, the inner duct 26 is partitioned by the rib 23 on the inner side in the bending direction and the portion on the inner side of the duct main body 21 in the bending direction. In the present embodiment, the ribs 22 and 23 correspond to a plurality of partition walls forming the internal ducts 25 and 26 in the middle of the duct main body 21 in the extending direction.
 以下、本実施形態のダクト20による作用について説明する。 Hereinafter, the operation of the duct 20 of the present embodiment will be described.
 図3および図5に示すように、ダクト20は、第1端部27(図5では左側の端部)及び第2端部28(図5では右側の端部)を有している。ダクト20の内部には、第1端部27から第2端部28に向けて内燃機関の吸入空気が流れる。そして、これに伴って吸気騒音のもとになる音波が、ダクト20の内部において吸入空気の流れと反対の方向、詳しくは第2端部28から第1端部27に向けて進行する。なお、図5には、音波の進行態様についての理解を容易にするため、全体を直線状に延ばした状態のダクト20を示している。 As shown in FIGS. 3 and 5, the duct 20 has a first end 27 (the left end in FIG. 5) and a second end 28 (the right end in FIG. 5). Inside the duct 20, the intake air of the internal combustion engine flows from the first end 27 to the second end 28. Along with this, the sound wave that causes the intake noise travels inside the duct 20 in the direction opposite to the flow of the intake air, specifically from the second end 28 to the first end 27. Note that FIG. 5 shows a duct 20 in a state in which the entire duct is linearly extended in order to facilitate understanding of the traveling mode of the sound wave.
 図5に示すように、本実施形態のダクト20では、ダクト本体21の内部に2本の内部ダクト25,26が区画形成されているため、それら内部ダクト25,26において共鳴現象を発生させることができる。そして、そうした内部ダクト25,26内において発生する共鳴周波数(詳しくは、一次、二次、…N次共振周波数)の音波と、ダクト20内における内部ダクト25,26以外の部分を通過する音波とを干渉させることによって、ダクト20内を通過する各周波数の音波のうちの上記共鳴周波数の音波の音圧レベルを低下させることができる。 As shown in FIG. 5, in the duct 20 of the present embodiment, since the two internal ducts 25 and 26 are partitioned inside the duct main body 21, a resonance phenomenon is generated in the internal ducts 25 and 26. Can be done. Then, the sound waves of the resonance frequencies (specifically, the primary, secondary, ... Nth-order resonance frequencies) generated in the internal ducts 25 and 26 and the sound waves passing through the parts other than the internal ducts 25 and 26 in the duct 20 By interfering with each other, the sound pressure level of the sound wave of the resonance frequency among the sound waves of each frequency passing through the duct 20 can be lowered.
 図3および図5に示すように、本実施形態のダクト20では、外側内部ダクト25の長さを規定するリブ22の延設方向における長さと、内側内部ダクト26の長さを規定するリブ23の延設方向の長さとが異なる。そのため、図5に示すように、内部ダクト25を通過する音波F1の共鳴周波数と、内側内部ダクト26を通過する音波F2の共鳴周波数とを異なる値にすることができる。そして、外側内部ダクト25内において発生する共鳴周波数の音波F1と内側内部ダクト26内において発生する共鳴周波数の音波F2とを各別に、ダクト20内における内部ダクト25,26以外の部分を通過する音波に干渉させることができる。したがって、ダクト20内を通過する各周波数の音波のうち、それら共鳴周波数に対応する周波数の音波F1,F2の音圧レベルを各別に低下させることができる。 As shown in FIGS. 3 and 5, in the duct 20 of the present embodiment, the length of the rib 22 that defines the length of the outer inner duct 25 in the extending direction and the length of the rib 23 that defines the length of the inner inner duct 26 are defined. The length in the extension direction is different. Therefore, as shown in FIG. 5, the resonance frequency of the sound wave F1 passing through the inner duct 25 and the resonance frequency of the sound wave F2 passing through the inner inner duct 26 can be set to different values. Then, the sound wave F1 having a resonance frequency generated in the outer inner duct 25 and the sound wave F2 having a resonance frequency generated in the inner inner duct 26 are separately separated into sound waves passing through a portion other than the inner ducts 25 and 26 in the duct 20. Can interfere with. Therefore, among the sound waves of each frequency passing through the duct 20, the sound pressure levels of the sound waves F1 and F2 of the frequencies corresponding to the resonance frequencies can be lowered separately.
 本実施形態のダクト20によれば、このようにして吸気騒音の発生を抑えることができる。 According to the duct 20 of the present embodiment, the generation of intake noise can be suppressed in this way.
 図6に、本実施形態のダクト20における吸入空気の流れを示す。 FIG. 6 shows the flow of intake air in the duct 20 of the present embodiment.
 ダクト本体21にリブ22,23が設けられない比較例のダクトでは、ダクト本体21の曲げ方向の外側部分と、この外側部分に対向するダクト本体21の曲げ方向の内側部分との距離(図6のL3)が長くなる。ダクト本体21の曲げ方向の外側部分は、ダクト本体21の湾曲部24の内部を曲がらずに真っ直ぐ進む気体流が突き当たる箇所に相当する。そのため、比較例のダクトでは、ダクト本体21の曲げ方向の外側部分に突き当たって偏向された気体流が同ダクト本体21の曲げ方向の内側部分に到達し難い。よって、比較例のダクトでは、ダクト本体21の曲げ方向の内側において渦が発生する渦発生領域(図6のSb)が大きくなり易い。 In the duct of the comparative example in which the ribs 22 and 23 are not provided on the duct main body 21, the distance between the outer portion of the duct main body 21 in the bending direction and the inner portion of the duct main body 21 facing the outer portion in the bending direction (FIG. 6). L3) becomes longer. The outer portion of the duct main body 21 in the bending direction corresponds to a portion where a gas flow that travels straight without bending inside the curved portion 24 of the duct main body 21 abuts. Therefore, in the duct of the comparative example, it is difficult for the gas flow that hits the outer portion of the duct main body 21 in the bending direction and is deflected to reach the inner portion of the duct main body 21 in the bending direction. Therefore, in the duct of the comparative example, the vortex generation region (Sb in FIG. 6) in which the vortex is generated tends to be large inside the duct main body 21 in the bending direction.
 この点、本実施形態のダクト20では、ダクト本体21の湾曲部24の内部が、2本のリブ22,23によって3本の通路P1~P3に区画されている。そのため、比較例のダクトにおける上記距離(L3)と比べて、個々の区画通路P1~P3についての曲がらずに真っ直ぐ進んだ気体流が突き当たる曲げ方向の外側部分と曲げ方向の内側部分との距離(図6のL4)を短くすることができる。これにより、各区画通路P1~P3における曲げ方向の外側部分に突き当たって偏向された気体流が同区画通路P1~P3における曲げ方向の内側部分に到達し易くなるため、各区画通路P1~P3における曲げ方向内側の渦発生領域(図6のS1,S2,S3)を小さくすることができる。このように本実施形態のダクト20によれば、比較例のダクトと比べて、気体が流れ難くなる渦発生領域(詳しくは、領域S1~S3の総和)を小さくすることができるため、ダクト20の流路抵抗を小さくすることができる。 In this respect, in the duct 20 of the present embodiment, the inside of the curved portion 24 of the duct main body 21 is divided into three passages P1 to P3 by two ribs 22 and 23. Therefore, as compared with the above distance (L3) in the duct of the comparative example, the distance between the outer portion in the bending direction and the inner portion in the bending direction where the straight gas flow without bending hits the individual compartment passages P1 to P3 ( L4) in FIG. 6 can be shortened. As a result, the gas flow deflected by hitting the outer portion in the bending direction in the compartment passages P1 to P3 can easily reach the inner portion in the bending direction in the compartment passages P1 to P3. The vortex generation region (S1, S2, S3 in FIG. 6) inside in the bending direction can be reduced. As described above, according to the duct 20 of the present embodiment, the vortex generation region (specifically, the sum of the regions S1 to S3) in which the gas is difficult to flow can be made smaller than that of the duct of the comparative example. The flow path resistance of the above can be reduced.
 以上説明したように、本実施形態によれば、以下に記載する効果が得られる。 As described above, according to the present embodiment, the effects described below can be obtained.
 (3)円筒状のダクト本体21の内部における同ダクト本体21の延設方向の途中に、内部ダクト25,26を区画形成するようにした。そのため、吸気騒音の発生を抑えることができる。 (3) Internal ducts 25 and 26 are partitioned in the middle of the extension direction of the duct main body 21 inside the cylindrical duct main body 21. Therefore, the generation of intake noise can be suppressed.
 (4)ダクト本体21の内部に、同ダクト本体21の内面における対向する部分同士を繋ぐように延びる2本のリブ22,23を設けるようにした。そのため、これらリブ22,23とダクト本体21の内面とによって、同ダクト本体21の内部に内部ダクト25,26を区画形成することができる。 (4) Two ribs 22 and 23 extending so as to connect the facing portions on the inner surface of the duct main body 21 are provided inside the duct main body 21. Therefore, the ribs 22 and 23 and the inner surface of the duct main body 21 can form the internal ducts 25 and 26 inside the duct main body 21.
 (5)リブ22,23を、ダクト本体21の湾曲部24の内部において同湾曲部24の曲げ方向の内側から外側にかけて並ぶ態様で配設した。これにより、ダクト本体21の内部における渦発生領域を小さくすることができるため、ダクト20の流路抵抗を小さくすることができる。 (5) The ribs 22 and 23 are arranged inside the curved portion 24 of the duct main body 21 so as to be arranged from the inside to the outside in the bending direction of the curved portion 24. As a result, the vortex generation region inside the duct main body 21 can be reduced, so that the flow path resistance of the duct 20 can be reduced.
 (他の実施形態)
 なお、上記各実施形態は、以下のように変更して実施することができる。上記各実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Other embodiments)
Each of the above embodiments can be modified and implemented as follows. Each of the above embodiments and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・第1実施形態において、ダクト本体11の内部に円筒状の内管部12を複数設けるようにしてもよい。同構成において、延設方向における長さの異なる複数の内管部を設けることにより、各内管部を通過する音波の共鳴周波数を異なる値にすることができる。これにより、ダクト10内を通過する各周波数の音波のうち、それら共鳴周波数に対応する音波の音圧レベルを各別に低下させることが可能になる。 -In the first embodiment, a plurality of cylindrical inner pipe portions 12 may be provided inside the duct main body 11. In the same configuration, by providing a plurality of inner tube portions having different lengths in the extending direction, the resonance frequency of the sound wave passing through each inner tube portion can be set to a different value. As a result, among the sound waves of each frequency passing through the duct 10, the sound pressure level of the sound waves corresponding to the resonance frequencies can be lowered separately.
 ・第1実施形態において、ダクト本体11及び内管部12の形状は円筒状に限らず、多角筒状や楕円筒状など、任意の筒形状にすることができる。 -In the first embodiment, the shape of the duct main body 11 and the inner pipe portion 12 is not limited to a cylindrical shape, and can be any cylindrical shape such as a polygonal tubular shape or an elliptical tubular shape.
 ・第2実施形態において、ダクト本体21の形状は円筒状に限らず、多角筒状や楕円筒状など、任意の筒形状にすることができる。すなわち、第1実施形態のダクト本体11及び内管部12と、第2実施形態のダクト本体21とは、環状の断面形状を有するものであればよい。この場合、「環状」という用語は、ループ、すなわち端部のない連続形状、を形成する任意の構造を指す。「環状」の形状には、円形、楕円形、及び、尖ったまたは丸い角を有する多角形が含まれるが、これらに限定されない。 -In the second embodiment, the shape of the duct main body 21 is not limited to a cylindrical shape, and can be any cylindrical shape such as a polygonal cylinder shape or an elliptical cylinder shape. That is, the duct main body 11 and the inner pipe portion 12 of the first embodiment and the duct main body 21 of the second embodiment may have an annular cross-sectional shape. In this case, the term "annular" refers to any structure that forms a loop, i.e. a continuous shape without ends. "Circular" shapes include, but are not limited to, circular, elliptical, and polygons with sharp or rounded corners.
 ・第2実施形態において、ダクト本体21の内面における対向する部分同士を繋ぐように延びるリブを3本以上設けるようにしてもよい。 -In the second embodiment, three or more ribs extending so as to connect the facing portions on the inner surface of the duct main body 21 may be provided.
 ・第2実施形態において、ダクト本体21の内面における対向する部分同士を繋ぐように延びるリブを、同ダクト本体21における直線状で延びる部分に設けるようにしてもよい。 -In the second embodiment, ribs extending so as to connect the opposing portions on the inner surface of the duct main body 21 may be provided on the linearly extending portions of the duct main body 21.
 ・第2実施形態において、複数本のリブの形状は、ダクト本体21の延設方向における途中に気体が通過可能な内部ダクトを区画形成することができる形状であれば、任意に変更することができる。また、複数本のリブを、湾曲部24の曲げ方向の内側から外側にかけて並ぶ態様で配設することに限らず、任意の方向において並ぶ態様で配設することができる。 -In the second embodiment, the shape of the plurality of ribs can be arbitrarily changed as long as it can form an internal duct through which gas can pass in the middle of the extension direction of the duct main body 21. can. Further, the plurality of ribs are not limited to the arrangement arranged from the inside to the outside in the bending direction of the curved portion 24, and can be arranged in an arrangement in any direction.
 ・第2実施形態において、リブ22,23とダクト本体21の内面との間に若干の隙間を設けるようにしてもよい。要は、内部ダクト25,26の内部で共鳴現象が生じる程度に、ダクト本体21の内部がリブ22,23によって仕切られていればよい。 -In the second embodiment, a slight gap may be provided between the ribs 22 and 23 and the inner surface of the duct body 21. In short, the inside of the duct main body 21 may be partitioned by the ribs 22 and 23 to the extent that a resonance phenomenon occurs inside the internal ducts 25 and 26.
 ・各実施形態において、ダクト本体11,21における内部ダクト14,25,26の配設部分に膨張器が配置されることのない形状であれば、ダクト本体11,21の中心線と直交する方向における断面形状を、同ダクト本体11,21の延設方向の各部において異なる形状にしてもよい。この場合には、ダクト本体11,21の内面が段差の無い滑らかな面によって構成されていることが好ましい。 -In each embodiment, if the shape is such that the expander is not arranged in the arranged portion of the internal ducts 14, 25, 26 in the duct main bodies 11 and 21, the direction orthogonal to the center line of the duct main bodies 11 and 21 The cross-sectional shape of the duct main body 11 and 21 may be different in each part in the extending direction. In this case, it is preferable that the inner surfaces of the duct bodies 11 and 21 are formed of smooth surfaces having no steps.
 ・各実施形態において、ダクト本体11,21の延設方向の長さと内部ダクト14,25,26の延設方向の長さとの関係や、延設方向におけるダクト本体11,21と内部ダクト14,25,26との相対位置関係は、音圧レベルを抑えたい音波の周波数に合わせて、任意に変更することができる。 -In each embodiment, the relationship between the length of the duct bodies 11 and 21 in the extension direction and the lengths of the internal ducts 14, 25 and 26 in the extension direction, and the duct bodies 11 and 21 and the internal duct 14 in the extension direction, The relative positional relationship with 25 and 26 can be arbitrarily changed according to the frequency of the sound wave for which the sound pressure level is desired to be suppressed.
 ・第1実施形態においてダクト本体11および内管部12の少なくとも一方を不織布によって構成される繊維成形体によって形成してもよい。第2実施形態においてダクト本体21およびリブ22,23の少なくとも一方を繊維成形体によって形成してもよい。すなわち、ダクト10,20の一部、もしくは全部を繊維成形体によって形成してもよい。 -In the first embodiment, at least one of the duct main body 11 and the inner pipe portion 12 may be formed of a fiber molded body made of a non-woven fabric. In the second embodiment, at least one of the duct body 21 and the ribs 22 and 23 may be formed of a fiber molded body. That is, a part or all of the ducts 10 and 20 may be formed by the fiber molded body.
 ・ダクト10,20の全体を1つの金型によって一体成形することの他、複数の分割体を成形するとともにそれら分割体を接合(接着、溶着)することによってダクト10,20を形成することができる。 -In addition to integrally molding the entire ducts 10 and 20 with one mold, the ducts 10 and 20 can be formed by molding a plurality of divided bodies and joining (adhering, welding) the divided bodies. can.
 ・上記各実施形態にかかるダクトは、内部を気体が通過可能なダクトであれば、例えばエアーコンディショナー用のダクトなど、内燃機関の吸気ダクト以外のダクトにも適用することができる。 -The duct according to each of the above embodiments can be applied to a duct other than the intake duct of an internal combustion engine, for example, a duct for an air conditioner, as long as the duct allows gas to pass through the inside.
10,20…ダクト
11,21…ダクト本体
12…内管部
12A,12B,12C,12D…壁部
14…内部ダクト
22,23…リブ
24…湾曲部
25…外側内部ダクト
26…内側内部ダクト
10, 20 ... Ducts 11 and 21 ... Duct body 12 ... Inner pipes 12A, 12B, 12C, 12D ... Walls 14 ... Internal ducts 22, 23 ... Ribs 24 ... Curved parts 25 ... Outer inner ducts 26 ... Inner inner ducts

Claims (4)

  1.  環状の断面形状を有し、気体が通過可能なダクト本体と、
     前記ダクト本体の延設方向に延びる複数の仕切り壁と、を有し、
     前記複数の仕切り壁は、前記延設方向と交差する方向に互いに間隔を置いて並ぶ態様で、前記ダクト本体の内部における膨張器を有していない非配設部分に設けられており、前記非配設部分の延設方向における途中に気体が通過可能な内部ダクトを区画形成する、
    ダクト。
    A duct body that has an annular cross-sectional shape and allows gas to pass through,
    It has a plurality of partition walls extending in the extending direction of the duct body, and has a plurality of partition walls.
    The plurality of partition walls are provided in a non-dispersed portion inside the duct body that does not have an expander in a manner in which the plurality of partition walls are arranged at intervals in a direction intersecting the extending direction. An internal duct through which gas can pass is formed in the middle of the extending direction of the arranged portion.
    duct.
  2.  前記複数の仕切り壁は、内管部を構成する複数の壁部を含み、
     前記内管部は、環状の断面形状を有するとともに前記ダクト本体の内部において前記延設方向に延びている
    請求項1に記載のダクト。
    The plurality of partition walls include a plurality of wall portions constituting the inner pipe portion, and include the plurality of wall portions.
    The duct according to claim 1, wherein the inner pipe portion has an annular cross-sectional shape and extends in the extending direction inside the duct main body.
  3.  前記複数の仕切り壁は、前記ダクト本体の内面における対向する部分同士を繋ぐように延びる複数本のリブを含む
    請求項1に記載のダクト。
    The duct according to claim 1, wherein the plurality of partition walls include a plurality of ribs extending so as to connect facing portions on the inner surface of the duct body.
  4.  前記ダクト本体は、湾曲して延びる湾曲部を有しており、
     前記複数本のリブは、前記湾曲部の内部において、同湾曲部の曲げ方向の内側から外側にかけて並ぶ態様で配設されている
    請求項3に記載のダクト。
    The duct body has a curved portion that extends in a curved manner.
    The duct according to claim 3, wherein the plurality of ribs are arranged inside the curved portion from the inside to the outside in the bending direction of the curved portion.
PCT/JP2021/000461 2020-01-31 2021-01-08 Duct WO2021153193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014899 2020-01-31
JP2020014899A JP2021121733A (en) 2020-01-31 2020-01-31 duct

Publications (1)

Publication Number Publication Date
WO2021153193A1 true WO2021153193A1 (en) 2021-08-05

Family

ID=77078784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000461 WO2021153193A1 (en) 2020-01-31 2021-01-08 Duct

Country Status (2)

Country Link
JP (1) JP2021121733A (en)
WO (1) WO2021153193A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291452A (en) * 1999-04-08 2000-10-17 Aisan Ind Co Ltd Intake air amount controller of internal combustion engine
JP3101741U (en) * 2003-11-18 2004-06-17 周 榮彬 Powerful accelerator for engine
JP2007077860A (en) * 2005-09-13 2007-03-29 Nissan Diesel Motor Co Ltd Air current noise reduction device for supercharger
JP2012036808A (en) * 2010-08-06 2012-02-23 Kojima Press Industry Co Ltd Duct
CN106121879A (en) * 2016-08-02 2016-11-16 东风朝阳朝柴动力有限公司 Supercharger air inlet tube with current-stabilizing structure
WO2017126508A1 (en) * 2016-01-21 2017-07-27 フタバ産業株式会社 Muffler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291452A (en) * 1999-04-08 2000-10-17 Aisan Ind Co Ltd Intake air amount controller of internal combustion engine
JP3101741U (en) * 2003-11-18 2004-06-17 周 榮彬 Powerful accelerator for engine
JP2007077860A (en) * 2005-09-13 2007-03-29 Nissan Diesel Motor Co Ltd Air current noise reduction device for supercharger
JP2012036808A (en) * 2010-08-06 2012-02-23 Kojima Press Industry Co Ltd Duct
WO2017126508A1 (en) * 2016-01-21 2017-07-27 フタバ産業株式会社 Muffler
CN106121879A (en) * 2016-08-02 2016-11-16 东风朝阳朝柴动力有限公司 Supercharger air inlet tube with current-stabilizing structure

Also Published As

Publication number Publication date
JP2021121733A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
KR101598681B1 (en) Resonator for vehicle
US20150226163A1 (en) Resonator for vehicle
US20020062873A1 (en) Spiral bellows structure
KR20170112867A (en) Noise reduction device for vehicle
JP2000120497A (en) Intake air muffler device for automobile
JP2019143478A (en) Noise suppressor
KR20150095435A (en) Resonator for vehicle
WO2021153193A1 (en) Duct
KR20170025675A (en) Resonator for vehicle
JP2017110520A (en) Intake manifold
JP2009299589A (en) Intake system component
JP6899278B2 (en) Silencer
JP6700225B2 (en) Silencer
JP2012180760A (en) Intake resonator of internal combustion engine
JP2012036808A (en) Duct
JP4731452B2 (en) Silencer
JP5243586B2 (en) Engine intake manifold
JP5859371B2 (en) Air intake duct with silencer
WO2016056484A1 (en) Intake noise reduction device
JP7376525B2 (en) Internal combustion engine intake duct
JP2017172514A (en) Intake manifold
KR101772267B1 (en) Resonator for vehicle
JP4828500B2 (en) Engine intake manifold
JP2011247274A5 (en)
JP6823903B2 (en) Silencer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748436

Country of ref document: EP

Kind code of ref document: A1