WO2021152929A1 - Optical unit with shake compensation function - Google Patents

Optical unit with shake compensation function Download PDF

Info

Publication number
WO2021152929A1
WO2021152929A1 PCT/JP2020/039163 JP2020039163W WO2021152929A1 WO 2021152929 A1 WO2021152929 A1 WO 2021152929A1 JP 2020039163 W JP2020039163 W JP 2020039163W WO 2021152929 A1 WO2021152929 A1 WO 2021152929A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
movable body
optical
correction function
optical unit
Prior art date
Application number
PCT/JP2020/039163
Other languages
French (fr)
Japanese (ja)
Inventor
元紀 田中
智浩 江川
敬之 岩瀬
一宏 佐齋
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080094913.8A priority Critical patent/CN115053175A/en
Publication of WO2021152929A1 publication Critical patent/WO2021152929A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present disclosure relates to an optical unit with a runout correction function.
  • an optical unit mounted on a mobile terminal or a moving body is provided with a mechanism for swinging or rotating a movable body having a lens to correct the runout (see, for example, Patent Document 1).
  • a mechanism for swinging or rotating a movable body having a lens to correct the runout see, for example, Patent Document 1.
  • a movable member that supports at least a part of an imaging means for obtaining a subject image is supported with respect to a fixed member so as to be able to swing around a swing center point on the optical axis of the optical system.
  • the image pickup device can move in the contact / separation direction that changes the distance between the supported surface provided on the movable member and a part of the spherical surface centered on the swing center point and the supported surface with respect to the fixed member.
  • Holding member a plurality of fixed-position balls having different circumferential positions around the optical axis, which are held at a constant position with respect to the fixing member and in point contact with the supported surface, and a supported surface.
  • a plurality of adjusting balls that are held between the holding members and make point contact with the supported surface and have different circumferential positions are provided.
  • the supported surface is composed of a part of a spherical surface centered on the swing center point of the movable body.
  • the support mechanism that supports the movable body has a plurality of balls that roll between the fixed body and the movable body, it may not be easy to handle the plurality of balls at the time of manufacturing the device. Further, when a movable body having a convex spherical surface supports a ball having a convex spherical surface in a rollable manner, the structure of the support mechanism may be complicated.
  • An object of the present disclosure is to provide an optical unit with a runout correction function capable of swinging a movable body with respect to a fixed body without using a mechanism for swinging a convex spherical surface and a ball in combination. ..
  • the exemplary optical unit with a runout correction function of the present disclosure is an optical unit with a runout correction function that corrects the runout of an optical module, and is based on a movable body having the optical module and an optical axis of the optical module.
  • a fixed body arranged outside the movable body is arranged between the movable body and the fixed body in the radial direction, and the movable body is swingably supported with respect to the fixed body. It has a support portion, and the support portion is swingably supported by the fixed body.
  • the movable body can be swung with respect to the fixed body without using a mechanism for swinging the convex spherical surface and the ball in combination.
  • FIG. 1 is a schematic perspective view of an optical unit with a runout correction function according to the embodiment of the present disclosure.
  • FIG. 2 is an exploded perspective view of the optical unit with a runout correction function according to the embodiment of the present disclosure.
  • FIG. 3 is an exploded perspective view of the movable body according to the embodiment of the present disclosure.
  • FIG. 4 is an exploded perspective view of the fixed body according to the embodiment of the present disclosure.
  • FIG. 5 is a schematic plan view of the optical unit with a runout correction function shown in FIG. 1 with the top cover removed.
  • FIG. 6 is a schematic vertical sectional view of an optical unit with a runout correction function cut at the position of the first axis J1 shown in FIG. FIG.
  • FIG. 7 is a diagram schematically showing the relationship between the first rocking support member and the holder.
  • FIG. 8 is a schematic view showing the relationship between the support portion and the fixed body.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the optical unit with a runout correction function of the first modification.
  • FIG. 10 is a schematic view showing the relationship between the first swing support member and the fixed body in the second modification.
  • optical axis direction the direction parallel to the optical axis OA of the optical module 11 shown in FIG. 1
  • radial direction the direction orthogonal to the optical axis OA about the optical axis OA
  • the three axes orthogonal to each other are defined as the X-axis, the Y-axis, and the Z-axis.
  • One side of the X direction along the X axis is the + X direction, and the other side is the ⁇ X direction.
  • One side of the Y direction along the Y axis is the + Y direction, and the other side is the ⁇ Y direction.
  • One side of the Z direction along the Z axis is the + Z direction, and the other side is the ⁇ Z direction.
  • the Z direction is parallel to the optical axis direction.
  • the + Z direction is the subject side of the optical module 11.
  • the ⁇ Z direction is the opposite side of the optical module 11, that is, the image side.
  • vertical and “orthogonal” include not only a state in which they intersect each other at 90 degrees, but also a state in which they are substantially vertical and a state in which they are substantially orthogonal to each other. That is, “parallel”, “vertical”, and “orthogonal” each include a state in which there is an angular deviation in the positional relationship between the two so as not to deviate from the gist of the present invention.
  • FIG. 1 is a schematic perspective view of an optical unit 1 with a runout correction function according to an embodiment of the present disclosure.
  • FIG. 2 is an exploded perspective view of the optical unit 1 with a runout correction function according to the embodiment of the present disclosure.
  • the optical unit 1 with a runout correction function has a movable body 10, a fixed body 20, and a support portion 30.
  • the optical unit 1 with a runout correction function further has a top cover 40.
  • the movable body 10 moves with respect to the fixed body 20.
  • FIG. 3 is an exploded perspective view of the movable body 10 according to the embodiment of the present disclosure.
  • the movable body 10 has an optical module 11.
  • the optical module 11 has a rectangular outer shape in a plan view from the Z direction.
  • the optical module 11 has a first module outer surface 11a and a second module outer surface 11b, both of which are parallel to the X direction.
  • the outer surface 11a of the first module and the outer surface 11b of the second module face each other with a gap in the Y direction.
  • the second module outer surface 11b is located in the + Y direction with respect to the first module outer surface 11a.
  • the optical module 11 has a third module outer surface 11c and a fourth module outer surface 11d, both of which are parallel in the Y direction.
  • the outer surface 11c of the third module and the outer surface 11d of the fourth module face each other with a gap in the X direction.
  • the fourth module outer surface 11d is located in the + X direction with respect to the third module outer surface 11c.
  • the shape of the optical module 11 may be another shape such as a circular shape in a plan view from the Z direction.
  • the optical module 11 has at least one optical element and an image pickup element.
  • the optical element includes a lens, and the optical module 11 has at least one lens.
  • the image sensor may be, for example, a CCD image sensor or a CMOS image sensor.
  • the optical module 11 may have a mechanism for driving the optical element.
  • a flexible printed circuit board 111 for a module is pulled out from an end portion of the optical module 11 in the ⁇ Z direction. The flexible printed circuit board 111 for modules is used to supply electric power to the image sensor, input a signal to the image sensor, and output a signal from the image sensor.
  • the movable body 10 has a holder 12.
  • the holder 12 is arranged outward in the radial direction of the optical module 11.
  • the holder 12 holds the optical module 11.
  • the holder 12 is made of resin.
  • the holder 12 may be made of a material other than resin.
  • the holder 12 is a rectangular frame in a plan view from the Z direction.
  • the holder 12 surrounds the outer circumference of the optical module 11.
  • the holder 12 has a first holder plate-shaped portion 12a and a second holder plate-shaped portion 12b, both of which are parallel in the X direction.
  • the first holder plate-shaped portion 12a and the second holder plate-shaped portion 12b face each other with a gap in the Y direction.
  • the second holder plate-shaped portion 12b is located in the + Y direction with respect to the first holder plate-shaped portion 12a.
  • the holder 12 has a third holder plate-shaped portion 12c and a fourth holder plate-shaped portion 12d, both of which are parallel in the Y direction.
  • the third holder plate-shaped portion 12c and the fourth holder plate-shaped portion 12d face each other with a gap in the X direction.
  • the fourth holder plate-shaped portion 12d is arranged in the + X direction with respect to the third holder plate-shaped portion 12c.
  • the outer surface 11a of the first module and the inner surface of the plate-shaped portion 12a of the first holder in the radial direction face each other.
  • the outer surface 11b of the second module and the inner surface of the second holder plate-shaped portion 12b in the radial direction face each other.
  • the outer surface 11c of the third module and the inner surface of the third holder plate-shaped portion 12c in the radial direction face each other.
  • the outer surface 11d of the fourth module and the inner surface of the fourth holder plate-shaped portion 12d in the radial direction face each other.
  • the shape of the holder 12 may be changed according to, for example, the shape of the optical module 11. Further, the optical module 11 is fixed to the holder 12.
  • the optical module 11 may be fixed to the holder 12 by, for example, an adhesive or press-fitting.
  • the adhesive may be interposed between the outer surfaces 11a to 11d of each module and the plate-shaped portions 12a to 12d of each holder in the radial direction.
  • FIG. 4 is an exploded perspective view of the fixed body 20 according to the embodiment of the present disclosure.
  • the fixed body 20 is arranged outside the movable body 10 in the radial direction with respect to the optical axis OA of the optical module 11.
  • the fixed body 20 has a fixed frame body 21 and a bottom cover 22.
  • the fixed frame 21 is made of resin.
  • the fixed frame 21 may be made of a material other than resin.
  • the fixed frame body 21 has a rectangular shape in a plan view from the Z direction.
  • the fixed frame body 21 has a first fixed frame body plate-shaped portion 21a and a second fixed frame body plate-shaped portion 21b that are parallel to each other in the X direction.
  • the first fixed frame plate-shaped portion 21a and the second fixed frame plate-shaped portion 21b face each other with a gap in the Y direction.
  • the second fixed frame plate-shaped portion 21b is located in the + Y direction with respect to the first fixed frame plate-shaped portion 21a.
  • the fixed frame body 21 has a third fixed frame body plate-shaped portion 21c and a fourth fixed frame body plate-shaped portion 21d, both of which are parallel in the Y direction.
  • the third fixed frame plate-shaped portion 21c and the fourth fixed frame plate-shaped portion 21d face each other with a gap in the X direction.
  • the fourth fixed frame plate-shaped portion 21d is arranged in the + X direction with respect to the third fixed frame plate-shaped portion 21c.
  • a notch 211 recessed in the + Z direction is provided on the end face of the fourth fixed frame plate-shaped portion 21d in the ⁇ Z direction.
  • the module flexible printed circuit board 111 is pulled out from the inside of the fixed frame 21 through the notch 211 to the outside.
  • the first holder plate-shaped portion 12a is attached to the first fixed frame plate-shaped portion 21a, and the second holder plate-shaped portion 12b is second.
  • the bottom cover 22 is a rectangular plate-like body in a plan view from the Z direction.
  • the bottom cover 22 is made of, for example, a resin. However, the bottom cover 22 may be made of another material.
  • the bottom cover 22 is fixed to the end face of the fixed frame 21 in the ⁇ Z direction.
  • the fixing method of the bottom cover 22 may be, for example, adhesion or screwing.
  • the bottom cover 22 is arranged at intervals from the movable body 10 in the Z direction.
  • the fixed frame body 21 and the bottom cover 22 are separate members, but both may be single members. That is, the fixed body 20 may have a box shape. When the fixed frame body 21 and the bottom cover 22 are separate members, the fixed frame body 21 and the bottom cover 22 may be made of the same material, but may be made of different materials. Further, the fixed body 20 has only the fixed frame body 21 and does not have to have the bottom cover 22.
  • FIG. 5 is a schematic plan view of the optical unit 1 with a runout correction function shown in FIG. 1 with the top cover 40 removed.
  • FIG. 5 is a view of the optical unit 1 with a runout correction function from the + Z direction to the ⁇ Z direction.
  • flexible printed circuit boards 111 and 54 are omitted.
  • the optical unit 1 with a runout correction function has a plurality of support portions 30. That is, there are a plurality of support portions 30.
  • the optical unit 1 with a runout correction function has four support portions 30.
  • the number of support portions 30 may be other than four, and may be, for example, two.
  • the support portion 30 is arranged between the movable body 10 and the fixed body 20 in the radial direction.
  • the support portion 30 swingably supports the movable body 10 with respect to the fixed body 20.
  • the movable body 10 is swingably supported with respect to the fixed body 20 by the plurality of support portions 30.
  • the movable body 10 is swingably supported with respect to the fixed body 20 by the four support portions 30.
  • the four support portions 30 are arranged at the four corners of the rectangular fixed body 20 in a plan view from the Z direction. Specifically, the four support portions 30 are arranged at the four corners of the fixed frame body 21. As shown in FIG. 4, at the four corners of the fixed frame body 21, frame body recesses 212 in which the inner surface of the fixed frame body 21 is recessed outward in the radial direction are provided. Each support portion 30 is housed in each frame body recess 212.
  • the plurality of support portions 30 include a first pair of support portions 30a. Further, the plurality of support portions 30 further include a second pair of support portions 30b.
  • the first pair of support portions 30a face each other on the first axis J1 passing through the optical axis OA in a plan view from the optical axis direction (Z direction). Specifically, the first pair of support portions 30a face each other with the movable body 10 interposed therebetween.
  • the second pair of support portions 30b face each other on the second axis J2 in a plan view from the optical axis direction (Z direction).
  • the second axis J2 intersects the first axis J1 on the optical axis OA.
  • the second pair of support portions 30b face each other with the movable body 10 interposed therebetween.
  • the first axis J1 and the second axis J2 are orthogonal to each other.
  • the first axis J1 and the second axis J2 do not have to be orthogonal to each other.
  • the movable body 10 supported by the four support portions 30 is rotatable around the first axis J1. Further, the movable body 10 can rotate around the second axis J2. Further detailed configurations of the support portion 30 and details of the swing mechanism that enables the movable body 10 to swing with respect to the fixed body 20 will be described later.
  • the top cover 40 is arranged on the end face of the fixed body 20 in the + Z direction.
  • the top cover 40 is fixed to the fixed body 20. Therefore, the top cover 40 may also be regarded as a part of the fixed body 20.
  • the fixing method of the top cover 40 may be, for example, adhesion or screwing.
  • the top cover 40 has a frame shape, and a part of the movable body 10 protrudes from the top cover 40 in the + Z direction in a state where the top cover 40 is attached to the fixed body 20.
  • the top cover 40 has a shape and size that does not come into contact with the movable body 10 even when the movable body 10 swings.
  • the top cover 40 is made of, for example, resin. However, the top cover 40 may be made of another material. The top cover 40 may be made of the same material as the fixed frame 21 and the bottom cover 22 constituting the fixed body 20, but may be made of different materials. Further, the optical unit 1 with a runout correction function does not have to have the top cover 40.
  • the optical unit 1 with a runout correction function has a drive mechanism 50 that swings the movable body 10.
  • the drive mechanism 50 is a magnetic drive mechanism.
  • the drive mechanism 50 has two sets of a magnet 51 and a coil 52.
  • the magnet 51 is held by the holder 12.
  • the coil 52 is held by the fixed frame body 21.
  • the magnet 51 may be held by the fixed frame 21 and the coil 52 may be held by the holder 12.
  • the second holder plate-shaped portion 12b has a groove portion 121 recessed in the ⁇ Y direction on the outer surface in the radial direction.
  • the third holder plate-shaped portion 12c has a groove portion 121 recessed in the + X direction on the outer surface in the radial direction.
  • a rectangular plate-shaped magnet 51 is arranged in each groove 121.
  • the yoke 53 is preferably arranged between the magnet 51 and the holder 12 in the radial direction.
  • the second fixed frame plate-shaped portion 21b and the third fixed frame plate-shaped portion 21c each have a coil through hole 213 penetrating in the radial direction.
  • the coil 52 is arranged in the through hole 213 for each coil.
  • the coil 52 is supported by a flexible printed circuit board 54 for a coil arranged along the radial outer surface of the second fixed frame plate-shaped portion 21b and the third fixed frame plate-shaped portion 21c. ..
  • the coil flexible printed circuit board 54 is held by the fixed frame body 21.
  • the magnet 51 held by the second holder plate-shaped portion 12b and the coil 52 arranged in the coil through hole 213 of the second fixed frame plate-shaped portion 21b form a set.
  • the magnet 51 held by the third holder plate-shaped portion 12c and the coil 52 arranged in the coil through hole 213 of the third fixed frame plate-shaped portion 21c form another set.
  • the optical unit 1 with a runout correction function which is rectangular in a plan view from the Z direction, has a set of a magnet 51 and a coil 52 on one side parallel to the X direction and one side parallel to the Y direction, respectively. Has.
  • Each magnet 51 has a configuration in which the magnetic poles on the outer surface in the radial direction are different from each other with the central position in the Z direction as a boundary.
  • each coil 52 is an air-core coil. In each coil 52, long sides arranged in the + Z direction and the ⁇ Z direction are used as effective sides. Power is supplied to each coil 52 by using a flexible printed circuit board 54 for coils.
  • the arrangement of the set of the magnet 51 and the coil 52 may be different.
  • a pair of a magnet 51 and a coil 52 may be arranged on each of the four sides of the optical unit 1 with a runout correction function, which is rectangular in a plan view from the Z direction. That is, four sets of the magnet 51 and the coil 52 may be arranged.
  • the movable body 10 By driving the drive mechanism 50, the movable body 10 can be rotated around the first axis J1 and around the second axis J2.
  • the optical unit 1 with a runout correction function has a runout correction function for correcting the runout of the optical module 11.
  • the optical unit 1 with a runout correction function can perform runout correction around the first axis J1 and runout correction around the second axis J2.
  • the optical unit 1 with a runout correction function can perform runout correction in the pitching direction and runout correction in the yawing direction.
  • the optical unit 1 with a shake correction function is mounted on, for example, a mobile phone with a camera, a photographing device such as a drive recorder, an action camera, or an optical device such as a wearable camera.
  • the optical module 11 may be tilted during shooting and the captured image may be distorted.
  • the optical unit 1 with a shake correction function tilts the optical module 11 based on the acceleration, the angular velocity, the amount of runout, etc. detected by a detection means such as a gyroscope in order to avoid such disturbance of the captured image.
  • the action camera is mounted on a moving body such as a helmet, a bicycle, or a radio-controlled helicopter.
  • FIG. 6 is a schematic vertical cross-sectional view of the optical unit 1 with a runout correction function cut at the position of the first axis J1 shown in FIG.
  • the support portion 30 has a first rocking support member 31 and a second rocking support member 32. Further, the support portion 30 has an elastic member 33.
  • the optical unit 1 with a runout correction function has four support portions 30. The configurations of these four support portions 30 are the same. That is, each of the support portions 30 has a first rocking support member 31, a second rocking support member 32, and an elastic member 33.
  • the movable body 10 has a first curved surface shape portion 101.
  • the holder 12 has a first curved surface shape portion 101.
  • the holder 12 having the first curved surface shape portion 101 can be retrofitted to the optical module 11, for example, the degree of freedom in design is improved.
  • the holder 12 may be eliminated and the optical module 11 may be provided with the first curved surface shape portion 101.
  • the holder 12 has a first curved surface shape portion 101 on the radial outer surfaces of the four corners.
  • FIG. 7 is a diagram schematically showing the relationship between the first swing support member 31 and the holder 12.
  • the second curved surface shape portion 31a is formed on a surface facing the first curved surface shape portion 101 in the radial direction.
  • the first swing support member 31 has a second curved surface shape portion 31a that comes into contact with the first curved surface shape portion 101 provided on the movable body 10.
  • the first curved surface shape portion 101 provided on the holder 12 can slide while being in contact with the second curved surface shape portion 31a.
  • the first rocking support member 31 has a rectangular shape in a plan view from the radial direction.
  • the first rocking support member 31 is made of resin like the holder 12.
  • the first swing support member 31 may be made of a material other than resin.
  • the resin constituting the first rocking support member 31 may be the same material as the resin constituting the holder 12, but may be a different material.
  • at least one of the first curved surface shape portion 101 and the second curved surface shape portion 31a may be provided with a coating layer for improving slipperiness or a coating layer for improving wear resistance.
  • the first curved surface shape portion 101 and the second curved surface shape portion 31a have a cylindrical surface shape. According to this configuration, it is not necessary to form a spherical shape on the movable body 10 and the support portion 30 in which the burden of component management tends to increase, and the productivity of the optical unit 1 with a runout correction function can be improved.
  • the first curved surface shape portion 101 and the second curved surface shape portion 31a are the outer peripheral surface (cylindrical surface) CS of the cylinder extending in the second axis J2 direction with the swing center O of the movable body 10 as the center. It is a shape that is a transfer of a part of.
  • FIG. 6 the outer peripheral surface (cylindrical surface) CS of the cylinder extending in the second axis J2 direction with the swing center O of the movable body 10 as the center. It is a shape that is a transfer of a part of.
  • the second axis J2 extends in a direction orthogonal to the paper surface.
  • the first axis J1 and the second axis J2 pass through the swing center O.
  • the swing center O may be, for example, the center of gravity of the movable body 10, but may be a position deviated from the center of gravity.
  • FIG. 6 is a cross-sectional view cut at the position of the second axis J2, the first curved surface shape portion 101 and the second curved surface shape portion 31a are centered on the swing center O of the movable body 10.
  • a part of the outer peripheral surface (cylindrical surface) CS of the cylinder extending in the uniaxial J1 direction is transferred. That is, it is assumed that the first pair of support portions 30a facing each other on the first axis J1 and the second pair of support portions 30b facing each other on the second axis J2 form the second curved surface shape portion 31a.
  • the cylindrical surface CS to be formed is different.
  • first curved surface shape portion 101 in contact with each of the second curved surface shape portions 31a of the first pair of support portions 30a and the second curved surface shape portion 31a of each of the second pair of support portions 30b are in contact with each other.
  • the cylindrical surface CS assumed when forming the curved surface shape is different from that of the first curved surface shape portion 101.
  • grease may be interposed between the first curved surface shape portion 101 and the second curved surface shape portion 31a in the radial direction for the purpose of reducing friction.
  • the contact between the first curved surface shape portion 101 and the second curved surface shape portion 31a may be either a direct contact or an indirect contact.
  • the elastic member 33 applies an elastic force in the radial direction. Since the support portion 30 has the elastic member 33, the movable body 10 can be supported in a floating state with respect to the fixed body 20 by utilizing the elastic force.
  • the elastic member 33 may be, for example, a leaf spring, a coil spring, or the like.
  • the elastic member 33 may be made of, for example, a resin.
  • the elastic member 33 is held by the first swing support member 31.
  • the first rocking support member 31 is provided with an elastic member accommodating portion 31b that is recessed inward in the radial direction on a surface opposite to the surface on which the second curved surface shape portion 31a is provided.
  • the elastic member 33 is accommodated in the elastic member accommodating portion 31b and fixed to the first swing support member 31.
  • the elastic member 33 accommodated in the elastic member accommodating portion 31b is a leaf spring.
  • the elastic member 33 included in the first pair of support portions 30a applies an elastic force in the direction along the first axis J1.
  • the elastic member 33 included in the second pair of support portions 30b applies an elastic force in the direction along the second axis J2. That is, in the present embodiment, the four elastic members 33 can apply a force toward the swing center O of the movable body 10 to the movable body 10, and the position of the swing center O of the movable body 10 can be stabilized. ..
  • the second swing support member 32 comes into contact with the concave or convex surface provided on the fixed body 20.
  • the shape of the second rocking support member 32 is a convex surface corresponding to the concave surface of the fixed body 20 or a concave surface corresponding to the convex surface of the fixed body 20 to form the second rocking support member 32. It can be swung with respect to the fixed body 20.
  • the second swing support member 32 comes into contact with the concave surface 214 provided on the fixed frame body 21.
  • the concave surface 214 has, for example, a hemispherical shape.
  • the concave surface 214 of the first pair of support portions 30a in contact with the second swing support member 32 is located on the first axis J1.
  • the concave surface 214 of the second pair of support portions 30a in contact with the second swing support member 32 is located on the second axis J2.
  • the second swing support member 32 has a convex surface because the fixed body 20 has a concave surface 214. If the fixed body 20 has a convex surface, the second rocking support member 32 may have a concave surface. The second swing support member 32 is maintained in a state of being fitted and in contact with the concave surface 214 of the fixed body 20 by the elastic force from the elastic member 33.
  • the second swing support member 32 is a ball that comes into contact with the concave surface 214 provided on the fixed body 20. According to this configuration, the second swing support member 32 can be easily obtained at the time of manufacturing.
  • the ball 32 is fixed to the elastic member 33 by welding or adhesion, for example. That is, the ball 32 is handled as a set with the elastic member 33 at the time of assembling the optical unit 1 with the runout correction function.
  • a convex portion may be provided on the elastic member 33.
  • the elastic member 33 also serves as the second swing support member 32.
  • FIG. 8 is a schematic view showing the relationship between the support portion 30 and the fixed body 20.
  • the first swing support member 31 is omitted.
  • the support portion 30 and the fixed body 20 have a structure in which the support portion 30 and the fixed body 20 are fitted to each other by utilizing unevenness, and the support portion 30 is rotatable with respect to the fixed body 20. That is, the support portion 30 is swingably supported by the fixed body 20.
  • the movable body 10 can be swung with respect to the fixed body 20 without using a mechanism for swinging by combining a convex spherical surface and a ball provided so as to be rollable. That is, according to this configuration, the optical unit can be formed without performing the difficult work of arranging the ball alone inside the optical unit, and the productivity of the optical unit 1 with the shake correction function can be improved. ..
  • a gap is provided between the support portion 30 and the fixed body 20 so as not to interfere with the swing of the support portion 30.
  • the first pair of support portions 30a are rotatably supported around the first axis J1 by the fixed body 20. According to this configuration, the movable body 10 can be swung by swinging the first pair of support portions 30a around the first axis J1.
  • the first pair of support portions 30a rotatably support the movable body 10 around the second axis J2.
  • the second curved surface shape portion 31a of each of the first pair of support portions 30a has a cylindrical surface shape similar to that of the first curved surface shape portion 101 of the holder 12 facing in the radial direction.
  • the movable body 10 can be rotatably supported around the second axis by a pair of support portions 30a arranged at positions facing each other on the first axis J1, and the support of the movable body 10 is stable.
  • the movable body 10 can be rotated around two axes while being made to rotate.
  • the second pair of support portions 30b are rotatably supported around the second axis J2 by the fixed body 20, and the movable body 10 is rotatably supported around the first axis J1. According to this configuration, the second pair of support portions 30b can be swung around the second axis J2 to swing the movable body 10. Further, according to this configuration, the first pair of support portions 30a and the second pair of support portions 30b swing the movable body 10 around two axes while stabilizing the support of the movable body 10. be able to.
  • the swing mechanism operates as follows.
  • the first curved surface shape portion 101 facing each second curved surface shape portion 31a of the first pair of support portions 30a becomes the second curved surface shape portion. It gets caught in 31a.
  • the first curved surface shape portion 101 of the second pair of support portions 30b facing each second curved surface shape portion 31a rotates in the circumferential direction of the second curved surface shape portion 31a (cylindrical surface shape). try to. Therefore, the movable body 10 rotates with a small resistance along each second curved surface shape portion 31a of the second pair of support portions 30b. That is, by applying a driving force by the driving mechanism 50, the movable body 10 can be swung around the first axis J1.
  • the swing mechanism when the drive mechanism 50 is driven to rotate the movable body 10 around the second axis J2, the swing mechanism operates as follows.
  • a force for rotating the movable body 10 around the second axis J2 is applied, the first curved surface shape portion 101 facing each second curved surface shape portion 31a of the second pair of support portions 30b becomes the second curved surface shape portion. It gets caught in 31a.
  • the first curved surface shape portion 101 of the first pair of support portions 30a facing each second curved surface shape portion 31a rotates in the circumferential direction of the second curved surface shape portion 31a (cylindrical surface shape). try to. Therefore, the movable body 10 rotates with a small resistance along each second curved surface shape portion 31a of the first pair of support portions 30a. That is, by applying a driving force by the driving mechanism 50, the movable body 10 can be swung around the second axis J2.
  • the optical unit 1 with a runout correction function of the present embodiment when the movable body 10 tries to rotate about the optical axis OA, all the first curved surface shape portions 101 are caught by the second curved surface shape portion 31a. Therefore, it is possible to prevent the movable body 10 from rotating about the optical axis OA. That is, in the present embodiment, it is possible to suppress the swing of the movable body 10 in the rolling direction.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the optical unit 1A with a runout correction function of the first modification.
  • FIG. 9 is a vertical cross-sectional view cut at the same position as in FIG. 6, and a part of the cross section is shown.
  • the fixed body 20A is provided with a convex surface 215, and the second swing support member 32A comes into contact with the convex surface 215.
  • the convex surface 215 may be, for example, all or a part of the convex portion integrally formed on the fixed body 20A by resin molding or the like. Further, as another example, the convex surface 215 may be a part of a pin or a ball attached as a separate member to the fixed body 20A.
  • the second swing support member 32A also serves as an elastic member 33A. The convex surface 215 comes into contact with the concave surface 301 provided on the second swing support member 32A having a function as the elastic member 33A. As a result, the support portion 30A is swingably supported by the fixed body 20.
  • the first swing support member 31 is separated from the bottom surface 201 of the fixed body 20 in the Z direction without being in contact with the bottom surface 201.
  • the second modification has a configuration different from such a configuration.
  • the bottom surface 201 of the fixed body 20 is an end surface of the bottom cover 22 in the + Z direction.
  • FIG. 10 is a schematic view showing the relationship between the first swing support member 31B and the fixed body 20B in the second modification.
  • the fixed body 20B has a bottom surface 201B intersecting the optical axis OA, as in the above-described embodiment.
  • the bottom surface 201B is provided with a support concave surface 2011 that is recessed in the ⁇ Z direction.
  • the support concave surface 2011 has, for example, a cylindrical surface shape.
  • the first swing support member 31B has a convex end surface 311 that is convex in the ⁇ Z direction.
  • the convex end surface 311 is an end surface of the first swing support member 31B in the ⁇ Z direction.
  • the convex end surface 311 comes into contact with the support concave surface 2011.
  • the convex end surface 311 has a shape that allows it to slide in contact with the support concave surface 2011.
  • the convex end surface 311 has, for example, a cylindrical surface shape similar to the support concave surface 2011. That is, the first swing support member 31B is swingably supported by the bottom surface 201B.
  • the other configuration of the first rocking support member 31B is the same as that of the above-described embodiment. Further, grease may be interposed between the convex end surface 311 and the support concave surface 2011 in the Z direction. In this sense, the contact between the first rocking support member 31B and the bottom surface 201B may be either a direct contact or an indirect contact.
  • the support portion 30 is supported by using not only the radial inner surface of the fixed body 20 but also the bottom surface 201B. Therefore, the movable body 10 can be swung around two axes while stabilizing the position of the support portion 30.
  • the present disclosure can be widely used in optical instruments.

Abstract

An optical unit with a shake compensation function comes with a shake compensation function to compensate for the shake of an optical module. The optical unit with the shake compensation function has a movable body having the optical module, a stationary body arranged outward of the movable body in a radial direction based on the optical axis of the optical module, and a support unit for swingably supporting the movable body to the stationary body, the support unit being arranged between the movable body and the stationary body in the radial direction. The support unit is swingably supported by the stationary body.

Description

振れ補正機能付き光学ユニットOptical unit with runout correction function
本開示は、振れ補正機能付き光学ユニットに関する。 The present disclosure relates to an optical unit with a runout correction function.
従来、携帯端末又は移動体に搭載される光学ユニットに、レンズを有する可動体を揺動或いは回転させて振れを補正する機構を設けることが知られる(例えば、特許文献1参照)。このような機構が設けられることにより、携帯端末又は移動体の移動時の撮影画像の乱れを抑制することができる。  Conventionally, it is known that an optical unit mounted on a mobile terminal or a moving body is provided with a mechanism for swinging or rotating a movable body having a lens to correct the runout (see, for example, Patent Document 1). By providing such a mechanism, it is possible to suppress the disturbance of the captured image when the mobile terminal or the moving body is moved.
従来の撮像装置は、被写体画像を得る撮像手段の少なくとも一部を支持する可動部材を、固定部材に対して光学系の光軸上の揺動中心点を中心として球心揺動可能に支持する支持手段を備える。当該撮像装置には、可動部材に設けられ揺動中心点を中心とする球面の一部からなる被支持面と、固定部材に対して被支持面との距離を変化させる接離方向に移動可能な保持部材と、固定部材に対して位置を一定として保持されて被支持面に対して点接触する、光軸を中心とする周方向位置が互いに異なる複数の定位置ボールと、被支持面と保持部材の間に保持されて被支持面に対して点接触する、周方向位置が互いに異なる複数の調整ボールと、が設けられる。被支持面は、可動体の揺動中心点を中心とする球面の一部からなる。 In a conventional imaging device, a movable member that supports at least a part of an imaging means for obtaining a subject image is supported with respect to a fixed member so as to be able to swing around a swing center point on the optical axis of the optical system. Provide supporting means. The image pickup device can move in the contact / separation direction that changes the distance between the supported surface provided on the movable member and a part of the spherical surface centered on the swing center point and the supported surface with respect to the fixed member. Holding member, a plurality of fixed-position balls having different circumferential positions around the optical axis, which are held at a constant position with respect to the fixing member and in point contact with the supported surface, and a supported surface. A plurality of adjusting balls that are held between the holding members and make point contact with the supported surface and have different circumferential positions are provided. The supported surface is composed of a part of a spherical surface centered on the swing center point of the movable body.
日本国公開公報特開2017-116861号公報Japanese Publication No. 2017-116861
可動体を支持する支持機構が、固定体と可動体との間で転動する複数のボールを有する構成では、装置の製造時に複数のボールの取り扱いが容易ではない可能性がある。また、凸の球面を有する可動体で凸の球面を有するボールを転動可能に支持する場合、支持機構の構造が複雑になる可能性がある。  In a configuration in which the support mechanism that supports the movable body has a plurality of balls that roll between the fixed body and the movable body, it may not be easy to handle the plurality of balls at the time of manufacturing the device. Further, when a movable body having a convex spherical surface supports a ball having a convex spherical surface in a rollable manner, the structure of the support mechanism may be complicated.
本開示は、凸の球面とボールとの組み合わせで揺動させる機構を用いることなく、可動体を固定体に対して揺動させることができる振れ補正機能付き光学ユニットを提供することを目的とする。 An object of the present disclosure is to provide an optical unit with a runout correction function capable of swinging a movable body with respect to a fixed body without using a mechanism for swinging a convex spherical surface and a ball in combination. ..
本開示の例示的な振れ補正機能付き光学ユニットは、光学モジュールの振れを補正する振れ補正機能付き光学ユニットであって、前記光学モジュールを有する可動体と、前記光学モジュールの光軸を基準とした径方向において、前記可動体より外方に配置される固定体と、前記可動体と前記固定体との径方向間に配置され、前記可動体を前記固定体に対して揺動可能に支持する支持部と、を有し、前記支持部は、前記固定体に揺動可能に支持される。 The exemplary optical unit with a runout correction function of the present disclosure is an optical unit with a runout correction function that corrects the runout of an optical module, and is based on a movable body having the optical module and an optical axis of the optical module. In the radial direction, a fixed body arranged outside the movable body is arranged between the movable body and the fixed body in the radial direction, and the movable body is swingably supported with respect to the fixed body. It has a support portion, and the support portion is swingably supported by the fixed body.
例示的な本開示の振れ補正機能付き光学ユニットによれば、凸の球面とボールとの組み合わせで揺動させる機構を用いることなく、可動体を固定体に対して揺動させることができる。 According to the exemplary optical unit with a runout correction function of the present disclosure, the movable body can be swung with respect to the fixed body without using a mechanism for swinging the convex spherical surface and the ball in combination.
図1は、本開示の実施形態に係る振れ補正機能付き光学ユニットの概略斜視図である。FIG. 1 is a schematic perspective view of an optical unit with a runout correction function according to the embodiment of the present disclosure. 図2は、本開示の実施形態に係る振れ補正機能付き光学ユニットの分解斜視図である。FIG. 2 is an exploded perspective view of the optical unit with a runout correction function according to the embodiment of the present disclosure. 図3は、本開示の実施形態に係る可動体の分解斜視図である。FIG. 3 is an exploded perspective view of the movable body according to the embodiment of the present disclosure. 図4は、本開示の実施形態に係る固定体の分解斜視図である。FIG. 4 is an exploded perspective view of the fixed body according to the embodiment of the present disclosure. 図5は、図1に示す振れ補正機能付き光学ユニットのトップカバーを取り除いた概略平面図である。FIG. 5 is a schematic plan view of the optical unit with a runout correction function shown in FIG. 1 with the top cover removed. 図6は、図5に示す第1軸J1の位置で切った振れ補正機能付き光学ユニットの概略縦断面図である。FIG. 6 is a schematic vertical sectional view of an optical unit with a runout correction function cut at the position of the first axis J1 shown in FIG. 図7は、第1揺動支持部材とホルダとの関係を模式的に示す図である。FIG. 7 is a diagram schematically showing the relationship between the first rocking support member and the holder. 図8は、支持部と固定体との関係を示す模式図である。FIG. 8 is a schematic view showing the relationship between the support portion and the fixed body. 図9は、第1変形例の振れ補正機能付き光学ユニットの構成を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing the configuration of the optical unit with a runout correction function of the first modification. 図10は、第2変形例における第1揺動支持部材と固定体との関係を示す模式図である。FIG. 10 is a schematic view showing the relationship between the first swing support member and the fixed body in the second modification.
以下、本開示の例示的な実施形態について、図面を参照しながら詳細に説明する。本明細書では、図1に示す光学モジュール11の光軸OAと平行な方向を「光軸方向」、光軸OAを中心として光軸OAと直交する方向を「径方向」とそれぞれ称する。また、本明細書では、互いに直交する3軸をX軸、Y軸、Z軸とする。X軸に沿うX方向のうちの一方側を+X方向、他方側を-X方向とする。Y軸に沿うY方向のうちの一方側を+Y方向、他方側を-Y方向とする。Z軸に沿うZ方向のうちの一方側を+Z方向、他方側を-Z方向とする。なお、Z方向は、光軸方向と平行な方向とする。+Z方向は光学モジュール11の被写体側である。-Z方向は光学モジュール11の反被写体側、すなわち、像側である。また、方位、線、及び面のうちのいずれかと他のいずれかとの位置関係において、「平行」は、両者がどこまで延長しても全く交わらない状態のみならず、実質的に平行である状態を含む。また、「垂直」及び「直交」はそれぞれ、両者が互いに90度で交わる状態のみならず、実質的に垂直である状態及び実質的に直交する状態を含む。つまり、「平行」、「垂直」及び「直交」はそれぞれ、両者の位置関係に本発明の主旨を逸脱しない程度の角度ずれがある状態を含む。  Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the drawings. In the present specification, the direction parallel to the optical axis OA of the optical module 11 shown in FIG. 1 is referred to as "optical axis direction", and the direction orthogonal to the optical axis OA about the optical axis OA is referred to as "radial direction". Further, in the present specification, the three axes orthogonal to each other are defined as the X-axis, the Y-axis, and the Z-axis. One side of the X direction along the X axis is the + X direction, and the other side is the −X direction. One side of the Y direction along the Y axis is the + Y direction, and the other side is the −Y direction. One side of the Z direction along the Z axis is the + Z direction, and the other side is the −Z direction. The Z direction is parallel to the optical axis direction. The + Z direction is the subject side of the optical module 11. The −Z direction is the opposite side of the optical module 11, that is, the image side. Further, in the positional relationship between any one of the orientation, the line, and the surface and any of the other, "parallel" means not only a state in which they do not intersect at all no matter how long they extend, but also a state in which they are substantially parallel. include. Further, "vertical" and "orthogonal" include not only a state in which they intersect each other at 90 degrees, but also a state in which they are substantially vertical and a state in which they are substantially orthogonal to each other. That is, "parallel", "vertical", and "orthogonal" each include a state in which there is an angular deviation in the positional relationship between the two so as not to deviate from the gist of the present invention.
<1.振れ補正機能付き光学ユニットの概要>

図1は、本開示の実施形態に係る振れ補正機能付き光学ユニット1の概略斜視図である。図2は、本開示の実施形態に係る振れ補正機能付き光学ユニット1の分解斜視図である。図1および図2に示すように、振れ補正機能付き光学ユニット1は、可動体10と、固定体20と、支持部30とを有する。振れ補正機能付き光学ユニット1は、トップカバー40を更に有する。可動体10は、固定体20に対して動く。 
<1. Overview of optical unit with runout correction function>

FIG. 1 is a schematic perspective view of an optical unit 1 with a runout correction function according to an embodiment of the present disclosure. FIG. 2 is an exploded perspective view of the optical unit 1 with a runout correction function according to the embodiment of the present disclosure. As shown in FIGS. 1 and 2, the optical unit 1 with a runout correction function has a movable body 10, a fixed body 20, and a support portion 30. The optical unit 1 with a runout correction function further has a top cover 40. The movable body 10 moves with respect to the fixed body 20.
(1-1.可動体)

図3は、本開示の実施形態に係る可動体10の分解斜視図である。図1から図3に示すように、可動体10は、光学モジュール11を有する。本実施形態では、光学モジュール11は、Z方向からの平面視において外形が矩形状である。 
(1-1. Movable body)

FIG. 3 is an exploded perspective view of the movable body 10 according to the embodiment of the present disclosure. As shown in FIGS. 1 to 3, the movable body 10 has an optical module 11. In the present embodiment, the optical module 11 has a rectangular outer shape in a plan view from the Z direction.
光学モジュール11は、いずれもX方向に平行である第1モジュール外面11aと第2モジュール外面11bとを有する。第1モジュール外面11aと第2モジュール外面11bとは、互いにY方向に間隔をあけて対向する。第2モジュール外面11bは、第1モジュール外面11aに対して+Y方向に位置する。光学モジュール11は、いずれもY方向に平行である第3モジュール外面11cと第4モジュール外面11dとを有する。第3モジュール外面11cと第4モジュール外面11dとは、互いにX方向に間隔をあけて対向する。第4モジュール外面11dは、第3モジュール外面11cに対して+X方向に位置する。なお、光学モジュール11の形状は、Z方向からの平面視において、円形状等の他の形状であってもよい。  The optical module 11 has a first module outer surface 11a and a second module outer surface 11b, both of which are parallel to the X direction. The outer surface 11a of the first module and the outer surface 11b of the second module face each other with a gap in the Y direction. The second module outer surface 11b is located in the + Y direction with respect to the first module outer surface 11a. The optical module 11 has a third module outer surface 11c and a fourth module outer surface 11d, both of which are parallel in the Y direction. The outer surface 11c of the third module and the outer surface 11d of the fourth module face each other with a gap in the X direction. The fourth module outer surface 11d is located in the + X direction with respect to the third module outer surface 11c. The shape of the optical module 11 may be another shape such as a circular shape in a plan view from the Z direction.
光学モジュール11は、少なくとも1つの光学素子と、撮像素子とを有する。光学素子にはレンズが含まれ、光学モジュール11は少なくとも1つのレンズを有する。撮像素子は、例えばCCDイメージセンサ又はCMOSイメージセンサであってよい。光学モジュール11は、光学素子を駆動する機構を有してもよい。光学モジュール11の-Z方向の端部からは、モジュール用フレキシブルプリント基板111が引き出される。モジュール用フレキシブルプリント基板111を用いて、撮像素子への電力の供給、撮像素子への信号の入力、および、撮像素子からの信号の出力が行われる。  The optical module 11 has at least one optical element and an image pickup element. The optical element includes a lens, and the optical module 11 has at least one lens. The image sensor may be, for example, a CCD image sensor or a CMOS image sensor. The optical module 11 may have a mechanism for driving the optical element. A flexible printed circuit board 111 for a module is pulled out from an end portion of the optical module 11 in the −Z direction. The flexible printed circuit board 111 for modules is used to supply electric power to the image sensor, input a signal to the image sensor, and output a signal from the image sensor.
図2および図3に示すように、可動体10はホルダ12を有する。ホルダ12は、光学モジュール11の径方向外方に配置される。ホルダ12は、光学モジュール11を保持する。本実施形態においては、ホルダ12は樹脂で構成される。ただし、ホルダ12は樹脂以外の素材で構成されてもよい。ホルダ12は、Z方向からの平面視において、矩形状の枠体である。ホルダ12は、光学モジュール11の外周を囲む。  As shown in FIGS. 2 and 3, the movable body 10 has a holder 12. The holder 12 is arranged outward in the radial direction of the optical module 11. The holder 12 holds the optical module 11. In this embodiment, the holder 12 is made of resin. However, the holder 12 may be made of a material other than resin. The holder 12 is a rectangular frame in a plan view from the Z direction. The holder 12 surrounds the outer circumference of the optical module 11.
詳細には、ホルダ12は、いずれもX方向に平行である第1ホルダ板状部12aと第2ホルダ板状部12bとを有する。第1ホルダ板状部12aと第2ホルダ板状部12bとは、互いにY方向に間隔をあけて対向する。第2ホルダ板状部12bは、第1ホルダ板状部12aに対して+Y方向に位置する。ホルダ12は、いずれもY方向に平行である第3ホルダ板状部12cと第4ホルダ板状部12dとを有する。第3ホルダ板状部12cと第4ホルダ板状部12dとは、互いにX方向に間隔をあけて対向する。第4ホルダ板状部12dは、第3ホルダ板状部12cに対して+X方向に配置される。  Specifically, the holder 12 has a first holder plate-shaped portion 12a and a second holder plate-shaped portion 12b, both of which are parallel in the X direction. The first holder plate-shaped portion 12a and the second holder plate-shaped portion 12b face each other with a gap in the Y direction. The second holder plate-shaped portion 12b is located in the + Y direction with respect to the first holder plate-shaped portion 12a. The holder 12 has a third holder plate-shaped portion 12c and a fourth holder plate-shaped portion 12d, both of which are parallel in the Y direction. The third holder plate-shaped portion 12c and the fourth holder plate-shaped portion 12d face each other with a gap in the X direction. The fourth holder plate-shaped portion 12d is arranged in the + X direction with respect to the third holder plate-shaped portion 12c.
ホルダ12が光学モジュール11を保持した状態において、第1モジュール外面11aと第1ホルダ板状部12aの径方向内方の面とが対向する。また、第2モジュール外面11bと第2ホルダ板状部12bの径方向内方の面とが対向する。また、第3モジュール外面11cと第3ホルダ板状部12cの径方向内方の面とが対向する。また、第4モジュール外面11dと第4ホルダ板状部12dの径方向内方の面とが対向する。  With the holder 12 holding the optical module 11, the outer surface 11a of the first module and the inner surface of the plate-shaped portion 12a of the first holder in the radial direction face each other. Further, the outer surface 11b of the second module and the inner surface of the second holder plate-shaped portion 12b in the radial direction face each other. Further, the outer surface 11c of the third module and the inner surface of the third holder plate-shaped portion 12c in the radial direction face each other. Further, the outer surface 11d of the fourth module and the inner surface of the fourth holder plate-shaped portion 12d in the radial direction face each other.
なお、ホルダ12の形状は、例えば光学モジュール11の形状等に合わせて変更されてよい。また、光学モジュール11は、ホルダ12に固定される。光学モジュール11は、例えば接着剤又は圧入等により、ホルダ12に固定されてよい。光学モジュール11とホルダ12とが接着剤により固定される場合には、各モジュール外面11a~11dと、各ホルダ板状部12a~12dとの径方向間に接着剤が介在してよい。  The shape of the holder 12 may be changed according to, for example, the shape of the optical module 11. Further, the optical module 11 is fixed to the holder 12. The optical module 11 may be fixed to the holder 12 by, for example, an adhesive or press-fitting. When the optical module 11 and the holder 12 are fixed by an adhesive, the adhesive may be interposed between the outer surfaces 11a to 11d of each module and the plate-shaped portions 12a to 12d of each holder in the radial direction.
(1-2.固定体)

図4は、本開示の実施形態に係る固定体20の分解斜視図である。固定体20は、光学モジュール11の光軸OAを基準とした径方向において、可動体10より外方に配置される。図4に示すように、固定体20は、固定枠体21と、ボトムカバー22とを有する。 
(1-2. Fixed body)

FIG. 4 is an exploded perspective view of the fixed body 20 according to the embodiment of the present disclosure. The fixed body 20 is arranged outside the movable body 10 in the radial direction with respect to the optical axis OA of the optical module 11. As shown in FIG. 4, the fixed body 20 has a fixed frame body 21 and a bottom cover 22.
本実施形態において、固定枠体21は樹脂で構成される。ただし、固定枠体21は、樹脂以外の素材で構成されてもよい。固定枠体21は、Z方向からの平面視において矩形状である。詳細には、固定枠体21は、いずれもX方向に平行である第1固定枠体板状部21aと第2固定枠体板状部21bとを有する。第1固定枠体板状部21aと第2固定枠体板状部21bとは、互いにY方向に間隔をあけて対向する。第2固定枠体板状部21bは、第1固定枠体板状部21aに対して+Y方向に位置する。固定枠体21は、いずれもY方向に平行である第3固定枠体板状部21cと第4固定枠体板状部21dとを有する。第3固定枠体板状部21cと第4固定枠体板状部21dとは、互いにX方向に間隔をあけて対向する。第4固定枠体板状部21dは、第3固定枠体板状部21cに対して+X方向に配置される。なお、第4固定枠体板状部21dの-Z方向の端面には、+Z方向に凹む切欠き211が設けられる。モジュール用フレキシブルプリント基板111は、固定枠体21の内部から切欠き211を通って外部に引き出される。  In the present embodiment, the fixed frame 21 is made of resin. However, the fixed frame 21 may be made of a material other than resin. The fixed frame body 21 has a rectangular shape in a plan view from the Z direction. Specifically, the fixed frame body 21 has a first fixed frame body plate-shaped portion 21a and a second fixed frame body plate-shaped portion 21b that are parallel to each other in the X direction. The first fixed frame plate-shaped portion 21a and the second fixed frame plate-shaped portion 21b face each other with a gap in the Y direction. The second fixed frame plate-shaped portion 21b is located in the + Y direction with respect to the first fixed frame plate-shaped portion 21a. The fixed frame body 21 has a third fixed frame body plate-shaped portion 21c and a fourth fixed frame body plate-shaped portion 21d, both of which are parallel in the Y direction. The third fixed frame plate-shaped portion 21c and the fourth fixed frame plate-shaped portion 21d face each other with a gap in the X direction. The fourth fixed frame plate-shaped portion 21d is arranged in the + X direction with respect to the third fixed frame plate-shaped portion 21c. A notch 211 recessed in the + Z direction is provided on the end face of the fourth fixed frame plate-shaped portion 21d in the −Z direction. The module flexible printed circuit board 111 is pulled out from the inside of the fixed frame 21 through the notch 211 to the outside.
可動体10が固定枠体21の径方向内方に配置された状態においては、第1ホルダ板状部12aが第1固定枠体板状部21aに、第2ホルダ板状部12bが第2固定枠体板状部21bに、第3ホルダ板状部12cが第3固定枠体板状部21cに、第4ホルダ板状部12dが第4固定枠体板状部21dに、それぞれ径方向に間隔をあけて対向する。  When the movable body 10 is arranged inward in the radial direction of the fixed frame body 21, the first holder plate-shaped portion 12a is attached to the first fixed frame plate-shaped portion 21a, and the second holder plate-shaped portion 12b is second. The fixed frame plate-shaped portion 21b, the third holder plate-shaped portion 12c to the third fixed frame plate-shaped portion 21c, and the fourth holder plate-shaped portion 12d to the fourth fixed frame plate-shaped portion 21d in the radial direction. Oppose at intervals.
ボトムカバー22は、Z方向からの平面視において矩形状の板状体である。ボトムカバー22は、例えば樹脂で構成される。ただし、ボトムカバー22は別の素材で構成されてよい。ボトムカバー22は、固定枠体21の-Z方向の端面に固定される。ボトムカバー22の固定手法は、例えば接着又はねじ止め等であってよい。ボトムカバー22は、Z方向において、可動体10と間隔をあけて配置される。  The bottom cover 22 is a rectangular plate-like body in a plan view from the Z direction. The bottom cover 22 is made of, for example, a resin. However, the bottom cover 22 may be made of another material. The bottom cover 22 is fixed to the end face of the fixed frame 21 in the −Z direction. The fixing method of the bottom cover 22 may be, for example, adhesion or screwing. The bottom cover 22 is arranged at intervals from the movable body 10 in the Z direction.
なお、本実施形態では、固定枠体21とボトムカバー22とは別部材であるが、両者は単一部材であってもよい。すなわち、固定体20は箱状であってもよい。固定枠体21とボトムカバー22とが別部材である場合において、固定枠体21とボトムカバー22とは、同じ素材で構成されてもよいが、別の素材で構成されてもよい。また、固定体20は、固定枠体21のみを有し、ボトムカバー22を有さなくてもよい。 In the present embodiment, the fixed frame body 21 and the bottom cover 22 are separate members, but both may be single members. That is, the fixed body 20 may have a box shape. When the fixed frame body 21 and the bottom cover 22 are separate members, the fixed frame body 21 and the bottom cover 22 may be made of the same material, but may be made of different materials. Further, the fixed body 20 has only the fixed frame body 21 and does not have to have the bottom cover 22.
(1-3.支持部)

図5は、図1に示す振れ補正機能付き光学ユニット1のトップカバー40を取り除いた概略平面図である。図5は、+Z方向から-Z方向に向かって振れ補正機能付き光学ユニット1を見た図である。図5においては、フレキシブルプリント基板111、54は省略されている。図2および図5に示すように、振れ補正機能付き光学ユニット1は複数の支持部30を有する。すなわち、支持部30は複数である。詳細には、振れ補正機能付き光学ユニット1は4つの支持部30を有する。ただし、支持部30の数は4つ以外であってよく、例えば2つ等であってもよい。 
(1-3. Support part)

FIG. 5 is a schematic plan view of the optical unit 1 with a runout correction function shown in FIG. 1 with the top cover 40 removed. FIG. 5 is a view of the optical unit 1 with a runout correction function from the + Z direction to the −Z direction. In FIG. 5, flexible printed circuit boards 111 and 54 are omitted. As shown in FIGS. 2 and 5, the optical unit 1 with a runout correction function has a plurality of support portions 30. That is, there are a plurality of support portions 30. Specifically, the optical unit 1 with a runout correction function has four support portions 30. However, the number of support portions 30 may be other than four, and may be, for example, two.
支持部30は、可動体10と固定体20との径方向間に配置される。支持部30は、可動体10を固定体20に対して揺動可能に支持する。詳細には、複数の支持部30により、可動体10は固定体20に対して揺動可能に支持される。本実施形態では、4つの支持部30により、可動体10は固定体20に対して揺動可能に支持される。  The support portion 30 is arranged between the movable body 10 and the fixed body 20 in the radial direction. The support portion 30 swingably supports the movable body 10 with respect to the fixed body 20. Specifically, the movable body 10 is swingably supported with respect to the fixed body 20 by the plurality of support portions 30. In the present embodiment, the movable body 10 is swingably supported with respect to the fixed body 20 by the four support portions 30.
4つの支持部30は、Z方向からの平面視おいて矩形状の固定体20の四隅に配置される。詳細には、4つの支持部30は、固定枠体21の四隅に配置される。図4に示すように、固定枠体21の四隅には、当該固定枠体21の内面が径方向外方に凹む枠体凹部212が設けられる。各支持部30は、各枠体凹部212に収容される。  The four support portions 30 are arranged at the four corners of the rectangular fixed body 20 in a plan view from the Z direction. Specifically, the four support portions 30 are arranged at the four corners of the fixed frame body 21. As shown in FIG. 4, at the four corners of the fixed frame body 21, frame body recesses 212 in which the inner surface of the fixed frame body 21 is recessed outward in the radial direction are provided. Each support portion 30 is housed in each frame body recess 212.
複数の支持部30には、第1の一対の支持部30aが含まれる。また、複数の支持部30には、第2の一対の支持部30bが更に含まれる。第1の一対の支持部30aは、光軸方向(Z方向)からの平面視において、光軸OAを通る第1軸J1上で互いに対向する。詳細には、第1の一対の支持部30aは、可動体10を挟んで対向する。第2の一対の支持部30bは、光軸方向(Z方向)からの平面視において、第2軸J2上で互いに対向する。第2軸J2は、光軸OA上で第1軸J1と交差する。詳細には、第2の一対の支持部30bは、可動体10を挟んで対向する。なお、本実施形態では、第1軸J1と第2軸J2とは直交する。ただし、第1軸J1と第2軸J2とは直交しなくてもよい。  The plurality of support portions 30 include a first pair of support portions 30a. Further, the plurality of support portions 30 further include a second pair of support portions 30b. The first pair of support portions 30a face each other on the first axis J1 passing through the optical axis OA in a plan view from the optical axis direction (Z direction). Specifically, the first pair of support portions 30a face each other with the movable body 10 interposed therebetween. The second pair of support portions 30b face each other on the second axis J2 in a plan view from the optical axis direction (Z direction). The second axis J2 intersects the first axis J1 on the optical axis OA. Specifically, the second pair of support portions 30b face each other with the movable body 10 interposed therebetween. In this embodiment, the first axis J1 and the second axis J2 are orthogonal to each other. However, the first axis J1 and the second axis J2 do not have to be orthogonal to each other.
4つの支持部30により支持される可動体10は、第1軸J1回りに回転可能である。また、可動体10は、第2軸J2回りに回転可能である。支持部30の更なる詳細構成、および、可動体10を固定体20に対して揺動可能とする揺動機構の詳細については後述する。  The movable body 10 supported by the four support portions 30 is rotatable around the first axis J1. Further, the movable body 10 can rotate around the second axis J2. Further detailed configurations of the support portion 30 and details of the swing mechanism that enables the movable body 10 to swing with respect to the fixed body 20 will be described later.
(1-4.トップカバー)

トップカバー40は、固定体20の+Z方向の端面上に配置される。トップカバー40は、固定体20に固定される。このため、トップカバー40も固定体20の一部と見なしてもよい。トップカバー40の固定手法は、例えば接着又はねじ止め等であってよい。本実施形態では、トップカバー40は枠体状であり、トップカバー40が固定体20に取り付けられた状態で、可動体10の一部がトップカバー40より+Z方向に突出する。トップカバー40は、可動体10が揺動した場合にも接触しない形状およびサイズとされている。 
(1-4. Top cover)

The top cover 40 is arranged on the end face of the fixed body 20 in the + Z direction. The top cover 40 is fixed to the fixed body 20. Therefore, the top cover 40 may also be regarded as a part of the fixed body 20. The fixing method of the top cover 40 may be, for example, adhesion or screwing. In the present embodiment, the top cover 40 has a frame shape, and a part of the movable body 10 protrudes from the top cover 40 in the + Z direction in a state where the top cover 40 is attached to the fixed body 20. The top cover 40 has a shape and size that does not come into contact with the movable body 10 even when the movable body 10 swings.
トップカバー40は、例えば樹脂で構成される。ただし、トップカバー40は別の素材で構成されてよい。トップカバー40は、固定体20を構成する固定枠体21およびボトムカバー22と同じ素材で構成されてもよいが、別の素材で構成されてもよい。また、振れ補正機能付き光学ユニット1は、トップカバー40を有さなくてもよい。  The top cover 40 is made of, for example, resin. However, the top cover 40 may be made of another material. The top cover 40 may be made of the same material as the fixed frame 21 and the bottom cover 22 constituting the fixed body 20, but may be made of different materials. Further, the optical unit 1 with a runout correction function does not have to have the top cover 40.
(1-5.駆動機構)

図5に示すように、振れ補正機能付き光学ユニット1は、可動体10を揺動させる駆動機構50を有する。駆動機構50は、磁気駆動機構である。駆動機構50は、磁石51とコイル52との組を2組有する。本実施形態では、図3および図5に示すように、磁石51は、ホルダ12に保持される。図4に示すように、コイル52は、固定枠体21に保持される。ただし、磁石51が固定枠体21に保持され、コイル52がホルダ12に保持される構成としてもよい。 
(1-5. Drive mechanism)

As shown in FIG. 5, the optical unit 1 with a runout correction function has a drive mechanism 50 that swings the movable body 10. The drive mechanism 50 is a magnetic drive mechanism. The drive mechanism 50 has two sets of a magnet 51 and a coil 52. In this embodiment, as shown in FIGS. 3 and 5, the magnet 51 is held by the holder 12. As shown in FIG. 4, the coil 52 is held by the fixed frame body 21. However, the magnet 51 may be held by the fixed frame 21 and the coil 52 may be held by the holder 12.
詳細には、第2ホルダ板状部12bは、径方向外方の面に-Y方向に凹む溝部121を有する。第3ホルダ板状部12cは、径方向外方の面に+X方向に凹む溝部121を有する。各溝部121に、矩形板状の磁石51が配置される。なお、本実施形態では、図5に示すように、好ましい形態として、磁石51とホルダ12との径方向間に、ヨーク53が配置される。また、第2固定枠体板状部21bおよび第3固定枠体板状部21cは、それぞれ、径方向に貫通するコイル用貫通孔213を有する。各コイル用貫通孔213内にコイル52が配置される。詳細には、コイル52は、第2固定枠体板状部21bおよび第3固定枠体板状部21cの径方向外方の面に沿って配置されるコイル用フレキシブルプリント基板54に支持される。コイル用フレキシブルプリント基板54は、固定枠体21に保持される。  Specifically, the second holder plate-shaped portion 12b has a groove portion 121 recessed in the −Y direction on the outer surface in the radial direction. The third holder plate-shaped portion 12c has a groove portion 121 recessed in the + X direction on the outer surface in the radial direction. A rectangular plate-shaped magnet 51 is arranged in each groove 121. In this embodiment, as shown in FIG. 5, the yoke 53 is preferably arranged between the magnet 51 and the holder 12 in the radial direction. Further, the second fixed frame plate-shaped portion 21b and the third fixed frame plate-shaped portion 21c each have a coil through hole 213 penetrating in the radial direction. The coil 52 is arranged in the through hole 213 for each coil. Specifically, the coil 52 is supported by a flexible printed circuit board 54 for a coil arranged along the radial outer surface of the second fixed frame plate-shaped portion 21b and the third fixed frame plate-shaped portion 21c. .. The coil flexible printed circuit board 54 is held by the fixed frame body 21.
第2ホルダ板状部12bに保持される磁石51と、第2固定枠体板状部21bのコイル用貫通孔213内に配置されるコイル52とが一つの組をなす。第3ホルダ板状部12cに保持される磁石51と、第3固定枠体板状部21cのコイル用貫通孔213内に配置されるコイル52とがもう一つの組をなす。Z方向からの平面視において矩形状である振れ補正機能付き光学ユニット1は、X方向に平行な1つの辺と、Y方向に平行な1つの辺とのそれぞれに、磁石51とコイル52の組を有する。  The magnet 51 held by the second holder plate-shaped portion 12b and the coil 52 arranged in the coil through hole 213 of the second fixed frame plate-shaped portion 21b form a set. The magnet 51 held by the third holder plate-shaped portion 12c and the coil 52 arranged in the coil through hole 213 of the third fixed frame plate-shaped portion 21c form another set. The optical unit 1 with a runout correction function, which is rectangular in a plan view from the Z direction, has a set of a magnet 51 and a coil 52 on one side parallel to the X direction and one side parallel to the Y direction, respectively. Has.
各磁石51は、径方向外方の面の磁極がZ方向の中央位置を境界として異なる構成である。また、各コイル52は空芯コイルである。各コイル52において、+Z方向および-Z方向に配置される長辺が有効辺として利用される。各コイル52への電力の供給は、コイル用フレキシブルプリント基板54を利用して行われる。  Each magnet 51 has a configuration in which the magnetic poles on the outer surface in the radial direction are different from each other with the central position in the Z direction as a boundary. Further, each coil 52 is an air-core coil. In each coil 52, long sides arranged in the + Z direction and the −Z direction are used as effective sides. Power is supplied to each coil 52 by using a flexible printed circuit board 54 for coils.
なお、磁石51とコイル52の組の配置の仕方は、別の構成としてもよい。例えば、Z方向からの平面視において矩形状である振れ補正機能付き光学ユニット1の4つの辺のそれぞれに、磁石51とコイル52の組が配置される構成としてもよい。すなわち、磁石51とコイル52との組が4組配置されてもよい。  The arrangement of the set of the magnet 51 and the coil 52 may be different. For example, a pair of a magnet 51 and a coil 52 may be arranged on each of the four sides of the optical unit 1 with a runout correction function, which is rectangular in a plan view from the Z direction. That is, four sets of the magnet 51 and the coil 52 may be arranged.
駆動機構50の駆動により、可動体10を第1軸J1回りと第2軸J2回りとに回転させることができる。振れ補正機能付き光学ユニット1においては、当該回転を利用して可動体10を揺動させることができる。すなわち、振れ補正機能付き光学ユニット1は、光学モジュール11の振れを補正する振れ補正機能付きである。詳細には、振れ補正機能付き光学ユニット1は、第1軸J1回りの振れ補正と、第2軸J2回りの振れ補正とを行うことができる。換言すると、振れ補正機能付き光学ユニット1は、ピッチング方向の振れ補正と、ヨーイング方向の振れ補正とを行うことができる。  By driving the drive mechanism 50, the movable body 10 can be rotated around the first axis J1 and around the second axis J2. In the optical unit 1 with a runout correction function, the movable body 10 can be swung by utilizing the rotation. That is, the optical unit 1 with a runout correction function has a runout correction function for correcting the runout of the optical module 11. Specifically, the optical unit 1 with a runout correction function can perform runout correction around the first axis J1 and runout correction around the second axis J2. In other words, the optical unit 1 with a runout correction function can perform runout correction in the pitching direction and runout correction in the yawing direction.
なお、振れ補正機能付き光学ユニット1は、例えば、カメラ付き携帯電話機、ドライブレコーダ等の撮影機器、アクションカメラ、又は、ウェアラブルカメラ等の光学機器に搭載される。これらの光学機器では、撮影時に光学モジュール11が傾いて撮影画像が乱れることがある。振れ補正機能付き光学ユニット1は、このような撮影画像の乱れを回避するために、ジャイロスコープ等の検出手段で検出された加速度、角速度、および、振れ量等に基づいて、光学モジュール11の傾きを補正する。なお、アクションカメラは、例えばヘルメット、自転車、ラジコンヘリコプター等の移動体に搭載される。 The optical unit 1 with a shake correction function is mounted on, for example, a mobile phone with a camera, a photographing device such as a drive recorder, an action camera, or an optical device such as a wearable camera. In these optical devices, the optical module 11 may be tilted during shooting and the captured image may be distorted. The optical unit 1 with a shake correction function tilts the optical module 11 based on the acceleration, the angular velocity, the amount of runout, etc. detected by a detection means such as a gyroscope in order to avoid such disturbance of the captured image. To correct. The action camera is mounted on a moving body such as a helmet, a bicycle, or a radio-controlled helicopter.
<2.揺動機構の詳細>

次に、可動体10を固定体20に対して揺動可能とする揺動機構について詳細に説明する。 
<2. Details of rocking mechanism>

Next, a swing mechanism that allows the movable body 10 to swing with respect to the fixed body 20 will be described in detail.
図6は、図5に示す第1軸J1の位置で切った振れ補正機能付き光学ユニット1の概略縦断面図である。図6においては、断面の一部が示されている。図2および図6に示すように、支持部30は、第1揺動支持部材31と第2揺動支持部材32とを有する。また、支持部30は、弾性部材33を有する。なお、本実施形態では、上述のように振れ補正機能付き光学ユニット1は4つの支持部30を有する。これら4つの支持部30の構成は同様である。すなわち、各支持部30は、いずれも、第1揺動支持部材31と、第2揺動支持部材32と、弾性部材33とを有する。  FIG. 6 is a schematic vertical cross-sectional view of the optical unit 1 with a runout correction function cut at the position of the first axis J1 shown in FIG. In FIG. 6, a part of the cross section is shown. As shown in FIGS. 2 and 6, the support portion 30 has a first rocking support member 31 and a second rocking support member 32. Further, the support portion 30 has an elastic member 33. In the present embodiment, as described above, the optical unit 1 with a runout correction function has four support portions 30. The configurations of these four support portions 30 are the same. That is, each of the support portions 30 has a first rocking support member 31, a second rocking support member 32, and an elastic member 33.
第1揺動支持部材31の詳細を説明するにあたって、可動体10の詳細構成を先に説明する。図3および図6に示すように、可動体10は第1曲面形状部101を有する。詳細には、ホルダ12が第1曲面形状部101を有する。本構成によれば、第1曲面形状部101を有するホルダ12を光学モジュール11に後付けすることができ、例えば設計の自由度が向上する。なお、ホルダ12をなくして、光学モジュール11に第1曲面形状部101を設ける構成としてもよい。図3に示すように、ホルダ12は、四隅の径方向外面に第1曲面形状部101を有する。  In explaining the details of the first swing support member 31, the detailed configuration of the movable body 10 will be described first. As shown in FIGS. 3 and 6, the movable body 10 has a first curved surface shape portion 101. Specifically, the holder 12 has a first curved surface shape portion 101. According to this configuration, the holder 12 having the first curved surface shape portion 101 can be retrofitted to the optical module 11, for example, the degree of freedom in design is improved. The holder 12 may be eliminated and the optical module 11 may be provided with the first curved surface shape portion 101. As shown in FIG. 3, the holder 12 has a first curved surface shape portion 101 on the radial outer surfaces of the four corners.
図7は、第1揺動支持部材31とホルダ12との関係を模式的に示す図である。図6および図7に示すように、第1揺動支持部材31においては、第1曲面形状部101と径方向に対向する面に第2曲面形状部31aが形成されている。第1揺動支持部材31は、可動体10に設けられる第1曲面形状部101に接触する第2曲面形状部31aを有する。詳細には、ホルダ12に設けられる第1曲面形状部101は、第2曲面形状部31aに対して接触しながら滑ることが可能になっている。  FIG. 7 is a diagram schematically showing the relationship between the first swing support member 31 and the holder 12. As shown in FIGS. 6 and 7, in the first rocking support member 31, the second curved surface shape portion 31a is formed on a surface facing the first curved surface shape portion 101 in the radial direction. The first swing support member 31 has a second curved surface shape portion 31a that comes into contact with the first curved surface shape portion 101 provided on the movable body 10. Specifically, the first curved surface shape portion 101 provided on the holder 12 can slide while being in contact with the second curved surface shape portion 31a.
本実施形態において、第1揺動支持部材31は、径方向からの平面視において矩形状である。第1揺動支持部材31は、ホルダ12と同様に樹脂で構成される。ただし、第1揺動支持部材31は樹脂以外の素材で構成されてもよい。第1揺動支持部材31を構成する樹脂は、ホルダ12を構成する樹脂と同じ素材であってもよいが、異なる素材であってもよい。また、第1曲面形状部101および第2曲面形状部31aのうち少なくとも一方には、滑り性を良くするコーティング層、又は、耐摩耗性を向上するコーティング層が設けられてよい。  In the present embodiment, the first rocking support member 31 has a rectangular shape in a plan view from the radial direction. The first rocking support member 31 is made of resin like the holder 12. However, the first swing support member 31 may be made of a material other than resin. The resin constituting the first rocking support member 31 may be the same material as the resin constituting the holder 12, but may be a different material. Further, at least one of the first curved surface shape portion 101 and the second curved surface shape portion 31a may be provided with a coating layer for improving slipperiness or a coating layer for improving wear resistance.
詳細には、第1曲面形状部101および第2曲面形状部31aは、円筒面形状である。本構成によれば、可動体10および支持部30に部品管理の負担が大きくなり易い球面形状を形成する必要がなく、振れ補正機能付き光学ユニット1の生産性を向上することができる。図6に示す例では、第1曲面形状部101および第2曲面形状部31aは、可動体10の揺動中心Oを中心とし、第2軸J2方向に延びる円筒の外周面(円筒面)CSの一部分を転写した形状である。なお、図6において、第2軸J2は、紙面と直交する方向に延びる。第1軸J1および第2軸J2は揺動中心Oを通る。揺動中心Oは、例えば可動体10の重心であってよいが、重心からずれた位置であってもよい。  Specifically, the first curved surface shape portion 101 and the second curved surface shape portion 31a have a cylindrical surface shape. According to this configuration, it is not necessary to form a spherical shape on the movable body 10 and the support portion 30 in which the burden of component management tends to increase, and the productivity of the optical unit 1 with a runout correction function can be improved. In the example shown in FIG. 6, the first curved surface shape portion 101 and the second curved surface shape portion 31a are the outer peripheral surface (cylindrical surface) CS of the cylinder extending in the second axis J2 direction with the swing center O of the movable body 10 as the center. It is a shape that is a transfer of a part of. In FIG. 6, the second axis J2 extends in a direction orthogonal to the paper surface. The first axis J1 and the second axis J2 pass through the swing center O. The swing center O may be, for example, the center of gravity of the movable body 10, but may be a position deviated from the center of gravity.
なお、図6が第2軸J2の位置で切った断面図である場合には、第1曲面形状部101および第2曲面形状部31aは、可動体10の揺動中心Oを中心とし、第1軸J1方向に延びる円筒の外周面(円筒面)CSの一部分を転写した形状になる。すなわち、第1軸J1上で対向する第1の一対の支持部30aと、第2軸J2で対向する第2の一対の支持部30bとでは、第2曲面形状部31aを形成する際に想定される円筒面CSが異なる。同様に、第1の一対の支持部30aが有する各第2曲面形状部31aと接触する第1曲面形状部101と、第2の一対の支持部30bが有する各第2曲面形状部31aと接触する第1曲面形状部101とでは、曲面形状を形成する際に想定される円筒面CSが異なる。  When FIG. 6 is a cross-sectional view cut at the position of the second axis J2, the first curved surface shape portion 101 and the second curved surface shape portion 31a are centered on the swing center O of the movable body 10. A part of the outer peripheral surface (cylindrical surface) CS of the cylinder extending in the uniaxial J1 direction is transferred. That is, it is assumed that the first pair of support portions 30a facing each other on the first axis J1 and the second pair of support portions 30b facing each other on the second axis J2 form the second curved surface shape portion 31a. The cylindrical surface CS to be formed is different. Similarly, the first curved surface shape portion 101 in contact with each of the second curved surface shape portions 31a of the first pair of support portions 30a and the second curved surface shape portion 31a of each of the second pair of support portions 30b are in contact with each other. The cylindrical surface CS assumed when forming the curved surface shape is different from that of the first curved surface shape portion 101.
また、第1曲面形状部101と第2曲面形状部31aとの径方向間には、摩擦を低下する目的でグリスが介在されてもよい。このような意味で、第1曲面形状部101と第2曲面形状部31aとの接触は、直接的な接触と間接的な接触とのうちのいずれであってもよい。  Further, grease may be interposed between the first curved surface shape portion 101 and the second curved surface shape portion 31a in the radial direction for the purpose of reducing friction. In this sense, the contact between the first curved surface shape portion 101 and the second curved surface shape portion 31a may be either a direct contact or an indirect contact.
弾性部材33は、径方向に弾性力を付与する。支持部30が弾性部材33を有することにより、弾性力を利用して可動体10を固定体20に対して浮いた状態で支持することができる。弾性部材33は、例えば、板バネ又はコイルバネ等であってよい。弾性部材33は、例えば樹脂で構成されてよい。 The elastic member 33 applies an elastic force in the radial direction. Since the support portion 30 has the elastic member 33, the movable body 10 can be supported in a floating state with respect to the fixed body 20 by utilizing the elastic force. The elastic member 33 may be, for example, a leaf spring, a coil spring, or the like. The elastic member 33 may be made of, for example, a resin.
本実施形態では、図2および図6に示すように、弾性部材33は、第1揺動支持部材31に保持される。第1揺動支持部材31は、第2曲面形状部31aが設けられる面の反対側の面に、径方向内方に凹む弾性部材収容部31bが設けられる。弾性部材33は、弾性部材収容部31bに収容されて第1揺動支持部材31に固定される。本実施形態では、弾性部材収容部31bに収容される弾性部材33は板バネである。  In this embodiment, as shown in FIGS. 2 and 6, the elastic member 33 is held by the first swing support member 31. The first rocking support member 31 is provided with an elastic member accommodating portion 31b that is recessed inward in the radial direction on a surface opposite to the surface on which the second curved surface shape portion 31a is provided. The elastic member 33 is accommodated in the elastic member accommodating portion 31b and fixed to the first swing support member 31. In the present embodiment, the elastic member 33 accommodated in the elastic member accommodating portion 31b is a leaf spring.
第1の一対の支持部30aが有する弾性部材33は、第1軸J1に沿う方向に弾性力を付与する。第2の一対の支持部30bが有する弾性部材33は、第2軸J2に沿う方向に弾性力を付与する。すなわち、本実施形態では、4つの弾性部材33によって可動体10の揺動中心Oに向かう力を可動体10に与えることができ、可動体10の揺動中心Oの位置を安定させることができる。  The elastic member 33 included in the first pair of support portions 30a applies an elastic force in the direction along the first axis J1. The elastic member 33 included in the second pair of support portions 30b applies an elastic force in the direction along the second axis J2. That is, in the present embodiment, the four elastic members 33 can apply a force toward the swing center O of the movable body 10 to the movable body 10, and the position of the swing center O of the movable body 10 can be stabilized. ..
第2揺動支持部材32は、固定体20に設けられる凹面又は凸面と接触する。本構成によれば、第2揺動支持部材32の形状を固定体20の凹面に対応した凸面、又は、固定体20の凸面に対応した凹面とすることで、第2揺動支持部材32を固定体20に対して揺動させることができる。  The second swing support member 32 comes into contact with the concave or convex surface provided on the fixed body 20. According to this configuration, the shape of the second rocking support member 32 is a convex surface corresponding to the concave surface of the fixed body 20 or a concave surface corresponding to the convex surface of the fixed body 20 to form the second rocking support member 32. It can be swung with respect to the fixed body 20.
図6に示すように、本実施形態では、第2揺動支持部材32は、固定枠体21に設けられる凹面214に接触する。凹面214は、例えば半球面状である。第1の一対の支持部30aが有する第2揺動支持部材32と接触する凹面214は、第1軸J1上に位置する。第2の一対の支持部30aが有する第2揺動支持部材32と接触する凹面214は、第2軸J2上に位置する。


As shown in FIG. 6, in the present embodiment, the second swing support member 32 comes into contact with the concave surface 214 provided on the fixed frame body 21. The concave surface 214 has, for example, a hemispherical shape. The concave surface 214 of the first pair of support portions 30a in contact with the second swing support member 32 is located on the first axis J1. The concave surface 214 of the second pair of support portions 30a in contact with the second swing support member 32 is located on the second axis J2.


第2揺動支持部材32は、固定体20が凹面214を有するために凸面を有する。なお、第2揺動支持部材32は、固定体20が凸面を有する場合には凹面を有する構成とすればよい。第2揺動支持部材32は、弾性部材33からの弾性力により、固定体20の凹面214に嵌って接触した状態を維持される。  The second swing support member 32 has a convex surface because the fixed body 20 has a concave surface 214. If the fixed body 20 has a convex surface, the second rocking support member 32 may have a concave surface. The second swing support member 32 is maintained in a state of being fitted and in contact with the concave surface 214 of the fixed body 20 by the elastic force from the elastic member 33.
本実施形態では、第2揺動支持部材32は、固定体20に設けられる凹面214と接触するボールである。本構成によれば、製造時に第2揺動支持部材32を入手し易くすることができる。ボール32は、例えば溶接又は接着により弾性部材33に固定される。すなわち、ボール32は、振れ補正機能付き光学ユニット1の組立時においては、弾性部材33とセットになって扱われる。なお、ボール32を弾性部材33に固定する替わりに、弾性部材33に凸部を設ける構成としてもよい。この構成の場合には、弾性部材33が、第2揺動支持部材32を兼ねることになる。  In the present embodiment, the second swing support member 32 is a ball that comes into contact with the concave surface 214 provided on the fixed body 20. According to this configuration, the second swing support member 32 can be easily obtained at the time of manufacturing. The ball 32 is fixed to the elastic member 33 by welding or adhesion, for example. That is, the ball 32 is handled as a set with the elastic member 33 at the time of assembling the optical unit 1 with the runout correction function. Instead of fixing the ball 32 to the elastic member 33, a convex portion may be provided on the elastic member 33. In the case of this configuration, the elastic member 33 also serves as the second swing support member 32.
図8は、支持部30と固定体20との関係を示す模式図である。なお、図8においては、第1揺動支持部材31は省略されている。図8に示すように、支持部30と固定体20とは、凹凸を利用して嵌め合った構成であり、支持部30は固定体20に対して回転可能である。すなわち、支持部30は、固定体20に揺動可能に支持される。このような構成とすることにより、凸の球面と転動可能に設けられるボールとの組み合わせで揺動させる機構を用いることなく、可動体10を固定体20に対して揺動させることができる。すなわち、本構成によれば、ボール単体を光学ユニットの内部に配置するという難しい作業を行うことなく光学ユニットを形成することができ、振れ補正機能付き光学ユニット1の生産性を向上することができる。  FIG. 8 is a schematic view showing the relationship between the support portion 30 and the fixed body 20. In FIG. 8, the first swing support member 31 is omitted. As shown in FIG. 8, the support portion 30 and the fixed body 20 have a structure in which the support portion 30 and the fixed body 20 are fitted to each other by utilizing unevenness, and the support portion 30 is rotatable with respect to the fixed body 20. That is, the support portion 30 is swingably supported by the fixed body 20. With such a configuration, the movable body 10 can be swung with respect to the fixed body 20 without using a mechanism for swinging by combining a convex spherical surface and a ball provided so as to be rollable. That is, according to this configuration, the optical unit can be formed without performing the difficult work of arranging the ball alone inside the optical unit, and the productivity of the optical unit 1 with the shake correction function can be improved. ..
なお、支持部30と固定体20との間には、支持部30の揺動を邪魔しない隙間が設けられている。  A gap is provided between the support portion 30 and the fixed body 20 so as not to interfere with the swing of the support portion 30.
詳細には、第1の一対の支持部30aは、固定体20により第1軸J1回りに回転可能に支持される。本構成によれば、第1の一対の支持部30aを第1軸J1回りに揺動させて、可動体10を揺動させることが可能になる。  Specifically, the first pair of support portions 30a are rotatably supported around the first axis J1 by the fixed body 20. According to this configuration, the movable body 10 can be swung by swinging the first pair of support portions 30a around the first axis J1.
別の見方をすると、第1の一対の支持部30aは、可動体10を、第2軸J2回りに回転可能に支持する。これは、第1の一対の支持部30aのそれぞれが有する第2曲面形状部31aが、径方向に対向するホルダ12の第1曲面形状部101と同様の円筒面形状を有することによる。本構成よれば、第1軸J1上で互いに対向する位置に配置される一対の支持部30aにより可動体10を第2軸回りに回転可能に支持することができ、可動体10の支持を安定させつつ、可動体10を2つの軸回りで回転させることができる。  From another point of view, the first pair of support portions 30a rotatably support the movable body 10 around the second axis J2. This is because the second curved surface shape portion 31a of each of the first pair of support portions 30a has a cylindrical surface shape similar to that of the first curved surface shape portion 101 of the holder 12 facing in the radial direction. According to this configuration, the movable body 10 can be rotatably supported around the second axis by a pair of support portions 30a arranged at positions facing each other on the first axis J1, and the support of the movable body 10 is stable. The movable body 10 can be rotated around two axes while being made to rotate.
また、第2の一対の支持部30bは、固定体20により第2軸J2回りに回転可能に支持されるとともに、可動体10を第1軸J1回りに回転可能に支持する。本構成によれば、第2の一対の支持部30bを第2軸J2回りに揺動させて、可動体10を揺動させることが可能になる。更に、本構成によれば、第1の一対の支持部30aと第2の一対の支持部30bとにより、可動体10の支持を安定させつつ、可動体10を2つの軸回りで揺動させることができる。  Further, the second pair of support portions 30b are rotatably supported around the second axis J2 by the fixed body 20, and the movable body 10 is rotatably supported around the first axis J1. According to this configuration, the second pair of support portions 30b can be swung around the second axis J2 to swing the movable body 10. Further, according to this configuration, the first pair of support portions 30a and the second pair of support portions 30b swing the movable body 10 around two axes while stabilizing the support of the movable body 10. be able to.
振れ補正機能付き光学ユニット1においては、駆動機構50が駆動して可動体10を第1軸J1回りに回転させようとした場合、揺動機構は、次のように作用する。可動体10に第1軸J1回りに回転する力が与えられると、第1の一対の支持部30aが有する各第2曲面形状部31aと対向する第1曲面形状部101が第2曲面形状部31aに引っ掛かる。これは、第1の一対の支持部30aと対向する第1曲面形状部101が、第1の一対の支持部30aが有する各第2曲面形状部31a(円筒面形状)の周方向に沿う方向からずれた方向に回転しようとするためである。第2曲面形状部31aがホルダ12に引っ掛るために、第1の一対の支持部30aは、可動体10と共に第1軸J1を中心として固定体20に対して回転する。  In the optical unit 1 with a runout correction function, when the drive mechanism 50 is driven to rotate the movable body 10 around the first axis J1, the swing mechanism operates as follows. When a force for rotating the movable body 10 around the first axis J1 is applied, the first curved surface shape portion 101 facing each second curved surface shape portion 31a of the first pair of support portions 30a becomes the second curved surface shape portion. It gets caught in 31a. This is a direction in which the first curved surface shape portion 101 facing the first pair of support portions 30a is along the circumferential direction of each second curved surface shape portion 31a (cylindrical surface shape) of the first pair of support portions 30a. This is because it tries to rotate in a direction deviated from. Since the second curved surface shape portion 31a is hooked on the holder 12, the first pair of support portions 30a rotate with respect to the fixed body 20 about the first axis J1 together with the movable body 10.
この際、第2の一対の支持部30bが有する各第2曲面形状部31aと対向する第1曲面形状部101は、第2曲面形状部31a(円筒面形状)の周方向に沿う方向に回転しようとする。このために、可動体10は、第2の一対の支持部30bが有する各第2曲面形状部31aに沿って少ない抵抗で回転する。すなわち、駆動機構50により駆動力を与えることにより、可動体10を第1軸J1回りに揺動させることができる。  At this time, the first curved surface shape portion 101 of the second pair of support portions 30b facing each second curved surface shape portion 31a rotates in the circumferential direction of the second curved surface shape portion 31a (cylindrical surface shape). try to. Therefore, the movable body 10 rotates with a small resistance along each second curved surface shape portion 31a of the second pair of support portions 30b. That is, by applying a driving force by the driving mechanism 50, the movable body 10 can be swung around the first axis J1.
また、振れ補正機能付き光学ユニット1においては、駆動機構50が駆動して可動体10を第2軸J2回りに回転させようとした場合、揺動機構は、次のように作用する。可動体10に第2軸J2回りに回転する力が与えられると、第2の一対の支持部30bが有する各第2曲面形状部31aと対向する第1曲面形状部101が第2曲面形状部31aに引っ掛かる。これは、第2の一対の支持部30bと対向する第1曲面形状部101が、第2の一対の支持部30bが有する各第2曲面形状部31a(円筒面形状)の周方向に沿う方向からずれた方向に回転しようとするためである。第2曲面形状部31aがホルダ12に引っ掛かるために、第2の一対の支持部30bは、可動体10と共に第2軸J2を中心として固定体20に対して回転する。  Further, in the optical unit 1 with a runout correction function, when the drive mechanism 50 is driven to rotate the movable body 10 around the second axis J2, the swing mechanism operates as follows. When a force for rotating the movable body 10 around the second axis J2 is applied, the first curved surface shape portion 101 facing each second curved surface shape portion 31a of the second pair of support portions 30b becomes the second curved surface shape portion. It gets caught in 31a. This is a direction in which the first curved surface shape portion 101 facing the second pair of support portions 30b is along the circumferential direction of each second curved surface shape portion 31a (cylindrical surface shape) of the second pair of support portions 30b. This is because it tries to rotate in a direction deviated from. Since the second curved surface shape portion 31a is hooked on the holder 12, the second pair of support portions 30b rotate with respect to the fixed body 20 about the second axis J2 together with the movable body 10.
この際、第1の一対の支持部30aが有する各第2曲面形状部31aと対向する第1曲面形状部101は、第2曲面形状部31a(円筒面形状)の周方向に沿う方向に回転しようとする。このために、可動体10は、第1の一対の支持部30aが有する各第2曲面形状部31aに沿って少ない抵抗で回転する。すなわち、駆動機構50により駆動力を与えることにより、可動体10を第2軸J2回りに揺動させることができる。  At this time, the first curved surface shape portion 101 of the first pair of support portions 30a facing each second curved surface shape portion 31a rotates in the circumferential direction of the second curved surface shape portion 31a (cylindrical surface shape). try to. Therefore, the movable body 10 rotates with a small resistance along each second curved surface shape portion 31a of the first pair of support portions 30a. That is, by applying a driving force by the driving mechanism 50, the movable body 10 can be swung around the second axis J2.
なお、本実施形態の振れ補正機能付き光学ユニット1においては、可動体10が光軸OAを中心として回転しようとすると、全ての第1曲面形状部101が第2曲面形状部31aに引っ掛かる。このために、可動体10が光軸OAを中心として回転することを抑制できる。すなわち、本実施形態では、可動体10のローリング方向への揺動を抑制することができる。  In the optical unit 1 with a runout correction function of the present embodiment, when the movable body 10 tries to rotate about the optical axis OA, all the first curved surface shape portions 101 are caught by the second curved surface shape portion 31a. Therefore, it is possible to prevent the movable body 10 from rotating about the optical axis OA. That is, in the present embodiment, it is possible to suppress the swing of the movable body 10 in the rolling direction.
<3.変形例>

(3-1.第1変形例)

図9は、第1変形例の振れ補正機能付き光学ユニット1Aの構成を示す概略断面図である。図9は、図6と同様の位置で切った縦断面図であり、断面の一部が示されている。本変形例の振れ補正機能付き光学ユニット1Aでは、固定体20Aには凸面215が設けられ、第2揺動支持部材32Aは凸面215と接触する。 
<3. Modification example>

(3-1. First modification)

FIG. 9 is a schematic cross-sectional view showing the configuration of the optical unit 1A with a runout correction function of the first modification. FIG. 9 is a vertical cross-sectional view cut at the same position as in FIG. 6, and a part of the cross section is shown. In the optical unit 1A with a runout correction function of this modification, the fixed body 20A is provided with a convex surface 215, and the second swing support member 32A comes into contact with the convex surface 215.
凸面215は、例えば、固定体20Aに樹脂成型等により一体的に形成した凸部の全部又は一部であってよい。また、別の例として、凸面215は、固定体20Aに対して別部材として取り付けたピン又はボールの一部であってもよい。本変形例の場合、第2揺動支持部材32Aは、弾性部材33Aを兼ねる。弾性部材33Aとしての機能を有する第2揺動支持部材32Aに設けられた凹面301に凸面215が接触する。これにより、支持部30Aは、固定体20に揺動可能に支持される。  The convex surface 215 may be, for example, all or a part of the convex portion integrally formed on the fixed body 20A by resin molding or the like. Further, as another example, the convex surface 215 may be a part of a pin or a ball attached as a separate member to the fixed body 20A. In the case of this modification, the second swing support member 32A also serves as an elastic member 33A. The convex surface 215 comes into contact with the concave surface 301 provided on the second swing support member 32A having a function as the elastic member 33A. As a result, the support portion 30A is swingably supported by the fixed body 20.
(3-2.第2変形例)

以上に示した実施形態では、例えば図6に示すように、第1揺動支持部材31は、Z方向において固定体20の底面201と接することなく離れている。第2変形例は、このような構成と異なる構成を有する。なお、固定体20の底面201は、ボトムカバー22の+Z方向の端面である。 
(3-2. Second modification)

In the embodiment shown above, for example, as shown in FIG. 6, the first swing support member 31 is separated from the bottom surface 201 of the fixed body 20 in the Z direction without being in contact with the bottom surface 201. The second modification has a configuration different from such a configuration. The bottom surface 201 of the fixed body 20 is an end surface of the bottom cover 22 in the + Z direction.
図10は、第2変形例における第1揺動支持部材31Bと固定体20Bとの関係を示す模式図である。図10に示すように、第2変形例でも、以上に示した実施形態と同様に、固定体20Bは、光軸OAと交差する底面201Bを有する。底面201Bには、-Z方向に凹む支持凹面2011が設けられる。支持凹面2011は、例えば円筒面形状である。  FIG. 10 is a schematic view showing the relationship between the first swing support member 31B and the fixed body 20B in the second modification. As shown in FIG. 10, in the second modification as well, the fixed body 20B has a bottom surface 201B intersecting the optical axis OA, as in the above-described embodiment. The bottom surface 201B is provided with a support concave surface 2011 that is recessed in the −Z direction. The support concave surface 2011 has, for example, a cylindrical surface shape.
第1揺動支持部材31Bは、-Z方向に凸となる凸端面311を有する。凸端面311は、第1揺動支持部材31Bの-Z方向の端面である。凸端面311は、支持凹面2011と接触する。また、凸端面311は、支持凹面2011と接触した状態で滑ることができる形状である。凸端面311は、例えば、支持凹面2011と同じく円筒面形状である。すなわち、第1揺動支持部材31Bは、底面201Bに揺動可能に支持される。  The first swing support member 31B has a convex end surface 311 that is convex in the −Z direction. The convex end surface 311 is an end surface of the first swing support member 31B in the −Z direction. The convex end surface 311 comes into contact with the support concave surface 2011. Further, the convex end surface 311 has a shape that allows it to slide in contact with the support concave surface 2011. The convex end surface 311 has, for example, a cylindrical surface shape similar to the support concave surface 2011. That is, the first swing support member 31B is swingably supported by the bottom surface 201B.
なお、本変形例において、第1揺動支持部材31Bの他の構成は、上述の実施形態と同様である。また、凸端面311と支持凹面2011とのZ方向間には、グリスが介在されてもよい。このような意味で、第1揺動支持部材31Bと底面201Bとの接触は、直接的な接触と間接的な接触とのうちのいずれであってもよい。  In this modified example, the other configuration of the first rocking support member 31B is the same as that of the above-described embodiment. Further, grease may be interposed between the convex end surface 311 and the support concave surface 2011 in the Z direction. In this sense, the contact between the first rocking support member 31B and the bottom surface 201B may be either a direct contact or an indirect contact.
本変形例では、支持部30を、固定体20の径方向内面だけでなく底面201Bも使用して支持する構成である。このために、支持部30の位置を安定させつつ、可動体10を2つの軸回りで揺動させることができる。  In this modification, the support portion 30 is supported by using not only the radial inner surface of the fixed body 20 but also the bottom surface 201B. Therefore, the movable body 10 can be swung around two axes while stabilizing the position of the support portion 30.
<4.その他>

本明細書中に開示されている種々の技術的特徴は、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。また、本明細書中に示される複数の実施形態および変形例は可能な範囲で組み合わせて実施されてよい。
<4. Others>

The various technical features disclosed herein can be modified in various ways without departing from the gist of the technical creation. In addition, a plurality of embodiments and modifications shown in the present specification may be combined and implemented to the extent possible.
本開示は、光学機器に広く利用することができる。 The present disclosure can be widely used in optical instruments.
1、1A・・・振れ補正機能付き光学ユニット 10・・・可動体 11・・・光学モジュール 12・・・ホルダ 20、20A、20B・・・固定体 21・・・固定枠体 30、30A・・・支持部 30a・・・第1の一対の支持部 30b・・・第2の一対の支持部 31、31B・・・第1揺動支持部材 31a・・・・第2曲面形状部 32、32A・・・第2揺動支持部材 33、33A・・・弾性部材 101・・・第1曲面形状部 201、201B・・・底面 214・・・凹面 215・・・凸面 J1・・・第1軸 J2・・・第2軸 OA・・・光軸 1, 1A ... Optical unit with runout correction function 10 ... Movable body 11 ... Optical module 12 ... Holder 20, 20A, 20B ... Fixed body 21 ... Fixed frame body 30, 30A ...・ ・ Support part 30a ・ ・ ・ 1st pair of support parts 30b ・ ・ ・ 2nd pair of support parts 31, 31B ・ ・ ・ 1st swing support member 31a ・ ・ ・ ・ 2nd curved surface shape part 32, 32A ... 2nd rocking support member 33, 33A ... Elastic member 101 ... 1st curved surface shape part 201, 201B ... Bottom surface 214 ... Concave surface 215 ... Convex surface J1 ... 1st Axis J2 ... 2nd axis OA ... Optical axis

Claims (10)

  1. 光学モジュールの振れを補正する振れ補正機能付き光学ユニットであって、

    前記光学モジュールを有する可動体と、

    前記光学モジュールの光軸を基準とした径方向において、前記可動体より外方に配置される固定体と、

    前記可動体と前記固定体との径方向間に配置され、前記可動体を前記固定体に対して揺動可能に支持する支持部と、

     を有し、

    前記支持部は、前記固定体に揺動可能に支持される、振れ補正機能付き光学ユニット。
    An optical unit with a runout correction function that corrects runout of an optical module.

    A movable body having the optical module and

    A fixed body arranged outside the movable body in the radial direction with respect to the optical axis of the optical module.

    A support portion arranged between the movable body and the fixed body in the radial direction and swingably supporting the movable body with respect to the fixed body.

    Have,

    The support portion is an optical unit with a runout correction function that is swingably supported by the fixed body.
  2. 前記支持部は複数であり、

    複数の前記支持部には、光軸方向からの平面視において、前記光軸を通る第1軸上で互いに対向する第1の一対の支持部が含まれ、

    前記第1の一対の支持部は、前記固定体により前記第1軸回りに回転可能に支持される、請求項1に記載の振れ補正機能付き光学ユニット。 
    The support portion is plural,

    The plurality of support portions include a first pair of support portions facing each other on a first axis passing through the optical axis in a plan view from the optical axis direction.

    The optical unit with a runout correction function according to claim 1, wherein the first pair of support portions are rotatably supported around the first axis by the fixed body.
  3. 前記第1の一対の支持部は、前記可動体を、前記光軸上で前記第1軸と交差する第2軸回りに回転可能に支持する、請求項2に記載の振れ補正機能付き光学ユニット。


    The optical unit with a runout correction function according to claim 2, wherein the first pair of support portions rotatably support the movable body around a second axis that intersects the first axis on the optical axis. ..


  4. 複数の前記支持部には、光軸方向からの平面視において、前記第2軸上で互いに対向する第2の一対の支持部が更に含まれ、

    前記第2の一対の支持部は、前記固定体により前記第2軸回りに回転可能に支持されるとともに、前記可動体を前記第1軸回りに回転可能に支持する、請求項3に記載の振れ補正機能付き光学ユニット。
    The plurality of support portions further include a second pair of support portions facing each other on the second axis in a plan view from the optical axis direction.

    The third aspect of the present invention, wherein the second pair of support portions are rotatably supported around the second axis by the fixed body and rotatably support the movable body around the first axis. Optical unit with runout correction function.
  5. 前記支持部は、

     前記可動体に設けられる第1曲面形状部に接触する第2曲面形状部を有する第1揺動支持部材と、

     前記固定体に設けられる凹面又は凸面と接触する第2揺動支持部材と、

    を有する、請求項1から4のいずれか1項に記載の振れ補正機能付き光学ユニット。 
    The support portion

    A first rocking support member having a second curved surface shape portion that comes into contact with the first curved surface shape portion provided on the movable body, and

    A second rocking support member that comes into contact with the concave or convex surface provided on the fixed body, and

    The optical unit with a runout correction function according to any one of claims 1 to 4.
  6. 前記第1曲面形状部および前記第2曲面形状部は、円筒面形状である、請求項5に記載の振れ補正機能付き光学ユニット。  The optical unit with a runout correction function according to claim 5, wherein the first curved surface shape portion and the second curved surface shape portion have a cylindrical surface shape.
  7. 前記第2揺動支持部材は、前記固定体に設けられる前記凹面と接触するボールである、請求項5又は6に記載の振れ補正機能付き光学ユニット。  The optical unit with a runout correction function according to claim 5 or 6, wherein the second rocking support member is a ball that comes into contact with the concave surface provided on the fixed body.
  8. 前記支持部は、径方向に弾性力を付与する弾性部材を有する、請求項5から7のいずれか1項に記載の振れ補正機能付き光学ユニット。  The optical unit with a runout correction function according to any one of claims 5 to 7, wherein the support portion has an elastic member that applies an elastic force in the radial direction.
  9. 前記固定体は、前記光軸と交差する底面を有し、

    前記第1揺動支持部材は、前記底面に揺動可能に支持される、請求項5から8のいずれか1項に記載の振れ補正機能付き光学ユニット。 
    The fixed body has a bottom surface that intersects the optical axis and has a bottom surface.

    The optical unit with a shake correction function according to any one of claims 5 to 8, wherein the first swing support member is swingably supported on the bottom surface.
  10. 前記可動体は、前記光学モジュールの径方向外方に配置され、前記光学モジュールを保持するホルダを有し、

    前記ホルダが、前記第1曲面形状部を有する、請求項5から9のいずれか1項に記載の振れ補正機能付き光学ユニット。 
    The movable body is arranged radially outward of the optical module and has a holder for holding the optical module.

    The optical unit with a runout correction function according to any one of claims 5 to 9, wherein the holder has the first curved surface shape portion.
PCT/JP2020/039163 2020-01-30 2020-10-16 Optical unit with shake compensation function WO2021152929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080094913.8A CN115053175A (en) 2020-01-30 2020-10-16 Optical unit with shake correction function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020013928 2020-01-30
JP2020-013928 2020-07-08

Publications (1)

Publication Number Publication Date
WO2021152929A1 true WO2021152929A1 (en) 2021-08-05

Family

ID=77078482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039163 WO2021152929A1 (en) 2020-01-30 2020-10-16 Optical unit with shake compensation function

Country Status (2)

Country Link
CN (1) CN115053175A (en)
WO (1) WO2021152929A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044223A1 (en) * 2008-10-14 2010-04-22 日本電産サンキョー株式会社 Imaging optical device
JP2016099503A (en) * 2014-11-21 2016-05-30 日本電産サンキョー株式会社 Optical unit with tremor correction function
JP2017173756A (en) * 2016-03-25 2017-09-28 Hoya株式会社 Imaging apparatus
JP2019015846A (en) * 2017-07-06 2019-01-31 日本電産サンキョー株式会社 Optical unit with shake correction function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044223A1 (en) * 2008-10-14 2010-04-22 日本電産サンキョー株式会社 Imaging optical device
JP2016099503A (en) * 2014-11-21 2016-05-30 日本電産サンキョー株式会社 Optical unit with tremor correction function
JP2017173756A (en) * 2016-03-25 2017-09-28 Hoya株式会社 Imaging apparatus
JP2019015846A (en) * 2017-07-06 2019-01-31 日本電産サンキョー株式会社 Optical unit with shake correction function

Also Published As

Publication number Publication date
CN115053175A (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6811588B2 (en) Optical unit with runout correction function
JP7034616B2 (en) Optical unit with runout correction function
JP6779104B2 (en) Optical unit with runout correction function
JP6800706B2 (en) Optical unit
JP6883467B2 (en) Optical unit with runout correction function
JP6800707B2 (en) Optical unit with runout correction function
KR20190005788A (en) Optical unit with shake correction function
JP6989254B2 (en) Optical module and optical unit
JP2018169497A (en) Optical unit with shake correction function
JP6942547B2 (en) Shaking body posture adjustment method of optical unit with runout correction function and optical unit with runout correction function
JP6934319B2 (en) Magnetic drive unit for rolling and optical unit with runout correction function
US11493780B2 (en) Optical unit with shake correction function
US11567340B2 (en) Optical unit with correction function
JP6811589B2 (en) Optical unit with runout correction function
WO2021152929A1 (en) Optical unit with shake compensation function
US11543674B2 (en) Optical unit with image stabilization function
CN114384660A (en) Optical unit
JP7032068B2 (en) How to adjust the reference angle position of the rotating body of the optical unit with runout correction function
WO2022070449A1 (en) Optical unit
WO2021152930A1 (en) Optical unit with shake compensation function
JP2022100781A (en) Optical unit with shake correction function
JP2022100784A (en) Optical unit with shake correction function
JP2022100783A (en) Optical unit with shake correction function
JP2022100782A (en) Optical unit with shake correction function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP