WO2021153038A1 - Method for controlling chemical oxygen demand in waste water in wet exhaust gas desulfurization device and method for assessing sterilization of wet exhaust gas desulfurization device - Google Patents

Method for controlling chemical oxygen demand in waste water in wet exhaust gas desulfurization device and method for assessing sterilization of wet exhaust gas desulfurization device Download PDF

Info

Publication number
WO2021153038A1
WO2021153038A1 PCT/JP2020/046411 JP2020046411W WO2021153038A1 WO 2021153038 A1 WO2021153038 A1 WO 2021153038A1 JP 2020046411 W JP2020046411 W JP 2020046411W WO 2021153038 A1 WO2021153038 A1 WO 2021153038A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
amount
oxidizing bacteria
exhaust gas
sterilization
Prior art date
Application number
PCT/JP2020/046411
Other languages
French (fr)
Japanese (ja)
Inventor
由季 浅井
中嶋 祐二
小川 尚樹
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021153038A1 publication Critical patent/WO2021153038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present disclosure relates to a method for controlling a chemical oxygen demand in waste water in a wet exhaust gas desulfurization apparatus and a method for evaluating sterilization of the wet exhaust gas desulfurization apparatus.
  • the present application claims priority based on Japanese Patent Application No. 2020-014063 filed in Japan on January 30, 2020, the contents of which are incorporated herein by reference.
  • the exhaust gas desulfurization apparatus includes a dry exhaust gas desulfurization apparatus and a wet exhaust gas desulfurization apparatus.
  • the dry exhaust gas desulfurization apparatus removes sulfur oxides in the exhaust gas by bringing the exhaust gas into contact with a solid adsorbent such as activated carbon and adsorbing the sulfur oxides on the solid adsorbent.
  • the wet exhaust gas desulfurization apparatus removes sulfur oxides in the exhaust gas by bringing the exhaust gas into contact with the absorbing liquid containing an alkaline component and absorbing the sulfur oxides in the absorbing liquid.
  • a plurality of methods are known as desulfurization methods using a wet exhaust gas desulfurization apparatus, depending on the type of absorption liquid used.
  • Specific examples thereof include a lime gypsum method, a caustic soda method, and a magnesium method.
  • the absorption liquid (slurry) used in the lime gypsum method contains limestone (calcium carbonate).
  • sulfur oxides (sulfur dioxide, etc.) in the exhaust gas are absorbed by the absorption liquid, sulfite ions are generated in the absorption liquid. Then, the sulfate ion is generated by oxidizing the sulfite ion in the absorption liquid. Sulfate ions easily react with limestone to produce calcium sulfate (gypsum). As a result, the sulfur content derived from the sulfur oxide can be removed from the absorption liquid as gypsum.
  • the inventors have clarified that the chemical oxygen demand (COD) may be high in the absorption liquid (used absorption liquid) that has come into contact with the exhaust gas and has absorbed sulfur oxides.
  • sulfur-oxidizing bacteria for example, bacteria belonging to the genus Thermithiobacillus
  • a heterotrophic bacterium for example, a bacterium belonging to the genus Pseudomonas
  • organic substances such as sugars are also produced in the grown heterotrophic bacteria, it is considered that the COD of the used absorption liquid increases with the production of organic substances by the sulfur-oxidizing bacteria.
  • the COD is higher than the drainage standard, the drainage cannot be discharged to rivers, etc. Therefore, it is preferable to suppress the increase in COD. Therefore, in order to suppress the increase in COD, it is considered effective to suppress the growth of the above-mentioned sulfur-oxidizing bacteria.
  • the amount of organic matter produced by sulfur-oxidizing bacteria can be reduced.
  • the growth of heterotrophic bacteria is also suppressed, and the amount of organic matter calculated by autotrophic bacteria can be reduced. As a result, it is considered that the amount of organic matter produced can be suppressed and the increase in COD of the used absorption liquid can be suppressed.
  • sulfur-oxidizing bacteria are microorganisms whose growth can be suppressed by general antibacterial agents, and it is known that their growth is suppressed by metals (for example, nickel and the like). Utilizing this function, sulfur-oxidizing bacteria kneaded with metal to prevent sulfur-oxidizing bacteria from assimilating hydrogen sulfide and sulfur dioxide to generate sulfuric acid and deteriorating sewage pipes made of concrete. Proliferation-preventing concrete and the like have been commercialized (see, for example, Patent Document 1).
  • Patent Document 2 discloses a wet exhaust gas desulfurization apparatus configured so that the absorbing liquid sprayed by the spraying apparatus and a massive antibacterial member containing an antibacterial metal having an antibacterial action against sulfur-oxidizing bacteria can come into contact with each other. ing.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a method for controlling a chemical oxygen demand in wastewater in a wet exhaust gas desulfurization apparatus capable of quantifying sterilization efficiency. do.
  • the method for controlling the chemical oxygen demand in wastewater in the wet exhaust gas desulfurization apparatus is a method for controlling the chemical oxygen demand in wastewater in the wet exhaust gas desulfurization apparatus.
  • Step 1 to measure the chemical oxygen demand in the wastewater of the wet exhaust gas desulfurization equipment When the measured chemical oxygen demand is equal to or less than the reference value, the wastewater is discharged, while when the measured amount exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is measured as the sulfur-oxidizing bacteria.
  • the sterilization evaluation method of the wet exhaust gas desulfurization apparatus is described.
  • the sterilization efficiency can be quantified.
  • FIG. 1 is a flow chart of a method for controlling a chemical oxygen demand in waste water in the wet exhaust gas desulfurization apparatus according to the embodiment of the present disclosure (hereinafter, may be abbreviated as “control method according to the embodiment”).
  • control method the chemical oxygen demand (COD) in the wastewater of the wet exhaust gas desulfurization apparatus is measured.
  • step 2 when the measured chemical oxygen demand is less than or equal to the reference value, the wastewater is discharged, while when the measured amount exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is determined.
  • step 3 the amount of the oxidative fungicide is adjusted according to the amount of the detected sulfur-oxidizing bacteria, and the sterilization is performed.
  • step 4 the amount of the sulfur-oxidizing bacteria in the wastewater after sterilization is detected again.
  • step 5 when the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the cells are released, while when the amount exceeds the reference value, the steps 3 and 4 are repeated.
  • the wet exhaust gas desulfurization apparatus (hereinafter, may be simply abbreviated as “desulfurization apparatus”) refers to sulfur in the exhaust gas by bringing the exhaust gas generated in a thermal power plant or the like into contact with an absorbing liquid. This is for absorbing oxides (sulfur dioxide, etc.) in the absorbing liquid and removing them from the exhaust gas.
  • the absorption liquid used is arbitrary as long as it can absorb sulfur oxides, for example, a slurry in which limestone is dissolved (dispersed) (lime gypsum method), an aqueous sodium hydroxide solution (caustic soda method), and hydroxide.
  • a slurry (magnesium method) in which magnesium is dissolved (dispersed) can be applied.
  • a slurry in which limestone is dissolved (dispersed) is used.
  • the slurry is not strictly a liquid, it is treated as a liquid in the present specification for convenience.
  • the sulfur-oxidizing bacteria include, for example, bacteria that temporarily deposit sulfur in the body such as the genus Bergiatoa, the genus Thiothlix, and the genus Thiobacterium; sexual bacteria; thermophilic bacteria such as Thermothrix; ultrahyperthermal bacteria such as Acidianus, Metallosphaera, Sulfolobus and the like.
  • the bacterium identified as a sulfur-oxidizing bacterium present in the desulfurization apparatus is a bacterium belonging to the genus Thermithiobacillus. Therefore, in the control method according to the embodiment, the sulfur-oxidizing bacterium indicates a bacterium belonging to the genus Thermithiobacillus.
  • Step 1 the COD in the wastewater of the wet exhaust gas desulfurization apparatus is measured.
  • the COD measurement method is not limited, for example, a method specified in JIS K0102 (factory wastewater test method), a method specified in JIS K1010 (industrial water test method), a method specified in sewage test method, and the like. Examples thereof include a two-wavelength absorbance measurement method using ultraviolet absorbance.
  • the methods specified in JIS K1010 include a method for measuring oxygen consumption (COD Mn ) by potassium permanganate at 100 ° C. and a method for measuring oxygen consumption (COD Cr ) by potassium dichromate.
  • COD OH oxygen consumption
  • the sample is irradiated with light having a wavelength of about 254 nm, and the absorbance is determined to measure the concentration of organic substances in the sample.
  • the absorbance of visible light (VIS) of about 365 nm or more and 435 nm or less is increased because the ultraviolet rays are scattered by the turbidity and the transmitted light is reduced, so that the apparent absorbance is increased.
  • UV ultraviolet light
  • Step 2 when the COD measured in step 1 is equal to or less than the reference value, the waste water is discharged. On the other hand, when the COD exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is detected by a PCR method using a primer pair for amplification of a known gene of sulfur-oxidizing bacteria.
  • the standard value of COD in wastewater it is possible to set the ministerial ordinance that sets the wastewater standard, the allowable limit of COD specified in the wastewater standard in each local government, or a value lower than the allowable limit.
  • the permissible limit of COD specified in the ministry ordinance that sets the wastewater standard in Japan is 160 mg / L (daily average 120 mg / L)
  • the standard value of COD in this process should be 160 mg / L. It can be 140 mg / L, 100 mg / L, 80 mg / L, and 60 mg / L.
  • the permissible limit by the daily average defines the average pollution state of the discharged water in one day.
  • the amount of sulfur-oxidizing bacteria in the wastewater is detected as the amount of known genes of sulfur-oxidizing bacteria.
  • the known gene may be a gene possessed by a sulfur-oxidizing bacterium and is unique to the sulfur-oxidizing bacterium, and for example, a gene involved in sulfur metabolism can be used.
  • Paracoccus sulfur oxide passage also referred to as PSO pathway or sox pathway
  • S 4 intermediate pathway S 4 pathway
  • the enzyme encoded by the sox gene cluster plays a major role in the PSO pathway. Specific examples of the enzyme include soxYZ, soxXA, soxB, and soxCD. Among them, the soxB gene is preferable as the known gene.
  • the soxB gene of a sulfur-oxidizing bacterium consists of, for example, the nucleotide sequence represented by SEQ ID NO: 1.
  • the genes involved in S 4 route for example, thiosulfate dehydrogenase gene, sulfite dehydrogenase gene, tetrathionate Hydra b hydrolase (4THase) gene and the like.
  • a primer pair for amplification of a known gene can be designed by using a known method in consideration of the base sequence, Tm value, GC content, etc. of the target gene.
  • examples of the primer pair for amplification of the soxB gene, particularly the region consisting of the base sequence represented by SEQ ID NO: 1, include one or more primer pairs selected from the group consisting of 1) to 8) below. Be done.
  • the above primer pair is an example of a usable primer pair.
  • the primer can be designed to have a length of about 15 bases or more and 30 bases or less. Therefore, in the above primer pair, the base length is set to, for example, 1 base, 2 bases, 3 bases, or 5 bases in consideration of the GC content and the Tm value. Similarly, those having an increase or decrease of about 10 bases can also be used.
  • FIG. 2A is a schematic diagram showing sterilized or unsterilized sulfur-oxidizing bacteria. As shown in FIG. 2A, the cell wall of the unsterilized sulfur-oxidizing bacterium is retained, but the cell wall is destroyed by the sterilized sulfur-oxidizing bacterium, and DNA and the like flow out of the cell.
  • the sterilization strength is sterilization treatment A ⁇ sterilization treatment B.
  • the wastewater after the sterilization treatment is sown on an agar medium or the like having a composition capable of culturing sulfur-oxidizing bacteria and cultured (see FIG. 2B).
  • the plate method can determine the presence or absence of sulfur-oxidizing bacteria, it cannot measure the amount of sulfur-oxidizing bacteria present in the wastewater, and the difference in sterilization efficiency due to the difference in sterilization strength can be seen. It is difficult to evaluate. Further, in the plate method, since the culture time is required, it takes a period of about 1 week or more and 2 weeks or less for the determination.
  • the amount of sulfur-oxidizing bacteria contained in wastewater can be quantified as the amount of known genes of sulfur-oxidizing bacteria (see FIG. 2C).
  • the rise of the amplification curve is slower than in the unsterilized and sterilization treatment A, and the sulfur-oxidizing bacteria contained in the wastewater subjected to the sterilization treatment B. It is estimated that the amount of cells (the amount of genes) in the above is smaller than that obtained by the sterilization treatment A. Thereby, the difference in sterilization efficiency can be evaluated.
  • a two-step operation of extracting DNA from sulfur-oxidizing bacteria contained in wastewater and then performing PCR using the obtained DNA extract as a template sample may be performed for a period of 3 hours or more and 1 day or less, that is, , The measurement result can be obtained in a much shorter time than the plate method.
  • Examples of methods for extracting DNA from sulfur-oxidizing bacteria include a method of heat-treating cells, a method of adding a surfactant, a phenol extraction method, an osmotic shock method, a freeze-thaw method, an enzyme digestion method, and a DNA extraction kit.
  • Known methods such as use of, ultrasonic treatment method, French press method, use of homogenizer and the like can be mentioned. These methods may be performed alone or in combination of two or more.
  • the PCR method is preferably a quantitative PCR method.
  • Examples of the quantitative PCR method include MPN-PCR method, competitive PCR method, real-time PCR method and the like, and among them, the real-time PCR method is preferable.
  • the real-time PCR method is a method of detecting the amplification factor of PCR in real time and quantifying the amount of a gene based on the amplification factor. Quantification is performed using a fluorescent dye, and there are an intercalation method and a hybridization method.
  • the amount of the gene can be calculated by measuring the Ct value (Threshhold Cycle).
  • the Ct value means the number of PCR cycles that results in a constant amount of amplification product, and since the Ct value is inversely proportional to the initial amount of the target gene, the amount of the gene can be calculated by measuring the Ct value. Can be done. Specifically, for example, first, using a standard liquid train obtained by serially diluting a sample containing a known amount of DNA, amplification curves arranged at equal intervals according to the amount of initial DNA are obtained. A threshold value is set at the point where the amplification curve rises, and the point where the amplification curve intersects is obtained as the Ct value.
  • a linear portion is selected from the amplification curves obtained as a result of PCR, and the fluorescence intensity in the section calculated by extrapolating the portion is selected. Can also be used as the initial amount of DNA.
  • step 3 the amount of the oxidizing fungicide is adjusted according to the amount of sulfur-oxidizing bacteria detected in step 2 and sterilized.
  • the oxidative fungicide may be any one that can destroy and sterilize the cell wall of sulfur-oxidizing bacteria and the biofilm composed of aggregates of microorganisms containing sulfur-oxidizing bacteria.
  • halogen-based fungicides examples include hydrogen.
  • the halogen-based bactericide include hypochlorous acid (HClO) and salts thereof (for example, sodium hypochlorite, etc.), ammonia chloramine (NH 2 Cl), bromchlordimethylhydantoin (Br, Cl-DMH), and the like. bromine sulfamate (BrNHSO 3 H), bromine chloramine (NH 4 Br + HClO), and the like.
  • a halogen-based bactericide or ozone is preferable, hypochlorous acid and a salt thereof are more preferable, and sodium hypochlorite is further preferable, from the viewpoint of strong bactericidal activity.
  • the amount of the oxidizing fungicide used for sterilization can be appropriately adjusted according to the amount of sulfur-oxidizing bacteria detected in step 2. Further, it can be appropriately adjusted according to the type of oxidizing fungicide to be used. For example, when sodium hypochlorite is used as the oxidizing bactericide, the amount of sodium hypochlorite added may be such that the final concentration in the treated water is 1 volume ppm or more and 70 volume ppm or less. can.
  • the sterilization time with an oxidizing fungicide can be, for example, about 1 minute or more and 24 hours or less, preferably 1 minute or more and 12 hours or less, and more preferably 1 minute or more and 6 hours or less.
  • the disinfection may be stopped by adding a neutralizing agent of sodium hypochlorite after the above sterilization time has elapsed.
  • a neutralizing agent of sodium hypochlorite examples include sodium thiosulfate and the like.
  • the amount of the neutralizing agent added can be about the same as the amount of the oxidizing fungicide added.
  • step 4 the amount of the sulfur-oxidizing bacteria in the wastewater after sterilization is detected again.
  • the amount of sulfur-oxidizing bacteria can be determined by the same method as described in step 2 above.
  • step 4 in addition to the amount of cells, the COD in the wastewater after sterilization may be measured again. As a result, in the subsequent step 5, it is possible to more reliably determine the discharge or re-sterilization of wastewater.
  • step 5 when the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the sulfur-oxidizing bacteria are released. On the other hand, when the amount of cells exceeds the reference value, the above steps 3 and 4 are repeated.
  • the amount of cells can be set so as to be equal to or less than the reference value of COD. For example, by investigating the correlation between the amount of sulfur-oxidizing bacteria and COD in advance, it is possible to set the amount of cells so as to obtain a desired COD as a reference value.
  • step 5 If the amount of cells exceeds the reference value in step 5, it can be determined that the sterilization in the desulfurization apparatus is insufficient, and the steps 3 and 4 are repeated in order to sterilize again. conduct.
  • the measured value of COD in the wastewater after sterilization is obtained in step 5, in addition to the amount of cells, the measured value of COD is compared with the reference value of COD to release the product. Alternatively, it can be determined whether the cells are sterilized again and the amount of cells is detected again (the steps 3 and 4 are repeated). As a result, a more reliable determination can be made.
  • FIG. 3 is a schematic view of a wet exhaust gas desulfurization apparatus used in the control method according to the embodiment. The configuration of the desulfurization apparatus shown in FIG. 3 is shown below.
  • the desulfurization device 101 includes a housing 10, an exhaust gas introduction port 11a for introducing exhaust gas into the housing 10, an exhaust gas discharge port 11b for discharging the exhaust gas to the outside of the housing 10, and a spraying device 26 ( It is a retention portion for retaining the absorbing liquid sprayed by (described later), and includes a retention portion 13 formed as a part of the housing 10.
  • the absorbing liquid is retained in the retaining portion 13.
  • the retained absorption liquid usually contains sulfite ions generated by absorbing sulfur oxides in exhaust gas and sulfate ions generated by oxidation of sulfite ions.
  • the absorption liquid is replenished to the inside of the housing 10 by the pump 21 through the absorption liquid replenishment system 71 connected to the absorption liquid tank (not shown).
  • the desulfurization device 101 includes a spraying device 26 for spraying the absorbing liquid inside the housing 10, and an absorbing liquid discharging port 14 for discharging the absorbing liquid of the retention portion 13 to the outside of the housing 10. ..
  • the absorption liquid is sprayed by the spraying device 26, and the sprayed absorption liquid and the exhaust gas come into contact with each other in the internal space 15 of the housing 10, so that the sulfur oxides in the exhaust gas can be absorbed by the absorption liquid.
  • the sulfur oxides in the exhaust gas are removed, and the purified gas, which is the purified exhaust gas, is exhausted to the outside of the desulfurization apparatus 101.
  • sulfurous acid ions are generated as described above by the absorption of sulfur oxides (sulfur dioxide). Then, the sulfite ion is oxidized by the air diffused by the air diffuser 22 (described later) to generate the sulfate ion. The generated sulfate ion reacts with calcium carbonate in the absorption liquid to generate calcium sulfate (gypsum) and carbon dioxide. The generated carbon dioxide is exhausted to the outside of the desulfurization apparatus 101 together with the purifying gas. Further, the produced calcium sulfate is separated and recovered by the solid-liquid separator 43 described later.
  • the exhaust gas introduced into the housing 10 is usually at a high temperature, and the water contained in the absorbing liquid evaporates. Therefore, in order to supplement the water that has evaporated and decreased, the make-up water is appropriately supplied through the make-up water nozzle 51.
  • the make-up water nozzle 51 is connected to a make-up water tank (not shown) by a make-up water supply system 77. Then, by driving the pump 24 provided in the make-up water supply system 77, the make-up water is supplied through the make-up water nozzle 51.
  • the desulfurization apparatus 101 is provided with an air diffuser pipe 22 for dissipating the oxidizing air with respect to the retained absorption liquid.
  • the air diffuser 22 is open to the atmosphere via the air supply system 72. Then, the air in the atmosphere (air for oxidation) is supplied to the air diffuser pipe 22 through the pump 23 provided in the air supply system 72, and is dispersed in the absorbing liquid. As a result, the sulfite ion in the absorption liquid can be oxidized, and the sulfate ion can be generated.
  • the spraying device 26 is configured to spray the absorbing liquid discharged to the outside of the housing 10 through the absorbing liquid discharging port 14 into the inside of the housing 10. That is, in the desulfurization apparatus 101, the absorbing liquid is repeatedly used.
  • the desulfurization apparatus 101 includes a circulation system 73 and a pump 41 for extracting the absorption liquid from the retention portion 13 through the circulation system 73.
  • the circulation system 73 has a circulation pipe 73a through which the absorption liquid discharged to the outside of the housing 10 through the absorption liquid discharge port 14 flows, and an absorption liquid flowing through the circulation pipe 73a inside the housing 10. Specifically, it is provided with an absorption liquid recirculation port 73b for returning to the retention portion 13). Then, by driving the pump 41, the absorbing liquid circulates between the retention portion 13 and the spraying device 26.
  • the absorption liquid is circulated also in another route. That is, the circulation system 73 is provided with a three-way valve 42, and a part of the absorbing liquid flowing through the circulation system 73 is supplied to the solid-liquid separator 43 through the extraction system 74.
  • the solid-liquid separator 43 is, for example, a belt filter (belt press).
  • the absorption liquid supplied to the solid-liquid separator 43 contains calcium sulfate (gypsum) produced as described above. Therefore, calcium sulfate is separated in the solid-liquid separator 43, whereby the sulfur content derived from the sulfur oxide in the exhaust gas stream is removed as a solid content.
  • the absorbed liquid after separating calcium sulfate in the solid-liquid separator 43 is drained to the outside through the drainage system 75 and the three-way valve 44.
  • a part of the absorbing liquid flowing through the drainage system 75 is returned to the inside of the housing 10 through the three-way valve 44 and the return system 76 from the viewpoint of liquid balance.
  • the absorption liquid circulates through the absorption liquid recirculation port 73b, the absorption liquid that is sprayed inside the housing 10 and absorbs sulfur oxides and stays in the retention portion 13 is re-used. , Can be used for the absorption of sulfur oxides. As a result, the amount of the newly used absorbent liquid can be reduced.
  • the desulfurization device 101 may be configured so that the absorbing liquid sprayed by the spraying device 26 and an antibacterial metal member containing an antibacterial metal having an antibacterial action against sulfur-oxidizing bacteria can be brought into contact with each other.
  • the antibacterial metal member include those described in Patent Document 2 (Japanese Patent Laid-Open No. 2019-1267664). Since sulfur-oxidizing bacteria and the like easily grow inside the housing 10 (particularly inside the absorbing liquid), when the massive antibacterial metal member 61 comes into contact with the absorbing liquid, the absorbing liquid containing sulfur oxides stays there. In the retention portion 13, which is an environment in which sulfur-oxidizing bacteria and the like easily grow, the growth of sulfur-oxidizing bacteria and the like can be suppressed. As a result, it is possible to suppress an increase in COD of wastewater.
  • the COD in the drainage discharged to the outside of the apparatus is measured through the drainage system 75 and the three-way valve 44.
  • the pipe to the outside of the device provided in the three-way valve 44 may be provided with an ultraviolet absorbance measuring instrument (UV measuring instrument) (not shown). This makes it possible to continuously measure the COD in the wastewater.
  • UV measuring instrument ultraviolet absorbance measuring instrument
  • the wastewater is discharged as it is.
  • the COD exceeds the reference value, a part of the wastewater is sampled without being discharged, and the amount of sulfur-oxidizing bacteria in the wastewater is detected.
  • the method for detecting the amount of cells is as described in the above step 2.
  • the oxidizing disinfectant is added to the make-up water, for example, and is supplied to the inside of the housing 10 via the make-up water nozzle 51 by driving the pump 24 provided in the make-up water supply system 77. Alternatively, it is supplied to the inside of the housing 10 through a pit (not shown) provided on the bottom surface of the housing 10.
  • the oxidizing fungicide can be distributed throughout the inside of the housing 10.
  • the oxidizing fungicide when supplied by the latter method, the oxidizing fungicide can be effectively acted on the sulfur-oxidizing bacteria adhering to the gypsum dispersed in the liquid, and is oxidizing. It is possible to suppress the corrosion of members due to the disinfectant.
  • the sterilization time can be the time described in step 3 above.
  • the wastewater discharged to the outside of the device is sampled again through the drainage system 75 and the three-way valve 44, and the amount of sulfur-oxidizing bacteria in the wastewater is detected.
  • the method for detecting the amount of cells is as described in the above step 2.
  • the wastewater is discharged.
  • the sulfur-oxidizing bacteria exceed the standard value, they are not released and are sterilized again with an oxidizing fungicide.
  • the method for adding the oxidizing fungicide is as described above. After sterilization, the wastewater discharged to the outside of the apparatus is sampled again through the drainage system 75 and the three-way valve 44, and the amount of sulfur-oxidizing bacteria in the wastewater is detected.
  • the detected bacterial cell mass and the reference value are compared, and the discharge of wastewater is suspended until the bacterial cell mass falls below the standard value, and sterilization ⁇ detection of the bacterial cell mass ⁇ judgment by comparison with the reference value. Repeat the operation.
  • the sterilization evaluation method of the wet exhaust gas desulfurization apparatus according to the embodiment of the present disclosure includes the following steps.
  • a step of detecting the amount of sulfur-oxidizing bacteria in wastewater by a PCR method using a primer pair for amplifying a known gene of the sulfur-oxidizing bacteria (hereinafter, may be abbreviated as "bacteria amount detection step").
  • a step of adjusting the amount of an oxidizing fungicide according to the detected amount of sulfur-oxidizing bacteria and sterilizing it (hereinafter, may be abbreviated as “sterilization step”);
  • a step of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization (hereinafter, may be abbreviated as “cell amount re-detection step”);
  • the step of evaluating that the wet exhaust gas desulfurization apparatus is sufficiently sterilized hereinafter, may be abbreviated as “evaluation step”).
  • the cell amount detection step is the same as the case where the COD in the above step 2 exceeds the reference value.
  • the sterilization step is the same as the above step 3.
  • the cell amount redetection step is the same as the above step 4. Therefore, the description of the same process as the process in the control method according to these embodiments is omitted.
  • the evaluation step when the cell amount of the sulfur-oxidizing bacteria detected in the cell amount redetection step is equal to or less than the reference value, it is evaluated that the desulfurization apparatus is sufficiently sterilized. On the other hand, when the amount of cells exceeds the standard value, it is evaluated that the sterilization of the desulfurization apparatus is insufficient.
  • the reference value of the amount of cells may be smaller than the amount of cells in the wastewater before sterilization, for example, 80% or 50% of the amount of cells in the wastewater before sterilization. The amount can be 30% and 10%. Further, as specified in the above step 5, an amount such that the COD becomes a desired value may be used as a reference value for the amount of bacterial cells.
  • the above sterilization step and the above cell amount redetection step can be repeated, and the evaluation step can be carried out again.
  • the above sterilization step, the above cell amount redetection step, and the present evaluation step may be repeated until the amount of cells in the waste water after sterilization becomes equal to or less than the reference value.
  • the degree of sterilization (sterilization efficiency) of the wet exhaust gas desulfurization apparatus can be quantitatively evaluated.
  • Example 1 (Analysis of gypsum sample flora and examination of culture conditions for sulfur-oxidizing bacteria) 1.
  • Gypsum sample bacterial flora analysis Since an increase in COD in the desulfurization equipment was confirmed, the gypsum sample collected from the desulfurization equipment was analyzed for the bacterial flora in order to identify the cause. The results are shown in FIG.
  • composition of the media used are as shown below; NH 4 Cl: 0.4g, MgSO 4 ⁇ 7H 2 O: 0.8g, Trace element solution ( composition as described below): 10mL, KH 2 PO 4 : 4 g, K 2 HPO 4 : 4 g, K 2 S 4 O 6 : 3 g, Bromocresol purple (saturated aqueous solution): 2 mL, distilled water: 1000 mL.
  • the above components excluding potassium dihydrogen phosphate, potassium dihydrogen phosphate and dipotassium tetrathionate were dissolved in 900 mL of distilled water and sterilized by autoclaving.
  • potassium dihydrogen phosphate and potassium dihydrogen phosphate were dissolved in 100 mL of distilled water, individually autoclaved for sterilization, cooled, and then mixed with a solution containing other salts autoclaved.
  • Dipotassium tetrathionate was sterilized by filtration and then mixed with a solution containing other salts that had been autoclaved.
  • the pH of the medium was adjusted to 6.9.
  • Composition of Trace element solution is as shown below; Na 2 -EDTA: 50g, ZnSO 4 ⁇ 7H 2 O: 11g, CaCl 2 ⁇ 2H 2 O: 7.34g, MnCl 2 ⁇ 4H 2 O: 2.
  • an amplification curve was drawn in the real-time PCR method using primer pairs 5 to 8, indicating that the amount of the soxB gene can be quantified. Further, as shown in FIG. 6B, it was confirmed that an amplification product of the target soxB gene region was obtained by a real-time PCR method using primer pairs 5 to 8.
  • Example 3 (Measurement of cell mass of sulfur-oxidizing bacteria by PCR method in gypsum sample after sterilization) 1.
  • 5 cc of sodium hypochlorite solution (final concentration: 1 volume ppm, 8 volume ppm or 70 volume ppm) was added to a 10 cc gypsum sample, and then the mixture was stirred for 30 minutes.
  • 5 cc of sodium thiosulfate solution was added to neutralize sodium hypochlorite.
  • 0.5 mL of the neutralized slurry was taken out and centrifuged (14000 rpm, 10 minutes). The supernatant was discarded and the remaining material was used as a sample for DNA extraction after sterilization.
  • a negative control a sample consisting only of water without containing a gypsum sample was used.
  • the amount of the soxB gene was quantified by the real-time PCR method under the same conditions as the PCR conditions shown in Example 2 except that the number of cycles was set to 45 using the primer pair 8. did.
  • the results are shown in FIG. Table 2 shows the fluorescence intensity (initial DNA amount) in the section calculated by extrapolating the straight line portion of the amplification curve shown in FIG. 7.
  • the amount of cells was reduced to about 1/100 in the 8-volume ppm treatment and about 1/100 in the 70-volume ppm treatment as compared with the sample treated with 1 volume ppm sodium hypochlorite. It was confirmed that the amount was reduced to about 1/1000.
  • the method for controlling the chemical oxygen demand in wastewater in the wet exhaust gas desulfurization apparatus is a method for controlling the chemical oxygen demand in waste water in the wet exhaust gas desulfurization apparatus.
  • Step 1 to measure the chemical oxygen demand in the wastewater of the wet exhaust gas desulfurization equipment When the measured chemical oxygen demand is equal to or less than the reference value, the wastewater is discharged, while when the measured amount exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is measured as the sulfur-oxidizing bacteria.
  • Step 4 of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization, and When the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the cells are released, while when the amount exceeds the reference value, the steps 3 and 4 are repeated. including.
  • the amount of sulfur-oxidizing bacteria before and after sterilization is quantified in the above steps 2 and 4. This makes it possible to quantify the sterilization efficiency from the change in the amount of sulfur-oxidizing bacteria before and after sterilization. Further, in the above step 3, the amount of the oxidizing fungicide is adjusted according to the amount of the sulfur-oxidizing bacteria detected in the above step 2. This makes it possible to prevent the amount of the oxidizing fungicide from being used excessively.
  • the control method of the second aspect is the control method of (1), wherein the oxidizing disinfectant is one or more selected from the group consisting of halogen-based disinfectants, ozone and hydrogen peroxide. May be good.
  • the sulfur-oxidizing bacteria can be effectively sterilized by using the oxidizing bactericide exemplified above.
  • the control method of the third aspect is the control method of (1) or (2), and the chemical oxygen demand in the wastewater after sterilization may be measured again in the step 4. ..
  • control method of the third aspect by measuring the COD in the wastewater after sterilization in the above step 4, it is confirmed that the COD in the wastewater after sterilization is reduced and the sterilization efficiency is confirmed from the reduced amount. can do.
  • the control method of the fourth aspect is the control method according to any one of (1) to (3), and the known gene may be a soxB gene.
  • the amount of sulfur-oxidizing bacteria in the wastewater before and after sterilization can be quantified by detecting the soxB gene of sulfur-oxidizing bacteria by the PCR method.
  • the control method of the fifth aspect is the control method according to any one of (1) to (4), wherein the known gene comprises a base sequence represented by SEQ ID NO: 1. May be good.
  • the amount of sulfur-oxidizing bacteria in the wastewater before and after sterilization is quantified by detecting the region consisting of the nucleotide sequence represented by SEQ ID NO: 1 of the sulfur-oxidizing bacteria by the PCR method. be able to.
  • the sterilization evaluation method of the wet exhaust gas desulfurization apparatus is A step of detecting the amount of sulfur-oxidizing bacteria in the wastewater by a PCR method using a primer pair for amplifying a known gene of the sulfur-oxidizing bacteria. A step of adjusting the amount of the oxidizing fungicide according to the detected amount of the sulfur-oxidizing bacteria and sterilizing the sulfur-oxidizing bacteria.
  • the amount of sulfur-oxidizing bacteria before and after sterilization is quantified. This makes it possible to quantitatively evaluate the degree of sterilization of the wet exhaust gas desulfurization apparatus from the change in the amount of sulfur-oxidizing bacteria before and after sterilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

A method for controlling a chemical oxygen demand in waste water in a wet exhaust gas desulfurization device, the method comprising: step 1 for measuring the chemical oxygen demand in the waste water in the wet exhaust gas desulfurization device; step 2 for discharging the waste water if the measured chemical oxygen demand is not higher than a reference value, and detecting the microbiomass of sulfur-oxidizing bacteria in the waste water by a PCR method using a pair of primers for amplification of a known gene of sulfur-oxidizing bacteria if the measured chemical oxygen demand is higher than the reference value; step 3 for adjusting the amount of an acidic microbicide in accordance with the detected microbiomass so as to perform sterilization; step 4 for detecting the microbiomass in the waste water again after sterilization; and step 5 for discharging the waste water if the microbiomass detected again is not higher than the reference value, and repeating steps 3 and 4 if the microbiomass detected again is higher than the reference value.

Description

湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法及び湿式排ガス脱硫装置の殺菌評価方法Control method of chemical oxygen demand in wastewater in wet exhaust gas desulfurization equipment and sterilization evaluation method of wet exhaust gas desulfurization equipment
 本開示は、湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法及び湿式排ガス脱硫装置の殺菌評価方法に関する。
 本願は、2020年1月30日に、日本に出願された特願2020-014063号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a method for controlling a chemical oxygen demand in waste water in a wet exhaust gas desulfurization apparatus and a method for evaluating sterilization of the wet exhaust gas desulfurization apparatus.
The present application claims priority based on Japanese Patent Application No. 2020-014063 filed in Japan on January 30, 2020, the contents of which are incorporated herein by reference.
 火力発電所等から排出される排ガスは、大気中への硫黄酸化物の放出を抑制する観点から、排ガス脱硫装置による脱硫を経た後で大気中に放出される。排ガス脱硫装置には、乾式排ガス脱硫装置と湿式排ガス脱硫装置とがある。これらのうち、乾式排ガス脱硫装置は、例えば活性炭等の固体吸着剤に排ガスを接触させ、硫黄酸化物を固体吸着剤に吸着させることで、排ガス中の硫黄酸化物を除去するものである。また、湿式排ガス脱硫装置は、アルカリ成分を含む吸収液に排ガスを接触させ、硫黄酸化物を吸収液に吸収させることで、排ガス中の硫黄酸化物を除去するものである。 Exhaust gas discharged from thermal power plants, etc. is released into the atmosphere after desulfurization by an exhaust gas desulfurization device from the viewpoint of suppressing the release of sulfur oxides into the atmosphere. The exhaust gas desulfurization apparatus includes a dry exhaust gas desulfurization apparatus and a wet exhaust gas desulfurization apparatus. Of these, the dry exhaust gas desulfurization apparatus removes sulfur oxides in the exhaust gas by bringing the exhaust gas into contact with a solid adsorbent such as activated carbon and adsorbing the sulfur oxides on the solid adsorbent. Further, the wet exhaust gas desulfurization apparatus removes sulfur oxides in the exhaust gas by bringing the exhaust gas into contact with the absorbing liquid containing an alkaline component and absorbing the sulfur oxides in the absorbing liquid.
 湿式排ガス脱硫装置による脱硫方法には、使用する吸収液の種類に応じて複数の方法が知られている。具体的には例えば、石灰石膏法、苛性ソーダ法、マグネシウム法等が挙げられる。例えば、石灰石膏法で使用される吸収液(スラリー)には石灰石(炭酸カルシウム)が含まれる。排ガス中の硫黄酸化物(二酸化硫黄等)が吸収液に吸収されると、吸収液中で亜硫酸イオンが生成する。そして、吸収液中で亜硫酸イオンを酸化させることで、硫酸イオンが生成する。硫酸イオンは石灰石と容易に反応し、硫酸カルシウム(石膏)が生成する。これにより、硫黄酸化物に由来する硫黄分を、石膏として吸収液から除去することができる。 A plurality of methods are known as desulfurization methods using a wet exhaust gas desulfurization apparatus, depending on the type of absorption liquid used. Specific examples thereof include a lime gypsum method, a caustic soda method, and a magnesium method. For example, the absorption liquid (slurry) used in the lime gypsum method contains limestone (calcium carbonate). When sulfur oxides (sulfur dioxide, etc.) in the exhaust gas are absorbed by the absorption liquid, sulfite ions are generated in the absorption liquid. Then, the sulfate ion is generated by oxidizing the sulfite ion in the absorption liquid. Sulfate ions easily react with limestone to produce calcium sulfate (gypsum). As a result, the sulfur content derived from the sulfur oxide can be removed from the absorption liquid as gypsum.
 発明者らは、排ガスと接触し、硫黄酸化物を吸収した吸収液(使用済み吸収液)において、化学的酸素要求量(COD)が高い場合があることを明らかにしている。この理由は、発明者らの検討によれば、硫黄酸化物を吸収した吸収液において、独立栄養細菌である硫黄酸化細菌(例えばThermithiobacillus属細菌)が増殖したためと考えられる。そして、硫黄酸化細菌が増殖すると、硫黄酸化細菌の産出物(有機物)を利用して増殖する従属栄養細菌(例えばPseudomonas属細菌)が増殖し得る。増殖した従属栄養細菌においても糖類等の有機物が産出されることから、硫黄酸化細菌による有機物の産出とともに、使用済み吸収液のCODが上昇すると考えられる。 The inventors have clarified that the chemical oxygen demand (COD) may be high in the absorption liquid (used absorption liquid) that has come into contact with the exhaust gas and has absorbed sulfur oxides. According to the study by the inventors, it is considered that the reason for this is that sulfur-oxidizing bacteria (for example, bacteria belonging to the genus Thermithiobacillus), which are autotrophic bacteria, proliferated in the absorbing solution that absorbed sulfur oxides. Then, when the sulfur-oxidizing bacterium grows, a heterotrophic bacterium (for example, a bacterium belonging to the genus Pseudomonas) that grows by utilizing the product (organic matter) of the sulfur-oxidizing bacterium can grow. Since organic substances such as sugars are also produced in the grown heterotrophic bacteria, it is considered that the COD of the used absorption liquid increases with the production of organic substances by the sulfur-oxidizing bacteria.
 CODが排水基準よりも高いと、排水を河川等に放水することができない。そのため、CODの上昇を抑制することが好ましい。そこで、CODの上昇抑制には、上記の硫黄酸化細菌の増殖を抑制することが有効と考えらえる。硫黄酸化細菌の増殖抑制により、硫黄酸化細菌が産出する有機物の量を低減できる。また、硫黄酸化細菌の増殖抑制により、従属栄養細菌の増殖も抑制され、独立栄養細菌が算出する有機物の量も低減できる。そして、これらの結果、有機物の産出量が抑制され、使用済み吸収液のCODの上昇を抑制できると考えられる。 If the COD is higher than the drainage standard, the drainage cannot be discharged to rivers, etc. Therefore, it is preferable to suppress the increase in COD. Therefore, in order to suppress the increase in COD, it is considered effective to suppress the growth of the above-mentioned sulfur-oxidizing bacteria. By suppressing the growth of sulfur-oxidizing bacteria, the amount of organic matter produced by sulfur-oxidizing bacteria can be reduced. In addition, by suppressing the growth of sulfur-oxidizing bacteria, the growth of heterotrophic bacteria is also suppressed, and the amount of organic matter calculated by autotrophic bacteria can be reduced. As a result, it is considered that the amount of organic matter produced can be suppressed and the increase in COD of the used absorption liquid can be suppressed.
 一方、硫黄酸化細菌は、一般的な抗菌剤で増殖抑制することができる微生物であり、金属(例えば、ニッケル等)で増殖が抑制されることが知られている。この機能を利用し、硫黄酸化細菌が硫化水素や二酸化硫黄を資化して、硫酸を生成し、コンクリートからなる下水配管等を劣化させることを防止するために、金属が練りこまれた硫黄酸化細菌の増殖防止コンクリート等が製品化されている(例えば、特許文献1参照)。 On the other hand, sulfur-oxidizing bacteria are microorganisms whose growth can be suppressed by general antibacterial agents, and it is known that their growth is suppressed by metals (for example, nickel and the like). Utilizing this function, sulfur-oxidizing bacteria kneaded with metal to prevent sulfur-oxidizing bacteria from assimilating hydrogen sulfide and sulfur dioxide to generate sulfuric acid and deteriorating sewage pipes made of concrete. Proliferation-preventing concrete and the like have been commercialized (see, for example, Patent Document 1).
 また、特許文献2には、散布装置により散布された吸収液と、硫黄酸化細菌に対して抗菌作用を有する抗菌金属を含む塊状抗菌部材とが接触可能に構成された湿式排ガス脱硫装置が開示されている。 Further, Patent Document 2 discloses a wet exhaust gas desulfurization apparatus configured so that the absorbing liquid sprayed by the spraying apparatus and a massive antibacterial member containing an antibacterial metal having an antibacterial action against sulfur-oxidizing bacteria can come into contact with each other. ing.
 しかしながら、従来の湿式排ガス脱硫装置では、装置中の硫黄酸化細菌を殺菌するために殺菌剤を添加した場合に、その殺菌効率を定量することができず、十分な殺菌効果を発揮させるために、殺菌剤の添加量が過剰量となることが懸念される。 However, in the conventional wet exhaust gas desulfurization apparatus, when a bactericidal agent is added to sterilize the sulfur-oxidizing bacteria in the apparatus, the sterilization efficiency cannot be quantified, and in order to exert a sufficient bactericidal effect, There is concern that the amount of disinfectant added will be excessive.
日本国特開平4-149053号公報Japanese Patent Application Laid-Open No. 4-149053 日本国特開2019-126764号公報Japanese Patent Application Laid-Open No. 2019-126674
 本開示は、上記課題を解決するためになされたものであって、殺菌効率を定量化することができる湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a method for controlling a chemical oxygen demand in wastewater in a wet exhaust gas desulfurization apparatus capable of quantifying sterilization efficiency. do.
 上記課題を解決するために、本開示に係る湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法は、湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法であって、
 湿式排ガス脱硫装置の排水中の化学的酸素要求量を測定する工程1と、
 測定された前記化学的酸素要求量が基準値以下である場合に、排水を放流し、一方、基準値超である場合に、前記排水中の硫黄酸化細菌の菌体量を、前記硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する工程2と、
 検出された前記硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する工程3と、
 殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する工程4と、
 再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、放流し、一方、基準値超である場合に、前記工程3及び前記工程4を繰り返す工程5と、
を含む。
In order to solve the above problems, the method for controlling the chemical oxygen demand in wastewater in the wet exhaust gas desulfurization apparatus according to the present disclosure is a method for controlling the chemical oxygen demand in wastewater in the wet exhaust gas desulfurization apparatus.
Step 1 to measure the chemical oxygen demand in the wastewater of the wet exhaust gas desulfurization equipment,
When the measured chemical oxygen demand is equal to or less than the reference value, the wastewater is discharged, while when the measured amount exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is measured as the sulfur-oxidizing bacteria. Step 2 of detection by the PCR method using a primer pair for amplification of a known gene of
Step 3 of adjusting the amount of the oxidizing fungicide according to the detected amount of the sulfur-oxidizing bacteria and sterilizing the sulfur-oxidizing bacteria.
Step 4 of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization, and
When the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the cells are released, while when the amount exceeds the reference value, the steps 3 and 4 are repeated.
including.
 本開示に係る湿式排ガス脱硫装置の殺菌評価方法は、
 排水中の硫黄酸化細菌の菌体量を、前記硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する工程と、
 検出された前記硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する工程と、
 殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する工程と、
 再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、前記湿式排ガス脱硫装置が十分に殺菌されていると評価する工程と、
を含む。
The sterilization evaluation method of the wet exhaust gas desulfurization apparatus according to the present disclosure is described.
A step of detecting the amount of sulfur-oxidizing bacteria in the wastewater by a PCR method using a primer pair for amplifying a known gene of the sulfur-oxidizing bacteria.
A step of adjusting the amount of the oxidizing fungicide according to the detected amount of the sulfur-oxidizing bacteria and sterilizing the sulfur-oxidizing bacteria.
A step of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization, and
When the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the step of evaluating that the wet exhaust gas desulfurization apparatus is sufficiently sterilized, and the step of evaluating that the wet exhaust gas desulfurization apparatus is sufficiently sterilized.
including.
 本開示の湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法によれば、殺菌効率を定量化することができる。 According to the method for controlling the chemical oxygen demand in wastewater in the wet exhaust gas desulfurization apparatus of the present disclosure, the sterilization efficiency can be quantified.
本開示の実施形態に係る制御方法のフローを示す図である。It is a figure which shows the flow of the control method which concerns on embodiment of this disclosure. 殺菌処理又は未殺菌の硫黄酸化細菌を示す模式図である。It is a schematic diagram which shows the sterilized or unsterilized sulfur-oxidizing bacterium. 従来の殺菌処理又は未処理の硫黄酸化細菌の検出法(プレート法)を示す模式図である。It is a schematic diagram which shows the conventional sterilization treatment or the detection method (plate method) of untreated sulfur-oxidizing bacteria. 本開示における殺菌処理又は未処理の硫黄酸化細菌の検出法(PCR法)を示すグラフである。It is a graph which shows the detection method (PCR method) of the sterilized or untreated sulfur-oxidizing bacteria in this disclosure. 本開示の実施形態に係る制御方法で用いられる湿式排ガス脱硫装置の模式図である。It is a schematic diagram of the wet exhaust gas desulfurization apparatus used in the control method which concerns on embodiment of this disclosure. 実施例1における石膏サンプルの菌叢解析結果を示すグラフである。It is a graph which shows the bacterial flora analysis result of the gypsum sample in Example 1. 実施例1における継代培養(1回目、2回目及び3回目)した硫黄酸化細菌のpHと培養時間の関係を示すグラフである。It is a graph which shows the relationship between the pH and the culture time of the sulfur-oxidizing bacterium which was subcultured (the 1st time, the 2nd time and the 3rd time) in Example 1. 実施例2におけるPCR法による検出結果(増幅曲線)を示すグラフである。It is a graph which shows the detection result (amplification curve) by the PCR method in Example 2. FIG. 実施例2におけるPCR法による増幅産物のアガロースゲル電気泳動像である。It is an agarose gel electrophoresis image of the amplification product by the PCR method in Example 2. 実施例3におけるPCR法による検出結果(増幅曲線)を示すグラフである。It is a graph which shows the detection result (amplification curve) by the PCR method in Example 3.
<湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法>
 図1は、本開示の実施形態に係る湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法(以下、「実施形態に係る制御方法」と略記する場合がある)のフロー図である。
 工程1では、湿式排ガス脱硫装置の排水中の化学的酸素要求量(COD)を測定する。
 工程2では、測定された前記化学的酸素要求量が基準値以下である場合に、排水を放流し、一方、基準値超である場合に、前記排水中の硫黄酸化細菌の菌体量を、前記硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する。
 工程3では、検出された前記硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する。
 工程4では、殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する。
 工程5では、再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、放流し、一方、基準値超である場合に、前記工程3及び前記工程4を繰り返す。
<Method of controlling chemical oxygen demand in wastewater in wet exhaust gas desulfurization equipment>
FIG. 1 is a flow chart of a method for controlling a chemical oxygen demand in waste water in the wet exhaust gas desulfurization apparatus according to the embodiment of the present disclosure (hereinafter, may be abbreviated as “control method according to the embodiment”). ..
In step 1, the chemical oxygen demand (COD) in the wastewater of the wet exhaust gas desulfurization apparatus is measured.
In step 2, when the measured chemical oxygen demand is less than or equal to the reference value, the wastewater is discharged, while when the measured amount exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is determined. It is detected by a PCR method using a primer pair for amplification of a known gene of the sulfur-oxidizing bacterium.
In step 3, the amount of the oxidative fungicide is adjusted according to the amount of the detected sulfur-oxidizing bacteria, and the sterilization is performed.
In step 4, the amount of the sulfur-oxidizing bacteria in the wastewater after sterilization is detected again.
In step 5, when the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the cells are released, while when the amount exceeds the reference value, the steps 3 and 4 are repeated.
 なお、本明細書において、湿式排ガス脱硫装置(以下、単に「脱硫装置」と略記する場合がある)は、火力発電所等において生じた排ガスと吸収液とを接触させることにより、排ガス中の硫黄酸化物(二酸化硫黄等)を吸収液に吸収させて排ガスから除去するためのものである。 In the present specification, the wet exhaust gas desulfurization apparatus (hereinafter, may be simply abbreviated as "desulfurization apparatus") refers to sulfur in the exhaust gas by bringing the exhaust gas generated in a thermal power plant or the like into contact with an absorbing liquid. This is for absorbing oxides (sulfur dioxide, etc.) in the absorbing liquid and removing them from the exhaust gas.
 使用される吸収液は、硫黄酸化物を吸収可能なものであれば任意であり、例えば、石灰石を溶解(分散)させたスラリー(石灰石膏法)、水酸化ナトリウム水溶液(苛性ソーダ法)、水酸化マグネシウムを溶解(分散)させたスラリー(マグネシウム法)を適用することができる。本明細書では、一例として、石灰石を溶解させた(分散させた)スラリーが使用される。なお、スラリーは、厳密には液体ではないが、本明細書では便宜的に液体として扱うものとする。 The absorption liquid used is arbitrary as long as it can absorb sulfur oxides, for example, a slurry in which limestone is dissolved (dispersed) (lime gypsum method), an aqueous sodium hydroxide solution (caustic soda method), and hydroxide. A slurry (magnesium method) in which magnesium is dissolved (dispersed) can be applied. In the present specification, as an example, a slurry in which limestone is dissolved (dispersed) is used. Although the slurry is not strictly a liquid, it is treated as a liquid in the present specification for convenience.
 一般に、硫黄酸化細菌は、サルファイド(S2-)、元素硫黄(SO)、チオ硫酸、ポリチオン酸、亜硫酸等の還元型無機硫黄化合物の酸化エネルギーを増殖のエネルギーとして利用する細菌である。硫黄酸化細菌としては、例えば、Beggiatoa属、Thiothrix属、Thiobacterium属等の一時的に体内に硫黄を沈着する細菌;Thiobacillus属、Thermithiobacillus属、Thiomonas属、Thiomicrospira属等の菌体内に硫黄を蓄積しない中温性細菌;Thermothrix属等の好熱性細菌;Acidianus属、Metallosphaera属、Sulfolobus属等の超高熱細菌等が挙げられる。後述する実施例に示すように、脱硫装置内に存在する硫黄酸化細菌として同定された細菌は、Thermithiobacillus属に属する細菌である。よって、実施形態に係る制御方法において、硫黄酸化細菌は、Thermithiobacillus属に属する細菌を示す。 In general, the sulfur-oxidizing bacteria, sulfide (S 2-), elemental sulfur (SO), a bacterium to utilize thiosulfate, polythionic acid, the oxidation energy of the reduced inorganic sulfur compounds sulfite as energy for growth. Sulfur-oxidizing bacteria include, for example, bacteria that temporarily deposit sulfur in the body such as the genus Bergiatoa, the genus Thiothlix, and the genus Thiobacterium; Sexual bacteria; thermophilic bacteria such as Thermothrix; ultrahyperthermal bacteria such as Acidianus, Metallosphaera, Sulfolobus and the like. As shown in Examples described later, the bacterium identified as a sulfur-oxidizing bacterium present in the desulfurization apparatus is a bacterium belonging to the genus Thermithiobacillus. Therefore, in the control method according to the embodiment, the sulfur-oxidizing bacterium indicates a bacterium belonging to the genus Thermithiobacillus.
 次に、図1を参照しながら、実施形態に係る制御方法の各工程について、詳細を説明する。 Next, with reference to FIG. 1, each step of the control method according to the embodiment will be described in detail.
[工程1]
 工程1では、湿式排ガス脱硫装置の排水中のCODを測定する。CODの測定方法としては、限定されず、例えば、JIS K0102(工場排水試験方法)に規定される方法、JIS K1010(工業用水試験法)に規定される方法、下水試験法に規定される方法、紫外線吸光度を使用した2波長吸光度測定法等が挙げられる。JIS K1010(工業用水試験法)に規定される方法としては、100℃における過マンガン酸カリウムによる酸素消費量(CODMn)の測定方法、二クロム酸カリウムによる酸素消費量(CODCr)の測定方法、アルカリ性過マンガン酸カリウムによる酸素消費量(CODOH)の測定方法の3通りの方法が挙げられる。下水試験法に規定される方法としては、過マンガン酸カリウム溶液による高温法及び低温法、重クロム酸カリウム法等が挙げられる。
[Step 1]
In step 1, the COD in the wastewater of the wet exhaust gas desulfurization apparatus is measured. The COD measurement method is not limited, for example, a method specified in JIS K0102 (factory wastewater test method), a method specified in JIS K1010 (industrial water test method), a method specified in sewage test method, and the like. Examples thereof include a two-wavelength absorbance measurement method using ultraviolet absorbance. The methods specified in JIS K1010 (Industrial Water Test Method) include a method for measuring oxygen consumption (COD Mn ) by potassium permanganate at 100 ° C. and a method for measuring oxygen consumption (COD Cr ) by potassium dichromate. , There are three methods for measuring oxygen consumption (COD OH) by alkaline potassium permanganate. Examples of the method specified in the sewage test method include a high temperature method and a low temperature method using a potassium permanganate solution, a potassium dichromate method, and the like.
 例えば、紫外線吸光度を使用した2波長吸光度測定法を用いる場合には、254nm程度の波長の光を試料に照射し、その吸光度を求めて試料中の有機物濃度を測定する。濁度成分を含む試料である場合には、紫外線が濁度によって散乱して透過光が減少するため見かけ上の吸光度が大きくなることから、365nm以上435nm以下程度の可視光(VIS)の吸光度を測定し、見かけ上の紫外線(UV)吸光度から差し引くことで、濁度成分による影響を少なくすることができる。 For example, when a two-wavelength absorbance measuring method using ultraviolet absorbance is used, the sample is irradiated with light having a wavelength of about 254 nm, and the absorbance is determined to measure the concentration of organic substances in the sample. In the case of a sample containing a turbidity component, the absorbance of visible light (VIS) of about 365 nm or more and 435 nm or less is increased because the ultraviolet rays are scattered by the turbidity and the transmitted light is reduced, so that the apparent absorbance is increased. By measuring and subtracting from the apparent absorbance of ultraviolet rays (UV), the influence of the turbidity component can be reduced.
[工程2]
 工程2では、工程1で測定されたCODが基準値以下である場合に、排水を放流する。一方、CODが基準値超である場合に、排水中の硫黄酸化細菌の菌体量を、硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する。
[Step 2]
In step 2, when the COD measured in step 1 is equal to or less than the reference value, the waste water is discharged. On the other hand, when the COD exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is detected by a PCR method using a primer pair for amplification of a known gene of sulfur-oxidizing bacteria.
 排水中のCODの基準値としては、排水基準を定める省令や、各自治体における排水基準に規定されたCODの許容限度又は当該許容限度を下回る値を設定することができる。例えば、日本国における排水基準を定める省令に規定されているCODの許容限度が160mg/L(日間平均120mg/L)であることから、本工程におけるCODの基準値は、160mg/Lとすることができ、140mg/Lとすることができ、100mg/Lとすることができ、80mg/Lとすることができ、60mg/Lとすることができる。なお、日間平均による許容限度とは、1日の排出水の平均的な汚染状態について定めたものである。 As the standard value of COD in wastewater, it is possible to set the ministerial ordinance that sets the wastewater standard, the allowable limit of COD specified in the wastewater standard in each local government, or a value lower than the allowable limit. For example, since the permissible limit of COD specified in the ministry ordinance that sets the wastewater standard in Japan is 160 mg / L (daily average 120 mg / L), the standard value of COD in this process should be 160 mg / L. It can be 140 mg / L, 100 mg / L, 80 mg / L, and 60 mg / L. In addition, the permissible limit by the daily average defines the average pollution state of the discharged water in one day.
 本工程において、排水中の硫黄酸化細菌の菌体量は、硫黄酸化細菌の既知の遺伝子の量として検出される。既知の遺伝子としては、硫黄酸化細菌が有する遺伝子であって、硫黄酸化細菌に特有のものであればよく、例えば、硫黄代謝に関与する遺伝子を用いることができる。硫黄代謝には、Paracoccus sulfur oxidation pathway(PSO経路、sox経路ともいう)と、S intermediate pathway(S経路)とが存在する。PSO経路には、sox遺伝子クラスターにコードされている酵素(soxXAYZBCD)が主要な役割を担っている。当該酵素として具体的には、例えば、soxYZ、soxXA、soxB、soxCD等が挙げられる。中でも、既知の遺伝子としては、soxB遺伝子が好ましい。硫黄酸化細菌のsoxB遺伝子は、例えば、配列番号1で表される塩基配列からなる。
 一方、S経路に関与する遺伝子としては、例えば、チオ硫酸デヒドロゲナーゼ遺伝子、亜硫酸デヒドロゲナーゼ遺伝子、テトラチオン酸ハイドラロラーゼ(4THase)遺伝子等が挙げられる。
In this step, the amount of sulfur-oxidizing bacteria in the wastewater is detected as the amount of known genes of sulfur-oxidizing bacteria. The known gene may be a gene possessed by a sulfur-oxidizing bacterium and is unique to the sulfur-oxidizing bacterium, and for example, a gene involved in sulfur metabolism can be used. Paracoccus sulfur oxide passage (also referred to as PSO pathway or sox pathway) and S 4 intermediate pathway (S 4 pathway) exist in sulfur metabolism. The enzyme encoded by the sox gene cluster (soxXAYZBCD) plays a major role in the PSO pathway. Specific examples of the enzyme include soxYZ, soxXA, soxB, and soxCD. Among them, the soxB gene is preferable as the known gene. The soxB gene of a sulfur-oxidizing bacterium consists of, for example, the nucleotide sequence represented by SEQ ID NO: 1.
On the other hand, the genes involved in S 4 route, for example, thiosulfate dehydrogenase gene, sulfite dehydrogenase gene, tetrathionate Hydra b hydrolase (4THase) gene and the like.
 既知の遺伝子の増幅用プライマー対は、標的となる遺伝子の塩基配列、Tm値、GC含量等を勘案して、公知の方法を用いて設計することができる。
 例えば、soxB遺伝子、特に、配列番号1で表される塩基配列からなる領域の増幅用プライマー対としては、例えば、以下の1)~8)からなる群より選ばれる1種以上のプライマー対等が挙げられる。
1)配列番号2で表される塩基配列からなるフォワードプライマー及び配列番号3で表される塩基配列からなるリバースプライマー;
2)配列番号4で表される塩基配列からなるフォワードプライマー及び配列番号5で表される塩基配列からなるリバースプライマー;
3)配列番号6で表される塩基配列からなるフォワードプライマー及び配列番号7で表される塩基配列からなるリバースプライマー;
4)配列番号8で表される塩基配列からなるフォワードプライマー及び配列番号9で表される塩基配列からなるリバースプライマー;
5)配列番号10で表される塩基配列からなるフォワードプライマー及び配列番号11で表される塩基配列からなるリバースプライマー;
6)配列番号12で表される塩基配列からなるフォワードプライマー及び配列番号13で表される塩基配列からなるリバースプライマー;
7)配列番号14で表される塩基配列からなるフォワードプライマー及び配列番号15で表される塩基配列からなるリバースプライマー;
8)配列番号16で表される塩基配列からなるフォワードプライマー及び配列番号17で表される塩基配列からなるリバースプライマー
A primer pair for amplification of a known gene can be designed by using a known method in consideration of the base sequence, Tm value, GC content, etc. of the target gene.
For example, examples of the primer pair for amplification of the soxB gene, particularly the region consisting of the base sequence represented by SEQ ID NO: 1, include one or more primer pairs selected from the group consisting of 1) to 8) below. Be done.
1) A forward primer consisting of the base sequence represented by SEQ ID NO: 2 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 3;
2) A forward primer consisting of the base sequence represented by SEQ ID NO: 4 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 5;
3) A forward primer consisting of the base sequence represented by SEQ ID NO: 6 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 7;
4) A forward primer consisting of the base sequence represented by SEQ ID NO: 8 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 9;
5) A forward primer consisting of the base sequence represented by SEQ ID NO: 10 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 11;
6) A forward primer consisting of the base sequence represented by SEQ ID NO: 12 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 13;
7) A forward primer consisting of the base sequence represented by SEQ ID NO: 14 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 15;
8) A forward primer consisting of the base sequence represented by SEQ ID NO: 16 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 17.
 上記のプライマー対は、使用可能なプライマー対の一例である。通常、プライマーは15塩基以上30塩基以下程度の長さに設計できることから、上記のプライマー対において、GC含量やTm値を鑑みて、塩基長を例えば、1塩基、2塩基、3塩基、5塩基、10塩基程度、増加又は減少させたものも同様に用いることができる。 The above primer pair is an example of a usable primer pair. Normally, the primer can be designed to have a length of about 15 bases or more and 30 bases or less. Therefore, in the above primer pair, the base length is set to, for example, 1 base, 2 bases, 3 bases, or 5 bases in consideration of the GC content and the Tm value. Similarly, those having an increase or decrease of about 10 bases can also be used.
 上述した既知の遺伝子を標的としたPCRを行うことで、当該遺伝子の量を定量することができる。
 図2Aは、殺菌処理又は未殺菌の硫黄酸化細菌を示す模式図である。図2Aに示すように、未殺菌の硫黄酸化細菌は細胞壁が保持されているが、殺菌処理された硫黄酸化細菌では細胞壁が破壊され、DNA等が細胞外へ流出する。図2Aにおいて殺菌強度は殺菌処理A<殺菌処理Bであると仮定する。
 従来のプレート法では、殺菌処理後の排水を硫黄酸化細菌が培養可能な組成の寒天培地等に播種し、培養していた(図2B参照)。しかしながら、プレート法では、硫黄酸化細菌の存在可否を判定することはできるが、排水中に存在する硫黄酸化細菌の菌体量を測定することはできず、殺菌強度の違いによる殺菌効率の差を評価することは困難である。また、プレート法では、培養時間が必要となるため、判定に1週間以上2週間以下程度の期間を要していた。
By performing PCR targeting the above-mentioned known gene, the amount of the gene can be quantified.
FIG. 2A is a schematic diagram showing sterilized or unsterilized sulfur-oxidizing bacteria. As shown in FIG. 2A, the cell wall of the unsterilized sulfur-oxidizing bacterium is retained, but the cell wall is destroyed by the sterilized sulfur-oxidizing bacterium, and DNA and the like flow out of the cell. In FIG. 2A, it is assumed that the sterilization strength is sterilization treatment A <sterilization treatment B.
In the conventional plate method, the wastewater after the sterilization treatment is sown on an agar medium or the like having a composition capable of culturing sulfur-oxidizing bacteria and cultured (see FIG. 2B). However, although the plate method can determine the presence or absence of sulfur-oxidizing bacteria, it cannot measure the amount of sulfur-oxidizing bacteria present in the wastewater, and the difference in sterilization efficiency due to the difference in sterilization strength can be seen. It is difficult to evaluate. Further, in the plate method, since the culture time is required, it takes a period of about 1 week or more and 2 weeks or less for the determination.
 これに対して、PCR法では、排水中に含まれる硫黄酸化細菌の菌体量を、硫黄酸化細菌の既知の遺伝子の量として、定量することができる(図2C参照)。具体的には、図2Cに示すように、殺菌強度が高い殺菌処理Bでは、未殺菌及び殺菌処理Aよりも増幅曲線の立ち上がりが遅く、殺菌処理Bを行った排水中に含まれる硫黄酸化細菌の菌体量(遺伝子の量)は、殺菌処理Aを行ったものよりも小さくなるものと推定される。これにより、殺菌効率の差を評価することができる。また、排水中に含まれる硫黄酸化細菌からDNAを抽出した後、得られたDNA抽出液を鋳型試料としてPCRを行うという2段階の操作を行えばよく、3時間以上1日間以下の期間、すなわち、プレート法よりも格段に短時間で測定結果を得ることができる。 On the other hand, in the PCR method, the amount of sulfur-oxidizing bacteria contained in wastewater can be quantified as the amount of known genes of sulfur-oxidizing bacteria (see FIG. 2C). Specifically, as shown in FIG. 2C, in the sterilization treatment B having a high sterilization strength, the rise of the amplification curve is slower than in the unsterilized and sterilization treatment A, and the sulfur-oxidizing bacteria contained in the wastewater subjected to the sterilization treatment B. It is estimated that the amount of cells (the amount of genes) in the above is smaller than that obtained by the sterilization treatment A. Thereby, the difference in sterilization efficiency can be evaluated. Further, a two-step operation of extracting DNA from sulfur-oxidizing bacteria contained in wastewater and then performing PCR using the obtained DNA extract as a template sample may be performed for a period of 3 hours or more and 1 day or less, that is, , The measurement result can be obtained in a much shorter time than the plate method.
 硫黄酸化細菌からDNAを抽出する方法としては、例えば、菌体を熱処理する方法、界面活性剤を添加する方法、フェノール抽出法、浸透圧ショック法、凍結融解法、酵素消化法、DNA抽出用キットの使用、超音波処理法、フレンチプレス法、ホモジナイザーの使用等、公知の方法が挙げられる。これらの方法を1種単独で行ってもよく、2種以上組み合わせて行ってもよい。 Examples of methods for extracting DNA from sulfur-oxidizing bacteria include a method of heat-treating cells, a method of adding a surfactant, a phenol extraction method, an osmotic shock method, a freeze-thaw method, an enzyme digestion method, and a DNA extraction kit. Known methods such as use of, ultrasonic treatment method, French press method, use of homogenizer and the like can be mentioned. These methods may be performed alone or in combination of two or more.
 PCR法としては、定量PCR法であることが好ましい。定量PCR法としては、例えば、MPN-PCR法、競合的PCR法、リアルタイムPCR法等が挙げられ、中でも、リアルタイムPCR法が好ましい。 The PCR method is preferably a quantitative PCR method. Examples of the quantitative PCR method include MPN-PCR method, competitive PCR method, real-time PCR method and the like, and among them, the real-time PCR method is preferable.
 リアルタイムPCR法は、PCRの増幅率をリアルタイムで検出し、当該増幅率に基づいて遺伝子の量を定量する方法である。定量は蛍光色素を用いて行われ、インターカレーション法及びハイブリダイゼーション法が存在する。 The real-time PCR method is a method of detecting the amplification factor of PCR in real time and quantifying the amount of a gene based on the amplification factor. Quantification is performed using a fluorescent dye, and there are an intercalation method and a hybridization method.
 遺伝子の量は、Ct値(Threshhold Cycle)を測定することで算出することができる。Ct値とは、一定の増幅産物量になるPCRサイクル数を意味し、Ct値は標的となる遺伝子の初期量に反比例することから、Ct値を測定することで、遺伝子の量を算出することができる。具体的には、例えば、まず、既知のDNA量を含む試料を段階希釈した標準液列を用いて、初期DNA量に応じて等間隔に並んだ増幅曲線が得る。増幅曲線が立ち上がる地点に閾値を設定し増幅曲線と交わる点をCt値として求める。次いで、Ct値と初期DNA量との間で直線の検量線を作成する。次いで、未知のDNA量を含む試料についても同様にしてCt値を測定し、検量線と照らし合わせることで未知のDNA量を含む試料の初期DNA量を求める。 The amount of the gene can be calculated by measuring the Ct value (Threshhold Cycle). The Ct value means the number of PCR cycles that results in a constant amount of amplification product, and since the Ct value is inversely proportional to the initial amount of the target gene, the amount of the gene can be calculated by measuring the Ct value. Can be done. Specifically, for example, first, using a standard liquid train obtained by serially diluting a sample containing a known amount of DNA, amplification curves arranged at equal intervals according to the amount of initial DNA are obtained. A threshold value is set at the point where the amplification curve rises, and the point where the amplification curve intersects is obtained as the Ct value. Next, a straight calibration curve is created between the Ct value and the initial amount of DNA. Next, the Ct value of the sample containing the unknown DNA amount is measured in the same manner, and the initial DNA amount of the sample containing the unknown DNA amount is obtained by comparing with the calibration curve.
 或いは、簡易的な方法として、後述する実施例に示すように、PCRの結果として得られた増幅曲線のうち、直線的な部分を選択し、当該部分を外挿して算出された切片における蛍光強度を初期DNA量として用いることもできる。 Alternatively, as a simple method, as shown in Examples described later, a linear portion is selected from the amplification curves obtained as a result of PCR, and the fluorescence intensity in the section calculated by extrapolating the portion is selected. Can also be used as the initial amount of DNA.
[工程3]
 工程3では、工程2で検出された硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する。
[Step 3]
In step 3, the amount of the oxidizing fungicide is adjusted according to the amount of sulfur-oxidizing bacteria detected in step 2 and sterilized.
 酸化性殺菌剤としては、硫黄酸化細菌の細胞壁や、硫黄酸化細菌を含む微生物の集合体からなるバイオフィルムを破壊し、殺菌できるものであればよく、例えば、ハロゲン系殺菌剤、オゾン、過酸化水素等が挙げられる。ハロゲン系殺菌剤としては、例えば、次亜塩素酸(HClO)及びその塩(例えば、次亜塩素酸ナトリウム等)、アンモニアクロラミン(NHCl)、ブロムクロルジメチルヒダントイン(Br,Cl-DMH)、ブロムスルファミン酸(BrNHSOH)、ブロムクロラミン(NHBr+HClO)等が挙げられる。中でも、殺菌力の強さから、ハロゲン系殺菌剤又はオゾンが好ましく、次亜塩素酸及びその塩がより好ましく、次亜塩素酸ナトリウムがさらに好ましい。 The oxidative fungicide may be any one that can destroy and sterilize the cell wall of sulfur-oxidizing bacteria and the biofilm composed of aggregates of microorganisms containing sulfur-oxidizing bacteria. For example, halogen-based fungicides, ozone, and hydrogen peroxide. Examples include hydrogen. Examples of the halogen-based bactericide include hypochlorous acid (HClO) and salts thereof (for example, sodium hypochlorite, etc.), ammonia chloramine (NH 2 Cl), bromchlordimethylhydantoin (Br, Cl-DMH), and the like. bromine sulfamate (BrNHSO 3 H), bromine chloramine (NH 4 Br + HClO), and the like. Among them, a halogen-based bactericide or ozone is preferable, hypochlorous acid and a salt thereof are more preferable, and sodium hypochlorite is further preferable, from the viewpoint of strong bactericidal activity.
 本工程において、殺菌に使用する酸化性殺菌剤の量は、工程2で検出された硫黄酸化細菌の菌体量に応じて、適宜調整することができる。また、使用する酸化性殺菌剤の種類に応じても、適宜調整することができる。例えば、酸化性殺菌剤として次亜塩素酸ナトリウムを用いる場合に、次亜塩素酸ナトリウムの添加量は、処理水中の終濃度が1容量ppm以上70容量ppm以下となるような量とすることができる。 In this step, the amount of the oxidizing fungicide used for sterilization can be appropriately adjusted according to the amount of sulfur-oxidizing bacteria detected in step 2. Further, it can be appropriately adjusted according to the type of oxidizing fungicide to be used. For example, when sodium hypochlorite is used as the oxidizing bactericide, the amount of sodium hypochlorite added may be such that the final concentration in the treated water is 1 volume ppm or more and 70 volume ppm or less. can.
 酸化性殺菌剤による殺菌時間は、例えば、1分間以上24時間以下程度とすることができ、1分間以上12時間以下が好ましく、1分間以上6時間以下がより好ましい。殺菌時間を上記下限値以上とすることで、より十分な殺菌効果が得られ、一方上記上限値以下であることで、脱硫装置への腐食等の損傷を軽減することができる。 The sterilization time with an oxidizing fungicide can be, for example, about 1 minute or more and 24 hours or less, preferably 1 minute or more and 12 hours or less, and more preferably 1 minute or more and 6 hours or less. By setting the sterilization time to the above lower limit value or more, a more sufficient sterilization effect can be obtained, while when it is not more than the above upper limit value, damage such as corrosion to the desulfurization apparatus can be reduced.
 また、酸化性殺菌剤として次亜塩素酸ナトリウムを使用する場合には、上記殺菌時間の経過後、次亜塩素酸ナトリウムの中和剤を添加して、殺菌を停止してもよい。中和剤としては、例えば、チオ硫酸ナトリウム等が挙げられる。中和剤の添加量は、酸化性殺菌剤の添加量と同程度の量とすることができる。 When sodium hypochlorite is used as the oxidizing disinfectant, the disinfection may be stopped by adding a neutralizing agent of sodium hypochlorite after the above sterilization time has elapsed. Examples of the neutralizing agent include sodium thiosulfate and the like. The amount of the neutralizing agent added can be about the same as the amount of the oxidizing fungicide added.
[工程4]
 工程4では、殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する。硫黄酸化細菌の菌体量としては、上記工程2に記載の方法と同様の方法で行うことができる。
[Step 4]
In step 4, the amount of the sulfur-oxidizing bacteria in the wastewater after sterilization is detected again. The amount of sulfur-oxidizing bacteria can be determined by the same method as described in step 2 above.
 工程4において、菌体量に加えて、殺菌後の排水中のCODを再度測定してもよい。これにより、続く工程5において、排水の放流又は再殺菌の判定をより確実に行うことができる。 In step 4, in addition to the amount of cells, the COD in the wastewater after sterilization may be measured again. As a result, in the subsequent step 5, it is possible to more reliably determine the discharge or re-sterilization of wastewater.
[工程5]
 工程5では、再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、放流する。一方、菌体量が基準値超である場合に、上記工程3及び上記工程4を繰り返す。
[Step 5]
In step 5, when the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the sulfur-oxidizing bacteria are released. On the other hand, when the amount of cells exceeds the reference value, the above steps 3 and 4 are repeated.
 硫黄酸化細菌の菌体量の基準値としては、CODの基準値以下となるような菌体量を設定することができる。例えば、予め硫黄酸化細菌の菌体量とCODとの相関を調べておくことで、所望のCODとなるような菌体量を基準値として設定することができる。 As the reference value of the amount of sulfur-oxidizing bacteria, the amount of cells can be set so as to be equal to or less than the reference value of COD. For example, by investigating the correlation between the amount of sulfur-oxidizing bacteria and COD in advance, it is possible to set the amount of cells so as to obtain a desired COD as a reference value.
 工程5において、菌体量が基準値超である場合には、脱硫装置内の殺菌が不十分であると判断することができ、再度殺菌を行うために、上記工程3及び上記工程4を繰り返し行う。 If the amount of cells exceeds the reference value in step 5, it can be determined that the sterilization in the desulfurization apparatus is insufficient, and the steps 3 and 4 are repeated in order to sterilize again. conduct.
 工程5において、殺菌後の排水中のCODの測定値が得られている場合には、菌体量に加えて、CODの測定値を、CODの基準値と比較することで、放流するか、或いは、再度殺菌し且つ再度菌体量を検出する(上記工程3及び上記工程4を繰り返し行う)か、を判定することができる。これにより、より確実な判定を行うことができる。 If the measured value of COD in the wastewater after sterilization is obtained in step 5, in addition to the amount of cells, the measured value of COD is compared with the reference value of COD to release the product. Alternatively, it can be determined whether the cells are sterilized again and the amount of cells is detected again (the steps 3 and 4 are repeated). As a result, a more reliable determination can be made.
[湿式排ガス脱硫装置]
 図3は、実施形態に係る制御方法で用いられる湿式排ガス脱硫装置の模式図である。図3に示す脱硫装置の構成を以下に示す。
[Wet exhaust gas desulfurization equipment]
FIG. 3 is a schematic view of a wet exhaust gas desulfurization apparatus used in the control method according to the embodiment. The configuration of the desulfurization apparatus shown in FIG. 3 is shown below.
 脱硫装置101は、筐体10と、排ガスを筐体10の内部に導入するための排ガス導入口11aと、排ガスを筐体10の外部に排出するための排ガス排出口11bと、散布装置26(後記する)により散布された吸収液を滞留させるための滞留部であって、筐体10の一部として構成される滞留部13とを備える。滞留部13には、吸収液が滞留している。滞留した吸収液には、通常は、排ガス中の硫黄酸化物を吸収して生成した亜硫酸イオンのほか、亜硫酸イオンの酸化により生成した硫酸イオンが含まれる。筐体10の内部への吸収液の補給は、図示しない吸収液タンクに接続された吸収液補給系統71を通じ、ポンプ21により行われる。 The desulfurization device 101 includes a housing 10, an exhaust gas introduction port 11a for introducing exhaust gas into the housing 10, an exhaust gas discharge port 11b for discharging the exhaust gas to the outside of the housing 10, and a spraying device 26 ( It is a retention portion for retaining the absorbing liquid sprayed by (described later), and includes a retention portion 13 formed as a part of the housing 10. The absorbing liquid is retained in the retaining portion 13. The retained absorption liquid usually contains sulfite ions generated by absorbing sulfur oxides in exhaust gas and sulfate ions generated by oxidation of sulfite ions. The absorption liquid is replenished to the inside of the housing 10 by the pump 21 through the absorption liquid replenishment system 71 connected to the absorption liquid tank (not shown).
 また、脱硫装置101は、吸収液を筐体10の内部に散布するための散布装置26と、滞留部13の吸収液を筐体10の外部に排出するための吸収液排出口14とを備える。散布装置26により吸収液が散布され、散布された吸収液と排ガスとが筐体10の内部空間15において接触することで、排ガス中の硫黄酸化物を吸収液に吸収させることができる。これにより、排ガス中の硫黄酸化物が除去され、浄化済みの排ガスである浄化ガスとして、脱硫装置101の外部に排気される。 Further, the desulfurization device 101 includes a spraying device 26 for spraying the absorbing liquid inside the housing 10, and an absorbing liquid discharging port 14 for discharging the absorbing liquid of the retention portion 13 to the outside of the housing 10. .. The absorption liquid is sprayed by the spraying device 26, and the sprayed absorption liquid and the exhaust gas come into contact with each other in the internal space 15 of the housing 10, so that the sulfur oxides in the exhaust gas can be absorbed by the absorption liquid. As a result, the sulfur oxides in the exhaust gas are removed, and the purified gas, which is the purified exhaust gas, is exhausted to the outside of the desulfurization apparatus 101.
 また、吸収液では、硫黄酸化物(二酸化硫黄)の吸収により、上記のように亜硫酸イオンが生成する。そして、亜硫酸イオンは、散気管22(後記する)による散気により酸化され、硫酸イオンが生成する。生成した硫酸イオンは、吸収液中の炭酸カルシウムと反応し、硫酸カルシウム(石膏)及び二酸化炭素が生成する。生成した二酸化炭素は、浄化ガスとともに、脱硫装置101の外部に排気される。また、生成した硫酸カルシウムは、後記する固液分離器43により分離回収される。 Also, in the absorption liquid, sulfurous acid ions are generated as described above by the absorption of sulfur oxides (sulfur dioxide). Then, the sulfite ion is oxidized by the air diffused by the air diffuser 22 (described later) to generate the sulfate ion. The generated sulfate ion reacts with calcium carbonate in the absorption liquid to generate calcium sulfate (gypsum) and carbon dioxide. The generated carbon dioxide is exhausted to the outside of the desulfurization apparatus 101 together with the purifying gas. Further, the produced calcium sulfate is separated and recovered by the solid-liquid separator 43 described later.
 筐体10の内部に導入される排ガスは通常は高温であり、吸収液に含まれる水が蒸発する。そこで、蒸発して減少した水分を補うために、適宜、補給水ノズル51を通じた補給水の供給が行われる。補給水ノズル51は、図示しない補給水タンクに対して補給水供給系統77により接続されている。そして、補給水供給系統77に設けられたポンプ24の駆動により、補給水ノズル51を介した補給水の供給が行われる。 The exhaust gas introduced into the housing 10 is usually at a high temperature, and the water contained in the absorbing liquid evaporates. Therefore, in order to supplement the water that has evaporated and decreased, the make-up water is appropriately supplied through the make-up water nozzle 51. The make-up water nozzle 51 is connected to a make-up water tank (not shown) by a make-up water supply system 77. Then, by driving the pump 24 provided in the make-up water supply system 77, the make-up water is supplied through the make-up water nozzle 51.
 また、脱硫装置101は、滞留した吸収液に対し、酸化用空気を散気するための散気管22を備える。散気管22は、空気供給系統72を介して大気中に開放されている。そして、空気供給系統72に設けられたポンプ23を通じ、大気中の空気(酸化用空気)が散気管22に供給され、吸収液に散気される。これにより、吸収液中の亜硫酸イオンを酸化させることができ、硫酸イオンを生成させることができる。 Further, the desulfurization apparatus 101 is provided with an air diffuser pipe 22 for dissipating the oxidizing air with respect to the retained absorption liquid. The air diffuser 22 is open to the atmosphere via the air supply system 72. Then, the air in the atmosphere (air for oxidation) is supplied to the air diffuser pipe 22 through the pump 23 provided in the air supply system 72, and is dispersed in the absorbing liquid. As a result, the sulfite ion in the absorption liquid can be oxidized, and the sulfate ion can be generated.
 脱硫装置101では、散布装置26は、吸収液排出口14を通じて筐体10の外部に排出された吸収液を、筐体10の内部に散布するように構成されている。即ち、脱硫装置101では、吸収液は繰り返し使用されている。具体的には、脱硫装置101は、循環系統73と、循環系統73を通じて滞留部13から吸収液を抜き出すためのポンプ41とを備える。これらのうち、循環系統73は、吸収液排出口14を通じて筐体10の外部に排出された吸収液が流れる循環管路73aと、循環管路73aを流れた吸収液を筐体10の内部(具体的には滞留部13)に戻すための吸収液還流口73bとを備えて構成される。そして、ポンプ41の駆動により、吸収液が滞留部13と散布装置26との間で循環している。 In the desulfurization device 101, the spraying device 26 is configured to spray the absorbing liquid discharged to the outside of the housing 10 through the absorbing liquid discharging port 14 into the inside of the housing 10. That is, in the desulfurization apparatus 101, the absorbing liquid is repeatedly used. Specifically, the desulfurization apparatus 101 includes a circulation system 73 and a pump 41 for extracting the absorption liquid from the retention portion 13 through the circulation system 73. Of these, the circulation system 73 has a circulation pipe 73a through which the absorption liquid discharged to the outside of the housing 10 through the absorption liquid discharge port 14 flows, and an absorption liquid flowing through the circulation pipe 73a inside the housing 10. Specifically, it is provided with an absorption liquid recirculation port 73b for returning to the retention portion 13). Then, by driving the pump 41, the absorbing liquid circulates between the retention portion 13 and the spraying device 26.
 また、脱硫装置101では、別の経路においても、吸収液の循環が行われている。即ち、循環系統73には、三方弁42が設けられ、循環系統73を流れる吸収液の一部は、抜き出し系統74を通じて、固液分離器43に供給される。固液分離器43は、例えばベルトフィルタ(ベルトプレス)である。固液分離器43に供給された吸収液には、上記のようにして生成した硫酸カルシウム(石膏)が含まれる。そのため、固液分離器43において、硫酸カルシウムが分離され、これにより、排ガス流の硫黄酸化物に由来する硫黄分が固形分として除去される。 Further, in the desulfurization apparatus 101, the absorption liquid is circulated also in another route. That is, the circulation system 73 is provided with a three-way valve 42, and a part of the absorbing liquid flowing through the circulation system 73 is supplied to the solid-liquid separator 43 through the extraction system 74. The solid-liquid separator 43 is, for example, a belt filter (belt press). The absorption liquid supplied to the solid-liquid separator 43 contains calcium sulfate (gypsum) produced as described above. Therefore, calcium sulfate is separated in the solid-liquid separator 43, whereby the sulfur content derived from the sulfur oxide in the exhaust gas stream is removed as a solid content.
 一方で、固液分離器43において硫酸カルシウムを分離した後の吸収液は、排水系統75及び三方弁44を通じ、外部に排水される。ただし、排水系統75を流れる吸収液の一部は、液バランスの観点から、三方弁44及び戻し系統76を通じ、筐体10の内部に戻される。 On the other hand, the absorbed liquid after separating calcium sulfate in the solid-liquid separator 43 is drained to the outside through the drainage system 75 and the three-way valve 44. However, a part of the absorbing liquid flowing through the drainage system 75 is returned to the inside of the housing 10 through the three-way valve 44 and the return system 76 from the viewpoint of liquid balance.
 これらのように、吸収液還流口73bを経由して吸収液が循環していることで、筐体10の内部に散布され、硫黄酸化物を吸収し滞留部13に滞留した吸収液を、再度、硫黄酸化物の吸収のために使用することができる。この結果、新たに使用する吸収液の使用量を削減することができる。 As described above, since the absorption liquid circulates through the absorption liquid recirculation port 73b, the absorption liquid that is sprayed inside the housing 10 and absorbs sulfur oxides and stays in the retention portion 13 is re-used. , Can be used for the absorption of sulfur oxides. As a result, the amount of the newly used absorbent liquid can be reduced.
 脱硫装置101では、散布装置26により散布された吸収液と、硫黄酸化細菌に対して抗菌作用を有する抗菌金属を含む抗菌金属部材とを接触可能に構成されていてもよい。抗菌金属部材としては、具体的には、特許文献2(日本国特開2019-126764号公報)に記載のものが例示される。筐体10の内部(特には吸収液の内部)において硫黄酸化細菌等が増殖し易いことから、塊状抗菌金属部材61が吸収液と接触することで、硫黄酸化物を含む吸収液が滞留し、硫黄酸化細菌等が増殖し易い環境である滞留部13において、硫黄酸化細菌等の増殖を抑制することができる。この結果、排水のCODの上昇を抑制することができる。 The desulfurization device 101 may be configured so that the absorbing liquid sprayed by the spraying device 26 and an antibacterial metal member containing an antibacterial metal having an antibacterial action against sulfur-oxidizing bacteria can be brought into contact with each other. Specific examples of the antibacterial metal member include those described in Patent Document 2 (Japanese Patent Laid-Open No. 2019-1267664). Since sulfur-oxidizing bacteria and the like easily grow inside the housing 10 (particularly inside the absorbing liquid), when the massive antibacterial metal member 61 comes into contact with the absorbing liquid, the absorbing liquid containing sulfur oxides stays there. In the retention portion 13, which is an environment in which sulfur-oxidizing bacteria and the like easily grow, the growth of sulfur-oxidizing bacteria and the like can be suppressed. As a result, it is possible to suppress an increase in COD of wastewater.
 次に、脱硫装置101を用いた排水中のCODの制御方法を説明する。
 実施形態に係る制御方法では、排水系統75及び三方弁44を通じて、装置外部に排出された排水中のCODを測定する。三方弁44に配設された装置外部への配管は、紫外線吸光度計測器(UV計測器)を備えていてもよい(図示せず)。これにより、連続的に排水中のCODを測定することができる。
Next, a method of controlling COD in wastewater using the desulfurization apparatus 101 will be described.
In the control method according to the embodiment, the COD in the drainage discharged to the outside of the apparatus is measured through the drainage system 75 and the three-way valve 44. The pipe to the outside of the device provided in the three-way valve 44 may be provided with an ultraviolet absorbance measuring instrument (UV measuring instrument) (not shown). This makes it possible to continuously measure the COD in the wastewater.
 次いで、排水中のCODが基準値以下である場合には、排水をそのまま放流させる。一方で、CODが基準値超である場合には、放流せず、排水の一部をサンプリングし、排水中の硫黄酸化細菌の菌体量を検出する。菌体量の検出方法は、上記工程2において記載のとおりである。 Next, if the COD in the wastewater is below the standard value, the wastewater is discharged as it is. On the other hand, when the COD exceeds the reference value, a part of the wastewater is sampled without being discharged, and the amount of sulfur-oxidizing bacteria in the wastewater is detected. The method for detecting the amount of cells is as described in the above step 2.
 次いで、検出された菌体量に応じて、酸化性殺菌剤の量を調整する。酸化性殺菌剤は、例えば、補給水に添加して、補給水供給系統77に設けられたポンプ24の駆動により、補給水ノズル51を介して、筐体10の内部に供給される。或いは、筐体10の底面に設けられたピット(図示せず)を介して、筐体10の内部に供給される。前者の方法で酸化性殺菌剤を供給する場合には、筐体10の内部全体に酸化性殺菌剤を行き渡らせることができる。一方、後者の方法で酸化性殺菌剤を供給する場合には、液体中に分散している石膏に付着している硫黄酸化細菌に効果的に酸化性殺菌剤を作用させることができ、酸化性殺菌剤による部材の腐食を抑制することができる。殺菌時間は、上記工程3に記載の時間とすることができる。 Next, adjust the amount of oxidative fungicide according to the amount of bacterial cells detected. The oxidizing disinfectant is added to the make-up water, for example, and is supplied to the inside of the housing 10 via the make-up water nozzle 51 by driving the pump 24 provided in the make-up water supply system 77. Alternatively, it is supplied to the inside of the housing 10 through a pit (not shown) provided on the bottom surface of the housing 10. When the oxidizing fungicide is supplied by the former method, the oxidizing fungicide can be distributed throughout the inside of the housing 10. On the other hand, when the oxidizing fungicide is supplied by the latter method, the oxidizing fungicide can be effectively acted on the sulfur-oxidizing bacteria adhering to the gypsum dispersed in the liquid, and is oxidizing. It is possible to suppress the corrosion of members due to the disinfectant. The sterilization time can be the time described in step 3 above.
 次いで、殺菌後に、排水系統75及び三方弁44を通じて、装置外部に排出された排水を再度サンプリングし、排水中の硫黄酸化細菌の菌体量を検出する。菌体量の検出方法は、上記工程2において記載のとおりである。 Next, after sterilization, the wastewater discharged to the outside of the device is sampled again through the drainage system 75 and the three-way valve 44, and the amount of sulfur-oxidizing bacteria in the wastewater is detected. The method for detecting the amount of cells is as described in the above step 2.
 次いで、再度検出された硫黄酸化細菌が基準値以下である場合には、排水を放流させる。一方で、硫黄酸化細菌が基準値超である場合には、放流せず、再度酸化性殺菌剤による殺菌を行う。酸化性殺菌剤の投入方法は、上記に記載のとおりである。殺菌後に、排水系統75及び三方弁44を通じて、装置外部に排出された排水を再度サンプリングし、排水中の硫黄酸化細菌の菌体量を検出する。 Next, if the sulfur-oxidizing bacteria detected again are below the standard value, the wastewater is discharged. On the other hand, if the sulfur-oxidizing bacteria exceed the standard value, they are not released and are sterilized again with an oxidizing fungicide. The method for adding the oxidizing fungicide is as described above. After sterilization, the wastewater discharged to the outside of the apparatus is sampled again through the drainage system 75 and the three-way valve 44, and the amount of sulfur-oxidizing bacteria in the wastewater is detected.
 次いで、検出された菌体量と基準値の比較を行い、菌体量が基準値以下となるまで、排水の放流は保留し、殺菌→菌体量の検出→基準値との比較による判定という操作を繰り返す。 Next, the detected bacterial cell mass and the reference value are compared, and the discharge of wastewater is suspended until the bacterial cell mass falls below the standard value, and sterilization → detection of the bacterial cell mass → judgment by comparison with the reference value. Repeat the operation.
<湿式排ガス脱硫装置の殺菌評価方法>
 本開示の実施形態に係る湿式排ガス脱硫装置の殺菌評価方法(以下、「実施形態に係る殺菌評価方法」と称する場合がある)は、以下の工程を含む。
 排水中の硫黄酸化細菌の菌体量を、前記硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する工程(以下、「菌体量検出工程」と略記する場合がある);
 検出された前記硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する工程(以下、「殺菌工程」と略記する場合がある);
 殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する工程(以下、「菌体量再検出工程」と略記する場合がある);
 再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、前記湿式排ガス脱硫装置が十分に殺菌されていると評価する工程(以下、「評価工程」と略記する場合がある)。
<Sterilization evaluation method for wet exhaust gas desulfurization equipment>
The sterilization evaluation method of the wet exhaust gas desulfurization apparatus according to the embodiment of the present disclosure (hereinafter, may be referred to as "sterilization evaluation method according to the embodiment") includes the following steps.
A step of detecting the amount of sulfur-oxidizing bacteria in wastewater by a PCR method using a primer pair for amplifying a known gene of the sulfur-oxidizing bacteria (hereinafter, may be abbreviated as "bacteria amount detection step"). );
A step of adjusting the amount of an oxidizing fungicide according to the detected amount of sulfur-oxidizing bacteria and sterilizing it (hereinafter, may be abbreviated as "sterilization step");
A step of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization (hereinafter, may be abbreviated as "cell amount re-detection step");
When the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the step of evaluating that the wet exhaust gas desulfurization apparatus is sufficiently sterilized (hereinafter, may be abbreviated as "evaluation step"). ).
 菌体量検出工程は、上記工程2のCODが基準値超である場合と同じである。
 殺菌工程は、上記工程3と同じである。
 菌体量再検出工程は、上記工程4と同じである。
 よって、これら実施形態に係る制御方法における工程と同じ工程の説明は割愛する。
The cell amount detection step is the same as the case where the COD in the above step 2 exceeds the reference value.
The sterilization step is the same as the above step 3.
The cell amount redetection step is the same as the above step 4.
Therefore, the description of the same process as the process in the control method according to these embodiments is omitted.
[評価工程]
 評価工程では、菌体量再検出工程で検出された硫黄酸化細菌の菌体量が基準値以下である場合に、脱硫装置が十分に殺菌されていると評価する。一方、菌体量が基準値超である場合には、脱硫装置の殺菌が不十分であると評価する。菌体量の基準値は、殺菌前の排水中の菌体量よりも少ない量であればよく、例えば、殺菌前の排水中の菌体量に対して80%の量、50%の量、30%の量、10%の量とすることができる。また、上記工程5において規定されたように、CODが所望の値となるような量を菌体量の基準値としてもよい。
[Evaluation process]
In the evaluation step, when the cell amount of the sulfur-oxidizing bacteria detected in the cell amount redetection step is equal to or less than the reference value, it is evaluated that the desulfurization apparatus is sufficiently sterilized. On the other hand, when the amount of cells exceeds the standard value, it is evaluated that the sterilization of the desulfurization apparatus is insufficient. The reference value of the amount of cells may be smaller than the amount of cells in the wastewater before sterilization, for example, 80% or 50% of the amount of cells in the wastewater before sterilization. The amount can be 30% and 10%. Further, as specified in the above step 5, an amount such that the COD becomes a desired value may be used as a reference value for the amount of bacterial cells.
 脱硫装置の殺菌が不十分であると評価された場合には、上記殺菌工程及び上記菌体量再検出工程を繰り返し行い、再度評価工程を実施することができる。殺菌後の排水中の菌体量が基準値以下となるまで、上記殺菌工程、上記菌体量再検出工程及び本評価工程を繰り返し行ってもよい。 If it is evaluated that the desulfurization apparatus is insufficiently sterilized, the above sterilization step and the above cell amount redetection step can be repeated, and the evaluation step can be carried out again. The above sterilization step, the above cell amount redetection step, and the present evaluation step may be repeated until the amount of cells in the waste water after sterilization becomes equal to or less than the reference value.
 実施形態に係る殺菌評価方法によれば、湿式排ガス脱硫装置の殺菌の程度(殺菌効率)を定量的に評価することができる。 According to the sterilization evaluation method according to the embodiment, the degree of sterilization (sterilization efficiency) of the wet exhaust gas desulfurization apparatus can be quantitatively evaluated.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1]
(石膏サンプルの菌叢解析及び硫黄酸化細菌の培養条件の検討)
1.石膏サンプルの菌叢解析
 脱硫装置内のCODの上昇が確認されたことから、その原因を特定するために、脱硫装置から採取した石膏サンプルの菌叢解析を行なった。結果を図4に示す。
[Example 1]
(Analysis of gypsum sample flora and examination of culture conditions for sulfur-oxidizing bacteria)
1. 1. Gypsum sample bacterial flora analysis Since an increase in COD in the desulfurization equipment was confirmed, the gypsum sample collected from the desulfurization equipment was analyzed for the bacterial flora in order to identify the cause. The results are shown in FIG.
 図4から、硫黄酸化細菌の一種であるThermithiobacillus属細菌が50%程度を占める優占微生物であることが明らかとなった。さらに、Thermithiobacillus属細菌を餌とするPseudomonas属細菌も20%強程度占めており、石膏サンプル中に含まれる糖類は、Thermithiobacillus属細菌及びThermithiobacillus属細菌を餌とするPseudomonas属細菌等の他の微生物に由来するものである可能性が示唆された。 From FIG. 4, it was clarified that the bacterium of the genus Thermithiobacillus, which is a kind of sulfur-oxidizing bacterium, is the dominant microorganism occupying about 50%. Furthermore, Pseudomonas bacteria that feed on Thermithiobacillus spp. Also account for more than 20%, and the saccharides contained in the gypsum sample are Pseudomonas spp. It was suggested that it may be derived.
 以上のことから、脱硫装置内のCODの上昇は、硫黄酸化細菌の増殖によるものと考え、CODの上昇を抑えるためには、硫黄酸化細菌の増殖抑制が有効であると考えた。 From the above, it was considered that the increase in COD in the desulfurization apparatus was due to the growth of sulfur-oxidizing bacteria, and it was considered that suppressing the growth of sulfur-oxidizing bacteria was effective in suppressing the increase in COD.
2.硫黄酸化細菌の培養条件の検討
 次いで、石膏サンプル中の硫黄酸化細菌を継代培養し、培養条件について検討した。具体的には、石膏サンプル2ccに対して、150ccの液体培地を用いて500時間培養した(1回目の培養)。次いで、培養液5ccに対して、150ccの培地を用いて、さらに400時間培養した(2回目の培養)。次いで、培養液15ccに対して、150ccの培地を用いて、さらに600時間培養した(3回目の培養)。使用した培地の組成は、次に示すとおりである;NHCl:0.4g、MgSO・7HO:0.8g、Trace element solution(組成は後述のとおり):10mL、KHPO:4g、KHPO:4g、K:3g、Bromocresol purple(飽和水溶液):2mL、蒸留水:1000mL。培地の調製は、まず、リン酸二水素カリウム、リン酸二水素カリウム及びテトラチオン酸二カリウムを除く上記成分を蒸留水900mLに溶解させてオートクレーブにかけて滅菌処理した。次いで、リン酸二水素カリウム及びリン酸二水素カリウムを蒸留水100mLに溶解させて個別にオートクレーブにかけて滅菌処理し、冷却後、オートクレーブにかけた他の塩を含む溶液と混合した。テトラチオン酸二カリウムはろ過滅菌後、オートクレーブにかけた他の塩を含む溶液と混合した。培地のpHを6.9に調整した。Trace element solutionの組成は、次に示すとおりである;Na-EDTA:50g、ZnSO・7HO:11g、CaCl・2HO:7.34g、MnCl・4HO:2.5g、CoCl・6HO:0.5g、(NHMo24・4HO:0.5g、FeSO・7HO:5g、CuSO・5HO:0.2g、NaOH:11g、蒸留水:1000mL。Trace element solutionの調製は、まず、Na-EDTAを蒸留水1000mLに溶解し、NaOHを用いてpHを7.0に調整した。次いで、他の成分を添加した後、NaOHで最終溶液のpHを6.0に調整した。1~3回目の各培養において、24時間毎(土日を除く)に、培地のpHを測定し、記録した。その結果を図5に示す。
2. Examination of culture conditions of sulfur-oxidizing bacteria Next, the sulfur-oxidizing bacteria in the gypsum sample were subcultured, and the culture conditions were examined. Specifically, 2 cc of gypsum sample was cultured for 500 hours using 150 cc of liquid medium (first culture). Then, the cells were further cultured for 400 hours using 150 cc of the medium with respect to 5 cc of the culture solution (second culture). Then, the medium was cultured for another 600 hours using 150 cc of the medium with respect to 15 cc of the culture solution (third culture). The composition of the media used are as shown below; NH 4 Cl: 0.4g, MgSO 4 · 7H 2 O: 0.8g, Trace element solution ( composition as described below): 10mL, KH 2 PO 4 : 4 g, K 2 HPO 4 : 4 g, K 2 S 4 O 6 : 3 g, Bromocresol purple (saturated aqueous solution): 2 mL, distilled water: 1000 mL. To prepare the medium, first, the above components excluding potassium dihydrogen phosphate, potassium dihydrogen phosphate and dipotassium tetrathionate were dissolved in 900 mL of distilled water and sterilized by autoclaving. Then, potassium dihydrogen phosphate and potassium dihydrogen phosphate were dissolved in 100 mL of distilled water, individually autoclaved for sterilization, cooled, and then mixed with a solution containing other salts autoclaved. Dipotassium tetrathionate was sterilized by filtration and then mixed with a solution containing other salts that had been autoclaved. The pH of the medium was adjusted to 6.9. Composition of Trace element solution is as shown below; Na 2 -EDTA: 50g, ZnSO 4 · 7H 2 O: 11g, CaCl 2 · 2H 2 O: 7.34g, MnCl 2 · 4H 2 O: 2. 5g, CoCl 2 · 6H 2 O : 0.5g, (NH 4) 6 Mo 7 O 24 · 4H 2 O: 0.5g, FeSO 4 · 7H 2 O: 5g, CuSO 4 · 5H 2 O: 0.2g , NaOH: 11 g, distilled water: 1000 mL. To prepare the Trace element solution, first, Na 2- EDTA was dissolved in 1000 mL of distilled water, and the pH was adjusted to 7.0 with NaOH. Then, after adding other components, the pH of the final solution was adjusted to 6.0 with NaOH. In each of the 1st to 3rd cultures, the pH of the medium was measured and recorded every 24 hours (excluding Saturdays and Sundays). The result is shown in FIG.
 図5に示すように、希釈培養(継代培養)を繰り返すごとに、グラフの傾きが小さくなっており、pHの低下度合いが小さくなっていることが明らかとなった。これは、継代時に石膏粒子の量が少なくなることで、硫黄酸化細菌の増殖速度が低下したことによるものであると推定された。 As shown in FIG. 5, it was clarified that the slope of the graph became smaller and the degree of decrease in pH became smaller each time the dilution culture (passage culture) was repeated. It was presumed that this was due to the decrease in the growth rate of sulfur-oxidizing bacteria due to the decrease in the amount of gypsum particles during passage.
 以上のことから、硫黄酸化細菌は、石膏粒子等の固形物に付着しなければ生育できないことが示唆された。すなわち、付着できる固形物の存在が必須条件であるため、従来法であるプレート法や最確数法(Most probable number Method:MPN法)では、脱硫装置内の殺菌の程度(殺菌効率)を評価することが困難であると考えられる。 From the above, it was suggested that sulfur-oxidizing bacteria cannot grow unless they adhere to solid substances such as gypsum particles. That is, since the presence of a solid substance that can adhere is an essential condition, the degree of sterilization (sterilization efficiency) in the desulfurization apparatus is evaluated by the conventional plate method and the most probable number method (Most probe number Method: MPN method). It is considered difficult to do.
[実施例2]
(PCR法による硫黄酸化細菌の菌体量の測定)
1.プライマーの設計
 硫黄酸化細菌のDNA量を定量するためのプライマーを設計した。まず、Thermithiobacillus属細菌の遺伝情報は、次のサイト< https://biocyc.org/organism-summary?object=GCF_000423825>から入手した。上記サイトから得られた配列と、硫黄酸化細菌が保有する既知の遺伝子のうち、soxB遺伝子の塩基配列とでアライメントを取り、配列番号1で表される塩基配列からなる領域をThermithiobacillus属細菌のsoxB遺伝子の塩基配列として特定した。
[Example 2]
(Measurement of the amount of sulfur-oxidizing bacteria by the PCR method)
1. 1. Primer design A primer was designed to quantify the amount of DNA in sulfur-oxidizing bacteria. First, the genetic information of the bacterium of the genus Thermithiobacillus was obtained from the following site <https://biocyc.org/organism-summary?object=GCF_000423825>. Align the sequence obtained from the above site with the nucleotide sequence of the soxB gene among the known genes possessed by the sulfur-oxidizing bacterium, and the region consisting of the nucleotide sequence represented by SEQ ID NO: 1 is the soxB of the bacterium of the genus Thermithiobacillus. It was identified as the base sequence of the gene.
 次いで、上記配列番号1で表される塩基配列からなる領域を増幅するためのプライマー対を8種類設計した。具体的な配列を以下の表1に示す。 Next, eight types of primer pairs for amplifying the region consisting of the base sequence represented by SEQ ID NO: 1 were designed. The specific arrangement is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.PCR法による菌体量の定量
 Extrap Soil DNA Kit Plus ver.2(日鉄環境株式会社製)を用いて、プロトコールに従い、脱硫装置から採取した石膏サンプルより硫黄酸化細菌のDNAの抽出及び精製を行った。次いで、精製したサンプルを鋳型として、上記8種類のプライマー対のうち、プライマー対5~8を用いて、リアルタイムPCR法によりsoxB遺伝子の量を定量した。PCRの反応条件は、初期変性として98℃2分間反応を行った後、「98℃10秒間のDNA変性反応、55℃10秒間のアニーリング、68℃30秒間の伸長反応」を40サイクル行う条件である。結果を図6A及び図6Bに示す。
2. Quantification of bacterial cell mass by PCR method Extrap Soil DNA Kit Plus ver. Using No. 2 (manufactured by Nippon Steel Environment Co., Ltd.), DNA of sulfur-oxidizing bacteria was extracted and purified from a gypsum sample collected from a desulfurization apparatus according to a protocol. Next, using the purified sample as a template, the amount of the soxB gene was quantified by a real-time PCR method using primer pairs 5 to 8 out of the above eight types of primer pairs. The PCR reaction conditions are as follows: after performing the reaction at 98 ° C. for 2 minutes as initial denaturation, 40 cycles of "DNA denaturation reaction at 98 ° C. for 10 seconds, annealing at 55 ° C. for 10 seconds, extension reaction at 68 ° C. for 30 seconds" are performed. be. The results are shown in FIGS. 6A and 6B.
 図6Aに示すように、プライマー対5~8を用いたリアルタイムPCR法において、増幅曲線が描かれており、soxB遺伝子の量を定量できることが示された。また、図6Bに示すように、プライマー対5~8を用いたリアルタイムPCR法によって、標的としたsoxB遺伝子の領域の増幅産物が得られていることが確認された。 As shown in FIG. 6A, an amplification curve was drawn in the real-time PCR method using primer pairs 5 to 8, indicating that the amount of the soxB gene can be quantified. Further, as shown in FIG. 6B, it was confirmed that an amplification product of the target soxB gene region was obtained by a real-time PCR method using primer pairs 5 to 8.
[実施例3]
(殺菌後の石膏サンプルにおけるPCR法による硫黄酸化細菌の菌体量の測定)
1.PCR法による菌体量の定量
 まず、10ccの石膏サンプルに5ccの次亜塩素酸ナトリウム溶液(終濃度:1容量ppm、8容量ppm又は70容量ppm)を添加後、30分間撹拌した。次いで、5ccのチオ硫酸ナトリウム溶液を添加して、次亜塩素酸ナトリウムを中和した。次いで、中和後のスラリーを0.5mL取り出し、遠心分離(14000rpm、10分間)にかけた。上澄みを捨てて、残ったものを殺菌後のDNA抽出用サンプルとして用いた。また、ネガティブコントロールとして、石膏サンプルを含まず、水のみからなるサンプルを用いた。
[Example 3]
(Measurement of cell mass of sulfur-oxidizing bacteria by PCR method in gypsum sample after sterilization)
1. 1. Quantification of bacterial cell mass by PCR First, 5 cc of sodium hypochlorite solution (final concentration: 1 volume ppm, 8 volume ppm or 70 volume ppm) was added to a 10 cc gypsum sample, and then the mixture was stirred for 30 minutes. Then, 5 cc of sodium thiosulfate solution was added to neutralize sodium hypochlorite. Then, 0.5 mL of the neutralized slurry was taken out and centrifuged (14000 rpm, 10 minutes). The supernatant was discarded and the remaining material was used as a sample for DNA extraction after sterilization. In addition, as a negative control, a sample consisting only of water without containing a gypsum sample was used.
 実施例2に示すプライマー対のうち、プライマー対8を用いて、サイクル数を45サイクルとした以外は実施例2に示すPCR条件と同様の条件にて、リアルタイムPCR法によりsoxB遺伝子の量を定量した。結果を図7に示す。また、図7に示す増幅曲線の直線部分を外挿して算出された切片における蛍光強度(初期DNA量)を表2に示す。 Of the primer pairs shown in Example 2, the amount of the soxB gene was quantified by the real-time PCR method under the same conditions as the PCR conditions shown in Example 2 except that the number of cycles was set to 45 using the primer pair 8. did. The results are shown in FIG. Table 2 shows the fluorescence intensity (initial DNA amount) in the section calculated by extrapolating the straight line portion of the amplification curve shown in FIG. 7.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図7に示すように、次亜塩素酸ナトリウムの濃度が高くなるほど増幅曲線の立ち上がりが遅く、殺菌後の硫黄酸化細菌の菌体量が減少したことが確かめられた。また、表2に示すように、1容量ppmの次亜塩素酸ナトリウム処理のサンプルと比較して、8容量ppm処理では、菌体量が約1/100に、70容量ppm処理では、菌体量が約1/1000にまで低減されることが確認できた。 As shown in FIG. 7, it was confirmed that the higher the concentration of sodium hypochlorite, the slower the rise of the amplification curve, and the decrease in the amount of sulfur-oxidizing bacteria after sterilization. Further, as shown in Table 2, the amount of cells was reduced to about 1/100 in the 8-volume ppm treatment and about 1/100 in the 70-volume ppm treatment as compared with the sample treated with 1 volume ppm sodium hypochlorite. It was confirmed that the amount was reduced to about 1/1000.
<付記>
 各実施形態に記載の湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法及び湿式排ガス脱硫装置の殺菌評価方法は、例えば以下のように把握される。
<Additional notes>
The method for controlling the chemical oxygen demand in wastewater in the wet exhaust gas desulfurization apparatus and the sterilization evaluation method for the wet exhaust gas desulfurization apparatus according to each embodiment are grasped as follows, for example.
(1)第1の態様に係る湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法は、湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法であって、
 湿式排ガス脱硫装置の排水中の化学的酸素要求量を測定する工程1と、
 測定された前記化学的酸素要求量が基準値以下である場合に、排水を放流し、一方、基準値超である場合に、前記排水中の硫黄酸化細菌の菌体量を、前記硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する工程2と、
 検出された前記硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する工程3と、
 殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する工程4と、
 再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、放流し、一方、基準値超である場合に、前記工程3及び前記工程4を繰り返す工程5と、
を含む。
(1) The method for controlling the chemical oxygen demand in wastewater in the wet exhaust gas desulfurization apparatus according to the first aspect is a method for controlling the chemical oxygen demand in waste water in the wet exhaust gas desulfurization apparatus.
Step 1 to measure the chemical oxygen demand in the wastewater of the wet exhaust gas desulfurization equipment,
When the measured chemical oxygen demand is equal to or less than the reference value, the wastewater is discharged, while when the measured amount exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is measured as the sulfur-oxidizing bacteria. Step 2 of detection by the PCR method using a primer pair for amplification of a known gene of
Step 3 of adjusting the amount of the oxidizing fungicide according to the detected amount of the sulfur-oxidizing bacteria and sterilizing the sulfur-oxidizing bacteria.
Step 4 of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization, and
When the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the cells are released, while when the amount exceeds the reference value, the steps 3 and 4 are repeated.
including.
 第1の態様に係る制御方法は、上記工程2及び上記工程4において、殺菌前後の硫黄酸化細菌の菌体量を定量する。これにより、殺菌前後での硫黄酸化細菌の菌体量の変化から殺菌効率を定量することができる。また、上記工程3において、上記工程2で検出された硫黄酸化細菌の菌体量に応じた量の酸化性殺菌剤を調整する。これにより、酸化性殺菌剤の使用量が過剰となることを防ぐことができる。 In the control method according to the first aspect, the amount of sulfur-oxidizing bacteria before and after sterilization is quantified in the above steps 2 and 4. This makes it possible to quantify the sterilization efficiency from the change in the amount of sulfur-oxidizing bacteria before and after sterilization. Further, in the above step 3, the amount of the oxidizing fungicide is adjusted according to the amount of the sulfur-oxidizing bacteria detected in the above step 2. This makes it possible to prevent the amount of the oxidizing fungicide from being used excessively.
(2)第2の態様の制御方法は、(1)の制御方法であって、前記酸化性殺菌剤がハロゲン系殺菌剤、オゾン及び過酸化水素からなる群より選ばれる1種以上であってもよい。 (2) The control method of the second aspect is the control method of (1), wherein the oxidizing disinfectant is one or more selected from the group consisting of halogen-based disinfectants, ozone and hydrogen peroxide. May be good.
 第2の態様の制御方法において、上記例示された酸化性殺菌剤を用いることで、効果的に硫黄酸化細菌を殺菌することができる。 In the control method of the second aspect, the sulfur-oxidizing bacteria can be effectively sterilized by using the oxidizing bactericide exemplified above.
(3)第3の態様の制御方法は、(1)又は(2)の制御方法であって、前記工程4において、殺菌後の前記排水中の化学的酸素要求量を再度測定してもよい。 (3) The control method of the third aspect is the control method of (1) or (2), and the chemical oxygen demand in the wastewater after sterilization may be measured again in the step 4. ..
 第3の態様の制御方法では、上記工程4において、殺菌後の排水中のCODを測定することで、殺菌後の排水中のCODが低減されていることや、その低減量から殺菌効率を確認することができる。 In the control method of the third aspect, by measuring the COD in the wastewater after sterilization in the above step 4, it is confirmed that the COD in the wastewater after sterilization is reduced and the sterilization efficiency is confirmed from the reduced amount. can do.
(4)第4の態様の制御方法は、(1)~(3)のいずれか一つに記載の制御方法であって、前記既知の遺伝子がsoxB遺伝子であってもよい。 (4) The control method of the fourth aspect is the control method according to any one of (1) to (3), and the known gene may be a soxB gene.
 第4の態様の制御方法において、PCR法により硫黄酸化細菌のsoxB遺伝子を検出することで、殺菌前後の排水中の硫黄酸化細菌の菌体量を定量することができる。 In the control method of the fourth aspect, the amount of sulfur-oxidizing bacteria in the wastewater before and after sterilization can be quantified by detecting the soxB gene of sulfur-oxidizing bacteria by the PCR method.
(5)第5の態様の制御方法は、(1)~(4)のいずれか一つに記載の制御方法であって、前記既知の遺伝子が配列番号1で表される塩基配列からなってもよい。 (5) The control method of the fifth aspect is the control method according to any one of (1) to (4), wherein the known gene comprises a base sequence represented by SEQ ID NO: 1. May be good.
 第5の態様の制御方法において、PCR法により硫黄酸化細菌の配列番号1で表される塩基配列からなる領域を検出することで、殺菌前後の排水中の硫黄酸化細菌の菌体量を定量することができる。 In the control method of the fifth aspect, the amount of sulfur-oxidizing bacteria in the wastewater before and after sterilization is quantified by detecting the region consisting of the nucleotide sequence represented by SEQ ID NO: 1 of the sulfur-oxidizing bacteria by the PCR method. be able to.
(6)第6の態様に係る湿式排ガス脱硫装置の殺菌評価方法は、
 排水中の硫黄酸化細菌の菌体量を、前記硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する工程と、
 検出された前記硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する工程と、
 殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する工程と、
 再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、前記湿式排ガス脱硫装置が十分に殺菌されていると評価する工程と、
を含む。
(6) The sterilization evaluation method of the wet exhaust gas desulfurization apparatus according to the sixth aspect is
A step of detecting the amount of sulfur-oxidizing bacteria in the wastewater by a PCR method using a primer pair for amplifying a known gene of the sulfur-oxidizing bacteria.
A step of adjusting the amount of the oxidizing fungicide according to the detected amount of the sulfur-oxidizing bacteria and sterilizing the sulfur-oxidizing bacteria.
A step of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization, and
When the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the step of evaluating that the wet exhaust gas desulfurization apparatus is sufficiently sterilized, and the step of evaluating that the wet exhaust gas desulfurization apparatus is sufficiently sterilized.
including.
 第6の態様に係る殺菌評価方法では、殺菌前後の硫黄酸化細菌の菌体量を定量する。これにより、殺菌前後での硫黄酸化細菌の菌体量の変化から湿式排ガス脱硫装置の殺菌の程度を定量的に評価することができる。 In the sterilization evaluation method according to the sixth aspect, the amount of sulfur-oxidizing bacteria before and after sterilization is quantified. This makes it possible to quantitatively evaluate the degree of sterilization of the wet exhaust gas desulfurization apparatus from the change in the amount of sulfur-oxidizing bacteria before and after sterilization.
11a 排ガス導入口
11b 排ガス排出口
12 滞留液
13 滞留部
14 吸収液排出口
15 内部空間
22 散気管
23,24,41 ポンプ
26 散布装置
42,44 三方弁
43 固液分離器
51 補給水ノズル
61 塊状抗菌金属部材
62 フィルタ
71 吸収液補給系統
72 空気供給系統
73 循環系統
73a 循環管路
73b 吸収液還流口
74 抜出し系統
75 排水系統
76 戻し系統
77 補給水供給系統
101 脱硫装置(湿式排ガス脱硫装置)
11a Exhaust gas introduction port 11b Exhaust gas discharge port 12 Retaining liquid 13 Retaining part 14 Absorbent liquid discharge port 15 Internal space 22 Diffusing pipe 23,24,41 Pump 26 Dispersing device 42,44 Three-way valve 43 Solid-liquid separator 51 Make-up water nozzle 61 Massive Antibacterial metal member 62 Filter 71 Absorbent liquid replenishment system 72 Air supply system 73 Circulation system 73a Circulation pipeline 73b Absorption liquid recirculation port 74 Extraction system 75 Drainage system 76 Return system 77 Replenishment water supply system 101 Desulfurization equipment (wet exhaust gas desulfurization equipment)

Claims (6)

  1.  湿式排ガス脱硫装置における排水中の化学的酸素要求量の制御方法であって、
     湿式排ガス脱硫装置の排水中の化学的酸素要求量を測定する工程1と、
     測定された前記化学的酸素要求量が基準値以下である場合に、排水を放流し、一方、基準値超である場合に、前記排水中の硫黄酸化細菌の菌体量を、前記硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する工程2と、
     検出された前記硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する工程3と、
     殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する工程4と、
     再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、放流し、一方、基準値超である場合に、前記工程3及び前記工程4を繰り返す工程5と、
    を含む、方法。
    A method for controlling the chemical oxygen demand in wastewater in a wet exhaust gas desulfurization device.
    Step 1 to measure the chemical oxygen demand in the wastewater of the wet exhaust gas desulfurization equipment,
    When the measured chemical oxygen demand is equal to or less than the reference value, the wastewater is discharged, while when the measured amount exceeds the reference value, the amount of sulfur-oxidizing bacteria in the wastewater is measured as the sulfur-oxidizing bacteria. Step 2 of detection by the PCR method using a primer pair for amplification of a known gene of
    Step 3 of adjusting the amount of the oxidizing fungicide according to the detected amount of the sulfur-oxidizing bacteria and sterilizing the sulfur-oxidizing bacteria.
    Step 4 of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization, and
    When the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the cells are released, while when the amount exceeds the reference value, the steps 3 and 4 are repeated.
    Including methods.
  2.  前記酸化性殺菌剤がハロゲン系殺菌剤、オゾン及び過酸化水素からなる群より選ばれる1種以上である、請求項1に記載の方法。 The method according to claim 1, wherein the oxidizing disinfectant is at least one selected from the group consisting of halogen-based disinfectants, ozone and hydrogen peroxide.
  3.  前記工程4において、殺菌後の前記排水中の化学的酸素要求量を再度測定する、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein in the step 4, the chemical oxygen demand in the wastewater after sterilization is measured again.
  4.  前記既知の遺伝子がsoxB遺伝子である、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the known gene is a soxB gene.
  5.  前記既知の遺伝子が配列番号1で表される塩基配列からなる、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the known gene comprises a base sequence represented by SEQ ID NO: 1.
  6.  湿式排ガス脱硫装置の殺菌評価方法であって、
     排水中の硫黄酸化細菌の菌体量を、前記硫黄酸化細菌の既知の遺伝子の増幅用プライマー対を用いたPCR法により検出する工程と、
     検出された前記硫黄酸化細菌の菌体量に応じて、酸化性殺菌剤の量を調整し、殺菌する工程と、
     殺菌後の前記排水中の前記硫黄酸化細菌の菌体量を再度検出する工程と、
     再度検出された前記硫黄酸化細菌の菌体量が基準値以下である場合に、前記湿式排ガス脱硫装置が十分に殺菌されていると評価する工程と、
    を含む、方法。
    It is a sterilization evaluation method for wet exhaust gas desulfurization equipment.
    A step of detecting the amount of sulfur-oxidizing bacteria in the wastewater by a PCR method using a primer pair for amplifying a known gene of the sulfur-oxidizing bacteria.
    A step of adjusting the amount of the oxidizing fungicide according to the detected amount of the sulfur-oxidizing bacteria and sterilizing the sulfur-oxidizing bacteria.
    A step of re-detecting the amount of sulfur-oxidizing bacteria in the wastewater after sterilization, and
    When the amount of the sulfur-oxidizing bacteria detected again is equal to or less than the reference value, the step of evaluating that the wet exhaust gas desulfurization apparatus is sufficiently sterilized, and the step of evaluating that the wet exhaust gas desulfurization apparatus is sufficiently sterilized.
    Including methods.
PCT/JP2020/046411 2020-01-30 2020-12-11 Method for controlling chemical oxygen demand in waste water in wet exhaust gas desulfurization device and method for assessing sterilization of wet exhaust gas desulfurization device WO2021153038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020014063A JP7341077B2 (en) 2020-01-30 2020-01-30 Method for controlling chemical oxygen demand in wastewater in wet exhaust gas desulfurization equipment and sterilization evaluation method for wet exhaust gas desulfurization equipment
JP2020-014063 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153038A1 true WO2021153038A1 (en) 2021-08-05

Family

ID=77079698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046411 WO2021153038A1 (en) 2020-01-30 2020-12-11 Method for controlling chemical oxygen demand in waste water in wet exhaust gas desulfurization device and method for assessing sterilization of wet exhaust gas desulfurization device

Country Status (2)

Country Link
JP (1) JP7341077B2 (en)
WO (1) WO2021153038A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002943A1 (en) 2021-07-20 2023-01-26 国立大学法人東北大学 Biomarker for predicting prognosis of cancer patient, method for predicting prognosis of cancer patient, method for predicting effect of cancer therapeutic drug on cancer patient, and kit for predicting prognosis of cancer patient

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242578A (en) * 2003-02-13 2004-09-02 Nippon Steel Corp Bacterium existing in activated sludge of ammonia solution treatment plant
JP2007268471A (en) * 2006-03-31 2007-10-18 Ebara Corp Method for evaluating and controlling activity and methanation ability of anaerobic microbe in methane fermentation system
JP2015188359A (en) * 2014-03-27 2015-11-02 三菱重工業株式会社 Methods for detecting sphingomonas bacteria, primers therefor, and methods for predicting activity of biological treatment tanks
JP2019126764A (en) * 2018-01-23 2019-08-01 三菱日立パワーシステムズ株式会社 Wet exhaust gas desulfurization device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242578A (en) * 2003-02-13 2004-09-02 Nippon Steel Corp Bacterium existing in activated sludge of ammonia solution treatment plant
JP2007268471A (en) * 2006-03-31 2007-10-18 Ebara Corp Method for evaluating and controlling activity and methanation ability of anaerobic microbe in methane fermentation system
JP2015188359A (en) * 2014-03-27 2015-11-02 三菱重工業株式会社 Methods for detecting sphingomonas bacteria, primers therefor, and methods for predicting activity of biological treatment tanks
JP2019126764A (en) * 2018-01-23 2019-08-01 三菱日立パワーシステムズ株式会社 Wet exhaust gas desulfurization device and method

Also Published As

Publication number Publication date
JP7341077B2 (en) 2023-09-08
JP2021119757A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP5926251B2 (en) Method and composition for rapid treatment of wastewater
Gagnon et al. Comparative analysis of chlorine dioxide, free chlorine and chloramines on bacterial water quality in model distribution systems
Liang et al. Effects of sulfide on mixotrophic denitrification by Thauera-dominated denitrifying sludge
Zhang et al. Stabilization of source-separated human urine by chemical oxidation
WO2021153038A1 (en) Method for controlling chemical oxygen demand in waste water in wet exhaust gas desulfurization device and method for assessing sterilization of wet exhaust gas desulfurization device
Chowdhary et al. Characterization and identification of bacterial pathogens from treated tannery wastewater
Wang et al. Characterization of biofilm bacterial communities and cast iron corrosion in bench-scale reactors with chloraminated drinking water
US8535661B2 (en) Enzymatically active compositions for suppressing sulfide generation and methods of use thereof
Zhang et al. Anticipating effects of water quality changes on iron corrosion and red water
Li et al. Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion in cast iron pipes
Allward et al. Potential for manganese biofouling in water transmission lines using model reactors
JP4790243B2 (en) Method for treating wastewater containing sulfur compounds
JP2022000003A (en) Nucleic acid extraction method and water treatment system for organism
Moiseeva et al. Biocorrosion of oil and gas field equipment and chemical methods for its suppression. I
Doskocz et al. Effect of aluminium oxide nanoparticles on the enzymatic activity on microorganisms of activated sludge
Gagnon et al. Changes in microbiological quality in model distribution systems after switching from chlorine or chloramines to chlorine dioxide
Samiotis et al. Wastewater Substrate Disinfection for Application of Synechococcus Elongatus PCC 7942 Cultivation as Tertiary Treatment
Sharafimasooleh Effect of High Chloride Concentrations on Cast Iron Corrosion and Water Quality in Drinking Water Distribution Systems
Musabyimana Deammonification process kinetics and inhibition evaluation
Caravelli et al. Effectiveness of chlorination and ozonation methods on pure cultures of floc-forming micro-organisms and activated sludge: A comparative study
Lehtola Microbially available phosphorus in drinking water
WO2006064135A1 (en) Method for treating water
Jansson Application potential of an on-line ATP analyzer for process control
Mousa Heba M. El-Oraby, Ali MA Abdulla 2, Ahmed M. Attia
Linklater Individual and combined use of ultraviolet (UV) light with hydrogen peroxide, peracetic acid, and ferrate (VI) for wastewater disinfection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916932

Country of ref document: EP

Kind code of ref document: A1