WO2021153019A1 - Optical laminate and display device in which same is used - Google Patents

Optical laminate and display device in which same is used Download PDF

Info

Publication number
WO2021153019A1
WO2021153019A1 PCT/JP2020/045824 JP2020045824W WO2021153019A1 WO 2021153019 A1 WO2021153019 A1 WO 2021153019A1 JP 2020045824 W JP2020045824 W JP 2020045824W WO 2021153019 A1 WO2021153019 A1 WO 2021153019A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin
compound
film
polarizer
Prior art date
Application number
PCT/JP2020/045824
Other languages
French (fr)
Japanese (ja)
Inventor
福田 謙一
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080094673.1A priority Critical patent/CN115023634A/en
Priority to KR1020227029530A priority patent/KR20220126778A/en
Publication of WO2021153019A1 publication Critical patent/WO2021153019A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to an optical laminate and a display device using the same.
  • Patent Document 1 a white light emitting diode is used as a backlight of a liquid crystal display device, and a polymer film having a retardation of 3000 nm to 30,000 nm is provided on the viewer side of the polarizer of the absorption shaft of the polarizer and the polymer film.
  • a method for improving visibility is described in which the angle formed by the slow axis is approximately 45 °. According to the visibility improving method of Patent Document 1, it is said that the visibility when observing the screen through polarized sunglasses can be improved.
  • the front luminance of the liquid crystal display device at the time of black display increases when it is left in a high temperature environment for a long time, and polarized sunglasses are not worn.
  • the visibility was sometimes lowered.
  • An object of the present invention is to solve the above problems, and to provide an optical laminate capable of improving visibility regardless of the presence or absence of polarized sunglasses even after being placed in a high temperature environment.
  • the present inventor has applied a polymer film having a retardation value of 3000 nm to 30,000 nm (hereinafter, also simply referred to as “high retardation film”) on the surface of the polarizing plate used for the visible side surface of the liquid crystal display device.
  • high retardation film a polymer film having a retardation value of 3000 nm to 30,000 nm
  • the liquid crystal display device bonded so that the angle between the absorption axis of the polarizer and the slow axis of the polymer film is approximately 45 ° is left in a high temperature environment for a long time, the liquid crystal display device displays black. It was considered that the reason why the front brightness of the film increased was as follows.
  • the high retardation film is stretched at a high temperature and at a high stretching ratio, and is cooled and manufactured with residual stress remaining.
  • a polarizing plate to which such a high retardation film is diagonally bonded is stored for a long time in a high temperature environment, the residual stress in the diagonal direction of the high retardation film is released.
  • This stress in the oblique direction is also applied to the protective film of the polarizing plate, and in particular, for the protective film arranged between the polarizer and the liquid crystal display device, the phase difference having the optical axis diagonally with respect to the absorption axis of the polarizer is large. It was presumed that this was due to light leakage.
  • the present invention provides an optical laminate illustrated below and a display device using the same.
  • a high retardation film, a polarizer, and an adhesive layer are provided in this order.
  • the pressure-sensitive adhesive layer is provided so as to be in contact with the surface of the polarizer.
  • the in-plane retardation value of the high retardation film is 3000 nm to 30,000 nm.
  • An optical laminate in which the angle formed by the slow axis of the high retardation film and the absorption axis of the polarizer is 40 ° to 50 °.
  • a high retardation film, a polarizer, a resin layer containing a cured resin product, and an adhesive layer are provided in this order.
  • the resin layer is provided so as to be in contact with the polarizer and the pressure-sensitive adhesive layer.
  • the in-plane retardation value of the high retardation film is 3000 nm to 30,000 nm.
  • An optical laminate in which the angle formed by the slow axis of the high retardation film and the absorption axis of the polarizer is 40 ° to 50 °.
  • [5] The optical laminate according to any one of [1] to [4], wherein the polarizer has a thickness of 30 ⁇ m or less.
  • an optical laminate capable of improving visibility regardless of the presence or absence of polarized sunglasses even after being placed in a high temperature environment.
  • Refractive index (nx, ny, nz) "Nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny” is the in-plane refractive index in the direction orthogonal to the slow-phase axis. Is the refractive index in the thickness direction.
  • Re [ ⁇ ] refers to the in-plane retardation value of the film at 23 ° C. and a wavelength of ⁇ (nm).
  • Re [ ⁇ ] (nx ⁇ ny) ⁇ d, where d (nm) is the thickness of the film.
  • Phase difference value in the thickness direction The in-plane phase difference value (Rth [ ⁇ ]) refers to the phase difference value in the thickness direction of the film at 23 ° C. and a wavelength of ⁇ (nm).
  • Rth [ ⁇ ] ((nx + ny) / 2-nz) ⁇ d, where d (nm) is the thickness of the film.
  • the optical laminate of the present invention includes a high retardation film, a polarizer, and a pressure-sensitive adhesive layer (hereinafter, also referred to as “first pressure-sensitive adhesive layer”) in this order.
  • first pressure-sensitive adhesive layer a pressure-sensitive adhesive layer
  • Each layer in the optical laminate can be laminated, for example, via an adhesive layer.
  • the adhesive layer include an adhesive layer and an adhesive layer described later.
  • FIG. 1 is a diagram showing an example of the layer structure of the optical laminate of the first embodiment.
  • a high retardation film 13 a polarizing plate 1 including a polarizing element 10, and a first pressure-sensitive adhesive layer 15 are laminated in this order.
  • the polarizing plate 1 includes a polarizing element 10 and a protective film 12 laminated on the high retardation film 13 side of the polarizing element 10.
  • the first pressure-sensitive adhesive layer 15 is provided so as to be in contact with the surface of the polarizer 10.
  • FIG. 2 is a diagram showing an example of the layer structure of the optical laminate of the second embodiment.
  • a high retardation film 13 a polarizing plate 1 including a polarizing element 10 and a resin layer 11, and a first pressure-sensitive adhesive layer 15 are laminated in this order.
  • the polarizing plate 1 includes a polarizing element 10, a protective film 12 laminated on the high retardation film 13 side of the polarizing element 10, and a resin layer provided so as to be in contact with the surface of the polarizing element 10 on the first adhesive layer 15 side. 11 and.
  • the resin layer 11 contains a cured resin product.
  • the first pressure-sensitive adhesive layer 15 is provided so as to be in contact with the surface of the resin layer 11.
  • the high retardation film 13 and the polarizing plate 1 are laminated via an adhesive layer (hereinafter, also referred to as “second adhesive layer”) 14.
  • the first pressure-sensitive adhesive layer 15 can be a pressure-sensitive adhesive layer for bonding to a display element or the like.
  • the polarizing plate 1 includes at least a polarizing element 10, and may have a protective film 12, a resin layer 11, and the like as other components.
  • 1 and 2 show a configuration in which one protective film 12 is provided between the polarizer 10 and the high retardation film 13, but two protective films are provided between the polarizer 10 and the high retardation film 13.
  • the configuration may be provided as described above.
  • the protective film may have a surface treatment layer such as a hard coat layer, an antireflection layer, and an antistatic layer, which will be described later. Further, the protective film may be a film that functions as a retardation film.
  • the polarizer and the protective film can be laminated, for example, via an adhesive layer or an adhesive layer.
  • the protective film and the protective film can be laminated, for example, via an adhesive layer or an adhesive layer.
  • the members included in the polarizing plate will be described below.
  • the polarizer 10 included in the polarizing plate 1 absorbs linearly polarized light having a vibrating surface parallel to its absorption axis, and linearly polarized light having a vibrating surface orthogonal to the absorption axis (parallel to the transmission axis). It can be an absorption type polarizer having a transmissive property.
  • a polarizer in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film can be preferably used.
  • the polarizer 10 is, for example, a step of uniaxially stretching a polyvinyl alcohol-based resin film; a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye; the dichroic dye is adsorbed. It can be produced by a method including a step of treating a polyvinyl alcohol-based resin film with a cross-linking solution such as an aqueous boric acid solution; and a step of washing with water after the treatment with the cross-linking solution.
  • a cross-linking solution such as an aqueous boric acid solution
  • polyvinyl alcohol-based resin a saponified polyvinyl acetate-based resin
  • examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable with the vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
  • (meth) acrylic means at least one selected from acrylic and methacryl. The same applies to "(meth) acryloyl", “(meth) acrylate” and the like.
  • the degree of saponification of the polyvinyl alcohol-based resin is usually 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used.
  • the average degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, preferably 1500 to 5000.
  • the average degree of polymerization of the polyvinyl alcohol-based resin can be determined in accordance with JIS K 6726.
  • a film formed of such a polyvinyl alcohol-based resin is used as a raw film for a polarizer.
  • the method for forming a film of the polyvinyl alcohol-based resin is not particularly limited, and a known method is adopted.
  • the thickness of the polyvinyl alcohol-based raw film is not particularly limited, but for example, in order to reduce the thickness of the polarizer to 25 ⁇ m or less, it is preferable to use one having a thickness of 40 to 75 ⁇ m. More preferably, it is 45 ⁇ m or less.
  • the uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing the dichroic dye, at the same time as dyeing, or after dyeing. If the uniaxial stretching is performed after dyeing, the uniaxial stretching may be performed before the cross-linking treatment or during the cross-linking treatment. Moreover, uniaxial stretching may be performed in these a plurality of steps.
  • uniaxial stretching rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch.
  • the uniaxial stretching may be a dry stretching in which the film is stretched in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen with a solvent or water.
  • the draw ratio is usually 3 to 8 times.
  • a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye for example, a method of immersing the film in an aqueous solution containing a dichroic dye is adopted.
  • a dichroic dye iodine or a dichroic organic dye is used.
  • the polyvinyl alcohol-based resin film is preferably immersed in water before the dyeing treatment.
  • the cross-linking treatment after dyeing with a dichroic dye a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution is usually adopted.
  • the boric acid-containing aqueous solution preferably contains potassium iodide.
  • the thickness of the polarizer is usually 50 ⁇ m or less, preferably 5 to 30 ⁇ m, more preferably 5 to 25 ⁇ m or less, and further preferably 5 to 20 ⁇ m or less.
  • the thickness of the polarizer is usually 50 ⁇ m or less, preferably 5 to 30 ⁇ m, more preferably 5 to 25 ⁇ m or less, and further preferably 5 to 20 ⁇ m or less.
  • a cured film in which a liquid crystal compound is polymerized may be used in which a dichroic dye is oriented.
  • a dichroic dye a dye having absorption in the wavelength range of 380 to 800 nm can be used, and it is preferable to use an organic dye.
  • the dichroic dye include an azo compound.
  • the liquid crystal compound is a liquid crystal compound that can be polymerized while being oriented, and can have a polymerizable group in the molecule.
  • a polarizer may be formed from a dichroic dye having a liquid crystallinity.
  • the polarizing plate 1 may have a protective film 12 laminated on the surface of the polarizer 10 on the high retardation film 13 side.
  • the protective film 12 is not particularly limited, and is, for example, a polyolefin resin such as a chain polyolefin resin (polypropylene resin or the like) or a cyclic polyolefin resin (norbornen resin or the like); such as triacetyl cellulose or diacetyl cellulose.
  • a polyolefin resin such as a chain polyolefin resin (polypropylene resin or the like) or a cyclic polyolefin resin (norbornen resin or the like); such as triacetyl cellulose or diacetyl cellulose.
  • Cellular resin polyester resin such as polyethylene terephthalate and polybutylene terephthalate; polycarbonate resin; (meth) acrylic resin such as methyl methacrylate resin; polystyrene resin; polyvinyl chloride resin; acrylonitrile butadiene -Styrene resin; acrylonitrile-styrene resin; polyvinyl acetate resin; polyvinylidene chloride resin; polyamide resin; polyacetal resin; modified polyphenylene ether resin; polysulfone resin; polyether sulfone resin; polyallylate resin
  • a film made of a resin; a polyamide-based resin; a polyimide-based resin; a maleimide-based resin or the like can be used. Of these, a chain polyolefin resin film and a cellulosic resin film are preferably used.
  • chain polyolefin resin polyethylene resin (polyethylene resin which is a homopolymer of ethylene or a copolymer mainly composed of ethylene), polypropylene resin (polypropylene resin which is a homopolymer of propylene or propylene as a main component) are used.
  • polyethylene resin polyethylene resin which is a homopolymer of ethylene or a copolymer mainly composed of ethylene
  • polypropylene resin polypropylene resin which is a homopolymer of propylene or propylene as a main component
  • copolymers composed of two or more kinds of chain olefins can be mentioned.
  • Cellulose ester resin is an ester of cellulose and fatty acid.
  • Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate.
  • these copolymers and those in which a part of the hydroxyl group is modified with another substituent can also be mentioned.
  • cellulose triacetate triacetyl cellulose is particularly preferable.
  • the thickness of the protective film 12 is usually 1 to 100 ⁇ m, but is preferably 5 to 60 ⁇ m, more preferably 10 to 55 ⁇ m, and even more preferably 15 to 50 ⁇ m from the viewpoint of strength, handleability, and the like. ..
  • the protective film 12 has a hard coat layer, an antiglare layer, a light diffusing layer, an antireflection layer, a low refractive index layer, an antistatic layer, and an antistatic layer on its outer surface (the surface opposite to the polarizer). It may be provided with a surface treatment layer (coating layer) such as a foul layer.
  • the thickness of the protective film 12 includes the thickness of the surface treatment layer.
  • the resin layer 11 contains a cured resin product.
  • the resin layer 11 may be composed of only a cured resin product.
  • the resin layer 11 is a layer formed by curing the curable resin composition.
  • the resin layer 11 has a three-dimensional crosslinked structure.
  • the resin layer 11 is distinguished from a resin film such as a protective film based on the crosslinked structure or the difference in the composition or molecular structure of the monomer.
  • the resin layer 11 may be an overcoat layer.
  • the overcoat layer can be rephrased as a layer formed by curing an uncured curable resin composition that covers the surface of the polarizer 10.
  • the resin layer 11 is formed by directly applying an uncured curable resin to the surface of the polarizer 10 to form a layer containing the uncured curable resin (uncured layer) and curing the uncured layer. You may get it.
  • the resin layer 11 may be obtained.
  • the relatively soft uncured layer When the uncured layer is brought into close contact with the surface of the polarizer 10, the relatively soft uncured layer easily bites into the fine irregularities on the surface of the polarizer 10 without gaps, and the resin layer 11 obtained by curing the uncured layer is also polarized. It is easy to bite into the fine irregularities on the surface of the child 10 without any gaps. As a result, an anchor effect may occur, and the anchor effect may easily suppress cracks in the polarizer 10.
  • the cured resin product constituting the resin layer 11 may be formed from a photocurable resin composition that is cured by irradiation with active energy rays.
  • the cured resin product constituting the resin layer 11 may be formed from a thermosetting resin composition that is cured by heating.
  • the cured resin product constituting the resin layer 11 may contain a cured product of an epoxy compound.
  • the cured resin product constituting the resin layer 11 may contain a cured product of an oxetane-based compound.
  • the cured resin product constituting the resin layer 11 may contain a cured product of a (meth) acrylic compound.
  • ⁇ Curable resin composition for resin layer> (Active energy ray-curable compound No. 1: Cationic polymerizable compound)
  • the epoxy compound constituting the curable resin composition include glycidyl ether of a polyol having an alicyclic ring, an alicyclic epoxy compound, an aliphatic epoxy compound, and an aromatic epoxy compound.
  • the glycidyl ether of a polyol having an alicyclic ring is a compound obtained by converting the hydroxyl groups of a compound having at least two hydroxyl groups bonded to the alicyclic ring into glycidyl ether.
  • a polyol having an alicyclic ring that is, a compound having at least two hydroxyl groups bonded to the alicyclic ring in the molecule, selectively hydrogenates an aromatic polyol into the aromatic ring under pressure in the presence of a catalyst. Can be obtained by doing.
  • Aromatic polyols are, for example, bisphenol compounds such as bisphenol A, bisphenol F and bisphenol S; novolac resins such as phenol novolac resin, cresol novolac resin and hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxybenzophenone. And polyfunctional compounds such as polyvinylphenol.
  • a glycidyl ether can be obtained by reacting an alicyclic polyol obtained by hydrogenating the aromatic rings of these aromatic polyols with epichlorohydrin. Among these, the diglycidyl ether of hydrogenated bisphenol A is preferable.
  • the alicyclic epoxy compound is a compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
  • the “epoxide group bonded to the alicyclic ring” means a bridging oxygen atom —O— in the structure represented by the following chemical formula (10), in which m is an integer of 2 to 5.
  • a compound in which one or a plurality of hydrogen atoms in (CH 2 ) m in the above chemical formula (10) are removed and a group bonded to another chemical structure can be an alicyclic epoxy compound.
  • One or more hydrogen atoms in (CH 2 ) m forming an alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • alicyclic epoxy compounds are listed below. In the following, the compound names are first listed, and then the chemical formulas corresponding to each compound name are shown. The same code is attached to the compound name and the corresponding chemical formula.
  • the aliphatic epoxy compound can be an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof.
  • the aliphatic epoxy compounds include, for example, diglycidyl ether of 1,4-butanediol, diglycidyl ether of 1,6-hexanediol, triglycidyl ether of glycerin, triglycidyl ether of trimethylolpropane, and diglycidyl of polyethylene glycol.
  • Ether diglycidyl ether of propylene glycol, polyglycidyl ether of polyether polyol obtained by adding alkylene oxide (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohol such as ethylene glycol, propylene glycol and glycerin. ..
  • the aliphatic epoxy compound contained in the curable resin composition has two oxylan rings bonded to the aliphatic carbon atom in the molecule. It is preferably a bifunctional epoxy compound (aliphatic diepoxy compound) having the above.
  • the curable resin composition contains an aliphatic diepoxy compound, a curable resin composition having a low viscosity and easy to apply can be obtained.
  • Aromatic epoxy compounds are compounds that have one or more aromatic rings in the molecule. Specific examples of aromatic epoxy compounds are listed below.
  • a monovalent phenol having at least one aromatic ring such as phenol, cresol, butylphenol, or a mono / polyglycidyl etherified product of an alkylene oxide adduct thereof, for example, bisphenol A, bisphenol F, or a compound obtained by further adding an alkylene oxide to these.
  • Glycidyl etheric compounds and epoxy novolac resins Glycidyl ether, an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, and catechol; Mono / polyglycidyl etherified product of an aromatic compound having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, and benzenedibutanol; Glycidyl ester of a polybasic acid aromatic compound having two or more carboxylic acids such as phthalic acid, terephthalic acid, trimellitic acid; Glycidyl esters of benzoic acids such as benzoic acid, toluic acid, and naphthoic acid; Epoxy of styrene oxide or divinylbenzene, etc.
  • Glycidyl ether an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, and catechol
  • the aromatic epoxy compounds include glycidyl ethers of phenols, glycidyl etherified products of aromatic compounds having two or more alcoholic hydroxyl groups, glycidyl etherified products of polyhydric phenols, and benzo. It preferably contains at least one selected from the group consisting of glycidyl esters of acids, glycidyl esters of polybasic acids, styrene oxides or epoxidized compounds of divinylbenzene. Further, since the curability of the curable composition is improved, the aromatic epoxy compound preferably has an epoxy equivalent of 80 to 500. One kind of aromatic epoxy compound may be used alone, or a plurality of different kinds of aromatic epoxy compounds may be used in combination.
  • aromatic epoxy compound a commercially available product can be used.
  • the trade names of commercially available aromatic epoxy compounds are, for example, Denacol EX-121, Denacol EX-141, Denacol EX-142, Denacol EX-145, Denacol EX-146, Denacol EX-147, Denacol EX-201, and Denacol.
  • EX-203 Denacol EX-711, Denacol EX-721, On-Coat EX-1020, On-Coat EX-1030, On-Coat EX-1040, On-Coat EX-1050, On-Coat EX-1051, On-Coat EX-1010, On-Coat EX-1011, On-Coat 1012 (above, manufactured by Nagase Chemtex); Ogsol PG-100, Ogsol EG-200, Ogsol EG-210, Ogsol EG-250 (above, manufactured by Osaka Gas Chemical Co., Ltd.); HP4032, HP4032D, HP4700 (above, manufactured by DIC Corporation); ESN-475V (manufactured by Nippon Steel & Sumitomo Metal Corporation); Epicoat YX8800 (manufactured by Mitsubishi Chemical Corporation); Marproof G-0105SA, Marproof G-0130SP (manufactured by Nippon Oil Co., Ltd.); N-665, Epicron HP
  • the curable resin composition contains an aromatic epoxy compound
  • the curable resin composition becomes a hydrophobic resin, and the cured product layer (resin layer 11) obtained thereby can also have hydrophobicity.
  • the invasion of water from the outside into the polarizing plate is suppressed under high temperature and high humidity, and the movement of the dichroic dye (iodine) contained in the polarizing element 10 is effectively suppressed.
  • the epoxy compounds may be used alone or in combination of two or more. Since the resin layer 11 having excellent adhesion to the polarizer 10 can be obtained, the curable resin composition preferably contains at least an alicyclic epoxy compound.
  • the content of the epoxy compound may be 30 to 100% by weight, preferably 35 to 70% by weight, and more preferably 40 to 60% by weight based on the total amount of the active energy ray-curable compound.
  • the content of the epoxy compound is less than 30% by weight, the adhesion to the polarizer 10 tends to decrease.
  • the curable resin composition may contain an oxetane-based compound in addition to the above-mentioned epoxy-based compound.
  • an oxetane-based compound in addition to the above-mentioned epoxy-based compound.
  • the oxetane compound is a compound having a 4-membered ring ether in the molecule.
  • Oxetane compounds include, for example, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, bis ( 3-Ethyl-3-oxetanylmethyl) ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, phenol novolac oxetane and the like.
  • Commercially available products of these oxetane compounds can be easily obtained.
  • the trade names of oxetane compounds sold by Toa Synthetic Co., Ltd. are "Aron Oxetane OXT-101", “Aron Oxetane OXT-121", “Aron Oxetane OXT-221", and “Aron Oxetane OXT-221". , "Aron Oxetane OXT-212" and the like.
  • the blending amount of the oxetane-based compound is not particularly limited, but may be 70% by weight or less, preferably 10 to 50% by weight, based on the total amount of the active energy ray-curable compound.
  • the composition of the curable resin composition is based on 100% by mass of the total amount of the polymerizable compound (the entire curable resin composition).
  • (A1) 35 to 70% by mass of an oxetane compound having two or more oxetanyl groups,
  • (A2) 0-40% by mass of an aliphatic epoxy compound having two or more epoxy groups,
  • (A3) 15 to 50% by mass of an alicyclic epoxy compound having two or more epoxy groups, and
  • A4 0 to 20% by mass of an aromatic epoxy compound having one or more aromatic rings. Is preferable.
  • the content of the alicyclic epoxy compound (B1) relative to the content (WA) of the oxetane compound (A) is preferably 0.05 to 1.5.
  • the mass ratio (WB2 / WA) of WB1 is preferably 0.1 to 0.5.
  • the content of the aromatic epoxy compound (B3) relative to the content (WA) of the oxetane compound (A) (WB3).
  • the mass ratio (WB3 / WA) of is preferably 0.1 to 1.5.
  • the curable resin composition contains a cationically polymerizable compound such as an epoxy compound or an oxetane compound
  • a photocationic polymerization initiator it is preferable to add to the curable resin composition. Since the resin layer 11 can be formed at room temperature by using the photocationic polymerization initiator, it is less necessary to consider the heat resistance of the polarizer 10 and the strain due to expansion, and the resin layer 11 is formed on the polarizer 10. Is easy to adhere. Further, since the photocationic polymerization initiator acts catalytically with light, it is excellent in storage stability and workability even when mixed with a curable resin composition.
  • the photocationic polymerization initiator generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy compound and / or an oxetane compound. It is something that makes you. From the viewpoint of workability, it is preferable that the photocationic polymerization initiator has a potential.
  • Photocationic polymerization initiators include, for example, aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts; iron-allene complexes.
  • aromatic diazonium salt examples include as follows. Benzenediazonium hexafluoroantimonate, Benzenediazonium hexafluorophosphate, Benzenediazonium hexafluoroborate, etc.
  • aromatic iodonium salt examples include as follows. Diphenyliodonium tetrakis (pentafluorophenyl) borate, Diphenyliodonium hexafluorophosphate, Diphenyliodonium hexafluoroantimonate, Bis (4-nonylphenyl) iodonium hexafluorophosphate, etc.
  • aromatic sulfonium salt examples include as follows. Triphenylsulfonium hexafluorophosphate, Triphenylsulfonium hexafluoroantimonate, Triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4'-Bis (diphenylsulfonio) diphenylsulfide bishexafluorophosphate, 4,4'-Bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluoroantimonate, 4,4'-Bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluorophosphate, 7- [Di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluorophosphat
  • examples of the iron-arene complex include the following compounds. Xylene-Cyclopentadienyl Iron (II) Hexafluoroantimonate, Cumene-Cyclopentadienyl Iron (II) Hexafluorophosphate, Xylene-cyclopentadienyl iron (II) tris (trifluoromethylsulfonyl) metanide and the like.
  • photocationic polymerization initiators Commercially available products of these photocationic polymerization initiators can be easily obtained.
  • the trade names of the commercially available photocationic polymerization initiators are "Kayarad PCI-220” and “Kayarad PCI-620” [above, manufactured by Nippon Kayaku Co., Ltd.], "Adeka Optomer SP-150” and “Adeka Opt”.
  • photocationic polymerization initiators may be used alone or in combination of two or more.
  • aromatic sulfonium salts in particular have ultraviolet absorption characteristics even in the wavelength region of 300 nm or more, so that a cured product having excellent curability, good mechanical strength, and good adhesion to the polarizer 10 can be obtained. Since it can be given, it is preferably used.
  • the blending amount of the photocationic polymerization initiator is 0.5 to 20 parts by weight, preferably 10 parts by weight or less, more preferably 10 parts by weight, based on 100 parts by weight of the total of the cationically polymerizable compound containing the epoxy compound and the oxetane compound. It may be 1 to 6 parts by weight. If the amount of the photocationic polymerization initiator blended is small, the curing tends to be insufficient, and the mechanical strength and the adhesion between the resin layer 11 and the polarizer 10 tend to be lowered. On the other hand, if the amount of the photocationic polymerization initiator is too large, the amount of ionic substances in the cured product increases, which increases the hygroscopicity of the cured product and may reduce the durability performance.
  • the curable resin composition used in the present invention contains, in addition to the above-mentioned cationically polymerizable compound such as an epoxy compound, a radically polymerizable compound that can be polymerized by irradiation with active energy rays in the presence of a polymerization initiator. You may. Further, the curable resin composition can also be composed by using only the radically polymerizable compound as the active energy ray-curable compound.
  • a (meth) acrylic compound having at least one (meth) acryloyloxy group in the molecule is preferably used.
  • the (meth) acrylic compound means that it may be either an acrylic acid ester or a methacrylic acid ester, and is also referred to as (meth) acryloyl, (meth) acrylate, (meth) acrylic acid and the like in the present specification.
  • the "(meta)" of time has the same meaning.
  • the (meth) acrylic compound having at least one (meth) acryloyloxy group in the molecule includes a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule and a compound having a functional group.
  • these monomers and oligomers will be specifically described, but they can be used individually or in combination of two or more if desired.
  • the combination of two or more kinds includes a combination of monomers and a combination of oligomers, and also includes a combination of one or more kinds of monomers and one kind or two or more kinds of oligomers.
  • the (meth) acrylate monomer includes a monofunctional (meth) acrylate monomer having one (meth) acryloyloxy group in the molecule, and a bifunctional (meth) acrylate monomer having two (meth) acryloyloxy groups in the molecule. And there are polyfunctional (meth) acrylate monomers having 3 or more (meth) acryloyloxy groups in the molecule.
  • monofunctional (meth) acrylate monomer examples include as follows. Tetrahydrofurfuryl (meth) acrylate, 2-Hydroxyethyl (meth) acrylate, 2- or 3-Hydroxypropyl (meth) acrylate, 2-Hydroxybutyl (meth) acrylate, 2-Hydroxy-3-phenoxypropyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-Ethylhexyl (meth) acrylate, Cyclohexyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, Benzyl (meth) acrylate, Isobornyl (meth) acrylate, 2-Phenoxyethyl (meth) acrylate, Dicyclopentenyloxyethyl (meth) acrylate, N, N-dimethyl-2-a
  • a compound having a carboxyl group in the molecule together with one (meth) acryloyloxy group can also be a monofunctional (meth) acrylate monomer.
  • Specific examples of the monofunctional (meth) acrylate monomer having a carboxyl group are as follows. 2- (Meta) acryloyloxyethyl phthalic acid, 2- (Meta) acryloyloxyethyl hexahydrophthalic acid, 2-carboxyethyl (meth) acrylate, 2- (Meta) acryloyloxyethyl succinic acid, 4- (Meta) acryloyloxyethyl trimellitic acid, etc.
  • bifunctional (meth) acrylate monomers there are various bifunctional (meth) acrylate monomers.
  • Typical bifunctional (meth) acrylate monomers are alkylene glycol di (meth) acrylates, polyoxyalkylene glycol di (meth) acrylates, halogen-substituted alkylene glycol di (meth) acrylates, and aliphatic polyol di (meth) acrylates.
  • Meta acrylates, bisphenol A or bisphenol F epoxy di (meth) acrylates and the like.
  • bifunctional (meth) acrylate monomer examples include as follows. Ethylene glycol di (meth) acrylate, 1,3-Butanediol di (meth) acrylate, 1,4-Butanediol di (meth) acrylate, 1,6-Hexanediol di (meth) acrylate, 1,9-Nonanediol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, Trimethylolpropane di (meth) acrylate, Pentaerythritol di (meth) acrylate, Ditrimethylolpropane di (meth) acrylate, Diethylene glycol di (meth) acrylate, Triethylene glycol di (meth) acrylate, Dipropylene glycol di (meth) acrylate, Tripropylene glycol di (meth) acrylate, Polyethylene glycol di (meth) acrylate, Polypropylene glycol di (me
  • poly (meth) acrylates of trivalent or higher aliphatic polyols are typical. Specific examples are as follows. Glycerin tri (meth) acrylate, Trimethylolpropane tri (meth) acrylate, Ditrimethylolpropane Tri (meth) acrylate, Ditrimethylolpropane tetra (meth) acrylate, Pentaerythritol tri (meth) acrylate, Pentaerythritol tetra (meth) acrylate, Dipentaerythritol tetra (meth) acrylate, Dipentaerythritol Penta (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, etc.
  • the (meth) acrylate oligomer is, for example, a urethane (meth) acrylate oligomer, a polyester (meth) acrylate oligomer, an epoxy (meth) acrylate oligomer, or the like.
  • the urethane (meth) acrylate oligomer refers to a compound having at least two (meth) acryloyloxy groups in the molecule and having a urethane bond (-NHCOO-).
  • the urethane (meth) acrylate oligomer is, for example, a urethanization reaction product of a hydroxyl group-containing (meth) acrylate monomer having at least one (meth) acryloyloxy group and one hydroxyl group in the molecule and polyisocyanate. It's okay.
  • the urethane (meth) acrylate oligomer has, for example, a terminal isocyanato group-containing urethane compound obtained by reacting polyols with polyisocyanate, and at least one (meth) acryloyloxy group and one hydroxyl group in the molecule. It may be a urethanization reaction product with a hydroxyl group-containing (meth) acrylate monomer.
  • hydroxyl group-containing (meth) acrylate monomer used in the urethanization reaction are as follows. 2-Hydroxyethyl (meth) acrylate, 2-Hydroxypropyl (meth) acrylate, 2-Hydroxybutyl (meth) acrylate, 2-Hydroxy-3-phenoxypropyl (meth) acrylate, Glycerin di (meth) acrylate, Trimethylolpropane di (meth) acrylate, Pentaerythritol tri (meth) acrylate, Dipentaerythritol Penta (meth) acrylate, etc.
  • polyisocyanate subjected to the urethanization reaction with the hydroxyl group-containing (meth) acrylate monomer are as follows. Hexamethylene diisocyanate, Lysine diisocyanate, Isophorone diisocyanate, Dicyclohexylmethane diisocyanate, Tolylene diisocyanate, Xylylene diisocyanate, Compounds obtained by hydrogenating aromatic diisocyanates, for example, hydrogenated tolylene diisocyanates, hydrogenated xylylene diisocyanates, Triphenylmethane triisocyanate, Dibenzylbenzene triisocyanate, Polyisocyanates obtained by increasing the amount of diisocyanates among these.
  • the polyols for producing the terminal isocyanato group-containing urethane compound by the reaction with the polyisocyanate may be an aliphatic or alicyclic polyol, a polyester polyol, a polyether polyol, or the like.
  • the aliphatic and alicyclic polyols include, for example, 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, and the like.
  • Ditrimethylolpropane pentaerythritol, dipentaerythritol, dimethylolheptan, dimethylolpropionic acid, dimethylolbutyric acid, glycerin, hydrogenated bisphenol A and the like.
  • the polyester polyol is a compound obtained by dehydrating and condensing the above-mentioned polyols with a polybasic carboxylic acid or an anhydride thereof.
  • polybasic carboxylic acids and their anhydrides are (succinic anhydride) succinic anhydride, adipic acid, (anhydrous) maleic acid, (anhydrous) isophthalic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, and hexahydro.
  • the polybasic carboxylic acid does not have to be anhydrous.
  • the polyether polyol may be a polyalkylene glycol, or may be a polyoxyalkylene-modified polyol obtained by reacting the above-mentioned polyols or bisphenols with an alkylene oxide.
  • the polyester (meth) acrylate oligomer is a compound having at least two (meth) acryloyloxy groups in the molecule and having an ester bond.
  • a polyester (meth) acrylate oligomer can be obtained by a dehydration condensation reaction of (meth) acrylic acid, a polybasic carboxylic acid or an anhydride thereof, and a polyol.
  • Specific examples of the polybasic carboxylic acid or its anhydride used in the dehydration condensation reaction include (anhydrous) succinic anhydride, adipic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, (anhydrous) trimellitic acid, and (anhydrous).
  • Ditrimethylolpropane pentaerythritol, dipentaerythritol, dimethylolheptan, dimethylolpropionic acid, dimethylolbutyric acid, glycerin, hydrogenated bisphenol A and the like.
  • the epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid, and has at least two (meth) acryloyloxy groups in the molecule.
  • Specific examples of the polyglycidyl ether used in this addition reaction include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether. be.
  • At least one of the (meth) acrylic compounds represented by the following formulas (I) to (IV) has excellent adhesion and elastic modulus. Especially preferable.
  • Q 1 and Q 2 each independently represent a (meth) acryloyloxy group or (meth) acryloyloxy alkyl group.
  • the alkyl may be linear or branched and may have 1 to 10 carbon atoms, but is generally about 1 to 6 carbon atoms. The number of carbon atoms is sufficient.
  • Q is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group may be linear or branched, and can be typically an alkyl group. In this case, the number of carbon atoms of the alkyl group is also sufficient to be about 1 to 6.
  • R 1 , R 2 and R 3 independently represent a (meth) acryloyloxy group
  • R represents a hydroxyl group or a (meth) acryloyloxy group. ..
  • the compound represented by the formula (I) is a di (meth) acrylate derivative of hydrogenated dicyclopentadiene or tricyclodecanedialkanol.
  • Specific examples of the compound represented by the formula (I) are hydrogenated dicyclopentadienyl di (meth) acrylate [in the formula (I), both Q 1 and Q 2 are the same (meth) acryloyloxy group.
  • compound] in tricyclodecane di (meth) acrylate [the formula (I), a compound both of Q 1 and Q 2 are the same (meth) acryloyloxy methyl group], and the like.
  • the compound represented by the formula (II) is a di (meth) acrylate derivative of dioxane glycol or dioxane dialkanol.
  • Specific examples of the compound represented by formula (II), 1,3-dioxane-2,5-diyl di (meth) acrylate [alias: dioxane glycol di (meth) acrylate, in the formula (II), Q 1 and both Q 2 'are the same (meth) acryloyloxy group, compound and Q and H are the same], hydroxypivalaldehyde acetal compound of trimethylolpropane [chemical name: 2- (2-hydroxy - in 1,1-dimethylethyl) -5-ethyl-5-hydroxymethyl-1,3-dioxane] di (meth) acrylate [the formula (II), Q 1 is (meth) acryloyloxy methyl group, Q 2 is 2- (Meth) acryloyloxy-1,1
  • the compound represented by the formula (III) is a triacrylate or trimetaacrylate of 1,3,5-tris (2-hydroxyethyl) isocyanurate.
  • the compound represented by the formula (IV) is pentaerythritol tri- or tetra- (meth) acrylate, and specific examples thereof are pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate. ..
  • the (meth) acrylic compound is preferably used in combination with at least an epoxy compound.
  • the content of the (meth) acrylic compound may be 70% by weight or less, preferably 35 to 70% by weight, and preferably 40 to 60% by weight, based on the total amount of the active energy ray-curable compound.
  • the content of the (meth) acrylic compound among the active energy ray-curable compounds exceeds 70% by weight, the adhesion to the polarizer 10 tends to decrease.
  • photoradical polymerization initiator When the active energy ray-curable compound contains a radically polymerizable compound such as a (meth) acrylic compound, it is preferable to add a photoradical polymerization initiator as the polymerization initiator.
  • the photoradical polymerization initiator is not particularly limited as long as it can initiate curing of the radically polymerizable compound by irradiation with active energy rays, and conventionally known ones can be used.
  • Specific examples of photoradical initiators include acetophenone, 3-methylacetophenone, benzyldimethylketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1-[.
  • Acetphenone-based initiators such as 4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone and 4, Benzophenone-based initiators such as 4'-diaminobenzophenone; benzoin ether-based initiators such as benzoin propyl ether and benzoin ethyl ether; thioxanthone-based initiators such as 4-isopropylthioxanthone; Benzaldehyde, anthraquinone, etc.
  • the blending amount of the photoradical polymerization initiator is 0.5 to 20 parts by weight, preferably 10 parts by weight or less, more preferably 1 to 1 to 100 parts by weight, based on 100 parts by weight of the radically polymerizable compound such as a (meth) acrylic compound. It may be 6 parts by weight. If the amount of the photoradical polymerization initiator is small, the curing tends to be insufficient, and the mechanical strength and the adhesion between the resin layer 11 and the polarizer 10 tend to decrease. On the other hand, if the amount of the photoradical polymerization initiator is too large, the amount of the active energy ray-curable compound in the curable resin composition is relatively small, and the durability performance of the resin layer 11 may be deteriorated.
  • the curable resin composition can further contain a photosensitizer, if necessary.
  • a photosensitizer By using the photosensitizer, the reactivity of cationic polymerization and / or radical polymerization can be improved, and the mechanical strength of the resin layer 11 and the adhesion between the resin layer 11 and the polarizer 10 can be improved.
  • the photosensitizer is, for example, a carbonyl compound, an organic sulfur compound, a persulfide compound, a redox compound, an azo compound, a diazo compound, a halogen compound, a photoreducing dye and the like.
  • Photosensitizers are benzoin methyl ethers, benzoin isopropyl ethers and benzoin derivatives such as ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone; benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoyl benzoate, 4,4'.
  • -Benzophenone derivatives such as bis (dimethylamino) benzophenone and 4,4'-bis (diethylamino) benzophenone;
  • thioxanthone derivatives such as 2-chlorothioxanthone and 2-isopropylthioxanthone; such as 2-chloroanthraquinone and 2-methylanthraquinone.
  • Anthraquinone derivatives such as N-methylacridone and N-butylacridone; other compounds such as ⁇ , ⁇ -diethoxyacetophenone, benzyl, fluorenone, xanthone, and uranyl compounds.
  • acridone derivatives such as N-methylacridone and N-butylacridone
  • other compounds such as ⁇ , ⁇ -diethoxyacetophenone, benzyl, fluorenone, xanthone, and uranyl compounds.
  • Each of these photosensitizers may be used alone, or two or more kinds of photosensitizers may be mixed and used.
  • the content of the photosensitizer may be 0.1 to 20 parts by weight with respect to 100 parts by weight of the entire active energy ray-curable compound.
  • the curable resin composition may contain an antistatic agent for imparting antistatic performance to the polarizing plate.
  • the antistatic agent is, for example, a cationic surfactant, an anionic surfactant, a nonionic surfactant, an ionic compound having an organic cation other than the cationic surfactant, and an ion having an organic anion other than the anionic surfactant. It may be a sex compound, a conductive inorganic particle, a conductive polymer, or the like.
  • the blending ratio of these antistatic agents is appropriately determined according to the desired characteristics.
  • the blending ratio of the antistatic agent may be about 0.1 to 20 parts by weight, with 100 parts by weight of the entire active energy ray-curable compound.
  • the curable resin composition can also contain additives usually used for polymer materials.
  • additives usually used for polymer materials for example, primary antioxidants such as phenolic and amine-based, sulfur-based secondary antioxidants, hindered amine-based photostabilizers (HALS), benzophenone-based, benzotriazole-based, and ultraviolet absorbers such as benzoate-based ultraviolet absorbers.
  • primary antioxidants such as phenolic and amine-based, sulfur-based secondary antioxidants, hindered amine-based photostabilizers (HALS), benzophenone-based, benzotriazole-based
  • ultraviolet absorbers such as benzoate-based ultraviolet absorbers.
  • a leveling agent can also be added to the curable resin composition.
  • a leveling agent is used. By blending, these problems can be improved.
  • the leveling agent may be a silicone-based leveling agent, a fluorine-based leveling agent, a polyether-based leveling agent, an acrylic acid copolymer-based leveling agent, or a titanate-based leveling agent. These leveling agents may be used alone or in combination of two or more.
  • the blending ratio of the leveling agent is 0.01 to 1 part by weight, preferably 0.1 to 0.7 parts by weight, and more preferably 0.2 to 0.5 parts by weight with respect to 100 parts by weight of the active energy ray-curable compound. It may be a part by weight. If the amount of the leveling agent blended is small, it is difficult to sufficiently exert the effect of improving the coatability and surface properties. On the other hand, if the blending amount is too large, the adhesion between the polarizer 10 and the resin layer 11 may be lowered.
  • the curable resin composition may contain fine particles, for example, silica fine particles.
  • fine particles particularly silica fine particles, the hardness and mechanical strength of the obtained resin layer 11 can be further improved.
  • the silica fine particles can be blended in the curable resin composition as, for example, a liquid material dispersed in an organic solvent.
  • the silica concentration in the organic solvent may be, for example, about 20 to 40% by weight.
  • the silica fine particles may have a reactive functional group such as a hydroxyl group, an epoxy group, a (meth) acryloyl group, or a vinyl group on the surface thereof.
  • the particle size of the silica fine particles may be usually 100 nm or less, preferably about 5 to 50 nm. When the particle size of the fine particles exceeds 100 nm, it tends to be difficult to obtain the optically transparent resin layer 11.
  • the blending ratio of the silica fine particles may be 5 to 250 parts by weight, preferably 10 to 100 parts by weight, based on 100 parts by weight of the active energy ray-curable compound. If the amount of the fine particles blended is small, the effect of improving the hardness of the resin layer 11 due to the addition thereof is difficult to be sufficiently exhibited. On the other hand, if the amount of the fine particles blended is too large, the adhesion between the polarizer 10 and the resin layer 11 may be lowered, the dispersion stability of the fine particles in the curable resin composition may be lowered, or the curing thereof may be lowered. The viscosity of the sex resin composition may be excessively increased.
  • the curable resin composition may contain a solvent if necessary.
  • the solvent is appropriately selected depending on the solubility of the components constituting the curable resin composition.
  • Solvents are aliphatic hydrocarbons such as n-hexane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, propanol, isopropanol and butanol; acetone, methyl ethyl ketone, methyl isobutyl.
  • Ketones such as ketones and cyclohexanones; esters such as methyl acetate, ethyl acetate and butyl acetate; cellosolves such as methyl cellosolves, ethyl cellosolves and butyl cellosolves; halogenated hydrocarbons such as methylene chloride and chloroform.
  • the mixing ratio of the solvent is appropriately determined from the viewpoint of adjusting the viscosity for processing purposes such as film forming property.
  • the curable resin composition may be formed from an aqueous solution of an active energy ray-curable compound in which the main solvent is water.
  • an active energy ray-curable polymer composition containing a polymer compound having an ethylenically unsaturated group as a main component, as described in JP-A-2017-75986.
  • An aqueous solution of the material is preferably used.
  • the thickness of the resin layer 11 may be, for example, 0.5 ⁇ m or more and 20 ⁇ m or less, 1 ⁇ m or more and 10 ⁇ m or less, or 1 ⁇ m or more and 5 ⁇ m or less. When the thickness of the resin layer 11 is not more than the above upper limit value, the curable composition can be sufficiently cured.
  • the protective film 12 can be attached to the polarizer 10 via, for example, an adhesive layer or an adhesive layer which is an adhesive layer. Further, when two or more protective films are provided between the polarizer 10 and the high retardation film 13, the protective films are bonded to each other via, for example, an adhesive layer or an adhesive layer which is an adhesive layer. Can be.
  • the adhesive forming the adhesive layer a water-based adhesive, an active energy ray-curable adhesive or a thermosetting adhesive can be used, and a water-based adhesive or an active energy ray-curable adhesive is preferable.
  • the pressure-sensitive adhesive layer those described later can be used.
  • water-based adhesive examples include an adhesive composed of a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like. Of these, a water-based adhesive composed of an aqueous solution of a polyvinyl alcohol-based resin is preferably used.
  • the polyvinyl alcohol-based resin examples include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and co-polymers of vinyl acetate and other monomers copolymerizable therewith.
  • a polyvinyl alcohol-based copolymer obtained by saponifying the polymer, or a modified polyvinyl alcohol-based polymer in which the hydroxyl groups thereof are partially modified can be used.
  • the water-based adhesive may contain a cross-linking agent such as an aldehyde compound (glioxal or the like), an epoxy compound, a melamine compound, a methylol compound, an isocyanate compound, an amine compound, or a polyvalent metal salt.
  • a drying step for removing water contained in the water-based adhesive after the polarizer and the protective film are bonded together it is preferable to carry out a drying step for removing water contained in the water-based adhesive after the polarizer and the protective film are bonded together.
  • a curing step of curing at a temperature of, for example, 20 to 45 ° C. may be provided.
  • the active energy ray-curable adhesive is an adhesive containing a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays, and is preferably an ultraviolet curable adhesive. Is.
  • the curable compound can be a cationically polymerizable curable compound or a radically polymerizable curable compound.
  • the cationically polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Compounds), or a combination thereof.
  • the radically polymerizable curable compound include a (meth) acrylic compound (a compound having one or more (meth) acryloyloxy groups in the molecule) and a radically polymerizable double bond. Other vinyl compounds or combinations thereof can be mentioned.
  • a cationically polymerizable curable compound and a radically polymerizable curable compound may be used in combination.
  • the active energy ray-curable adhesive usually further contains a cationic polymerization initiator and / or a radical polymerization initiator for initiating the curing reaction of the curable compound.
  • Surface activation treatment includes dry treatment such as corona treatment, plasma treatment, discharge treatment (glow discharge treatment, etc.), flame treatment, ozone treatment, UV ozone treatment, ionization active ray treatment (ultraviolet ray treatment, electron beam treatment, etc.). Wet treatments such as ultrasonic treatment using a solvent such as water or acetone, saponification treatment, and anchor coating treatment can be mentioned. These surface activation treatments may be performed alone or in combination of two or more.
  • the high retardation film 13 may be directly laminated on the polarizer 10 via the pressure-sensitive adhesive layer 14. In that case, the protective film 12 can be omitted.
  • the optical laminate of the present invention has a high retardation film 13 to ensure visibility through polarized sunglasses.
  • the high retardation film 13 is made of a transparent thermoplastic resin film having birefringence.
  • the in-plane retardation value Re [550] of the high retardation film 13 at a wavelength of 550 nm is preferably 3000 nm or more, more preferably 5000 nm or more, and particularly preferably 7000 nm or more.
  • the upper limit of the in-plane retardation Re [550] of the high retardation film 13 is 30,000 nm.
  • the high retardation film 13 can be obtained, for example, by stretching a thermoplastic resin film. That is, the high retardation film 13 can be a stretched film.
  • thermoplastic resins include polyolefin resins such as polyethylene and polypropylene; cyclic polyolefin resins such as norbornene polymers; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; (meth) acrylic acid and poly (meth).
  • (Meta) acrylic acid-based resins such as methyl acrylate; cellulose ester-based resins such as triacetyl cellulose, diacetyl cellulose and cellulose acetate propionate; vinyl alcohol-based resins such as polyvinyl alcohol and polyvinyl acetate; polycarbonate resins; polystyrene Based resin; Polyarylate type resin; Polysulfone type resin; Polyethersulfone type resin; Polyamide type resin; Polyimide type resin; Polyetherketone type resin; Polyphenylene sulfide type resin; Polyphenylene oxide type resin, and mixtures and copolymers thereof. And so on. From the viewpoint of availability and transparency, polyethylene terephthalate, cellulose ester, cyclic olefin resin or polycarbonate is preferable.
  • a film having a desired retardation value may be obtained by subjecting these thermoplastic resins to uniaxial or biaxial thermal stretching treatment.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 4 times.
  • a method of stretching in an oblique direction is also preferably used so that it can be manufactured by roll-to-roll.
  • the method of stretching in the oblique direction is not particularly limited as long as the orientation axis can be continuously inclined to a desired angle, and a known stretching method can be adopted. Examples of such a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920.
  • the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
  • the angle formed by the slow axis of the high retardation film 13 and the absorption axis of the polarizer 10 is 40 ° to 50 °, more preferably 42 ° to 48 °, and particularly preferably about 45 °.
  • About 45 ° means 44 ° to 46 °.
  • the thickness of the high retardation film 13 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less. By setting the thickness of the high retardation film 13 to 200 ⁇ m or less, curling of the optical laminate 100 can be suppressed, and problems such as bubbles entering when the high retardation film 13 is attached to the liquid crystal display device can be suppressed.
  • optical laminate 100 By providing the optical laminate 100 on the viewer side of the liquid crystal cell of the liquid crystal display device, it is possible to suppress a decrease in visibility when the liquid crystal display device is visually recognized through polarized sunglasses without the need for another high-phase difference film. can do. Specifically, it is possible to suppress a decrease in front luminance and a change in hue (color shift) according to a viewing angle.
  • a hard coat layer or an antiglare layer may be laminated on the high retardation film 13 as needed.
  • the first pressure-sensitive adhesive layer 15 is in contact with the surface of the polarizer 10 (see FIG. 1), or is in contact with the resin layer 11 when the resin layer 11 is provided on the surface of the polarizer 10 (FIG. 2). See) Provided.
  • a resin film such as a protective film is inserted between the polarizer 10 and the first pressure-sensitive adhesive layer 15. It is presumed that this is because even if the residual stress in the oblique direction of the high retardation film 13 is released, it is possible to suppress the occurrence of the retardation in the specific resin film due to the residual stress.
  • the first pressure-sensitive adhesive layer 15 is bonded to the surface of the image display element on the visual side to form a display device.
  • the first pressure-sensitive adhesive layer 15 can be composed of a pressure-sensitive adhesive composition containing a resin as a main component, such as (meth) acrylic-based, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether-based. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable.
  • the pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
  • Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate.
  • a polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer.
  • Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl ().
  • Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
  • the pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent.
  • the cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly.
  • Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
  • the storage elastic modulus of the first pressure-sensitive adhesive layer 15 is preferably 0.001 to 0.350 MPa, more preferably 0.001 to 0.200 MPa, and further 0.001 to 0.100 MPa at a frequency of 1 Hz and a temperature of 23 ° C. Preferably, 0.010 to 0.100 MPa is particularly preferable.
  • the storage modulus is measured by the method described in Examples below.
  • the thickness of the first pressure-sensitive adhesive layer 15 is preferably 5 to 200 ⁇ m, more preferably 7 to 100 ⁇ m, further preferably 8 to 80 ⁇ m, and particularly preferably 10 to 50 ⁇ m.
  • the second pressure-sensitive adhesive layer 14 the one having the above-mentioned composition, characteristics, and thickness described as the first pressure-sensitive adhesive layer 15 can be used, and may be the same as or different from the first pressure-sensitive adhesive layer 15. May be.
  • the optical laminates 100 and 200 may be used with a front plate arranged on the visible side surface of the high retardation film 13.
  • the front plate can be laminated on the visible side surface of the high retardation film 13 via an adhesive layer.
  • the adhesive layer include the above-mentioned adhesive layer and adhesive layer.
  • the front plate examples include those having a hard coat layer on at least one surface of glass or a resin film.
  • the glass for example, highly transparent glass or tempered glass can be used. Especially when a thin transparent surface material is used, chemically strengthened glass is preferable.
  • the thickness of the glass can be, for example, 100 ⁇ m to 5 mm.
  • the front plate having a hard coat layer on at least one surface of the resin film can have flexible characteristics instead of being rigid like existing glass.
  • the thickness of the hard coat layer is not particularly limited and may be, for example, 5 to 100 ⁇ m.
  • cycloolefin-based derivatives having a unit of a monomer containing cycloolefin such as norbornene or polycyclic norbornene-based monomer, cellulose (diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, isobutyl ester cellulose).
  • an unstretched uniaxial or biaxially stretched film can be used.
  • Each of these polymers can be used alone or in combination of two or more.
  • Polymethylmethacrylate films and triacetylcellulose and isobutylester cellulose films that are transparent and not optically anisotropic are preferred.
  • the thickness of the resin film may be 5 to 200 ⁇ m, preferably 20 to 100 ⁇ m.
  • the hard coat layer can be formed by curing a hard coat composition containing a reactive material that forms a crosslinked structure by irradiating light or heat energy.
  • the hard coat layer can be formed by curing a hard coat composition containing a photocurable (meth) acrylate monomer, or an oligomer and a photocurable epoxy monomer, or an oligomer at the same time.
  • the photocurable (meth) acrylate monomer may contain one or more selected from the group composed of epoxy (meth) acrylate, urethane (meth) acrylate and polyester (meth) acrylate.
  • the epoxy (meth) acrylate can be obtained by reacting an epoxy compound with a carboxylic acid having a (meth) acryloyl group.
  • the hard coat composition can further contain one or more selected from the group consisting of solvents, photoinitiators and additives.
  • Additives can include one or more selected from the group consisting of inorganic nanoparticles, leveling agents and stabilizers, and other components commonly used in the art, such as anti. Excipients, UV absorbers, surfactants, lubricants, antifouling agents and the like can be further included.
  • the optical laminates 100 and 200 may have a buffer layer provided between the high retardation film 13 and the polarizing plate 1. By having a buffer layer, light leakage can be further suppressed even when placed in a high temperature environment.
  • the buffer layer is preferably laminated on the high retardation film 13 and the polarizing plate 1 via the pressure-sensitive adhesive layer.
  • the buffer layer can be laminated on the high retardation film 13 via the second pressure-sensitive adhesive layer 14, and can be laminated on the polarizing plate 1 via the third pressure-sensitive adhesive layer.
  • the third pressure-sensitive adhesive layer 14 the above-mentioned composition, characteristics, and thickness described as the first pressure-sensitive adhesive layer 15 can be used, and may be the same as or different from the first pressure-sensitive adhesive layer 15. good.
  • the thickness of the buffer layer is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more, further preferably 30 ⁇ m or more, and usually 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less. There may be.
  • the tensile elastic modulus at a temperature of the buffer layer of 23 ° C. and a relative humidity of 55% is preferably 1.5 GPa or more.
  • the tensile elastic modulus of the buffer layer may be 3 GPa or more, 5 GPa or more, usually 10 GPa or less, and 8 GPa or less.
  • a resin film is exemplified as the buffer layer as described above.
  • the resin material (resin) constituting the resin film is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding property, stability of retardation value, and the like.
  • the resin material is preferably a thermoplastic resin.
  • a resin material is not particularly limited, and is, for example, a cellulose ester resin; a (meth) acrylic acid resin; an olefin resin such as a chain aliphatic olefin resin or a cyclic olefin resin; a polyvinyl chloride resin.
  • Resin styrene resin; acrylonitrile / butadiene / styrene resin; acrylonitrile / styrene resin; polyvinyl acetate resin; polyvinylidene chloride resin; polyamide resin; polyacetal resin; polycarbonate resin; modified polyphenylene ether resin; Polybutylene teflate-based resin, polyester-based resin such as polyethylene teftalate-based resin; polysulfone-based resin; polyether sulfone-based resin; polyarylate-based resin; polyamideimide-based resin; polyimide-based resin, etc. Species or a combination of two or more species can be used.
  • a resin selected from a cellulose ester resin, a (meth) acrylic acid resin, and a cyclic olefin resin.
  • (meth) acrylic means that it may be either acrylic or methacryl.
  • (Meta) "(Meta)” such as acryloyl has the same meaning.
  • the resin material constituting the resin film can be used after performing any appropriate polymer modification, and the polymer modification includes, for example, copolymerization, cross-linking, molecular terminalization, stereoregularity control, and dissimilar polymers. Modifications such as mixing, including cases involving a reaction, can be mentioned.
  • cellulose ester-based resin a part or all of hydrogen atoms in the hydroxyl group of cellulose obtained from raw material cellulose such as cotton linter and wood pulp (perforated tree pulp, coniferous tree pulp) are replaced with acetyl group, propionyl group and / or butyryl group.
  • it is a cellulose organic acid ester or a cellulose mixed organic acid ester.
  • those composed of acetic acid ester of cellulose, propionic acid ester, butyric acid ester, mixed ester thereof and the like can be mentioned.
  • triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
  • the (meth) acrylic acid-based resin is a resin containing a compound having a (meth) acryloyl group as a main constituent monomer.
  • Specific examples of the (meth) acrylic resin include poly (meth) acrylic acid esters such as polymethyl methacrylate; methyl methacrylate- (meth) acrylic acid copolymers; methyl methacrylate- (meth) acrylic acid esters.
  • the (meth) acrylic acid-based resin may have a structural unit that expresses positive birefringence. If it has a structural unit that expresses positive birefringence and a structural unit that expresses negative birefringence, the position of the film formed from the (meth) acrylic acid-based resin can be adjusted by adjusting the abundance ratio thereof. The phase difference can be controlled, and a (meth) acrylic acid-based resin film having a low phase difference can be obtained.
  • a structural unit constituting a lactone ring, polycarbonate, polyvinyl alcohol, cellulose acetate, polyester, polyarylate, polyimide, polyolefin, etc. is represented by the general formula (1) described later.
  • Structural units can be mentioned.
  • Examples of the structural unit that expresses negative birefringence include structural units derived from styrene-based monomers, maleimide-based monomers, etc., polymethylmethacrylate structural units, structural units represented by the general formula (3) described later, and the like. Can be mentioned.
  • a (meth) acrylic acid-based resin having a lactone ring structure or a glutarimide structure is preferably used.
  • a (meth) acrylic acid-based resin having a lactone ring structure or a glutarimide structure has excellent heat resistance. More preferably, it is a (meth) acrylic acid-based resin having a glutarimide structure.
  • Examples of the (meth) acrylic acid-based resin having a glutarimide structure include JP-A-2006-309033, JP-A-2006-317560, and JP-A-2006-328329. , JP-A-2006-328334, JP-A-2006-337491, JP-A-2006-337492, JP-A-2006-337493, JP-A-2006-337569, JP-A-2007-9182, It is described in Kai 2009-161744. These statements are incorporated herein by reference.
  • the glutarimide resin is preferably a structural unit represented by the following general formula (1) (hereinafter, also referred to as “glutarimide unit”) and a structural unit represented by the following general formula (2) (hereinafter, “( Meta) Also referred to as "acrylic acid ester unit”).
  • R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, and an alkyl group having 1 to 18 carbon atoms. It is a substituent containing 3 to 12 cycloalkyl groups or an aromatic ring having 5 to 15 carbon atoms.
  • R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 6 is hydrogen, an alkyl group having 1 to 18 carbon atoms, and 3 carbon atoms. It is a cycloalkyl group of ⁇ 12 or a substituent containing an aromatic ring having 5 to 15 carbon atoms.
  • the glutarimide resin may further contain a structural unit represented by the following general formula (3) (hereinafter, also referred to as “aromatic vinyl unit”), if necessary.
  • R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 8 is an aryl group having 6 to 10 carbon atoms
  • R 1 and R 2 are independently hydrogen or methyl groups, and R 3 is hydrogen, methyl group, butyl group, or cyclohexyl group, and more preferably.
  • R 1 is a methyl group
  • R 2 is a hydrogen
  • R 3 is a methyl group.
  • the glutarimide resin is a glutarimide unit, may include only a single type, R 1 in the general formula (1), R 2, and R 3 also include a plurality of different types good.
  • the glutarimide unit can be formed by imidizing the (meth) acrylic acid ester unit represented by the above general formula (2).
  • the glutarimide unit is an acid anhydride such as maleic anhydride, or a half ester of such an acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms; crotonic acid, methacrylic acid, maleic acid. It can also be formed by imidizing ⁇ , ⁇ -ethylenically unsaturated carboxylic acids such as maleic anhydride, itaconic acid, itaconic anhydride, crotonic acid, fumaric acid, and citraconic acid.
  • R 4 and R 5 are independently hydrogen or methyl groups
  • R 6 is hydrogen or methyl group
  • R 5 is a methyl group
  • R 6 is a methyl group.
  • Glutarimide resin as (meth) acrylic acid ester unit may include only a single type, include R 4, R 5, and a plurality of types of R 6 are different in the above general formula (2) You may be.
  • the glutarimide resin preferably contains styrene, ⁇ -methylstyrene and the like, and more preferably styrene, as the aromatic vinyl unit represented by the above general formula (3).
  • the glutarimide resin may contain only a single type as the aromatic vinyl unit, or may contain a plurality of types in which R 7 and R 8 in the above general formula (3) are different.
  • the content of the glutarimide unit in glutarimide resin is preferably, for example, vary depending on the structure and the like of R 3.
  • the content of the glutarimide unit is preferably 1% by weight to 80% by weight, more preferably 1% by weight to 70% by weight, still more preferably 1% by weight, based on the total structural unit of the glutarimide resin. It is about 60% by weight, and particularly preferably 1% by weight to 50% by weight.
  • a low phase difference (meth) acrylic resin film having excellent heat resistance can be obtained.
  • the content of the aromatic vinyl unit in the glutarimide resin can be appropriately set according to the purpose and required properties. Depending on the application, the content of the aromatic vinyl unit may be zero.
  • the content thereof is preferably 10% by weight to 80% by weight, more preferably 20% by weight to 80% by weight, based on the glutarimide unit of the glutarimide resin. It is more preferably 20% by weight to 60% by weight, and particularly preferably 20% by weight to 50% by weight.
  • a (meth) acrylic acid-based resin film having a low phase difference and excellent heat resistance and mechanical strength can be obtained.
  • the glutarimide resin may be further copolymerized with other structural units other than the glutarimide unit, the (meth) acrylic acid ester unit, and the aromatic vinyl unit.
  • Other structural units include, for example, a structure composed of nitrile-based monomers such as acrylonitrile and methacrylonitrile; maleimide-based monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. The unit is mentioned.
  • These other structural units may be directly copolymerized or graft-copolymerized in the glutarimide resin.
  • the olefin-based resin is composed of a structural unit derived from a chain aliphatic olefin such as ethylene and propylene, or an alicyclic olefin such as norbornene or a substitute thereof (hereinafter, these are collectively referred to as a norbornene-based monomer). It is a resin.
  • the olefin resin may be a copolymer using two or more kinds of monomers.
  • a cyclic olefin resin which is a resin mainly containing a constituent unit derived from an alicyclic olefin is preferably used.
  • Typical examples of the alicyclic olefin constituting the cyclic olefin resin include norbornene-based monomers.
  • Norbornene is a compound in which one carbon-carbon bond of norbornane is a double bond, and is named bicyclo [2,2,1] hept-2-ene according to the IUPAC nomenclature. be.
  • substitution product of norbornene examples include 3-substituted product, 4-substituted product, 4,5-di-substituted product, etc., with the double bond position of norbornene at the 1,2-position, and further.
  • Dicyclopentadiene, dimethanooctahydronaphthalene and the like can also be mentioned.
  • the cyclic olefin resin may or may not have a norbornane ring as its constituent unit.
  • Examples of the norbornene-based monomer forming a cyclic olefin-based resin having no norbornene ring as a constituent unit include those having a 5-membered ring by ring-opening, typically norbornene, dicyclopentadiene, 1- or 4-. Examples thereof include methylnorbornene and 4-phenylnorbornene.
  • the cyclic olefin-based resin is a copolymer, the arrangement state of the molecule is not particularly limited, and it may be a random copolymer, a block copolymer, or a graft. It may be a polymer.
  • the cyclic olefin resin include, for example, a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer, and addition of maleic acid and cyclopentadiene to them.
  • examples thereof include polymer modified products made, and polymers or copolymers obtained by hydrogenating them; addition polymers of norbornene-based monomers, and addition copolymers of norbornene-based monomers and other monomers.
  • examples of other monomers used as copolymers include ⁇ -olefins, cycloalkenes, non-conjugated dienes and the like.
  • the cyclic olefin resin may be a copolymer using one or more of norbornene-based monomers and other alicyclic olefins.
  • a ring-opening polymer using a norbornene-based monomer or a resin obtained by hydrogenating a ring-opening copolymer is preferably used.
  • the resin material constituting the above-mentioned resin film may contain an appropriate additive as long as the transparency is not impaired.
  • Additives include, for example, antioxidants, UV absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, phase difference reducing agents, stabilizers, processing aids, plasticizers, impact resistant aids. , Matters, antibacterial agents, antifungal agents and the like. A plurality of kinds of these additives may be used in combination.
  • any optimum method may be appropriately selected.
  • a solvent casting method in which a resin dissolved in a solvent is cast on a metal band or drum and the solvent is dried and removed to obtain a film. The resin is heated above its melting temperature, kneaded and extruded from a die.
  • a melt extrusion method for obtaining a film by cooling, and the like in the melt extrusion method, a single-layer film can be extruded, or a multilayer film can be extruded at the same time.
  • the resin film may be a stretched film that has been stretched.
  • the tensile elastic modulus may be adjusted to a desired range by performing a stretching process. Examples of the stretching treatment include uniaxial stretching and biaxial stretching.
  • the optical laminate of the present invention can be attached to the visible side of the image display element via the first pressure-sensitive adhesive layer 15 to form a display device.
  • the image display element include a liquid crystal display element, an organic EL display element, and the like.
  • the storage elastic modulus (G') of the pressure-sensitive adhesive layer is measured according to the following (I) to (III).
  • (I) Two samples of 25 ⁇ 1 mg are taken out from the pressure-sensitive adhesive layer, and each sample is formed into a substantially ball shape.
  • (II) The two samples obtained in (I) above are attached to the upper and lower surfaces of the I-type jig, and both the upper and lower surfaces are sandwiched between the L-type jigs.
  • the composition of the measurement sample is an L-type jig / adhesive / I-type jig / adhesive / L-type jig.
  • aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the mixture was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a polarizer 1 having a thickness of 28 ⁇ m in which iodine was adsorbed and oriented on polyvinyl alcohol.
  • aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the mixture was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a polarizer 2 having a thickness of 18 ⁇ m in which iodine was adsorbed and oriented on polyvinyl alcohol.
  • polarizing plate 1 Fabrication of polarizing plate (fabrication of polarizing plate 1)
  • a 40 ⁇ m-thick film (KC4UY, manufactured by Konica Minolta Opto Co., Ltd.) made of triacetyl cellulose subjected to saponification treatment on one surface of the previously obtained polarizing element 1 is applied to a nip roll via the above adhesive. Was pasted together.
  • the polarizing plate 1 is obtained by drying at 38 ° C. for 5 minutes while maintaining the tension of the laminate at 320 N / m.
  • the polarizing plate 2 is obtained in the same manner as the polarizing plate 1 except that the polarizing element 1 is replaced with the polarizing element 2 with respect to the polarizing element plate 1.
  • polarizing plate 5 (Preparation of polarizing plate 5) A 40 ⁇ m-thick film (KC4UY, manufactured by Konica Minolta Opto Co., Ltd.) made of triacetyl cellulose that has been subjected to a saponification treatment is applied to one surface of the previously obtained polarizing element 1 and ken is applied to the other surface. A 20 ⁇ m-thick film made of triacetyl cellulose that has been subjected to a chemical treatment [trade name “ZRG20SL” manufactured by Fujifilm Co., Ltd., referred to as “Z-TAC” in Table 1] (in-plane retardation value Re at a wavelength of 550 nm). 1.1 nm, the retardation value Rth in the thickness direction is 1.3 nm), respectively, are bonded via the above-mentioned adhesive, and dried at 60 ° C. for 5 minutes to obtain a polarizing plate 5.
  • a chemical treatment [trade name “ZRG20SL” manufactured by Fujifilm Co
  • Adhesive Layer A Commercially available sheet-shaped acrylic adhesive layer having a thickness of 15 ⁇ m (storage elastic modulus 0.06 MPa)
  • Adhesive layer B Commercially available sheet-like acrylic adhesive layer with a thickness of 25 ⁇ m (storage elastic modulus 0.06 MPa)
  • Example 1 The pressure-sensitive adhesive layer A is bonded to one side of the high retardation film. When these materials are bonded together, a corona treatment is performed on the bonded surfaces of the materials.
  • the KC4UY surface of the polarizing plate 1 produced above and the pressure-sensitive adhesive layer surface of the high retardation film are laminated so that the angle ⁇ formed by the absorption axis of the polarizer and the slow axis of the high retardation film is 45 °.
  • Body A is made. When these materials are bonded together, a corona treatment is performed on the bonded surfaces of the materials.
  • the adhesive layer B is bonded to the surface of the obtained optical laminate A opposite to the KC4UY surface.
  • a corona treatment is performed on the bonded surfaces of the materials.
  • Examples 2 to 4 and Comparative Example 1 As shown in Table 1, the pressure-sensitive adhesive layer B is bonded to the optical laminate A of Example 1 in the same manner as in Example 1 except that the polarizing plate 1 is replaced with the polarizing plates 2 to 5.
  • the optical laminates B to E (Examples 2 to 4 and Comparative Example 1) are produced.
  • the optical laminate A is cut into a size of 20 mm ⁇ 20 mm as an optical laminate on the visual side, and bonded to a non-alkali glass having a thickness of 0.7 mm and a size of 30 mm ⁇ 30 mm via an adhesive layer B. do.
  • the optical laminate F is produced in the same manner as above except that the high retardation film and the pressure-sensitive adhesive layer A are not laminated on the optical laminate E of Comparative Example 1.
  • the optical laminate F (without high retardation film bonding) is cut into a size of 20 mm ⁇ 20 mm, and the optical laminate A of the non-alkali glass of the above sample is cut into a size of 20 mm ⁇ 20 mm, and the optical laminate A on the back side is used as the optical laminate.
  • the optical laminate F is bonded via the pressure-sensitive adhesive layer B so that the absorption axes of the polarizers are cross-nicols, and an evaluation sample A is prepared.
  • evaluation samples B to E For the evaluation sample A, the evaluation samples B to E are produced in the same manner except that the optical laminate A, which is the optical laminate on the visual side, is replaced with the optical laminates B to E, respectively.
  • the black brightness of the optical laminate with the high retardation film bonded at 45 ° may increase after the high temperature durability test, but the optical laminate on the visual side is on the display element side of the polarizer. It can be seen that the configuration without the resin film can suppress the increase in black brightness after the high temperature durability test.
  • 1 polarizing plate 10 polarizing elements, 11 resin layers, 12 protective films, 13 high retardation films, 14 second adhesive layers, 15 first adhesive layers, 100, 200 optical laminates.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

The purpose of the present invention is to provide an optical laminate with which it is possible to enhance visibility in a manner unrelated to the presence of polarized sunglasses, even after placement in a high-temperature environment. The present invention provides an optical laminate comprising a high-phase-contrast film, a polarizer, and an adhesive agent layer, the optical laminate being such that the adhesive agent layer is provided so as to be in contact with the surface of the polarizer, the in-plane phase contrast value of the high-phase-contrast film is 3000-30000 nm, and the angle formed by the slow axis of the high-phase-contrast film and the absorption axis of the polarizer is 40-50°.

Description

光学積層体およびそれを用いた表示装置Optical laminate and display device using it
 本発明は、光学積層体およびそれを用いた表示装置に関する。 The present invention relates to an optical laminate and a display device using the same.
 近年、液晶表示装置の急速な普及にともない、スマートフォン用途や車載用途など日差しの強い外光下で使用される場面が増えてきている。このような日差しの強い外光下では、偏光特性を有するサングラス(偏光サングラス)を掛けた状態で使用することがあり、偏光サングラス越しで液晶表示装置を視認した場合に、視認する方向によって液晶表示装置が暗くなり視認性が著しく低下することがあった。 In recent years, with the rapid spread of liquid crystal display devices, the number of scenes where they are used in strong sunlight such as smartphone applications and in-vehicle applications is increasing. In such strong sunlight, it may be used with sunglasses having polarized characteristics (polarized sunglasses) worn, and when the liquid crystal display device is visually recognized through the polarized sunglasses, the liquid crystal display is displayed depending on the viewing direction. The device could become dark and the visibility could be significantly reduced.
 特許文献1には、液晶表示装置のバックライトとして白色発光ダイオードを用いるとともに、偏光子の視認者側に、3000nm~30000nmのリタデーションを有する高分子フィルムを、偏光子の吸収軸と高分子フィルムの遅相軸とのなす角が凡そ45°となるように配して用いる視認性改善方法が記載されている。特許文献1の視認性改善方法によれば、偏光サングラスを通して画面を観察したときの視認性を改善することができるとされている。しかしながら、このような位相差値の高い高分子フィルムを用いた場合には、高温環境下に長時間置かれた場合に液晶表示装置の黒表示時の正面輝度が上昇し、偏光サングラスを掛けずに画面を視認した場合において、視認性が低下することがあった。 In Patent Document 1, a white light emitting diode is used as a backlight of a liquid crystal display device, and a polymer film having a retardation of 3000 nm to 30,000 nm is provided on the viewer side of the polarizer of the absorption shaft of the polarizer and the polymer film. A method for improving visibility is described in which the angle formed by the slow axis is approximately 45 °. According to the visibility improving method of Patent Document 1, it is said that the visibility when observing the screen through polarized sunglasses can be improved. However, when such a polymer film having a high retardation value is used, the front luminance of the liquid crystal display device at the time of black display increases when it is left in a high temperature environment for a long time, and polarized sunglasses are not worn. When the screen was visually recognized, the visibility was sometimes lowered.
特開2011-215646号公報Japanese Unexamined Patent Publication No. 2011-215646
 本発明の目的は、上記課題を解決することであり、高温環境下に置いた後でも、偏光サングラスの有無に関係なく視認性を良好とすることのできる光学積層体を提供することである。 An object of the present invention is to solve the above problems, and to provide an optical laminate capable of improving visibility regardless of the presence or absence of polarized sunglasses even after being placed in a high temperature environment.
 本発明者は鋭意検討の結果、液晶表示装置の視認側表面に用いる偏光板の表面に、3000nm~30000nmの位相差値を有する高分子フィルム(以降単に「高位相差フィルム」とも称す。)を、偏光子の吸収軸と高分子フィルムの遅相軸とのなす角が凡そ45°となるように貼合した液晶表示装置が高温環境下に長時間置かれた場合に、液晶表示装置黒表示時の正面輝度が上昇するのは、以下の理由によるものと考えた。 As a result of diligent studies, the present inventor has applied a polymer film having a retardation value of 3000 nm to 30,000 nm (hereinafter, also simply referred to as “high retardation film”) on the surface of the polarizing plate used for the visible side surface of the liquid crystal display device. When the liquid crystal display device bonded so that the angle between the absorption axis of the polarizer and the slow axis of the polymer film is approximately 45 ° is left in a high temperature environment for a long time, the liquid crystal display device displays black. It was considered that the reason why the front brightness of the film increased was as follows.
 高位相差フィルムは高温で、高延伸倍率で延伸され、残留応力が残ったまま冷却され製造される。このような高位相差フィルムが斜めに貼合された偏光板を高温環境下で長く保存すると、高位相差フィルムの斜め方向の残留応力が解放される。この斜め方向の応力は、偏光板の保護フィルムにも掛かり、特に偏光子と液晶表示装置の間に配置された保護フィルムについて、偏光子の吸収軸に対し、斜めに光軸を有する位相差が生じ、光漏れが生じたためであると推定した。 The high retardation film is stretched at a high temperature and at a high stretching ratio, and is cooled and manufactured with residual stress remaining. When a polarizing plate to which such a high retardation film is diagonally bonded is stored for a long time in a high temperature environment, the residual stress in the diagonal direction of the high retardation film is released. This stress in the oblique direction is also applied to the protective film of the polarizing plate, and in particular, for the protective film arranged between the polarizer and the liquid crystal display device, the phase difference having the optical axis diagonally with respect to the absorption axis of the polarizer is large. It was presumed that this was due to light leakage.
 この推定を基に、偏光子と液晶表示装置の間に保護フィルムを配置しないことにより、上記課題を解決できることを見出し、本発明の完成に至った。 Based on this estimation, it was found that the above problems could be solved by not arranging a protective film between the polarizer and the liquid crystal display device, and the present invention was completed.
 本発明は、以下に例示する光学積層体およびそれを用いた表示装置を提供する。
 [1] 高位相差フィルム、偏光子、及び粘着剤層をこの順に備え、
 前記粘着剤層は、前記偏光子の表面に接するように設けられ、
 前記高位相差フィルムの面内位相差値が3000nm~30000nmであり、
 前記高位相差フィルムの遅相軸と前記偏光子の吸収軸とのなす角度が40°~50°である、光学積層体。
 [2] 高位相差フィルム、偏光子、樹脂硬化物を含む樹脂層、及び粘着剤層をこの順に備え、
 前記樹脂層は、前記偏光子及び前記粘着剤層に接するように設けられ、
 前記高位相差フィルムの面内位相差値が3000nm~30000nmであり、
 前記高位相差フィルムの遅相軸と前記偏光子の吸収軸とのなす角度が40°~50°である、光学積層体。
 [3] 前記樹脂層は、オーバーコート層である、[2]に記載の光学積層体。
 [4] 前記高位相差フィルムと前記偏光子との間に設けられた保護フィルムをさらに備える、[1]~[3]のいずれか1項に記載の光学積層体。
 [5] 前記偏光子の厚みが30μm以下である、[1]~[4]のいずれか1項に記載の光学積層体。
 [6] 前記高位相差フィルムの厚みが200μm以下である、[1]~[5]のいずれか1項に記載の光学積層体。
 [7] 画像表示素子と、[1]~[6]のいずれか1項に記載の光学積層体とを備え、
 前記光学積層体の前記粘着剤層が前記画像表示素子の表面に貼合されている、表示装置。
The present invention provides an optical laminate illustrated below and a display device using the same.
[1] A high retardation film, a polarizer, and an adhesive layer are provided in this order.
The pressure-sensitive adhesive layer is provided so as to be in contact with the surface of the polarizer.
The in-plane retardation value of the high retardation film is 3000 nm to 30,000 nm.
An optical laminate in which the angle formed by the slow axis of the high retardation film and the absorption axis of the polarizer is 40 ° to 50 °.
[2] A high retardation film, a polarizer, a resin layer containing a cured resin product, and an adhesive layer are provided in this order.
The resin layer is provided so as to be in contact with the polarizer and the pressure-sensitive adhesive layer.
The in-plane retardation value of the high retardation film is 3000 nm to 30,000 nm.
An optical laminate in which the angle formed by the slow axis of the high retardation film and the absorption axis of the polarizer is 40 ° to 50 °.
[3] The optical laminate according to [2], wherein the resin layer is an overcoat layer.
[4] The optical laminate according to any one of [1] to [3], further comprising a protective film provided between the high retardation film and the polarizer.
[5] The optical laminate according to any one of [1] to [4], wherein the polarizer has a thickness of 30 μm or less.
[6] The optical laminate according to any one of [1] to [5], wherein the high retardation film has a thickness of 200 μm or less.
[7] The image display element and the optical laminate according to any one of [1] to [6] are provided.
A display device in which the pressure-sensitive adhesive layer of the optical laminate is bonded to the surface of the image display element.
 本発明によれば、高温環境下に置いた後でも、偏光サングラスの有無に関係なく視認性を良好とすることのできる光学積層体を提供することができる。 According to the present invention, it is possible to provide an optical laminate capable of improving visibility regardless of the presence or absence of polarized sunglasses even after being placed in a high temperature environment.
第1実施形態の光学積層体の層構成を示す概略断面図の一例である。It is an example of the schematic cross-sectional view which shows the layer structure of the optical laminated body of 1st Embodiment. 第2実施形態の光学積層体の層構成を示す概略断面図の一例である。It is an example of the schematic cross-sectional view which shows the layer structure of the optical laminated body of 2nd Embodiment.
 (用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
 (1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大となる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向の屈折率であり、「nz」は厚み方向の屈折率である。
 (2)面内の位相差値
 面内の位相差値(Re[λ])は、23℃、波長λ(nm)におけるフィルムの面内の位相差値をいう。Re[λ]は、フィルムの厚みをd(nm)としたとき、Re[λ]=(nx-ny)×dによって求められる。
 (3)厚み方向の位相差値
 面内の位相差値(Rth[λ])は、23℃、波長λ(nm)におけるフィルムの厚み方向の位相差値をいう。Rth[λ]は、フィルムの厚みをd(nm)としたとき、Rth[λ]=((nx+ny)/2-nz)×dによって求められる。
(Definition of terms and symbols)
Definitions of terms and symbols herein are as follows.
(1) Refractive index (nx, ny, nz)
"Nx" is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and "ny" is the in-plane refractive index in the direction orthogonal to the slow-phase axis. Is the refractive index in the thickness direction.
(2) In-plane retardation value The in-plane retardation value (Re [λ]) refers to the in-plane retardation value of the film at 23 ° C. and a wavelength of λ (nm). Re [λ] is obtained by Re [λ] = (nx−ny) × d, where d (nm) is the thickness of the film.
(3) Phase difference value in the thickness direction The in-plane phase difference value (Rth [λ]) refers to the phase difference value in the thickness direction of the film at 23 ° C. and a wavelength of λ (nm). Rth [λ] is obtained by Rth [λ] = ((nx + ny) / 2-nz) × d, where d (nm) is the thickness of the film.
 <光学積層体>
 本発明の光学積層体は、高位相差フィルム、偏光子、及び粘着剤層(以下、「第1粘着剤層」ともいう)をこの順に備える。光学積層体における各層は、例えば接着層を介して積層することができる。接着層としては、例えば後述の粘着剤層や接着剤層が挙げられる。
<Optical laminate>
The optical laminate of the present invention includes a high retardation film, a polarizer, and a pressure-sensitive adhesive layer (hereinafter, also referred to as “first pressure-sensitive adhesive layer”) in this order. Each layer in the optical laminate can be laminated, for example, via an adhesive layer. Examples of the adhesive layer include an adhesive layer and an adhesive layer described later.
 図1は、第1実施形態の光学積層体の層構成の一例を示す図である。図1に示す光学積層体100は、高位相差フィルム13、偏光子10を含む偏光板1、及び第1粘着剤層15がこの順に積層されている。偏光板1は、偏光子10と、偏光子10の高位相差フィルム13側に積層された保護フィルム12とを備える。第1粘着剤層15は、偏光子10の表面に接するように設けられている。 FIG. 1 is a diagram showing an example of the layer structure of the optical laminate of the first embodiment. In the optical laminate 100 shown in FIG. 1, a high retardation film 13, a polarizing plate 1 including a polarizing element 10, and a first pressure-sensitive adhesive layer 15 are laminated in this order. The polarizing plate 1 includes a polarizing element 10 and a protective film 12 laminated on the high retardation film 13 side of the polarizing element 10. The first pressure-sensitive adhesive layer 15 is provided so as to be in contact with the surface of the polarizer 10.
 図2は、第2実施形態の光学積層体の層構成の一例を示す図である。図2に示す光学積層体200は、高位相差フィルム13、偏光子10及び樹脂層11を含む偏光板1、及び第1粘着剤層15がこの順に積層されている。偏光板1は、偏光子10と、偏光子10の高位相差フィルム13側に積層された保護フィルム12と、偏光子10の第1粘着剤層15側の表面に接するように設けられた樹脂層11とを備える。樹脂層11は、樹脂硬化物を含む。第1粘着剤層15は、樹脂層11の表面に接するように設けられている。 FIG. 2 is a diagram showing an example of the layer structure of the optical laminate of the second embodiment. In the optical laminate 200 shown in FIG. 2, a high retardation film 13, a polarizing plate 1 including a polarizing element 10 and a resin layer 11, and a first pressure-sensitive adhesive layer 15 are laminated in this order. The polarizing plate 1 includes a polarizing element 10, a protective film 12 laminated on the high retardation film 13 side of the polarizing element 10, and a resin layer provided so as to be in contact with the surface of the polarizing element 10 on the first adhesive layer 15 side. 11 and. The resin layer 11 contains a cured resin product. The first pressure-sensitive adhesive layer 15 is provided so as to be in contact with the surface of the resin layer 11.
 高位相差フィルム13と偏光板1とは、粘着剤層(以下、「第2粘着剤層」ともいう)14を介して積層されている。第1粘着剤層15は、表示素子等へ貼合するための粘着剤層であることができる。 The high retardation film 13 and the polarizing plate 1 are laminated via an adhesive layer (hereinafter, also referred to as “second adhesive layer”) 14. The first pressure-sensitive adhesive layer 15 can be a pressure-sensitive adhesive layer for bonding to a display element or the like.
 <偏光板>
 偏光板1は、少なくとも偏光子10を含むものであり、その他の構成要素として、保護フィルム12、樹脂層11等を有していてもよい。図1及び図2には、偏光子10と高位相差フィルム13との間に保護フィルム12を1枚備える構成を示しているが、偏光子10と高位相差フィルム13の間に保護フィルムを2枚以上備える構成であってもよい。保護フィルムは、後述のハードコート層、反射防止層、帯電防止層などの表面処理層を有していてもよい。また、保護フィルムは、位相差フィルムとして機能するフィルムであってもよい。偏光子と保護フィルムとは、例えば接着剤層や粘着剤層を介して積層することができる。保護フィルムと保護フィルムとは、例えば接着剤層や粘着剤層を介して積層することができる。偏光板が備える部材について、以下に説明する。
<Polarizer>
The polarizing plate 1 includes at least a polarizing element 10, and may have a protective film 12, a resin layer 11, and the like as other components. 1 and 2 show a configuration in which one protective film 12 is provided between the polarizer 10 and the high retardation film 13, but two protective films are provided between the polarizer 10 and the high retardation film 13. The configuration may be provided as described above. The protective film may have a surface treatment layer such as a hard coat layer, an antireflection layer, and an antistatic layer, which will be described later. Further, the protective film may be a film that functions as a retardation film. The polarizer and the protective film can be laminated, for example, via an adhesive layer or an adhesive layer. The protective film and the protective film can be laminated, for example, via an adhesive layer or an adhesive layer. The members included in the polarizing plate will be described below.
 (1)偏光子
 偏光板1が備える偏光子10は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有する吸収型の偏光子であることができる。偏光子10としては、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させた偏光子を好適に用いることができる。偏光子10は、例えば、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程;ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程;二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液等の架橋液で処理する工程;及び、架橋液による処理後に水洗する工程を含む方法によって製造できる。
(1) Polarized light The polarizer 10 included in the polarizing plate 1 absorbs linearly polarized light having a vibrating surface parallel to its absorption axis, and linearly polarized light having a vibrating surface orthogonal to the absorption axis (parallel to the transmission axis). It can be an absorption type polarizer having a transmissive property. As the polarizer 10, a polarizer in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film can be preferably used. The polarizer 10 is, for example, a step of uniaxially stretching a polyvinyl alcohol-based resin film; a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye; the dichroic dye is adsorbed. It can be produced by a method including a step of treating a polyvinyl alcohol-based resin film with a cross-linking solution such as an aqueous boric acid solution; and a step of washing with water after the treatment with the cross-linking solution.
 ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルと共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルに共重合可能な他の単量体の例は、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、及びアンモニウム基を有する(メタ)アクリルアミド類等を含む。 As the polyvinyl alcohol-based resin, a saponified polyvinyl acetate-based resin can be used. Examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable with the vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
 本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等においても同様である。 As used herein, the term "(meth) acrylic" means at least one selected from acrylic and methacryl. The same applies to "(meth) acryloyl", "(meth) acrylate" and the like.
 ポリビニルアルコール系樹脂のケン化度は通常、85~100mol%であり、98mol%以上が好ましい。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール又はポリビニルアセタール等を用いることもできる。ポリビニルアルコール系樹脂の平均重合度は通常、1000~10000であり、1500~5000が好ましい。ポリビニルアルコール系樹脂の平均重合度は、JIS K 6726に準拠して求めることができる。 The degree of saponification of the polyvinyl alcohol-based resin is usually 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used. The average degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 to 10000, preferably 1500 to 5000. The average degree of polymerization of the polyvinyl alcohol-based resin can be determined in accordance with JIS K 6726.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光子の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法が採用される。ポリビニルアルコール系原反フィルムの厚みは特に制限されないが、例えば、偏光子の厚みを25μm以下とするためには、40~75μmのものを用いることが好ましい。より好ましくは、45μm以下である。 A film formed of such a polyvinyl alcohol-based resin is used as a raw film for a polarizer. The method for forming a film of the polyvinyl alcohol-based resin is not particularly limited, and a known method is adopted. The thickness of the polyvinyl alcohol-based raw film is not particularly limited, but for example, in order to reduce the thickness of the polarizer to 25 μm or less, it is preferable to use one having a thickness of 40 to 75 μm. More preferably, it is 45 μm or less.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素の染色前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、架橋処理の前又は架橋処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行ってもよい。 The uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing the dichroic dye, at the same time as dyeing, or after dyeing. If the uniaxial stretching is performed after dyeing, the uniaxial stretching may be performed before the cross-linking treatment or during the cross-linking treatment. Moreover, uniaxial stretching may be performed in these a plurality of steps.
 一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤や水を用いてポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は通常、3~8倍である。 In uniaxial stretching, rolls having different peripheral speeds may be uniaxially stretched, or thermal rolls may be used to uniaxially stretch. The uniaxial stretching may be a dry stretching in which the film is stretched in the atmosphere, or a wet stretching in which the polyvinyl alcohol-based resin film is swollen with a solvent or water. The draw ratio is usually 3 to 8 times.
 ポリビニルアルコール系樹脂フィルムを二色性色素で染色する方法としては、例えば、該フィルムを二色性色素が含有された水溶液に浸漬する方法が採用される。二色性色素としては、ヨウ素や二色性有機染料が用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水への浸漬処理を施しておくことが好ましい。 As a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye, for example, a method of immersing the film in an aqueous solution containing a dichroic dye is adopted. As the dichroic dye, iodine or a dichroic organic dye is used. The polyvinyl alcohol-based resin film is preferably immersed in water before the dyeing treatment.
 二色性色素による染色後の架橋処理としては通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬する方法が採用される。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液は、ヨウ化カリウムを含有することが好ましい。 As the cross-linking treatment after dyeing with a dichroic dye, a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution is usually adopted. When iodine is used as the dichroic pigment, the boric acid-containing aqueous solution preferably contains potassium iodide.
 偏光子の厚みは、通常50μm以下であり、好ましくは5~30μmであり、より好ましくは5~25μm以下であり、さらに好ましくは5~20μm以下である。偏光子の厚みをこれらの範囲にすることにより、偏光子の製造時の破断や割れなどを防止しつつハンドリング性を維持できるとともに、高い光学特性を両立することができる。また、偏光子の厚みを20μm以下とすることにより、高温環境下に置いた場合の視認性の低下をより抑制することができる。 The thickness of the polarizer is usually 50 μm or less, preferably 5 to 30 μm, more preferably 5 to 25 μm or less, and further preferably 5 to 20 μm or less. By setting the thickness of the polarizer within these ranges, it is possible to maintain handleability while preventing breakage or cracking during manufacturing of the polarizer, and it is possible to achieve both high optical characteristics. Further, by setting the thickness of the polarizer to 20 μm or less, it is possible to further suppress a decrease in visibility when placed in a high temperature environment.
 偏光子としては、例えば特開2016-170368号公報に記載されるように、液晶化合物が重合した硬化膜中に、二色性色素が配向したものを使用してもよい。二色性色素としては、波長380~800nmの範囲内に吸収を有するものを用いることができ、有機染料を用いることが好ましい。二色性色素として、例えば、アゾ化合物が挙げられる。液晶化合物は、配向したまま重合することができる液晶化合物であり、分子内に重合性基を有することができる。また、WO2011/024891に記載されるように、液晶性を有する二色性色素から偏光子を形成してもよい。 As the polarizer, for example, as described in JP-A-2016-170368, a cured film in which a liquid crystal compound is polymerized may be used in which a dichroic dye is oriented. As the dichroic dye, a dye having absorption in the wavelength range of 380 to 800 nm can be used, and it is preferable to use an organic dye. Examples of the dichroic dye include an azo compound. The liquid crystal compound is a liquid crystal compound that can be polymerized while being oriented, and can have a polymerizable group in the molecule. Further, as described in WO2011 / 024891, a polarizer may be formed from a dichroic dye having a liquid crystallinity.
 (2)保護フィルム
 偏光板1は、偏光子10の高位相差フィルム13側の面に積層された保護フィルム12を有していてもよい。
(2) Protective film The polarizing plate 1 may have a protective film 12 laminated on the surface of the polarizer 10 on the high retardation film 13 side.
 保護フィルム12としては、特に制限されないが、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロースのようなセルロース系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂;ポリカーボネート系樹脂;メタクリル酸メチル系樹脂のような(メタ)アクリル系樹脂;ポリスチレン系樹脂;ポリ塩化ビニル系樹脂;アクリロニトリル・ブタジエン・スチレン系樹脂;アクリロニトリル・スチレン系樹脂;ポリ酢酸ビニル系樹脂;ポリ塩化ビニリデン系樹脂;ポリアミド系樹脂;ポリアセタール系樹脂;変性ポリフェニレンエーテル系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアリレート系樹脂;ポリアミドイミド系樹脂;ポリイミド系樹脂;マレイミド系樹脂等からなるフィルムであることができる。中でも、鎖状ポリオレフィン系樹脂フィルム、セルロース系樹脂フィルムが好ましく用いられる。 The protective film 12 is not particularly limited, and is, for example, a polyolefin resin such as a chain polyolefin resin (polypropylene resin or the like) or a cyclic polyolefin resin (norbornen resin or the like); such as triacetyl cellulose or diacetyl cellulose. Cellular resin; polyester resin such as polyethylene terephthalate and polybutylene terephthalate; polycarbonate resin; (meth) acrylic resin such as methyl methacrylate resin; polystyrene resin; polyvinyl chloride resin; acrylonitrile butadiene -Styrene resin; acrylonitrile-styrene resin; polyvinyl acetate resin; polyvinylidene chloride resin; polyamide resin; polyacetal resin; modified polyphenylene ether resin; polysulfone resin; polyether sulfone resin; polyallylate resin A film made of a resin; a polyamide-based resin; a polyimide-based resin; a maleimide-based resin or the like can be used. Of these, a chain polyolefin resin film and a cellulosic resin film are preferably used.
 鎖状ポリオレフィン系樹脂としては、ポリエチレン樹脂(エチレンの単独重合体であるポリエチレン樹脂や、エチレンを主体とする共重合体)、ポリプロピレン樹脂(プロピレンの単独重合体であるポリプロピレン樹脂や、プロピレンを主体とする共重合体)のような鎖状オレフィンの単独重合体の他、2種以上の鎖状オレフィンからなる共重合体を挙げることができる。 As the chain polyolefin resin, polyethylene resin (polyethylene resin which is a homopolymer of ethylene or a copolymer mainly composed of ethylene), polypropylene resin (polypropylene resin which is a homopolymer of propylene or propylene as a main component) are used. In addition to homopolymers of chain olefins such as (copolymers), copolymers composed of two or more kinds of chain olefins can be mentioned.
 セルロースエステル系樹脂は、セルロースと脂肪酸とのエステルである。セルロースエステル系樹脂の具体例は、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネートを含む。また、これらの共重合物や、水酸基の一部が他の置換基で修飾されたものも挙げられる。これらの中でも、セルローストリアセテート(トリアセチルセルロース)が特に好ましい。 Cellulose ester resin is an ester of cellulose and fatty acid. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. In addition, these copolymers and those in which a part of the hydroxyl group is modified with another substituent can also be mentioned. Among these, cellulose triacetate (triacetyl cellulose) is particularly preferable.
 保護フィルム12の厚みは通常1~100μmであるが、強度や取扱性等の観点から5~60μmであることが好ましく、10~55μmであることがより好ましく、15~50μmであることがさらに好ましい。 The thickness of the protective film 12 is usually 1 to 100 μm, but is preferably 5 to 60 μm, more preferably 10 to 55 μm, and even more preferably 15 to 50 μm from the viewpoint of strength, handleability, and the like. ..
 上述のように、保護フィルム12は、その外面(偏光子とは反対側の面)に、ハードコート層、防眩層、光拡散層、反射防止層、低屈折率層、帯電防止層、防汚層のような表面処理層(コーティング層)を備えるものであってもよい。なお、保護フィルム12の厚みは、表面処理層の厚みを含んだものである。偏光子10と高位相差フィルム13との間に保護フィルム12と他の保護フィルムとを備える場合、他の保護フィルムについては、保護フィルム12の上述の説明が適用される。他の保護フィルムの厚み、材料等は、保護フィルム12と同じであっても異なっていてもよい。 As described above, the protective film 12 has a hard coat layer, an antiglare layer, a light diffusing layer, an antireflection layer, a low refractive index layer, an antistatic layer, and an antistatic layer on its outer surface (the surface opposite to the polarizer). It may be provided with a surface treatment layer (coating layer) such as a foul layer. The thickness of the protective film 12 includes the thickness of the surface treatment layer. When the protective film 12 and another protective film are provided between the polarizer 10 and the high retardation film 13, the above description of the protective film 12 applies to the other protective film. The thickness, material, etc. of the other protective film may be the same as or different from that of the protective film 12.
 (3)樹脂層
 樹脂層11は樹脂硬化物を含む。樹脂層11は、樹脂硬化物のみからなっていてよい。樹脂層11とは、硬化性樹脂組成物が硬化することによって形成された層である。樹脂層11は三次元の架橋構造を有している。樹脂層11は、架橋構造又はモノマーの組成若しくは分子構造の違いに基づいて、保護フィルム等の樹脂フィルムと識別される。
(3) Resin layer The resin layer 11 contains a cured resin product. The resin layer 11 may be composed of only a cured resin product. The resin layer 11 is a layer formed by curing the curable resin composition. The resin layer 11 has a three-dimensional crosslinked structure. The resin layer 11 is distinguished from a resin film such as a protective film based on the crosslinked structure or the difference in the composition or molecular structure of the monomer.
 樹脂層11は、オーバーコート層であってよい。オーバーコート層とは、偏光子10の表面を覆う未硬化の硬化性樹脂組成物を硬化することによって形成された層と言い換えてよい。例えば、未硬化の硬化性樹脂を偏光子10の表面に直接塗って、未硬化の硬化性樹脂を含む層(未硬化層)を形成し、未硬化層を硬化することによって、樹脂層11を得てよい。または、未硬化層を基材フィルムの表面に形成して、未硬化層を基材フィルムから偏光子10の表面へ転写し、偏光子10の表面に転写された未硬化層を硬化することによって、樹脂層11を得てよい。未硬化層を偏光子10の表面に密着させると、比較的軟らかい未硬化層が偏光子10の表面の微細な凹凸に隙間なく食い込み易く、未硬化層の硬化によって得られた樹脂層11も偏光子10の表面の微細な凹凸に隙間なく食い込み易い。その結果、アンカー効果が生じて、アンカー効果によって偏光子10のクラックが抑制され易くなる可能性がある。 The resin layer 11 may be an overcoat layer. The overcoat layer can be rephrased as a layer formed by curing an uncured curable resin composition that covers the surface of the polarizer 10. For example, the resin layer 11 is formed by directly applying an uncured curable resin to the surface of the polarizer 10 to form a layer containing the uncured curable resin (uncured layer) and curing the uncured layer. You may get it. Alternatively, by forming an uncured layer on the surface of the base film, transferring the uncured layer from the base film to the surface of the polarizer 10, and curing the uncured layer transferred to the surface of the polarizer 10. , The resin layer 11 may be obtained. When the uncured layer is brought into close contact with the surface of the polarizer 10, the relatively soft uncured layer easily bites into the fine irregularities on the surface of the polarizer 10 without gaps, and the resin layer 11 obtained by curing the uncured layer is also polarized. It is easy to bite into the fine irregularities on the surface of the child 10 without any gaps. As a result, an anchor effect may occur, and the anchor effect may easily suppress cracks in the polarizer 10.
 樹脂層11を構成する樹脂硬化物は、活性エネルギー線の照射によって硬化する光硬化性樹脂組成物から形成されてよい。樹脂層11を構成する樹脂硬化物は、加熱によって硬化する熱硬化性樹脂組成物から形成されてもよい。樹脂層11を構成する樹脂硬化物は、エポキシ系化合物の硬化物を含んでよい。樹脂層11を構成する樹脂硬化物は、オキセタン系化合物の硬化物を含んでもよい。樹脂層11を構成する樹脂硬化物は、(メタ)アクリル系化合物の硬化物を含んでもよい。以下では、樹脂層11(樹脂硬化物)の形成に適した硬化性樹脂組成物の具体例について詳しく説明する。 The cured resin product constituting the resin layer 11 may be formed from a photocurable resin composition that is cured by irradiation with active energy rays. The cured resin product constituting the resin layer 11 may be formed from a thermosetting resin composition that is cured by heating. The cured resin product constituting the resin layer 11 may contain a cured product of an epoxy compound. The cured resin product constituting the resin layer 11 may contain a cured product of an oxetane-based compound. The cured resin product constituting the resin layer 11 may contain a cured product of a (meth) acrylic compound. Hereinafter, specific examples of the curable resin composition suitable for forming the resin layer 11 (cured resin product) will be described in detail.
 <樹脂層用の硬化性樹脂組成物>
 (活性エネルギー線硬化性化合物その1:カチオン重合性化合物)
 硬化性樹脂組成物を構成するエポキシ系化合物は、脂環式環を有するポリオールのグリシジルエーテル、脂環式エポキシ系化合物、脂肪族エポキシ系化合物、芳香族エポキシ化合物などが例示できる。
<Curable resin composition for resin layer>
(Active energy ray-curable compound No. 1: Cationic polymerizable compound)
Examples of the epoxy compound constituting the curable resin composition include glycidyl ether of a polyol having an alicyclic ring, an alicyclic epoxy compound, an aliphatic epoxy compound, and an aromatic epoxy compound.
 脂環式環を有するポリオールのグリシジルエーテルは、脂環式環に結合した水酸基を分子内に少なくとも2個有する化合物の水酸基をグリシジルエーテル化して得られる化合物である。脂環式環を有するポリオール、すなわち、脂環式環に結合した水酸基を分子内に少なくとも2個有する化合物は、芳香族ポリオールを触媒の存在下、加圧下で芳香環に選択的に水素化反応を行うことにより得られるものであることができる。芳香族ポリオールは、例えば、ビスフェノールA、ビスフェールF及びビスフェノールSのようなビスフェノール型化合物;フェノールノボラック樹脂、クレゾールノボラック樹脂及びヒドロキシベンズアルデヒドフェノールノボラック樹脂のようなノボラック型樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン及びポリビニルフェノールのような多官能型の化合物などである。これら芳香族ポリオールの芳香環に水素化反応を行って得られる脂環式ポリオールに、エピクロロヒドリンを反応させることにより、グリシジルエーテルとすることができる。これらのなかでも好ましいものとして、水素化されたビスフェノールAのジグリシジルエーテルが挙げられる。 The glycidyl ether of a polyol having an alicyclic ring is a compound obtained by converting the hydroxyl groups of a compound having at least two hydroxyl groups bonded to the alicyclic ring into glycidyl ether. A polyol having an alicyclic ring, that is, a compound having at least two hydroxyl groups bonded to the alicyclic ring in the molecule, selectively hydrogenates an aromatic polyol into the aromatic ring under pressure in the presence of a catalyst. Can be obtained by doing. Aromatic polyols are, for example, bisphenol compounds such as bisphenol A, bisphenol F and bisphenol S; novolac resins such as phenol novolac resin, cresol novolac resin and hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxybenzophenone. And polyfunctional compounds such as polyvinylphenol. A glycidyl ether can be obtained by reacting an alicyclic polyol obtained by hydrogenating the aromatic rings of these aromatic polyols with epichlorohydrin. Among these, the diglycidyl ether of hydrogenated bisphenol A is preferable.
 脂環式エポキシ系化合物は、脂環式環に結合したエポキシ基を分子内に少なくとも1個有する化合物である。「脂環式環に結合したエポキシ基」とは、下記化学式(10)に示される構造における橋かけの酸素原子-O-を意味し、この式中、mは2~5の整数である。 The alicyclic epoxy compound is a compound having at least one epoxy group bonded to the alicyclic ring in the molecule. The “epoxide group bonded to the alicyclic ring” means a bridging oxygen atom —O— in the structure represented by the following chemical formula (10), in which m is an integer of 2 to 5.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記化学式(10)における(CH)中の水素原子を1個又は複数個取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ系化合物となり得る。脂環式環を形成する(CH)中の1個又は複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。脂環式エポキシ系化合物のなかでも、エポキシシクロペンタン環(上記式においてm=3のもの)や、エポキシシクロへキサン環(上記式においてm=4のもの)を有するエポキシ系化合物は、硬化物の弾性率が高く、偏光子10との密着性に優れることからより好ましく用いられる。 A compound in which one or a plurality of hydrogen atoms in (CH 2 ) m in the above chemical formula (10) are removed and a group bonded to another chemical structure can be an alicyclic epoxy compound. One or more hydrogen atoms in (CH 2 ) m forming an alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group. Among the alicyclic epoxy compounds, the epoxy compounds having an epoxycyclopentane ring (m = 3 in the above formula) and an epoxycyclohexane ring (m = 4 in the above formula) are cured products. Is more preferably used because of its high elastic modulus and excellent adhesion to the polarizer 10.
 以下に、脂環式エポキシ系化合物の具体例を列挙する。以下では、まず化合物名を挙げ、続いて各化合物名に対応する化学式を示す。化合物名とそれに対応する化学式には同じ符号を付す。 Specific examples of alicyclic epoxy compounds are listed below. In the following, the compound names are first listed, and then the chemical formulas corresponding to each compound name are shown. The same code is attached to the compound name and the corresponding chemical formula.
 A:3,4-エポキシシクロヘキシルメチル  3,4-エポキシシクロヘキサンカルボキシレート、
 B:3,4-エポキシ-6-メチルシクロヘキシルメチル  3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、
 C:エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、
 D:ビス(3,4-エポキシシクロヘキシルメチル)  アジペート、
 E:ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)  アジペート、
 F:ジエチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、 G:エチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
 H:2,3,14,15-ジエポキシ-7,11,18,21-テトラオキサトリスピロ[5.2.2.5.2.2]ヘンイコサン、
 I:3-(3,4-エポキシシクロヘキシル)-8,9-エポキシ-1,5-ジオキサスピロ[5.5]ウンデカン、
 J:4-ビニルシクロヘキセンジオキサイド、
 K:リモネンジオキサイド、
 L:ビス(2,3-エポキシシクロペンチル)エーテル、
 M:ジシクロペンタジエンジオキサイドなど。
A: 3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate,
B: 3,4-Epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate,
C: Ethylene bis (3,4-epoxycyclohexanecarboxylate),
D: Bis (3,4-epoxycyclohexylmethyl) adipate,
E: Bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate,
F: Diethylene glycol bis (3,4-epoxycyclohexylmethyl ether), G: Ethylene glycol bis (3,4-epoxycyclohexylmethyl ether),
H: 2,3,14,15-Diepoxy-7,11,18,21-Tetraoxatrispyro [5.2.2.5.2.2] Heneicosane,
I: 3- (3,4-epoxycyclohexyl) -8,9-epoxy-1,5-dioxaspiro [5.5] undecane,
J: 4-Vinylcyclohexene dioxide,
K: Limonene Geoxide,
L: Vis (2,3-epoxycyclopentyl) ether,
M: Dicyclopentadiene dioxide, etc.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 脂肪族エポキシ系化合物は、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルであることができる。脂肪族エポキシ系化合物は、例えば、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、エチレングリコールやプロピレングリコール、グリセリンのような脂肪族多価アルコールにアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加して得られるポリエーテルポリオールのポリグリシジルエーテルなどである。 The aliphatic epoxy compound can be an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. The aliphatic epoxy compounds include, for example, diglycidyl ether of 1,4-butanediol, diglycidyl ether of 1,6-hexanediol, triglycidyl ether of glycerin, triglycidyl ether of trimethylolpropane, and diglycidyl of polyethylene glycol. Ether, diglycidyl ether of propylene glycol, polyglycidyl ether of polyether polyol obtained by adding alkylene oxide (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohol such as ethylene glycol, propylene glycol and glycerin. ..
 樹脂層11と第1粘着剤層15の間の接着性を向上させる観点から、硬化性樹脂組成物に含まれる脂肪族エポキシ化合物は、脂肪族炭素原子に結合する2個のオキシラン環を分子内に有する二官能性のエポキシ化合物(脂肪族ジエポキシ化合物)であることが好ましい。硬化性樹脂組成物が脂肪族ジエポキシ化合物を含むことにより、粘度が低く、塗布し易い硬化性樹脂組成物を得ることができる。 From the viewpoint of improving the adhesiveness between the resin layer 11 and the first pressure-sensitive adhesive layer 15, the aliphatic epoxy compound contained in the curable resin composition has two oxylan rings bonded to the aliphatic carbon atom in the molecule. It is preferably a bifunctional epoxy compound (aliphatic diepoxy compound) having the above. When the curable resin composition contains an aliphatic diepoxy compound, a curable resin composition having a low viscosity and easy to apply can be obtained.
 芳香族エポキシ化合物は、分子内に1つ以上の芳香環を有する化合物である。以下に、芳香族エポキシ化合物の具体例を列挙する。
 フェノール、クレゾール、ブチルフェノール等の少なくとも1つの芳香環を有する1価フェノールまたは、そのアルキレンオキシド付加物のモノ/ポリグリシジルエーテル化物、例えばビスフェノールA、ビスフェノールF、またはこれらにさらにアルキレンオキシドを付加した化合物のグリシジルエーテル化物やエポキシノボラック樹脂;
 レゾルシノールやハイドロキノン、カテコール等の2つ以上のフェノール性水酸基を有する芳香族化合物のグリシジルエーテル;
 ベンゼンジメタノールやベンゼンジエタノール、ベンゼンジブタノール等のアルコール性水酸基を2つ以上有する芳香族化合物のモノ/ポリグリシジルエーテル化物;
 フタル酸、テレフタル酸、トリメリット酸等の2つ以上のカルボン酸を有する多塩基酸芳香族化合物のグリシジルエステル;
 安息香酸やトルイル酸、ナフトエ酸等の安息香酸類のグリシジルエステル;
 スチレンオキシドまたはジビニルベンゼンのエポキシ化物等。
Aromatic epoxy compounds are compounds that have one or more aromatic rings in the molecule. Specific examples of aromatic epoxy compounds are listed below.
A monovalent phenol having at least one aromatic ring such as phenol, cresol, butylphenol, or a mono / polyglycidyl etherified product of an alkylene oxide adduct thereof, for example, bisphenol A, bisphenol F, or a compound obtained by further adding an alkylene oxide to these. Glycidyl etheric compounds and epoxy novolac resins;
Glycidyl ether, an aromatic compound having two or more phenolic hydroxyl groups such as resorcinol, hydroquinone, and catechol;
Mono / polyglycidyl etherified product of an aromatic compound having two or more alcoholic hydroxyl groups such as benzenedimethanol, benzenediethanol, and benzenedibutanol;
Glycidyl ester of a polybasic acid aromatic compound having two or more carboxylic acids such as phthalic acid, terephthalic acid, trimellitic acid;
Glycidyl esters of benzoic acids such as benzoic acid, toluic acid, and naphthoic acid;
Epoxy of styrene oxide or divinylbenzene, etc.
 硬化性組成物の低粘度化の観点から、芳香族エポキシ化合物は、フェノール類のグリシジルエーテル、アルコール性水酸基を2つ以上有する芳香族化合物のグリシジルエーテル化物、多価フェノール類のグリシジルエーテル化物、安息香酸類のグリシジルエステル、多塩基酸類のグリシジルエステル、スチレンオキシドまたはジビニルベンゼンのエポキシ化物からなる群より選ばれる少なくとも一種を含むことが好ましい。また、硬化性組成物の硬化性を向上させることから、芳香族エポキシ化合物としては、エポキシ当量が80~500であるものが好ましい。一種の芳香族エポキシ化合物を単独で用いても、異なる複数種の芳香族エポキシ化合物を組み合わせて用いてもよい。 From the viewpoint of reducing the viscosity of the curable composition, the aromatic epoxy compounds include glycidyl ethers of phenols, glycidyl etherified products of aromatic compounds having two or more alcoholic hydroxyl groups, glycidyl etherified products of polyhydric phenols, and benzo. It preferably contains at least one selected from the group consisting of glycidyl esters of acids, glycidyl esters of polybasic acids, styrene oxides or epoxidized compounds of divinylbenzene. Further, since the curability of the curable composition is improved, the aromatic epoxy compound preferably has an epoxy equivalent of 80 to 500. One kind of aromatic epoxy compound may be used alone, or a plurality of different kinds of aromatic epoxy compounds may be used in combination.
 芳香族エポキシ化合物としては、市販品を用いることができる。芳香族エポキシ化合物の市販品の商品名は、例えば、デナコールEX-121、デナコールEX-141、デナコールEX-142、デナコールEX-145、デナコールEX-146、デナコールEX-147、デナコールEX-201、デナコールEX-203、デナコールEX-711、デナコールEX-721、オンコートEX-1020、オンコートEX-1030、オンコートEX-1040、オンコートEX-1050、オンコートEX-1051、オンコートEX-1010、オンコートEX-1011、オンコート1012(以上、ナガセケムテックス社製);オグソールPG-100、オグソールEG-200、オグソールEG-210、オグソールEG-250(以上、大阪ガスケミカル社製);HP4032、HP4032D、HP4700(以上、DIC社製);ESN-475V(新日鉄住金化学社製);エピコートYX8800(三菱化学社製);マープルーフG-0105SA、マープルーフG-0130SP(日油社製);エピクロンN-665、エピクロンHP-7200(以上、DIC社製);EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、XD-1000、NC-3000、EPPN-501H、EPPN-501HY、EPPN-502H、NC-7000L(以上、日本化薬社製);アデカグリシロールED-501、アデカグリシロールED-502、アデカグリシロールED-509、アデカグリシロールED-529、アデカレジンEP-4000、アデカレジンEP-4005、アデカレジンEP-4100、アデカレジンEP-4901(以上、ADEKA社製);TECHMORE  VG-3101L、EPOX-MKR710、EPOX-MKR151(以上、プリンテック社製)などである。 As the aromatic epoxy compound, a commercially available product can be used. The trade names of commercially available aromatic epoxy compounds are, for example, Denacol EX-121, Denacol EX-141, Denacol EX-142, Denacol EX-145, Denacol EX-146, Denacol EX-147, Denacol EX-201, and Denacol. EX-203, Denacol EX-711, Denacol EX-721, On-Coat EX-1020, On-Coat EX-1030, On-Coat EX-1040, On-Coat EX-1050, On-Coat EX-1051, On-Coat EX-1010, On-Coat EX-1011, On-Coat 1012 (above, manufactured by Nagase Chemtex); Ogsol PG-100, Ogsol EG-200, Ogsol EG-210, Ogsol EG-250 (above, manufactured by Osaka Gas Chemical Co., Ltd.); HP4032, HP4032D, HP4700 (above, manufactured by DIC Corporation); ESN-475V (manufactured by Nippon Steel & Sumitomo Metal Corporation); Epicoat YX8800 (manufactured by Mitsubishi Chemical Corporation); Marproof G-0105SA, Marproof G-0130SP (manufactured by Nippon Oil Co., Ltd.); N-665, Epicron HP-7200 (all manufactured by DIC Corporation); EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, XD-1000, NC-3000, EPPN-501H, EPPN-501HY, EPPN- 502H, NC-7000L (manufactured by Nippon Kayaku Co., Ltd.); ADEKA Glycyllol ED-501, ADEKA Glycyllol ED-502, ADEKA Glycyrrol ED-509, ADEKA Glycyrrol ED-529, ADEKA REGIN EP-4000, ADEKA REGIN EP -4005, ADEKA REGIN EP-4100, ADEKA RESIN EP-4901 (above, manufactured by ADEKA); TECHMORE VG-3101L, EPOX-MKR710, EPOX-MKR151 (above, manufactured by Printec) and the like.
 硬化性樹脂組成物が芳香族エポキシ化合物を含むことにより、硬化性樹脂組成物が疎水性の樹脂となり、これにより得られる硬化物層(樹脂層11)も疎水性を有すことができる。その結果、高温高湿下において外部から偏光板内への水分の侵入が抑制され、偏光子10に含まれる二色性色素(ヨウ素)の移動が効果的に抑制される。 When the curable resin composition contains an aromatic epoxy compound, the curable resin composition becomes a hydrophobic resin, and the cured product layer (resin layer 11) obtained thereby can also have hydrophobicity. As a result, the invasion of water from the outside into the polarizing plate is suppressed under high temperature and high humidity, and the movement of the dichroic dye (iodine) contained in the polarizing element 10 is effectively suppressed.
 硬化性樹脂組成物において、エポキシ系化合物は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。偏光子10に対する密着性に優れた樹脂層11が得られることから、硬化性樹脂組成物は、少なくとも脂環式エポキシ系化合物を含むことが好ましい。 In the curable resin composition, the epoxy compounds may be used alone or in combination of two or more. Since the resin layer 11 having excellent adhesion to the polarizer 10 can be obtained, the curable resin composition preferably contains at least an alicyclic epoxy compound.
 エポキシ系化合物の含有量は、活性エネルギー線硬化性化合物の全量を基準に、30~100重量%、好ましくは35~70重量%、より好ましくは40~60重量%であってよい。エポキシ系化合物の含有量が30重量%を下回ると、偏光子10との密着性が低下する傾向にある。 The content of the epoxy compound may be 30 to 100% by weight, preferably 35 to 70% by weight, and more preferably 40 to 60% by weight based on the total amount of the active energy ray-curable compound. When the content of the epoxy compound is less than 30% by weight, the adhesion to the polarizer 10 tends to decrease.
 また、硬化性樹脂組成物には、上記のエポキシ系化合物に加え、オキセタン系化合物を配合してもよい。オキセタン系化合物を添加することにより、硬化性樹脂組成物の粘度を低くし、硬化速度を速めることができる。さらには、硬化膜の黄変を防ぎ、光学耐久性を向上させる効果も期待される。 Further, the curable resin composition may contain an oxetane-based compound in addition to the above-mentioned epoxy-based compound. By adding the oxetane compound, the viscosity of the curable resin composition can be lowered and the curing rate can be increased. Further, it is expected to have an effect of preventing yellowing of the cured film and improving optical durability.
 オキセタン系化合物は、分子内に4員環エーテルを有する化合物である。オキセタン系化合物は、例えば、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス〔(3-エチル3-オキセタニル)メトキシメチル〕ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ビス(3-エチル-3-オキセタニルメチル)エーテル、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、フェノールノボラックオキセタンなどである。これらのオキセタン化合物の市販品を容易に入手することが可能である。例えば、東亞合成(株)から販売されているオキセタン化合物の商品名は、“アロンオキセタンOXT-101”、“アロンオキセタンOXT-121”、“アロンオキセタンOXT-211”、“アロンオキセタンOXT-221”、“アロンオキセタンOXT-212”などである。オキセタン系化合物の配合量は特に限定されないが、活性エネルギー線硬化性化合物の全量を基準に、70重量%以下、好ましくは10~50重量%であってよい。 The oxetane compound is a compound having a 4-membered ring ether in the molecule. Oxetane compounds include, for example, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, bis ( 3-Ethyl-3-oxetanylmethyl) ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, phenol novolac oxetane and the like. Commercially available products of these oxetane compounds can be easily obtained. For example, the trade names of oxetane compounds sold by Toa Synthetic Co., Ltd. are "Aron Oxetane OXT-101", "Aron Oxetane OXT-121", "Aron Oxetane OXT-221", and "Aron Oxetane OXT-221". , "Aron Oxetane OXT-212" and the like. The blending amount of the oxetane-based compound is not particularly limited, but may be 70% by weight or less, preferably 10 to 50% by weight, based on the total amount of the active energy ray-curable compound.
 硬化性樹脂組成物の組成は、重合性化合物の総量100質量%(硬化性樹脂組成物全体)に対して、
(A1)2つ以上のオキセタニル基を有するオキセタン化合物35~70質量%、
(A2)2つ以上のエポキシ基を有する脂肪族エポキシ化合物0~40質量%、
(A3)2つ以上のエポキシ基を有する脂環式エポキシ化合物15~50質量%、及び
(A4)1つ以上の芳香環を有する芳香族エポキシ化合物0~20質量%
であることが好ましい。
 硬化性樹脂組成物が、オキセタン化合物(A)及び脂環式エポキシ化合物(B1)を含有する場合、オキセタン化合物(A)の含有量(WA)に対する脂環式エポキシ化合物(B1)の含有量(WB1)の質量比(WB1/WA)は、0.05~1.5であることが好ましい。
 硬化性樹脂組成物が、オキセタン化合物(A)及び脂肪族エポキシ化合物(B2)を含有する場合、オキセタン化合物(A)の含有量(WA)に対する脂肪族エポキシ化合物(B2)の含有量(WB2)の質量比(WB2/WA)は、0.1~0.5であることが好ましい。
 硬化性樹脂組成物が、オキセタン化合物(A)及び芳香族エポキシ化合物(B3)を含有する場合、オキセタン化合物(A)の含有量(WA)に対する芳香族エポキシ化合物(B3)の含有量(WB3)の質量比(WB3/WA)は、0.1~1.5であることが好ましい。
The composition of the curable resin composition is based on 100% by mass of the total amount of the polymerizable compound (the entire curable resin composition).
(A1) 35 to 70% by mass of an oxetane compound having two or more oxetanyl groups,
(A2) 0-40% by mass of an aliphatic epoxy compound having two or more epoxy groups,
(A3) 15 to 50% by mass of an alicyclic epoxy compound having two or more epoxy groups, and (A4) 0 to 20% by mass of an aromatic epoxy compound having one or more aromatic rings.
Is preferable.
When the curable resin composition contains the oxetane compound (A) and the alicyclic epoxy compound (B1), the content of the alicyclic epoxy compound (B1) relative to the content (WA) of the oxetane compound (A) ( The mass ratio (WB1 / WA) of WB1) is preferably 0.05 to 1.5.
When the curable resin composition contains the oxetane compound (A) and the aliphatic epoxy compound (B2), the content of the aliphatic epoxy compound (B2) relative to the content (WA) of the oxetane compound (A) (WB2). The mass ratio (WB2 / WA) of is preferably 0.1 to 0.5.
When the curable resin composition contains the oxetane compound (A) and the aromatic epoxy compound (B3), the content of the aromatic epoxy compound (B3) relative to the content (WA) of the oxetane compound (A) (WB3). The mass ratio (WB3 / WA) of is preferably 0.1 to 1.5.
 (重合開始剤その1:光カチオン重合開始剤)
 硬化性樹脂組成物が、エポキシ系化合物やオキセタン系化合物のようなカチオン重合性化合物を含む場合、その硬化性樹脂組成物には、光カチオン重合開始剤を配合することが好ましい。光カチオン重合開始剤を使用することで、常温での樹脂層11の形成が可能となるため、偏光子10の耐熱性や膨張による歪を考慮する必要が減少し、偏光子10に樹脂層11を密着させ易い。また、光カチオン重合開始剤は、光で触媒的に作用するため、硬化性樹脂組成物に混合しても保存安定性や作業性に優れる。
(Polymer Initiator Part 1: Photocationic Polymerization Initiator)
When the curable resin composition contains a cationically polymerizable compound such as an epoxy compound or an oxetane compound, it is preferable to add a photocationic polymerization initiator to the curable resin composition. Since the resin layer 11 can be formed at room temperature by using the photocationic polymerization initiator, it is less necessary to consider the heat resistance of the polarizer 10 and the strain due to expansion, and the resin layer 11 is formed on the polarizer 10. Is easy to adhere. Further, since the photocationic polymerization initiator acts catalytically with light, it is excellent in storage stability and workability even when mixed with a curable resin composition.
 光カチオン重合開始剤は、可視光線、紫外線、X線、電子線のような活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ系化合物及び/又はオキセタン系化合物の重合反応を開始させるものである。作業性の観点から、光カチオン重合開始剤には潜在性が付与されていることが好ましい。光カチオン重合開始剤には、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩;鉄-アレーン錯体などがある。 The photocationic polymerization initiator generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy compound and / or an oxetane compound. It is something that makes you. From the viewpoint of workability, it is preferable that the photocationic polymerization initiator has a potential. Photocationic polymerization initiators include, for example, aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts; iron-allene complexes.
 芳香族ジアゾニウム塩の具体例は、以下の通りである。
 ベンゼンジアゾニウム  ヘキサフルオロアンチモネート、
 ベンゼンジアゾニウム  ヘキサフルオロホスフェート、
 ベンゼンジアゾニウム  ヘキサフルオロボレートなど。
Specific examples of the aromatic diazonium salt are as follows.
Benzenediazonium hexafluoroantimonate,
Benzenediazonium hexafluorophosphate,
Benzenediazonium hexafluoroborate, etc.
 芳香族ヨードニウム塩の具体例は、以下の通りである。
 ジフェニルヨードニウム  テトラキス(ペンタフルオロフェニル)ボレート、
 ジフェニルヨードニウム  ヘキサフルオロホスフェート、
 ジフェニルヨードニウム  ヘキサフルオロアンチモネート、
 ビス(4-ノニルフェニル)ヨードニウム  ヘキサフルオロホスフェートなど。
Specific examples of the aromatic iodonium salt are as follows.
Diphenyliodonium tetrakis (pentafluorophenyl) borate,
Diphenyliodonium hexafluorophosphate,
Diphenyliodonium hexafluoroantimonate,
Bis (4-nonylphenyl) iodonium hexafluorophosphate, etc.
 芳香族スルホニウム塩の具体例は、以下の通りである。
 トリフェニルスルホニウム  ヘキサフルオロホスフェート、
 トリフェニルスルホニウム  ヘキサフルオロアンチモネート、
 トリフェニルスルホニウム  テトラキス(ペンタフルオロフェニル)ボレート、
 4,4’-ビス(ジフェニルスルホニオ)ジフェニルスルフィド  ビスヘキサフルオロホスフェート、
 4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド  ビスヘキサフルオロアンチモネート、
 4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド  ビスヘキサフルオロホスフェート、
 7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン  ヘキサフルオロアンチモネート、
 7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン  テトラキス(ペンタフルオロフェニル)ボレート、
 4-フェニルカルボニル-4’-ジフェニルスルホニオジフェニルスルフィド  ヘキサフルオロホスフェート、
 4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオジフェニルスルフィド  ヘキサフルオロアンチモネート、
 4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオジフェニルスルフィド  テトラキス(ペンタフルオロフェニル)ボレートなど。
Specific examples of the aromatic sulfonium salt are as follows.
Triphenylsulfonium hexafluorophosphate,
Triphenylsulfonium hexafluoroantimonate,
Triphenylsulfonium tetrakis (pentafluorophenyl) borate,
4,4'-Bis (diphenylsulfonio) diphenylsulfide bishexafluorophosphate,
4,4'-Bis [di (β-hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluoroantimonate,
4,4'-Bis [di (β-hydroxyethoxy) phenylsulfonio] diphenylsulfide bishexafluorophosphate,
7- [Di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate,
7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate,
4-Phenylcarbonyl-4'-diphenylsulfoniodiphenylsulfide hexafluorophosphate,
4- (p-tert-Butylphenylcarbonyl) -4'-diphenylsulfoniodiphenylsulfide hexafluoroantimonate,
4- (p-tert-Butylphenylcarbonyl) -4'-di (p-toluyl) sulfoniodiphenylsulfide tetrakis (pentafluorophenyl) borate and the like.
 また、鉄-アレーン錯体としては、例えば、次のような化合物が挙げられる。
 キシレン-シクロペンタジエニル鉄(II)  ヘキサフルオロアンチモネート、
 クメン-シクロペンタジエニル鉄(II)  ヘキサフルオロホスフェート、
 キシレン-シクロペンタジエニル鉄(II)  トリス(トリフルオロメチルスルホニル)メタナイドなど。
In addition, examples of the iron-arene complex include the following compounds.
Xylene-Cyclopentadienyl Iron (II) Hexafluoroantimonate,
Cumene-Cyclopentadienyl Iron (II) Hexafluorophosphate,
Xylene-cyclopentadienyl iron (II) tris (trifluoromethylsulfonyl) metanide and the like.
 これらの光カチオン重合開始剤の市販品を容易に入手することが可能である。光カチオン重合開始剤の市販品の商品名は、“カヤラッドPCI-220”及び“カヤラッドPCI-620”〔以上、日本化薬(株)製〕、“アデカオプトマーSP-150”及び“アデカオプトマーSP-170”〔以上、(株)ADEKA製〕、“UVACURE  1590”〔ダイセル・サイテック(株)製〕、“CI-5102”、“CIT-1370”、“CIT-1682”、“CIP-1866S”、“CIP-2048S”及び“CIP-2064S”〔以上、日本曹達(株)製〕、“DPI-101”、“DPI-102”、“DPI-103”、“DPI-105”、“MPI-103”、“MPI-105”、“BBI-101”、“BBI-102”、“BBI-103”、“BBI-105”、“TPS-101”、“TPS-102”、“TPS-103”、“TPS-105”、“MDS-103”、“MDS-105”、“DTS-102”及び“DTS-103”〔以上、みどり化学(株)製〕、“UVI-6990”〔ユニオンカーバイド社製〕、“PI-2074”〔ローディア社製〕などである。 Commercially available products of these photocationic polymerization initiators can be easily obtained. The trade names of the commercially available photocationic polymerization initiators are "Kayarad PCI-220" and "Kayarad PCI-620" [above, manufactured by Nippon Kayaku Co., Ltd.], "Adeka Optomer SP-150" and "Adeka Opt". Mar SP-170 "[above, made by ADEKA Corporation]," UVAURE 1590 "[made by Daicel Cytec Co., Ltd.]," CI-5102 "," CIT-1370 "," CIT-1682 "," CIP- 1866S "," CIP-2048S "and" CIP-2064S "[above, manufactured by Nippon Soda Corporation]," DPI-101 "," DPI-102 "," DPI-103 "," DPI-105 "," MPI-103 "," MPI-105 "," BBI-101 "," BBI-102 "," BBI-103 "," BBI-105 "," TPS-101 "," TPS-102 "," TPS- 103 ”,“ TPS-105 ”,“ MDS-103 ”,“ MDS-105 ”,“ DTS-102 ”and“ DTS-103 ”[above, manufactured by Midori Kagaku Co., Ltd.],“ UVI-6990 ”[Union Carbide], "PI-2074" [Rhodia], etc.
 これらの光カチオン重合開始剤は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。これらのなかでも特に芳香族スルホニウム塩は、300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械的強度や偏光子10との良好な密着性を有する硬化物を与えることができるため、好ましく用いられる。 These photocationic polymerization initiators may be used alone or in combination of two or more. Among these, aromatic sulfonium salts in particular have ultraviolet absorption characteristics even in the wavelength region of 300 nm or more, so that a cured product having excellent curability, good mechanical strength, and good adhesion to the polarizer 10 can be obtained. Since it can be given, it is preferably used.
 光カチオン重合開始剤の配合量は、エポキシ系化合物及びオキセタン系化合物を含むカチオン重合性化合物の合計100重量部に対して、0.5~20重量部、好ましくは10重量部以下、さらに好ましくは1~6重量部であってよい。光カチオン重合開始剤の配合量が少ないと、硬化が不十分になり、機械的強度や樹脂層11と偏光子10との密着性を低下させる傾向にある。一方、光カチオン重合開始剤の配合量が多すぎると、硬化物中のイオン性物質が増加することで硬化物の吸湿性が高くなり、耐久性能が低下する可能性がある。 The blending amount of the photocationic polymerization initiator is 0.5 to 20 parts by weight, preferably 10 parts by weight or less, more preferably 10 parts by weight, based on 100 parts by weight of the total of the cationically polymerizable compound containing the epoxy compound and the oxetane compound. It may be 1 to 6 parts by weight. If the amount of the photocationic polymerization initiator blended is small, the curing tends to be insufficient, and the mechanical strength and the adhesion between the resin layer 11 and the polarizer 10 tend to be lowered. On the other hand, if the amount of the photocationic polymerization initiator is too large, the amount of ionic substances in the cured product increases, which increases the hygroscopicity of the cured product and may reduce the durability performance.
 (活性エネルギー線硬化性化合物その2:ラジカル重合性化合物)
 本発明に用いられる硬化性樹脂組成物は、上述したエポキシ系化合物などのカチオン重合性化合物に加えて、重合開始剤の存在下で活性エネルギー線の照射により重合可能なラジカル重合性化合物を含有してもよい。また、ラジカル重合性化合物だけを活性エネルギー線硬化性化合物として、硬化性樹脂組成物を構成することもできる。ラジカル重合性化合物としては、分子内に(メタ)アクリロイルオキシ基を少なくとも1個有する(メタ)アクリル系化合物が好適に用いられる。なお、(メタ)アクリル系化合物とは、アクリル酸エステル及びメタクリル酸エステルのいずれでもよいことを意味し、その他本明細書において、(メタ)アクリロイル、(メタ)アクリレート、(メタ)アクリル酸などというときの「(メタ)」も同様の趣旨である。
(Active energy ray-curable compound # 2: Radical polymerizable compound)
The curable resin composition used in the present invention contains, in addition to the above-mentioned cationically polymerizable compound such as an epoxy compound, a radically polymerizable compound that can be polymerized by irradiation with active energy rays in the presence of a polymerization initiator. You may. Further, the curable resin composition can also be composed by using only the radically polymerizable compound as the active energy ray-curable compound. As the radically polymerizable compound, a (meth) acrylic compound having at least one (meth) acryloyloxy group in the molecule is preferably used. The (meth) acrylic compound means that it may be either an acrylic acid ester or a methacrylic acid ester, and is also referred to as (meth) acryloyl, (meth) acrylate, (meth) acrylic acid and the like in the present specification. The "(meta)" of time has the same meaning.
 分子内に(メタ)アクリロイルオキシ基を少なくとも1個有する(メタ)アクリル系化合物は、分子内に(メタ)アクリロイルオキシ基を少なくとも1個有する(メタ)アクリレートモノマーや、官能基を有する化合物を2種以上反応させて得られ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマーなどを包含する。以下に、これらのモノマーやオリゴマーを具体的に説明するが、これらはそれぞれ単独で用いることができるほか、所望により2種以上を組み合わせて用いることもできる。2種以上の組合せには、モノマー同士の組合せ、及びオリゴマー同士の組合せが包含されるほか、モノマーの1種又は2種以上とオリゴマーの1種又は2種以上との組合せも包含される。 The (meth) acrylic compound having at least one (meth) acryloyloxy group in the molecule includes a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule and a compound having a functional group. Includes (meth) acrylate oligomers obtained by reacting more than one species and having at least two (meth) acryloyloxy groups in the molecule. Hereinafter, these monomers and oligomers will be specifically described, but they can be used individually or in combination of two or more if desired. The combination of two or more kinds includes a combination of monomers and a combination of oligomers, and also includes a combination of one or more kinds of monomers and one kind or two or more kinds of oligomers.
 (メタ)アクリレートモノマーには、分子内に(メタ)アクリロイルオキシ基を1個有する単官能(メタ)アクリレートモノマー、分子内に(メタ)アクリロイルオキシ基を2個有する2官能(メタ)アクリレートモノマー、及び分子内に(メタ)アクリロイルオキシ基を3個以上有する多官能(メタ)アクリレートモノマーがある。 The (meth) acrylate monomer includes a monofunctional (meth) acrylate monomer having one (meth) acryloyloxy group in the molecule, and a bifunctional (meth) acrylate monomer having two (meth) acryloyloxy groups in the molecule. And there are polyfunctional (meth) acrylate monomers having 3 or more (meth) acryloyloxy groups in the molecule.
 単官能(メタ)アクリレートモノマーの具体例は、以下の通りである。
 テトラヒドロフルフリル  (メタ)アクリレート、
 2-ヒドロキシエチル  (メタ)アクリレート、
 2-又は3-ヒドロキシプロピル  (メタ)アクリレート、
 2-ヒドロキシブチル  (メタ)アクリレート、
 2-ヒドロキシ-3-フェノキシプロピル  (メタ)アクリレート、
 イソブチル  (メタ)アクリレート、
 tert-ブチル  (メタ)アクリレート、
 2-エチルヘキシル  (メタ)アクリレート、
 シクロヘキシル  (メタ)アクリレート、
 ジシクロペンテニル  (メタ)アクリレート、
 ベンジル  (メタ)アクリレート、
 イソボルニル  (メタ)アクリレート、
 2-フェノキシエチル  (メタ)アクリレート、
 ジシクロペンテニルオキシエチル  (メタ)アクリレート、
 N,N-ジメチル-2-アミノエチル  (メタ)アクリレート、
 エチルカルビトール  (メタ)アクリレート、
 トリメチロールプロパン  モノ(メタ)アクリレート、
 ペンタエリスリトール  モノ(メタ)アクリレート、
 フェノキシポリエチレングリコール  (メタ)アクリレートなど。
Specific examples of the monofunctional (meth) acrylate monomer are as follows.
Tetrahydrofurfuryl (meth) acrylate,
2-Hydroxyethyl (meth) acrylate,
2- or 3-Hydroxypropyl (meth) acrylate,
2-Hydroxybutyl (meth) acrylate,
2-Hydroxy-3-phenoxypropyl (meth) acrylate,
Isobutyl (meth) acrylate,
tert-butyl (meth) acrylate,
2-Ethylhexyl (meth) acrylate,
Cyclohexyl (meth) acrylate,
Dicyclopentenyl (meth) acrylate,
Benzyl (meth) acrylate,
Isobornyl (meth) acrylate,
2-Phenoxyethyl (meth) acrylate,
Dicyclopentenyloxyethyl (meth) acrylate,
N, N-dimethyl-2-aminoethyl (meth) acrylate,
Ethyl carbitol (meth) acrylate,
Trimethylolpropane mono (meth) acrylate,
Pentaerythritol mono (meth) acrylate,
Phenoxy polyethylene glycol (meth) acrylate, etc.
 また、(メタ)アクリロイルオキシ基1個とともにカルボキシル基を分子内に有する化合物も、単官能(メタ)アクリレートモノマーとなり得る。カルボキシル基を有する単官能(メタ)アクリレートモノマーの具体例は、以下の通りである。
 2-(メタ)アクリロイルオキシエチルフタル酸、
 2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、
 2-カルボキシエチル  (メタ)アクリレート、
 2-(メタ)アクリロイルオキシエチルコハク酸、
 4-(メタ)アクリロイルオキシエチルトリメリット酸など。
Further, a compound having a carboxyl group in the molecule together with one (meth) acryloyloxy group can also be a monofunctional (meth) acrylate monomer. Specific examples of the monofunctional (meth) acrylate monomer having a carboxyl group are as follows.
2- (Meta) acryloyloxyethyl phthalic acid,
2- (Meta) acryloyloxyethyl hexahydrophthalic acid,
2-carboxyethyl (meth) acrylate,
2- (Meta) acryloyloxyethyl succinic acid,
4- (Meta) acryloyloxyethyl trimellitic acid, etc.
 種々の2官能(メタ)アクリレートモノマーがある。代表的な2官能(メタ)アクリレートモノマーは、アルキレングリコールジ(メタ)アクリレート類、ポリオキシアルキレングリコールジ(メタ)アクリレート類、ハロゲン置換アルキレングリコールジ(メタ)アクリレート類、脂肪族ポリオールのジ(メタ)アクリレート類、水添ジシクロペンタジエン又はトリシクロデカンジアルカノールのジ(メタ)アクリレート類、ジオキサングリコール又はジオキサンジアルカノールのジ(メタ)アクリレート類、ビスフェノールA又はビスフェノールFのアルキレンオキサイド付加物のジ(メタ)アクリレート類、ビスフェノールA又はビスフェノールFのエポキシジ(メタ)アクリレート類などである。 There are various bifunctional (meth) acrylate monomers. Typical bifunctional (meth) acrylate monomers are alkylene glycol di (meth) acrylates, polyoxyalkylene glycol di (meth) acrylates, halogen-substituted alkylene glycol di (meth) acrylates, and aliphatic polyol di (meth) acrylates. ) Di (meth) acrylates, hydrogenated dicyclopentadiene or tricyclodecane dialkanol di (meth) acrylates, di (meth) acrylates of dioxane glycol or dioxan dialkanol, di (meth) acrylates of bisphenol A or bisphenol F alkylene oxide adducts. Meta) acrylates, bisphenol A or bisphenol F epoxy di (meth) acrylates and the like.
 2官能(メタ)アクリレートモノマーの具体例は、以下の通りである。
 エチレングリコール  ジ(メタ)アクリレート、
 1,3-ブタンジオール  ジ(メタ)アクリレート、
 1,4-ブタンジオール  ジ(メタ)アクリレート、
 1,6-ヘキサンジオール  ジ(メタ)アクリレート、
 1,9-ノナンジオール  ジ(メタ)アクリレート、
 ネオペンチルグリコール  ジ(メタ)アクリレート、
 トリメチロールプロパン  ジ(メタ)アクリレート、
 ペンタエリスリトール  ジ(メタ)アクリレート、
 ジトリメチロールプロパン  ジ(メタ)アクリレート、
 ジエチレングリコール  ジ(メタ)アクリレート、
 トリエチレングリコール  ジ(メタ)アクリレート、
 ジプロピレングリコール  ジ(メタ)アクリレート、
 トリプロピレングリコール  ジ(メタ)アクリレート、
 ポリエチレングリコール  ジ(メタ)アクリレート、
 ポリプロピレングリコール  ジ(メタ)アクリレート、
 ポリテトラメチレングリコール  ジ(メタ)アクリレート、
 ヒドロキシピバリン酸ネオペンチルグリコールエステルのジ(メタ)アクリレート、
 2,2-ビス[4-{2-(2-(メタ)アクリロイルオキシエトキシ)エトキシ}フェニル]プロパン、
 2,2-ビス[4-{2-(2-(メタ)アクリロイルオキシエトキシ)エトキシ}シクロヘキシル]プロパン、
 水添ジシクロペンタジエニル  ジ(メタ)アクリレート、
 トリシクロデカンジメタノール  ジ(メタ)アクリレート、
 1,3-ジオキサン-2,5-ジイル  ジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート〕、
 ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物〔化学名:2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート、
 1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレートなど。
Specific examples of the bifunctional (meth) acrylate monomer are as follows.
Ethylene glycol di (meth) acrylate,
1,3-Butanediol di (meth) acrylate,
1,4-Butanediol di (meth) acrylate,
1,6-Hexanediol di (meth) acrylate,
1,9-Nonanediol di (meth) acrylate,
Neopentyl glycol di (meth) acrylate,
Trimethylolpropane di (meth) acrylate,
Pentaerythritol di (meth) acrylate,
Ditrimethylolpropane di (meth) acrylate,
Diethylene glycol di (meth) acrylate,
Triethylene glycol di (meth) acrylate,
Dipropylene glycol di (meth) acrylate,
Tripropylene glycol di (meth) acrylate,
Polyethylene glycol di (meth) acrylate,
Polypropylene glycol di (meth) acrylate,
Polytetramethylene glycol di (meth) acrylate,
Di (meth) acrylate of hydroxypivalate neopentyl glycol ester,
2,2-Bis [4- {2- (2- (meth) acryloyloxyethoxy) ethoxy} phenyl] propane,
2,2-Bis [4- {2- (2- (meth) acryloyloxyethoxy) ethoxy} cyclohexyl] propane,
Hydrogenated dicyclopentadienyl di (meth) acrylate,
Tricyclodecanedimethanol di (meth) acrylate,
1,3-dioxane-2,5-diyldi (meth) acrylate [also known as dioxane glycol di (meth) acrylate],
Di (meth) of an acetal compound of hydroxypivalaldehyde and trimethylolpropane [chemical name: 2- (2-hydroxy-1,1-dimethylethyl) -5-ethyl-5-hydroxymethyl-1,3-dioxane] ) Acrylate,
Di (meth) acrylate of 1,3,5-tris (2-hydroxyethyl) isocyanurate.
 3官能以上の多官能(メタ)アクリレートモノマーにも種々のものがある。例えば、3価以上の脂肪族ポリオールのポリ(メタ)アクリレートが代表的である。その具体例は、次の通りである。
 グリセリン  トリ(メタ)アクリレート、
 トリメチロールプロパン  トリ(メタ)アクリレート、
 ジトリメチロールプロパン  トリ(メタ)アクリレート、
 ジトリメチロールプロパン  テトラ(メタ)アクリレート、
 ペンタエリスリトール  トリ(メタ)アクリレート、
 ペンタエリスリトール  テトラ(メタ)アクリレート、
 ジペンタエリスリトール  テトラ(メタ)アクリレート、
 ジペンタエリスリトール  ペンタ(メタ)アクリレート、
 ジペンタエリスリトール  ヘキサ(メタ)アクリレートなど。
There are various types of trifunctional or higher functional (meth) acrylate monomers. For example, poly (meth) acrylates of trivalent or higher aliphatic polyols are typical. Specific examples are as follows.
Glycerin tri (meth) acrylate,
Trimethylolpropane tri (meth) acrylate,
Ditrimethylolpropane Tri (meth) acrylate,
Ditrimethylolpropane tetra (meth) acrylate,
Pentaerythritol tri (meth) acrylate,
Pentaerythritol tetra (meth) acrylate,
Dipentaerythritol tetra (meth) acrylate,
Dipentaerythritol Penta (meth) acrylate,
Dipentaerythritol hexa (meth) acrylate, etc.
 その他に、3価以上のハロゲン置換ポリオールのポリ(メタ)アクリレート、グリセリンのアルキレンオキサイド付加物のトリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキサイド付加物のトリ(メタ)アクリレート、1,1,1-トリス[2-{2-(メタ)アクリロイルオキシエトキシ}エトキシ]プロパン、1,3,5-トリス[2-(メタ)アクリロイルオキシエチル]イソシアヌレートなども、多官能(メタ)アクリレートモノマーとなり得る。 In addition, poly (meth) acrylates of halogen-substituted polyols of trivalent or higher, tri (meth) acrylates of alkylene oxide adducts of glycerin, tri (meth) acrylates of alkylene oxide adducts of trimethylolpropane, 1,1,1 -Tris [2- {2- (meth) acryloyloxyethoxy} ethoxy] propane, 1,3,5-tris [2- (meth) acryloyloxyethyl] isocyanurate, etc. can also be polyfunctional (meth) acrylate monomers. ..
 一方、(メタ)アクリレートオリゴマーは、例えば、ウレタン(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマーなどである。 On the other hand, the (meth) acrylate oligomer is, for example, a urethane (meth) acrylate oligomer, a polyester (meth) acrylate oligomer, an epoxy (meth) acrylate oligomer, or the like.
 ウレタン(メタ)アクリレートオリゴマーとは、分子内に(メタ)アクリロイルオキシ基を少なくとも2個有するとともに、ウレタン結合(-NHCOO-)を有する化合物をいう。ウレタン(メタ)アクリレートオリゴマーは、例えば、分子内に少なくとも1個の(メタ)アクリロイルオキシ基及び1個の水酸基をそれぞれ有する水酸基含有(メタ)アクリレートモノマーとポリイソシアネートとのウレタン化反応生成物であってよい。ウレタン(メタ)アクリレートオリゴマーは、例えば、ポリオール類をポリイソシアネートと反応させて得られる末端イソシアナト基含有ウレタン化合物と、分子内に少なくとも1個の(メタ)アクリロイルオキシ基及び1個の水酸基をそれぞれ有する水酸基含有(メタ)アクリレートモノマーとのウレタン化反応生成物であってよい。 The urethane (meth) acrylate oligomer refers to a compound having at least two (meth) acryloyloxy groups in the molecule and having a urethane bond (-NHCOO-). The urethane (meth) acrylate oligomer is, for example, a urethanization reaction product of a hydroxyl group-containing (meth) acrylate monomer having at least one (meth) acryloyloxy group and one hydroxyl group in the molecule and polyisocyanate. It's okay. The urethane (meth) acrylate oligomer has, for example, a terminal isocyanato group-containing urethane compound obtained by reacting polyols with polyisocyanate, and at least one (meth) acryloyloxy group and one hydroxyl group in the molecule. It may be a urethanization reaction product with a hydroxyl group-containing (meth) acrylate monomer.
 上記ウレタン化反応に用いられる水酸基含有(メタ)アクリレートモノマーの具体例は、次の通りである。
 2-ヒドロキシエチル  (メタ)アクリレート、
 2-ヒドロキシプロピル  (メタ)アクリレート、
 2-ヒドロキシブチル  (メタ)アクリレート、
 2-ヒドロキシ-3-フェノキシプロピル  (メタ)アクリレート、
 グリセリン  ジ(メタ)アクリレート、
 トリメチロールプロパン  ジ(メタ)アクリレート、
 ペンタエリスリトール  トリ(メタ)アクリレート、
 ジペンタエリスリトール  ペンタ(メタ)アクリレートなど。
Specific examples of the hydroxyl group-containing (meth) acrylate monomer used in the urethanization reaction are as follows.
2-Hydroxyethyl (meth) acrylate,
2-Hydroxypropyl (meth) acrylate,
2-Hydroxybutyl (meth) acrylate,
2-Hydroxy-3-phenoxypropyl (meth) acrylate,
Glycerin di (meth) acrylate,
Trimethylolpropane di (meth) acrylate,
Pentaerythritol tri (meth) acrylate,
Dipentaerythritol Penta (meth) acrylate, etc.
 水酸基含有(メタ)アクリレートモノマーとのウレタン化反応に供されるポリイソシアネートの具体的は、次の通りである。
 ヘキサメチレンジイソシアネート、
 リジンジイソシアネート、
 イソホロンジイソシアネート、
 ジシクロヘキシルメタンジイソシアネート、
 トリレンジイソシアネート、
 キシリレンジイソシアネート、
 芳香族ジイソシアネート類を水素添加して得られる化合物、例えば、水素添加トリレンジイソシアネートや、水素添加キシリレンジイソシアネート、
 トリフェニルメタントリイソシアネート、
 ジベンジルベンゼントリイソシアネート、
 これらのうちのジイソシアネート類を多量化させて得られるポリイソシアネートなど。
Specific examples of the polyisocyanate subjected to the urethanization reaction with the hydroxyl group-containing (meth) acrylate monomer are as follows.
Hexamethylene diisocyanate,
Lysine diisocyanate,
Isophorone diisocyanate,
Dicyclohexylmethane diisocyanate,
Tolylene diisocyanate,
Xylylene diisocyanate,
Compounds obtained by hydrogenating aromatic diisocyanates, for example, hydrogenated tolylene diisocyanates, hydrogenated xylylene diisocyanates,
Triphenylmethane triisocyanate,
Dibenzylbenzene triisocyanate,
Polyisocyanates obtained by increasing the amount of diisocyanates among these.
 また、ポリイソシアネートとの反応により末端イソシアナト基含有ウレタン化合物を製造するためのポリオール類は、脂肪族及び脂環式のポリオール、ポリエステルポリオール、ポリエーテルポリオールなどであってよい。脂肪族及び脂環式のポリオールは、例えば、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロール酪酸、グリセリン、水添ビスフェノールAなどである。 Further, the polyols for producing the terminal isocyanato group-containing urethane compound by the reaction with the polyisocyanate may be an aliphatic or alicyclic polyol, a polyester polyol, a polyether polyol, or the like. The aliphatic and alicyclic polyols include, for example, 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, and the like. Ditrimethylolpropane, pentaerythritol, dipentaerythritol, dimethylolheptan, dimethylolpropionic acid, dimethylolbutyric acid, glycerin, hydrogenated bisphenol A and the like.
 ポリエステルポリオールは、上記したポリオール類に多塩基性カルボン酸又はその無水物を脱水縮合反応させることにより得られる化合物である。多塩基性カルボン酸及びその無水物の具体例は、(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、ヘキサヒドロ(無水)フタル酸、(無水)フタル酸、イソフタル酸、テレフタル酸などがある。多塩基性カルボン酸は無水物でなくてもよい。 The polyester polyol is a compound obtained by dehydrating and condensing the above-mentioned polyols with a polybasic carboxylic acid or an anhydride thereof. Specific examples of polybasic carboxylic acids and their anhydrides are (succinic anhydride) succinic anhydride, adipic acid, (anhydrous) maleic acid, (anhydrous) isophthalic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, and hexahydro. There are (anhydrous) phthalic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid and the like. The polybasic carboxylic acid does not have to be anhydrous.
 ポリエーテルポリオールは、ポリアルキレングリコールであってよく、また、上記したポリオール類又はビスフェノール類にアルキレンオキサイドを反応させることにより得られるポリオキシアルキレン変性ポリオールであってもよい。 The polyether polyol may be a polyalkylene glycol, or may be a polyoxyalkylene-modified polyol obtained by reacting the above-mentioned polyols or bisphenols with an alkylene oxide.
 ポリエステル(メタ)アクリレートオリゴマーとは、分子内に(メタ)アクリロイルオキシ基を少なくとも2個有するとともに、エステル結合を有する化合物をいう。(メタ)アクリル酸、多塩基性カルボン酸又はその無水物、及びポリオールの脱水縮合反応により、ポリエステル(メタ)アクリレートオリゴマーを得ることができる。脱水縮合反応に用いられる多塩基性カルボン酸又はその無水物の具体例は、(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、ヘキサヒドロ(無水)フタル酸、(無水)フタル酸、イソフタル酸、テレフタル酸などである。多塩基性カルボン酸の無水物でなくてよい。また脱水縮合反応に用いられるポリオールの具体例は、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロール酪酸、グリセリン、水添ビスフェノールAなどである。 The polyester (meth) acrylate oligomer is a compound having at least two (meth) acryloyloxy groups in the molecule and having an ester bond. A polyester (meth) acrylate oligomer can be obtained by a dehydration condensation reaction of (meth) acrylic acid, a polybasic carboxylic acid or an anhydride thereof, and a polyol. Specific examples of the polybasic carboxylic acid or its anhydride used in the dehydration condensation reaction include (anhydrous) succinic anhydride, adipic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, (anhydrous) trimellitic acid, and (anhydrous). ) Pyromellitic acid, hexahydro (phthalic anhydride) phthalic acid, (phthalic anhydride) phthalic acid, isophthalic acid, terephthalic acid and the like. It does not have to be an anhydride of a polybasic carboxylic acid. Specific examples of the polyol used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, and trimethylolpropane. , Ditrimethylolpropane, pentaerythritol, dipentaerythritol, dimethylolheptan, dimethylolpropionic acid, dimethylolbutyric acid, glycerin, hydrogenated bisphenol A and the like.
 エポキシ(メタ)アクリレートオリゴマーとは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得られるものであり、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有している。この付加反応に用いられるポリグリシジルエーテルの具体例は、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどである。 The epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid, and has at least two (meth) acryloyloxy groups in the molecule. Specific examples of the polyglycidyl ether used in this addition reaction include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether. be.
 上述の(メタ)アクリル系化合物のなかでも、密着性と弾性率がともに優れていることから、以下の式(I)~(IV)で示される(メタ)アクリル系化合物の少なくともいずれか一種が特に好ましい。 Among the above-mentioned (meth) acrylic compounds, at least one of the (meth) acrylic compounds represented by the following formulas (I) to (IV) has excellent adhesion and elastic modulus. Especially preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(I)及び(II)において、Q及びQは互いに独立して、(メタ)アクリロイルオキシ基又は(メタ)アクリロイルオキシアルキル基を表す。Q又はQが(メタ)アクリロイルオキシアルキル基である場合、そのアルキルは直鎖でも分岐していてもよく、1~10の炭素数を有することができるが、一般には1~6程度の炭素数で十分である。また式(II)において、Qは水素又は炭素数1~10の炭化水素基であり、この炭化水素基は直鎖でも分岐していてもよく、典型的にはアルキル基であることができる。
この場合のアルキル基の炭素数も1~6程度で十分である。
In the above formula (I) and (II), Q 1 and Q 2 each independently represent a (meth) acryloyloxy group or (meth) acryloyloxy alkyl group. When Q 1 or Q 2 is a (meth) acryloyloxyalkyl group, the alkyl may be linear or branched and may have 1 to 10 carbon atoms, but is generally about 1 to 6 carbon atoms. The number of carbon atoms is sufficient. Further, in the formula (II), Q is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group may be linear or branched, and can be typically an alkyl group.
In this case, the number of carbon atoms of the alkyl group is also sufficient to be about 1 to 6.
 一方、上記式(III)において、R、R及びRは互いに独立して、(メタ)アクリロイルオキシ基を表し、式(IV)において、Rは水酸基又は(メタ)アクリロイルオキシ基を表す。 On the other hand, in the above formula (III), R 1 , R 2 and R 3 independently represent a (meth) acryloyloxy group, and in the formula (IV), R represents a hydroxyl group or a (meth) acryloyloxy group. ..
 式(I)で表される化合物は、水添ジシクロペンタジエン又はトリシクロデカンジアルカノールのジ(メタ)アクリレート誘導体である。式(I)で表される化合物の具体例は、水添ジシクロペンタジエニル  ジ(メタ)アクリレート〔式(I)において、Q及びQの両方が同じ(メタ)アクリロイルオキシ基である化合物〕、トリシクロデカンジメタノール  ジ(メタ)アクリレート〔式(I)において、Q及びQの両方が同じ(メタ)アクリロイルオキシメチル基である化合物〕などである。 The compound represented by the formula (I) is a di (meth) acrylate derivative of hydrogenated dicyclopentadiene or tricyclodecanedialkanol. Specific examples of the compound represented by the formula (I) are hydrogenated dicyclopentadienyl di (meth) acrylate [in the formula (I), both Q 1 and Q 2 are the same (meth) acryloyloxy group. compound] in tricyclodecane di (meth) acrylate [the formula (I), a compound both of Q 1 and Q 2 are the same (meth) acryloyloxy methyl group], and the like.
 式(II)で表される化合物は、ジオキサングリコール又はジオキサンジアルカノールのジ(メタ)アクリレート誘導体である。式(II)で表される化合物の具体例としては、1,3-ジオキサン-2,5-ジイル  ジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート、式(II)において、Q及びQの両方が同じ(メタ)アクリロイルオキシ基であり、QとHとが同じである化合物〕、ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物〔化学名:2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート〔式(II)において、Qが(メタ)アクリロイルオキシメチル基、Qが2-(メタ)アクリロイルオキシ-1,1-ジメチルエチル基、Qがエチル基の化合物〕などである。 The compound represented by the formula (II) is a di (meth) acrylate derivative of dioxane glycol or dioxane dialkanol. Specific examples of the compound represented by formula (II), 1,3-dioxane-2,5-diyl di (meth) acrylate [alias: dioxane glycol di (meth) acrylate, in the formula (II), Q 1 and both Q 2 'are the same (meth) acryloyloxy group, compound and Q and H are the same], hydroxypivalaldehyde acetal compound of trimethylolpropane [chemical name: 2- (2-hydroxy - in 1,1-dimethylethyl) -5-ethyl-5-hydroxymethyl-1,3-dioxane] di (meth) acrylate [the formula (II), Q 1 is (meth) acryloyloxy methyl group, Q 2 is 2- (Meth) acryloyloxy-1,1-dimethylethyl group, Q is an ethyl group compound] and the like.
 式(III)で表される化合物は、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートのトリアクリレート又はトリメタアクリレートである。また、式(IV)で表される化合物は、ペンタエリスリトールのトリ-又はテトラ-(メタ)アクリレートであり、その具体例は、ペンタエリスリトール  トリ(メタ)アクリレート及びペンタエリスリトール  テトラ(メタ)アクリレートである。 The compound represented by the formula (III) is a triacrylate or trimetaacrylate of 1,3,5-tris (2-hydroxyethyl) isocyanurate. The compound represented by the formula (IV) is pentaerythritol tri- or tetra- (meth) acrylate, and specific examples thereof are pentaerythritol tri (meth) acrylate and pentaerythritol tetra (meth) acrylate. ..
 (メタ)アクリル系化合物は、少なくともエポキシ系化合物と併用することが好ましい。(メタ)アクリル系化合物の含有量は、活性エネルギー線硬化性化合物全体の量を基準に、70重量%以下、好ましくは35~70重量%、取り好ましくは40~60重量%であってよい。活性エネルギー線硬化性化合物のうち(メタ)アクリル系化合物の含有量が70重量%を超えると、偏光子10との密着性が低下する傾向にある。 The (meth) acrylic compound is preferably used in combination with at least an epoxy compound. The content of the (meth) acrylic compound may be 70% by weight or less, preferably 35 to 70% by weight, and preferably 40 to 60% by weight, based on the total amount of the active energy ray-curable compound. When the content of the (meth) acrylic compound among the active energy ray-curable compounds exceeds 70% by weight, the adhesion to the polarizer 10 tends to decrease.
 (重合開始剤その2:光ラジカル重合開始剤)
 活性エネルギー線硬化性化合物が、(メタ)アクリル系化合物のようなラジカル重合性化合物を含有する場合には、重合開始剤として光ラジカル重合開始剤を配合することが好ましい。光ラジカル重合開始剤は、活性エネルギー線の照射によりラジカル重合性化合物の硬化を開始できるものであれば特に限定されず、従来公知のものを用いることができる。光ラジカル重合開始剤の具体例は、アセトフェノン、3-メチルアセトフェノン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンのようなアセトフェノン系開始剤;ベンゾフェノン、4-クロロベンゾフェノン及び4,4’-ジアミノベンゾフェノンのようなベンゾフェノン系開始剤;ベンゾインプロピルエーテル及びベンゾインエチルエーテルのようなベンゾインエーテル系開始剤;4-イソプロピルチオキサントンのようなチオキサントン系開始剤;その他、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノンなどである。
(Polymer Initiator # 2: Photoradical Polymerization Initiator)
When the active energy ray-curable compound contains a radically polymerizable compound such as a (meth) acrylic compound, it is preferable to add a photoradical polymerization initiator as the polymerization initiator. The photoradical polymerization initiator is not particularly limited as long as it can initiate curing of the radically polymerizable compound by irradiation with active energy rays, and conventionally known ones can be used. Specific examples of photoradical initiators include acetophenone, 3-methylacetophenone, benzyldimethylketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1-[. Acetphenone-based initiators such as 4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone and 4, Benzophenone-based initiators such as 4'-diaminobenzophenone; benzoin ether-based initiators such as benzoin propyl ether and benzoin ethyl ether; thioxanthone-based initiators such as 4-isopropylthioxanthone; Benzaldehyde, anthraquinone, etc.
 光ラジカル重合開始剤の配合量は、(メタ)アクリル系化合物のようなラジカル重合性化合物100重量部に対して、0.5~20重量部、好ましくは10重量部以下、さらに好ましくは1~6重量部であってよい。光ラジカル重合開始剤の量が少ないと、硬化が不十分になり、機械的強度や樹脂層11と偏光子10との密着性が低下する傾向にある。一方、光ラジカル重合開始剤の量が多すぎると、硬化性樹脂組成物中の活性エネルギー線硬化性化合物の量が相対的に少なくなり、樹脂層11の耐久性能が低下する可能性がある。 The blending amount of the photoradical polymerization initiator is 0.5 to 20 parts by weight, preferably 10 parts by weight or less, more preferably 1 to 1 to 100 parts by weight, based on 100 parts by weight of the radically polymerizable compound such as a (meth) acrylic compound. It may be 6 parts by weight. If the amount of the photoradical polymerization initiator is small, the curing tends to be insufficient, and the mechanical strength and the adhesion between the resin layer 11 and the polarizer 10 tend to decrease. On the other hand, if the amount of the photoradical polymerization initiator is too large, the amount of the active energy ray-curable compound in the curable resin composition is relatively small, and the durability performance of the resin layer 11 may be deteriorated.
 硬化性樹脂組成物は、必要に応じてさらに光増感剤を含有することができる。光増感剤を使用することで、カチオン重合及び/又はラジカル重合の反応性が向上し、樹脂層11の機械的強度や樹脂層11と偏光子10との密着性を向上させることができる。光増感剤は、例えば、カルボニル化合物、有機イオウ化合物、過硫化物、レドックス系化合物、アゾ化合物、ジアゾ化合物、ハロゲン化合物、光還元性色素などである。光増感剤は、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル及びα,α-ジメトキシ-α-フェニルアセトフェノンのようなベンゾイン誘導体;ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン及び4,4’-ビス(ジエチルアミノ)ベンゾフェノンのようなベンゾフェノン誘導体;2-クロロチオキサントン及び2-イソプロピルチオキサントンのようなチオキサントン誘導体;2-クロロアントラキノン及び2-メチルアントラキノンのようなアントラキノン誘導体;N-メチルアクリドン及びN-ブチルアクリドンのようなアクリドン誘導体;その他、α,α-ジエトキシアセトフェノン、ベンジル、フルオレノン、キサントン、ウラニル化合物などである。これらの光増感剤は、それぞれ単独で使用してもよいし、2種以上の光増感剤を混合して使用してもよい。光増感剤の含有量は、活性エネルギー線硬化性化合物全体100重量部に対して、0.1~20重量部であってよい。 The curable resin composition can further contain a photosensitizer, if necessary. By using the photosensitizer, the reactivity of cationic polymerization and / or radical polymerization can be improved, and the mechanical strength of the resin layer 11 and the adhesion between the resin layer 11 and the polarizer 10 can be improved. The photosensitizer is, for example, a carbonyl compound, an organic sulfur compound, a persulfide compound, a redox compound, an azo compound, a diazo compound, a halogen compound, a photoreducing dye and the like. Photosensitizers are benzoin methyl ethers, benzoin isopropyl ethers and benzoin derivatives such as α, α-dimethoxy-α-phenylacetophenone; benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoyl benzoate, 4,4'. -Benzophenone derivatives such as bis (dimethylamino) benzophenone and 4,4'-bis (diethylamino) benzophenone; thioxanthone derivatives such as 2-chlorothioxanthone and 2-isopropylthioxanthone; such as 2-chloroanthraquinone and 2-methylanthraquinone. Anthraquinone derivatives; acridone derivatives such as N-methylacridone and N-butylacridone; other compounds such as α, α-diethoxyacetophenone, benzyl, fluorenone, xanthone, and uranyl compounds. Each of these photosensitizers may be used alone, or two or more kinds of photosensitizers may be mixed and used. The content of the photosensitizer may be 0.1 to 20 parts by weight with respect to 100 parts by weight of the entire active energy ray-curable compound.
 (硬化性樹脂組成物の任意成分)
 また、硬化性樹脂組成物は、偏光板に帯電防止性能を付与するための帯電防止剤を含有してもよい。帯電防止剤は、例えば、カチオン界面活性剤、アニオン界面活性剤、非イオン界面活性剤、上記カチオン界面活性剤以外の有機カチオンを有するイオン性化合物、上記アニオン界面活性剤以外の有機アニオンを有するイオン性化合物、導電性無機粒子、導電性高分子などであってよい。これら帯電防止剤の配合割合は、所望とする特性に合わせて適宜決められる。帯電防止剤の配合割合は、活性エネルギー線硬化性化合物全体を100重量部として、0.1~20重量部程度であってよい。
(Optional component of curable resin composition)
Further, the curable resin composition may contain an antistatic agent for imparting antistatic performance to the polarizing plate. The antistatic agent is, for example, a cationic surfactant, an anionic surfactant, a nonionic surfactant, an ionic compound having an organic cation other than the cationic surfactant, and an ion having an organic anion other than the anionic surfactant. It may be a sex compound, a conductive inorganic particle, a conductive polymer, or the like. The blending ratio of these antistatic agents is appropriately determined according to the desired characteristics. The blending ratio of the antistatic agent may be about 0.1 to 20 parts by weight, with 100 parts by weight of the entire active energy ray-curable compound.
 硬化性樹脂組成物には、高分子材料に通常使用されている添加剤を配合することもできる。例えば、フェノール系やアミン系のような一次酸化防止剤、イオウ系の二次酸化防止剤、ヒンダードアミン系光安定剤(HALS)、ベンゾフェノン系やベンゾトリアゾール系、ベンゾエート系のような紫外線吸収剤などが挙げられる。 The curable resin composition can also contain additives usually used for polymer materials. For example, primary antioxidants such as phenolic and amine-based, sulfur-based secondary antioxidants, hindered amine-based photostabilizers (HALS), benzophenone-based, benzotriazole-based, and ultraviolet absorbers such as benzoate-based ultraviolet absorbers. Can be mentioned.
 硬化性樹脂組成物には、レベリング剤を配合することもできる。この硬化性樹脂組成物を偏光子10又は基材フィルム上へ塗布するにあたり、偏光子10や基材フィルムへの塗れ性が乏しい場合や、硬化物の表面性が悪い場合には、レベリング剤を配合することで、これ等の問題を改善することができる。レベリング剤は、シリコーン系レベリング剤、フッ素系レベリング剤、ポリエーテル系レベリング剤、アクリル酸共重合物系レベリング剤、チタネート系レベリング剤であってよい。これらのレベリング剤は、それぞれ単独で用いてもよいし、2種類以上混合して用いてもよい。レベリング剤の配合割合は、活性エネルギー線硬化性化合物100重量部に対して、0.01~1重量部、好ましくは0.1~0.7重量部、より好ましくは0.2~0.5重量部であってよい。レベリング剤の配合量が少ないと、塗れ性や表面性の改善効果が十分に発揮されにくい。一方、その配合量が多すぎると、偏光子10と樹脂層11との密着性を低下させることがある。 A leveling agent can also be added to the curable resin composition. When the curable resin composition is applied onto the polarizer 10 or the base film, if the applicability to the polarizer 10 or the substrate film is poor, or if the surface property of the cured product is poor, a leveling agent is used. By blending, these problems can be improved. The leveling agent may be a silicone-based leveling agent, a fluorine-based leveling agent, a polyether-based leveling agent, an acrylic acid copolymer-based leveling agent, or a titanate-based leveling agent. These leveling agents may be used alone or in combination of two or more. The blending ratio of the leveling agent is 0.01 to 1 part by weight, preferably 0.1 to 0.7 parts by weight, and more preferably 0.2 to 0.5 parts by weight with respect to 100 parts by weight of the active energy ray-curable compound. It may be a part by weight. If the amount of the leveling agent blended is small, it is difficult to sufficiently exert the effect of improving the coatability and surface properties. On the other hand, if the blending amount is too large, the adhesion between the polarizer 10 and the resin layer 11 may be lowered.
 また硬化性樹脂組成物には、微粒子、例えばシリカ微粒子を配合してもよい。微粒子、特にシリカ微粒子を配合することにより、得られる樹脂層11の硬度及び機械的強度をより向上させることができる。シリカ微粒子は、例えば、有機溶剤に分散された液状物として硬化性樹脂組成物に配合することができる。有機溶剤に分散されたシリカ微粒子を用いる場合、有機溶剤中のシリカ濃度は、例えば20~40重量%程度であってよい。 Further, the curable resin composition may contain fine particles, for example, silica fine particles. By blending fine particles, particularly silica fine particles, the hardness and mechanical strength of the obtained resin layer 11 can be further improved. The silica fine particles can be blended in the curable resin composition as, for example, a liquid material dispersed in an organic solvent. When silica fine particles dispersed in an organic solvent are used, the silica concentration in the organic solvent may be, for example, about 20 to 40% by weight.
 シリカ微粒子は、その表面に、水酸基、エポキシ基、(メタ)アクリロイル基、ビニル基などの反応性官能基を有していてもよい。シリカ微粒子の粒径は、通常100nm以下、好ましくは5~50nm程度であってよい。微粒子の粒径が100nmを超えると、光学的に透明な樹脂層11が得られにくい傾向にある。 The silica fine particles may have a reactive functional group such as a hydroxyl group, an epoxy group, a (meth) acryloyl group, or a vinyl group on the surface thereof. The particle size of the silica fine particles may be usually 100 nm or less, preferably about 5 to 50 nm. When the particle size of the fine particles exceeds 100 nm, it tends to be difficult to obtain the optically transparent resin layer 11.
 シリカ微粒子の配合割合は、活性エネルギー線硬化性化合物100重量部に対して、5~250重量部、好ましくは10~100重量部であってよい。微粒子の配合量が少ないと、その添加による樹脂層11の硬度向上効果が十分に発揮されにくい。一方、微粒子の配合量が多すぎると、偏光子10と樹脂層11との密着性を低下させることがあり、また、硬化性樹脂組成物中における微粒子の分散安定性を低下させたり、その硬化性樹脂組成物の粘度を過度に上昇させたりすることがある。 The blending ratio of the silica fine particles may be 5 to 250 parts by weight, preferably 10 to 100 parts by weight, based on 100 parts by weight of the active energy ray-curable compound. If the amount of the fine particles blended is small, the effect of improving the hardness of the resin layer 11 due to the addition thereof is difficult to be sufficiently exhibited. On the other hand, if the amount of the fine particles blended is too large, the adhesion between the polarizer 10 and the resin layer 11 may be lowered, the dispersion stability of the fine particles in the curable resin composition may be lowered, or the curing thereof may be lowered. The viscosity of the sex resin composition may be excessively increased.
 硬化性樹脂組成物は、必要に応じて溶剤を含有してもよい。溶剤は、硬化性樹脂組成物を構成する成分の溶解性により、適宜選択される。溶剤は、n-ヘキサンやシクロヘキサンのような脂肪族炭化水素類;トルエンやキシレンのような芳香族炭化水素類;メタノール、エタノール、プロパノール、イソプロパノール及びブタノールのようなアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノンのようなケトン類;酢酸メチル、酢酸エチル及び酢酸ブチルのようなエステル類;メチルセロソルブ、エチルセロソルブ及びブチルセロソルブのようなセロソルブ類;塩化メチレンやクロロホルムのようなハロゲン化炭化水素類などである。溶剤の配合割合は、成膜性などの加工上の目的による粘度調整などの観点から、適宜決定される。 The curable resin composition may contain a solvent if necessary. The solvent is appropriately selected depending on the solubility of the components constituting the curable resin composition. Solvents are aliphatic hydrocarbons such as n-hexane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, propanol, isopropanol and butanol; acetone, methyl ethyl ketone, methyl isobutyl. Ketones such as ketones and cyclohexanones; esters such as methyl acetate, ethyl acetate and butyl acetate; cellosolves such as methyl cellosolves, ethyl cellosolves and butyl cellosolves; halogenated hydrocarbons such as methylene chloride and chloroform. be. The mixing ratio of the solvent is appropriately determined from the viewpoint of adjusting the viscosity for processing purposes such as film forming property.
 硬化性樹脂組成物は、主溶媒が水である活性エネルギー線硬化性化合物の水性溶液から形成されていてもよい。このような硬化性樹脂組成物として、例えば、特開2017-75986号公報に記載されているような、エチレン性不飽和基を有する高分子化合物を主成分とする活性エネルギー線硬化性高分子組成物の水性溶液が好ましく用いられる。 The curable resin composition may be formed from an aqueous solution of an active energy ray-curable compound in which the main solvent is water. As such a curable resin composition, for example, an active energy ray-curable polymer composition containing a polymer compound having an ethylenically unsaturated group as a main component, as described in JP-A-2017-75986. An aqueous solution of the material is preferably used.
 樹脂層11の厚みは、例えば、0.5μm以上20μm以下、1μm以上10μm以下、又は1μm以上5μm以下であってよい。樹脂層11の厚みが上記上限値以下である場合、硬化性組成物を十分に硬化させることができる。 The thickness of the resin layer 11 may be, for example, 0.5 μm or more and 20 μm or less, 1 μm or more and 10 μm or less, or 1 μm or more and 5 μm or less. When the thickness of the resin layer 11 is not more than the above upper limit value, the curable composition can be sufficiently cured.
 (4)接着層
 保護フィルム12は、例えば接着剤層または粘着剤層である接着層を介して偏光子10に貼合することができる。また、偏光子10と高位相差フィルム13との間に2枚以上の保護フィルムを備える場合、保護フィルム同士は、例えば接着剤層または粘着剤層である接着層を介して貼合されている構成とすることができる。接着剤層を形成する接着剤としては、水系接着剤、活性エネルギー線硬化性接着剤又は熱硬化性接着剤を用いることができ、好ましくは水系接着剤、活性エネルギー線硬化性接着剤である。粘着剤層としては後述のものが使用できる。
(4) Adhesive Layer The protective film 12 can be attached to the polarizer 10 via, for example, an adhesive layer or an adhesive layer which is an adhesive layer. Further, when two or more protective films are provided between the polarizer 10 and the high retardation film 13, the protective films are bonded to each other via, for example, an adhesive layer or an adhesive layer which is an adhesive layer. Can be. As the adhesive forming the adhesive layer, a water-based adhesive, an active energy ray-curable adhesive or a thermosetting adhesive can be used, and a water-based adhesive or an active energy ray-curable adhesive is preferable. As the pressure-sensitive adhesive layer, those described later can be used.
 水系接着剤としては、ポリビニルアルコール系樹脂水溶液からなる接着剤、水系二液型ウレタン系エマルジョン接着剤等が挙げられる。中でもポリビニルアルコール系樹脂水溶液からなる水系接着剤が好適に用いられる。ポリビニルアルコール系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるポリビニルアルコール系共重合体、又はそれらの水酸基を部分的に変性した変性ポリビニルアルコール系重合体等を用いることができる。水系接着剤は、アルデヒド化合物(グリオキザール等)、エポキシ化合物、メラミン系化合物、メチロール化合物、イソシアネート化合物、アミン化合物、多価金属塩等の架橋剤を含むことができる。 Examples of the water-based adhesive include an adhesive composed of a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like. Of these, a water-based adhesive composed of an aqueous solution of a polyvinyl alcohol-based resin is preferably used. Examples of the polyvinyl alcohol-based resin include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and co-polymers of vinyl acetate and other monomers copolymerizable therewith. A polyvinyl alcohol-based copolymer obtained by saponifying the polymer, or a modified polyvinyl alcohol-based polymer in which the hydroxyl groups thereof are partially modified can be used. The water-based adhesive may contain a cross-linking agent such as an aldehyde compound (glioxal or the like), an epoxy compound, a melamine compound, a methylol compound, an isocyanate compound, an amine compound, or a polyvalent metal salt.
 水系接着剤を使用する場合は、偏光子と保護フィルムとを貼合した後、水系接着剤中に含まれる水を除去するための乾燥工程を実施することが好ましい。乾燥工程後、例えば20~45℃の温度で養生する養生工程を設けてもよい。 When a water-based adhesive is used, it is preferable to carry out a drying step for removing water contained in the water-based adhesive after the polarizer and the protective film are bonded together. After the drying step, a curing step of curing at a temperature of, for example, 20 to 45 ° C. may be provided.
 上記活性エネルギー線硬化性接着剤とは、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含有する接着剤であり、好ましくは紫外線硬化性接着剤である。 The active energy ray-curable adhesive is an adhesive containing a curable compound that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays, and is preferably an ultraviolet curable adhesive. Is.
 上記硬化性化合物は、カチオン重合性の硬化性化合物やラジカル重合性の硬化性化合物であることができる。カチオン重合性の硬化性化合物としては、例えば、エポキシ系化合物(分子内に1個又は2個以上のエポキシ基を有する化合物)や、オキセタン系化合物(分子内に1個又は2個以上のオキセタン環を有する化合物)、又はこれらの組み合わせを挙げることができる。ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル系化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)や、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせを挙げることができる。カチオン重合性の硬化性化合物とラジカル重合性の硬化性化合物とを併用してもよい。活性エネルギー線硬化性接着剤は通常、上記硬化性化合物の硬化反応を開始させるためのカチオン重合開始剤及び/又はラジカル重合開始剤をさらに含む。 The curable compound can be a cationically polymerizable curable compound or a radically polymerizable curable compound. Examples of the cationically polymerizable curable compound include an epoxy compound (a compound having one or more epoxy groups in the molecule) and an oxetane compound (one or two or more oxetane rings in the molecule). Compounds), or a combination thereof. Examples of the radically polymerizable curable compound include a (meth) acrylic compound (a compound having one or more (meth) acryloyloxy groups in the molecule) and a radically polymerizable double bond. Other vinyl compounds or combinations thereof can be mentioned. A cationically polymerizable curable compound and a radically polymerizable curable compound may be used in combination. The active energy ray-curable adhesive usually further contains a cationic polymerization initiator and / or a radical polymerization initiator for initiating the curing reaction of the curable compound.
 偏光子と保護フィルムとを貼合するにあたっては、または保護フィルムと保護フィルムを貼合するにあたっては、接着性を高めるために、これらの少なくともいずれか一方の貼合面に表面活性化処理を施してもよい。表面活性化処理としては、コロナ処理、プラズマ処理、放電処理(グロー放電処理等)、火炎処理、オゾン処理、UVオゾン処理、電離活性線処理(紫外線処理、電子線処理等)のような乾式処理;水やアセトン等の溶媒を用いた超音波処理、ケン化処理、アンカーコート処理のような湿式処理を挙げることができる。これらの表面活性化処理は、単独で行ってもよいし、2つ以上を組み合わせてもよい。 When bonding the polarizer and the protective film, or when bonding the protective film and the protective film, in order to improve the adhesiveness, at least one of these bonding surfaces is subjected to a surface activation treatment. You may. Surface activation treatment includes dry treatment such as corona treatment, plasma treatment, discharge treatment (glow discharge treatment, etc.), flame treatment, ozone treatment, UV ozone treatment, ionization active ray treatment (ultraviolet ray treatment, electron beam treatment, etc.). Wet treatments such as ultrasonic treatment using a solvent such as water or acetone, saponification treatment, and anchor coating treatment can be mentioned. These surface activation treatments may be performed alone or in combination of two or more.
 本発明の光学積層体では、偏光子10に粘着剤層14を介して直接高位相差フィルム13を積層する構成としてもよい。その場合、保護フィルム12は省略することができる。 In the optical laminate of the present invention, the high retardation film 13 may be directly laminated on the polarizer 10 via the pressure-sensitive adhesive layer 14. In that case, the protective film 12 can be omitted.
 <高位相差フィルム13>
 本発明の光学積層体は、偏光サングラス越しの視認性を確保するために高位相差フィルム13を有する。高位相差フィルム13は、複屈折性を有する透明な熱可塑性樹脂フィルムからなる。高位相差フィルム13の波長550nmにおける面内位相差値Re[550]は、好ましくは3000nm以上であり、さらに好ましくは5000nm以上であり、特に好ましくは7000nm以上である。高位相差フィルム13の面内位相差Re[550]の上限値は、30000nmである。こうしたフィルムを用いることで、偏光サングラス越しで液晶表示装置を視認したときの視野角に応じた色相変化を抑制することができる。
<High retardation film 13>
The optical laminate of the present invention has a high retardation film 13 to ensure visibility through polarized sunglasses. The high retardation film 13 is made of a transparent thermoplastic resin film having birefringence. The in-plane retardation value Re [550] of the high retardation film 13 at a wavelength of 550 nm is preferably 3000 nm or more, more preferably 5000 nm or more, and particularly preferably 7000 nm or more. The upper limit of the in-plane retardation Re [550] of the high retardation film 13 is 30,000 nm. By using such a film, it is possible to suppress a hue change according to a viewing angle when the liquid crystal display device is visually recognized through polarized sunglasses.
 高位相差フィルム13は、例えば、熱可塑性樹脂フィルムを延伸することで得られる。すなわち、高位相差フィルム13は延伸フィルムであることができる。具体的な熱可塑性樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂;ノルボルネン系ポリマーなどの環状ポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;(メタ)アクリル酸、ポリ(メタ)アクリル酸メチルなどの(メタ)アクリル酸系樹脂;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネートなどのセルロースエステル系樹脂;ポリビニルアルコール及びポリ酢酸ビニルなどのビニルアルコール系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリアリレート系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエーテルケトン系樹脂;ポリフェニレンスルフィド系樹脂;ポリフェニレンオキシド系樹脂、及びこれらの混合物、共重合物等を挙げることができる。入手のしやすさや透明性の観点から、ポリエチレンテレフタレート、セルロースエステル、環状オレフィン系樹脂またはポリカーボネートが好ましい。 The high retardation film 13 can be obtained, for example, by stretching a thermoplastic resin film. That is, the high retardation film 13 can be a stretched film. Specific thermoplastic resins include polyolefin resins such as polyethylene and polypropylene; cyclic polyolefin resins such as norbornene polymers; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; (meth) acrylic acid and poly (meth). (Meta) acrylic acid-based resins such as methyl acrylate; cellulose ester-based resins such as triacetyl cellulose, diacetyl cellulose and cellulose acetate propionate; vinyl alcohol-based resins such as polyvinyl alcohol and polyvinyl acetate; polycarbonate resins; polystyrene Based resin; Polyarylate type resin; Polysulfone type resin; Polyethersulfone type resin; Polyamide type resin; Polyimide type resin; Polyetherketone type resin; Polyphenylene sulfide type resin; Polyphenylene oxide type resin, and mixtures and copolymers thereof. And so on. From the viewpoint of availability and transparency, polyethylene terephthalate, cellulose ester, cyclic olefin resin or polycarbonate is preferable.
 これらの熱可塑性樹脂に対して一軸又は二軸の熱延伸処理を行うことで所望の位相差値を持つフィルムとすればよい。延伸の倍率は、通常1.1~6倍であり、好ましくは1.1~4倍である。 A film having a desired retardation value may be obtained by subjecting these thermoplastic resins to uniaxial or biaxial thermal stretching treatment. The stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 4 times.
 また、ロールツーロールで製造することができるように、斜め方向に延伸する方法も好ましく用いられる。斜め方向に延伸する方法としては、連続的に配向軸を所望の角度に傾斜させることができるものであれば、特に限定されず、公知の延伸方法が採用できる。このような延伸方法は例えば、特開昭50-83482号公報や特開平2-113920号公報に記載された方法を挙げることができる。延伸することでフィルムに位相差性を付与する場合、延伸後の厚みは、延伸前の厚みや延伸倍率によって決定される。 Further, a method of stretching in an oblique direction is also preferably used so that it can be manufactured by roll-to-roll. The method of stretching in the oblique direction is not particularly limited as long as the orientation axis can be continuously inclined to a desired angle, and a known stretching method can be adopted. Examples of such a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920. When imparting retardation to a film by stretching, the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
 高位相差フィルム13の遅相軸と偏光子10の吸収軸とのなす角度は、40°~50°であり、より好ましくは42°~48°であり、特に好ましくは約45°である。約45°は、44°~46°を意味する。これにより、偏光サングラス越しに液晶表示装置を視認した場合に正面輝度の低下を抑制することができる。 The angle formed by the slow axis of the high retardation film 13 and the absorption axis of the polarizer 10 is 40 ° to 50 °, more preferably 42 ° to 48 °, and particularly preferably about 45 °. About 45 ° means 44 ° to 46 °. As a result, it is possible to suppress a decrease in front luminance when the liquid crystal display device is visually recognized through polarized sunglasses.
 高位相差フィルム13の厚みは、好ましくは200μm以下であり、より好ましくは150μm以下であり、特に好ましくは100μm以下である。高位相差フィルム13の厚みを200μm以下とすることにより、光学積層体100のカールを抑制することができ、液晶表示装置への貼合時に気泡が入るなどの不具合を抑制することができる。 The thickness of the high retardation film 13 is preferably 200 μm or less, more preferably 150 μm or less, and particularly preferably 100 μm or less. By setting the thickness of the high retardation film 13 to 200 μm or less, curling of the optical laminate 100 can be suppressed, and problems such as bubbles entering when the high retardation film 13 is attached to the liquid crystal display device can be suppressed.
 光学積層体100を液晶表示装置の液晶セルの視認者側に設けることによって、他に高位相差のフィルムを必要とすることなく、偏光サングラスを通して液晶表示装置を視認した場合の視認性の低下を抑制することができる。具体的には、正面輝度の低下、および視野角に応じた色相の変化(カラーシフト)を抑制することができる。高位相差フィルム13には必要に応じてハードコート層や防眩層を積層しても構わない。 By providing the optical laminate 100 on the viewer side of the liquid crystal cell of the liquid crystal display device, it is possible to suppress a decrease in visibility when the liquid crystal display device is visually recognized through polarized sunglasses without the need for another high-phase difference film. can do. Specifically, it is possible to suppress a decrease in front luminance and a change in hue (color shift) according to a viewing angle. A hard coat layer or an antiglare layer may be laminated on the high retardation film 13 as needed.
 <第1粘着剤層>
 第1粘着剤層15は、偏光子10の表面に接するように(図1参照)、又は偏光子10の表面に樹脂層11が設けられている場合は樹脂層11に接するように(図2参照)設けられている。かかる構成により、高温環境下で長く保存しても光漏れが生じることを抑制することができる。かかる構成により、高温環境下で長く保存しても光漏れが生じることを抑制することができる理由としては、偏光子10と第1粘着剤層15との間に、保護フィルム等の樹脂フィルムを有しないために、高位相差フィルム13の斜め方向の残留応力が解放されても、かかる残留応力により特定の樹脂フィルムに位相差を生じさせることを抑制することができることによるものと推測される。
<First adhesive layer>
The first pressure-sensitive adhesive layer 15 is in contact with the surface of the polarizer 10 (see FIG. 1), or is in contact with the resin layer 11 when the resin layer 11 is provided on the surface of the polarizer 10 (FIG. 2). See) Provided. With such a configuration, it is possible to suppress the occurrence of light leakage even when stored in a high temperature environment for a long time. The reason why it is possible to suppress the occurrence of light leakage even when stored in a high temperature environment for a long time by such a configuration is that a resin film such as a protective film is inserted between the polarizer 10 and the first pressure-sensitive adhesive layer 15. It is presumed that this is because even if the residual stress in the oblique direction of the high retardation film 13 is released, it is possible to suppress the occurrence of the retardation in the specific resin film due to the residual stress.
 光学積層体は、第1粘着剤層15が画像表示素子の視認側の表面に貼合されて表示装置が構成される。第1粘着剤層15は、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型、熱硬化型であってもよい。 In the optical laminate, the first pressure-sensitive adhesive layer 15 is bonded to the surface of the image display element on the visual side to form a display device. The first pressure-sensitive adhesive layer 15 can be composed of a pressure-sensitive adhesive composition containing a resin as a main component, such as (meth) acrylic-based, rubber-based, urethane-based, ester-based, silicone-based, and polyvinyl ether-based. Among them, a pressure-sensitive adhesive composition using a (meth) acrylic resin having excellent transparency, weather resistance, heat resistance and the like as a base polymer is preferable. The pressure-sensitive adhesive composition may be an active energy ray-curable type or a thermosetting type.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 Examples of the (meth) acrylic resin (base polymer) used in the pressure-sensitive adhesive composition include butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2- (meth) acrylate. A polymer or copolymer containing one or more (meth) acrylic acid esters such as ethylhexyl as a monomer is preferably used. It is preferable that the base polymer is copolymerized with a polar monomer. Examples of the polar monomer include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, and glycidyl (). Examples thereof include monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group and the like, such as meta) acrylate.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが例示される。中でも、ポリイソシアネート化合物が好ましい。 The pressure-sensitive adhesive composition may contain only the above-mentioned base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a divalent or higher metal ion that forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound that forms an amide bond with a carboxyl group; poly. Epoxy compounds and polyols that form an ester bond with a carboxyl group; polyisocyanate compounds that form an amide bond with a carboxyl group are exemplified. Of these, polyisocyanate compounds are preferable.
 第1粘着剤層15の貯蔵弾性率は、周波数1Hz、温度23℃において、0.001~0.350MPaが好ましく、0.001~0.200MPaがより好ましく、0.001~0.100MPaが更に好ましく、0.010~0.100MPaが特に好ましい。貯蔵弾性率は、後述の実施例に記載された方法により測定される。 The storage elastic modulus of the first pressure-sensitive adhesive layer 15 is preferably 0.001 to 0.350 MPa, more preferably 0.001 to 0.200 MPa, and further 0.001 to 0.100 MPa at a frequency of 1 Hz and a temperature of 23 ° C. Preferably, 0.010 to 0.100 MPa is particularly preferable. The storage modulus is measured by the method described in Examples below.
 第1粘着剤層15の厚みは、5~200μmが好ましく、7~100μmがより好ましく、8~80μmが更に好ましく、10~50μmが特に好ましい。 The thickness of the first pressure-sensitive adhesive layer 15 is preferably 5 to 200 μm, more preferably 7 to 100 μm, further preferably 8 to 80 μm, and particularly preferably 10 to 50 μm.
 <第2粘着剤層>
 第2粘着剤層14としては、第1粘着剤層15として記載した上述の組成、特性、及び厚みのものを用いることができ、第1粘着剤層15と同じであってもよいし、異なっていてもよい。
<Second adhesive layer>
As the second pressure-sensitive adhesive layer 14, the one having the above-mentioned composition, characteristics, and thickness described as the first pressure-sensitive adhesive layer 15 can be used, and may be the same as or different from the first pressure-sensitive adhesive layer 15. May be.
 <前面板>
 光学積層体100、200は、高位相差フィルム13の視認側表面に前面板が配置されて用いられてもよい。前面板は、接着層を介して高位相差フィルム13の視認側表面に積層することができる。接着層としては、例えば前述の粘着剤層や接着剤層が挙げられる。
<Front plate>
The optical laminates 100 and 200 may be used with a front plate arranged on the visible side surface of the high retardation film 13. The front plate can be laminated on the visible side surface of the high retardation film 13 via an adhesive layer. Examples of the adhesive layer include the above-mentioned adhesive layer and adhesive layer.
 前面板としては、ガラス、樹脂フィルムの少なくとも一面にハードコート層を含んでなるものなどが挙げられる。ガラスとしては、例えば、高透過ガラスや、強化ガラスを用いることができる。特に薄い透明面材を使用する場合には、化学強化を施したガラスが好ましい。ガラスの厚みは、例えば100μm~5mmとすることができる。 Examples of the front plate include those having a hard coat layer on at least one surface of glass or a resin film. As the glass, for example, highly transparent glass or tempered glass can be used. Especially when a thin transparent surface material is used, chemically strengthened glass is preferable. The thickness of the glass can be, for example, 100 μm to 5 mm.
 樹脂フィルムの少なくとも一面にハードコート層を含んでなる前面板は、既存のガラスのように硬直ではなく、フレキシブルな特性を有することができる。ハードコート層の厚さは特に限定されず、例えば、5~100μmであってもよい。 The front plate having a hard coat layer on at least one surface of the resin film can have flexible characteristics instead of being rigid like existing glass. The thickness of the hard coat layer is not particularly limited and may be, for example, 5 to 100 μm.
 樹脂フィルムとしては、ノルボルネンまたは多環ノルボルネン系単量体のようなシクロオレフィンを含む単量体の単位を有するシクロオレフィン系誘導体、セルロース(ジアセチルセルロース、トリアセチルセルロース、アセチルセルロースブチレート、イソブチルエステルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース)エチレン-酢酸ビニル共重合体、ポリシクロオレフィン、ポリエステル、ポリスチレン、ポリアミド、 ポリエーテルイミド、ポリアクリル、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリメチルメタアクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリウレタン、エポキシなどの高分子で形成されたフィルムであってもよい。樹脂フィルムは、未延伸、1軸または2軸延伸フィルムを使用することができる。これらの高分子はそれぞれ単独または2種以上混合して使用することができる。樹脂フィルムとしては、透明性及び耐熱性に優れたポリアミドイミドフィルムまたはポリイミドフィルム、1軸または2軸延伸ポリエステルフィルム、透明性及び耐熱性に優れるとともに、フィルムの大型化に対応できるシクロオレフィン系誘導体フィルム、ポリメチルメタクリレートフィルム及び透明性と光学的に異方性のないトリアセチルセルロース及びイソブチルエステルセルロースフィルムが好ましい。樹脂フィルムの厚さは5~200μm、好ましくは、20~100μmであってもよい。 As the resin film, cycloolefin-based derivatives having a unit of a monomer containing cycloolefin such as norbornene or polycyclic norbornene-based monomer, cellulose (diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, isobutyl ester cellulose). , Propionyl cellulose, butyryl cellulose, acetylpropionyl cellulose) ethylene-vinyl acetate copolymer, polycycloolefin, polyester, polystyrene, polyamide, polyetherimide, polyacrylic, polyimide, polyamideimide, polyethersulfone, polysulfone, polyethylene, Polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyether ketone, polyether ether ketone, polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate , Polyethylene, a film made of a polymer such as epoxy. As the resin film, an unstretched uniaxial or biaxially stretched film can be used. Each of these polymers can be used alone or in combination of two or more. As the resin film, a polyamideimide film or a polyimide film having excellent transparency and heat resistance, a uniaxial or biaxially stretched polyester film, a cycloolefin derivative film having excellent transparency and heat resistance and capable of adapting to a large size of the film. , Polymethylmethacrylate films and triacetylcellulose and isobutylester cellulose films that are transparent and not optically anisotropic are preferred. The thickness of the resin film may be 5 to 200 μm, preferably 20 to 100 μm.
 前記ハードコート層は、光或いは熱エネルギーを照射して架橋構造を形成する反応性材料を含むハードコート組成物の硬化により形成することができる。前記ハードコート層は、光硬化型(メタ)アクリレートモノマー、或いはオリゴマー及び光硬化型エポキシモノマー、或いはオリゴマーを同時に含むハードコート組成物の硬化により形成することができる。前記光硬化型(メタ)アクリレートモノマーは、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレートで構成された群から選択された1種以上を含むことができる。前記エポキシ(メタ)アクリレートは、エポキシ化合物に対して(メタ)アクリロイル基を有するカルボン酸を反応させて得ることができる。 The hard coat layer can be formed by curing a hard coat composition containing a reactive material that forms a crosslinked structure by irradiating light or heat energy. The hard coat layer can be formed by curing a hard coat composition containing a photocurable (meth) acrylate monomer, or an oligomer and a photocurable epoxy monomer, or an oligomer at the same time. The photocurable (meth) acrylate monomer may contain one or more selected from the group composed of epoxy (meth) acrylate, urethane (meth) acrylate and polyester (meth) acrylate. The epoxy (meth) acrylate can be obtained by reacting an epoxy compound with a carboxylic acid having a (meth) acryloyl group.
 ハードコート組成物は溶剤、光開始剤及び添加剤からなる群から選択される一つ以上をさらに含むことができる。添加剤は、無機ナノ粒子、レベリング剤及び安定剤からなる群から選択される一つ以上を含むことができ、それ以外にも当該技術分野で一般的に使用される各成分として、例えば、抗酸化剤、UV吸収剤、界面活性剤、潤滑剤、防汚剤などをさらに含むことができる。 The hard coat composition can further contain one or more selected from the group consisting of solvents, photoinitiators and additives. Additives can include one or more selected from the group consisting of inorganic nanoparticles, leveling agents and stabilizers, and other components commonly used in the art, such as anti. Excipients, UV absorbers, surfactants, lubricants, antifouling agents and the like can be further included.
 <緩衝層>
 光学積層体100、200は、高位相差フィルム13と偏光板1との間に設けられた緩衝層を有していてもよい。緩衝層を有することにより、高温環境下に置いた場合でも光漏れをより抑制することができる。
<Cushioning layer>
The optical laminates 100 and 200 may have a buffer layer provided between the high retardation film 13 and the polarizing plate 1. By having a buffer layer, light leakage can be further suppressed even when placed in a high temperature environment.
 緩衝層は、粘着剤層を介して、高位相差フィルム13及び偏光板1に積層されることが好ましい。例えば、緩衝層は、第2粘着剤層14を介して、高位相差フィルム13に積層され、第3粘着剤層を介して、偏光板1に積層されることができる。粘着剤層を介して、緩衝層を組み込むことにより、高温環境下に置いた後でも、光漏れをより抑制することができる。第3粘着剤層14としては、第1粘着剤層15として記載した上述の組成、特性、及び厚みのものを用いることができ、第1粘着剤層15と同じであっても異なっていてもよい。 The buffer layer is preferably laminated on the high retardation film 13 and the polarizing plate 1 via the pressure-sensitive adhesive layer. For example, the buffer layer can be laminated on the high retardation film 13 via the second pressure-sensitive adhesive layer 14, and can be laminated on the polarizing plate 1 via the third pressure-sensitive adhesive layer. By incorporating a buffer layer via the pressure-sensitive adhesive layer, light leakage can be further suppressed even after being placed in a high temperature environment. As the third pressure-sensitive adhesive layer 14, the above-mentioned composition, characteristics, and thickness described as the first pressure-sensitive adhesive layer 15 can be used, and may be the same as or different from the first pressure-sensitive adhesive layer 15. good.
 緩衝層の厚みは、20μm以上であることが好ましく、25μm以上であることがより好ましく、30μm以上であることがさらに好ましく、通常、80μm以下であり、70μm以下であってもよく、60μm以下であってもよい。緩衝層の温度23℃、相対湿度55%における引張弾性率は、1.5GPa以上であることが好ましい。緩衝層の引張弾性率は、3GPa以上であってもよく、5GPa以上であってもよく、通常10GPa以下であり、8GPa以下であってもよい。 The thickness of the buffer layer is preferably 20 μm or more, more preferably 25 μm or more, further preferably 30 μm or more, and usually 80 μm or less, 70 μm or less, 60 μm or less. There may be. The tensile elastic modulus at a temperature of the buffer layer of 23 ° C. and a relative humidity of 55% is preferably 1.5 GPa or more. The tensile elastic modulus of the buffer layer may be 3 GPa or more, 5 GPa or more, usually 10 GPa or less, and 8 GPa or less.
 上記のような緩衝層として樹脂フィルムが例示される。緩衝層が樹脂フィルムである場合、樹脂フィルムを構成する樹脂材料(樹脂)は、透明性、機械的強度、熱安定性、水分遮蔽性、及び位相差値の安定性等に優れるものが好ましい。樹脂材料は、熱可塑性樹脂であることが好ましい。このような樹脂材料としては、特に限定されないが、例えば、セルロースエステル系樹脂;(メタ)アクリル酸系樹脂;鎖状脂肪族オレフィン系樹脂、環状オレフィン系樹脂等のオレフィン系樹脂;ポリ塩化ビニル系樹脂;スチレン系樹脂;アクリロニトリル・ブタジエン・スチレン系樹脂;アクリロニトリル・スチレン系樹脂;ポリ酢酸ビニル系樹脂;ポリ塩化ビニリデン系樹脂;ポリアミド系樹脂;ポリアセタール系樹脂;ポリカーボネート系樹脂;変性ポリフェニレンエーテル系樹脂;ポリブチレンテフタレート系樹脂、ポリエチレンテフタレート系樹脂等のポリエステル系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアリレート系樹脂;ポリアミドイミド系樹脂;ポリイミド系樹脂等が挙げられ、これらのうち1種又は2種以上を組合わせて用いることができる。なかでも、セルロースエステル系樹脂、(メタ)アクリル酸系樹脂、及び環状オレフィン系樹脂から選ばれる樹脂を用いることが好ましい。本明細書において、「(メタ)アクリル」とは、アクリル又はメタクリルのいずれでもよいことを意味する。(メタ)アクリロイル等の「(メタ)」も同様の意味である。 A resin film is exemplified as the buffer layer as described above. When the buffer layer is a resin film, the resin material (resin) constituting the resin film is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding property, stability of retardation value, and the like. The resin material is preferably a thermoplastic resin. Such a resin material is not particularly limited, and is, for example, a cellulose ester resin; a (meth) acrylic acid resin; an olefin resin such as a chain aliphatic olefin resin or a cyclic olefin resin; a polyvinyl chloride resin. Resin; styrene resin; acrylonitrile / butadiene / styrene resin; acrylonitrile / styrene resin; polyvinyl acetate resin; polyvinylidene chloride resin; polyamide resin; polyacetal resin; polycarbonate resin; modified polyphenylene ether resin; Polybutylene teflate-based resin, polyester-based resin such as polyethylene teftalate-based resin; polysulfone-based resin; polyether sulfone-based resin; polyarylate-based resin; polyamideimide-based resin; polyimide-based resin, etc. Species or a combination of two or more species can be used. Among them, it is preferable to use a resin selected from a cellulose ester resin, a (meth) acrylic acid resin, and a cyclic olefin resin. As used herein, the term "(meth) acrylic" means that it may be either acrylic or methacryl. (Meta) "(Meta)" such as acryloyl has the same meaning.
 樹脂フィルムを構成する樹脂材料は、任意の適切なポリマー変性を行ってから用いることもでき、このポリマー変性としては、例えば、共重合、架橋、分子末端、立体規則性制御、及び異種ポリマー同士の反応を伴う場合を含む混合等の変性が挙げられる。 The resin material constituting the resin film can be used after performing any appropriate polymer modification, and the polymer modification includes, for example, copolymerization, cross-linking, molecular terminalization, stereoregularity control, and dissimilar polymers. Modifications such as mixing, including cases involving a reaction, can be mentioned.
 セルロースエステル系樹脂は、綿花リンタや木材パルプ(広葉樹パルプ、針葉樹パルプ)等の原料セルロースから得られるセルロースの水酸基における水素原子の一部又は全部がアセチル基、プロピオニル基及び/又はブチリル基で置換された、セルロース有機酸エステル又はセルロース混合有機酸エステルである。例えば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、及びそれらの混合エステル等からなるものが挙げられる。中でも、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、及びセルロースアセテートブチレート等が好ましい。 In the cellulose ester-based resin, a part or all of hydrogen atoms in the hydroxyl group of cellulose obtained from raw material cellulose such as cotton linter and wood pulp (perforated tree pulp, coniferous tree pulp) are replaced with acetyl group, propionyl group and / or butyryl group. In addition, it is a cellulose organic acid ester or a cellulose mixed organic acid ester. For example, those composed of acetic acid ester of cellulose, propionic acid ester, butyric acid ester, mixed ester thereof and the like can be mentioned. Among them, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
 (メタ)アクリル酸系樹脂は、(メタ)アクリロイル基を有する化合物を主な構成モノマーとする樹脂である。(メタ)アクリル系樹脂の具体例は、例えば、ポリメタクリル酸メチル等のポリ(メタ)アクリル酸エステル;メタクリル酸メチル-(メタ)アクリル酸共重合体;メタクリル酸メチル-(メタ)アクリル酸エステル共重合体;メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体;(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂等);メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体等のメタクリル酸メチルと脂環族炭化水素基を有する化合物との共重合体等を含む。好ましくは、ポリ(メタ)アクリル酸メチル等のポリ(メタ)アクリル酸C1-6アルキルエステルを主成分とする重合体が用いられ、より好ましくはメタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が用いられる。 The (meth) acrylic acid-based resin is a resin containing a compound having a (meth) acryloyl group as a main constituent monomer. Specific examples of the (meth) acrylic resin include poly (meth) acrylic acid esters such as polymethyl methacrylate; methyl methacrylate- (meth) acrylic acid copolymers; methyl methacrylate- (meth) acrylic acid esters. Copolymers: Methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer; (meth) methyl acrylate-styrene copolymer (MS resin, etc.); methyl methacrylate-cyclohexyl methacrylate copolymer, methacryl Includes a copolymer of methyl methacrylate such as a methyl- (meth) acrylate norbornyl copolymer and a compound having an alicyclic hydrocarbon group. A polymer containing poly (meth) acrylic acid C 1-6 alkyl ester as a main component, such as methyl poly (meth) acrylate, is preferably used, and more preferably methyl methacrylate is used as a main component (50 to 100% by weight). , Preferably 70 to 100% by weight), a methyl methacrylate-based resin is used.
 (メタ)アクリル酸系樹脂は、正の複屈折を発現する構造単位を有していてもよい。正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有していれば、その存在比を調整することにより、(メタ)アクリル酸系樹脂から形成されたフィルムの位相差を制御することができ、低位相差の(メタ)アクリル酸系樹脂フィルムを得ることができる。正の複屈折を発現する構造単位としては、例えば、ラクトン環、ポリカーボネート、ポリビニルアルコール、酢酸セルロース、ポリエステル、ポリアリレート、ポリイミド、ポリオレフィン等を構成する構造単位、後述の一般式(1)で示される構造単位が挙げられる。負の複屈折を発現する構造単位としては、例えば、スチレン系モノマー、マレイミド系モノマー等を由来とする構造単位、ポリメチルメタクリレートの構造単位、後述の一般式(3)で示される構造単位等が挙げられる。 The (meth) acrylic acid-based resin may have a structural unit that expresses positive birefringence. If it has a structural unit that expresses positive birefringence and a structural unit that expresses negative birefringence, the position of the film formed from the (meth) acrylic acid-based resin can be adjusted by adjusting the abundance ratio thereof. The phase difference can be controlled, and a (meth) acrylic acid-based resin film having a low phase difference can be obtained. As the structural unit that expresses positive birefringence, for example, a structural unit constituting a lactone ring, polycarbonate, polyvinyl alcohol, cellulose acetate, polyester, polyarylate, polyimide, polyolefin, etc., is represented by the general formula (1) described later. Structural units can be mentioned. Examples of the structural unit that expresses negative birefringence include structural units derived from styrene-based monomers, maleimide-based monomers, etc., polymethylmethacrylate structural units, structural units represented by the general formula (3) described later, and the like. Can be mentioned.
 (メタ)アクリル酸系樹脂として、ラクトン環構造又はグルタルイミド構造を有する(メタ)アクリル酸系樹脂が好ましく用いられる。ラクトン環構造又はグルタルイミド構造を有する(メタ)アクリル酸系樹脂は耐熱性に優れる。より好ましくは、グルタルイミド構造を有する(メタ)アクリル酸系樹脂である。グルタルイミド構造を有する(メタ)アクリル酸系樹脂を用いれば、低透湿、かつ、位相差及び紫外線透過率の小さい(メタ)アクリル酸系樹脂フィルムを得ることができる。グルタルイミド構造を有する(メタ)アクリル酸系樹脂(以下、「グルタルイミド樹脂」とも称する)は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-9182号公報、特開2009-161744号公報に記載されている。これらの記載は、本明細書に参考として援用される。 As the (meth) acrylic acid-based resin, a (meth) acrylic acid-based resin having a lactone ring structure or a glutarimide structure is preferably used. A (meth) acrylic acid-based resin having a lactone ring structure or a glutarimide structure has excellent heat resistance. More preferably, it is a (meth) acrylic acid-based resin having a glutarimide structure. By using a (meth) acrylic acid-based resin having a glutarimide structure, a (meth) acrylic acid-based resin film having low moisture permeability and low phase difference and ultraviolet transmittance can be obtained. Examples of the (meth) acrylic acid-based resin having a glutarimide structure (hereinafter, also referred to as “glutarimide resin”) include JP-A-2006-309033, JP-A-2006-317560, and JP-A-2006-328329. , JP-A-2006-328334, JP-A-2006-337491, JP-A-2006-337492, JP-A-2006-337493, JP-A-2006-337569, JP-A-2007-9182, It is described in Kai 2009-161744. These statements are incorporated herein by reference.
 グルタルイミド樹脂は、好ましくは、下記一般式(1)で表される構造単位(以下、「グルタルイミド単位」とも称する)と、下記一般式(2)で表される構造単位(以下、「(メタ)アクリル酸エステル単位」とも称する)とを含む。 The glutarimide resin is preferably a structural unit represented by the following general formula (1) (hereinafter, also referred to as “glutarimide unit”) and a structural unit represented by the following general formula (2) (hereinafter, “( Meta) Also referred to as "acrylic acid ester unit").
Figure JPOXMLDOC01-appb-C000004

[一般式(1)において、R及びRは、それぞれ独立して、水素又は炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、又は炭素数5~15の芳香環を含む置換基である。
 一般式(2)において、R及びRは、それぞれ独立して、水素又は炭素数1~8のアルキル基であり、Rは、水素、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、又は炭素数5~15の芳香環を含む置換基である。]
Figure JPOXMLDOC01-appb-C000004

[In the general formula (1), R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, and an alkyl group having 1 to 18 carbon atoms. It is a substituent containing 3 to 12 cycloalkyl groups or an aromatic ring having 5 to 15 carbon atoms.
In the general formula (2), R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 is hydrogen, an alkyl group having 1 to 18 carbon atoms, and 3 carbon atoms. It is a cycloalkyl group of ~ 12 or a substituent containing an aromatic ring having 5 to 15 carbon atoms. ]
 グルタルイミド樹脂は、必要に応じて、下記一般式(3)で表される構造単位(以下、「芳香族ビニル単位」とも称する)をさらに含んでいてもよい。 The glutarimide resin may further contain a structural unit represented by the following general formula (3) (hereinafter, also referred to as “aromatic vinyl unit”), if necessary.
Figure JPOXMLDOC01-appb-C000005

[一般式(3)において、Rは、水素又は炭素数1~8のアルキル基であり、Rは、炭素数6~10のアリール基である]。
Figure JPOXMLDOC01-appb-C000005

[In the general formula (3), R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 is an aryl group having 6 to 10 carbon atoms].
 上記一般式(1)において、好ましくは、R及びRは、それぞれ独立して、水素又はメチル基であり、Rは水素、メチル基、ブチル基、又はシクロヘキシル基であり、さらに好ましくは、Rはメチル基であり、Rは水素であり、Rはメチル基である。 In the above general formula (1), preferably, R 1 and R 2 are independently hydrogen or methyl groups, and R 3 is hydrogen, methyl group, butyl group, or cyclohexyl group, and more preferably. , R 1 is a methyl group, R 2 is a hydrogen, and R 3 is a methyl group.
 上記グルタルイミド樹脂は、グルタルイミド単位として、単一の種類のみを含んでいてもよいし、上記一般式(1)におけるR、R、及びRが異なる複数の種類を含んでいてもよい。 The glutarimide resin is a glutarimide unit, may include only a single type, R 1 in the general formula (1), R 2, and R 3 also include a plurality of different types good.
 グルタルイミド単位は、上記一般式(2)で表される(メタ)アクリル酸エステル単位をイミド化することにより、形成することができる。また、グルタルイミド単位は、無水マレイン酸等の酸無水物、又は、このような酸無水物と炭素数1~20の直鎖又は分岐のアルコールとのハーフエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、クロトン酸、フマル酸、シトラコン酸等のα,β-エチレン性不飽和カルボン酸等をイミド化することによっても、形成することができる。 The glutarimide unit can be formed by imidizing the (meth) acrylic acid ester unit represented by the above general formula (2). The glutarimide unit is an acid anhydride such as maleic anhydride, or a half ester of such an acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms; crotonic acid, methacrylic acid, maleic acid. It can also be formed by imidizing α, β-ethylenically unsaturated carboxylic acids such as maleic anhydride, itaconic acid, itaconic anhydride, crotonic acid, fumaric acid, and citraconic acid.
 上記一般式(2)において、好ましくは、R及びRは、それぞれ独立して、水素又はメチル基であり、Rは水素又はメチル基であり、さらに好ましくは、Rは水素であり、Rはメチル基であり、Rはメチル基である。 In the above general formula (2), preferably R 4 and R 5 are independently hydrogen or methyl groups, R 6 is hydrogen or methyl group, and more preferably R 4 is hydrogen. , R 5 is a methyl group and R 6 is a methyl group.
 グルタルイミド樹脂は、(メタ)アクリル酸エステル単位として、単一の種類のみを含んでいてもよいし、上記一般式(2)におけるR、R、及びRが異なる複数の種類を含んでいてもよい。 Glutarimide resin as (meth) acrylic acid ester unit, may include only a single type, include R 4, R 5, and a plurality of types of R 6 are different in the above general formula (2) You may be.
 グルタルイミド樹脂は、上記一般式(3)で表される芳香族ビニル単位として、好ましくはスチレン、α-メチルスチレン等を含み、さらに好ましくはスチレンを含む。このような芳香族ビニル単位を有するグルタルイミド樹脂を用いることにより、グルタルイミド構造の正の複屈折性を低減し、より低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。 The glutarimide resin preferably contains styrene, α-methylstyrene and the like, and more preferably styrene, as the aromatic vinyl unit represented by the above general formula (3). By using a glutarimide resin having such an aromatic vinyl unit, the positive birefringence of the glutarimide structure can be reduced, and a (meth) acrylic resin film having a lower phase difference can be obtained.
 グルタルイミド樹脂は、芳香族ビニル単位として、単一の種類のみを含んでいてもよいし、上記一般式(3)におけるR及びRが異なる複数の種類を含んでいてもよい。 The glutarimide resin may contain only a single type as the aromatic vinyl unit, or may contain a plurality of types in which R 7 and R 8 in the above general formula (3) are different.
 グルタルイミド樹脂におけるグルタルイミド単位の含有量は、例えばRの構造等に応じて変化させることが好ましい。グルタルイミド単位の含有量は、グルタルイミド樹脂の総構造単位を基準として、好ましくは1重量%~80重量%であり、より好ましくは1重量%~70重量%であり、さらに好ましくは1重量%~60重量%であり、特に好ましくは1重量%~50重量%である。グルタルイミド単位の含有量がこのような範囲であれば、耐熱性に優れた低位相差の(メタ)アクリル系樹脂フィルムが得られ得る。 The content of the glutarimide unit in glutarimide resin is preferably, for example, vary depending on the structure and the like of R 3. The content of the glutarimide unit is preferably 1% by weight to 80% by weight, more preferably 1% by weight to 70% by weight, still more preferably 1% by weight, based on the total structural unit of the glutarimide resin. It is about 60% by weight, and particularly preferably 1% by weight to 50% by weight. When the content of the glutarimide unit is in such a range, a low phase difference (meth) acrylic resin film having excellent heat resistance can be obtained.
 グルタルイミド樹脂における芳香族ビニル単位の含有量は、目的や要求される特性に応じて適切に設定され得る。用途によっては、芳香族ビニル単位の含有量は0であってもよい。芳香族ビニル単位が含まれる場合、その含有量は、グルタルイミド樹脂のグルタルイミド単位を基準として、好ましくは10重量%~80重量%であり、より好ましくは20重量%~80重量%であり、さらに好ましくは20重量%~60重量%であり、特に好ましくは20重量%~50重量%である。芳香族ビニル単位の含有量がこのような範囲であれば、低位相差、かつ、耐熱性及び機械的強度に優れた(メタ)アクリル酸系樹脂フィルムが得られ得る。 The content of the aromatic vinyl unit in the glutarimide resin can be appropriately set according to the purpose and required properties. Depending on the application, the content of the aromatic vinyl unit may be zero. When the aromatic vinyl unit is contained, the content thereof is preferably 10% by weight to 80% by weight, more preferably 20% by weight to 80% by weight, based on the glutarimide unit of the glutarimide resin. It is more preferably 20% by weight to 60% by weight, and particularly preferably 20% by weight to 50% by weight. When the content of the aromatic vinyl unit is in such a range, a (meth) acrylic acid-based resin film having a low phase difference and excellent heat resistance and mechanical strength can be obtained.
 グルタルイミド樹脂には、必要に応じて、グルタルイミド単位、(メタ)アクリル酸エステル単位、及び芳香族ビニル単位以外のその他の構造単位がさらに共重合されていてもよい。その他の構造単位としては、例えば、アクリロニトリルやメタクリロニトリル等のニトリル系単量体;マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単量体から構成される構造単位が挙げられる。これらのその他の構造単位は、グルタルイミド樹脂中に、直接共重合していてもよいし、グラフト共重合していてもよい。 If necessary, the glutarimide resin may be further copolymerized with other structural units other than the glutarimide unit, the (meth) acrylic acid ester unit, and the aromatic vinyl unit. Other structural units include, for example, a structure composed of nitrile-based monomers such as acrylonitrile and methacrylonitrile; maleimide-based monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. The unit is mentioned. These other structural units may be directly copolymerized or graft-copolymerized in the glutarimide resin.
 オレフィン系樹脂は、エチレン及びプロピレン等の鎖状脂肪族オレフィン、又はノルボルネンやその置換体(以下、これらを総称してノルボルネン系モノマーとも称する)等の脂環式オレフィンから誘導される構成単位からなる樹脂である。オレフィン系樹脂は、2種以上のモノマーを用いた共重合体であってもよい。 The olefin-based resin is composed of a structural unit derived from a chain aliphatic olefin such as ethylene and propylene, or an alicyclic olefin such as norbornene or a substitute thereof (hereinafter, these are collectively referred to as a norbornene-based monomer). It is a resin. The olefin resin may be a copolymer using two or more kinds of monomers.
 オレフィン系樹脂としては、脂環式オレフィンから誘導される構成単位を主に含む樹脂である環状オレフィン系樹脂が好ましく用いられる。環状オレフィン系樹脂を構成する脂環式オレフィンの典型的な例としては、ノルボルネン系モノマー等を挙げることができる。ノルボルネンとは、ノルボルナンの1つの炭素-炭素結合が二重結合となった化合物であって、IUPAC命名法によれば、ビシクロ[2,2,1]ヘプト-2-エンと命名されるものである。ノルボルネンの置換体の例としては、ノルボルネンの二重結合位置を1,2-位として、3-置換体、4-置換体、及び4,5-ジ置換体等を挙げることができ、さらにはジシクロペンタジエンやジメタノオクタヒドロナフタレン等も挙げることができる。 As the olefin resin, a cyclic olefin resin which is a resin mainly containing a constituent unit derived from an alicyclic olefin is preferably used. Typical examples of the alicyclic olefin constituting the cyclic olefin resin include norbornene-based monomers. Norbornene is a compound in which one carbon-carbon bond of norbornane is a double bond, and is named bicyclo [2,2,1] hept-2-ene according to the IUPAC nomenclature. be. Examples of the substitution product of norbornene include 3-substituted product, 4-substituted product, 4,5-di-substituted product, etc., with the double bond position of norbornene at the 1,2-position, and further. Dicyclopentadiene, dimethanooctahydronaphthalene and the like can also be mentioned.
 環状オレフィン系樹脂は、その構成単位にノルボルナン環を有していてもよいし、有していなくてもよい。構成単位にノルボルナン環を有さない環状オレフィン系樹脂を形成するノルボルネン系モノマーとしては、たとえば、開環により5員環となるもの、代表的には、ノルボルネン、ジシクロペンタジエン、1-又は4-メチルノルボルネン、及び4-フェニルノルボルネン等が挙げられる。環状オレフィン系樹脂が共重合体である場合、その分子の配列状態は特に限定されるものではなく、ランダム共重合体であってもよいし、ブロック共重合体であってもよいし、グラフト共重合体であってもよい。 The cyclic olefin resin may or may not have a norbornane ring as its constituent unit. Examples of the norbornene-based monomer forming a cyclic olefin-based resin having no norbornene ring as a constituent unit include those having a 5-membered ring by ring-opening, typically norbornene, dicyclopentadiene, 1- or 4-. Examples thereof include methylnorbornene and 4-phenylnorbornene. When the cyclic olefin-based resin is a copolymer, the arrangement state of the molecule is not particularly limited, and it may be a random copolymer, a block copolymer, or a graft. It may be a polymer.
 環状オレフィン系樹脂のより具体的な例としては、例えば、ノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーと他のモノマーとの開環共重合体、それらにマレイン酸付加やシクロペンタジエン付加等がなされたポリマー変性物、及びこれらを水素添加した重合体又は共重合体;ノルボルネン系モノマーの付加重合体、及びノルボルネン系モノマーと他のモノマーとの付加共重合体等が挙げられる。共重合体とする場合における他のモノマーとしては、α-オレフィン類、シクロアルケン類、及び非共役ジエン類等が挙げられる。また、環状オレフィン系樹脂は、ノルボルネン系モノマー及び他の脂環式オレフィンの1種又は2種以上を用いた共重合体であってもよい。 More specific examples of the cyclic olefin resin include, for example, a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer, and addition of maleic acid and cyclopentadiene to them. Examples thereof include polymer modified products made, and polymers or copolymers obtained by hydrogenating them; addition polymers of norbornene-based monomers, and addition copolymers of norbornene-based monomers and other monomers. Examples of other monomers used as copolymers include α-olefins, cycloalkenes, non-conjugated dienes and the like. Further, the cyclic olefin resin may be a copolymer using one or more of norbornene-based monomers and other alicyclic olefins.
 環状オレフィン系樹脂としては、ノルボルネン系モノマーを用いた開環重合体又は開環共重合体に水素添加した樹脂が好ましく用いられる。 As the cyclic olefin resin, a ring-opening polymer using a norbornene-based monomer or a resin obtained by hydrogenating a ring-opening copolymer is preferably used.
 上記した樹脂フィルムを構成する樹脂材料は、透明性を損なわない範囲で、適宜の添加物が配合されていてもよい。添加物として例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、造核剤、防曇剤、アンチブロッキング剤、位相差低減剤、安定剤、加工助剤、可塑剤、耐衝撃助剤、艶消し剤、抗菌剤、防かび剤等を挙げることができる。これらの添加物は、複数種が併用されてもよい。 The resin material constituting the above-mentioned resin film may contain an appropriate additive as long as the transparency is not impaired. Additives include, for example, antioxidants, UV absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, phase difference reducing agents, stabilizers, processing aids, plasticizers, impact resistant aids. , Matters, antibacterial agents, antifungal agents and the like. A plurality of kinds of these additives may be used in combination.
 上記した樹脂材料を用いて樹脂フィルムを製膜する方法としては、任意の最適な方法を適宜選択すればよい。例えば、溶剤に溶解させた樹脂を、金属製のバンド又はドラムに流延し、溶剤を乾燥除去してフィルムを得る溶剤キャスト法、樹脂をその溶融温度以上に加熱し、混練してダイから押し出し、冷却することによりフィルムを得る溶融押出法等が挙げられる。溶融押出法では、単層フィルムを押し出すこともできるし、多層フィルムを同時押出することもできる。 As a method for forming a resin film using the above-mentioned resin material, any optimum method may be appropriately selected. For example, a solvent casting method in which a resin dissolved in a solvent is cast on a metal band or drum and the solvent is dried and removed to obtain a film. The resin is heated above its melting temperature, kneaded and extruded from a die. , A melt extrusion method for obtaining a film by cooling, and the like. In the melt extrusion method, a single-layer film can be extruded, or a multilayer film can be extruded at the same time.
 上記したように、樹脂フィルムは、延伸加工が施された延伸フィルムであってもよい。
延伸加工を施すことにより、引張弾性率を所望の範囲に調整してもよい。延伸処理としては、一軸延伸や二軸延伸等が挙げられる。
As described above, the resin film may be a stretched film that has been stretched.
The tensile elastic modulus may be adjusted to a desired range by performing a stretching process. Examples of the stretching treatment include uniaxial stretching and biaxial stretching.
 <表示装置>
 本発明の光学積層体は、第1粘着剤層15を介して画像表示素子の視認側に貼合し、表示装置を構成することができる。画像表示素子としては、例えば液晶表示素子、有機EL表示素子等が挙げられる。
<Display device>
The optical laminate of the present invention can be attached to the visible side of the image display element via the first pressure-sensitive adhesive layer 15 to form a display device. Examples of the image display element include a liquid crystal display element, an organic EL display element, and the like.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す部及び%は、特記ないかぎり重量基準である。なお、以下の例における各物性の測定は、次の方法で行う。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, the part and% indicating the content or the amount used are based on weight unless otherwise specified. The physical properties in the following examples are measured by the following methods.
 [測定方法]
 (1)フィルム厚みの測定方法
 株式会社ニコン製のデジタルマイクロメーターであるMH-15Mを用いて測定する。
[Measuring method]
(1) Method for measuring film thickness Measure using MH-15M, a digital micrometer manufactured by Nikon Corporation.
 (2)位相差値の測定方法
 位相差測定装置KOBRA-WPR(王子計測機器株式会社製)を用いて測定する。
(2) Method for measuring phase difference value Measurement is performed using a phase difference measuring device KOBRA-WPR (manufactured by Oji Measuring Instruments Co., Ltd.).
 (3)貯蔵弾性率の測定方法:
 粘着剤層の貯蔵弾性率(G’)は、以下の(I)~(III)に従って測定する。
 (I) 粘着剤層から試料を25±1mgずつ2つ取り出し、それぞれ略玉状に成形する。
 (II) 上記(I)で得られた2つの試料を、I型冶具の上下面に貼り付け、上下面ともL型冶具で挟み込む。測定試料の構成は、L型治具/粘着剤/I型治具/粘着剤/L型冶具となる。
 (III) こうして作製された試料の貯蔵弾性率(G’)を、動的粘弾性測定装置〔DVA-220、アイティー計測制御(株)製〕を用いて、温度23℃、周波数1Hz、初期歪み1Nの条件下で測定する。
(3) Method for measuring storage elastic modulus:
The storage elastic modulus (G') of the pressure-sensitive adhesive layer is measured according to the following (I) to (III).
(I) Two samples of 25 ± 1 mg are taken out from the pressure-sensitive adhesive layer, and each sample is formed into a substantially ball shape.
(II) The two samples obtained in (I) above are attached to the upper and lower surfaces of the I-type jig, and both the upper and lower surfaces are sandwiched between the L-type jigs. The composition of the measurement sample is an L-type jig / adhesive / I-type jig / adhesive / L-type jig.
(III) The storage elastic modulus (G') of the sample thus prepared was measured at a temperature of 23 ° C., a frequency of 1 Hz, and an initial stage using a dynamic viscoelasticity measuring device [DVA-220, manufactured by IT Measurement Control Co., Ltd.]. Measure under the condition of strain 1N.
 (A)偏光子の作製
 (偏光子1の作製)
 平均重合度約2,400、ケン化度99.9モル%以上であるポリビニルアルコールからなる厚さ75μmのポリビニルアルコールフィルムを、乾式で約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬する。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬する。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向された厚み28μmの偏光子1を得る。
(A) Fabrication of Polarizer (Preparation of Polarizer 1)
A 75 μm-thick polyvinyl alcohol film made of polyvinyl alcohol having an average degree of polymerization of about 2,400 and a saponification degree of 99.9 mol% or more was uniaxially stretched about 5 times by a dry method, and further maintained in a tense state. After immersing in pure water at 60 ° C. for 1 minute, it is immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it is immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the mixture was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a polarizer 1 having a thickness of 28 μm in which iodine was adsorbed and oriented on polyvinyl alcohol.
 (偏光子2の作製)
 平均重合度約2,400、ケン化度99.9モル%以上であるポリビニルアルコールからなる厚さ50μmのポリビニルアルコールフィルムを、乾式で約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬する。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬する。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向された厚み18μmの偏光子2を得る。
(Preparation of Polarizer 2)
A 50 μm-thick polyvinyl alcohol film made of polyvinyl alcohol having an average degree of polymerization of about 2,400 and a saponification degree of 99.9 mol% or more was uniaxially stretched about 5 times by a dry method, and further maintained in a tense state. After immersing in pure water at 60 ° C. for 1 minute, it is immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it is immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the mixture was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a polarizer 2 having a thickness of 18 μm in which iodine was adsorbed and oriented on polyvinyl alcohol.
 (B)接着剤の調製
 アセトアセチル基を含有する変性PVA系樹脂(三菱ケミカル(株)社製:ゴーセネックスZ-410)50gを950gの純水に溶解し、90℃で2時間加熱後常温に冷却し、PVA溶液Aを得る。
 次いで、夫々の化合物が下記の濃度になるように前記PVA溶液A、マレイン酸、グリオキサール、純水を配合しPVA系接着剤を調製する。
 PVA濃度     3.0 重量%
 マレイン酸     0.01 重量%
 グリオキサール   0.15重量%
(B) Preparation of Adhesive 50 g of a modified PVA resin containing an acetoacetyl group (manufactured by Mitsubishi Chemical Corporation: Gosenex Z-410) is dissolved in 950 g of pure water, heated at 90 ° C. for 2 hours, and then brought to room temperature. Cool to obtain PVA solution A.
Next, the PVA solution A, maleic acid, glyoxal, and pure water are blended so that each compound has the following concentration to prepare a PVA-based adhesive.
PVA concentration 3.0% by weight
Maleic acid 0.01% by weight
Glyoxal 0.15% by weight
 (C)偏光板の作製
 (偏光板1の作製)
 先に得られた偏光子1の一方の面に、ケン化処理が施されたトリアセチルセルロースからなる厚み40μmのフィルム(KC4UY、コニカミノルタオプト(株)製)を上記接着剤を介して、ニップロールにより貼合した。貼合物の張力を320N/mの保ちながら、38℃で5分間乾燥して、偏光板1を得る。
(C) Fabrication of polarizing plate (fabrication of polarizing plate 1)
A 40 μm-thick film (KC4UY, manufactured by Konica Minolta Opto Co., Ltd.) made of triacetyl cellulose subjected to saponification treatment on one surface of the previously obtained polarizing element 1 is applied to a nip roll via the above adhesive. Was pasted together. The polarizing plate 1 is obtained by drying at 38 ° C. for 5 minutes while maintaining the tension of the laminate at 320 N / m.
 (偏光板2の作製)
 偏光子板1に対して偏光子1を偏光子2に代えた以外は偏光板1と同様にして、偏光板2を得る。
(Preparation of polarizing plate 2)
The polarizing plate 2 is obtained in the same manner as the polarizing plate 1 except that the polarizing element 1 is replaced with the polarizing element 2 with respect to the polarizing element plate 1.
 (偏光板3の作製)
 上記偏光板1の偏光子上(保護フィルムを積層していない面)に国際公開2015/053359の実施例に準じて段落[0089]の表1、硬化組成物6を用いて、硬化後の膜厚が1μmのオーバーコート層(表1において、「OC」と称する)を積層し、偏光板3を得る。
(Preparation of polarizing plate 3)
A film after curing using Table 1 and the cured composition 6 in paragraph [089] according to the examples of International Publication 2015/0533359 on the polarizer of the polarizing plate 1 (the surface on which the protective film is not laminated). An overcoat layer having a thickness of 1 μm (referred to as “OC” in Table 1) is laminated to obtain a polarizing plate 3.
 (偏光板4の作製)
 上記偏光板1の偏光子上(保護フィルムを積層していない面)に特開2017-075986の実施例中の偏光板15に準じて段落[0091]に記載の硬化組成物BLC-9の組成物を用いて、硬化後の膜厚が2.5μmのオーバーコート層(表1において、「水分散OC」と称する。)を積層し、偏光板4を得る。
(Preparation of polarizing plate 4)
The composition of the cured composition BLC-9 described in paragraph [0091] according to the polarizing plate 15 in the examples of JP-A-2017-075986 on the polarizer of the polarizing plate 1 (the surface on which the protective film is not laminated). An overcoat layer having a thickness of 2.5 μm after curing (referred to as “aqueous dispersion OC” in Table 1) is laminated with a material to obtain a polarizing plate 4.
 (偏光板5の作製)
 先に得られた偏光子1の一方の面に、ケン化処理が施されたトリアセチルセルロースからなる厚み40μmのフィルム(KC4UY、コニカミノルタオプト(株)製)を、もう一方の面に、ケン化処理が施されたトリアセチルセルロースからなる厚み20μmのフィルム〔富士フイルム株式会社製の商品名「ZRG20SL」、表1において「Z-TAC]と称する〕(波長550nmにおける面内の位相差値Reは、1.1nm、厚み方向の位相差値Rthは、1.3nm)を、夫々、上記接着剤を介して貼り合わせ、60℃で5分乾燥して、偏光板5を得る。
(Preparation of polarizing plate 5)
A 40 μm-thick film (KC4UY, manufactured by Konica Minolta Opto Co., Ltd.) made of triacetyl cellulose that has been subjected to a saponification treatment is applied to one surface of the previously obtained polarizing element 1 and ken is applied to the other surface. A 20 μm-thick film made of triacetyl cellulose that has been subjected to a chemical treatment [trade name “ZRG20SL” manufactured by Fujifilm Co., Ltd., referred to as “Z-TAC” in Table 1] (in-plane retardation value Re at a wavelength of 550 nm). 1.1 nm, the retardation value Rth in the thickness direction is 1.3 nm), respectively, are bonded via the above-mentioned adhesive, and dried at 60 ° C. for 5 minutes to obtain a polarizing plate 5.
 (D)高位相差フィルムの準備
 東洋紡株式会社製のコスモシャインSRF(Super Retardation Film)(厚み80μm)を使用した。面内位相差値Re[550]は8400nmである。
(D) Preparation of high retardation film A Cosmoshine SRF (Super Reduction Film) (thickness 80 μm) manufactured by Toyobo Co., Ltd. was used. The in-plane retardation value Re [550] is 8400 nm.
 (E)粘着剤層の準備
 粘着剤層A:市販の厚み15μmのシート状アクリル系粘着剤層(貯蔵弾性率0.06MPa)
 粘着剤層B:市販の厚み25μmのシート状アクリル系粘着剤層(貯蔵弾性率0.06MPa)
(E) Preparation of Adhesive Layer Adhesive Layer A: Commercially available sheet-shaped acrylic adhesive layer having a thickness of 15 μm (storage elastic modulus 0.06 MPa)
Adhesive layer B: Commercially available sheet-like acrylic adhesive layer with a thickness of 25 μm (storage elastic modulus 0.06 MPa)
 [実施例1]
 高位相差フィルムの片面に、粘着剤層Aを貼合する。なお、これらの材料の貼り合わせの際には、各材料の貼合面にコロナ処理を実施する。
[Example 1]
The pressure-sensitive adhesive layer A is bonded to one side of the high retardation film. When these materials are bonded together, a corona treatment is performed on the bonded surfaces of the materials.
 上記で作製した偏光板1のKC4UY面と高位相差フィルムの粘着剤層面を、偏光子の吸収軸と高位相差フィルムの遅相軸とのなす角度θが45°となるように貼合し光学積層体Aを作製する。なお、これらの材料の貼り合わせの際には、各材料の貼合面にコロナ処理を実施する。 The KC4UY surface of the polarizing plate 1 produced above and the pressure-sensitive adhesive layer surface of the high retardation film are laminated so that the angle θ formed by the absorption axis of the polarizer and the slow axis of the high retardation film is 45 °. Body A is made. When these materials are bonded together, a corona treatment is performed on the bonded surfaces of the materials.
 最後に、得られた光学積層体AのKC4UY面と反対面に粘着剤層Bを貼合する。なお、これらの材料の貼り合わせの際には、各材料の貼合面にコロナ処理を実施する。 Finally, the adhesive layer B is bonded to the surface of the obtained optical laminate A opposite to the KC4UY surface. When these materials are bonded together, a corona treatment is performed on the bonded surfaces of the materials.
 [実施例2~4と比較例1]
 上記、実施例1の光学積層体Aに対し、表1に記載のように、偏光板1を偏光板2~5に代えた以外は実施例1と同様にして、粘着剤層Bを貼合した光学積層体B~E(実施例2~4及び比較例1)を作製する。
[Examples 2 to 4 and Comparative Example 1]
As shown in Table 1, the pressure-sensitive adhesive layer B is bonded to the optical laminate A of Example 1 in the same manner as in Example 1 except that the polarizing plate 1 is replaced with the polarizing plates 2 to 5. The optical laminates B to E (Examples 2 to 4 and Comparative Example 1) are produced.
 (評価用サンプルAの作製)
 光学積層体Aを、視認側の光学積層体として、20mm×20mmの大きさに裁断し、厚さ0.7mm、30mm×30mmの大きさの無アルカリガラスに粘着剤層Bを介して貼合する。上記、比較例1の光学積層体Eに対して、高位相差フィルムと粘着剤層Aを積層しない以外は同様にして、光学積層体Fを作製する。光学積層体F(高位相差フィルム貼合なし)を20mm×20mmの大きさに裁断し、上記サンプルの無アルカリガラスの光学積層体Aを貼合していない側に、背面側の光学積層体として、偏光子の吸収軸が互いにクロスニコルになるように、光学積層体Fを粘着剤層Bを介して貼合し、評価用サンプルAを作製する。
(Preparation of sample A for evaluation)
The optical laminate A is cut into a size of 20 mm × 20 mm as an optical laminate on the visual side, and bonded to a non-alkali glass having a thickness of 0.7 mm and a size of 30 mm × 30 mm via an adhesive layer B. do. The optical laminate F is produced in the same manner as above except that the high retardation film and the pressure-sensitive adhesive layer A are not laminated on the optical laminate E of Comparative Example 1. The optical laminate F (without high retardation film bonding) is cut into a size of 20 mm × 20 mm, and the optical laminate A of the non-alkali glass of the above sample is cut into a size of 20 mm × 20 mm, and the optical laminate A on the back side is used as the optical laminate. , The optical laminate F is bonded via the pressure-sensitive adhesive layer B so that the absorption axes of the polarizers are cross-nicols, and an evaluation sample A is prepared.
 (評価用サンプルB~Eの作製)
 評価用サンプルAに対して、視認側の光学積層体である光学積層体Aを、それぞれ光学積層体B~Eに代えた以外は同様にして評価用サンプルB~Eを作製する。
(Preparation of evaluation samples B to E)
For the evaluation sample A, the evaluation samples B to E are produced in the same manner except that the optical laminate A, which is the optical laminate on the visual side, is replaced with the optical laminates B to E, respectively.
 (黒輝度変化の評価)
 上記で作製した評価用サンプルA~Eの背面側の光学積層体である光学積層体Fを貼合した側を20000cd/mの輝度の白色バックライトモジュールの照射面に置き、評価サンプル側(高位相差フィルム)側から輝度を測定(黒輝度1)後、温度95℃の加熱環境下に240時間保管後、常温まで冷却後に再び輝度を測定(黒輝度2)し、黒輝度1に対する黒輝度2の変化率(%)を算出し、黒輝度変化とする。具体的には、
 黒輝度変化(%)={|黒輝度2-黒輝度1|/黒輝度1}×100
により黒輝度変化を求める。評価結果を表1に示す。
(Evaluation of change in black brightness)
The side to which the optical laminate F, which is the optical laminate on the back side of the evaluation samples A to E prepared above, is bonded is placed on the irradiation surface of the white backlight module having a brightness of 20000 cd / m 2, and the evaluation sample side ( After measuring the brightness from the high retardation film) side (black brightness 1), store it in a heating environment at a temperature of 95 ° C. for 240 hours, cool it to room temperature, and then measure the brightness again (black brightness 2). The rate of change (%) of 2 is calculated and used as the black luminance change. In particular,
Black brightness change (%) = {| Black brightness 2-Black brightness 1 | / Black brightness 1} x 100
To obtain the change in black luminance. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示す結果から、高位相差フィルムを45°に貼合した光学積層体は高温耐久試験後、黒輝度が上昇することがあるが、視認側の光学積層体が偏光子の表示素子側に樹脂フィルムを有しない構成であることにより、高温耐久試験後の黒輝度上昇を抑制することができることがわかる。 From the results shown in Table 1, the black brightness of the optical laminate with the high retardation film bonded at 45 ° may increase after the high temperature durability test, but the optical laminate on the visual side is on the display element side of the polarizer. It can be seen that the configuration without the resin film can suppress the increase in black brightness after the high temperature durability test.
 1 偏光板、10 偏光子、11 樹脂層、12 保護フィルム、13 高位相差フィルム、14 第2粘着剤層、15 第1粘着剤層、100,200 光学積層体。 1 polarizing plate, 10 polarizing elements, 11 resin layers, 12 protective films, 13 high retardation films, 14 second adhesive layers, 15 first adhesive layers, 100, 200 optical laminates.

Claims (7)

  1. 高位相差フィルム、偏光子、及び粘着剤層をこの順に備え、
    前記粘着剤層は、前記偏光子の表面に接するように設けられ、
    前記高位相差フィルムの面内位相差値が3000nm~30000nmであり、
    前記高位相差フィルムの遅相軸と前記偏光子の吸収軸とのなす角度が40°~50°である、光学積層体。
    A high retardation film, a polarizer, and an adhesive layer are provided in this order.
    The pressure-sensitive adhesive layer is provided so as to be in contact with the surface of the polarizer.
    The in-plane retardation value of the high retardation film is 3000 nm to 30,000 nm.
    An optical laminate in which the angle formed by the slow axis of the high retardation film and the absorption axis of the polarizer is 40 ° to 50 °.
  2. 高位相差フィルム、偏光子、樹脂硬化物を含む樹脂層、及び粘着剤層をこの順に備え、
    前記樹脂層は、前記偏光子及び前記粘着剤層に接するように設けられ、
    前記高位相差フィルムの面内位相差値が3000nm~30000nmであり、
    前記高位相差フィルムの遅相軸と前記偏光子の吸収軸とのなす角度が40°~50°である、光学積層体。
    A high retardation film, a polarizer, a resin layer containing a cured resin product, and an adhesive layer are provided in this order.
    The resin layer is provided so as to be in contact with the polarizer and the pressure-sensitive adhesive layer.
    The in-plane retardation value of the high retardation film is 3000 nm to 30,000 nm.
    An optical laminate in which the angle formed by the slow axis of the high retardation film and the absorption axis of the polarizer is 40 ° to 50 °.
  3. 前記樹脂層は、オーバーコート層である、請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the resin layer is an overcoat layer.
  4. 前記高位相差フィルムと前記偏光子との間に設けられた保護フィルムをさらに備える、請求項1~3のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, further comprising a protective film provided between the high retardation film and the polarizer.
  5. 前記偏光子の厚みが30μm以下である、請求項1~4のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 4, wherein the polarizing element has a thickness of 30 μm or less.
  6. 前記高位相差フィルムの厚みが200μm以下である、請求項1~5のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 5, wherein the thickness of the high retardation film is 200 μm or less.
  7. 画像表示素子と、請求項1~6のいずれか1項に記載の光学積層体とを備え、
    前記光学積層体の前記粘着剤層が前記画像表示素子の表面に貼合されている、表示装置。
    The image display element and the optical laminate according to any one of claims 1 to 6 are provided.
    A display device in which the pressure-sensitive adhesive layer of the optical laminate is bonded to the surface of the image display element.
PCT/JP2020/045824 2020-01-31 2020-12-09 Optical laminate and display device in which same is used WO2021153019A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080094673.1A CN115023634A (en) 2020-01-31 2020-12-09 Optical laminate and display device using same
KR1020227029530A KR20220126778A (en) 2020-01-31 2020-12-09 Optical laminate and display device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020014988A JP2021121841A (en) 2020-01-31 2020-01-31 Optical laminate and display device using the same
JP2020-014988 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153019A1 true WO2021153019A1 (en) 2021-08-05

Family

ID=77079031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045824 WO2021153019A1 (en) 2020-01-31 2020-12-09 Optical laminate and display device in which same is used

Country Status (5)

Country Link
JP (1) JP2021121841A (en)
KR (1) KR20220126778A (en)
CN (1) CN115023634A (en)
TW (1) TW202138180A (en)
WO (1) WO2021153019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106856A1 (en) * 2022-11-16 2024-05-23 삼성에스디아이 주식회사 Polarizing plate and optical display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540260A (en) * 2013-09-30 2016-12-22 エルジー・ケム・リミテッド Polarizing plate and image display device including the same
JP2018022060A (en) * 2016-08-04 2018-02-08 東洋紡株式会社 Long-size polarizing film and liquid crystal display, and electret luminescence display
WO2019168005A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Optical film and image display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103900A (en) * 2007-10-23 2009-05-14 Nitto Denko Corp Laminated optical film, liquid crystal panel, and liquid crystal display
JP5396439B2 (en) 2011-07-22 2014-01-22 学校法人慶應義塾 Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
JP6136527B2 (en) * 2012-10-29 2017-05-31 大日本印刷株式会社 Optical laminate for front surface of in-cell touch panel liquid crystal element and in-cell touch panel type liquid crystal display device using the same
KR20140074171A (en) * 2012-12-07 2014-06-17 동우 화인켐 주식회사 Polarizing plate and liquid crystal comprising the same display
KR20160092163A (en) * 2015-01-27 2016-08-04 동우 화인켐 주식회사 Polarizing plate having protective layer and display device comprising the same
JP7309264B2 (en) * 2017-10-19 2023-07-18 日東電工株式会社 head-up display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540260A (en) * 2013-09-30 2016-12-22 エルジー・ケム・リミテッド Polarizing plate and image display device including the same
JP2018022060A (en) * 2016-08-04 2018-02-08 東洋紡株式会社 Long-size polarizing film and liquid crystal display, and electret luminescence display
WO2019168005A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Optical film and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106856A1 (en) * 2022-11-16 2024-05-23 삼성에스디아이 주식회사 Polarizing plate and optical display device

Also Published As

Publication number Publication date
CN115023634A (en) 2022-09-06
JP2021121841A (en) 2021-08-26
TW202138180A (en) 2021-10-16
KR20220126778A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2018139358A1 (en) Polarizing plate and image display device
JP5296575B2 (en) Photocurable adhesive composition, polarizing plate and method for producing the same, optical member and liquid crystal display device
JP6699642B2 (en) Composite retardation plate and composite polarizing plate using the same
JP6802708B2 (en) Photocurable adhesive, polarizing plate using it, laminated optical member and liquid crystal display device
CN105739003B (en) Polarizing plate
JP5569773B2 (en) Composite polarizing plate and IPS mode liquid crystal display device using the same
KR102155921B1 (en) Photocurable adhesive, polarizing plate using same, multilayer optical member and liquid crystal display device
JP2019152880A (en) Polarizing plate and liquid crystal display device
JP5586174B2 (en) Optical laminate and method for producing the same
JP2013160775A (en) Polarizer and optical member
WO2017082133A1 (en) Polarizing plate and ips mode liquid crystal display device
JP2010039299A (en) Polarizing plate and method for manufacturing the same, and liquid crystal display
JP2012177890A (en) Method for manufacturing polarizer
JP2010277063A (en) Liquid crystal display device
JP2010102310A (en) Composite polarizing plate and liquid crystal display device using the same
JP2013003515A (en) Composite polarizer and liquid crystal display device using the same
JP2014206732A (en) Method for manufacturing polarizing plate
JP5596207B2 (en) Photocurable adhesive composition, polarizing plate and method for producing the same, optical member and liquid crystal display device
CN105739002B (en) Polarizing plate
WO2021153019A1 (en) Optical laminate and display device in which same is used
JP6718685B2 (en) Photocurable adhesive, polarizing plate using the same, laminated optical member and liquid crystal display device
JP6462254B2 (en) Polarizing plate, high-intensity polarizing plate, and IPS mode liquid crystal display device
JP2010091606A (en) Composite polarizing plate for ips mode liquid crystal display device, and ips mode liquid crystal display device
WO2020213494A1 (en) Optical laminate, and image display device
JP2016206684A (en) Polarizer and optical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227029530

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916680

Country of ref document: EP

Kind code of ref document: A1