WO2021153054A1 - Rotating electrical machine, and vehicle provided with said rotating electrical machine - Google Patents
Rotating electrical machine, and vehicle provided with said rotating electrical machine Download PDFInfo
- Publication number
- WO2021153054A1 WO2021153054A1 PCT/JP2020/046672 JP2020046672W WO2021153054A1 WO 2021153054 A1 WO2021153054 A1 WO 2021153054A1 JP 2020046672 W JP2020046672 W JP 2020046672W WO 2021153054 A1 WO2021153054 A1 WO 2021153054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- segment coil
- electric machine
- rotary electric
- coil
- slot
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
Definitions
- the present invention relates to a rotary electric machine mounted on a railroad vehicle, an automobile, a construction machine, etc., and a vehicle equipped with the rotary electric machine.
- Patent Document 1 has a drawback that when the number of stages of the coil is increased, the number of welding points at the coil end connection portion increases and the manufacturing becomes complicated. Further, in Patent Document 1, defects such as damage to the insulating film and poor welding in the welding process are likely to occur, and ensuring the reliability of the motor becomes an issue.
- Patent Documents 2 and 3 a technique for suppressing the generation of circulating current by transferring the coil arrangement has been proposed.
- Patent Documents 2 and 3 require additional equipment and man-hours for transposition, which causes an increase in manufacturing cost. Further, in the case of transposition at the coil end as in Patent Document 3, there is a problem that the height in the axial direction increases at the transition portion, which leads to an increase in the physique of the motor.
- An object of the present invention is to provide a rotary electric machine capable of suppressing an increase in cost and physique, and a vehicle equipped with this rotary electric machine.
- the present invention includes a rotor and a stator, and the stator has a stator core having a plurality of slots and a substantially U-shaped rectangular shape inserted into the slots.
- a rotary electric machine including a segment coil having a cross section, wherein the slot is composed of at least a first slot and a second slot, and the segment coil is composed of at least a first segment coil and a second segment coil.
- Each of the first slot and the second slot has a first layer and a second layer arranged radially from the inside to the outside of the rotary electric machine, and each of the first segment coil and the second segment coil, respectively.
- the first segment coil comprises a transition portion formed in such a manner and an inclined portion formed between the slot insertion portion and the apex portion and inclined with respect to the end face of the stator core.
- One is arranged in the first layer of the first slot, the other is arranged in the second layer of the second slot, and one of the second segment coils is the first segment in the first layer of the first slot.
- the other is arranged radially outside the coil, the other is arranged radially inside the first segment coil in the second layer of the second slot, and the transition portion of the first segment coil is the second segment coil.
- the size of the transition is formed to be larger than that of the transition portion of the above, and the inclined portion of the first segment coil and the inclined portion of the second segment coil are inclined at different angles with respect to the end face of the stator core. It is characterized by.
- FIG. 1A is a cross-sectional view taken along the line IB-IB in FIG. 1A. It is a figure which looked at the coil per 1 turn which consisted of the multi-stage in the prior art from the radial direction of a rotary electric machine.
- FIG. 2 is a cross-sectional view taken along the line IIB-IIB in FIG. 2A. It is the figure which looked at the coil per 1 turn which consisted of the multi-stage in the prior art from the axial direction of a rotary electric machine.
- FIG. 3A is a cross-sectional view taken along the line IIIB-IIIB in FIG. 3A.
- FIG. 4A is a sectional view taken along line IVB-IVB in FIG. 4A. It is a circuit diagram of the transposition in the prior art. It is a figure which looked at the state of the transformer position of the coil per winding in 1st Example of this invention from the axial direction of a rotary electric machine. It is a figure which looked at the state of the transformer position of the coil per winding in 1st Example of this invention from the radial direction of a rotary electric machine.
- FIG. 5 is a cross-sectional view taken along the line XB-XB in FIG. 10A.
- It is a circuit diagram in 4th Example of this invention. It is the schematic which shows the connection state of the coil in 4th Example of this invention. It is a perspective view which shows the connection state of the coil in 4th Example of this invention. It is a schematic block diagram of the vehicle in 5th Example of this invention.
- coil is defined as one volume of a hexagonal volume or one cycle of a wave winding.
- the definition of “coil” is defined as one volume of a hexagonal volume or one cycle of a wave winding.
- the coil is expressed as a four-winding coil, but in the following description, for the sake of simplicity, basically one winding coil (one coil per winding) is targeted. ..
- each conductor is called a segment coil.
- variable speed drive rotary electric machines such as automobiles and railroad vehicles
- the effect of the present invention is not limited to this, and can be applied to all rotary electric machines including constant speed.
- the rotary electric machine may be an induction machine, a permanent magnet synchronous machine, a winding type synchronous machine, a synchronous reluctance rotary machine, or a switched reluctance rotary machine.
- the following description targets an adduction type rotary electric machine, an abduction type rotary electric machine may also be used.
- the material of the coil may be copper, aluminum, or other conductive material.
- cross-sectional shape of the coil is described for a square wire, the effect of the present invention is not limited to this, and may be composed of a single or a plurality of round wires, or other The shape may be used, and it can be applied to all configurations in which AC copper loss is remarkable.
- FIG. 1A is a view of the coil per winding in the prior art as viewed from the axial direction of the rotary electric machine.
- FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG. 1A.
- FIG. 2A is a view of a coil per turn composed of multiple stages in the prior art as viewed from the radial direction of the rotary electric machine.
- FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 2A.
- FIG. 3A is a view of a coil per turn composed of multiple stages in the prior art as viewed from the axial direction of the rotary electric machine.
- FIG. 3B is a sectional view taken along line IIIB-IIIB in FIG. 3A.
- FIG. 3C is a circuit diagram in the prior art.
- FIG. 4A is a view of the state of the transformer position of the coil per winding composed of multiple stages in the prior art as viewed from the axial direction of the rotary electric machine.
- FIG. 4B is a sectional view taken along line IVB-IVB in FIG. 4A.
- FIG. 4C is a circuit diagram of a transposition in the prior art.
- FIGS. 1A, 2A, 3A, and 4A are drawings in which the slot cross section is linearly developed for convenience of explanation.
- the opening side (lower part of the figure) of slots 410 and 420 faces the rotor.
- the stator core 101 includes an adduction type rotor (not shown) supported in the circumferential direction via a gap on the inner peripheral side in the radial direction.
- the stator core 101 has a plurality of slots in the circumferential direction, and the coil 500 is inserted into the slots.
- the coil 500 is coated with an insulating film such as epoxy resin in order to secure insulation between the coils.
- FIG. 1A shows two slots 410 (first slot), slot 420 (second slot), and one roll of coil 500 inserted into the slot.
- the coil 500 is mechanically and electrically connected to adjacent coils at the connecting portions W1 and W2 at the axial end (coil end).
- FIGS. 1A and 1B show a state in which a forward current flows as an example. That is, a current flows in the coil 500 stored in the slot 410 in the positive direction in the axial direction, and a current flows in the coil 500 stored in the slot 420 in the negative direction in the axial direction.
- magnetic flux is generated around the axial direction of the coil 500 according to Ampere's law.
- the magnetic flux densities generated in the slots 410 and 420 are referred to as B1 and B2, respectively.
- Pac E- ⁇ B / ⁇ t Ie-E / Rac Pac-Rac ⁇ (Ie squared) Therefore, Pac can be expressed as follows.
- Pac ⁇ ( ⁇ B squared) / ( ⁇ t squared) / Rac In mass-produced applications such as automobile drive motors, one segment per coil as shown in FIGS. 1A and 1B. In many cases, it is composed of a coil, and the drive frequency increases at high speed rotation, that is, ⁇ t decreases, so that the AC copper loss Pac increases.
- one coil is composed of a multi-stage flat square wire to reduce AC copper loss.
- one coil is composed of two stages, a first segment coil 510 and a second segment coil 520.
- the first segment coil 510 and the second segment coil 520 are formed in a rectangular cross section formed in a substantially U shape, and are inserted into slots 410 and 420.
- the magnetic flux densities B1 and B2 transmitted through one segment coil are halved from the magnetic flux densities shown in FIGS. 1A and 1B, and the cross-sectional area of one segment coil is 1 /.
- the AC copper loss generated in the first segment coil 510 and the second segment coil 520 is 1/8 each, which is 1/4 in total, as compared with the AC copper loss generated in the coils 500 of FIGS. 1A and 1B. ..
- FIGS. 3A and 3B there is a method of welding a plurality of segment coils together.
- the first segment coil 510 and the second segment coil 520 are welded together at the connection portions W1 and W2 of the coil ends, respectively.
- a closed loop as shown in the circuit diagram of FIG. 3C is formed, and a new loss is caused by the flowing current Ic. There is a problem that occurs.
- electromotive forces E1t and E1b are generated in the first segment coil 510 and the second segment coil 520, respectively, so as to cancel the magnetic flux density B1 in the slot 410, and similarly cancel the magnetic flux density B2 in the slot 420.
- electromotive forces E2t and E2b are generated, respectively. All of these electromotive forces are generated in the same direction, and if the sum is E, the circulating current Ic is proportional to E. Therefore, as the drive frequency increases during high-speed rotation, the loss due to the circulating current Ic increases and cannot be ignored.
- the generation of circulating current Ic can be suppressed by transposing the coil arrangement.
- the first segment coil 510 and the second segment coil 520 are arranged on the 1t side and 1b side, respectively, while in slot 420, the first segment coil 510 and the second segment coil are arranged.
- the arrangement of the 520s is changed so that they are on the 2b side and the 2t side, respectively.
- the electromotive forces E1t and E2b generated in the first segment coil 510 are canceled because they are in opposite directions, and similarly, the electromotive forces E1b and E2t generated in the second segment coil 520 are also canceled.
- the generation of circulating current Ic is suppressed, and AC copper loss can be reduced without increasing the number of welding points.
- the conventional technology requires additional equipment and man-hours for transposition, which causes a problem of a significant increase in cost. Further, there is a problem that the axial height of the stator increases due to the transposition, which leads to an increase in the motor physique.
- FIG. 5A is a view of the state of the transformer position of the coil per winding in the first embodiment of the present invention as viewed from the axial direction of the rotary electric machine.
- FIG. 5B is a view of the state of the transformer position of the coil per winding in the first embodiment of the present invention as viewed from the radial direction of the rotary electric machine.
- the slot 410 is composed of the first layer 411 and the second layer 412
- the slot 420 is also composed of the first layer 421 and the second layer 422.
- the first layer 411, 421 and the second layer 421, 422 are arranged side by side from the radial inside to the radial outside of the rotary electric machine. That is, the first layers 411 and 421 are located on the inner side in the radial direction, and the second layers 421 and 422 are located on the outer side in the radial direction with respect to the first layers 411 and 421.
- the first layer 411, 421 and the second layers 421 and 422 may be formed so as to be physically separated by providing a partition in the slots 410 and 420, and the partition may be formed in the slots 410 and 420. It may be called according to the position where the coil is arranged without providing it.
- the first segment coil 510 straddles the circumferential direction, one is inserted into the slot 410 (first slot), the slot insertion portion 515a is arranged in the first layer 411 of the slot 410, and the other is the slot 420 (first slot).
- a slot insertion portion 515b that is inserted into (2 slots) and arranged in the second layer 422 of the slot 420 is provided, and a transition portion 200 is provided near the center of the circumferential direction.
- the transition portion 200 is a region including the apex portion 511a of the portion protruding from the end face of the stator core 101, and is formed so as to transition in the radial direction of the rotary electric machine. Further, the transition portion 200 is formed between the transition ends 511b and 511c of the first segment coil 510.
- the second segment coil 520 straddles the circumferential direction, one of which is inserted into the slot 410 (first slot), and is radially outward (outer peripheral side) with respect to the first segment coil 510 in the first layer 411 of the slot 410.
- the insertion portion 525b is provided, and the transition portion 210 is provided in the vicinity of the center straddling the circumferential direction.
- the transition portion 210 is a region including the apex portion 521a of a portion protruding from the end surface of the stator core 101, and is formed so as to transition in the radial direction of the rotary electric machine. Further, the transition portion 210 is formed between the transition ends 521b and 521c of the second segment coil 520.
- the radial transition amounts of the first segment coil 510 and the second segment coil 520 in the transition portions 200 and 210 are x1 and x2, respectively, and are configured such that x1> x2. That is, the transition portion of the first segment coil 510 is formed to have a larger transition size than the transition portion of the second segment coil 520.
- the first segment coil 510 has an inclined portion 511, and the inclined portion 511 is inclined by an angle ⁇ 1 with respect to the end face of the stator core 101.
- the second segment coil 520 has inclined portions 521 and 522, and the inclined portion 521 (first inclined portion) is inclined at the same angle as the inclined portion 511 of the first segment coil 510, while the inclined portion is inclined.
- the 522 (second inclined portion) is inclined at an angle ⁇ 2 with respect to the end face of the stator core 101.
- a part of the inclined portion of the first segment coil 510 and the second segment coil 520 is configured to be inclined at different angles. That is, the second segment coil 520 includes an inclined portion 522 inclined at an angle ⁇ 2 smaller than the angle ⁇ 1 of the inclined portion 511 of the first segment coil 510.
- the transposition is realized by allowing the second segment coil 520 to pass under the first segment coil 510.
- the first segment coil 510 and the second segment coil 520 intersect at the transition portions 200 and 210, respectively.
- the transformer is reduced only by reducing the axial height by changing the angle ⁇ 2 of the inclined portion 522 in the second segment coil 520 without increasing the axial height of the first segment coil 510. Since the position is possible, it is possible to suppress an increase in the physique of the motor. Further, both the first segment coil 510 and the second segment coil 520 can be manufactured with the same equipment such as bending and sheet metal processing, and the introduction of the transposition does not cause additional equipment or increase in man-hours, so that the cost is reduced. It can be suppressed from increasing.
- the first segment coil 510 and the second segment coil 520 are electrically connected in parallel at at least one location.
- the connection portions W1 and W2 are generally provided for each coil winding, but a configuration in which one location is provided for every two windings or more turns may be provided. Can also obtain the effect of this embodiment.
- the connecting portions W1 and W2, in which the first segment coil 510 and the second segment coil 520 are electrically connected, are provided on the side opposite to the end face of the stator core 101 provided with the transition portions 200 and 210 in the axial direction. ing.
- transition portions 200 and 210 and the connection portion may be grouped together in the same coil end, but the coil end in which the transition portion 200 and 210 are provided and the coil end in which the connection portion is provided are separately configured to improve manufacturability. And the structure can be simplified.
- the cross-sectional shapes of the first segment coil 510 and the second segment coil 520 in the transition portions 200 and 210 may be different from the cross-sectional shapes other than the transition portion. It may be configured as. Specifically, by configuring the first segment coil 510 so that the length in the axial direction is shortened (thinner in the axial direction) in the transition portion 200, the height in the axial direction can be suppressed.
- the cross-sectional shape of the first segment coil 510 and the second segment coil 520 may be changed by either the first segment coil 510 or the second segment coil 520, or both of them. good. That is, the cross-sectional shape of the first segment coil 510 and the second segment coil 520 may be changed by at least one of the first segment coil 510 and the second segment coil 520.
- FIGS. 6A to 6D show a configuration in which a plurality of transposition structures are arranged.
- FIG. 6A is a view of the state of the transposition of the plurality of arranged coils in the first embodiment of the present invention as viewed from the axial direction of the rotary electric machine.
- FIG. 6B is a view of the state of the transposition of the plurality of arranged coils in the first embodiment of the present invention as viewed from the radial direction of the rotary electric machine.
- FIG. 6C is a perspective view of the state of the transposition of the plurality of arranged coils in the first embodiment of the present invention as viewed obliquely.
- FIG. 6D is an enlarged view of the VID portion in FIG. 6B.
- each set of coils is the first segment coil 510a, 510b, 510c, 510d, 510e, respectively.
- transposition can be realized without the segment coils interfering with each other.
- the second segment coil 520f is composed of two inclined portions 521f and 522f having different inclination angles.
- the spatial distances from the other second segment coils 520e adjacent to the second segment coil 520f are different in the inclined portions 521f and 522f, and the spatial distances are y1 and y2, respectively.
- a spatial distance y2 is set so as to have sufficient dielectric strength against the potential difference generated between the two coils. Must be set. At that time, in FIG.
- the axial width of the second segment coil 520f is the same for the inclined portion 521f and the inclined portion 522f, but the width of the inclined portion 522f is narrowed with respect to the inclined portion 521f to obtain a predetermined y2. You may try to secure it. Further, a narrow portion may be similarly provided on the inclined portion of the adjacent second segment coil 520e.
- the inclined portions 521 and 522 of the second segment coil 520 are located on the circumferentially lagging side with respect to the transition portion 210, but in FIGS. 6A to 6D, they are located on the circumferentially advancing side. ..
- the arrangement of the inclined portions 521 and 522 may be on the lagging side or the advancing side in the circumferential direction with respect to the transition portion 210, and in either case, the transposition can be realized without the plurality of coils interfering with each other.
- FIG. 7A is a view of the state of the transformer position of the coil per winding in the second embodiment of the present invention as viewed from the radial direction of the rotary electric machine.
- FIG. 7B is a modification 1 of the second embodiment of the present invention.
- FIG. 7C is a modification 2 of the second embodiment of the present invention.
- the difference between the second embodiment and the first embodiment is the difference in the shapes of the first segment coil 510 and the second segment coil 520.
- the first segment coil 510 and the second segment coil 520 have inclined portions 511 and 521 having different inclination angles, respectively. Focusing on the second segment coil 520, since FIG. 5B has two (plurality) inclined portions 521 and 522, two (multiple times) bending steps are required in manufacturing, but in FIG. 7A, Since one inclined portion 521 is provided, the bending step can be shortened.
- the transposition can be performed by reducing only the axial height of the second segment coil 520 without increasing the axial height of the first segment coil 510. It is possible to suppress an increase in the motor physique.
- the point that the angle ⁇ 2 of the second segment coil 520 becomes smaller than the angle ⁇ 1 of the first segment coil 510 is the same as in FIG. 5B, and as described in FIG. 6D, the adjacent second segment coil 520 It is necessary to set a space distance between them so that it has sufficient dielectric strength.
- FIG. 7B which is a modification 1 of FIG. 7A
- the first segment coil 510 and the second segment coil 520 have inclined portions 511 and 521 having different inclination angles, respectively.
- the difference from FIG. 7A is that the angle ⁇ 1 of the first segment coil is increased instead of decreasing the angle ⁇ 2 of the second segment coil 520.
- the height of the second segment coil 520 is based on the axial height of the first segment coil 510 (the position of the apex portion 511a). Adjust so that the height in the axial direction (position of the apex portion 521a) is low.
- the first segment coil 510 is provided with a curved portion 513 on the circumferentially advancing side so that the inclination angles of the first segment coil 510 and the second segment coil 520 on the circumferentially advancing side are matched.
- the dielectric strength between the adjacent second segment coils 520 can be easily secured, so that the reliability can be improved.
- the first segment coil 510 has two (plural) inclined portions 511 and 512, and the inclined portion 511 is the same as the inclined portion 521 of the second segment coil 520. While tilting at an angle ⁇ 2, the tilted portion 512 is tilted at an angle ⁇ 1 larger than the angle ⁇ 2.
- the difference from FIG. 7B is that the angle ⁇ 1 of the first segment coil 510 increases only in the vicinity of the apex portion 511a in the axial direction of the coil end, and is the same as the second segment coil 520 otherwise. It is a point that becomes a shape.
- the angle ⁇ 1 is made larger from the curved portion 513a located near the apex portion 511a of the first segment coil 510, and the curved portion 513b is provided on the circumferentially advancing side of the apex portion 511a to provide the first segment coil 510 and the first segment coil 510.
- the inclination angles of the two-segment coil 520 on the circumferentially advancing side are matched.
- the height of the second segment coil 520 is based on the axial height of the first segment coil 510 (the position of the apex portion 511a). Adjust so that the height in the axial direction (position of the apex portion 521a) is low.
- the dielectric strength between adjacent segment coils can be easily secured, so that the reliability can be improved.
- FIG. 8A is a view of the state of the transformer position of the coil per winding in the third embodiment of the present invention as viewed from the axial direction of the rotary electric machine.
- FIG. 8B is a view of the state of the transformer position of the coil per winding in the third embodiment of the present invention as viewed from the radial direction of the rotary electric machine.
- the difference between the third embodiment and the first embodiment is that the shapes of the first segment coil 510 and the second segment coil 520 viewed from the radial direction are interchanged with each other. That is, the second segment coil 520 has an inclined portion 521, and the inclined portion 521 is inclined by an angle ⁇ 2 with respect to the end surface of the stator core 101.
- the first segment coil 510 has inclined portions 511 and 512, and the inclined portion 511 (first inclined portion) is inclined at the same angle as the inclined portion 521 of the second segment coil 520, while the inclined portion is inclined.
- the 512 (second inclined portion) is inclined at an angle ⁇ 1 with respect to the end face of the stator core 101.
- the transposition is realized by allowing the first segment coil 510 to pass under the second segment coil 520.
- the first segment coil 510 and the second segment coil 520 intersect at the transition portions 200 and 210, respectively.
- the transformer is reduced only by reducing the axial height by changing the angle ⁇ 1 of the inclined portion 512 in the first segment coil 510 without increasing the axial height of the second segment coil 520. Since the position is possible, it is possible to suppress an increase in the physique of the motor. Further, both the first segment coil 510 and the second segment coil 520 can be manufactured with the same equipment such as bending and sheet metal processing, and the introduction of the transposition does not cause additional equipment or increase in man-hours, so that the cost is reduced. It can be suppressed from increasing.
- FIGS. 9A to 11B are explanatory views of a method of assembling a coil per winding according to a fourth embodiment of the present invention.
- FIG. 9C is a view of the first and second segment coils in the fourth embodiment of the present invention as viewed from the circumferential direction.
- the coils 500a and 500b are vertically divided at the center in the axial direction, the upper half is divided into the first segment coil 510a and the second segment coil 520a, and the lower half is similarly divided into the first segment coil 510a. It is divided into a 1-segment coil 510b and a second segment coil 520b. In other words, the first segment coil 510a and the second segment coil 520a are combined to form the coil 500a (first coil), and the first segment coil 510b and the second segment coil 520b are combined to form the coil 500b (the first coil). 2 coils) are configured.
- the divided coil 500a and the coil 500b are provided with connection portions 600 (600a, 600b) connected in the slot 400.
- the lower end of the first segment coil 510a is located above the lower end of the second segment coil 520a, and the upper end of the first segment coil 510b is located above the upper end of the second segment coil 520b. ..
- the connecting portions 600a and 600b of the coils 500a and 500b are formed with stepped portions 601a and 601b having an L-shaped stepped shape when viewed from the circumferential direction of the rotary electric machine, and the lower end of the first segment coil 510a is formed.
- the upper end of the first segment coil 510b and the lower end of the second segment coil 520a face each other in the axial direction of the rotary electric machine, and the lower end of the second segment coil 520a and the upper end of the second segment coil 520b face each other in the axial direction of the rotary electric machine. Fit with. Then, the coils 500a and 500b are fitted so as to fill the stepped portions 601a and 601b of each other as shown in FIG. 9B.
- the stepped portions 601a and 601b between the coil 500a and the coil 500b are provided with conductive portions 610a, 610b, 620a and 620b for electrically connecting the coil 500a and the coil 500b.
- the conductive portion is formed on each surface of the first segment coil 510a and the second segment coil 520a facing each other, and on each surface of the first segment coil 510b and the second segment coil 520b facing each other.
- the conductive portion 620a of the second segment coil 520a faces the conductive portion 610a of the first segment coil 510a and faces the conductive portion 610b of the first segment coil 510b. Further, the conductive portion 610b also faces the conductive portion 620b of the second segment coil 520b. As a result, a state in which the respective conductive portions are in surface contact in the radial direction is formed, and electrical conduction of the originally disjointed conductors (first segment coil 510 and second segment coil 520) is ensured.
- the process of peeling and plating the insulating film of the conductor is simple for each conductive part, but it is limited to this process as long as the electrical conduction of the connection part and the electrical insulation of the other parts can be secured. It's not a thing. Further, by making the film thickness of the conductive plated portion larger than the thickness of the insulating film, the conductive surface can be surely brought into surface contact. Further, by melting the conductive surface by high frequency induction heating after assembling in the state of FIG. 9B, the electrical conduction of the connecting portion can be further improved.
- the work process can be simplified by drawing out the start end and the end end of the coil for each phase and applying the impulse current a single time or a plurality of times.
- the start end and the end may be drawn out for each coil winding or for each coil winding, and the impulse current may be applied a single time or a plurality of times.
- FIG. 10A is a view of the multi-stage coil per winding according to the fourth embodiment of the present invention as viewed from the axial direction of the rotary electric machine.
- FIG. 10B is a cross-sectional view taken along the line XB-XB in FIG. 10A.
- FIG. 10C is a circuit diagram according to a fourth embodiment of the present invention.
- the first segment coil 510a and the second segment coil 520a are collectively connected at the coil connecting portions W1m and W2m in the central portion in the axial direction.
- the first segment coil 510a and the second segment coil 520a are electrically short-circuited, so that a closed loop as shown in the circuit diagram of FIG. 10c is formed and a circulating current is generated.
- the first segment coil 510a and the second segment coil 520a are arranged on the 1t side and the 1b side in the slot 410 (first slot), respectively, while in the slot 420 (second slot), the first segment coil 510a and the second segment coil 520a are arranged on the 1t side and the 1b side.
- the arrangement of the 1-segment coil 510a and the 2nd segment coil 520a are changed so as to be on the 2b side and the 2t side, respectively.
- the electromotive forces E1t and E2b generated in the first segment coil 510a are canceled because they are in opposite directions to each other, and similarly, the electromotive forces E1b and E2t generated in the second segment coil 520a are also canceled.
- the generation of circulating current Ic can be suppressed, AC copper loss can be reduced, and welding at the coil end becomes unnecessary, so that the manufacturing cost can be reduced.
- FIG. 11A is a schematic view showing a coil connection state in the fourth embodiment of the present invention.
- FIG. 11B is a perspective view showing a coil connection state in the fourth embodiment of the present invention.
- the coil 500a and the coil 500b are inserted into the slot 400 from both sides in the axial direction of the stator core 101, and the coil 500a and the coil 500b are electrically connected in the slot 400.
- the connection unit 600 is configured. Further, the coil 500a and the coil 500b have a transition portion 200a of the first segment coil 510a, a transition portion 210a of the second segment coil 520a, a transition portion 200b of the first segment coil 510b, and a transition portion of the second segment coil 520b, respectively. 210b is formed. That is, the transition portions are provided on both sides of the stator core 101 in the axial direction.
- the transposition is possible by inserting the coil 500a having the transition portions 200a and 210a and the coil 500b having the transition portions 200b and 210b from both ends in the axial direction of the stator core 101. , The manufacturing workability of the rotary electric machine can be improved.
- FIG. 12 is a schematic configuration diagram of a vehicle according to a fifth embodiment of the present invention.
- the first to fourth embodiments of the present invention described above are applied to the rotary electric machines 751 and 752 shown in FIG.
- the vehicle 700 refers to, for example, a hybrid vehicle or a plug-in hybrid vehicle, and is equipped with an engine 760, a rotary electric machine 751, 752, and a battery 780.
- the battery 780 supplies DC power to the driving power conversion device 770 (inverter device).
- the power conversion device 770 converts the DC power from the battery 780 into AC power, and supplies the AC power to the rotary electric machines 751 and 752, respectively.
- the rotating electric machines 751 and 752 generate AC power according to the kinetic energy of the vehicle and supply it to the power conversion device 770.
- the power conversion device 770 converts the AC power from the rotary electric machines 751 and 752 into DC power, and supplies this DC power to the battery 780. Then, the battery 780 is charged.
- the rotational torque from the engine 760 and the rotary electric machines 751 and 752 is transmitted to the wheels 710 via the transmission 740, the differential gear 730, and the axle 720.
- the rotary electric machines 751 and 752 are required to be smaller and lighter because it is necessary to reduce the weight of the vehicle and secure a riding space. According to the fifth embodiment, by applying the rotary electric machine described in the first to fourth embodiments to the vehicle, it is possible to provide a vehicle with reduced size and weight.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Windings For Motors And Generators (AREA)
Abstract
The objective of the present invention is to provide a rotating electrical machine with which an increase in cost and physical size are suppressed. A first segment coil 510 and a second segment coil 520 are each provided with: a displacement portion 200, 210 formed in such a way as to be displaced in the radial direction of a rotating electrical machine; and an inclined portion 511, 522 formed inclined with respect to the end surface of a stator core 101. One end of the first segment coil 510 is disposed in a slot 410, and the other end is disposed in a slot 420. The second segment coil 520 is displaced by one end thereof being disposed radially outward of the first segment coil 510 in the slot 420, and the other end thereof being disposed radially inward of the first segment coil 510 in the slot 420. The inclined portion 511 of the first segment coil and the inclined portion 522 of the second segment coil 520 are inclined at different angles with respect to the end surface of the stator core 101.
Description
本発明は鉄道車両、自動車、建設機械等に搭載される回転電機及びこの回転電機を備えた車両に関する。
The present invention relates to a rotary electric machine mounted on a railroad vehicle, an automobile, a construction machine, etc., and a vehicle equipped with the rotary electric machine.
近年、モータの小型化が要求され、この要求に応えるため、モータの駆動回転数の高速化が進んでいる。これは、モータ出力がトルク×回転数に比例するため、回転数を増加してトルクを下げることで、小さなモータで同一出力を得ようとする試みである。ただし、高速化に伴いモータの電源周波数が高くなるため、固定子コイルの交流銅損が顕著に増加し、効率低下および発熱増加を招く。交流銅損は、スロット内を横切る磁束によりコイル内に電流分布の偏りが生じ、電流分布が偏ることによって発生する損失を指している。交流銅損は、電流、周波数、導体断面積が大きいほど増加する傾向にある。
In recent years, there has been a demand for miniaturization of motors, and in order to meet this demand, the drive speed of motors is increasing. This is an attempt to obtain the same output with a small motor by increasing the rotation speed and lowering the torque because the motor output is proportional to the torque × the rotation speed. However, since the power frequency of the motor increases as the speed increases, the AC copper loss of the stator coil increases remarkably, resulting in a decrease in efficiency and an increase in heat generation. AC copper loss refers to the loss that occurs when the current distribution is biased in the coil due to the magnetic flux that crosses the slot and the current distribution is biased. AC copper loss tends to increase as the current, frequency, and conductor cross-sectional area increase.
自動車などの駆動モータで広く採用されている分布巻固定子の場合、大量生産する都合上、コイル巻数を数ターンに抑え、隣接するコイルを固定子軸方向エンド部で溶接、接続する製造方法が採用されている(特許文献1)。この構造で交流銅損を低減するためには、1巻当りのコイルを多段の扁平角線で構成する等の対策が必要である。
In the case of distributed winding stators, which are widely used in drive motors such as automobiles, for the sake of mass production, the number of coil turns is limited to a few turns, and adjacent coils are welded and connected at the axial end of the stator. It has been adopted (Patent Document 1). In order to reduce AC copper loss with this structure, it is necessary to take measures such as configuring the coil per winding with multi-stage flat wire.
特許文献1に記載の製造方法においては、コイルが多段になるとコイルエンド接続部の溶接点数が増加し、製作が複雑になるという欠点がある。さらに特許文献1では、溶接工程での絶縁被膜損傷や溶接不良といった不具合が発生しやすく、モータの信頼性確保が課題となる。
The manufacturing method described in Patent Document 1 has a drawback that when the number of stages of the coil is increased, the number of welding points at the coil end connection portion increases and the manufacturing becomes complicated. Further, in Patent Document 1, defects such as damage to the insulating film and poor welding in the welding process are likely to occur, and ensuring the reliability of the motor becomes an issue.
この対策として、多段のコイルをまとめて溶接することで溶接点数の増加を抑制する方法がある。ただし、その場合、多段のコイルが溶接点で電気的に短絡されるため、これによって形成される閉ループに循環電流が流れ、新たに損失が増加する課題が生じる。
As a countermeasure, there is a method of suppressing an increase in the number of welding points by welding multi-stage coils together. However, in that case, since the multi-stage coil is electrically short-circuited at the welding point, a circulating current flows through the closed loop formed by the short circuit, which causes a problem that a new loss increases.
このため、コイル配置を転移(トランスポジション)することで循環電流の発生を抑える技術が提案されている(特許文献2、3)。
Therefore, a technique for suppressing the generation of circulating current by transferring the coil arrangement has been proposed (Patent Documents 2 and 3).
しかしながら、特許文献2、3記載に記載の技術では、トランスポジションするための追加設備と追加工数が必要なため、製造コストの増加を招くといった課題があった。また、特許文献3のようにコイルエンドでトランスポジションする場合には、転移部分で軸方向高さが増加し、モータ体格の増加を招くといった課題があった。
However, the techniques described in Patent Documents 2 and 3 require additional equipment and man-hours for transposition, which causes an increase in manufacturing cost. Further, in the case of transposition at the coil end as in Patent Document 3, there is a problem that the height in the axial direction increases at the transition portion, which leads to an increase in the physique of the motor.
本発明の目的は、コストや体格の増加を抑制することのできる回転電機及びこの回転電機を備えた車両を提供することにある。
An object of the present invention is to provide a rotary electric machine capable of suppressing an increase in cost and physique, and a vehicle equipped with this rotary electric machine.
上記目的を達成するために本発明は、回転子と固定子とを備え、前記固定子は、複数のスロットを有する固定子コアと、前記スロットに挿入される略U字状に形成された矩形断面のセグメントコイルと、を備える回転電機であって、前記スロットは、少なくとも第1スロットと第2スロットから構成され、前記セグメントコイルは、少なくとも第1セグメントコイルと第2セグメントコイルから構成され、前記第1スロット及び前記第2スロットのそれぞれは、前記回転電機の径方向内側から径方向外側に並んだ第1レイヤー及び第2レイヤーを有し、前記第1セグメントコイル及び前記第2セグメントコイルのそれぞれは、前記第1スロット内及び前記第2スロット内に配置されるスロット挿入部と、前記固定子コアの端面から突出した部位の頂点部を含む領域であって前記回転電機の径方向に転移するよう形成される転移部と、前記スロット挿入部と前記頂点部との間であって前記固定子コアの端面に対し傾斜して形成される傾斜部と、を備え、前記第1セグメントコイルは、一方が前記第1スロットの第1レイヤーに配置され、他方が前記第2スロットの第2レイヤーに配置され、前記第2セグメントコイルは、一方が前記第1スロットの第1レイヤーにおいて前記第1セグメントコイルに対し径方向外側に配置され、他方が前記第2スロットの第2レイヤーにおいて前記第1セグメントコイルに対し径方向内側に配置され、前記第1セグメントコイルの転移部は、前記第2セグメントコイルの転移部よりも転移する大きさが大きく形成され、前記第1セグメントコイルの傾斜部と前記第2セグメントコイルの傾斜部とは、前記固定子コアの端面に対して異なる角度で傾斜させたことを特徴とする。
In order to achieve the above object, the present invention includes a rotor and a stator, and the stator has a stator core having a plurality of slots and a substantially U-shaped rectangular shape inserted into the slots. A rotary electric machine including a segment coil having a cross section, wherein the slot is composed of at least a first slot and a second slot, and the segment coil is composed of at least a first segment coil and a second segment coil. Each of the first slot and the second slot has a first layer and a second layer arranged radially from the inside to the outside of the rotary electric machine, and each of the first segment coil and the second segment coil, respectively. Is a region including a slot insertion portion arranged in the first slot and the second slot and an apex portion of a portion protruding from the end face of the stator core, and is transferred in the radial direction of the rotary electric machine. The first segment coil comprises a transition portion formed in such a manner and an inclined portion formed between the slot insertion portion and the apex portion and inclined with respect to the end face of the stator core. One is arranged in the first layer of the first slot, the other is arranged in the second layer of the second slot, and one of the second segment coils is the first segment in the first layer of the first slot. The other is arranged radially outside the coil, the other is arranged radially inside the first segment coil in the second layer of the second slot, and the transition portion of the first segment coil is the second segment coil. The size of the transition is formed to be larger than that of the transition portion of the above, and the inclined portion of the first segment coil and the inclined portion of the second segment coil are inclined at different angles with respect to the end face of the stator core. It is characterized by.
本発明によれば、コストや体格の増加を抑制することのできる回転電機及びこの回転電機を備えた車両を提供することができる。
According to the present invention, it is possible to provide a rotary electric machine capable of suppressing an increase in cost and physique, and a vehicle equipped with this rotary electric machine.
以下、本発明の実施例について図面を参照して説明する。以下の説明では、同一の構成要素には同一の記号を付してある。それらの名称および機能は同じであり、重複説明は避ける。本発明では、「コイル」の定義を亀甲巻の1巻、または波巻の1サイクルとする。例えばコイルが4回巻き回された構成においては、4巻のコイルと表現するが、以下の説明では、説明を簡単にするため基本的に1巻のコイル(1巻当りコイル)を対象とする。また、1巻のコイルが複数の導体で構成される場合は、各導体をセグメントコイルと呼ぶ。
Hereinafter, examples of the present invention will be described with reference to the drawings. In the following description, the same components are given the same symbols. Their names and functions are the same, and duplicate explanations should be avoided. In the present invention, the definition of "coil" is defined as one volume of a hexagonal volume or one cycle of a wave winding. For example, in the configuration in which the coil is wound four times, it is expressed as a four-winding coil, but in the following description, for the sake of simplicity, basically one winding coil (one coil per winding) is targeted. .. When one coil is composed of a plurality of conductors, each conductor is called a segment coil.
また、以下の説明では自動車、鉄道車両など可変速駆動の回転電機を対象としているが、本発明の効果はこれに限定されるものではなく、一定速を含む回転電機全般に適用可能である。また、回転電機は、誘導機、永久磁石同期機、巻線型同期機、シンクロナスリラクタンス回転機、スイッチトリラクタンス回転機でもよい。また、以下の説明では内転型の回転電機を対象としているが、外転型の回転電機でもよい。また、コイルの材質は銅でも良いしアルミでもよいし、その他の導電材料でもよい。また、コイルの断面形状は角線を対象として説明しているが、本発明の効果はこれに限定されるものではなく、単一または複数の丸線で構成されていてもよいし、その他の形状でもよく、交流銅損が顕著となる構成全般に適用可能である。
Further, although the following description targets variable speed drive rotary electric machines such as automobiles and railroad vehicles, the effect of the present invention is not limited to this, and can be applied to all rotary electric machines including constant speed. Further, the rotary electric machine may be an induction machine, a permanent magnet synchronous machine, a winding type synchronous machine, a synchronous reluctance rotary machine, or a switched reluctance rotary machine. Further, although the following description targets an adduction type rotary electric machine, an abduction type rotary electric machine may also be used. Further, the material of the coil may be copper, aluminum, or other conductive material. Further, although the cross-sectional shape of the coil is described for a square wire, the effect of the present invention is not limited to this, and may be composed of a single or a plurality of round wires, or other The shape may be used, and it can be applied to all configurations in which AC copper loss is remarkable.
以下、図1乃至6を用いて、本発明の第1の実施例について説明する。図1Aは従来技術における1巻当りコイルを回転電機の軸方向から見た図である。図1Bは図1AにおけるIB-IB線断面図である。
Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 1 to 6. FIG. 1A is a view of the coil per winding in the prior art as viewed from the axial direction of the rotary electric machine. FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG. 1A.
図2Aは従来技術における多段で構成した1巻当りコイルを回転電機の径方向から見た図である。図2Bは図2AにおけるIIB-IIB線断面図である。
FIG. 2A is a view of a coil per turn composed of multiple stages in the prior art as viewed from the radial direction of the rotary electric machine. FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 2A.
図3Aは従来技術における多段で構成した1巻当りコイルを回転電機の軸方向から見た図である。図3Bは図3AにおけるIIIB-IIIB線断面図である。図3Cは従来技術における回路図である。
FIG. 3A is a view of a coil per turn composed of multiple stages in the prior art as viewed from the axial direction of the rotary electric machine. FIG. 3B is a sectional view taken along line IIIB-IIIB in FIG. 3A. FIG. 3C is a circuit diagram in the prior art.
図4Aは従来技術における多段で構成した1巻当りコイルのトランスポジションの状態を回転電機の軸方向から見た図である。図4Bは図4AにおけるIVB-IVB線断面図である。図4Cは従来技術におけるトランスポジションの回路図である。
FIG. 4A is a view of the state of the transformer position of the coil per winding composed of multiple stages in the prior art as viewed from the axial direction of the rotary electric machine. FIG. 4B is a sectional view taken along line IVB-IVB in FIG. 4A. FIG. 4C is a circuit diagram of a transposition in the prior art.
なお、図1A、図2A、図3A、図4Aは説明の便宜上、スロット断面を直線的に展開した図面としている。図1A、図2A、図3A、図4Aにおいて、スロット410,420の開口側(図の下方)が回転子と対向する。
Note that FIGS. 1A, 2A, 3A, and 4A are drawings in which the slot cross section is linearly developed for convenience of explanation. In FIGS. 1A, 2A, 3A, and 4A, the opening side (lower part of the figure) of slots 410 and 420 faces the rotor.
まず、従来技術におけるコイルの全体構成について、図1乃至図4を用いて説明する。図1A及び図1Bにおいて、固定子コア101は径方向内周側にギャップを介して、周方向に回転自由に支持された内転型の回転子(図示していない)を備えている。固定子コア101は周方向に複数のスロットを有しており、スロット内にはコイル500が挿入される。コイル500は、コイル間の絶縁を確保するために、エポキシ樹脂等の絶縁皮膜でコーティングされる。図1Aは2つのスロット410(第1スロット)、スロット420(第2スロット)と、当該スロットに挿入された1巻のコイル500を示している。コイル500は軸方向端部(コイルエンド)の接続部W1、W2において隣接するコイルと機械的・電気的に接続される。
First, the overall configuration of the coil in the prior art will be described with reference to FIGS. 1 to 4. In FIGS. 1A and 1B, the stator core 101 includes an adduction type rotor (not shown) supported in the circumferential direction via a gap on the inner peripheral side in the radial direction. The stator core 101 has a plurality of slots in the circumferential direction, and the coil 500 is inserted into the slots. The coil 500 is coated with an insulating film such as epoxy resin in order to secure insulation between the coils. FIG. 1A shows two slots 410 (first slot), slot 420 (second slot), and one roll of coil 500 inserted into the slot. The coil 500 is mechanically and electrically connected to adjacent coils at the connecting portions W1 and W2 at the axial end (coil end).
モータ駆動時には交流電流がコイル500に流れるが、図1A及び図1Bでは一例として正方向の電流が流れた状態を示す。すなわち、スロット410に格納されたコイル500には軸方向の正の向きに電流が流れ、スロット420に格納されたコイル500には軸方向の負の向きに電流が流れる。このとき、アンペールの法則に従いコイル500の軸方向周りには磁束が発生する。以下ではスロット410、420それぞれに発生する磁束密度をB1、B2とする。スロット部の磁気抵抗分布の影響により、一般にスロット開口部(ギャップ面)に近くなるほど磁束密度は高くなるためB1>B2となるが、以下では簡単のためB1とB2を同等とする。
When the motor is driven, an alternating current flows through the coil 500, but FIGS. 1A and 1B show a state in which a forward current flows as an example. That is, a current flows in the coil 500 stored in the slot 410 in the positive direction in the axial direction, and a current flows in the coil 500 stored in the slot 420 in the negative direction in the axial direction. At this time, magnetic flux is generated around the axial direction of the coil 500 according to Ampere's law. In the following, the magnetic flux densities generated in the slots 410 and 420 are referred to as B1 and B2, respectively. Due to the influence of the reluctance distribution of the slot portion, the magnetic flux density generally increases as it gets closer to the slot opening (gap surface), so that B1> B2. However, in the following, B1 and B2 are made equivalent for the sake of simplicity.
モータ駆動時においてコイルの電流は交流変化するので、磁束密度B1、B2も交流変化する。電磁誘導の法則に従って、導体には微小時間Δt当たりの磁束密度変化ΔBを打ち消す方向に起電力Eとコイル内渦電流Ieが発生し、これによって交流銅損Pacが発生する。コイル内渦電流Ieが流れる経路の抵抗を一般に交流抵抗Racと呼ぶ。それぞれの物理量には以下の関係が成り立つ(~:比例を表す記号)。
Since the coil current changes in alternating current when the motor is driven, the magnetic flux densities B1 and B2 also change in alternating current. According to the law of electromagnetic induction, an electromotive force E and an eddy current Ie in the coil are generated in the conductor in a direction that cancels the magnetic flux density change ΔB per minute time Δt, which causes an AC copper loss Pac. The resistance of the path through which the eddy current Ie in the coil flows is generally called an AC resistance Rac. The following relationship holds for each physical quantity (~: symbol representing proportionality).
E~-ΔB/Δt Ie~E/Rac Pac~Rac×(Ieの2乗) したがって、Pacは以下のように表すことができる。
E-ΔB / Δt Ie-E / Rac Pac-Rac × (Ie squared) Therefore, Pac can be expressed as follows.
Pac~(ΔBの2乗)/(Δtの2乗)/Rac 自動車の駆動モータのように大量生産される用途においては、図1A及び図1Bに示すように1巻のコイルにつき1本のセグメントコイルで構成する場合が多く、高速回転時には駆動周波数が増加する、すなわちΔtが減少するため、交流銅損Pacが増加する。
Pac ~ (ΔB squared) / (Δt squared) / Rac In mass-produced applications such as automobile drive motors, one segment per coil as shown in FIGS. 1A and 1B. In many cases, it is composed of a coil, and the drive frequency increases at high speed rotation, that is, Δt decreases, so that the AC copper loss Pac increases.
この対策として、図2A及び図2Bに示すように1巻のコイルを多段の扁平角線で構成して交流銅損を低減する方法が知られている。図2A及び図2Bでは、1巻のコイルを第1セグメントコイル510と第2セグメントコイル520の2段で構成している。第1セグメントコイル510と第2セグメントコイル520は、略U字状に形成された矩形断面で形成され、スロット410、420に挿入される。このような構成とすることで、1本のセグメントコイルを透過する磁束密度B1、B2は図1A及び図1Bに示した磁束密度の半分になるほか、1本のセグメントコイルの断面積が1/2となるので、コイル渦電流Ieが流れる経路の抵抗Racは2倍となる。したがって、図1A及び図1Bのコイル500に発生する交流銅損と比較すると、第1セグメントコイル510,第2セグメントコイル520に発生する交流銅損はそれぞれ1/8、合計で1/4となる。
As a countermeasure against this, as shown in FIGS. 2A and 2B, a method is known in which one coil is composed of a multi-stage flat square wire to reduce AC copper loss. In FIGS. 2A and 2B, one coil is composed of two stages, a first segment coil 510 and a second segment coil 520. The first segment coil 510 and the second segment coil 520 are formed in a rectangular cross section formed in a substantially U shape, and are inserted into slots 410 and 420. With such a configuration, the magnetic flux densities B1 and B2 transmitted through one segment coil are halved from the magnetic flux densities shown in FIGS. 1A and 1B, and the cross-sectional area of one segment coil is 1 /. Since it becomes 2, the resistance Rac of the path through which the coil eddy current Ie flows is doubled. Therefore, the AC copper loss generated in the first segment coil 510 and the second segment coil 520 is 1/8 each, which is 1/4 in total, as compared with the AC copper loss generated in the coils 500 of FIGS. 1A and 1B. ..
このように多段の扁平角線で構成することで交流銅損を大幅に低減することができる。ただし、図2A及び図2Bでは、コイルエンドの接続部W1、W2において溶接点数が2倍に増加し、製作が複雑になる欠点があるほか、溶接工程での絶縁被膜損傷や溶接不良といった不具合が発生しやすく、モータの信頼性確保が課題となる。
By configuring the flat wire in multiple stages in this way, AC copper loss can be significantly reduced. However, in FIGS. 2A and 2B, the number of welding points at the connection portions W1 and W2 of the coil end is doubled, which has a drawback that the manufacturing becomes complicated, and there are problems such as damage to the insulating film and poor welding in the welding process. It tends to occur, and ensuring the reliability of the motor becomes an issue.
溶接点数の増加を抑制する技術として、例えば図3A及び図3Bに示すように複数のセグメントコイルをまとめて溶接する方法がある。図3A及び図3Bでは、第1セグメントコイル510と第2セグメントコイル520とがコイルエンドの接続部W1、W2においてそれぞれまとめて溶接されている。ただし、この構成では、第1セグメントコイル510,第2セグメントコイル520が電気的に短絡されるため、図3Cの回路図に示すような閉ループが形成され、循環電流Icが流れることで新たに損失が発生する課題がある。
As a technique for suppressing an increase in the number of welding points, for example, as shown in FIGS. 3A and 3B, there is a method of welding a plurality of segment coils together. In FIGS. 3A and 3B, the first segment coil 510 and the second segment coil 520 are welded together at the connection portions W1 and W2 of the coil ends, respectively. However, in this configuration, since the first segment coil 510 and the second segment coil 520 are electrically short-circuited, a closed loop as shown in the circuit diagram of FIG. 3C is formed, and a new loss is caused by the flowing current Ic. There is a problem that occurs.
図3A及び図3Bでは、スロット410の磁束密度B1を打ち消すように、第1セグメントコイル510,第2セグメントコイル520に起電力E1t、E1bがそれぞれ発生し、同様にスロット420の磁束密度B2を打ち消すように起電力E2t、E2bがそれぞれ発生する。これらの起電力は全て同一方向に発生しており、総和をEとすると、循環電流IcはEに比例する。このため、高速回転時に駆動周波数が増加するほど循環電流Icによる損失は大きくなり無視できない。
In FIGS. 3A and 3B, electromotive forces E1t and E1b are generated in the first segment coil 510 and the second segment coil 520, respectively, so as to cancel the magnetic flux density B1 in the slot 410, and similarly cancel the magnetic flux density B2 in the slot 420. As described above, electromotive forces E2t and E2b are generated, respectively. All of these electromotive forces are generated in the same direction, and if the sum is E, the circulating current Ic is proportional to E. Therefore, as the drive frequency increases during high-speed rotation, the loss due to the circulating current Ic increases and cannot be ignored.
そこで、図4A及び図4Bに示すように、コイル配置をトランスポジションすることで循環電流Icの発生を抑えることができる。図4Aのスロット断面に示すように、スロット410では第1セグメントコイル510,第2セグメントコイル520をそれぞれ1t側、1b側に配置する一方で、スロット420では第1セグメントコイル510,第2セグメントコイル520をそれぞれ2b側、2t側となるように配置を入れ替えている。これによって、第1セグメントコイル510に発生する起電力E1tとE2bとは互い逆方向となるためキャンセルされ、同様に第2セグメントコイル520に発生する起電力E1bとE2tもキャンセルされる。結果として循環電流Icの発生が抑制され、溶接点数を増加することなく、交流銅損を低減することができる。
Therefore, as shown in FIGS. 4A and 4B, the generation of circulating current Ic can be suppressed by transposing the coil arrangement. As shown in the slot cross section of FIG. 4A, in slot 410, the first segment coil 510 and the second segment coil 520 are arranged on the 1t side and 1b side, respectively, while in slot 420, the first segment coil 510 and the second segment coil are arranged. The arrangement of the 520s is changed so that they are on the 2b side and the 2t side, respectively. As a result, the electromotive forces E1t and E2b generated in the first segment coil 510 are canceled because they are in opposite directions, and similarly, the electromotive forces E1b and E2t generated in the second segment coil 520 are also canceled. As a result, the generation of circulating current Ic is suppressed, and AC copper loss can be reduced without increasing the number of welding points.
しかしながら、従来技術ではトランスポジションするための追加設備と追加工数が必要なため、大幅なコスト増を招く課題がある。また、トランスポジションするために固定子の軸方向高さが増加し、モータ体格の増加を招く課題がある。
However, the conventional technology requires additional equipment and man-hours for transposition, which causes a problem of a significant increase in cost. Further, there is a problem that the axial height of the stator increases due to the transposition, which leads to an increase in the motor physique.
上述したように、高効率で信頼性の高い回転電機を提供するためには、コストや体格の増加を招く課題がある。本発明はこれらの課題を解決するものであり、以下その具体的な解決手段と原理について図5A~図6Dを用いて説明する。
As mentioned above, in order to provide a rotating electric machine with high efficiency and high reliability, there is a problem that causes an increase in cost and physique. The present invention solves these problems, and the specific means and principles thereof will be described below with reference to FIGS. 5A to 6D.
図5Aは本発明の第1実施例における1巻当りコイルのトランスポジションの状態を回転電機の軸方向から見た図である。図5Bは本発明の第1実施例における1巻当りコイルのトランスポジションの状態を回転電機の径方向から見た図である。
FIG. 5A is a view of the state of the transformer position of the coil per winding in the first embodiment of the present invention as viewed from the axial direction of the rotary electric machine. FIG. 5B is a view of the state of the transformer position of the coil per winding in the first embodiment of the present invention as viewed from the radial direction of the rotary electric machine.
図5Aにおいて、スロット410は第1レイヤー411と第2レイヤー412から成り、スロット420も同様に第1レイヤー421と第2レイヤー422から成る。第1レイヤー411,421と第2レイヤー412,422は、回転電機の径方向内側から径方向外側に並んで配置される。すなわち、第1レイヤー411、421は径方向内側に位置し、第2レイヤー412,422は第1レイヤー411,421に対して径方向外側に位置している。なお、第1レイヤー411,421,第2レイヤー412,422は、スロット410,420内に仕切を設けて物理的に分離するように形成しても良く、また、スロット410,420内に仕切を設けず、コイルが配置された位置に応じて呼称するようにしても良い。
In FIG. 5A, the slot 410 is composed of the first layer 411 and the second layer 412, and the slot 420 is also composed of the first layer 421 and the second layer 422. The first layer 411, 421 and the second layer 421, 422 are arranged side by side from the radial inside to the radial outside of the rotary electric machine. That is, the first layers 411 and 421 are located on the inner side in the radial direction, and the second layers 421 and 422 are located on the outer side in the radial direction with respect to the first layers 411 and 421. The first layer 411, 421 and the second layers 421 and 422 may be formed so as to be physically separated by providing a partition in the slots 410 and 420, and the partition may be formed in the slots 410 and 420. It may be called according to the position where the coil is arranged without providing it.
第1セグメントコイル510は、周方向に跨っており、一方がスロット410(第1スロット)に挿入され、スロット410の第1レイヤー411に配置されるスロット挿入部515aと、他方がスロット420(第2スロット)に挿入され、スロット420の第2レイヤー422に配置されるスロット挿入部515bを備えており、周方向跨りの中央近傍には転移部200を備えている。転移部200は、固定子コア101の端面から突出した部位の頂点部511aを含む領域であって回転電機の径方向に転移するよう形成されている。さらに、転移部200は、第1セグメントコイル510の転移端部511b,511cの間に形成されている。
The first segment coil 510 straddles the circumferential direction, one is inserted into the slot 410 (first slot), the slot insertion portion 515a is arranged in the first layer 411 of the slot 410, and the other is the slot 420 (first slot). A slot insertion portion 515b that is inserted into (2 slots) and arranged in the second layer 422 of the slot 420 is provided, and a transition portion 200 is provided near the center of the circumferential direction. The transition portion 200 is a region including the apex portion 511a of the portion protruding from the end face of the stator core 101, and is formed so as to transition in the radial direction of the rotary electric machine. Further, the transition portion 200 is formed between the transition ends 511b and 511c of the first segment coil 510.
第2セグメントコイル520は、周方向に跨っており、一方がスロット410(第1スロット)に挿入され、スロット410の第1レイヤー411において第1セグメントコイル510に対し径方向外側(外周側)に配置されるスロット挿入部525aと、他方がスロット420(第2スロット)に挿入され、スロット420の第2レイヤー422において第1セグメントコイル510に対し径方向内側(内周側)に配置されるスロット挿入部525bを備えており、周方向跨りの中央近傍には転移部210を有する。転移部210は、固定子コア101の端面から突出した部位の頂点部521aを含む領域であって回転電機の径方向に転移するよう形成されている。さらに、転移部210は、第2セグメントコイル520の転移端部521b,521cの間に形成されている。
The second segment coil 520 straddles the circumferential direction, one of which is inserted into the slot 410 (first slot), and is radially outward (outer peripheral side) with respect to the first segment coil 510 in the first layer 411 of the slot 410. A slot in which the slot insertion portion 525a is arranged and the other is inserted into the slot 420 (second slot) and is arranged radially inside (inner peripheral side) with respect to the first segment coil 510 in the second layer 422 of the slot 420. The insertion portion 525b is provided, and the transition portion 210 is provided in the vicinity of the center straddling the circumferential direction. The transition portion 210 is a region including the apex portion 521a of a portion protruding from the end surface of the stator core 101, and is formed so as to transition in the radial direction of the rotary electric machine. Further, the transition portion 210 is formed between the transition ends 521b and 521c of the second segment coil 520.
転移部200,210における第1セグメントコイル510,第2セグメントコイル520の径方向転移量はそれぞれx1、x2であり、x1>x2となるように構成する。すなわち、第1セグメントコイル510の転移部は、第2セグメントコイル520の転移部よりも転移する大きさが大きく形成されている。
The radial transition amounts of the first segment coil 510 and the second segment coil 520 in the transition portions 200 and 210 are x1 and x2, respectively, and are configured such that x1> x2. That is, the transition portion of the first segment coil 510 is formed to have a larger transition size than the transition portion of the second segment coil 520.
また、図5Bに示すように、第1セグメントコイル510は傾斜部511を有し、傾斜部511は固定子コア101の端面に対して角度θ1だけ傾斜している。これに対して、第2セグメントコイル520は傾斜部521、522を有し、傾斜部521(第1傾斜部)は第1セグメントコイル510の傾斜部511と同じ角度で傾斜する一方で、傾斜部522(第2傾斜部)は固定子コア101の端面に対して角度θ2で傾斜する。このように、第1セグメントコイル510と第2セグメントコイル520の傾斜部の一部が異なる角度で傾斜するように構成する。すなわち、第2セグメントコイル520は、第1セグメントコイル510の傾斜部511の角度θ1より小さい角度θ2で傾斜した傾斜部522を備えている。
Further, as shown in FIG. 5B, the first segment coil 510 has an inclined portion 511, and the inclined portion 511 is inclined by an angle θ1 with respect to the end face of the stator core 101. On the other hand, the second segment coil 520 has inclined portions 521 and 522, and the inclined portion 521 (first inclined portion) is inclined at the same angle as the inclined portion 511 of the first segment coil 510, while the inclined portion is inclined. The 522 (second inclined portion) is inclined at an angle θ2 with respect to the end face of the stator core 101. In this way, a part of the inclined portion of the first segment coil 510 and the second segment coil 520 is configured to be inclined at different angles. That is, the second segment coil 520 includes an inclined portion 522 inclined at an angle θ2 smaller than the angle θ1 of the inclined portion 511 of the first segment coil 510.
図5Bでは、θ1>θ2となるように構成しており、第1セグメントコイル510の転移部200は、第2セグメントコイル520の転移部210よりも固定子コア101の端面から離れた位置に配置されている。
In FIG. 5B, θ1> θ2, and the transition portion 200 of the first segment coil 510 is arranged at a position farther from the end face of the stator core 101 than the transition portion 210 of the second segment coil 520. Has been done.
そして、第1セグメントコイル510と第2セグメントコイル520の転移部200,210において、第2セグメントコイル520が第1セグメントコイル510の下側をくぐるようにすることでトランスポジションを実現している。換言すると、第1セグメントコイル510と第2セグメントコイル520は、それぞれの転移部200,210において交差している。
Then, in the transition portions 200 and 210 of the first segment coil 510 and the second segment coil 520, the transposition is realized by allowing the second segment coil 520 to pass under the first segment coil 510. In other words, the first segment coil 510 and the second segment coil 520 intersect at the transition portions 200 and 210, respectively.
第1実施例によれば、第1セグメントコイル510の軸方向高さを増加することなく、第2セグメントコイル520における傾斜部522の角度θ2を変えて軸方向高さのみを縮小することでトランスポジションが可能となるため、モータの体格が増加するのを抑制することができる。また、第1セグメントコイル510、第2セグメントコイル520共に折り曲げ加工や板金加工などの同一設備で製作可能であり、トランスポジションの導入に伴って追加設備や工数増加を招くことがないため、コストが増加するのを抑制することができる。
According to the first embodiment, the transformer is reduced only by reducing the axial height by changing the angle θ2 of the inclined portion 522 in the second segment coil 520 without increasing the axial height of the first segment coil 510. Since the position is possible, it is possible to suppress an increase in the physique of the motor. Further, both the first segment coil 510 and the second segment coil 520 can be manufactured with the same equipment such as bending and sheet metal processing, and the introduction of the transposition does not cause additional equipment or increase in man-hours, so that the cost is reduced. It can be suppressed from increasing.
第1セグメントコイル510と第2セグメントコイル520は、少なくとも1箇所以上で、電気的に並列接続される。接続方法に関しては、図4Bのようにコイル1巻ごとに接続部W1,W2を設ける構成が一般的だが、2巻ごとまたはそれ以上の巻数で1箇所を設ける構成としても良く、いずれの構成においても本実施例の効果を得ることができる。第1セグメントコイル510と第2セグメントコイル520とが電気的に接続される接続部W1,W2は、転移部200,210を設けた固定子コア101の端面に対して、軸方向反対側に設けている。
The first segment coil 510 and the second segment coil 520 are electrically connected in parallel at at least one location. Regarding the connection method, as shown in FIG. 4B, the connection portions W1 and W2 are generally provided for each coil winding, but a configuration in which one location is provided for every two windings or more turns may be provided. Can also obtain the effect of this embodiment. The connecting portions W1 and W2, in which the first segment coil 510 and the second segment coil 520 are electrically connected, are provided on the side opposite to the end face of the stator core 101 provided with the transition portions 200 and 210 in the axial direction. ing.
また、転移部200,210と接続部は同一コイルエンドにまとめても良いが、転移部200,210を設けるコイルエンドと、接続部を設けるコイルエンドとを分けて構成することで、製作性向上や構造簡素化を図ることができる。
Further, the transition portions 200 and 210 and the connection portion may be grouped together in the same coil end, but the coil end in which the transition portion 200 and 210 are provided and the coil end in which the connection portion is provided are separately configured to improve manufacturability. And the structure can be simplified.
さらに、転移部200,210において軸方向の寸法制約が厳しい場合には、転移部200,210における第1セグメントコイル510,第2セグメントコイル520の断面形状を、転移部以外の断面形状と異なるように構成しても良い。具体的に、第1セグメントコイル510を転移部200において軸方向の長さを短く(軸方向に薄く)なるように構成することで、軸方向高さを抑制することができる。第1セグメントコイル510,第2セグメントコイル520における断面形状の変更は、第1セグメントコイル510、若しくは第2セグメントコイル520の何れか一方で実施しても良く、また両方で実施するようにしても良い。すなわち、第1セグメントコイル510,第2セグメントコイル520における断面形状の変更は、第1セグメントコイル510、若しくは第2セグメントコイル520の少なくとも一方で実施すれば良い。
Further, when the axial dimensional restrictions in the transition portions 200 and 210 are strict, the cross-sectional shapes of the first segment coil 510 and the second segment coil 520 in the transition portions 200 and 210 may be different from the cross-sectional shapes other than the transition portion. It may be configured as. Specifically, by configuring the first segment coil 510 so that the length in the axial direction is shortened (thinner in the axial direction) in the transition portion 200, the height in the axial direction can be suppressed. The cross-sectional shape of the first segment coil 510 and the second segment coil 520 may be changed by either the first segment coil 510 or the second segment coil 520, or both of them. good. That is, the cross-sectional shape of the first segment coil 510 and the second segment coil 520 may be changed by at least one of the first segment coil 510 and the second segment coil 520.
図6A~図6Dにトランスポジション構造を複数配列した構成を示す。図6Aは本発明の第1実施例における複数配列されたコイルのトランスポジションの状態を回転電機の軸方向から見た図である。図6Bは本発明の第1実施例における複数配列されたコイルのトランスポジションの状態を回転電機の径方向から見た図である。図6Cは本発明の第1実施例における複数配列されたコイルのトランスポジションの状態を斜めから見た斜視図である。図6Dは図6BにおけるVID部の拡大図である。
FIGS. 6A to 6D show a configuration in which a plurality of transposition structures are arranged. FIG. 6A is a view of the state of the transposition of the plurality of arranged coils in the first embodiment of the present invention as viewed from the axial direction of the rotary electric machine. FIG. 6B is a view of the state of the transposition of the plurality of arranged coils in the first embodiment of the present invention as viewed from the radial direction of the rotary electric machine. FIG. 6C is a perspective view of the state of the transposition of the plurality of arranged coils in the first embodiment of the present invention as viewed obliquely. FIG. 6D is an enlarged view of the VID portion in FIG. 6B.
図6A~図6Cでは、6組のコイル500a、500b、500c、500d、500e、500fが周方向に配置されており、各組のコイルはそれぞれ第1セグメントコイル510a,510b,510c,510d,510e,510fと、第2セグメントコイル520a,520b,520c,520d,520e,520fとの組み合わせで構成される。
In FIGS. 6A to 6C, six sets of coils 500a, 500b, 500c, 500d, 500e, and 500f are arranged in the circumferential direction, and each set of coils is the first segment coil 510a, 510b, 510c, 510d, 510e, respectively. , 510f and the second segment coils 520a, 520b, 520c, 520d, 520e, 520f.
本実施例によれば、複数のセグメントコイルを配列する場合においてもセグメントコイル同士が干渉することなくトランスポジションを実現することができる。
According to this embodiment, even when a plurality of segment coils are arranged, transposition can be realized without the segment coils interfering with each other.
図6Dに示すように、第2セグメントコイル520fは、傾斜角の異なる2つの傾斜部521f,522fで構成される。第2セグメントコイル520fに隣接する他の第2セグメントコイル520eとの空間距離は、傾斜部521f,522fにおいて異なっており、それぞれの空間距離はy1、y2となる。第2セグメントコイル520f,520eに電流が通電される場合、特に異相の電流が通電される場合には、両コイルの間に発生する電位差に対して十分な絶縁耐力を有するような空間距離y2を設定する必要がある。その際、図6Dでは第2セグメントコイル520fの軸方向幅を傾斜部521fと傾斜部522fとで同一としているが、傾斜部522fの幅を傾斜部521fに対して狭くすることで所定のy2を確保するようにしても良い。また、隣接する第2セグメントコイル520eの傾斜部に対しても同様に狭幅の部分を設けても良い。
As shown in FIG. 6D, the second segment coil 520f is composed of two inclined portions 521f and 522f having different inclination angles. The spatial distances from the other second segment coils 520e adjacent to the second segment coil 520f are different in the inclined portions 521f and 522f, and the spatial distances are y1 and y2, respectively. When a current is applied to the second segment coils 520f and 520e, especially when a current of a different phase is applied, a spatial distance y2 is set so as to have sufficient dielectric strength against the potential difference generated between the two coils. Must be set. At that time, in FIG. 6D, the axial width of the second segment coil 520f is the same for the inclined portion 521f and the inclined portion 522f, but the width of the inclined portion 522f is narrowed with respect to the inclined portion 521f to obtain a predetermined y2. You may try to secure it. Further, a narrow portion may be similarly provided on the inclined portion of the adjacent second segment coil 520e.
なお、図5Bでは第2セグメントコイル520の傾斜部521と522とが転移部210に対して周方向遅れ側に位置しているが、図6A~図6Dでは周方向進み側に位置している。このように傾斜部521、522の配置は、転移部210に対して周方向遅れ側でも進み側でも良く、いずれの場合においても複数のコイルが干渉することなくトランスポジションを実現できる。
In FIG. 5B, the inclined portions 521 and 522 of the second segment coil 520 are located on the circumferentially lagging side with respect to the transition portion 210, but in FIGS. 6A to 6D, they are located on the circumferentially advancing side. .. As described above, the arrangement of the inclined portions 521 and 522 may be on the lagging side or the advancing side in the circumferential direction with respect to the transition portion 210, and in either case, the transposition can be realized without the plurality of coils interfering with each other.
次に図7を用いて本発明の第2実施例について説明する。図7Aは本発明の第2実施例における1巻当りコイルのトランスポジションの状態を回転電機の径方向から見た図である。図7Bは本発明の第2実施例における変形例1である。図7Cは本発明の第2実施例における変形例2である。
Next, a second embodiment of the present invention will be described with reference to FIG. 7. FIG. 7A is a view of the state of the transformer position of the coil per winding in the second embodiment of the present invention as viewed from the radial direction of the rotary electric machine. FIG. 7B is a modification 1 of the second embodiment of the present invention. FIG. 7C is a modification 2 of the second embodiment of the present invention.
第2実施例において、第1実施例と異なるところは、第1セグメントコイル510,第2セグメントコイル520の形状の違いにある。
The difference between the second embodiment and the first embodiment is the difference in the shapes of the first segment coil 510 and the second segment coil 520.
図7Aにおいて、第1セグメントコイル510と第2セグメントコイル520は、それぞれ傾斜角の異なる傾斜部511、521を有する。第2セグメントコイル520に着目すると、図5Bでは2つ(複数)の傾斜部521、522を有しているため製作上は2回(複数回)の折り曲げ工程が必要となるが、図7Aでは1つの傾斜部521となるため、折り曲げ工程の短縮が可能となる。
In FIG. 7A, the first segment coil 510 and the second segment coil 520 have inclined portions 511 and 521 having different inclination angles, respectively. Focusing on the second segment coil 520, since FIG. 5B has two (plurality) inclined portions 521 and 522, two (multiple times) bending steps are required in manufacturing, but in FIG. 7A, Since one inclined portion 521 is provided, the bending step can be shortened.
また、第2実施例によれば、第1セグメントコイル510の軸方向高さを増加することなく、第2セグメントコイル520の軸方向高さのみを縮小することでトランスポジションが可能となるため、モータ体格が増加するのを抑制することができる。一方で、第1セグメントコイル510の角度θ1に対して第2セグメントコイル520の角度θ2が小さくなる点は図5Bと同様であり、図6Dで述べたように、隣接する第2セグメントコイル520の間では十分な絶縁耐力を有するような空間距離を設定する必要がある。
Further, according to the second embodiment, the transposition can be performed by reducing only the axial height of the second segment coil 520 without increasing the axial height of the first segment coil 510. It is possible to suppress an increase in the motor physique. On the other hand, the point that the angle θ2 of the second segment coil 520 becomes smaller than the angle θ1 of the first segment coil 510 is the same as in FIG. 5B, and as described in FIG. 6D, the adjacent second segment coil 520 It is necessary to set a space distance between them so that it has sufficient dielectric strength.
次に図7Aの変形例1である図7Bでも同様に、第1セグメントコイル510と第2セグメントコイル520はそれぞれ傾斜角の異なる傾斜部511、521を有する。図7Aとの違いは、第2セグメントコイル520の角度θ2を小さくする代わりに、第1セグメントコイルの角度θ1を大きくしている点である。この場合、第1セグメントコイル510の軸方向高さが増加するのを抑制するために、第1セグメントコイル510の軸方向高さ(頂点部511aの位置)を基準として、第2セグメントコイル520の軸方向高さ(頂点部521aの位置)が低くなるように調整する。さらに、第1セグメントコイル510には周方向進み側に湾曲部513を設け、第1セグメントコイル510と第2セグメントコイル520の周方向進み側における傾斜角を一致させている。
Next, in FIG. 7B, which is a modification 1 of FIG. 7A, similarly, the first segment coil 510 and the second segment coil 520 have inclined portions 511 and 521 having different inclination angles, respectively. The difference from FIG. 7A is that the angle θ1 of the first segment coil is increased instead of decreasing the angle θ2 of the second segment coil 520. In this case, in order to suppress the increase in the axial height of the first segment coil 510, the height of the second segment coil 520 is based on the axial height of the first segment coil 510 (the position of the apex portion 511a). Adjust so that the height in the axial direction (position of the apex portion 521a) is low. Further, the first segment coil 510 is provided with a curved portion 513 on the circumferentially advancing side so that the inclination angles of the first segment coil 510 and the second segment coil 520 on the circumferentially advancing side are matched.
変形例1によれば、隣接する第2セグメントコイル520の間の絶縁耐力を容易に確保できるため、信頼性を向上することができる。
According to the first modification, the dielectric strength between the adjacent second segment coils 520 can be easily secured, so that the reliability can be improved.
次に図7Aの変形例2である図7Cでは、第1セグメントコイル510は2つ(複数)の傾斜部511、512を有し、傾斜部511は第2セグメントコイル520の傾斜部521と同じ角度θ2で傾斜する一方で、傾斜部512は角度θ2より大きい角度θ1で傾斜させている。図7Cにおいて、図7Bとの違いは、第1セグメントコイル510の角度θ1が大きくなるのは、コイルエンドの軸方向である頂点部511a近傍のみであり、それ以外では第2セグメントコイル520と同じ形状となる点である。すなわち、第1セグメントコイル510の頂点部511a近傍に位置する湾曲部513aから角度θ1が大きくなるようにし、さらに頂点部511aの周方向進み側に湾曲部513bを設け、第1セグメントコイル510と第2セグメントコイル520の周方向進み側における傾斜角を一致させている。この場合、第1セグメントコイル510の軸方向高さが増加するのを抑制するために、第1セグメントコイル510の軸方向高さ(頂点部511aの位置)を基準として、第2セグメントコイル520の軸方向高さ(頂点部521aの位置)が低くなるように調整する。
Next, in FIG. 7C, which is a modification 2 of FIG. 7A, the first segment coil 510 has two (plural) inclined portions 511 and 512, and the inclined portion 511 is the same as the inclined portion 521 of the second segment coil 520. While tilting at an angle θ2, the tilted portion 512 is tilted at an angle θ1 larger than the angle θ2. In FIG. 7C, the difference from FIG. 7B is that the angle θ1 of the first segment coil 510 increases only in the vicinity of the apex portion 511a in the axial direction of the coil end, and is the same as the second segment coil 520 otherwise. It is a point that becomes a shape. That is, the angle θ1 is made larger from the curved portion 513a located near the apex portion 511a of the first segment coil 510, and the curved portion 513b is provided on the circumferentially advancing side of the apex portion 511a to provide the first segment coil 510 and the first segment coil 510. The inclination angles of the two-segment coil 520 on the circumferentially advancing side are matched. In this case, in order to suppress the increase in the axial height of the first segment coil 510, the height of the second segment coil 520 is based on the axial height of the first segment coil 510 (the position of the apex portion 511a). Adjust so that the height in the axial direction (position of the apex portion 521a) is low.
変形例2によれば、隣接するセグメントコイル同士の絶縁耐力を容易に確保できるため、信頼性を向上することができる。
According to the second modification, the dielectric strength between adjacent segment coils can be easily secured, so that the reliability can be improved.
次に図8A及び図8Bを用いて、本発明の第3実施例について説明する。図8Aは本発明の第3実施例における1巻当りコイルのトランスポジションの状態を回転電機の軸方向から見た図である。図8Bは本発明の第3実施例における1巻当りコイルのトランスポジションの状態を回転電機の径方向から見た図である。
Next, a third embodiment of the present invention will be described with reference to FIGS. 8A and 8B. FIG. 8A is a view of the state of the transformer position of the coil per winding in the third embodiment of the present invention as viewed from the axial direction of the rotary electric machine. FIG. 8B is a view of the state of the transformer position of the coil per winding in the third embodiment of the present invention as viewed from the radial direction of the rotary electric machine.
第3実施例において、第1実施例と異なるところは、径方向から見た第1セグメントコイル510と第2セグメントコイル520の形状が互いに入れ替わっている点にある。すなわち、第2セグメントコイル520は傾斜部521を有し、傾斜部521は固定子コア101の端面に対して角度θ2だけ傾斜している。これに対して、第1セグメントコイル510は傾斜部511、512を有し、傾斜部511(第1傾斜部)は第2セグメントコイル520の傾斜部521と同じ角度で傾斜する一方で、傾斜部512(第2傾斜部)は固定子コア101の端面に対して角度θ1で傾斜する。
The difference between the third embodiment and the first embodiment is that the shapes of the first segment coil 510 and the second segment coil 520 viewed from the radial direction are interchanged with each other. That is, the second segment coil 520 has an inclined portion 521, and the inclined portion 521 is inclined by an angle θ2 with respect to the end surface of the stator core 101. On the other hand, the first segment coil 510 has inclined portions 511 and 512, and the inclined portion 511 (first inclined portion) is inclined at the same angle as the inclined portion 521 of the second segment coil 520, while the inclined portion is inclined. The 512 (second inclined portion) is inclined at an angle θ1 with respect to the end face of the stator core 101.
図8Bではθ1<θ2となるように構成し、第2セグメントコイル520の転移部210は、第1セグメントコイル510の転移部200よりも固定子コア101の端面から離れた位置に配置されている。
In FIG. 8B, θ1 <θ2, and the transition portion 210 of the second segment coil 520 is arranged at a position farther from the end face of the stator core 101 than the transition portion 200 of the first segment coil 510. ..
そして、第1セグメントコイル510と第2セグメントコイル520の転移部200,210において、第1セグメントコイル510が第2セグメントコイル520の下側をくぐるようにすることでトランスポジションを実現している。換言すると、第1セグメントコイル510と第2セグメントコイル520は、それぞれの転移部200,210において交差している。
Then, in the transition portions 200 and 210 of the first segment coil 510 and the second segment coil 520, the transposition is realized by allowing the first segment coil 510 to pass under the second segment coil 520. In other words, the first segment coil 510 and the second segment coil 520 intersect at the transition portions 200 and 210, respectively.
第3実施例によれば、第2セグメントコイル520の軸方向高さを増加することなく、第1セグメントコイル510における傾斜部512の角度θ1を変えて軸方向高さのみを縮小することでトランスポジションが可能となるため、モータの体格が増加するのを抑制することができる。また、第1セグメントコイル510、第2セグメントコイル520共に折り曲げ加工や板金加工などの同一設備で製作可能であり、トランスポジションの導入に伴って追加設備や工数増加を招くことがないため、コストが増加するのを抑制することができる。
According to the third embodiment, the transformer is reduced only by reducing the axial height by changing the angle θ1 of the inclined portion 512 in the first segment coil 510 without increasing the axial height of the second segment coil 520. Since the position is possible, it is possible to suppress an increase in the physique of the motor. Further, both the first segment coil 510 and the second segment coil 520 can be manufactured with the same equipment such as bending and sheet metal processing, and the introduction of the transposition does not cause additional equipment or increase in man-hours, so that the cost is reduced. It can be suppressed from increasing.
次に図9A~図11Bを用いて、本発明の第4実施例について説明する。図9A及び図9Bは本発明の第4実施例における1巻当りコイルの組立方法の説明図である。図9Cは本発明の第4実施例における第1及び第2セグメントコイルを周方向から見た図である。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 9A to 11B. 9A and 9B are explanatory views of a method of assembling a coil per winding according to a fourth embodiment of the present invention. FIG. 9C is a view of the first and second segment coils in the fourth embodiment of the present invention as viewed from the circumferential direction.
図9Aに示すように、コイル500aと500bは、それぞれ軸方向中央で上下に分割され、上半分は第1セグメントコイル510aと第2セグメントコイル520aに分割して構成され、下半分は同様に第1セグメントコイル510bと第2セグメントコイル520bに分割して構成される。換言すると、第1セグメントコイル510aと第2セグメントコイル520aとが組み合わされてコイル500a(第1コイル)が構成され、第1セグメントコイル510bと第2セグメントコイル520bとが組み合わされてコイル500b(第2コイル)が構成されている。分割されたコイル500aとコイル500bには、スロット400内で接続する接続部600(600a,600b)が備えられている。
As shown in FIG. 9A, the coils 500a and 500b are vertically divided at the center in the axial direction, the upper half is divided into the first segment coil 510a and the second segment coil 520a, and the lower half is similarly divided into the first segment coil 510a. It is divided into a 1-segment coil 510b and a second segment coil 520b. In other words, the first segment coil 510a and the second segment coil 520a are combined to form the coil 500a (first coil), and the first segment coil 510b and the second segment coil 520b are combined to form the coil 500b (the first coil). 2 coils) are configured. The divided coil 500a and the coil 500b are provided with connection portions 600 (600a, 600b) connected in the slot 400.
第1セグメントコイル510aの下端部は、第2セグメントコイル520aの下端部よりも上方に位置し、第1セグメントコイル510bの上端部は第2セグメントコイル520bの上端部よりも上方に位置している。その結果、コイル500a、500bのそれぞれの接続部600a,600bには、回転電機の周方向から見て互いにL字形の段差形状を持つ段差部601a,601bが形成され、第1セグメントコイル510aの下端部と第1セグメントコイル510bの上端部が回転電機の軸方向において対向し、第2セグメントコイル520aの下端部と第2セグメントコイル520bの上端部が回転電機の軸方向において対向し、スロット400内で嵌合する。そして、コイル500a、500bは、図9Bに示すように互いの段差部601a,601bを埋めるようにして嵌合する。
The lower end of the first segment coil 510a is located above the lower end of the second segment coil 520a, and the upper end of the first segment coil 510b is located above the upper end of the second segment coil 520b. .. As a result, the connecting portions 600a and 600b of the coils 500a and 500b are formed with stepped portions 601a and 601b having an L-shaped stepped shape when viewed from the circumferential direction of the rotary electric machine, and the lower end of the first segment coil 510a is formed. The upper end of the first segment coil 510b and the lower end of the second segment coil 520a face each other in the axial direction of the rotary electric machine, and the lower end of the second segment coil 520a and the upper end of the second segment coil 520b face each other in the axial direction of the rotary electric machine. Fit with. Then, the coils 500a and 500b are fitted so as to fill the stepped portions 601a and 601b of each other as shown in FIG. 9B.
また、コイル500aとコイル500bとの段差部601a,601bには、コイル500aとコイル500bが電気的に接続するための導電部610a,610b,620a,620bを備えている。導電部は、第1セグメントコイル510aと第2セグメントコイル520aとが対向するそれぞれの面、及び第1セグメントコイル510bと第2セグメントコイル520bとが対向するそれぞれの面に形成されている。
Further, the stepped portions 601a and 601b between the coil 500a and the coil 500b are provided with conductive portions 610a, 610b, 620a and 620b for electrically connecting the coil 500a and the coil 500b. The conductive portion is formed on each surface of the first segment coil 510a and the second segment coil 520a facing each other, and on each surface of the first segment coil 510b and the second segment coil 520b facing each other.
そして、回転電機の径方向において第2セグメントコイル520aの導電部620aは、第1セグメントコイル510aの導電部610aと対向し、かつ、第1セグメントコイル510bの導電部610bと対向する。さらに導電部610bは、第2セグメントコイル520bの導電部620bとも対向する。この結果、それぞれの導電部が径方向に面接触する状態が形成され、元々バラバラだった導体(第1セグメントコイル510,第2セグメントコイル520)の電気導通が確保される。
Then, in the radial direction of the rotary electric machine, the conductive portion 620a of the second segment coil 520a faces the conductive portion 610a of the first segment coil 510a and faces the conductive portion 610b of the first segment coil 510b. Further, the conductive portion 610b also faces the conductive portion 620b of the second segment coil 520b. As a result, a state in which the respective conductive portions are in surface contact in the radial direction is formed, and electrical conduction of the originally disjointed conductors (first segment coil 510 and second segment coil 520) is ensured.
この方法であれば、電気導通を確保するためのコイルの溶接が不要となるので、製作作業性を向上することができる。各導電部は、導体の絶縁皮膜をピールしてメッキ処理する工程が簡素であるが、接続部の電気導通と、それ以外の部分の電気絶縁が確保できるのであれば、この工程に限定されるものではない。また、導電性メッキ部の膜厚を絶縁皮膜厚よりも大きくすることで、導通面を確実に面接触させることができる。また、図9Bの状態に組み立てた後で、高周波誘導加熱によって導電面を溶融させることで、接続部の電気導通をさらに改善することができる。高周波誘導加熱の代わりに抵抗溶接などによって導電面を溶融させることでも、接続部の電気導通をさらに改善することができる。抵抗溶接の場合は、相ごとにコイルの始端と終端を引き出しておき、インパルス電流を単一回もしくは複数回にわたって印加することで作業工程を簡略化することができる。このほか、コイル1巻ごとまたは複数巻ごとに始端と終端を引き出し、インパルス電流を単一回もしくは複数回にわたって印加してもよい。
With this method, it is not necessary to weld the coil to ensure electrical continuity, so manufacturing workability can be improved. The process of peeling and plating the insulating film of the conductor is simple for each conductive part, but it is limited to this process as long as the electrical conduction of the connection part and the electrical insulation of the other parts can be secured. It's not a thing. Further, by making the film thickness of the conductive plated portion larger than the thickness of the insulating film, the conductive surface can be surely brought into surface contact. Further, by melting the conductive surface by high frequency induction heating after assembling in the state of FIG. 9B, the electrical conduction of the connecting portion can be further improved. By melting the conductive surface by resistance welding or the like instead of high-frequency induction heating, the electrical conduction of the connection portion can be further improved. In the case of resistance welding, the work process can be simplified by drawing out the start end and the end end of the coil for each phase and applying the impulse current a single time or a plurality of times. In addition, the start end and the end may be drawn out for each coil winding or for each coil winding, and the impulse current may be applied a single time or a plurality of times.
次に、第1実施例~第3実施例で述べたトランスポジション構造に図9A~図9Cに示す接続方法を適用した場合の構成について説明する。図10Aは本発明の第4実施例における多段で構成した1巻当りコイルを回転電機の軸方向から見た図である。図10Bは図10AにおけるXB-XB線断面図である。図10Cは本発明の第4実施例における回路図である。
Next, the configuration when the connection methods shown in FIGS. 9A to 9C are applied to the transposition structures described in the first to third embodiments will be described. FIG. 10A is a view of the multi-stage coil per winding according to the fourth embodiment of the present invention as viewed from the axial direction of the rotary electric machine. FIG. 10B is a cross-sectional view taken along the line XB-XB in FIG. 10A. FIG. 10C is a circuit diagram according to a fourth embodiment of the present invention.
図10Bに示すように軸方向中央部のコイル接続部W1m、W2mにおいて、第1セグメントコイル510aと第2セグメントコイル520aとがまとめて接続されている。この構成によって、第1セグメントコイル510aと第2セグメントコイル520aが電気的に短絡されるため、図10cの回路図に示すような閉ループが形成され、循環電流が発生する。
As shown in FIG. 10B, the first segment coil 510a and the second segment coil 520a are collectively connected at the coil connecting portions W1m and W2m in the central portion in the axial direction. With this configuration, the first segment coil 510a and the second segment coil 520a are electrically short-circuited, so that a closed loop as shown in the circuit diagram of FIG. 10c is formed and a circulating current is generated.
そこで、図10Aに示すように、スロット410(第1スロット)では第1セグメントコイル510a、第2セグメントコイル520aをそれぞれ1t側、1b側に配置する一方で、スロット420(第2スロット)では第1セグメントコイル510a、第2セグメントコイル520aをそれぞれ2b側、2t側となるように配置を入れ替えている。これによって、第1セグメントコイル510aに発生する起電力E1tとE2bとは互いに逆方向となるためキャンセルされ、同様に第2セグメントコイル520aに発生する起電力E1bとE2tもキャンセルされる。結果として循環電流Icの発生が抑制され、交流銅損を低減することができるほか、コイルエンドでの溶接が不要となるため、製作コストを低減することができる。
Therefore, as shown in FIG. 10A, the first segment coil 510a and the second segment coil 520a are arranged on the 1t side and the 1b side in the slot 410 (first slot), respectively, while in the slot 420 (second slot), the first segment coil 510a and the second segment coil 520a are arranged on the 1t side and the 1b side. The arrangement of the 1-segment coil 510a and the 2nd segment coil 520a are changed so as to be on the 2b side and the 2t side, respectively. As a result, the electromotive forces E1t and E2b generated in the first segment coil 510a are canceled because they are in opposite directions to each other, and similarly, the electromotive forces E1b and E2t generated in the second segment coil 520a are also canceled. As a result, the generation of circulating current Ic can be suppressed, AC copper loss can be reduced, and welding at the coil end becomes unnecessary, so that the manufacturing cost can be reduced.
なお、この接続方法を採用する場合には、図11A及び図11Bのように構成すると良い。
When adopting this connection method, it is preferable to configure as shown in FIGS. 11A and 11B.
図11Aは本発明の第4実施例におけるコイルの接続状態を示す概略図である。図11Bは本発明の第4実施例におけるコイルの接続状態を示す斜視図である。
FIG. 11A is a schematic view showing a coil connection state in the fourth embodiment of the present invention. FIG. 11B is a perspective view showing a coil connection state in the fourth embodiment of the present invention.
図11A及び図11Bに示すように、コイル500aとコイル500bは、固定子コア101の軸方向両側からそれぞれスロット400に挿入し、スロット400内でコイル500aとコイル500bとが電気的に接続され、接続部600が構成される。また、コイル500aとコイル500bには、それぞれ第1セグメントコイル510aの転移部200a,第2セグメントコイル520aの転移部210a、及び第1セグメントコイル510bの転移部200b,第2セグメントコイル520bの転移部210bが形成されている。すなわち、転移部は固定子コア101に対し、回転電機の軸方向両側に設けられている。
As shown in FIGS. 11A and 11B, the coil 500a and the coil 500b are inserted into the slot 400 from both sides in the axial direction of the stator core 101, and the coil 500a and the coil 500b are electrically connected in the slot 400. The connection unit 600 is configured. Further, the coil 500a and the coil 500b have a transition portion 200a of the first segment coil 510a, a transition portion 210a of the second segment coil 520a, a transition portion 200b of the first segment coil 510b, and a transition portion of the second segment coil 520b, respectively. 210b is formed. That is, the transition portions are provided on both sides of the stator core 101 in the axial direction.
第4実施例によれば、転移部200a,210aを備えたコイル500aと、転移部200b,210bを備えたコイル500bを、固定子コア101の軸方向両端から挿入することによりトランスポジションが可能となり、回転電機の製作作業性を向上することができる。
According to the fourth embodiment, the transposition is possible by inserting the coil 500a having the transition portions 200a and 210a and the coil 500b having the transition portions 200b and 210b from both ends in the axial direction of the stator core 101. , The manufacturing workability of the rotary electric machine can be improved.
次に図12を用いて、本発明の第5実施例について説明する。図12は、本発明の第5実施例における車両の概略構成図である。
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 12 is a schematic configuration diagram of a vehicle according to a fifth embodiment of the present invention.
図12に示す回転電機751,752には、上述した本発明の第1実施例から第4実施例が適用される。車両700は例えばハイブリッド自動車、プラグインハイブリッド自動車を指しており、エンジン760と回転電機751,752と、バッテリ780とが搭載されている。
The first to fourth embodiments of the present invention described above are applied to the rotary electric machines 751 and 752 shown in FIG. The vehicle 700 refers to, for example, a hybrid vehicle or a plug-in hybrid vehicle, and is equipped with an engine 760, a rotary electric machine 751, 752, and a battery 780.
バッテリ780は、回転電機751,752を駆動する場合、駆動用の電力変換装置770(インバータ装置)に直流電力を供給する。電力変換装置770は、バッテリ780からの直流電力を交流電力に変換して、この交流電力を回転電機751,752にそれぞれ供給する。
When driving the rotary electric machines 751 and 752, the battery 780 supplies DC power to the driving power conversion device 770 (inverter device). The power conversion device 770 converts the DC power from the battery 780 into AC power, and supplies the AC power to the rotary electric machines 751 and 752, respectively.
また、回生走行時には、回転電機751,752が車両の運動エネルギーに応じて交流電力を発生して電力変換装置770に供給する。電力変換装置770は、回転電機751,752からの交流電力を直流電力に変換し、この直流電力をバッテリ780に供給する。そして、バッテリ780が充電される。
Further, during the regenerative running, the rotating electric machines 751 and 752 generate AC power according to the kinetic energy of the vehicle and supply it to the power conversion device 770. The power conversion device 770 converts the AC power from the rotary electric machines 751 and 752 into DC power, and supplies this DC power to the battery 780. Then, the battery 780 is charged.
エンジン760および回転電機751,752による回転トルクは、変速機740、デファレンシャルギア730および車軸720を介して車輪710に伝達される。
The rotational torque from the engine 760 and the rotary electric machines 751 and 752 is transmitted to the wheels 710 via the transmission 740, the differential gear 730, and the axle 720.
一般に、自動車には坂道発進での低速大トルクや、高速道路での高速低トルク、街乗りでの中速中トルクなど、広い運転範囲が要求される。このような広い運転範囲において、回転電機751,752では高効率な運転が可能となる。加えて、熱損失が軽減されるので、車両700の安全性向上や長寿命化が可能になる。また、車両700の航続距離を延ばすことが可能になる。
In general, automobiles are required to have a wide driving range such as low-speed large torque when starting on a slope, high-speed low torque on a highway, and medium-speed medium torque on a city ride. In such a wide operating range, the rotary electric machines 751 and 752 can operate with high efficiency. In addition, since heat loss is reduced, it is possible to improve the safety and extend the life of the vehicle 700. In addition, the cruising range of the vehicle 700 can be extended.
また、回転電機751,752は、車両の軽量化、乗車スペースを確保する必要があることから、小型軽量化が求められる。第5実施例によれば、第1実施例から第4実施例で説明した回転電機を車両に適用することにより、小型軽量化を図った車両を提供することが可能となる。
In addition, the rotary electric machines 751 and 752 are required to be smaller and lighter because it is necessary to reduce the weight of the vehicle and secure a riding space. According to the fifth embodiment, by applying the rotary electric machine described in the first to fourth embodiments to the vehicle, it is possible to provide a vehicle with reduced size and weight.
なお、第5実施例では、エンジン760を備えず、回転電機の動力だけで駆動される電気自動車においても、本発明の第1実施例から第4実施例に係る回転電機を適用することにより同様の効果が得られる。
In the fifth embodiment, the same applies to the electric vehicle which is not provided with the engine 760 and is driven only by the power of the rotary electric machine, by applying the rotary electric machine according to the first to fourth embodiments of the present invention. The effect of is obtained.
101…固定子コア、200,210…転移部、400…スロット、410…スロット、411…第1レイヤー、412…第2レイヤー、420…スロット、421…第1レイヤー、422…第2レイヤー、500,500a,500b,500c,500d,500e,500f…コイル、510,510a,510b,510c,510d,510e,510f…第1セグメントコイル、511,512…傾斜部、511a…頂点部、511b,511c…転移端部、513,513a,513b…湾曲部、520,520a,520b,520c,520d,520e,520f…第2セグメントコイル、521,522…傾斜部、521a…頂点部、521b,521c…転移端部、600…接続部、610a,610b,620a,620b…導電部、700…車両、710…車輪、720…車軸、730…デファレンシャルギア、740…変速機、751,752…回転電機、760…エンジン、770…電力変換装置、780…バッテリ
101 ... Stator core, 200, 210 ... Transition part, 400 ... Slot, 410 ... Slot, 411 ... 1st layer, 412 ... 2nd layer, 420 ... Slot, 421 ... 1st layer, 422 ... 2nd layer, 500 , 500a, 500b, 500c, 500d, 500e, 500f ... Coil, 510, 510a, 510b, 510c, 510d, 510e, 510f ... First segment coil, 511, 512 ... Inclined portion, 511a ... Top portion, 511b, 511c ... Transition end, 513, 513a, 513b ... Curved portion, 520, 520a, 520b, 520c, 520d, 520e, 520f ... Second segment coil, 521,522 ... Inclined portion, 521a ... Top, 521b, 521c ... Transition end Unit, 600 ... Connection part, 610a, 610b, 620a, 620b ... Conductive part, 700 ... Vehicle, 710 ... Wheel, 720 ... Axle, 730 ... Differential gear, 740 ... Transmission, 751, 752 ... Rotating electric machine, 760 ... Engine , 770 ... Power converter, 780 ... Battery
Claims (10)
- 回転子と固定子とを備え、
前記固定子は、複数のスロットを有する固定子コアと、前記スロットに挿入される略U字状に形成された矩形断面のセグメントコイルと、を備える回転電機であって、
前記スロットは、少なくとも第1スロットと第2スロットから構成され、
前記セグメントコイルは、少なくとも第1セグメントコイルと第2セグメントコイルから構成され、
前記第1スロット及び前記第2スロットのそれぞれは、前記回転電機の径方向内側から径方向外側に並んだ第1レイヤー及び第2レイヤーを有し、
前記第1セグメントコイル及び前記第2セグメントコイルのそれぞれは、前記第1スロット内及び前記第2スロット内に配置されるスロット挿入部と、前記固定子コアの端面から突出した部位の頂点部を含む領域であって前記回転電機の径方向に転移するよう形成される転移部と、前記スロット挿入部と前記頂点部との間であって前記固定子コアの端面に対し傾斜して形成される傾斜部と、を備え、
前記第1セグメントコイルは、一方が前記第1スロットの第1レイヤーに配置され、他方が前記第2スロットの第2レイヤーに配置され、
前記第2セグメントコイルは、一方が前記第1スロットの第1レイヤーにおいて前記第1セグメントコイルに対し径方向外側に配置され、他方が前記第2スロットの第2レイヤーにおいて前記第1セグメントコイルに対し径方向内側に配置され、
前記第1セグメントコイルの転移部は、前記第2セグメントコイルの転移部よりも転移する大きさが大きく形成され、
前記第1セグメントコイルの傾斜部と前記第2セグメントコイルの傾斜部とは、前記固定子コアの端面に対して異なる角度で傾斜させたことを特徴とする回転電機。 Equipped with a rotor and a stator,
The stator is a rotary electric machine including a stator core having a plurality of slots and a segment coil having a substantially U-shaped cross section inserted into the slots.
The slot is composed of at least a first slot and a second slot.
The segment coil is composed of at least a first segment coil and a second segment coil.
Each of the first slot and the second slot has a first layer and a second layer arranged radially from the inside to the outside of the rotary electric machine.
Each of the first segment coil and the second segment coil includes a slot insertion portion arranged in the first slot and the second slot, and an apex portion of a portion protruding from the end face of the stator core. An inclination formed between the transition portion which is a region and is formed so as to transition in the radial direction of the rotary electric machine and the slot insertion portion and the apex portion and which is inclined with respect to the end face of the stator core. With a department,
One of the first segment coils is arranged in the first layer of the first slot, and the other is arranged in the second layer of the second slot.
One of the second segment coils is arranged radially outward with respect to the first segment coil in the first layer of the first slot, and the other is arranged with respect to the first segment coil in the second layer of the second slot. Arranged inside the radial direction,
The transition portion of the first segment coil is formed to have a larger transition size than the transition portion of the second segment coil.
A rotary electric machine characterized in that the inclined portion of the first segment coil and the inclined portion of the second segment coil are inclined at different angles with respect to the end surface of the stator core. - 請求項1に記載の回転電機において、
前記第1セグメントコイルと前記第2セグメントコイルは、それぞれの転移部において交差することを特徴とする回転電機。 In the rotary electric machine according to claim 1,
A rotary electric machine characterized in that the first segment coil and the second segment coil intersect at their respective transition portions. - 請求項1に記載の回転電機において、
前記第1セグメントコイルと前記第2セグメントコイルとは少なくとも1箇所以上で並列接続されることを特徴とする回転電機。 In the rotary electric machine according to claim 1,
A rotary electric machine characterized in that the first segment coil and the second segment coil are connected in parallel at at least one location. - 請求項1に記載の回転電機において、
前記第1セグメントコイル、若しくは前記第2セグメントコイルは、前記転移部の断面形状が、前記転移部以外の断面形状とは異なることを特徴とする回転電機。 In the rotary electric machine according to claim 1,
The first segment coil or the second segment coil is a rotary electric machine characterized in that the cross-sectional shape of the transition portion is different from the cross-sectional shape of the transition portion other than the transition portion. - 請求項1乃至4の何れか1項に記載の回転電機において、
前記第1セグメントコイルと前記第2セグメントコイルとが接続される接続部を備え、
前記接続部は、前記転移部を設けた前記固定子コアの端面に対して軸方向反対側に設けることを特徴とする回転電機。 In the rotary electric machine according to any one of claims 1 to 4.
A connection portion for connecting the first segment coil and the second segment coil is provided.
The rotary electric machine is characterized in that the connecting portion is provided on the side opposite to the end surface of the stator core provided with the transition portion in the axial direction. - 請求項1乃至4の何れか1項に記載の回転電機において、
前記第1セグメントコイルと前記第2セグメントコイルは、それぞれ前記回転電機の軸方向において対向するように分割して構成され、分割された前記第1セグメントコイルと前記第2セグメントコイルのそれぞれには、前記スロット内で接続される接続部を備え、 前記接続部のそれぞれには、互いが嵌合するように段差部が形成され、
前記段差部のそれぞれには、分割された前記第1セグメントコイルと前記第2セグメントコイルが電気的に接続する導電部を備えたことを特徴とする回転電機。 In the rotary electric machine according to any one of claims 1 to 4.
The first segment coil and the second segment coil are respectively divided so as to face each other in the axial direction of the rotary electric machine, and the divided first segment coil and the second segment coil are respectively divided into the first segment coil and the second segment coil. A connection portion connected in the slot is provided, and a step portion is formed in each of the connection portions so as to fit each other.
A rotary electric machine characterized in that each of the stepped portions is provided with a conductive portion in which the divided first segment coil and the second segment coil are electrically connected. - 請求項6に記載の回転電機において、
前記転移部は、前記回転電機の軸方向両側に設けることを特徴とする回転電機。 In the rotary electric machine according to claim 6,
The rotary electric machine is characterized in that the transition portion is provided on both sides of the rotary electric machine in the axial direction. - 請求項1乃至7の何れか1項に記載の回転電機において、
前記第1セグメントコイルの転移部は、前記第2セグメントコイルの転移部よりも前記固定子コアの端面から離れた位置に配置され、
前記第2セグメントコイルの傾斜部の少なくとも一部は、前記第1セグメントコイルの傾斜部よりも小さい角度で傾斜させたことを特徴とする回転電機。 In the rotary electric machine according to any one of claims 1 to 7.
The transition portion of the first segment coil is arranged at a position away from the end face of the stator core than the transition portion of the second segment coil.
A rotary electric machine characterized in that at least a part of the inclined portion of the second segment coil is inclined at an angle smaller than that of the inclined portion of the first segment coil. - 請求項1乃至7の何れか1項に記載の回転電機において、
前記第2セグメントコイルの転移部は、前記第1セグメントコイルの転移部よりも前記固定子コアの端面から離れた位置に配置され、
前記第1セグメントコイルの傾斜部の少なくとも一部は、前記第2セグメントコイルの傾斜部よりも小さい角度で傾斜させたことを特徴とする回転電機。 In the rotary electric machine according to any one of claims 1 to 7.
The transition portion of the second segment coil is arranged at a position away from the end face of the stator core than the transition portion of the first segment coil.
A rotary electric machine characterized in that at least a part of the inclined portion of the first segment coil is inclined at an angle smaller than that of the inclined portion of the second segment coil. - 回転電機と、バッテリと、前記バッテリの直流電力を交流電力に変換して、前記交流電力を前記回転電機に供給する電力変換装置と、を備え、
前記回転電機のトルクが変速機を介して車輪に伝達される車両において、
請求項1乃至8の何れか1項に記載の回転電機を備えたことを特徴とする車両。 A rotary electric machine, a battery, and a power conversion device that converts the DC power of the battery into AC power and supplies the AC power to the rotary electric machine.
In a vehicle in which the torque of the rotary electric machine is transmitted to the wheels via a transmission,
A vehicle comprising the rotary electric machine according to any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-015003 | 2020-01-31 | ||
JP2020015003A JP2021122170A (en) | 2020-01-31 | 2020-01-31 | Rotary electric machine and vehicle with the rotary electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021153054A1 true WO2021153054A1 (en) | 2021-08-05 |
Family
ID=77079280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046672 WO2021153054A1 (en) | 2020-01-31 | 2020-12-15 | Rotating electrical machine, and vehicle provided with said rotating electrical machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021122170A (en) |
WO (1) | WO2021153054A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030214196A1 (en) * | 2002-05-15 | 2003-11-20 | Delco Remy America | Multi-set rectangular copper hairpin windings for electric machines |
JP2008035687A (en) * | 2006-07-06 | 2008-02-14 | Nippon Soken Inc | Electromagnetic equipment |
JP2010041786A (en) * | 2008-08-01 | 2010-02-18 | Nippon Soken Inc | Stator windings and electric rotary machine |
JP2011072052A (en) * | 2009-09-22 | 2011-04-07 | Toyota Motor Corp | Stator and method for manufacturing the same |
JP2011103755A (en) * | 2009-11-12 | 2011-05-26 | Denso Corp | Stator of rotary electric machine and rotary electric machine |
JP2013208038A (en) * | 2012-03-29 | 2013-10-07 | Honda Motor Co Ltd | Rotary electric machine and winding mounting method |
JP5354302B2 (en) * | 2010-12-13 | 2013-11-27 | 株式会社デンソー | Rotating electric machine stator |
JP2015023771A (en) * | 2013-07-23 | 2015-02-02 | トヨタ自動車株式会社 | Rotary electric machine stator and manufacturing method thereof |
WO2019059293A1 (en) * | 2017-09-20 | 2019-03-28 | アイシン・エィ・ダブリュ株式会社 | Rotary electric machine armature and method for manufacturing same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013198380A (en) * | 2012-03-23 | 2013-09-30 | Hitachi Automotive Systems Ltd | Rotary electric machine |
US10170952B2 (en) * | 2014-02-10 | 2019-01-01 | Mitsubishi Electric Corporation | Rotary electric machine and manufacturing method for coil of rotary electric machine |
EP3197020B1 (en) * | 2014-09-19 | 2019-07-31 | Mitsubishi Electric Corporation | Stator and rotary electric machine using said stator |
JP6334365B2 (en) * | 2014-10-30 | 2018-05-30 | 三菱電機株式会社 | Manufacturing method of rotating electrical machine |
-
2020
- 2020-01-31 JP JP2020015003A patent/JP2021122170A/en active Pending
- 2020-12-15 WO PCT/JP2020/046672 patent/WO2021153054A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030214196A1 (en) * | 2002-05-15 | 2003-11-20 | Delco Remy America | Multi-set rectangular copper hairpin windings for electric machines |
JP2008035687A (en) * | 2006-07-06 | 2008-02-14 | Nippon Soken Inc | Electromagnetic equipment |
JP2010041786A (en) * | 2008-08-01 | 2010-02-18 | Nippon Soken Inc | Stator windings and electric rotary machine |
JP2011072052A (en) * | 2009-09-22 | 2011-04-07 | Toyota Motor Corp | Stator and method for manufacturing the same |
JP2011103755A (en) * | 2009-11-12 | 2011-05-26 | Denso Corp | Stator of rotary electric machine and rotary electric machine |
JP5354302B2 (en) * | 2010-12-13 | 2013-11-27 | 株式会社デンソー | Rotating electric machine stator |
JP2013208038A (en) * | 2012-03-29 | 2013-10-07 | Honda Motor Co Ltd | Rotary electric machine and winding mounting method |
JP2015023771A (en) * | 2013-07-23 | 2015-02-02 | トヨタ自動車株式会社 | Rotary electric machine stator and manufacturing method thereof |
WO2019059293A1 (en) * | 2017-09-20 | 2019-03-28 | アイシン・エィ・ダブリュ株式会社 | Rotary electric machine armature and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP2021122170A (en) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7125898B2 (en) | Stator assembly using stacks of coated conductors | |
JP6563595B2 (en) | Rotating electric machine and rotating electric machine stator | |
JP5221966B2 (en) | Coil assembly for rotating electrical machine, stator for rotating electrical machine, and rotating electrical machine | |
JP5237048B2 (en) | Rotating electric machine and stator winding | |
JP6402257B2 (en) | Stator coil, stator provided with the same, and rotating electric machine provided with the same | |
JP5541585B2 (en) | Rotating electric machine | |
CN112583146A (en) | Transverse flux machine | |
EP2044677A2 (en) | An electrical machine | |
WO2020175225A1 (en) | Armature and rotating electrical machine | |
EP3116105B1 (en) | Laminated sheet winding | |
WO2020175334A1 (en) | Armature | |
WO2017038326A1 (en) | Rotor, rotating electrical machine provided therewith, and method of manufacturing rotor | |
CN112673548A (en) | Axial flux machine and auxiliary assembly | |
WO2020175223A1 (en) | Rotating electrical machine | |
US20220094228A1 (en) | Axial flux electrical machine | |
WO2020175224A1 (en) | Armature and rotating electrical machine | |
US20210384779A1 (en) | Rotary Electric Machine and Vehicle | |
JP5948392B2 (en) | Rotating electric machine, stator and stator winding | |
WO2011104763A1 (en) | Rotary machine | |
JP5072502B2 (en) | Rotating motor | |
WO2021153054A1 (en) | Rotating electrical machine, and vehicle provided with said rotating electrical machine | |
WO2022018967A1 (en) | Rotating electric machine and method for manufacturing rotating electric machine | |
WO2020175222A1 (en) | Armature and rotating electrical machine | |
US20230268788A1 (en) | Stator windings with variable cross-section for geometry optimization and direct cooling | |
WO2022259839A1 (en) | Rotating electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20916749 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20916749 Country of ref document: EP Kind code of ref document: A1 |