JP2022100783A - Optical unit with shake correction function - Google Patents

Optical unit with shake correction function Download PDF

Info

Publication number
JP2022100783A
JP2022100783A JP2020214977A JP2020214977A JP2022100783A JP 2022100783 A JP2022100783 A JP 2022100783A JP 2020214977 A JP2020214977 A JP 2020214977A JP 2020214977 A JP2020214977 A JP 2020214977A JP 2022100783 A JP2022100783 A JP 2022100783A
Authority
JP
Japan
Prior art keywords
plate portion
rotation
optical axis
movable body
annular plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020214977A
Other languages
Japanese (ja)
Inventor
章吾 笠原
Shogo Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2020214977A priority Critical patent/JP2022100783A/en
Priority to CN202111578145.6A priority patent/CN114675468B/en
Publication of JP2022100783A publication Critical patent/JP2022100783A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur

Abstract

To reduce a height in an optical axis direction of a rotation support mechanism that rotatably supports a movable body around an optical axis, and to suppress reduction in dimension accuracy of a rotation regulation mechanism that regulates the rotation of the movable body.SOLUTION: An optical unit with a shake correction function has: a rotation support mechanism 12 that rotatably supports a movable body 10 around an optical axis L; and a gimbal mechanism that connects the rotation support mechanism 12 and a stationary body with each other. The rotation support mechanism 12 comprises rolling elements that roll between a first annular plate part 26 and a second annular plate part 63 surrounding the optical axis L. A rotation regulation mechanism 70 regulates the rotation of the movable body 10 with collision between a first rotation regulation part 71 provided on a first member 25 including the first annular plate part 26 and a second rotation regulation part 72 provided on a second member 55 including the second annular plate part 63. The rotation regulation mechanism 70 is different in a position in a circumferential direction from a force application mechanism 59 that applies force to bring the first annular plate part 26 and the second annular plate part 63 into proximity in the optical axis L direction.SELECTED DRAWING: Figure 8

Description

本発明は、カメラモジュールを光軸回りに回転させて振れを補正する振れ補正機能付き光学ユニットに関する。 The present invention relates to an optical unit with a shake correction function that corrects runout by rotating a camera module around an optical axis.

携帯端末や移動体に搭載される光学ユニットの中には、携帯端末や移動体の移動時の撮影画像の乱れを抑制するために、カメラモジュールを備える可動体を、光軸回り、光軸と直交する第1軸回り、並びに光軸および第1軸と直交する第2軸回りに回転させるものがある。特許文献1には、この種の振れ補正機能付き光学ユニットが記載される。 In the optical unit mounted on the mobile terminal or mobile body, in order to suppress the disturbance of the captured image when the mobile terminal or mobile body is moved, a movable body equipped with a camera module is provided around the optical axis and around the optical axis. Some are rotated around the first axis that is orthogonal to each other, and around the optical axis and the second axis that is orthogonal to the first axis. Patent Document 1 describes this kind of optical unit with a shake correction function.

特許文献1の振れ補正機能付き光学ユニットは、固定体と、固定体に対して光軸回りに回転可能に支持される可動体を有する。可動体は、レンズを備えるカメラモジュールと、カメラモジュールの周りを囲む支持体と、支持体の内側で、カメラモジュールを第1軸回りおよび第2軸回りに回転可能に支持するジンバル機構を備える。また、振れ補正機能付き光学ユニットは、可動体においてカメラモジュールを第1軸回りおよび第2軸回りに回転させる揺動用磁気駆動機構と、可動体を光軸回りに回転可能に支持する回転支持機構と、可動体を光軸回りに回転させることによりカメラモジュールを光軸回りに回転させるローリング用磁気駆動機構を備える。 The optical unit with a runout correction function of Patent Document 1 has a fixed body and a movable body that is rotatably supported around the optical axis with respect to the fixed body. The movable body includes a camera module including a lens, a support that surrounds the camera module, and a gimbal mechanism that rotatably supports the camera module around the first axis and the second axis inside the support. The optical unit with a shake correction function includes a magnetic drive mechanism for rocking that rotates the camera module around the first axis and the second axis in the movable body, and a rotation support mechanism that rotatably supports the movable body around the optical axis. And, it is provided with a magnetic drive mechanism for rolling that rotates the camera module around the optical axis by rotating the movable body around the optical axis.

特許文献1では、回転支持機構は、可動体の底部から光軸方向の後ろ側に突出した凸部と、凸部を囲むボールベアリングを備える。また、特許文献1には、回転支持機構の他の構成例として、ボールベアリングに代えて可動体の底部にピボット部を設ける構成、および、可動体の側面に円弧状の凸面を設けてボールベアリングを構成するなどして可動体の外周側に回転支持機構を設けることが記載される。 In Patent Document 1, the rotation support mechanism includes a convex portion protruding rearward in the optical axis direction from the bottom of the movable body, and a ball bearing surrounding the convex portion. Further, in Patent Document 1, as another configuration example of the rotation support mechanism, a configuration in which a pivot portion is provided at the bottom of the movable body instead of the ball bearing, and a ball bearing in which an arcuate convex surface is provided on the side surface of the movable body. It is described that a rotation support mechanism is provided on the outer peripheral side of the movable body, for example.

特開2015-82072号公報JP 2015-82072A

特許文献1の振れ補正機能付き光学ユニットでは、可動体の光軸方向の後ろ側にボールベアリングやピボットなどの回転支持機構が設けられている。このような構成では、回転支持機構を設けることによって製品の光軸方向の高さが大きくなり、製品全体の光軸方向の薄型化が困難である。また、特許文献1には、可動体の内部にジンバル機構を設け、可動体の外周側に回転支持機構を設ける構成も記載されているが、このような構成では、光軸方向から見た製品全体の外形が大きくなってしまう。 In the optical unit with a runout correction function of Patent Document 1, a rotation support mechanism such as a ball bearing or a pivot is provided on the rear side of the movable body in the optical axis direction. In such a configuration, the height in the optical axis direction of the product is increased by providing the rotation support mechanism, and it is difficult to reduce the thickness of the entire product in the optical axis direction. Further, Patent Document 1 also describes a configuration in which a gimbal mechanism is provided inside the movable body and a rotation support mechanism is provided on the outer peripheral side of the movable body. In such a configuration, a product viewed from the optical axis direction is provided. The overall outer shape becomes large.

本発明者らは、特願2020-36404号において、可動体の外部にジンバル機構を設け、ジンバル機構と可動体との間に回転支持機構を設けた振れ補正機能付き光学ユニットを出願している。特願2020-36404号の回転支持機構は、光軸方向に対向する2本の環状のレール部材の間に転動体を挿入したボールベアリングをカメラモジュールの鏡筒部を囲むように配置し、一方のレールを可動体の被写体側の端面に固定し、他方のレールをジンバル機構によって第1軸回りに回転可能に支持する構成である。そのため、可動体の光軸方向の後ろ側および可動体の外周側に回転支持機構の配置スペースを確保する必要がない。 In Japanese Patent Application No. 2020-36404, the present inventors have applied for an optical unit with a runout correction function in which a gimbal mechanism is provided outside the movable body and a rotation support mechanism is provided between the gimbal mechanism and the movable body. .. The rotation support mechanism of Japanese Patent Application No. 2020-36404 arranges a ball bearing in which a rolling element is inserted between two annular rail members facing each other in the optical axis direction so as to surround the lens barrel portion of the camera module. The rail is fixed to the end face of the movable body on the subject side, and the other rail is rotatably supported around the first axis by a gimbal mechanism. Therefore, it is not necessary to secure a space for arranging the rotation support mechanism on the rear side of the movable body in the optical axis direction and on the outer peripheral side of the movable body.

ここで、特願2020-36404号の回転支持機構は、転動体を保持する2本のレールが光軸方向に対向し、2本のレールの被写体側にジンバルフレームに接続される板金製のプレートロールが重なり、さらに、プレートロールの被写体側に板金製のストッパ部材が重なる。ストッパ部材は、2本のレールの外周側へ突出してカメラモジュール側へ屈曲した接続部を備えており、この接続部を介して、カメラモジュールを保持する金属製のホルダにストッパ部材が固定される。また、接続部は、プレートロールの外周縁に設けられた突出部と周方向に衝突することによって可動体の回転範囲を規制する回転規制機構を構成している。 Here, in the rotation support mechanism of Japanese Patent Application No. 2020-36404, two rails for holding the rolling elements face each other in the optical axis direction, and a sheet metal plate connected to the gimbal frame on the subject side of the two rails. The rolls overlap, and a sheet metal stopper member overlaps the subject side of the plate roll. The stopper member includes a connecting portion that protrudes toward the outer peripheral side of the two rails and bends toward the camera module, and the stopper member is fixed to a metal holder that holds the camera module via the connecting portion. .. Further, the connecting portion constitutes a rotation regulating mechanism that regulates the rotation range of the movable body by colliding with the protruding portion provided on the outer peripheral edge of the plate roll in the circumferential direction.

しかしながら、特願2020-36404号の回転支持機構は、2本のレールおよびプレートロールとは別部材のストッパ部材を備えており、このストッパ部材を利用して回転規制機構を構成している。従って、多数の部品を光軸方向に重ねて回転支持機構および回転規制機構を構成しているので、回転支持機構および回転規制機構の光軸方向の高さが大きい。また、部品公差の積み上げによって回転規制機構の寸法精度が低下するという問題がある。 However, the rotation support mechanism of Japanese Patent Application No. 2020-36404 includes a stopper member which is a member separate from the two rails and the plate roll, and the stopper member is used to form a rotation regulation mechanism. Therefore, since a large number of parts are stacked in the optical axis direction to form the rotation support mechanism and the rotation regulation mechanism, the height of the rotation support mechanism and the rotation regulation mechanism in the optical axis direction is large. Further, there is a problem that the dimensional accuracy of the rotation regulation mechanism is lowered due to the accumulation of component tolerances.

また、特願2020-36404号では、回転規制機構として利用されるプレートロールの突出部には、ボールベアリングを構成する2本のレールに与圧を付与する与圧機構の部品が搭載されている。そのため、可動体の回転範囲を規制する際に突出部がストッパ部材に衝突して変形すると、与圧機構が変形してしまい、回転支持機構の与圧に悪影響を及ぼすおそれがある。 Further, in Japanese Patent Application No. 2020-36404, a part of a pressurization mechanism that applies pressurization to two rails constituting the ball bearing is mounted on a protruding portion of a plate roll used as a rotation regulation mechanism. .. Therefore, if the protruding portion collides with the stopper member and is deformed when the rotation range of the movable body is restricted, the pressurization mechanism is deformed, which may adversely affect the pressurization of the rotation support mechanism.

本発明の課題は、このような点に鑑みて、回転支持機構の光軸方向の高さを低くするとともに、可動体の回転を規制する回転規制機構の寸法精度の低下を抑制することにある。 In view of these points, an object of the present invention is to reduce the height of the rotation support mechanism in the optical axis direction and to suppress a decrease in dimensional accuracy of the rotation regulation mechanism that regulates the rotation of the movable body. ..

また、本発明の他の課題は、回転規制機構による与圧機構への影響を低減させることにある。 Another object of the present invention is to reduce the influence of the rotation regulation mechanism on the pressurization mechanism.

上記の課題を解決するために、本発明の振れ補正機能付き光学ユニットは、カメラモジュールを備える可動体と、前記可動体を前記カメラモジュールの光軸を中心として回転可能に支持する回転支持機構と、前記回転支持機構を前記光軸と交差する第1軸回りに回転可能に支持するとともに、前記回転支持機構を前記光軸および前記第1軸と交差する第2軸回りに回転可能に支持するジンバル機構と、前記ジンバル機構および前記回転支持機構を介して前記可動体を支持する固定体と、前記可動体の前記光軸回りの回転範囲を規制する回転規制機構と、を有し、前記可動体は、前記カメラモジュールを保持するホルダと、前記ホルダに固定される第1部材を備え、前記第1部材は、前記光軸を囲み前記光軸方向から見て前記カメラモジュールと重なる第1環状板部を備え、前記回転支持機構は、第1環状板部に形成された第1環状溝と、前記第1環状溝と前記光軸方向で対向する第2環状溝が形成された第2環状板部を備えるとともに前記ジンバル機構によって前記第1軸回りに回転可能に支持される第2部材と、前記第1環状溝および前記第2環状溝に挿入されて前記第1環状板部と前記第2環状板部との間で転動する複数の転動体と、を備え、前記回転規制機構は、前記第1部材または前記ホルダに形成される第1回転規制部と、前記第2部材に形成される第2回転規制部と、を備え、前記第1回転規制部と前記第2回転規制部の一方は、前記第1回転規制部と前記第2回転規制部の他方の周方向の両側を囲うことを特徴とする。 In order to solve the above problems, the optical unit with a shake correction function of the present invention includes a movable body including a camera module and a rotation support mechanism that rotatably supports the movable body around the optical axis of the camera module. The rotary support mechanism is rotatably supported around the first axis intersecting the optical axis, and the rotary support mechanism is rotatably supported around the optical axis and the second axis intersecting the first axis. It has a gimbal mechanism, a fixed body that supports the movable body via the gimbal mechanism and the rotation support mechanism, and a rotation control mechanism that regulates the rotation range of the movable body around the optical axis. The body includes a holder for holding the camera module and a first member fixed to the holder, and the first member surrounds the optical axis and overlaps with the camera module when viewed from the optical axis direction. The rotation support mechanism includes a plate portion, and the rotation support mechanism is a second annular groove formed with a first annular groove formed in the first annular plate portion and a second annular groove facing the first annular groove in the optical axis direction. A second member provided with a plate portion and rotatably supported around the first axis by the gimbal mechanism, and the first annular plate portion and the first annular plate portion inserted into the first annular groove and the second annular groove. A plurality of rolling elements that roll between the two annular plate portions are provided, and the rotation regulating mechanism is formed on the first rotation regulating portion formed on the first member or the holder and the second member. A second rotation restricting unit is provided, and one of the first rotation regulating unit and the second rotation restricting unit is provided with both sides of the first rotation regulating unit and the second rotation regulating unit in the circumferential direction. It is characterized by enclosing.

本発明によれば、光軸を囲む第1環状板部と第2環状板部とをカメラモジュールに対して光軸方向に重ねて配置して回転支持機構を構成している。回転支持機構は、第1環状板部を備える第1部材と第2環状板部を備える第2部材との衝突、もしくは、第1部材が固
定されるホルダと第2部材との衝突によって可動体の回転を規制する回転規制機構を備えているので、第1部材と第2部材との間、もしくは、第2部材とホルダとの間で回転規制機構を完結できる。よって、第1部材および第2部材に対して光軸方向に重なるストッパ部材がなくても回転規制機構を構成できるため、回転支持機構の光軸方向の高さを低くすることができる。また、少ない部品数で回転規制機構を構成できるため、部品公差の積み上げによる回転規制機構の寸法精度の低下を抑制できる。従って、可動体の回転範囲を精度良く規制できる。
According to the present invention, the first annular plate portion and the second annular plate portion surrounding the optical axis are arranged so as to overlap with each other in the optical axis direction with respect to the camera module to form a rotation support mechanism. The rotation support mechanism is a movable body due to a collision between a first member having a first annular plate portion and a second member having a second annular plate portion, or a collision between a holder to which the first member is fixed and a second member. Since the rotation regulating mechanism for restricting the rotation of the head is provided, the rotation regulating mechanism can be completed between the first member and the second member, or between the second member and the holder. Therefore, since the rotation restricting mechanism can be configured without the stopper member overlapping the first member and the second member in the optical axis direction, the height of the rotation support mechanism in the optical axis direction can be lowered. Further, since the rotation regulation mechanism can be configured with a small number of parts, it is possible to suppress a decrease in the dimensional accuracy of the rotation regulation mechanism due to the accumulation of component tolerances. Therefore, the rotation range of the movable body can be regulated with high accuracy.

本発明において、前記回転支持機構は、前記第1環状溝と前記第2環状溝とを前記光軸方向で接近させる力を付与する与圧機構を備え、前記与圧機構は、前記第1環状板部から外周側へ突出する第1突出板部と、前記第2部材の前記光軸回りの周方向の一部分に固定されて前記第1突出板部を吸引する与圧用磁石と、を備え、前記第2回転規制部と前記与圧用磁石は、周方向の位置が異なることが好ましい。このように、回転規制機構とは異なる部位に与圧機構を配置することにより、第1回転規制部と第2回転規制部との衝突によって与圧機構が変形して与圧に悪影響を及ぼすことを避けることができる。また、可動体に対して相対回転する第2部材に与圧用磁石を搭載し、与圧用磁石に吸引される第1突出板部を可動体に設けているので、可動体に搭載される振れ補正用磁気駆動機構およびローリング補正用磁気駆動機構の磁石に吸引されて第1突出板部の回転位置がずれることを避けることができる。従って、与圧機構が振れ補正用磁気駆動機構およびローリング補正用磁気駆動機構の干渉を受けることを避けることができる。また、与圧機構によって可動体の光軸回りの角度位置を規定することができる。 In the present invention, the rotation support mechanism includes a pressurizing mechanism that applies a force that brings the first annular groove and the second annular groove close to each other in the optical axis direction, and the pressurizing mechanism is the first annular groove. It is provided with a first protruding plate portion that protrudes from the plate portion to the outer peripheral side, and a pressurizing magnet that is fixed to a part of the second member in the circumferential direction around the optical axis and attracts the first protruding plate portion. It is preferable that the second rotation restricting portion and the pressurizing magnet have different positions in the circumferential direction. In this way, by arranging the pressurization mechanism in a part different from the rotation regulation mechanism, the pressurization mechanism is deformed by the collision between the first rotation regulation part and the second rotation regulation part, which adversely affects the pressurization. Can be avoided. Further, since the pressurizing magnet is mounted on the second member that rotates relative to the movable body, and the movable body is provided with the first protruding plate portion attracted by the pressurizing magnet, the runout correction mounted on the movable body is corrected. It is possible to prevent the rotation position of the first protruding plate portion from being displaced by being attracted by the magnets of the magnetic drive mechanism for rolling and the magnetic drive mechanism for rolling correction. Therefore, it is possible to prevent the pressurization mechanism from being interfered with by the runout correction magnetic drive mechanism and the rolling correction magnetic drive mechanism. Further, the pressurization mechanism can define the angular position around the optical axis of the movable body.

本発明において、前記第2部材は、前記第2環状板部から前記第1軸方向の両側へ延びて前記ジンバル機構に接続される一対の第2延設部と、前記第2環状板部から前記第2軸方向の両側へ突出する一対の第2突出板部と、前記第2環状板部から前記第2延設部および前記第2突出板部とは異なる方向へ突出する前記第2回転規制部と、を備え、前記与圧用磁石は、前記一対の第2延設部および前記一対の第2突出板部のそれぞれに固定され、前記第1突出板部は、前記第1環状板部から前記第1軸方向の両側および前記第2軸方向の両側に突出することが好ましい。このようにすると、与圧用磁石と第1突出板部を光軸回りの周方向に均等に配置することができる。従って、与圧用の磁気吸引力を周方向にバランスよく発生させることができる。 In the present invention, the second member is formed from a pair of second extending portions extending from the second annular plate portion to both sides in the first axial direction and connected to the gimbal mechanism, and the second annular plate portion. The pair of second protruding plate portions projecting to both sides in the second axial direction, and the second rotation projecting from the second annular plate portion in a direction different from the second extending portion and the second protruding plate portion. The pressurizing magnet is fixed to each of the pair of second extending portions and the pair of second protruding plate portions, and the first protruding plate portion is the first annular plate portion. It is preferable to project from both sides in the first axial direction and both sides in the second axial direction. In this way, the pressurizing magnet and the first protruding plate portion can be evenly arranged in the circumferential direction around the optical axis. Therefore, the magnetic attraction force for pressurization can be generated in a well-balanced manner in the circumferential direction.

本発明において、前記第1回転規制部は、前記第1環状板部から外周側へ延びて前記カメラモジュールの外周側を囲う前記ホルダに固定され、前記第2回転規制部は、前記第1回転規制部の周方向の中央部分を切り欠いた切欠き部に配置されることが好ましい。このようにすると、第1環状板部とホルダとを接続する接続部を第1回転規制部として利用できるので、構成を単純化することができる。 In the present invention, the first rotation restricting portion extends from the first annular plate portion to the outer peripheral side and is fixed to the holder surrounding the outer peripheral side of the camera module, and the second rotation restricting portion is the first rotation restricting portion. It is preferable that the regulation portion is arranged in the notch portion in which the central portion in the circumferential direction is cut out. By doing so, the connection portion connecting the first annular plate portion and the holder can be used as the first rotation restricting portion, so that the configuration can be simplified.

本発明において、前記第2環状板部は、前記第1環状板部と前記カメラモジュール本体との前記光軸方向の隙間に配置され、前記第1回転規制部は、前記第1環状板部の外周側で前記光軸方向に屈曲して前記第2環状板部の外周側で前記光軸方向に延びていることが好ましい。このようにすると、第1回転規制部の内周側に第2環状板部が配置されるので、第2回転規制部の先端を第1回転規制部の切欠き部に配置できる。従って、第2回転規制部の形状を単純化できる。また、回転支持機構は、可動体を構成する第1環状板部とカメラモジュールとの光軸方向の隙間に可動体に対して相対回転する第2環状板部を配置した構成であるため、第1環状板部は、第2環状板部が外れることを規制するストッパ部材を兼ねている。従って、第2環状板部に対して光軸方向で重なるストッパ部材を別途重ねて配置する必要がないので、回転支持機構の光軸方向の高さを低くすることができる。よって、振れ補正機能付き光学ユニットの光軸方向の高さを低くすることができる。 In the present invention, the second annular plate portion is arranged in the gap between the first annular plate portion and the camera module main body in the optical axis direction, and the first rotation restricting portion is the first annular plate portion. It is preferable that the outer peripheral side is bent in the optical axis direction and the outer peripheral side of the second annular plate portion extends in the optical axis direction. By doing so, since the second annular plate portion is arranged on the inner peripheral side of the first rotation restricting portion, the tip of the second rotation restricting portion can be arranged in the notch portion of the first rotation regulating portion. Therefore, the shape of the second rotation restricting portion can be simplified. Further, since the rotation support mechanism has a configuration in which the second annular plate portion that rotates relative to the movable body is arranged in the gap in the optical axis direction between the first annular plate portion constituting the movable body and the camera module, the second annular plate portion is arranged. The 1 annular plate portion also serves as a stopper member for restricting the removal of the 2nd annular plate portion. Therefore, since it is not necessary to separately overlap the stopper member that overlaps with the second annular plate portion in the optical axis direction, the height of the rotation support mechanism in the optical axis direction can be lowered. Therefore, the height of the optical unit with the shake correction function in the optical axis direction can be lowered.

本発明において、前記ホルダには、前記可動体を前記第1軸回りに回転させる第1振れ補正用磁気駆動機構の第1磁石、前記可動体を前記第2軸回りに回転させる第2振れ補正用磁気駆動機構の第2磁石、および、前記可動体を前記光軸回りに回転させるローリング補正用磁気駆動機構の第3磁石が固定され、前記第1磁石、前記第2磁石、および前記第3磁石は、前記光軸回りの周方向に配列されており、前記第1部材は、前記第1環状板部から外周側へ延びる第1延設部を備え、前記第1延設部は磁性金属からなり、前記第1環状板部の外周側で前記ホルダ側に屈曲して前記第1磁石の内周側、前記第2磁石の内周側、および、前記第3磁石の内周側の各位置に固定され、前記第1回転規制部および前記第2回転規制部は、前記第1延設部とは周方向の位置が異なることが好ましい。このようにすると、振れ補正用磁気駆動機構およびローリング補正用磁気駆動機構の磁石に対するヨークが第1部材に全て一体化されるため、部品点数を削減できる。また、可動体の組立作業が容易であり、ヨークの位置精度を高めることができる。さらに、磁石およびヨークが配置されていないスペースを利用して回転規制機構を設けることができる。 In the present invention, the holder includes a first magnet of a magnetic drive mechanism for first runout correction that rotates the movable body around the first axis, and a second runout correction that rotates the movable body around the second axis. The second magnet of the magnetic drive mechanism for use and the third magnet of the magnetic drive mechanism for rolling correction that rotates the movable body around the optical axis are fixed, and the first magnet, the second magnet, and the third magnet are fixed. The magnets are arranged in the circumferential direction around the optical axis, and the first member includes a first extending portion extending from the first annular plate portion to the outer peripheral side, and the first extending portion is a magnetic metal. The outer peripheral side of the first annular plate portion is bent toward the holder side to form the inner peripheral side of the first magnet, the inner peripheral side of the second magnet, and the inner peripheral side of the third magnet. It is preferable that the first rotation restricting portion and the second rotation regulating portion are fixed to the positions and the positions in the circumferential direction are different from those of the first extension portion. By doing so, the yokes for the magnets of the runout correction magnetic drive mechanism and the rolling correction magnetic drive mechanism are all integrated into the first member, so that the number of parts can be reduced. In addition, the assembly work of the movable body is easy, and the position accuracy of the yoke can be improved. Further, a rotation control mechanism can be provided by utilizing the space in which the magnet and the yoke are not arranged.

本発明において、前記ホルダは樹脂製であり、前記ホルダの前記第1軸方向の対角位置には、前記一対の第2延設部および前記一対の第2突出板部と前記光軸方向で対向するストッパ用凸部が設けられていることが好ましい。このようにすると、前記第2部材に設けられた第2環状板部が第1環状板部から離れることをストッパ用凸部によって規制できる。また、ホルダは樹脂製であり、板金製よりも複雑な凹凸形状を形成しやすい。従って、ストッパ用凸部を備えたホルダの製造が容易である。また、ホルダを樹脂製にする場合には、板金製のホルダのように光軸方向の端部に内周側に張り出す端板部を設けなくても強度を確保できる。従って、可動体の光軸方向の高さを低くすることができる。 In the present invention, the holder is made of resin, and the holder is located diagonally in the first axial direction with the pair of second extending portions and the pair of second protruding plate portions in the optical axis direction. It is preferable that the convex portion for the stopper facing each other is provided. By doing so, it is possible to restrict the separation of the second annular plate portion provided on the second member from the first annular plate portion by the convex portion for the stopper. Further, since the holder is made of resin, it is easier to form a complicated uneven shape than that made of sheet metal. Therefore, it is easy to manufacture a holder having a convex portion for a stopper. Further, when the holder is made of resin, the strength can be ensured without providing the end plate portion extending to the inner peripheral side at the end portion in the optical axis direction unlike the holder made of sheet metal. Therefore, the height of the movable body in the optical axis direction can be lowered.

本発明によれば、光軸を囲む第1環状板部と第2環状板部とをカメラモジュールに対して光軸方向に重ねて配置して回転支持機構を構成している。回転支持機構は、第1環状板部を備える第1部材と第2環状板部を備える第2部材との衝突、もしくは、第1部材が固定されるホルダと第2部材との衝突によって可動体の回転を規制する回転規制機構を備えているので、第1部材と第2部材との間、もしくは、第2部材とホルダとの間で回転規制機構を完結できる。よって、第1部材および第2部材に対して光軸方向に重なるストッパ部材がなくても回転規制機構を構成できるため、回転支持機構の光軸方向の高さを低くすることができる。また、少ない部品数で回転規制機構を構成できるため、部品公差の積み上げによる回転規制機構の寸法精度の低下を抑制できる。従って、可動体の回転範囲を精度良く規制できる。 According to the present invention, the first annular plate portion and the second annular plate portion surrounding the optical axis are arranged so as to overlap with each other in the optical axis direction with respect to the camera module to form a rotation support mechanism. The rotation support mechanism is a movable body due to a collision between a first member having a first annular plate portion and a second member having a second annular plate portion, or a collision between a holder to which the first member is fixed and a second member. Since the rotation regulating mechanism for restricting the rotation of the head is provided, the rotation regulating mechanism can be completed between the first member and the second member, or between the second member and the holder. Therefore, since the rotation restricting mechanism can be configured without the stopper member overlapping the first member and the second member in the optical axis direction, the height of the rotation support mechanism in the optical axis direction can be lowered. Further, since the rotation regulation mechanism can be configured with a small number of parts, it is possible to suppress a decrease in the dimensional accuracy of the rotation regulation mechanism due to the accumulation of component tolerances. Therefore, the rotation range of the movable body can be regulated with high accuracy.

振れ補正機能付き光学ユニットの斜視図である。It is a perspective view of the optical unit with a runout correction function. 振れ補正機能付き光学ユニットの分解斜視図である。It is an exploded perspective view of the optical unit with a runout correction function. カバーを外した振れ補正機能付き光学ユニットを被写体側から見た平面図である。It is a top view of the optical unit with a runout correction function with a cover removed from the subject side. カバーおよびベースを外した振れ補正機能付き光学ユニットの分解斜視図である。It is an exploded perspective view of the optical unit with a runout correction function which removed a cover and a base. 図3のA-A位置で切断した振れ補正機能付き光学ユニットの断面図である。It is sectional drawing of the optical unit with a runout correction function cut at the position AA of FIG. 図3のB-B位置で切断した振れ補正機能付き光学ユニットの断面図である。It is sectional drawing of the optical unit with a runout correction function cut at the BB position of FIG. ジンバルフレームおよびジンバルフレーム受け部材の斜視図である。It is a perspective view of the gimbal frame and the gimbal frame receiving member. 可動体および回転支持機構を被写体側から見た斜視図である。It is a perspective view which looked at the movable body and the rotation support mechanism from the subject side. 可動体および回転支持機構の分解斜視図である。It is an exploded perspective view of a movable body and a rotation support mechanism. 可動体および回転支持機構を反被写体側から見た斜視図である。It is a perspective view which looked at the movable body and the rotation support mechanism from the anti-subject side.

以下に、図面を参照して、本発明を適用した振れ補正機能付き光学ユニットの実施形態を説明する。 Hereinafter, embodiments of an optical unit with a shake correction function to which the present invention is applied will be described with reference to the drawings.

(全体構成)
図1は、振れ補正機能付き光学ユニットの斜視図である。図2は、振れ補正機能付き光学ユニットの分解斜視図である。図3は、カバーを外した振れ補正機能付き光学ユニットを被写体側から見た平面図である。図4は、カバーおよびベースを外した振れ補正機能付き光学ユニットの分解斜視図である。
(overall structure)
FIG. 1 is a perspective view of an optical unit with a runout correction function. FIG. 2 is an exploded perspective view of an optical unit with a runout correction function. FIG. 3 is a plan view of the optical unit with a shake correction function from which the cover is removed, as viewed from the subject side. FIG. 4 is an exploded perspective view of an optical unit with a runout correction function from which the cover and the base are removed.

図1に示すように、振れ補正機能付き光学ユニット1は、カメラモジュール2を備える可動体10と、可動体10を外側から囲む固定体11を備える。固定体11は、可動体10を外周側から囲む枠状のケース3と、ケース3に被写体側から固定されるカバー4と、ケース3に反被写体側から固定されて可動体を反被写体側から覆うベース5を備える。また、振れ補正機能付き光学ユニット1は、可動体10から引き出されるフレキシブルプリント基板6と、ケース3の外周面に沿って引き回されるフレキシブルプリント基板7を備える。 As shown in FIG. 1, the optical unit 1 with a shake correction function includes a movable body 10 including a camera module 2 and a fixed body 11 surrounding the movable body 10 from the outside. The fixed body 11 includes a frame-shaped case 3 that surrounds the movable body 10 from the outer peripheral side, a cover 4 that is fixed to the case 3 from the subject side, and a movable body that is fixed to the case 3 from the anti-subject side. A base 5 for covering is provided. Further, the optical unit 1 with a runout correction function includes a flexible printed substrate 6 drawn out from the movable body 10 and a flexible printed substrate 7 routed along the outer peripheral surface of the case 3.

振れ補正機能付き光学ユニット1は、例えば、カメラ付き携帯電話機、ドライブレコーダー等の光学機器や、ヘルメット、自転車、ラジコンヘリコプター等の移動体に搭載されるアクションカメラやウエアラブルカメラ等の光学機器に用いられる。このような光学機器では、撮影時に光学機器の振れが発生すると、撮像画像に乱れが発生する。振れ補正機能付き光学ユニット1は、撮影画像が傾くことを回避するため、ジャイロスコープ等の検出手段によって検出された加速度や角速度、振れ量等に基づき、カメラモジュール2の傾きを補正する。 The optical unit 1 with a shake correction function is used, for example, in an optical device such as a mobile phone with a camera and a drive recorder, and an optical device such as an action camera and a wearable camera mounted on a moving body such as a helmet, a bicycle, and a radiocon helicopter. .. In such an optical device, if the optical device shakes during shooting, the captured image is distorted. The optical unit 1 with a shake correction function corrects the tilt of the camera module 2 based on the acceleration, the angular velocity, the amount of shake, etc. detected by a detection means such as a gyroscope in order to prevent the captured image from tilting.

カメラモジュール2は、レンズ2aと、レンズ2aの光軸L上に配置された撮像素子2bを備える(図5、図6参照)。振れ補正機能付き光学ユニット1は、レンズ2aの光軸L回り、光軸Lと直交する第1軸R1回り、並びに、光軸Lおよび第1軸R1と直交する第2軸R2回りにカメラモジュール2を回転させて振れ補正を行う。 The camera module 2 includes a lens 2a and an image pickup element 2b arranged on the optical axis L of the lens 2a (see FIGS. 5 and 6). The optical unit 1 with a shake correction function is a camera module around the optical axis L of the lens 2a, around the first axis R1 orthogonal to the optical axis L, and around the second axis R2 orthogonal to the optical axis L and the first axis R1. 2 is rotated to correct the runout.

以下の説明では、互いに直交する3軸をX軸方向、Y軸方向、Z軸方向とする。また、X軸方向の一方側を-X方向、他方側を+X方向とする。Y軸方向の一方側を-Y方向、他方側を+Y方向とする。Z軸方向の一方側を-Z方向第、他方側を+Z方向とする。Z軸方向は、光軸L方向である。-Z方向は、カメラモジュール2の反被写体側であり、+Z方向は、カメラモジュール2の被写体側である。第1軸R1および第2軸R2は、Z軸回り(光軸回り)で、X軸およびY軸に対して45度傾斜する。 In the following description, the three axes orthogonal to each other are defined as the X-axis direction, the Y-axis direction, and the Z-axis direction. Further, one side in the X-axis direction is the −X direction, and the other side is the + X direction. One side in the Y-axis direction is the −Y direction, and the other side is the + Y direction. One side in the Z-axis direction is the −Z direction, and the other side is the + Z direction. The Z-axis direction is the optical axis L direction. The −Z direction is the anti-subject side of the camera module 2, and the + Z direction is the subject side of the camera module 2. The first axis R1 and the second axis R2 are tilted 45 degrees with respect to the X axis and the Y axis around the Z axis (optical axis).

振れ補正機能付き光学ユニット1は、可動体10をZ軸回りに回転可能に支持する回転支持機構12と、ジンバル機構13とを有する。ジンバル機構13は、回転支持機構12を第1軸R1回りに回転可能に支持するとともに、回転支持機構12を第2軸R2回りに回転可能に支持する。可動体10は、回転支持機構12およびジンバル機構13を介して、第1軸R1回りおよび第2軸R2回りに回転可能な状態で固定体11に支持される。 The optical unit 1 with a runout correction function includes a rotation support mechanism 12 that rotatably supports the movable body 10 around the Z axis, and a gimbal mechanism 13. The gimbal mechanism 13 rotatably supports the rotation support mechanism 12 around the first axis R1 and rotatably supports the rotation support mechanism 12 around the second axis R2. The movable body 10 is supported by the fixed body 11 in a state of being rotatable around the first axis R1 and the second axis R2 via the rotation support mechanism 12 and the gimbal mechanism 13.

図3に示すように、ジンバル機構13は、ジンバルフレーム14と、ジンバルフレーム14と回転支持機構12とを第1軸R1回りに回転可能に接続する第1接続機構15を備える。第1接続機構15は、ジンバルフレーム14の第1軸R1方向の両側に設けられている。また、ジンバル機構13は、ジンバルフレーム14と固定体11とを第2軸R2回りに回転可能に接続する第2接続機構16を備える。第2接続機構16は、ジンバルフレーム14の第2軸R2方向の両側に設けられている。 As shown in FIG. 3, the gimbal mechanism 13 includes a gimbal frame 14, and a first connection mechanism 15 that rotatably connects the gimbal frame 14 and the rotation support mechanism 12 around the first axis R1. The first connection mechanism 15 is provided on both sides of the gimbal frame 14 in the direction of the first axis R1. Further, the gimbal mechanism 13 includes a second connection mechanism 16 that rotatably connects the gimbal frame 14 and the fixed body 11 around the second axis R2. The second connection mechanism 16 is provided on both sides of the gimbal frame 14 in the second axis R2 direction.

また、振れ補正機能付き光学ユニット1は、可動体10を第1軸R1回りおよび第2軸R2回りに回転させる振れ補正用磁気駆動機構20を備える。図3に示すように、振れ補正用磁気駆動機構20は、可動体10に対してX軸回りの駆動力を発生させる第1振れ補正用磁気駆動機構21と、可動体10に対してY軸回りの駆動力を発生させる第2振れ補正用磁気駆動機構22を備える。第1振れ補正用磁気駆動機構21と第2振れ補正用磁気駆動機構22とは、Z軸回りの周方向に配列されている。本例では、第1振れ補正用磁気駆動機構21は、カメラモジュール2の-X方向に配置される。第2振れ補正用磁気駆動機構22は、カメラモジュール2の-Y方向に配置される。 Further, the optical unit 1 with a runout correction function includes a runout correction magnetic drive mechanism 20 that rotates the movable body 10 around the first axis R1 and around the second axis R2. As shown in FIG. 3, the runout correction magnetic drive mechanism 20 includes a first runout correction magnetic drive mechanism 21 that generates a driving force around the X axis with respect to the movable body 10, and a Y axis with respect to the movable body 10. It is provided with a second runout correction magnetic drive mechanism 22 that generates a rotational driving force. The first runout correction magnetic drive mechanism 21 and the second runout correction magnetic drive mechanism 22 are arranged in the circumferential direction around the Z axis. In this example, the first runout correction magnetic drive mechanism 21 is arranged in the −X direction of the camera module 2. The second runout correction magnetic drive mechanism 22 is arranged in the −Y direction of the camera module 2.

可動体10は、第1軸R1回りの回転および第2軸R2回りの回転を合成することにより、X軸回りおよびY軸回りに回転する。これにより、振れ補正機能付き光学ユニット1は、X軸回りのピッチング補正、およびY軸回りのヨーイング補正を行う。 The movable body 10 rotates around the X axis and around the Y axis by combining the rotation around the first axis R1 and the rotation around the second axis R2. As a result, the optical unit 1 with a runout correction function performs pitching correction around the X axis and yawing correction around the Y axis.

さらに、振れ補正機能付き光学ユニット1は、可動体10をZ軸回りに回転させるローリング補正用磁気駆動機構23を有する。図3に示すように、第1振れ補正用磁気駆動機構21、第2振れ補正用磁気駆動機構22、および、ローリング補正用磁気駆動機構23は、Z軸回りの周方向に配列されている。本例では、ローリング補正用磁気駆動機構23は、カメラモジュール2の+Y方向に配置される。ローリング補正用磁気駆動機構23は、光軸Lを間に挟んで、第2振れ補正用磁気駆動機構22とは反対側に位置する。 Further, the optical unit 1 with a runout correction function has a rolling correction magnetic drive mechanism 23 that rotates the movable body 10 around the Z axis. As shown in FIG. 3, the first runout correction magnetic drive mechanism 21, the second runout correction magnetic drive mechanism 22, and the rolling correction magnetic drive mechanism 23 are arranged in the circumferential direction around the Z axis. In this example, the rolling correction magnetic drive mechanism 23 is arranged in the + Y direction of the camera module 2. The rolling correction magnetic drive mechanism 23 is located on the opposite side of the second runout correction magnetic drive mechanism 22 with the optical axis L interposed therebetween.

(固定体)
固定体11において、カバー4およびベース5は板状であり、非磁性の金属からなる。カバー4およびベース5の外周縁には、ケース3の側に略直角に屈曲したフック8が形成されている。ケース3は樹脂製である。フック8は、ケース3の外周面に設けられた突起9に係止される。ジンバル機構13およびカメラモジュール2は、カバー4の開口部4aの内側に配置され、カバー4から+Z方向に突出している。
(Fixed point)
In the fixed body 11, the cover 4 and the base 5 are plate-shaped and made of non-magnetic metal. A hook 8 bent at a substantially right angle is formed on the outer peripheral edge of the cover 4 and the base 5 on the side of the case 3. The case 3 is made of resin. The hook 8 is locked to a protrusion 9 provided on the outer peripheral surface of the case 3. The gimbal mechanism 13 and the camera module 2 are arranged inside the opening 4a of the cover 4 and project from the cover 4 in the + Z direction.

ケース3は、可動体10および回転支持機構12を外周側から囲む矩形の枠部18と、枠部18の+X方向に配置される矩形の配線収容部19を備える。枠部18は、X方向で対向する第1側板部181および第2側板部182と、Y方向で対向する第3側板部183および第4側板部184を備える。第1側板部181は第2側板部182の-X方向に位置する。第3側板部183は、第4側板部184の-Y方向に位置する。 The case 3 includes a rectangular frame portion 18 that surrounds the movable body 10 and the rotation support mechanism 12 from the outer peripheral side, and a rectangular wiring accommodating portion 19 that is arranged in the + X direction of the frame portion 18. The frame portion 18 includes a first side plate portion 181 and a second side plate portion 182 facing in the X direction, and a third side plate portion 183 and a fourth side plate portion 184 facing in the Y direction. The first side plate portion 181 is located in the −X direction of the second side plate portion 182. The third side plate portion 183 is located in the −Y direction of the fourth side plate portion 184.

図4に示すように、枠部18は、第2側板部182の-Z方向の端縁を切り欠いた切欠き部185を備える。可動体10の-Z方向の端部分からは、撮像素子2bに接続されるフレキシブルプリント基板6が+X方向に引き出されている。フレキシブルプリント基板6は、切欠き部185を通って枠部18の+X方向に引き出され、配線収容部19に収容される。 As shown in FIG. 4, the frame portion 18 includes a notch portion 185 having a notched end edge in the −Z direction of the second side plate portion 182. The flexible printed substrate 6 connected to the image pickup device 2b is pulled out from the end portion of the movable body 10 in the −Z direction in the + X direction. The flexible printed substrate 6 is drawn out in the + X direction of the frame portion 18 through the notch portion 185 and is accommodated in the wiring accommodating portion 19.

配線収容部19は、Y軸方向で対向する第5側板部191および第6側板部192と、枠部18の第2側板部182とX軸方向で対向する第7側板部193を備える。配線収容部19は、第7側板部193の-Z方向の端縁を切り欠いた切欠き部194を備える。フレキシブルプリント基板6は、配線収容部19の内側で複数回折り返された形状に引き回され、切欠き部194を通って配線収容部19の外側へ引き出される。 The wiring accommodating portion 19 includes a fifth side plate portion 191 and a sixth side plate portion 192 facing each other in the Y-axis direction, and a seventh side plate portion 193 facing the second side plate portion 182 of the frame portion 18 in the X-axis direction. The wiring accommodating portion 19 includes a notch portion 194 in which the end edge of the seventh side plate portion 193 in the −Z direction is cut out. The flexible printed substrate 6 is routed in a shape that is folded back a plurality of times inside the wiring accommodating portion 19, and is pulled out to the outside of the wiring accommodating portion 19 through the notch portion 194.

図4に示すように、ケース3の第3側板部183には、第1コイル固定孔183aが設けられている。第1コイル固定孔183aには、第1コイル21Cが固定される。ケース3の第1側板部181には、第2コイル固定孔181aが設けられている。第2コイル固定孔181aには、第2コイル22Cが固定される。第1コイル21Cおよび第2コイル22Cは、周方向に長い長円形の空芯コイルである。また、第4側板部184には、第3
コイル固定孔184aが設けられている。第3コイル固定孔184aには、第3コイル23Cが配置されている。第3コイル23Cは、Z軸方向に長い空芯コイルである。
As shown in FIG. 4, the third side plate portion 183 of the case 3 is provided with a first coil fixing hole 183a. The first coil 21C is fixed in the first coil fixing hole 183a. A second coil fixing hole 181a is provided in the first side plate portion 181 of the case 3. The second coil 22C is fixed in the second coil fixing hole 181a. The first coil 21C and the second coil 22C are oval air-core coils long in the circumferential direction. Further, the fourth side plate portion 184 has a third
A coil fixing hole 184a is provided. A third coil 23C is arranged in the third coil fixing hole 184a. The third coil 23C is an air-core coil long in the Z-axis direction.

図3に示すように、第3側板部183に固定された第1コイル21Cと可動体10の-Y方向の側面に固定された第1磁石21MとはY方向で対向しており、第1振れ補正用磁気駆動機構21を構成する。また、第1側板部181に固定された第2コイル22Cと可動体10の-X方向の側面に固定された第2磁石22MとはX方向で対向しており、第2振れ補正用磁気駆動機構22を構成する。そして、第4側板部184に固定された第3コイル23Cと可動体10の+Y方向の側面に固定された第3磁石23MとはY方向で対向しており、ローリング補正用磁気駆動機構23を構成する。 As shown in FIG. 3, the first coil 21C fixed to the third side plate portion 183 and the first magnet 21M fixed to the side surface in the −Y direction of the movable body 10 face each other in the Y direction, and the first The magnetic drive mechanism 21 for runout correction is configured. Further, the second coil 22C fixed to the first side plate portion 181 and the second magnet 22M fixed to the side surface in the −X direction of the movable body 10 face each other in the X direction, and are magnetically driven for the second runout correction. It constitutes a mechanism 22. The third coil 23C fixed to the fourth side plate portion 184 and the third magnet 23M fixed to the side surface of the movable body 10 in the + Y direction face each other in the Y direction, and the rolling correction magnetic drive mechanism 23 is provided. Configure.

第1コイル21C、第2コイル22C、および第3コイル23Cは、フレキシブルプリント基板7に電気的に接続される。フレキシブルプリント基板7は、枠部18の外周面に固定される。本形態では、フレキシブルプリント基板7は、枠部18における第4側板部184、第1側板部181、および第3側板部183の外周面に沿って、この順番に引き回されている。 The first coil 21C, the second coil 22C, and the third coil 23C are electrically connected to the flexible printed circuit board 7. The flexible printed substrate 7 is fixed to the outer peripheral surface of the frame portion 18. In this embodiment, the flexible printed substrate 7 is routed in this order along the outer peripheral surfaces of the fourth side plate portion 184, the first side plate portion 181 and the third side plate portion 183 in the frame portion 18.

フレキシブルプリント基板7には、第1コイル21Cの中心と重なる位置、および、第2コイル22Cの中心と重なる位置の2箇所に磁性板17(図1、図2参照)が固定される。第1コイル21Cと重なる磁性板17と第1磁石21Mとは、可動体10をX軸回りの回転方向における基準角度位置に復帰させるための磁気バネを構成する。また、第2コイル22Cと重なる磁性板17と第2磁石22Mとは、可動体10をY軸回りの回転方向における基準角度位置に復帰させるための磁気バネを構成する。さらに、フレキシブルプリント基板7には、図示しない揺動位置センサおよび回転位置センサが配置される。振れ補正機能付き光学ユニット1は、これらのセンサの出力に基づき、可動体10のX軸回り、Y軸回り、Z軸回りの回転方向における角度位置を取得する。 The magnetic plate 17 (see FIGS. 1 and 2) is fixed to the flexible printed circuit board 7 at two positions, one at a position overlapping the center of the first coil 21C and the other at a position overlapping the center of the second coil 22C. The magnetic plate 17 overlapping the first coil 21C and the first magnet 21M form a magnetic spring for returning the movable body 10 to a reference angle position in the rotation direction around the X axis. Further, the magnetic plate 17 overlapping the second coil 22C and the second magnet 22M form a magnetic spring for returning the movable body 10 to a reference angle position in the rotation direction around the Y axis. Further, a swing position sensor and a rotation position sensor (not shown) are arranged on the flexible printed substrate 7. The optical unit 1 with a runout correction function acquires the angular positions of the movable body 10 around the X axis, the Y axis, and the Z axis in the rotation direction based on the outputs of these sensors.

(ジンバル機構)
図5、図6は、振れ補正機能付き光学ユニットの断面図である。図5は、図2のA-A位置で切断した断面図であり、図6は、図2のB-B位置で切断した断面図である。図7は、ジンバルフレーム14、第1ジンバルフレーム受け部材151、および第2ジンバルフレーム受け部材162の分解斜視図である。
(Gimbal mechanism)
5 and 6 are sectional views of an optical unit with a runout correction function. 5 is a cross-sectional view cut at the AA position of FIG. 2, and FIG. 6 is a cross-sectional view cut at the BB position of FIG. FIG. 7 is an exploded perspective view of the gimbal frame 14, the first gimbal frame receiving member 151, and the second gimbal frame receiving member 162.

図3、図6に示すように、枠部18の第2軸R2方向の対角位置には、それぞれ、ジンバルフレーム14と固定体11とを第2軸R2回りに回転可能に接続する第2接続機構16が設けられる。枠部18の第2軸R2方向の対角位置に設けられた一対の凹部161には、それぞれ、第2ジンバルフレーム受け部材162が固定される。図6、図7に示すように、第2ジンバルフレーム受け部材162は、球体163と、球体163が固定される第2スラスト受け部材164を備える。図6に示すように、第2ジンバルフレーム受け部材162を凹部161に固定することにより、球体163が第2軸R2上の位置で固定体11に支持される。ジンバル機構13を組み立てる際、第2ジンバルフレーム受け部材162の内周側にジンバルフレーム14を挿入して第2軸R2上で球体163に点接触させる。これにより、第2接続機構16が構成される。 As shown in FIGS. 3 and 6, the gimbal frame 14 and the fixed body 11 are rotatably connected around the second axis R2 at diagonal positions of the frame portion 18 in the second axis R2 direction, respectively. A connection mechanism 16 is provided. The second gimbal frame receiving member 162 is fixed to each of the pair of recesses 161 provided at diagonal positions in the second axis R2 direction of the frame portion 18. As shown in FIGS. 6 and 7, the second gimbal frame receiving member 162 includes a sphere 163 and a second thrust receiving member 164 to which the sphere 163 is fixed. As shown in FIG. 6, by fixing the second gimbal frame receiving member 162 to the recess 161 the sphere 163 is supported by the fixed body 11 at a position on the second axis R2. When assembling the gimbal mechanism 13, the gimbal frame 14 is inserted into the inner peripheral side of the second gimbal frame receiving member 162 and brought into point contact with the sphere 163 on the second axis R2. As a result, the second connection mechanism 16 is configured.

図3、図5に示すように、可動体10に対して第1軸R1方向の両側には、それぞれ、ジンバルフレーム14と回転支持機構12とを第1軸R1回りに回転可能に接続する第1接続機構15が設けられる。第1接続機構15は、可動体10に対して第1軸R1方向の両側において回転支持機構12に固定される第1ジンバルフレーム受け部材151を備える。図5、図7に示すように、第1ジンバルフレーム受け部材151は、球体152と、球体152が固定される第1スラスト受け部材153を備える。第1スラスト受け部材1
53を回転支持機構12に固定することにより、球体152が第1軸R1上の位置で回転支持機構12によって支持される。ジンバル機構13を組み立てる際、第1ジンバルフレーム受け部材151の内周側にジンバルフレーム14を挿入して第1軸R1上で球体152に点接触させる。これにより、第1接続機構15が構成される。
As shown in FIGS. 3 and 5, the gimbal frame 14 and the rotation support mechanism 12 are rotatably connected around the first axis R1 on both sides of the movable body 10 in the direction of the first axis R1, respectively. 1 Connection mechanism 15 is provided. The first connection mechanism 15 includes a first gimbal frame receiving member 151 fixed to the rotation support mechanism 12 on both sides of the movable body 10 in the direction of the first axis R1. As shown in FIGS. 5 and 7, the first gimbal frame receiving member 151 includes a sphere 152 and a first thrust receiving member 153 to which the sphere 152 is fixed. 1st thrust receiving member 1
By fixing the 53 to the rotation support mechanism 12, the sphere 152 is supported by the rotation support mechanism 12 at a position on the first axis R1. When assembling the gimbal mechanism 13, the gimbal frame 14 is inserted into the inner peripheral side of the first gimbal frame receiving member 151 and brought into point contact with the sphere 152 on the first axis R1. As a result, the first connection mechanism 15 is configured.

ジンバルフレーム14は、金属製の板バネからなる。図5、図6、図7に示すように、ジンバルフレーム14は、可動体10の+Z方向に位置するジンバルフレーム本体部140と、ジンバルフレーム本体部140から第1軸R1方向の両側に向かって突出して-Z方向に延びる一対の第1軸側延設部141と、ジンバルフレーム本体部140から第2軸R2方向の両側に向かって突出して-Z方向に延びる一対の第2軸側延設部142を備える。ジンバルフレーム14は、ジンバルフレーム本体部140の中央をZ軸方向に貫通する開口部143を備える。 The gimbal frame 14 is made of a metal leaf spring. As shown in FIGS. 5, 6 and 7, the gimbal frame 14 has a gimbal frame main body 140 located in the + Z direction of the movable body 10 and both sides of the gimbal frame main body 140 in the direction of the first axis R1. A pair of first-axis side extension portions 141 protruding in the -Z direction, and a pair of second-axis side extension portions protruding in the -Z direction from the gimbal frame main body 140 toward both sides in the second axis R2 direction. A unit 142 is provided. The gimbal frame 14 includes an opening 143 that penetrates the center of the gimbal frame main body 140 in the Z-axis direction.

図7に示すように、一対の第1軸側延設部141のそれぞれは、第1軸R1上において、第1軸R1方向を可動体10の側に向かって内周側に窪む第1軸側凹曲面144を備える。また、第1軸側延設部141は、第1軸側凹曲面144の+Z方向に、周方向の両側の縁を切り欠いた一対の切欠き145を備える。さらに、第1軸側延設部141は、第1軸側凹曲面144の-Z方向に、外周側へ向かう方向へ突出する突出部146を備える。次に、一対の第2軸側延設部142のそれぞれは、第2軸R2上において、第2軸R2方向を可動体10の側に向かって内周側に窪む第2軸側凹曲面147を備える。また、第2軸側延設部142は、第2軸側凹曲面147の+Z方向に、周方向の両側の縁を切り欠いた一対の切欠き148を備える。 As shown in FIG. 7, each of the pair of first axis side extension portions 141 is recessed on the first axis R1 in the direction of the first axis R1 toward the inner peripheral side toward the movable body 10. A shaft side concave curved surface 144 is provided. Further, the first axis side extending portion 141 includes a pair of notches 145 in which both edges in the circumferential direction are cut out in the + Z direction of the first axis side concave curved surface 144. Further, the first axis side extending portion 141 includes a protruding portion 146 that protrudes in the −Z direction of the first axis side concave curved surface 144 in the direction toward the outer peripheral side. Next, each of the pair of second axis side extension portions 142 is recessed on the second axis R2 in the direction of the second axis R2 toward the inner peripheral side toward the movable body 10, and is a concave curved surface on the second axis side. 147 is provided. Further, the second axis side extending portion 142 includes a pair of notches 148 having notches on both sides in the circumferential direction in the + Z direction of the second axis side concave curved surface 147.

図7に示すように、第1スラスト受け部材153は、Z軸方向に延びる板部154と、板部154の-Z方向の端部から可動体10側へ屈曲した足部155と、板部154の周方向の両側の側縁から可動体10側へ屈曲した一対の腕部156を備える。板部154には球体152が溶接により固定される。また、第1スラスト受け部材153は、板部154と足部155とが繋がる角部の中央を貫通する孔部157を備える。足部155および一対の腕部156の先端は、回転支持機構12に溶接により固定される。後述するように、回転支持機構12は、可動体10の第1軸R1方向の両側において-Z方向に延びる一対の第2延設部64を備えており、第1ジンバルフレーム受け部材151は、足部155および一対の腕部156の先端が第2延設部64の先端に溶接により固定される。 As shown in FIG. 7, the first thrust receiving member 153 includes a plate portion 154 extending in the Z-axis direction, a foot portion 155 bent from the end portion of the plate portion 154 in the −Z direction toward the movable body 10, and a plate portion. It is provided with a pair of arm portions 156 bent from the side edges on both sides in the circumferential direction of 154 toward the movable body 10. A sphere 152 is fixed to the plate portion 154 by welding. Further, the first thrust receiving member 153 includes a hole portion 157 that penetrates the center of the corner portion connecting the plate portion 154 and the foot portion 155. The tips of the foot portion 155 and the pair of arm portions 156 are fixed to the rotation support mechanism 12 by welding. As will be described later, the rotation support mechanism 12 includes a pair of second extending portions 64 extending in the −Z direction on both sides of the movable body 10 in the first axis R1 direction, and the first gimbal frame receiving member 151 includes a first gimbal frame receiving member 151. The tips of the foot portion 155 and the pair of arm portions 156 are fixed to the tips of the second extension portion 64 by welding.

ジンバル機構13を組み立てる際には、ジンバルフレーム14の第1軸側延設部141を内周側に撓ませて第1ジンバルフレーム受け部材151の内周側に挿入する。これにより、第1軸側延設部141は外周側へ付勢されるので、各第1軸側延設部141の第1軸側凹曲面144と第1ジンバルフレーム受け部材151の球体152とは、接触した状態を維持できる。また、第1軸側延設部141の切欠き145が一対の腕部156の間に配置されるとともに、突出部146が孔部157に配置される(図5参照)。これにより、第1ジンバルフレーム受け部材151からジンバルフレーム14が+Z方向に抜けることが防止される。 When assembling the gimbal mechanism 13, the first shaft side extension portion 141 of the gimbal frame 14 is bent toward the inner peripheral side and inserted into the inner peripheral side of the first gimbal frame receiving member 151. As a result, the first axis side extension portion 141 is urged toward the outer peripheral side, so that the first axis side concave curved surface 144 of each first axis side extension portion 141 and the sphere 152 of the first gimbal frame receiving member 151 Can maintain contact. Further, the notch 145 of the first shaft side extending portion 141 is arranged between the pair of arm portions 156, and the protruding portion 146 is arranged in the hole portion 157 (see FIG. 5). This prevents the gimbal frame 14 from coming off the first gimbal frame receiving member 151 in the + Z direction.

第2スラスト受け部材164は、Z軸方向に延びる板部165と、板部165の-Z方向の端部から可動体10側へ屈曲した足部166と、板部165の周方向の両側の側縁から可動体10側へ屈曲した一対の腕部167を備える。板部165には球体163が溶接により固定される。また、足部166の周方向の両端から+Z方向へ屈曲した足部屈曲部168を備える。第2スラスト受け部材164をケース3の凹部161に固定する際、足部屈曲部168を周方向の中央に向けて撓ませながら第2スラスト受け部材164を凹部161に圧入する。 The second thrust receiving member 164 includes a plate portion 165 extending in the Z-axis direction, a foot portion 166 bent from the −Z end of the plate portion 165 toward the movable body 10 side, and both sides of the plate portion 165 in the circumferential direction. A pair of arm portions 167 bent from the side edge to the movable body 10 side are provided. A sphere 163 is fixed to the plate portion 165 by welding. Further, a foot bending portion 168 that is bent in the + Z direction from both ends of the foot portion 166 in the circumferential direction is provided. When the second thrust receiving member 164 is fixed to the recess 161 of the case 3, the second thrust receiving member 164 is press-fitted into the recess 161 while bending the foot bending portion 168 toward the center in the circumferential direction.

ジンバル機構13を組み立てる際には、ジンバルフレーム14の第2軸側延設部142を内周側に撓ませて第2ジンバルフレーム受け部材162の内周側に挿入する。これにより、第2軸側延設部142は外周側へ付勢されるので、各第2軸側延設部142の第2軸側凹曲面147と第2ジンバルフレーム受け部材162の球体163とは、接触した状態を維持できる。また、第2軸側延設部142の切欠き145が一対の腕部156の間に配置される。これにより、第2ジンバルフレーム受け部材162からジンバルフレーム14が+Z方向に抜けることが防止される。 When assembling the gimbal mechanism 13, the second shaft side extension portion 142 of the gimbal frame 14 is bent toward the inner peripheral side and inserted into the inner peripheral side of the second gimbal frame receiving member 162. As a result, the second axis side extension portion 142 is urged toward the outer peripheral side, so that the second axis side concave curved surface 147 of each second axis side extension portion 142 and the sphere 163 of the second gimbal frame receiving member 162 Can maintain contact. Further, the notch 145 of the second axis side extension portion 142 is arranged between the pair of arm portions 156. This prevents the gimbal frame 14 from coming off the second gimbal frame receiving member 162 in the + Z direction.

(可動体)
図8は、可動体10および回転支持機構12を被写体側から見た斜視図である。図9は、可動体10および回転支持機構12の分解斜視図である。図10は、可動体10および回転支持機構12を反被写体側から見た斜視図である。図8、図9に示すように、可動体10は、カメラモジュール2と、カメラモジュール2を保持する枠状のホルダ24と、ホルダ24に固定される第1部材25を備える。ホルダ24は樹脂製であり、第1部材25は金属製である。
(Movable body)
FIG. 8 is a perspective view of the movable body 10 and the rotation support mechanism 12 as viewed from the subject side. FIG. 9 is an exploded perspective view of the movable body 10 and the rotation support mechanism 12. FIG. 10 is a perspective view of the movable body 10 and the rotation support mechanism 12 as viewed from the anti-subject side. As shown in FIGS. 8 and 9, the movable body 10 includes a camera module 2, a frame-shaped holder 24 for holding the camera module 2, and a first member 25 fixed to the holder 24. The holder 24 is made of resin, and the first member 25 is made of metal.

図8、図9に示すように、第1部材25は、光軸Lを囲みカメラモジュール2の外周部分に+Z方向から重なる第1環状板部26と、第1環状板部26から外周側へ突出しカメラモジュール2の外周側において-Z方向へ屈曲してホルダ24に接続される第1延設部27を備える。本形態では、第1環状板部26とカメラモジュール2とのZ軸方向(光軸L方向)の隙間に回転支持機構12が配置される。 As shown in FIGS. 8 and 9, the first member 25 has a first annular plate portion 26 that surrounds the optical axis L and overlaps the outer peripheral portion of the camera module 2 from the + Z direction, and from the first annular plate portion 26 to the outer peripheral side. A first extending portion 27 that is bent in the −Z direction and connected to the holder 24 on the outer peripheral side of the projecting camera module 2 is provided. In this embodiment, the rotation support mechanism 12 is arranged in the gap between the first annular plate portion 26 and the camera module 2 in the Z-axis direction (optical axis L direction).

第1延設部27は、第1環状板部26の-X方向、+Y方向、-Y方向の3箇所に配置される。第1延設部27が配置される角度位置は、振れ補正用磁気駆動機構20の第1磁石21Mおよび第2磁石22Mと、ローリング補正用磁気駆動機構23の第3磁石23Mが配置される角度位置である。第1延設部27は、第1環状板部26から外周側へ延びて-Z方向へ屈曲する第1延設部第1部分28と、第1延設部第1部分28の-Z方向の先端に接続され第1延設部第1部分28よりも周方向の幅が広い矩形の第1延設部第2部分29を備える。第1延設部第2部分29はホルダ24に固定される。 The first extending portion 27 is arranged at three positions of the first annular plate portion 26 in the −X direction, the + Y direction, and the −Y direction. The angle position where the first extension portion 27 is arranged is the angle at which the first magnet 21M and the second magnet 22M of the runout correction magnetic drive mechanism 20 and the third magnet 23M of the rolling correction magnetic drive mechanism 23 are arranged. The position. The first extension portion 27 is a first extension portion 28 extending from the first annular plate portion 26 toward the outer peripheral side and bending in the −Z direction, and a first extension portion 28 in the −Z direction. It is provided with a rectangular first extending portion second portion 29 which is connected to the tip of the first extending portion and has a width wider in the circumferential direction than the first extending portion first portion 28. The second portion 29 of the first extension portion is fixed to the holder 24.

第1部材25は、光軸Lを囲む環状の第1レール部材50と、第1レール部材50が接合された板金製の第1板状部材51を備える。第1板状部材51は磁性金属からなる。第1レール部材50は非磁性金属からなる。なお、第1レール部材50は、磁性金属であってもよい。第1レール部材50は、第1板状部材51に設けられた円形の第1貫通穴52の内側に嵌め込まれ、第1板状部材51に溶接により固定される。より詳細には、第1レール部材50と第1板状部材51とは、第1貫通穴52の開口縁と、第1レール部材50の外周縁とが、径方向に繋がるように溶接されている。溶接は、Z軸回りで等角度間隔の複数個所で行われる。 The first member 25 includes an annular first rail member 50 that surrounds the optical axis L, and a sheet metal first plate-shaped member 51 to which the first rail member 50 is joined. The first plate-shaped member 51 is made of magnetic metal. The first rail member 50 is made of a non-magnetic metal. The first rail member 50 may be made of magnetic metal. The first rail member 50 is fitted inside a circular first through hole 52 provided in the first plate-shaped member 51, and is fixed to the first plate-shaped member 51 by welding. More specifically, the first rail member 50 and the first plate-shaped member 51 are welded so that the opening edge of the first through hole 52 and the outer peripheral edge of the first rail member 50 are connected in the radial direction. There is. Welding is performed at a plurality of locations at equal intervals around the Z axis.

図5、図6に示すように、第1レール部材50の-Z方向の端面には、第1環状溝53が設けられている。本形態では、第1環状溝53は、切削により形成される。なお、第1レール部材50は、切削以外の方法で第1環状溝53を形成した部材であってもよい。例えば、冷間鍛造や、プレス加工によって第1環状溝53を形成してもよい。第1環状板部26は、内周部分が第1レール部材50により構成され、外周部分が第1板状部材51により構成される。従って、第1環状板部26は、光軸Lを囲む第1環状溝53を備える。 As shown in FIGS. 5 and 6, a first annular groove 53 is provided on the end face of the first rail member 50 in the −Z direction. In this embodiment, the first annular groove 53 is formed by cutting. The first rail member 50 may be a member in which the first annular groove 53 is formed by a method other than cutting. For example, the first annular groove 53 may be formed by cold forging or press working. The inner peripheral portion of the first annular plate portion 26 is composed of the first rail member 50, and the outer peripheral portion is composed of the first plate-shaped member 51. Therefore, the first annular plate portion 26 includes a first annular groove 53 that surrounds the optical axis L.

図9に示すように、カメラモジュール2は、カメラモジュール本体部30Aと、カメラモジュール本体部30Aの中央から+Z方向に突出するカメラモジュール円筒部30Bを備える。カメラモジュール円筒部30Bにはレンズ2a(図5、図6参照)が収容される。ホルダ24は、カメラモジュール本体部30Aを外周側から囲んでいる。カメラモジュ
ール円筒部30Bは、第1環状板部26の中央に設けられた円形穴26aから+Z方向に突出し、ジンバルフレーム14の開口部143に配置される。
As shown in FIG. 9, the camera module 2 includes a camera module main body 30A and a camera module cylindrical portion 30B projecting from the center of the camera module main body 30A in the + Z direction. The lens 2a (see FIGS. 5 and 6) is housed in the camera module cylindrical portion 30B. The holder 24 surrounds the camera module main body 30A from the outer peripheral side. The camera module cylindrical portion 30B protrudes in the + Z direction from the circular hole 26a provided in the center of the first annular plate portion 26, and is arranged in the opening 143 of the gimbal frame 14.

カメラモジュール本体部30Aおよびホルダ24は、+Z方向から見た場合の輪郭形状が略8角形である。ホルダ24は、Y方向に平行に延びる第1側壁31および第2側壁32と、X方向に平行に延びる第3側壁33および第4側壁34を備える。第1側壁31は、第2側壁32の-X方向に位置する。第3側壁33は、第4側壁34の-Y方向に位置する。第2側壁32の-Z方向の端縁には、切欠き部32aが設けられている。図4に示すように、撮像素子2bに接続されるフレキシブルプリント基板6は、カメラモジュール2の-Z方向の端部から、切欠き部32aを通って可動体10の+X方向へ引き出されている。 The outline shape of the camera module main body 30A and the holder 24 when viewed from the + Z direction is substantially octagonal. The holder 24 includes a first side wall 31 and a second side wall 32 extending parallel to the Y direction, and a third side wall 33 and a fourth side wall 34 extending parallel to the X direction. The first side wall 31 is located in the −X direction of the second side wall 32. The third side wall 33 is located in the −Y direction of the fourth side wall 34. A notch 32a is provided at the end edge of the second side wall 32 in the −Z direction. As shown in FIG. 4, the flexible printed circuit board 6 connected to the image pickup device 2b is pulled out from the end portion of the camera module 2 in the −Z direction through the notch portion 32a in the + X direction of the movable body 10. ..

また、ホルダ24は、第1軸R1方向の対角に位置する第5側壁35および第6側壁36と、第2軸R2方向の対角に位置する第7側壁37および第8側壁38を備える。第5側壁35は、第6側壁36の-X方向に位置する。第7側壁37は、第8側壁38の-X方向に位置する。第5側壁35、第6側壁36、第7側壁37、および第8側壁38の+Z方向の端面には、+Z方向に突出するストッパ用凸部39が形成される。 Further, the holder 24 includes a fifth side wall 35 and a sixth side wall 36 located diagonally in the first axis R1 direction, and a seventh side wall 37 and an eighth side wall 38 located diagonally in the second axis R2 direction. .. The fifth side wall 35 is located in the −X direction of the sixth side wall 36. The seventh side wall 37 is located in the −X direction of the eighth side wall 38. A stopper protrusion 39 projecting in the + Z direction is formed on the end faces of the fifth side wall 35, the sixth side wall 36, the seventh side wall 37, and the eighth side wall 38 in the + Z direction.

ホルダ24の第1側壁31には第1磁石21Mが固定され、第3側壁33には第2磁石22Mが固定される。第1磁石21Mおよび第2磁石22Mは、Z軸方向に2極着磁されている。第1磁石21Mおよび第2磁石22Mの着磁分極線は、周方向に延びている。第1磁石21Mおよび第2磁石22Mは、Z軸方向に同一の極を向けて配置されている。ホルダ24の第4側壁34には、第3磁石23Mが固定される。第3磁石23Mは、周方向に極着磁されている。第1磁石21M、第2磁石22M、および第3磁石23Mは、光軸L回りの周方向に配列される。第3磁石23Mは、光軸Lを挟んで第2磁石22Mと反対側に配置される。 The first magnet 21M is fixed to the first side wall 31 of the holder 24, and the second magnet 22M is fixed to the third side wall 33. The first magnet 21M and the second magnet 22M are magnetized in two poles in the Z-axis direction. The polarization lines of the first magnet 21M and the second magnet 22M extend in the circumferential direction. The first magnet 21M and the second magnet 22M are arranged so that the same poles are directed in the Z-axis direction. A third magnet 23M is fixed to the fourth side wall 34 of the holder 24. The third magnet 23M is extremely magnetized in the circumferential direction. The first magnet 21M, the second magnet 22M, and the third magnet 23M are arranged in the circumferential direction around the optical axis L. The third magnet 23M is arranged on the side opposite to the second magnet 22M with the optical axis L interposed therebetween.

図9に示すように、ホルダ24の第1側壁31、第3側壁33、および第4側壁34の外周面には、内周側に凹む凹部40が形成されており、第1磁石21M、第2磁石22M、および第3磁石23Mは、凹部40に収容される。第1磁石21M、第2磁石22M、および第3磁石23Mは、各凹部40の-Z方向の端部に設けられた底面41に+Z方向から当接することによってZ軸方向に位置決めされる。 As shown in FIG. 9, recesses 40 recessed on the inner peripheral side are formed on the outer peripheral surfaces of the first side wall 31, the third side wall 33, and the fourth side wall 34 of the holder 24, and the first magnet 21M, the first magnet 21M, is formed. The two magnets 22M and the third magnet 23M are housed in the recess 40. The first magnet 21M, the second magnet 22M, and the third magnet 23M are positioned in the Z-axis direction by abutting the bottom surface 41 provided at the end of each recess 40 in the −Z direction from the + Z direction.

3箇所の凹部40は、それそれ、周方向の両側の内面に溝部42が形成されている。図3、図8に示すように、各凹部40には、第1延設部27の-Z方向の先端に設けられた第1延設部第2部分29が挿入される。第1延設部第2部分29は、周方向の両端が溝部42に挿入されており、接着剤により各凹部40に固定される。第1延設部第2部分29は、第1磁石21M、第2磁石22M、および第3磁石23Mの径方向内側に挿入されている。第1延設部第2部分29は磁性金属からなるため、各磁石に対するヨークとして機能する。 Grooves 42 are formed on the inner surfaces of the three recesses 40 on both sides in the circumferential direction. As shown in FIGS. 3 and 8, the second portion 29 of the first extension portion 29 provided at the tip of the first extension portion 27 in the −Z direction is inserted into each recess 40. Both ends of the first extending portion 2nd portion 29 in the circumferential direction are inserted into the groove portion 42, and are fixed to each recess 40 by an adhesive. The second portion 29 of the first extension portion is inserted inside the first magnet 21M, the second magnet 22M, and the third magnet 23M in the radial direction. Since the first extending portion second portion 29 is made of magnetic metal, it functions as a yoke for each magnet.

(回転支持機構)
回転支持機構12は、光軸Lと同軸な状態で可動体10に設けられた第1環状溝53と、第1環状溝53とZ軸方向で対向する第2環状溝54を有する第2部材55を備える。また、回転支持機構12は、第1環状溝53および第2環状溝54に挿入されて可動体10と第2部材55との間で転動する複数の転動体56と、転動体56を転動可能に保持する環状のリテーナ57を備える。リテーナ57は、複数の転動体56のそれぞれを転動可能に保持する複数の球体保持穴58を備える。さらに、回転支持機構12は、第1環状溝53と第2環状溝54とをZ軸方向で接近させる力を付与する与圧機構59を備える。
(Rotation support mechanism)
The rotation support mechanism 12 is a second member having a first annular groove 53 provided on the movable body 10 in a state coaxial with the optical axis L and a second annular groove 54 facing the first annular groove 53 in the Z-axis direction. It is equipped with 55. Further, the rotation support mechanism 12 rolls a plurality of rolling elements 56 that are inserted into the first annular groove 53 and the second annular groove 54 and roll between the movable body 10 and the second member 55, and the rolling body 56. It is provided with an annular retainer 57 that is movably held. The retainer 57 includes a plurality of spherical holding holes 58 that rotatably hold each of the plurality of rolling elements 56. Further, the rotation support mechanism 12 includes a pressurization mechanism 59 that applies a force that brings the first annular groove 53 and the second annular groove 54 close to each other in the Z-axis direction.

図9に示すように、第2部材55は、光軸Lを囲む環状の第2レール部材60と、第2レール部材60が接合された板金製の第2板状部材61を備える。第2レール部材60は、第2板状部材61に設けられた円形の第2貫通穴62の内側に嵌め込まれ、第2板状部材61に溶接により固定される。より詳細は、第2レール部材60と第2板状部材61とは、第2貫通穴62の開口縁と、第2レール部材60の外周縁とが、-Z方向から溶接されている。溶接は、Z軸回りで等角度間隔の複数個所で行われる。 As shown in FIG. 9, the second member 55 includes an annular second rail member 60 surrounding the optical axis L and a sheet metal second plate-shaped member 61 to which the second rail member 60 is joined. The second rail member 60 is fitted inside a circular second through hole 62 provided in the second plate-shaped member 61, and is fixed to the second plate-shaped member 61 by welding. More specifically, in the second rail member 60 and the second plate-shaped member 61, the opening edge of the second through hole 62 and the outer peripheral edge of the second rail member 60 are welded from the −Z direction. Welding is performed at a plurality of locations at equal intervals around the Z axis.

第2環状溝54は、第2レール部材60の+Z方向の端面に設けられている。本形態では、第2環状溝54は、切削により形成される。第2レール部材60および第2板状部材61は、いずれも非磁性金属からなる。なお、第2レール部材60は、磁性金属であってもよい。第2レール部材60と第1レール部材50とは、同一の部材である。図5、図6に示すように、第2レール部材60と第1レール部材50とは、同軸に配置されており、第1環状溝53と第2環状溝54とがZ軸方向で対向している。 The second annular groove 54 is provided on the end face of the second rail member 60 in the + Z direction. In this embodiment, the second annular groove 54 is formed by cutting. The second rail member 60 and the second plate-shaped member 61 are both made of non-magnetic metal. The second rail member 60 may be made of magnetic metal. The second rail member 60 and the first rail member 50 are the same member. As shown in FIGS. 5 and 6, the second rail member 60 and the first rail member 50 are arranged coaxially, and the first annular groove 53 and the second annular groove 54 face each other in the Z-axis direction. ing.

転動体56は、金属製、或いは、セラミックス製である。リテーナ57は樹脂製である。リテーナ57は、Z軸方向で第1レール部材50と第2レール部材60との間に位置する。本形態では、転動体56は球体である。回転支持機構12は6個の転動体56を備え、リテーナ57は、等角度間隔に設けられた6つの球体保持穴58を備える。転動体56は、球体保持穴58の内側に転動可能に保持されて、リテーナ57から-Z方向および+Z方向に突出する。 The rolling element 56 is made of metal or ceramics. The retainer 57 is made of resin. The retainer 57 is located between the first rail member 50 and the second rail member 60 in the Z-axis direction. In this embodiment, the rolling element 56 is a sphere. The rotation support mechanism 12 includes six rolling elements 56, and the retainer 57 includes six spherical holding holes 58 provided at equal intervals. The rolling element 56 is rotatably held inside the sphere holding hole 58 and projects from the retainer 57 in the −Z direction and the + Z direction.

第2部材55は、光軸Lを囲む第2環状板部63と、第2環状板部63から第1軸R1方向の両側に突出する一対の第2延設部64と、第2環状板部63から第2軸R2方向の両側に突出する一対の第2突出板部65を備える。第2環状板部63は、内周部分が第2レール部材60により構成され、外周部分が第2板状部材61により構成される。図5、図6、図8に示すように、第2環状板部63およびリテーナ57は、第1部材25の第1環状板部26とカメラモジュール本体部30Aとの光軸L方向の隙間に配置される。 The second member 55 includes a second annular plate portion 63 that surrounds the optical axis L, a pair of second extending portions 64 that project from the second annular plate portion 63 on both sides in the direction of the first axis R1, and a second annular plate. A pair of second protruding plate portions 65 projecting from the portions 63 on both sides in the direction of the second axis R2 is provided. The inner peripheral portion of the second annular plate portion 63 is composed of the second rail member 60, and the outer peripheral portion is composed of the second plate-shaped member 61. As shown in FIGS. 5, 6 and 8, the second annular plate portion 63 and the retainer 57 are located in the gap between the first annular plate portion 26 of the first member 25 and the camera module main body portion 30A in the optical axis L direction. Be placed.

一対の第2延設部64は、それぞれ、第2環状板部63から第1軸R1方向に延びる第2延設部第1部分66と、可動体10の外周側をZ軸方向に延びる第2延設部第2部分67を備える。図5に示すように、第2延設部第2部分67は、可動体10の第1軸R1方向の外側で、僅かな隙間を開けて可動体10と対向する。図5、図8に示すように、各第2延設部第2部分67には、可動体10とは反対側の面に第1ジンバルフレーム受け部材151が固定される。第1ジンバルフレーム受け部材151は、一対の腕部156および足部155の先端が第2延設部第2部分67に溶接されることにより、第2延設部第2部分67に固定される。 The pair of second extending portions 64 each have a second extending portion 1st portion 66 extending from the second annular plate portion 63 in the first axis R1 direction and a second extending portion 66 extending from the outer peripheral side of the movable body 10 in the Z axis direction. 2 The extension portion 2nd portion 67 is provided. As shown in FIG. 5, the second extension portion 67 faces the movable body 10 with a slight gap on the outside in the direction of the first axis R1 of the movable body 10. As shown in FIGS. 5 and 8, the first gimbal frame receiving member 151 is fixed to the surface of each second extending portion second portion 67 on the surface opposite to the movable body 10. The first gimbal frame receiving member 151 is fixed to the second extension portion 67 by welding the tips of the pair of arm portions 156 and the foot portion 155 to the second extension portion second portion 67. ..

図8、図9に示すように、与圧機構59は、第2部材55の光軸L周りの4箇所に配置される与圧用磁石68と、第1部材25の光軸L周りの4箇所に設けられた第1突出板部69を備える。与圧用磁石68は、一対の第2延設部第1部分66および一対の第2突出板部65の4箇所に固定される。各与圧用磁石68は周方向で2極着磁されている。第1突出板部69は、第1環状板部26から第1軸R1方向の両側、および、第2軸R2方向の両側の4方向に突出する。第2部材55に配置される4つの与圧用磁石68のそれぞれは、可動体10と回転支持機構12とを組み立てたときに、可動体10に設けられた4箇所の第1突出板部69と光軸L方向に重なる。 As shown in FIGS. 8 and 9, the pressurization mechanism 59 includes a pressurization magnet 68 arranged at four locations around the optical axis L of the second member 55 and four locations around the optical axis L of the first member 25. The first protruding plate portion 69 provided in the above is provided. The pressurizing magnet 68 is fixed to four points, a pair of second extending portions 1st portion 66 and a pair of second protruding plate portions 65. Each pressurizing magnet 68 is magnetized in two poles in the circumferential direction. The first protruding plate portion 69 projects from the first annular plate portion 26 in four directions, both sides in the direction of the first axis R1 and both sides in the direction of the second axis R2. Each of the four pressurizing magnets 68 arranged on the second member 55 together with the four first projecting plate portions 69 provided on the movable body 10 when the movable body 10 and the rotation support mechanism 12 are assembled. It overlaps in the L direction of the optical axis.

第1突出板部69は、磁性金属からなる。従って、与圧用磁石68の磁気吸引力により、各与圧用磁石68と光軸L方向で重なる第1突出板部69が与圧用磁石68の側に吸引される。これにより、与圧機構59は、光軸L回りの等角度間隔の4か所で、第1環状溝53と第2環状溝54とをZ軸方向で接近させる力を付与する。可動体10は、与圧機構
59の磁気吸引力によって第2部材55に吸引され、Z軸回りに回転可能な状態で、第2部材55に支持される。
The first protruding plate portion 69 is made of a magnetic metal. Therefore, due to the magnetic attraction of the pressurizing magnet 68, the first protruding plate portion 69 that overlaps each pressurizing magnet 68 in the optical axis L direction is attracted to the pressurizing magnet 68 side. As a result, the pressurization mechanism 59 applies a force that causes the first annular groove 53 and the second annular groove 54 to approach each other in the Z-axis direction at four locations at equal angular intervals around the optical axis L. The movable body 10 is attracted to the second member 55 by the magnetic attraction force of the pressurization mechanism 59, and is supported by the second member 55 in a state of being rotatable around the Z axis.

第2部材55に設けられた一対の第2延設部64および一対の第2突出板部65は、ホルダ24に設けられたストッパ用凸部39と光軸L方向に対向する。図5、図6に示すように、ストッパ用凸部39の+Z方向の先端は、カメラモジュール本体部30Aの+Z方向の端面よりも+Z方向に突出している。従って、ストッパ用凸部39によって第2部材55の-Z方向の移動範囲が規制される。 The pair of second extending portions 64 and the pair of second protruding plate portions 65 provided on the second member 55 face the stopper convex portions 39 provided on the holder 24 in the optical axis L direction. As shown in FIGS. 5 and 6, the tip of the stopper convex portion 39 in the + Z direction protrudes in the + Z direction from the end face of the camera module main body 30A in the + Z direction. Therefore, the movement range of the second member 55 in the −Z direction is restricted by the stopper protrusion 39.

図8に示すように、第1側壁31、第2側壁32、第3側壁33、および第4側壁34は、Z軸方向の高さがカメラモジュール本体部30Aよりも低い。図10に示すように、ホルダ24は、第1側壁31、第3側壁33、および第4側壁34の-Z方向の端面から-Z方向に突出する凸部43を備える。凸部43は、第1側壁31、第3側壁33、および第4側壁34の周方向の中央に位置する。凸部43は、カメラモジュール本体部30Aの底面(-Z方向を向く面)よりも-Z方向に突出している。従って、落下衝撃等が加わって可動体10が全体としてZ軸方向に大きく動いたときには、カメラモジュール本体部30Aよりも先に凸部43が固定体11に衝突する。 As shown in FIG. 8, the height of the first side wall 31, the second side wall 32, the third side wall 33, and the fourth side wall 34 in the Z-axis direction is lower than that of the camera module main body portion 30A. As shown in FIG. 10, the holder 24 includes a convex portion 43 protruding in the −Z direction from the end faces of the first side wall 31, the third side wall 33, and the fourth side wall 34 in the −Z direction. The convex portion 43 is located at the center of the first side wall 31, the third side wall 33, and the fourth side wall 34 in the circumferential direction. The convex portion 43 projects in the −Z direction from the bottom surface (the surface facing the −Z direction) of the camera module main body 30A. Therefore, when the movable body 10 moves significantly in the Z-axis direction as a whole due to a drop impact or the like, the convex portion 43 collides with the fixed body 11 before the camera module main body portion 30A.

凸部43は、カメラモジュール本体部30Aを囲んで周方向に配列される8箇所の側壁のうち、第1軸R1方向と第2軸R2方向の中間の角度位置に配置される側壁のうちの3箇所(第1側壁31、第3側壁33、および第4側壁34)に形成される。また、凸部43は、第1側壁31、第3側壁33、および第4側壁34の周方向の中央に形成される。従って、ホルダ24において、光軸Lからの距離が最も小さく、可動体10が揺動したときにZ軸方向の移動量が最も小さい位置に凸部43が形成されている。 The convex portion 43 is among the eight side walls arranged in the circumferential direction surrounding the camera module main body 30A, among the side walls arranged at an angle position between the first axis R1 direction and the second axis R2 direction. It is formed at three locations (first side wall 31, third side wall 33, and fourth side wall 34). Further, the convex portion 43 is formed at the center of the first side wall 31, the third side wall 33, and the fourth side wall 34 in the circumferential direction. Therefore, in the holder 24, the convex portion 43 is formed at a position where the distance from the optical axis L is the smallest and the amount of movement in the Z-axis direction is the smallest when the movable body 10 swings.

図10に示すように、凸部43の周方向の両側の側面43aは、周方向の中央へ向かうに従って-Z方向へ向かう方向に傾斜したテーパ面である。従って、凸部43は、周方向の幅が大きく強度が高い形状でありながら、可動体10が揺動したときにZ軸方向の移動量が大きい部位ほど突出量が少ない形状である。このため、可動体10を揺動させたときに凸部43が固定体11に衝突することを回避するために可動体10と固定体11との光軸L方向の隙間を大きくする必要がない。 As shown in FIG. 10, the side surfaces 43a on both sides of the convex portion 43 in the circumferential direction are tapered surfaces inclined in the −Z direction toward the center of the circumferential direction. Therefore, the convex portion 43 has a shape having a large width in the circumferential direction and high strength, but has a shape in which the protrusion amount is smaller as the movement amount in the Z-axis direction is larger when the movable body 10 swings. Therefore, it is not necessary to increase the gap between the movable body 10 and the fixed body 11 in the optical axis L direction in order to prevent the convex portion 43 from colliding with the fixed body 11 when the movable body 10 is swung. ..

図10に示すように、ホルダ24の第5側壁35、第6側壁36、第7側壁37、および第8側壁38は、-Z方向の端面がカメラモジュール本体部30Aの底面よりも+Z方向に位置する。そのため、可動体10の外形は、第1軸R1方向の対角部分、および第2軸R2方向の対角部分の-Z方向の端部が+Z方向に凹んだ形状になっている。可動体10の第1軸R1方向の対角部分および第2軸R2方向の対角部分は、光軸Lから最も離れた部位であるため、この部分をZ軸方向に切り欠いた形状にすることで、可動体10が第1軸R1回りおよび第2軸R2回りに揺動するときの可動体10のZ軸方向の可動スペースを小さくすることができる。 As shown in FIG. 10, the fifth side wall 35, the sixth side wall 36, the seventh side wall 37, and the eighth side wall 38 of the holder 24 have end faces in the −Z direction in the + Z direction from the bottom surface of the camera module main body 30A. To position. Therefore, the outer shape of the movable body 10 has a shape in which the diagonal portion in the R1 direction of the first axis and the end portion in the −Z direction of the diagonal portion in the second axis R2 direction are recessed in the + Z direction. Since the diagonal portion in the first axis R1 direction and the diagonal portion in the second axis R2 direction of the movable body 10 are the portions farthest from the optical axis L, this portion is cut out in the Z axis direction. As a result, the movable space of the movable body 10 in the Z-axis direction when the movable body 10 swings around the first axis R1 and the second axis R2 can be reduced.

回転支持機構12は、可動体10の光軸L回りの回転範囲を規制する回転規制機構70を備える。図8に示すように、回転規制機構70は、第1部材25に設けられた第1回転規制部71と、第2部材55に設けられた第2回転規制部72を備える。第1回転規制部71は、第1環状板部26から外周側へ突出して-Z方向へ屈曲する。第1回転規制部71の-Z方向の先端は、ホルダ24の第2側壁32に固定される。 The rotation support mechanism 12 includes a rotation regulation mechanism 70 that regulates the rotation range of the movable body 10 around the optical axis L. As shown in FIG. 8, the rotation regulation mechanism 70 includes a first rotation regulation unit 71 provided on the first member 25 and a second rotation regulation unit 72 provided on the second member 55. The first rotation restricting portion 71 projects from the first annular plate portion 26 toward the outer peripheral side and bends in the −Z direction. The tip of the first rotation restricting portion 71 in the −Z direction is fixed to the second side wall 32 of the holder 24.

第2回転規制部72は、第2環状板部63から外周側へ突出する。第1回転規制部71の周方向の中央には、第2回転規制部72よりも周方向の幅が大きい切欠き部73が設けられ、第2回転規制部72は、切欠き部73に配置される。従って、第1回転規制部71
は、第2回転規制部72の周方向の両側を囲う。第1回転規制部71と第2回転規制部72とが衝突することにより、第2部材55に対する可動体10の光軸L回りの回転範囲が規制される。
The second rotation restricting portion 72 projects from the second annular plate portion 63 toward the outer peripheral side. A notch 73 having a width larger in the circumferential direction than the second rotation restricting portion 72 is provided in the center of the first rotation regulating portion 71 in the circumferential direction, and the second rotation regulating portion 72 is arranged in the notch portion 73. Will be done. Therefore, the first rotation regulation unit 71
Surrounds both sides of the second rotation restricting unit 72 in the circumferential direction. When the first rotation restricting unit 71 and the second rotation restricting unit 72 collide with each other, the rotation range of the movable body 10 with respect to the second member 55 around the optical axis L is restricted.

(本形態の主な作用効果)
以上のように、本形態の振れ補正機能付き光学ユニット1は、カメラモジュール2を備える可動体10と、可動体10をカメラモジュール2の光軸Lを中心として回転可能に支持する回転支持機構12と、回転支持機構12を光軸Lと交差する第1軸R1回りに回転可能に支持するとともに、回転支持機構12を光軸Lおよび第1軸R1と交差する第2軸R2回りに回転可能に支持するジンバル機構13と、ジンバル機構13および回転支持機構12を介して可動体10を支持する固定体11と、可動体10の光軸L回りの回転範囲を規制する回転規制機構70と、を有する。可動体10は、カメラモジュール2を保持するホルダ24と、ホルダ24に固定される第1部材25を備え、第1部材25は、光軸Lを囲み光軸L方向から見てカメラモジュール2と重なる第1環状板部26を備える。回転支持機構12は、第1環状板部26に形成された第1環状溝53と、第1環状溝53と光軸L方向で対向する第2環状溝54が形成された第2環状板部63を備えるとともにジンバル機構13によって第1軸R1回りに回転可能に支持される第2部材55と、第1環状溝53および第2環状溝54に挿入されて第1環状板部26と第2環状板部63との間で転動する複数の転動体56と、を備える。回転規制機構70は、第1部材25またはホルダ24に形成される第1回転規制部71と、第2部材55に形成される第2回転規制部72と、を備え、第1回転規制部71と第2回転規制部72の一方は、第1回転規制部71と第2回転規制部72の他方の周方向の両側を囲う。
(Main action and effect of this form)
As described above, the optical unit 1 with the shake correction function of the present embodiment has a movable body 10 including the camera module 2 and a rotational support mechanism 12 that rotatably supports the movable body 10 about the optical axis L of the camera module 2. The rotary support mechanism 12 is rotatably supported around the first axis R1 intersecting the optical axis L, and the rotary support mechanism 12 is rotatable around the second axis R2 intersecting the optical axis L and the first axis R1. A gimbal mechanism 13 that supports the movable body 10, a fixed body 11 that supports the movable body 10 via the gimbal mechanism 13 and the rotation support mechanism 12, and a rotation control mechanism 70 that regulates the rotation range of the movable body 10 around the optical axis L. Has. The movable body 10 includes a holder 24 for holding the camera module 2 and a first member 25 fixed to the holder 24. The first member 25 surrounds the optical axis L and includes the camera module 2 when viewed from the optical axis L direction. The first annular plate portion 26 that overlaps is provided. The rotation support mechanism 12 has a second annular plate portion formed with a first annular groove 53 formed in the first annular plate portion 26 and a second annular groove 54 facing the first annular groove 53 in the optical axis L direction. A second member 55 provided with 63 and rotatably supported around the first axis R1 by the gimbal mechanism 13, and a first annular plate portion 26 and a second annular plate portion 26 inserted into the first annular groove 53 and the second annular groove 54. A plurality of rolling elements 56 that roll with and from the annular plate portion 63 are provided. The rotation regulation mechanism 70 includes a first rotation regulation unit 71 formed on the first member 25 or the holder 24 and a second rotation regulation unit 72 formed on the second member 55, and the first rotation regulation unit 71. And one of the second rotation regulation unit 72 surrounds both sides of the first rotation regulation unit 71 and the second rotation regulation unit 72 in the circumferential direction.

本形態では、可動体10を光軸L回りに回転可能に支持する回転支持機構12が、光軸L方向に重なる第1環状板部26と第2環状板部63とを備えている。回転支持機構12は、第1環状板部26を備える第1部材25と第2環状板部63を備える第2部材55との衝突によって可動体10の回転を規制する回転規制機構70を備えているので、第1部材25と第2部材55との間で回転規制機構70を完結できる。よって、第1部材25および第2部材55に対して光軸L方向に重なるストッパ部材がなくても回転規制機構70を構成できるため、回転支持機構12の光軸L方向の高さを低くすることができる。また、第1部材25と第2部材55とを衝突させるため、回転支持機構12の内部で回転規制機構70が完結する。従って、少ない部品数で回転規制機構70を構成できるため、部品公差の積み上げによる回転規制機構70の寸法精度の低下を抑制できる。従って、可動体10の回転範囲を精度良く規制できる。 In this embodiment, the rotation support mechanism 12 that rotatably supports the movable body 10 around the optical axis L includes a first annular plate portion 26 and a second annular plate portion 63 that overlap in the optical axis L direction. The rotation support mechanism 12 includes a rotation control mechanism 70 that regulates the rotation of the movable body 10 by a collision between the first member 25 including the first annular plate portion 26 and the second member 55 including the second annular plate portion 63. Therefore, the rotation regulating mechanism 70 can be completed between the first member 25 and the second member 55. Therefore, since the rotation regulating mechanism 70 can be configured without the stopper member overlapping the first member 25 and the second member 55 in the optical axis L direction, the height of the rotation support mechanism 12 in the optical axis L direction is lowered. be able to. Further, since the first member 25 and the second member 55 collide with each other, the rotation regulation mechanism 70 is completed inside the rotation support mechanism 12. Therefore, since the rotation regulating mechanism 70 can be configured with a small number of parts, it is possible to suppress a decrease in dimensional accuracy of the rotation regulating mechanism 70 due to the accumulation of component tolerances. Therefore, the rotation range of the movable body 10 can be accurately regulated.

本形態では、回転支持機構12は、第1環状溝53と第2環状溝54とを光軸L方向で接近させる力を付与する与圧機構59を備えている。与圧機構59は、第1環状板部26から外周側へ突出する第1突出板部69と、第2部材55の光軸L回りの周方向の一部分に固定されて第1突出板部69を吸引する与圧用磁石68と、を備え、第2回転規制部72と与圧用磁石68は、周方向の位置が異なる。このように、回転規制機構70とは異なる部位に与圧機構59を配置することにより、第1回転規制部71と第2回転規制部72との衝突によって与圧機構59が変形して与圧に悪影響を及ぼすことを避けることができる。また、可動体10に対して相対回転する第2部材55に与圧用磁石68を搭載し、与圧用磁石68に吸引される第1突出板部69を可動体10に設けているので、可動体10に搭載される振れ補正用磁気駆動機構およびローリング補正用磁気駆動機構23の磁石に吸引されて第1突出板部69の回転位置がずれることを避けることができる。従って、与圧機構59が振れ補正用磁気駆動機構およびローリング補正用磁気駆動機構23の干渉を受けることを避けることができる。また、与圧機構59によって可動体10の光軸L回りの角度位置を規定することができる。 In the present embodiment, the rotation support mechanism 12 includes a pressurization mechanism 59 that applies a force that causes the first annular groove 53 and the second annular groove 54 to approach each other in the L direction of the optical axis. The pressurization mechanism 59 is fixed to a first protruding plate portion 69 protruding from the first annular plate portion 26 toward the outer peripheral side and a part of the second member 55 in the circumferential direction around the optical axis L, and the first protruding plate portion 69. The second rotation restricting unit 72 and the pressurization magnet 68 are provided with a pressurization magnet 68 that attracts the magnets 68, and the positions in the circumferential direction are different from each other. By arranging the pressurization mechanism 59 in a portion different from the rotation regulation mechanism 70 in this way, the pressurization mechanism 59 is deformed and pressurized due to the collision between the first rotation regulation unit 71 and the second rotation regulation unit 72. Can be avoided from adversely affecting. Further, since the pressure magnet 68 is mounted on the second member 55 that rotates relative to the movable body 10, and the first protruding plate portion 69 attracted by the pressure magnet 68 is provided on the movable body 10, the movable body 10 is provided. It is possible to prevent the rotation position of the first projecting plate portion 69 from being displaced by being attracted by the magnets of the runout correction magnetic drive mechanism and the rolling correction magnetic drive mechanism 23 mounted on the 10. Therefore, it is possible to prevent the pressurization mechanism 59 from being interfered with by the runout correction magnetic drive mechanism and the rolling correction magnetic drive mechanism 23. Further, the pressurization mechanism 59 can define the angular position of the movable body 10 around the optical axis L.

本形態では、第2部材55は、第2環状板部63から第1軸R1方向の両側へ延びてジンバル機構13に接続される一対の第2延設部64と、第2環状板部63から第2軸R2方向の両側へ突出する一対の第2突出板部65と、第2環状板部63から第2延設部64および第2突出板部65とは異なる方向へ突出する第2回転規制部72と、を備える。与圧用磁石68は、一対の第2延設部64および一対の第2突出板部65のそれぞれに固定され、第1突出板部69は、第1環状板部26から第1軸R1方向の両側および第2軸R2方向の両側に突出する。このようにすると、与圧用磁石68と第1突出板部69を光軸L回りの周方向に均等に配置することができる。従って、与圧用の磁気吸引力を周方向にバランスよく発生させることができる。 In the present embodiment, the second member 55 has a pair of second extending portions 64 extending from the second annular plate portion 63 on both sides in the direction of the first axis R1 and connected to the gimbal mechanism 13, and a second annular plate portion 63. A pair of second projecting plate portions 65 projecting from the second axis in the R2 direction to both sides, and a second projecting from the second annular plate portion 63 in a direction different from the second extending portion 64 and the second projecting plate portion 65. A rotation control unit 72 is provided. The pressurizing magnet 68 is fixed to each of the pair of second extending portions 64 and the pair of second protruding plate portions 65, and the first protruding plate portion 69 is located in the direction of the first axis R1 from the first annular plate portion 26. It projects on both sides and on both sides in the direction of the second axis R2. In this way, the pressurizing magnet 68 and the first protruding plate portion 69 can be evenly arranged in the circumferential direction around the optical axis L. Therefore, the magnetic attraction force for pressurization can be generated in a well-balanced manner in the circumferential direction.

本形態では、第1回転規制部71は、第1環状板部26から外周側へ延びてカメラモジュール2の外周側を囲うホルダ24に固定され、第2回転規制部72は、第1回転規制部71の周方向の中央部分を切り欠いた切欠き部73に配置される。このようにすると、第1環状板部26とホルダ24とを接続する接続部を第1回転規制部71として利用できるので、第1部材25の形状を単純化することができる。 In the present embodiment, the first rotation restricting unit 71 extends from the first annular plate portion 26 toward the outer peripheral side and is fixed to the holder 24 surrounding the outer peripheral side of the camera module 2, and the second rotation restricting unit 72 is the first rotation restricting unit 72. It is arranged in the notch 73 which cuts out the central portion in the circumferential direction of the portion 71. By doing so, since the connecting portion connecting the first annular plate portion 26 and the holder 24 can be used as the first rotation restricting portion 71, the shape of the first member 25 can be simplified.

本形態では、第2環状板部63は、第1環状板部26とカメラモジュール2本体との光軸L方向の隙間に配置される。第1回転規制部71は、第1環状板部26の外周側で光軸L方向に屈曲して第2環状板部63の外周側で光軸L方向に延びている。このようにすると、第1回転規制部71の内周側に第2環状板部63が配置されるので、第2回転規制部72の先端を第1回転規制部71の切欠き部73に配置できる。従って、第2回転規制部72の形状を単純化することができる。また、回転支持機構12は、可動体10を構成する第1環状板部26とカメラモジュール2との光軸L方向の隙間に可動体10に対して相対回転する第2環状板部63を配置した構成であるため、第1環状板部26は、第2環状板部63が外れることを規制するストッパ部材を兼ねている。従って、第2環状板部63に対して光軸L方向で重なるストッパ部材を別途重ねて配置する必要がないので、回転支持機構12の光軸L方向の高さを低くすることができる。よって、振れ補正機能付き光学ユニット1の光軸L方向の高さを低くすることができる。 In this embodiment, the second annular plate portion 63 is arranged in the gap between the first annular plate portion 26 and the camera module 2 main body in the optical axis L direction. The first rotation restricting portion 71 bends in the optical axis L direction on the outer peripheral side of the first annular plate portion 26 and extends in the optical axis L direction on the outer peripheral side of the second annular plate portion 63. In this way, since the second annular plate portion 63 is arranged on the inner peripheral side of the first rotation regulating portion 71, the tip of the second rotation regulating portion 72 is arranged in the notch portion 73 of the first rotation regulating portion 71. can. Therefore, the shape of the second rotation restricting unit 72 can be simplified. Further, the rotation support mechanism 12 arranges a second annular plate portion 63 that rotates relative to the movable body 10 in a gap in the optical axis L direction between the first annular plate portion 26 constituting the movable body 10 and the camera module 2. The first annular plate portion 26 also serves as a stopper member for restricting the removal of the second annular plate portion 63. Therefore, since it is not necessary to separately stack and arrange the stopper member overlapping with the second annular plate portion 63 in the optical axis L direction, the height of the rotation support mechanism 12 in the optical axis L direction can be lowered. Therefore, the height of the optical unit 1 with the shake correction function in the optical axis L direction can be lowered.

本形態では、ホルダ24には、可動体10を第1軸R1回りに回転させる第1振れ補正用磁気駆動機構21の第1磁石21M、可動体10を第2軸R2回りに回転させる第2振れ補正用磁気駆動機構22の第2磁石22M、および、可動体10を光軸L回りに回転させるローリング補正用磁気駆動機構23の第3磁石23Mが固定される。第1磁石21M、第2磁石22M、および第3磁石23Mは、光軸L回りの周方向に配列されており、第1部材25は、第1環状板部26から外周側へ延びる第1延設部27を備える。第1延設部27は磁性金属からなり、第1環状板部26の外周側でホルダ24側に屈曲して第1磁石21Mの内周側、第2磁石22Mの内周側、および、第3磁石23Mの内周側の各位置に固定される。第1回転規制部71および第2回転規制部72は、第1延設部27とは周方向の位置が異なる。このようにすると、振れ補正用磁気駆動機構およびローリング補正用磁気駆動機構23の磁石に対するヨークが第1部材25に全て一体化される。従って、部品点数を削減できる。また、可動体10の組立作業が容易であり、ヨークの位置精度を高めることができる。さらに、磁石およびヨークが配置されていないスペースを利用して回転規制機構70を設けることができる。 In this embodiment, the holder 24 has a first magnet 21M of the first runout correction magnetic drive mechanism 21 that rotates the movable body 10 around the first axis R1, and a second magnet that rotates the movable body 10 around the second axis R2. The second magnet 22M of the magnetic drive mechanism 22 for runout correction and the third magnet 23M of the magnetic drive mechanism 23 for rolling correction that rotates the movable body 10 around the optical axis L are fixed. The first magnet 21M, the second magnet 22M, and the third magnet 23M are arranged in the circumferential direction around the optical axis L, and the first member 25 is a first extension extending from the first annular plate portion 26 to the outer peripheral side. The installation unit 27 is provided. The first extending portion 27 is made of magnetic metal and is bent toward the holder 24 on the outer peripheral side of the first annular plate portion 26 to the inner peripheral side of the first magnet 21M, the inner peripheral side of the second magnet 22M, and the first. 3 Magnets are fixed at each position on the inner peripheral side of the magnet 23M. The positions of the first rotation restricting unit 71 and the second rotation restricting unit 72 are different from those of the first extension unit 27 in the circumferential direction. In this way, the yokes of the runout correction magnetic drive mechanism and the rolling correction magnetic drive mechanism 23 for the magnets are all integrated into the first member 25. Therefore, the number of parts can be reduced. Further, the assembly work of the movable body 10 is easy, and the position accuracy of the yoke can be improved. Further, the rotation regulating mechanism 70 can be provided by utilizing the space in which the magnet and the yoke are not arranged.

本形態では、ホルダ24は樹脂製であり、ホルダ24の第1軸R1方向の対角位置には、一対の第2延設部64および一対の第2突出板部65と光軸L方向で対向するストッパ用凸部39が設けられている。このようにすると、第2部材55に設けられた第2環状板部63が第1環状板部26から離れることをストッパ用凸部39によって規制できる。また、ホルダ24は樹脂製であり、板金製よりも複雑な凹凸形状を形成しやすい。従って、ストッパ用凸部39を備えたホルダ24の製造が容易である。また、ホルダ24を樹脂製
にする場合には、板金製のホルダ24のように光軸L方向の端部に内周側に張り出す端板部を設けなくても強度を確保できる。従って、可動体10の光軸L方向の高さを低くすることができる。
In this embodiment, the holder 24 is made of resin, and the holder 24 is diagonally positioned in the first axis R1 direction with a pair of second extending portions 64 and a pair of second protruding plate portions 65 in the optical axis L direction. A convex portion 39 for a stopper facing is provided. By doing so, the separation of the second annular plate portion 63 provided on the second member 55 from the first annular plate portion 26 can be restricted by the stopper convex portion 39. Further, the holder 24 is made of resin, and is more likely to form a complicated uneven shape than that of sheet metal. Therefore, it is easy to manufacture the holder 24 provided with the stopper protrusion 39. Further, when the holder 24 is made of resin, the strength can be ensured without providing the end plate portion extending to the inner peripheral side at the end portion in the optical axis L direction unlike the holder 24 made of sheet metal. Therefore, the height of the movable body 10 in the optical axis L direction can be lowered.

(変形例)
(1)上記形態では、第1回転規制部71が第2回転規制部72の周方向の両側を囲う構成であるが、第2回転規制部72が第1回転規制部71の周方向の両側を囲う構成を採用してもよい。例えば、第2回転規制部72の周方向の中央に切欠き部73を形成し、切欠き部73に第1回転規制部71を配置する。すなわち、回転規制機構70は、第1回転規制部71と第2回転規制部72の一方が、第1回転規制部71と第2回転規制部72の他方の周方向の両側を囲う構成であればよい。
(Modification example)
(1) In the above embodiment, the first rotation regulating unit 71 surrounds both sides of the second rotation regulating unit 72 in the circumferential direction, but the second rotation regulating unit 72 surrounds both sides of the first rotation regulating unit 71 in the circumferential direction. You may adopt the structure which surrounds. For example, a notch 73 is formed in the center of the second rotation restricting portion 72 in the circumferential direction, and the first rotation regulating portion 71 is arranged in the notch 73. That is, the rotation regulating mechanism 70 may have a configuration in which one of the first rotation regulating unit 71 and the second rotation regulating unit 72 surrounds both sides of the first rotation regulating unit 71 and the second rotation regulating unit 72 in the circumferential direction. Just do it.

(2)上記形態では、第1回転規制部71が第1部材25に設けられているが、第1回転規制部71はホルダ24に設ける構成を採用してもよい。例えば、ホルダ24の+Z方向の端面に+Z方向に突出する凸部を形成して第2回転規制部72と周方向に衝突させることによって可動体10の回転を規制する構成を採用してもよい。すなわち、回転規制機構70は、第1部材25またはホルダ24に形成される第1回転規制部71と、第2環状板部63から外周側へ延びる第2回転規制部72と、を備える構成であればよい。 (2) In the above embodiment, the first rotation restricting unit 71 is provided on the first member 25, but the first rotation restricting unit 71 may adopt a configuration provided on the holder 24. For example, a configuration may be adopted in which the rotation of the movable body 10 is restricted by forming a convex portion protruding in the + Z direction on the end surface of the holder 24 in the + Z direction and colliding with the second rotation restricting portion 72 in the circumferential direction. .. That is, the rotation restricting mechanism 70 includes a first rotation restricting portion 71 formed on the first member 25 or the holder 24, and a second rotation regulating portion 72 extending from the second annular plate portion 63 to the outer peripheral side. All you need is.

(3)上記形態では、与圧機構59は、光軸L回りの4箇所に設けられているが、光軸Lを挟んで反対側の2箇所に設けられていればよい。 (3) In the above embodiment, the pressurization mechanisms 59 are provided at four locations around the optical axis L, but may be provided at two locations on the opposite side of the optical axis L.

(他の実施形態)
(イ)上記形態では、第1環状板部26は、第1環状溝53が形成された部分が第1板状部材51とは別部品(第1レール部材50)であるが、第1レール部材50と第1板状部材51とを一体化させてもよい。すなわち、第1部材25は、第1環状溝53が設けられた第1レール部と、第1レール部から外周側へ延びる第1板状部を備えた単一の部品であってもよい。同様に、第2部材55は、第2環状溝54が設けられた第2レール部と、第2レール部から外周側へ延びる第2板状部を備えた単一の部品であってもよい。この場合には、第1環状溝53および第2環状溝54は、冷間鍛造、プレス加工、切削加工などの加工方法によって形成することができる。
(Other embodiments)
(A) In the above embodiment, the portion of the first annular plate portion 26 in which the first annular groove 53 is formed is a separate part (first rail member 50) from the first plate-shaped member 51, but the first rail. The member 50 and the first plate-shaped member 51 may be integrated. That is, the first member 25 may be a single component including a first rail portion provided with the first annular groove 53 and a first plate-shaped portion extending from the first rail portion to the outer peripheral side. Similarly, the second member 55 may be a single component having a second rail portion provided with the second annular groove 54 and a second plate-shaped portion extending from the second rail portion to the outer peripheral side. .. In this case, the first annular groove 53 and the second annular groove 54 can be formed by a processing method such as cold forging, pressing, or cutting.

(ロ)上記形態では、回転支持機構12は、可動体10を構成する第1部材25の第1環状板部26とカメラモジュール2との光軸L方向の隙間に第2部材55の第2環状板部63を配置する構成であったが、第1環状板部26と第2環状板部63の光軸L方向の配置を逆にした構成を採用してもよい。 (B) In the above embodiment, the rotation support mechanism 12 has a second member 55 in the gap between the first annular plate portion 26 of the first member 25 constituting the movable body 10 and the camera module 2 in the optical axis L direction. Although the configuration is such that the annular plate portion 63 is arranged, a configuration in which the arrangement of the first annular plate portion 26 and the second annular plate portion 63 in the optical axis L direction may be reversed may be adopted.

1…振れ補正機能付き光学ユニット、2…カメラモジュール、2a…レンズ、2b…撮像素子、3…ケース、4…カバー、4a…開口部、5…ベース、6…フレキシブルプリント基板、7…フレキシブルプリント基板、8…フック、9…突起、10…可動体、11…固定体、12…回転支持機構、13…ジンバル機構、14…ジンバルフレーム、15…第1接続機構、16…第2接続機構、17…磁性板、18…枠部、19…配線収容部、20…振れ補正用磁気駆動機構、21…第1振れ補正用磁気駆動機構、21C…第1コイル、21M…第1磁石、22…第2振れ補正用磁気駆動機構、22C…第2コイル、22M…第2磁石、23…ローリング補正用磁気駆動機構、23C…第3コイル、23M…第3磁石、24…ホルダ、25…第1部材、26…第1環状板部、26a…円形穴、27…第1延設部、28…第1延設部第1部分、29…第1延設部第2部分、30A…カメラモジュール本体部、30B…カメラモジュール円筒部、31…第1側壁、32…第2側壁、32a…切欠き部、33…第3側壁、34…第4側壁、35…第5側壁、36…第6側壁、37
…第7側壁、38…第8側壁、39…ストッパ用凸部、40…凹部、41…底面、42…溝部、43…凸部、43a…側面、50…第1レール部材、51…第1板状部材、52…第1貫通穴、53…第1環状溝、54…第2環状溝、55…第2部材、56…転動体、57…リテーナ、58…球体保持穴、59…与圧機構、60…第2レール部材、61…第2板状部材、62…第2貫通穴、63…第2環状板部、64…第2延設部、65…第2突出板部、66…第2延設部第1部分、67…第2延設部第2部分、68…与圧用磁石、69…第1突出板部、70…回転規制機構、71…第1回転規制部、72…第2回転規制部、73…切欠き部、140…ジンバルフレーム本体部、141…第1軸側延設部、142…第2軸側延設部、143…開口部、144…第1軸側凹曲面、145…切欠き、146…突出部、147…第2軸側凹曲面、148…切欠き、151…第1ジンバルフレーム受け部材、152…球体、153…第1スラスト受け部材、154…板部、155…足部、156…腕部、157…孔部、161…凹部、162…第2ジンバルフレーム受け部材、163…球体、164…第2スラスト受け部材、165…板部、166…足部、167…腕部、168…足部屈曲部、181a…第2コイル固定孔、181…第1側板部、182…第2側板部、183a…第1コイル固定孔、183…第3側板部、184a…第3コイル固定孔、184…第4側板部、185…切欠き部、191…第5側板部、192…第6側板部、193…第7側板部、194…切欠き部、L…光軸、R1…第1軸、R2…第2軸
1 ... Optical unit with runout correction function, 2 ... Camera module, 2a ... Lens, 2b ... Image pickup element, 3 ... Case, 4 ... Cover, 4a ... Opening, 5 ... Base, 6 ... Flexible print board, 7 ... Flexible print Board, 8 ... hook, 9 ... protrusion, 10 ... movable body, 11 ... fixed body, 12 ... rotation support mechanism, 13 ... gimbal mechanism, 14 ... gimbal frame, 15 ... first connection mechanism, 16 ... second connection mechanism, 17 ... Magnetic plate, 18 ... Frame part, 19 ... Wiring accommodating part, 20 ... Magnetic drive mechanism for runout correction, 21 ... Magnetic drive mechanism for first runout correction, 21C ... First coil, 21M ... First magnet, 22 ... 2nd runout correction magnetic drive mechanism, 22C ... 2nd coil, 22M ... 2nd magnet, 23 ... Rolling correction magnetic drive mechanism, 23C ... 3rd coil, 23M ... 3rd magnet, 24 ... holder, 25 ... 1st Member, 26 ... 1st annular plate part, 26a ... Circular hole, 27 ... 1st extension part, 28 ... 1st extension part 1st part, 29 ... 1st extension part 2nd part, 30A ... Camera module main body Part, 30B ... Camera module cylindrical part, 31 ... 1st side wall, 32 ... 2nd side wall, 32a ... Notch part, 33 ... 3rd side wall, 34 ... 4th side wall, 35 ... 5th side wall, 36 ... 6th side wall , 37
... 7th side wall, 38 ... 8th side wall, 39 ... Stopper convex part, 40 ... Concave, 41 ... Bottom surface, 42 ... Groove part, 43 ... Convex part, 43a ... Side surface, 50 ... 1st rail member, 51 ... 1st Plate-shaped member, 52 ... 1st through hole, 53 ... 1st annular groove, 54 ... 2nd annular groove, 55 ... 2nd member, 56 ... rolling element, 57 ... retainer, 58 ... spherical holding hole, 59 ... pressurized Mechanism, 60 ... 2nd rail member, 61 ... 2nd plate-shaped member, 62 ... 2nd through hole, 63 ... 2nd annular plate portion, 64 ... 2nd extension portion, 65 ... 2nd protruding plate portion, 66 ... 2nd extension part 1st part, 67 ... 2nd extension part 2nd part, 68 ... pressure magnet, 69 ... first protrusion plate part, 70 ... rotation regulation mechanism, 71 ... first rotation regulation part, 72 ... 2nd rotation control part, 73 ... notch part, 140 ... gimbal frame main body part, 141 ... first axis side extension part, 142 ... second axis side extension part, 143 ... opening, 144 ... first axis side Concave curved surface, 145 ... notch, 146 ... protruding part, 147 ... second axis side concave curved surface, 148 ... notch, 151 ... first gimbal frame receiving member, 152 ... sphere, 153 ... first thrust receiving member, 154 ... Plate, 155 ... Foot, 156 ... Arm, 157 ... Hole, 161 ... Recess, 162 ... Second gimbal frame receiving member, 163 ... Sphere, 164 ... Second thrust receiving member, 165 ... Plate, 166 ... Foot, 167 ... Arm, 168 ... Foot flexion, 181a ... Second coil fixing hole, 181 ... First side plate, 182 ... Second side plate, 183a ... First coil fixing hole, 183 ... Third side plate Part, 184a ... 3rd coil fixing hole, 184 ... 4th side plate part, 185 ... notch part, 191 ... 5th side plate part, 192 ... 6th side plate part, 193 ... 7th side plate part, 194 ... notch part, L ... optical axis, R1 ... first axis, R2 ... second axis

Claims (7)

カメラモジュールを備える可動体と、
前記可動体を前記カメラモジュールの光軸を中心として回転可能に支持する回転支持機構と、
前記回転支持機構を前記光軸と交差する第1軸回りに回転可能に支持するとともに、前記回転支持機構を前記光軸および前記第1軸と交差する第2軸回りに回転可能に支持するジンバル機構と、
前記ジンバル機構および前記回転支持機構を介して前記可動体を支持する固定体と、
前記可動体の前記光軸回りの回転範囲を規制する回転規制機構と、を有し、
前記可動体は、前記カメラモジュールを保持するホルダと、前記ホルダに固定される第1部材を備え、前記第1部材は、前記光軸を囲み前記光軸方向から見て前記カメラモジュールと重なる第1環状板部を備え、
前記回転支持機構は、
第1環状板部に形成された第1環状溝と、
前記第1環状溝と前記光軸方向で対向する第2環状溝が形成された第2環状板部を備えるとともに前記ジンバル機構によって前記第1軸回りに回転可能に支持される第2部材と、
前記第1環状溝および前記第2環状溝に挿入されて前記第1環状板部と前記第2環状板部との間で転動する複数の転動体と、を備え、
前記回転規制機構は、
前記第1部材または前記ホルダに形成される第1回転規制部と、
前記第2部材に形成される第2回転規制部と、を備え、
前記第1回転規制部と前記第2回転規制部の一方は、前記第1回転規制部と前記第2回転規制部の他方の周方向の両側を囲うことを特徴とする振れ補正機能付き光学ユニット。
A movable body equipped with a camera module,
A rotary support mechanism that rotatably supports the movable body around the optical axis of the camera module,
A gimbal that rotatably supports the rotary support mechanism around the first axis that intersects the optical axis and rotatably supports the rotary support mechanism around the optical axis and the second axis that intersects the first axis. Mechanism and
A fixed body that supports the movable body via the gimbal mechanism and the rotation support mechanism, and
It has a rotation regulating mechanism that regulates the rotation range of the movable body around the optical axis.
The movable body includes a holder for holding the camera module and a first member fixed to the holder, and the first member surrounds the optical axis and overlaps with the camera module when viewed from the optical axis direction. Equipped with 1 annular plate
The rotation support mechanism is
The first annular groove formed in the first annular plate portion and
A second member having a second annular plate portion formed with the first annular groove and the second annular groove facing in the optical axis direction and rotatably supported around the first axis by the gimbal mechanism.
A plurality of rolling elements inserted into the first annular groove and the second annular groove and rolled between the first annular plate portion and the second annular plate portion are provided.
The rotation regulation mechanism is
The first rotation restricting portion formed on the first member or the holder, and
A second rotation restricting portion formed on the second member is provided.
An optical unit with a runout correction function, wherein one of the first rotation regulating unit and the second rotation regulating unit surrounds both sides of the first rotation regulating unit and the second rotation regulating unit in the circumferential direction. ..
前記回転支持機構は、前記第1環状溝と前記第2環状溝とを前記光軸方向で接近させる力を付与する与圧機構を備え、
前記与圧機構は、前記第1環状板部から外周側へ突出する第1突出板部と、前記第2部材の前記光軸回りの周方向の一部分に固定されて前記第1突出板部を吸引する与圧用磁石と、を備え、
前記第2回転規制部と前記与圧用磁石は、周方向の位置が異なることを特徴とする請求項1に記載の振れ補正機能付き光学ユニット。
The rotation support mechanism includes a pressurization mechanism that applies a force that causes the first annular groove and the second annular groove to approach each other in the optical axis direction.
The pressurization mechanism is fixed to a first protruding plate portion protruding from the first annular plate portion to the outer peripheral side and a part of the second member in the circumferential direction around the optical axis to form the first protruding plate portion. Equipped with a pressurizing magnet to attract
The optical unit with a runout correction function according to claim 1, wherein the second rotation regulating unit and the pressurizing magnet have different positions in the circumferential direction.
前記第2部材は、前記第2環状板部から前記第1軸方向の両側へ延びて前記ジンバル機構に接続される一対の第2延設部と、前記第2環状板部から前記第2軸方向の両側へ突出する一対の第2突出板部と、前記第2環状板部から前記第2延設部および前記第2突出板部とは異なる方向へ突出する前記第2回転規制部と、を備え、
前記与圧用磁石は、前記一対の第2延設部および前記一対の第2突出板部のそれぞれに固定され、
前記第1突出板部は、前記第1環状板部から前記第1軸方向の両側および前記第2軸方向の両側に突出することを特徴とする請求項2に記載の振れ補正機能付き光学ユニット。
The second member includes a pair of second extending portions extending from the second annular plate portion to both sides in the first axial direction and connected to the gimbal mechanism, and the second annular plate portion to the second shaft. A pair of second protruding plate portions projecting to both sides in the direction, and the second rotation restricting portion projecting from the second annular plate portion in a direction different from the second extending portion and the second protruding plate portion. Equipped with
The pressurizing magnet is fixed to each of the pair of second extending portions and the pair of second protruding plate portions.
The optical unit with a runout correction function according to claim 2, wherein the first protruding plate portion protrudes from the first annular plate portion on both sides in the first axial direction and on both sides in the second axial direction. ..
前記第1回転規制部は、前記第1環状板部から外周側へ延びて前記カメラモジュールの外周側を囲う前記ホルダに固定され、
前記第2回転規制部は、前記第1回転規制部の周方向の中央部分を切り欠いた切欠き部に配置されることを特徴とする請求項1から3の何れか一項に記載の振れ補正機能付き光学ユニット。
The first rotation restricting portion extends from the first annular plate portion to the outer peripheral side and is fixed to the holder surrounding the outer peripheral side of the camera module.
The runout according to any one of claims 1 to 3, wherein the second rotation restricting portion is arranged in a notch portion having a central portion in the circumferential direction of the first rotation regulating portion. Optical unit with correction function.
前記第2環状板部は、前記第1環状板部と前記カメラモジュール本体との前記光軸方向
の隙間に配置され、
前記第1回転規制部は、前記第1環状板部の外周側で前記光軸方向に屈曲して前記第2環状板部の外周側で前記光軸方向に延びていることを特徴とする請求項4に記載の振れ補正機能付き光学ユニット。
The second annular plate portion is arranged in the gap in the optical axis direction between the first annular plate portion and the camera module main body.
The first rotation restricting portion is characterized in that it bends in the optical axis direction on the outer peripheral side of the first annular plate portion and extends in the optical axis direction on the outer peripheral side of the second annular plate portion. Item 4. The optical unit with a runout correction function according to Item 4.
前記ホルダには、前記可動体を前記第1軸回りに回転させる第1振れ補正用磁気駆動機構の第1磁石、前記可動体を前記第2軸回りに回転させる第2振れ補正用磁気駆動機構の第2磁石、および、前記可動体を前記光軸回りに回転させるローリング補正用磁気駆動機構の第3磁石が固定され、
前記第1磁石、前記第2磁石、および前記第3磁石は、前記光軸回りの周方向に配列されており、
前記第1部材は、前記第1環状板部から外周側へ延びる第1延設部を備え、
前記第1延設部は磁性金属からなり、前記第1環状板部の外周側で前記ホルダ側に屈曲して前記第1磁石の内周側、前記第2磁石の内周側、および、前記第3磁石の内周側の各位置に固定され、
前記第1回転規制部および前記第2回転規制部は、前記第1延設部とは周方向の位置が異なることを特徴とする請求項1から5の何れか一項に記載の振れ補正機能付き光学ユニット。
The holder includes a first magnet of a first runout correction magnetic drive mechanism that rotates the movable body around the first axis, and a second runout correction magnetic drive mechanism that rotates the movable body around the second axis. The second magnet of the above and the third magnet of the magnetic drive mechanism for rolling correction that rotates the movable body around the optical axis are fixed.
The first magnet, the second magnet, and the third magnet are arranged in the circumferential direction around the optical axis.
The first member includes a first extending portion extending from the first annular plate portion to the outer peripheral side.
The first extending portion is made of magnetic metal and is bent toward the holder side on the outer peripheral side of the first annular plate portion to the inner peripheral side of the first magnet, the inner peripheral side of the second magnet, and the said. It is fixed at each position on the inner circumference side of the third magnet,
The runout correction function according to any one of claims 1 to 5, wherein the first rotation regulating unit and the second rotation regulating unit are different in position in the circumferential direction from the first extension unit. With optical unit.
前記ホルダは樹脂製であり、
前記ホルダの前記第1軸方向の対角位置には、前記一対の第2延設部および前記一対の第2突出板部と前記光軸方向で対向するストッパ用凸部が設けられていることを特徴とする請求項6に記載の振れ補正機能付き光学ユニット。
The holder is made of resin and
At the diagonal positions of the holder in the first axis direction, the pair of second extending portions and the pair of second protruding plate portions are provided with stopper protrusions facing each other in the optical axis direction. The optical unit with a runout correction function according to claim 6.
JP2020214977A 2020-12-24 2020-12-24 Optical unit with shake correction function Pending JP2022100783A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020214977A JP2022100783A (en) 2020-12-24 2020-12-24 Optical unit with shake correction function
CN202111578145.6A CN114675468B (en) 2020-12-24 2021-12-22 Optical unit with jitter correction function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020214977A JP2022100783A (en) 2020-12-24 2020-12-24 Optical unit with shake correction function

Publications (1)

Publication Number Publication Date
JP2022100783A true JP2022100783A (en) 2022-07-06

Family

ID=82070366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020214977A Pending JP2022100783A (en) 2020-12-24 2020-12-24 Optical unit with shake correction function

Country Status (2)

Country Link
JP (1) JP2022100783A (en)
CN (1) CN114675468B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811588B2 (en) * 2016-11-10 2021-01-13 日本電産サンキョー株式会社 Optical unit with runout correction function
JP6779104B2 (en) * 2016-11-10 2020-11-04 日本電産サンキョー株式会社 Optical unit with runout correction function
JP6800706B2 (en) * 2016-11-10 2020-12-16 日本電産サンキョー株式会社 Optical unit
JP2019082623A (en) * 2017-10-31 2019-05-30 日本電産三協電子(東莞)有限公司 Optical unit
CN112105988B (en) * 2018-05-15 2022-03-22 日本电产三协株式会社 Optical unit
CN111752067B (en) * 2019-03-28 2022-08-30 日本电产三协株式会社 Optical unit with shake correction function
JP7344679B2 (en) * 2019-06-14 2023-09-14 ニデックインスツルメンツ株式会社 Optical unit with shake correction function

Also Published As

Publication number Publication date
CN114675468A (en) 2022-06-28
CN114675468B (en) 2023-07-21

Similar Documents

Publication Publication Date Title
JP7034616B2 (en) Optical unit with runout correction function
JP7330808B2 (en) Optical unit with anti-shake function
JP7344679B2 (en) Optical unit with shake correction function
JP6883467B2 (en) Optical unit with runout correction function
TW201820015A (en) Optical unit
US11640072B2 (en) Optical unit with shake-correction function
JP2020181039A (en) Optical unit with shaking correction function
KR102354227B1 (en) Optical unit with shake correction function
JP7376279B2 (en) Optical unit with shake correction function
JP2021120705A (en) Optical unit with oscillation correction function
US11567340B2 (en) Optical unit with correction function
JP2021015236A (en) Optical unit with shake correction function
JP7267558B2 (en) Optical unit with anti-shake function
JP2021071579A (en) Optical unit with shake correction function
JP2021015235A (en) Optical unit with shake correction function
JP2022100783A (en) Optical unit with shake correction function
JP2022100781A (en) Optical unit with shake correction function
JP2022100782A (en) Optical unit with shake correction function
JP2022100784A (en) Optical unit with shake correction function
JP2021092655A (en) Optical unit with a shake correction function
JP2022100780A (en) Optical unit with shake correction function
CN115145086B (en) Optical unit with jitter correction function
JP7344785B2 (en) Optical unit with shake correction function
CN115145089B (en) Optical unit with jitter correction function
WO2021152929A1 (en) Optical unit with shake compensation function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231113