WO2021152731A1 - Air blower and air conditioning device - Google Patents

Air blower and air conditioning device Download PDF

Info

Publication number
WO2021152731A1
WO2021152731A1 PCT/JP2020/003206 JP2020003206W WO2021152731A1 WO 2021152731 A1 WO2021152731 A1 WO 2021152731A1 JP 2020003206 W JP2020003206 W JP 2020003206W WO 2021152731 A1 WO2021152731 A1 WO 2021152731A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
main plate
blower
casing
rotating shaft
Prior art date
Application number
PCT/JP2020/003206
Other languages
French (fr)
Japanese (ja)
Inventor
皓亮 宮脇
智哉 福井
健一 迫田
翔太 森川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021573694A priority Critical patent/JP7282215B2/en
Priority to PCT/JP2020/003206 priority patent/WO2021152731A1/en
Publication of WO2021152731A1 publication Critical patent/WO2021152731A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans

Definitions

  • the present disclosure relates to a blower and an air conditioner including a blower.
  • blower mounted on an air conditioner a configuration is known in which disks are provided on both side surfaces of a cross flow fan, and an orifice covered with a scroll casing is provided on the outside of the disk as a suction port of the cross flow fan.
  • the blower described in Patent Document 1 is provided with a communication hole in the vicinity of the disk in order to connect the first impeller inside the scroll casing and the second impeller outside the scroll casing.
  • the inside of the scroll casing is boosted by the first impeller, while the suction surface of the second impeller outside the scroll casing is not boosted, so that the airflow flows through the communication hole of the scroll casing. Leakage from the inside to the outside, reducing the energy-saving performance of the blower.
  • a separate rotary motor must be provided for each impeller, the blower becomes larger, and the unit of the air conditioner on which the blower is mounted also becomes larger.
  • the present disclosure has been made against the background of the above-mentioned problems, and provides a blower that realizes high energy-saving performance and suppresses the increase in size, and an air conditioner equipped with such a blower. Is.
  • the blower according to the present disclosure includes a first centrifugal fan and a cross flow fan provided coaxially with the rotation shaft, and the first centrifugal fan is housed in the first casing and the first casing.
  • the first impeller has a first impeller, and the first impeller has a first rotating main plate that can rotate about the rotation axis, and a plurality of first plates provided on the first rotating main plate.
  • the first casing is provided at one end of both ends in the direction of the rotation axis, and a first suction hole for sucking airflow is formed. It has one side plate, a first fixed main plate provided at the other end and formed with a communication hole, and a first peripheral wall facing the outer periphery of the first impeller.
  • the cross-flow fan is provided on a second impeller provided on the surface of the first rotating main plate opposite to the surface on which the first blade is provided, and on the outer circumference of rotation of the second impeller.
  • the tongue portion is provided with a tongue portion arranged and a scroll casing arranged along the rotation outer periphery at a position facing the tongue portion with the second impeller sandwiching the second impeller, and the tongue portion is provided on the rotation outer periphery.
  • a suction region for sucking airflow is formed in one region of the region sandwiched between the scroll casing and the scroll casing, and a blowout region for blowing airflow is formed in the other region.
  • One end of both ends of the rotating shaft in the axial direction is connected to the surface of the first rotating main plate opposite to the surface on which the first blade is provided, and the first impeller Is configured so that the diameter of the second impeller is smaller than the diameter of the second impeller.
  • the blade diameter of the first impeller of the first centrifugal fan is smaller than the blade diameter of the second impeller of the first cross flow fan. Therefore, when the blower is operated, the airflow is boosted on the side corresponding to the suction region of the first cross-flow fan in the communication hole formed in the first fixed main plate of the first casing of the first centrifugal fan. As a result, the leakage of the airflow from the first centrifugal fan to the first cross current fan through the communication hole is reduced. That is, the leakage of the air flow through the communication hole is reduced without providing a motor for each of the first impeller of the first centrifugal fan and the second impeller of the first cross flow fan. Therefore, according to the present disclosure, it is possible to improve the energy-saving performance while suppressing the increase in size of the blower.
  • FIG. 5 is a perspective perspective view of an indoor unit unit including a blower according to the first embodiment. It is a schematic diagram which shows the structural example of the air conditioner provided with the blower which concerns on Embodiment 1. FIG. It is a vertical cross-sectional view of the blower of a conventional example. It is a graph which shows the performance improvement effect of Embodiment 1.
  • FIG. 1 It is a vertical sectional view of the blower which concerns on the modification 1 of Embodiment 1.
  • FIG. It is a vertical sectional view of the blower which concerns on the modification 2 of Embodiment 1.
  • FIG. It is a vertical sectional view of the blower which concerns on the modification 3 of Embodiment 1.
  • FIG. It is a vertical sectional view of the blower which concerns on the modification 4 of Embodiment 1.
  • FIG. It is a vertical sectional view of the blower which concerns on the modification 5 of Embodiment 1.
  • FIG. It is a vertical sectional view of the blower which concerns on the modification 6 of Embodiment 1.
  • FIG. It is a perspective view of the blower which concerns on Embodiment 2.
  • FIG. 2 It is a vertical sectional view of the blower which concerns on the modification 2 of Embodiment 1.
  • FIG. It is a vertical sectional view of the blower which concerns on the modification 3 of Embodiment 1.
  • FIG. It is a
  • FIG. 2 It is a cross-sectional view of the blower which concerns on the modification of Embodiment 2. It is sectional drawing of the blower which concerns on Embodiment 3.
  • FIG. It is sectional drawing of the blower which concerns on Embodiment 3.
  • FIG. It is a cross-sectional view of the blower which concerns on the modification of Embodiment 3.
  • FIG. It is sectional drawing of the blower which concerns on Embodiment 4.
  • FIG. It is sectional drawing of the blower which concerns on the modification of Embodiment 4.
  • FIG. It is sectional drawing of the blower which concerns on Embodiment 5.
  • FIG. It is a vertical sectional view of the blower which concerns on the modification of Embodiment 5.
  • blower and air conditioner according to the present disclosure will be described with reference to the drawings.
  • the present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure.
  • the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments.
  • the blower and the air conditioner shown in the drawings show an example of the equipment to which the blower and the air conditioner of the present disclosure are applied, and the blower and the air conditioner shown in the drawings provide the applicable equipment of the present disclosure. It is not limited.
  • terms indicating directions for example, “top”, “bottom”, “right”, “left”, “front”, “rear”, etc.) are appropriately used for ease of understanding.
  • FIG. 1 is a perspective view of the blower according to the first embodiment.
  • FIG. 2 is a vertical cross-sectional view of the blower according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the blower according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the blower according to the first embodiment.
  • FIG. 2 is a view showing the blower 10 cut from the surface PA of FIG. 1 from above.
  • the surface PA is a horizontal plane including a rotation shaft 20 described later.
  • FIG. 3 is a view cut along the plane PB of FIG. 1, and corresponds to a DD cross-sectional view of FIG.
  • FIG. 4 is a view cut by the surface PC of FIG. 1, and corresponds to a cross-sectional view taken along the line EE of FIG.
  • the plane PB and the plane PC are planes on which the rotation axes 20 are orthogonal to each other.
  • the blower 10 includes a first centrifugal fan 11 and a cross flow fan 12.
  • the first centrifugal fan 11 and the cross flow fan 12 are provided coaxially. That is, the first centrifugal fan 11 and the cross flow fan 12 are provided so as to rotate about the rotation shaft 20.
  • the first centrifugal fan 11 is a single-suction multi-blade fan, and has a first impeller 31 and a first casing 8.
  • the first impeller 31 has a first rotating main plate 21 and a plurality of first blades 211 erected on one surface of the first rotating main plate 21.
  • the first casing 8 has a first fixed main plate 1, a first side plate 2, and a first peripheral wall 3.
  • the first fixed main plate 1 and the first side plate 2 face each other in the direction of the rotation shaft 20 of the first centrifugal fan 11 and the cross flow fan 12.
  • the first peripheral wall 3 connects the outer edge portion of the first fixed main plate 1 and the outer edge portion of the first side plate 2 and faces the outer periphery of the first impeller 31.
  • the first side plate 2 is formed with a first suction hole 4 for sucking airflow.
  • a first communication hole 5 is formed in the first fixed main plate 1.
  • the first rotating main plate 21 is located in the first communication hole 5 of the first fixed main plate 1.
  • the cross flow fan 12 has a second impeller 32, a tongue portion 6, and a scroll casing 7.
  • the second impeller 32 is provided coaxially with the first impeller 31.
  • the second impeller 32 is connected to the surface of the first rotating main plate 21 opposite to the surface on which the plurality of first blades 211 of the first impeller 31 are erected.
  • the scroll casing 7 has a base portion 71 and an extension portion 72.
  • the base 71 is along a substantially half portion in the circumferential direction on the outer circumference of rotation of the second impeller 32.
  • the extending portion 72 is continuous with one end of the base portion 71 and extends in a direction away from the outer circumference of the second impeller 32.
  • the tongue portion 6 is provided close to a part of the portion where the base portion 71 does not follow on the rotational outer circumference of the second impeller 32.
  • the tongue portion 6 and the base portion 71 of the scroll casing 7 face each other.
  • a suction region 22 in which airflow is sucked is formed in one region of the region sandwiched between the tongue portion 6 and the scroll casing 7 on the rotational outer circumference of the second impeller 32, and the other region.
  • a blowout region 23 is formed in which the airflow is blown out.
  • the motor 13 is provided on the side of both ends of the cross flow fan 12 in the direction of the rotation shaft 20 opposite to the end where the first centrifugal fan 11 is located.
  • the blower 10 is configured so that the first centrifugal fan 11 and the cross flow fan 12 rotate as the motor 13 rotates.
  • the blade diameter Ds of the first impeller 31 is smaller than the blade diameter Dc of the second impeller 32. That is, the diameter of the first impeller 31 is smaller than the diameter of the second impeller 32.
  • FIG. 3 when the inside of the blower 10 is viewed from the side of the first centrifugal fan 11 in the axial direction of the rotating shaft 20, a part of the tongue portion 6 of the cross flow fan 12 and a part of the scroll casing 7 Is visible, and the second impeller 32 is not visible.
  • the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are viewed through in the direction of the rotating shaft 20, the second impeller 32 is covered with the first fixed main plate 1. There is.
  • the second impeller 32 when the inside of the blower 10 is viewed from the side of the first centrifugal fan 11 in the axial direction of the rotating shaft 20, the second impeller 32 is covered with the first fixed main plate 1. It is configured, but not limited to this. At least a part of the second impeller 32 may be covered with the first fixed main plate 1 on the side of the suction region 22 of the second impeller 32.
  • the first fixed main plate 1 and the first rotating main plate 21 overlap each other.
  • the second impeller 32 when the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are viewed through in the direction of the rotating shaft 20, the second impeller 32 is on the side of the suction region 22. It suffices that at least a part of the impeller 32 is covered with the first fixed main plate 1, or at least a part of the first fixed main plate 1 is covered with the first rotating main plate 21.
  • FIG. 5 shows an indoor unit 201 provided on the wall portion 203 of the indoor space 300.
  • FIG. 5 shows the internal configuration of the indoor unit 201, only the outer shell of the housing of the indoor unit 201 is shown. Further, in order to avoid complication of the drawing, some of the structures mounted on the indoor unit unit 201 are omitted in FIG. Note that FIG. 5 shows a configuration in which one blower 10 is provided in the indoor unit 201, but the present invention is not limited to this, and the indoor unit 201 is equipped with a plurality of blowers 10. May be good. As shown in FIG. 5, in the indoor unit 201, a first heat exchanger 17 is provided between the panel constituting the housing of the indoor unit 201 and the blower 10.
  • an air flow flows from the indoor space 300 to the inside of the indoor unit unit 201 through a suction port (not shown) of the indoor unit unit 201.
  • the airflow flowing into the indoor unit 201 is separated and flows to the first centrifugal fan 11 and the cross current fan 12 of the blower 10 via a structure such as the first heat exchanger 17.
  • the airflow flowing through the first centrifugal fan 11 is boosted and accelerated by the first impeller 31, and a part of the airflow flows through the first communication hole 5 to the air passage of the cross flow fan 12, and is provided by the scroll casing 7.
  • the static pressure is restored, and the indoor unit 201 is discharged from the air outlet (not shown) into the indoor space 300 and circulates.
  • the airflow flowing through the cross flow fan 12 is boosted and accelerated by the second impeller 32, partly flows into the air passage of the first centrifugal fan 11, is statically restored by the first casing 8, and is an indoor unit. It is discharged from the air outlet of the unit 201 (not shown) to the indoor space 300 and circulates.
  • the airflow is exchanged between the air passage of the first centrifugal fan 11 and the air passage of the cross flow fan 12 through the first communication hole 5 located on the outer periphery of the second impeller 32.
  • the airflow leaking to the suction region 22 of the cross flow fan 12 mainly flows to the second impeller 32.
  • the air conditioner 200 includes an indoor unit unit 201 arranged in the indoor space 300 and an outdoor unit unit 202 arranged in the outdoor space 301.
  • the outdoor unit 202 includes a compressor 15, a four-way valve 16, a second heat exchanger 171 and a blower 18, and a throttle device 19.
  • the first heat exchanger 17 of the indoor unit unit 201 functions as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the second heat exchanger 171 of the outdoor unit unit 202 functions as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the refrigerant that has become a high-temperature and high-pressure gas in the compressor 15 flows through the four-way valve 16 to the second heat exchanger 171 mounted on the outdoor unit 202, dissipates heat to the outdoor air, and is a liquid phase refrigerant or a liquid main component. It becomes a refrigerant.
  • the liquid phase refrigerant or the liquid-based refrigerant is depressurized by the throttle device 19 and flows to the first heat exchanger 17 of the indoor unit 201.
  • the airflow generated by the blower 10 and the low-temperature low-pressure two-phase refrigerant exchange heat return to the outdoor unit 202, and are sucked into the compressor 15 again through the four-way valve 16.
  • the compressor 15, the four-way valve 16, the first heat exchanger 17, the second heat exchanger 171 and the throttle device 19 form a heat pump.
  • the blower 10 is arranged downstream of the first heat exchanger 17 in the air flow in the indoor unit 201, but is not limited to this.
  • the blower 10 may be arranged upstream of the first heat exchanger 17. Further, even if a blower having the same configuration as the blower 10 is mounted on the outdoor unit 202 as the blower 18, the same effect can be obtained.
  • FIG. 7 is a cross-sectional view showing a conventional blower.
  • the blade diameter Dc of the second impeller 32 has the same length as the blade diameter Ds of the first impeller 31.
  • the first casing 8 covering the outer periphery of the first impeller 31 through the first communication hole 5 near the connection portion between the first impeller 31 and the second impeller 32.
  • the leakage airflow 110 to the outside of the first casing 8 increases from the inside toward the suction region 22 of the cross flow fan 12.
  • the energy given to the leaked airflow 110 by the first impeller 31 is dissipated, and the blowing performance of the first centrifugal fan 11 deteriorates.
  • the blade diameter Dc of the second impeller 32 is smaller than the blade diameter Ds of the first impeller 31, similarly, from the inside to the outside of the first casing 8 through the first communication hole 5. Due to the leakage of the airflow in the airflow, the ventilation performance deteriorates.
  • the blade diameter Dc of the second impeller 32 is larger than the blade diameter Ds of the first impeller 31. Therefore, the vicinity of the first communication hole 5 is boosted by the second impeller 32, the leakage airflow 110 from the inside of the first casing 8 to the outside of the first casing 8 is reduced, and the performance of the blower 10 is improved. do.
  • the suction region of the second impeller 32 is obtained.
  • the ventilation resistance from the inside of the first casing 8 to the outside of the first casing 8 is improved, the leaked airflow 110 is reduced, and the performance of the blower 10 is improved.
  • the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are viewed through in the direction of the rotating shaft 20, at least a part of the first fixed main plate 1 is the first rotating main plate. It is covered with 21.
  • the ventilation resistance from the inside of the first casing 8 to the outside of the first casing 8 is improved, the leaked airflow 110 is reduced, and the performance of the blower 10 is improved.
  • FIG. 8 is a graph showing the performance improvement effect of the first embodiment.
  • the horizontal axis represents the blade diameter ratio (Dc / Ds) of the first impeller 31 and the second impeller 32
  • the vertical axis represents the performance ratio (static pressure ⁇ air volume / input).
  • the blade diameter Dc of the second impeller 32 is relative to the blade diameter Ds of the first impeller 31. Is largely configured. Therefore, the leaked airflow 110 of the blower 10 can be reduced without providing a separate rotary motor or a complicated additional mechanism. As a result, it is possible to achieve both miniaturization of the blower 10 and the air conditioner 200 on which the blower 10 is mounted and improvement of energy saving.
  • the number of blowers 10 mounted on the indoor unit 201 may be 1 or more, and the orientation of the rotating shaft 20 does not matter.
  • the heat transfer tube may have a flat shape, and the direction of the flow of the refrigerant may be horizontal or perpendicular to the rotation axis 20 of the fan.
  • the indoor unit unit 201 in FIG. 5 is illustrated by taking a wall-mounted type as an example, the form is not limited, and the indoor unit unit 201 may be a floor-standing type, a ceiling-suspended type, or a ceiling-embedded type.
  • 9 to 14 are cross-sectional views showing a modified example of the first communication hole 5 and the first rotating main plate 21.
  • 9 to 14 are cross-sectional views of the blower 10 cut along the surface PA of FIG. 1, as in FIG. 2.
  • the outer diameter of the first rotating main plate 21 is larger than that of the first communication hole 5.
  • the suction region 22 side of the second impeller 32 is seen.
  • the first fixed main plate 1 is covered with the first rotating main plate 21.
  • a groove 24 is provided in the circumferential direction of the rotating shaft 20 of the first rotating main plate 21, and the hole diameter Dh of the first communication hole 5 is the blade diameter Ds of the first impeller 31. Is smaller than Further, when the first fixed main plate 1 is viewed in the axial direction of the rotating shaft 20, the hole diameter of the first communication hole 5 is smaller than the blade diameter Dc of the second impeller 32. This configuration also reduces the leaked airflow 110 and improves the performance of the blower 10.
  • the diaphragm mechanism 25 is provided on a part or the entire circumference of the opening end of the first communication hole 5.
  • the throttle mechanism 25 is configured such that the inner diameter gradually decreases from the cross flow fan 12 toward the first centrifugal fan 11.
  • ⁇ Modification example 4> In the modified example 4 shown in FIG. 12, in addition to the throttle mechanism 25 of the modified example 3, the vanes 26 are provided at the connecting portion between the first impeller 31 and the second impeller 32. The blades 26 are provided on the outer periphery of the first rotating main plate 21 shown in FIG. With this configuration, the communication space surrounded by the outer circumference of the first rotating main plate 21, which is the connecting portion between the first impeller 31 and the second impeller 32, and the first communication hole 5, is increased in pressure. The leaked airflow 110 is reduced, and the performance of the blower 10 is improved.
  • the first rotating main plate 21 may be arranged so as to be offset from the space surrounded by the tongue portion 6 and the scroll casing 7 of the cross flow fan 12, and the communication space may be lowered under high pressure.
  • the first rotating main plate 21 may be arranged so as to be offset from the space surrounded by the first casing 8 of the first centrifugal fan 11, and the communication space may be pressurized.
  • FIG. 15 is a perspective view showing an impeller 30 including the first rotating main plate 21 of the second embodiment.
  • the second embodiment relates to the first rotating main plate 21 of the first embodiment, and since the configurations of the blower 10 and the air conditioner 200 are the same as those of the first embodiment, the description thereof will be omitted and the same members will be used. Alternatively, the same reference numerals are given to the corresponding parts.
  • the first rotating main plate 21 according to the second embodiment has a first penetration penetrating in the direction of the rotating shaft 20 through a part of the inner peripheral side of the second impeller 32 when viewed in the direction of the rotating shaft 20.
  • a hole 27 is formed. As shown in FIG. 15, two first through holes 27 are formed.
  • the air passage near the first impeller 31 of the first centrifugal fan 11 is the second impeller 32 of the cross current fan 12. It communicates with the downstream of the second impeller 32 in the suction region 22 via a first through hole 27 formed in a part of the first rotating main plate 21. Therefore, the pressure difference between the air passage of the first centrifugal fan 11 and the cross flow fan 12 is reduced, and as a result, the leaked airflow 110 is reduced and the performance of the blower 10 is improved.
  • FIG. 16 is a diagram showing a modified example of the second embodiment.
  • FIG. 16 is a cross-sectional view taken along the plane PF of FIG.
  • FIG. 16 shows a modified example of the position of the first through hole 27.
  • the first through hole 27 may be formed on the inner peripheral side of the first impeller 31.
  • three first through holes 27 are formed.
  • FIGS. 15 and 16 do not limit the number of first through holes 27.
  • the number of the first through holes 27 formed in the first impeller 31 or the second impeller 32 may be one or four or more.
  • FIG. 17 is a cross-sectional view corresponding to FIG. 3, showing the blower 10 according to the third embodiment.
  • the airflow 111 orbiting in the vicinity of the nozzle of the airflow in the circumferential direction around the outer periphery of the first impeller 31 is indicated by a broken line arrow
  • the airflow 112 of the first centrifugal fan 11 is indicated by a solid arrow.
  • FIG. 18 is a cross-sectional view corresponding to FIG. 4, showing the blower 10 according to the third embodiment.
  • the third embodiment relates to the first communication hole 5 of the first embodiment, and the configuration of the blower 10 and the air conditioner 200 is the same as that of the first embodiment. Alternatively, the same reference numerals are given to the corresponding parts.
  • the opening area per unit angle on the blowout region 23 side of the second impeller 32 when viewed from the axial direction of the rotary shaft 20 is the axial direction of the rotary shaft 20.
  • the second impeller 32 is configured to be larger than the opening area per unit angle on the suction region 22 side.
  • the opening area per unit angle of the second impeller 32 on the blowout region 23 side when the first communication hole 5 is viewed from the axial direction of the rotating shaft 20 can be defined as follows. As shown in FIG. 18, when viewed from the axial direction of the rotating shaft 20, the angle from the tongue portion 6 of the cross flow fan 12 to the rotation direction of the second impeller 32 around the circumference and reaching the scroll casing 7 is determined. Let ⁇ be. Let S1 be the area of the opening of the first communication hole 5 cut out by ⁇ . When viewed from the axial direction of the rotating shaft 20, the angle from the tongue portion 6 of the cross flow fan 12 to the circumference of the second impeller 32 in the direction opposite to the rotating direction and away from the scroll casing 7 is defined as ⁇ . Let S2 be the area of the opening of the first communication hole 5 cut out by ⁇ . Then, the opening area of the first communication hole 5 may be defined so that S1 / ⁇ ⁇ S2 / ⁇ .
  • the first communication hole 5 is configured so that the blowout region 23 side of the second impeller 32 is larger than the suction region 22 side when viewed from the air flow. ing. Therefore, the amount of airflow leaking from the first centrifugal fan 11 to the cross flow fan 12 is increased on the blowout region 23 side of the second impeller 32 where the pressure difference is relatively small, and the blowout region is increased in the first centrifugal fan 11. The airflow circulating from the 23 side to the suction region 22 side can be reduced.
  • FIG. 19 is a cross-sectional view corresponding to FIG. 4, showing a modified example of the first communication hole 5 according to the third embodiment.
  • the blowout region 23 of the second impeller 32 is formed so that the distance from the rotation shaft 20 of the opening end of the first communication hole 5 is at least partly larger than Dc / 2.
  • the distance of the suction region 22 of the impeller 32 of 2 from the rotating shaft 20 at the opening end of the first communication hole 5 is formed to be smaller than Dc / 2.
  • the first communication hole 5 is opened only on the side of the blowout region 23 on the outer peripheral side of the second impeller 32. With this configuration, the effect of attracting the airflow 112 (see FIG.
  • the eccentric direction and the eccentricity from the rotating shaft 20 may be different from the example shown in FIG. 19 as long as it is on the blowout region 23 side.
  • the eccentric direction and the eccentricity from the rotation shaft 20 at the centroid position of the first communication hole 5 are adjusted according to the operating conditions of the blower 10.
  • FIG. 20 is a cross-sectional view corresponding to FIG. 4, showing the blower 10 according to the fourth embodiment.
  • the fourth embodiment relates to the first fixed main plate 1 of the first embodiment, and the configurations of the blower 10 and the air conditioner 200 are the same as those of the first embodiment. The same code is attached to the part.
  • the first fixed main plate 1 has the following features.
  • the center of rotation of the second impeller 32 is O
  • the vertical line 50 and the scroll drawn from the tongue 6 of the cross flow fan 12 to the scroll casing 7 are scrolled.
  • the contact point with the casing 7 is CA
  • the winding start position of the scroll casing 7 is SB.
  • the vertical line 50 is a straight line orthogonal to the side surface of the extending portion 72 of the scroll casing 7 on the side facing the tongue portion 6.
  • the winding start position of the scroll casing 7 is an end portion of the base portion 71 of the scroll casing 7 on the opposite side of the stretched portion 72.
  • the amount of airflow leaking from the blowout region 23 side of the second impeller 32 having a relatively small pressure difference is increased, and the airflow leaks from the suction region 22. It will be reduced. Therefore, the performance of the blower 10 is improved.
  • FIG. 21 is a cross-sectional view corresponding to FIG. 4, showing a modified example of the blower 10 according to the fourth embodiment.
  • a part of the second through hole 127 may be out of the range where the straight LOA and the straight LOB cut out the first fixed main plate 1.
  • a large performance improvement effect can be obtained.
  • FIG. 22 is a cross-sectional view corresponding to FIG. 2, showing the blower 10 according to the fifth embodiment.
  • FIG. 23 is a cross-sectional view corresponding to FIG. 4, showing the effect of the fifth embodiment.
  • the fifth embodiment relates to the first peripheral wall 3 of the first casing 8 of the first embodiment, and the configuration of the blower 10 and the air conditioner 200 is the same as that of the first embodiment, and thus the description thereof is omitted. However, the same reference numerals are given to similar members or corresponding parts.
  • the first peripheral wall 3 of the first casing 8 has an inclined portion 28.
  • the inclined portion 28 is provided on the side of the first casing 8 corresponding to the suction region 22 of the cross flow fan 12. As shown in FIG. 22, the first casing 8 is inclined so that the first side plate 2 side is narrower than the first fixed main plate 1 side. In other words, the inclined portion 28 is inclined so as to approach the rotation shaft 20 as it goes from the first fixed main plate 1 to the first side plate 2.
  • the inclined portion of the first peripheral wall 3 of the first casing 8 of the first centrifugal fan 11 located on the side corresponding to the suction region 22 of the cross flow fan 12. 28 is inclined so that the first side plate 2 side is narrowed. Therefore, the velocity of the airflow in the circumferential direction of the outer circumference of the first impeller 31 increases in the vicinity of the side of the first fixed main plate 1. At this time, as shown in FIG. 23, since the centrifugal force 60 acting on the airflow outward in the radial direction becomes large, the leakage airflow 110 from the first communication hole 5 is reduced, and the performance of the blower 10 is improved.
  • the inclined portion 28 is inclined as described above, the space on the outer peripheral side is improved, and the housing structure can be miniaturized when mounted on the air conditioner 200. As a result, according to the fifth embodiment, it is possible to achieve both improvement in energy saving and miniaturization of the blower 10.
  • FIG. 24 is a cross-sectional view corresponding to FIG. 2, showing a modified example of the blower 10 according to the fifth embodiment.
  • the above-mentioned effect can be obtained even if the inclined portion 28 of the first peripheral wall 3 of the first casing 8 is provided only in a part near the first side plate 2.
  • the range in which the inclined portion 28 is provided on the first peripheral wall 3 may be appropriately adjusted depending on the operating point of the blower 10.
  • FIG. 25 is a cross-sectional view corresponding to FIG. 3, showing the first centrifugal fan 11 according to the sixth embodiment.
  • FIG. 26 is a cross-sectional view taken along the line GG showing the blower 10 according to the sixth embodiment.
  • the sixth embodiment relates to the first peripheral wall 3 of the first casing 8 of the first embodiment, and the configuration of the blower 10 and the air conditioner 200 is the same as that of the first embodiment, and thus the description thereof is omitted. However, the same or corresponding parts are given the same reference numerals.
  • the blowout nozzle 29 from which the airflow blows out rotates from the first fixed main plate 1 to the first side plate 2 as shown in FIG. It is tilted so as to approach the axis 20. That is, when the blowout nozzle 29 is viewed from a plane (GG cross section) horizontal to the rotary shaft 20 and the extension direction 51 of the blowout nozzle 29 to the blowout port, the two end portions of the side plate and the rotary shaft 20 The distance between them is inclined so as to be shorter than the distance between the end on the side of the first fixed main plate 1 and the rotating shaft 20.
  • the blow nozzle 29 is tilted so that the first side plate 2 side is narrowed. Therefore, with respect to the airflow 113 that orbits in the vicinity of the airflow outlet nozzle 29 in the circumferential direction of the outer circumference of the first impeller 31, the velocity in the vicinity of the first fixed main plate 1 side increases. At this time, since the inertial force of the airflow 113 and the centrifugal force 60 acting on the outer side in the radial direction become large, the leakage airflow 110 from the first communication hole 5 near the suction region 22 of the cross flow fan 12 is reduced, and the blower 10 Performance improves.
  • FIG. 27 is a perspective view showing the blower 10 according to the seventh embodiment.
  • FIG. 28 is a view showing the blower 10 according to the seventh embodiment cut from the plane PH of FIG. 27 from above.
  • the seventh embodiment relates to the second impeller 32 in the blower 10 of the first embodiment provided in the air conditioner 200, and the configuration of the air conditioner 200 is the same as that of the first embodiment. It is omitted, and the same reference numerals are given to similar members or corresponding parts.
  • the blower 10 according to the seventh embodiment has a first centrifugal fan 11, a cross current fan 12, and a second centrifugal fan 14.
  • the second centrifugal fan 14 has a second casing 408 and a third impeller 33.
  • the third impeller 33 has a second rotating main plate 421 and a plurality of second blades 411 erected on one surface of the second rotating main plate 421.
  • the second casing 408 has a second fixed main plate 401, a second side plate 402, and a second peripheral wall 403.
  • the second fixed main plate 401 and the second side plate 402 face each other in the direction of the rotation shaft 20 of the second centrifugal fan 14 and the cross flow fan 12.
  • the second peripheral wall 403 connects the outer edge portion of the second fixed main plate 401 and the outer edge portion of the second side plate 402, and faces the outer periphery of the third impeller 33.
  • the second side plate 402 is formed with a second suction hole 404 for sucking airflow.
  • a second communication hole 405 is formed in the second fixed main plate 401.
  • the second rotating main plate 421 is located in the second communication hole 405 of the second fixed main plate 401. That is, the second centrifugal fan 14 is a single-suction multi-blade fan having the same configuration as the first centrifugal fan 11.
  • the first centrifugal fan 11 and the second centrifugal fan 14 are arranged so that the above-mentioned components are symmetrical in the direction of the rotation axis 20.
  • the second impeller 32 of the cross flow fan 12 is provided with one end of both ends of the rotating shaft 20 in the axial direction, and the first blade 211 is provided on the first rotating main plate 21. It is connected to the opposite side of the surface. Then, in the second impeller 32, the other end of both ends in the direction of the rotating shaft 20 is connected to the surface of the second rotating main plate 421 opposite to the surface on which the second blade 411 is provided. Has been done.
  • the end of the second impeller 32 and the third impeller 33 are connected via a second communication hole 405 of the second fixed main plate 401 of the second casing 408 of the second centrifugal fan 14. ing.
  • the cross flow fan 12 includes the first centrifugal fan 11 and the second centrifugal fan 14 provided at both ends in the rotation axis 20 direction, and the first of each.
  • the casing 8 is connected via the first communication hole 5 of the first fixed main plate 1. Therefore, the symmetry in the direction of the rotation axis 20 can be maintained with respect to the air flow flowing from the first centrifugal fan 11 and the second centrifugal fan 14 to the cross flow fan 12.
  • the velocity component in the radial direction of rotation increases as the velocity component in the axial direction of the rotating shaft 20 decreases, the inertial force in the radial direction increases, and the first centrifugal force increases.
  • the leakage airflow 110 from the fan 11 to the suction region 22 of the cross flow fan 12 is reduced. Therefore, the performance of the blower 10 is improved.
  • FIG. 29 is a graph showing the performance improvement effect on the blade width according to the seventh embodiment.
  • the horizontal axis represents each blade width ratio [L1 / (L1 + L2)] with respect to the first impeller 31 and the second impeller 32
  • the vertical axis represents the maximum performance ratio of the blower 10.
  • the blade width ratio [L1 / When (L1 + L2)] is 0.3 ⁇ L1 / (L1 + L2) ⁇ 0.85
  • a maximum performance ratio of 95% or more is shown. This also applies to the relationship between the sum of the blade widths of the third impeller 33 of the second centrifugal fan 14 and the sum of the blade widths of the second impeller 32 of the cross flow fan 12.
  • the relationship between the blade width of the first impeller 31 and the blade width of the second impeller 32, and the relationship between the blade width of the third impeller 33 and the second impeller 32 are as described above. That is, if it is mounted on the product housing with 0.3 ⁇ L1 / (L1 + L2) ⁇ 0.85, the following effects can be obtained. That is, the airflow loss due to the leakage and drift of the airflow 112 flowing through the first centrifugal fan 11 and the second centrifugal fan 14, and the outer periphery of the first casing 8 of each of the first centrifugal fan 11 and the second centrifugal fan 14. The ventilation resistance of the surface can be reduced. Therefore, a greater performance improving effect of the blower 10 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This air blower is provided with a first centrifugal fan and a cross flow fan that are coaxially provided to a rotary shaft. The first centrifugal fan has a first casing and a first impeller that is housed in the first casing. The first impeller has a first rotation main plate that is rotatable about the rotary shaft and a plurality of first blades that are provided to the first rotation main plate. The cross flow fan has: a second impeller provided to a surface on the opposite side to a surface of the first rotation main plate where the first blades are provided; a tongue part that is disposed at a portion of the rotation outer circumference of the second impeller; and a scroll casing that is disposed along the rotation outer circumference at a position opposing the tongue part with the second impeller interposed therebeteween. One of the two ends of the second impeller in an axial direction of the rotary shaft is connected to the surface on the opposite side to the surface of the first rotation main plate where the first blades are provided. The air blower is configured such that the blade diameter of the first impeller is less than the blade diameter of the second impeller.

Description

送風機及び空気調和装置Blower and air conditioner
 本開示は、送風機及び送風機を備える空気調和装置に関する。 The present disclosure relates to a blower and an air conditioner including a blower.
 従来、空気調和装置に搭載される送風機として、横流ファンの両端の側面に円板を設け、当該円板の外側に横流ファンの吸込み口としてスクロールケーシングで覆われたオリフィスを設けた構成が知られている。例えば、特許文献1に記載の送風機は、スクロールケーシング内の第1の羽根車とスクロールケーシング外の第2の羽根車とを接続するため、円板近傍に連通孔が設けられている。 Conventionally, as a blower mounted on an air conditioner, a configuration is known in which disks are provided on both side surfaces of a cross flow fan, and an orifice covered with a scroll casing is provided on the outside of the disk as a suction port of the cross flow fan. ing. For example, the blower described in Patent Document 1 is provided with a communication hole in the vicinity of the disk in order to connect the first impeller inside the scroll casing and the second impeller outside the scroll casing.
特開2000-111078号公報Japanese Unexamined Patent Publication No. 2000-11107
 しかしながら、送風機の運転時、スクロールケーシング内は第1の羽根車により昇圧する一方で、スクロールケーシング外の第2の羽根車の吸込み面は昇圧していないため、連通孔を介して気流がスクロールケーシングの内部から外部へ漏出し、送風機の省エネ性能が低下する。このような現象を回避するため、第1の羽根車と第2の羽根車とを別体で形成し、連通孔を設けない構成にすることが考えられる。しかしながら、この場合、それぞれの羽根車に別体の回転モーターを設けなければならず、送風機が大型化し、送風機が搭載される空気調和装置のユニットも大型化する。 However, when the blower is operated, the inside of the scroll casing is boosted by the first impeller, while the suction surface of the second impeller outside the scroll casing is not boosted, so that the airflow flows through the communication hole of the scroll casing. Leakage from the inside to the outside, reducing the energy-saving performance of the blower. In order to avoid such a phenomenon, it is conceivable to form the first impeller and the second impeller separately so as not to provide a communication hole. However, in this case, a separate rotary motor must be provided for each impeller, the blower becomes larger, and the unit of the air conditioner on which the blower is mounted also becomes larger.
 本開示は、上記のような課題を背景としてなされたものであり、高い省エネ性能を実現し、かつ大型化が抑制された送風機、及びそのような送風機が搭載された空気調和装置を提供するものである。 The present disclosure has been made against the background of the above-mentioned problems, and provides a blower that realizes high energy-saving performance and suppresses the increase in size, and an air conditioner equipped with such a blower. Is.
 本開示に係る送風機は、回転軸と同軸に設けられている第1の遠心ファンと横流ファンとを備え、前記第1の遠心ファンは、第1のケーシングと、前記第1のケーシングに収容されている第1の羽根車と、を有し、前記第1の羽根車は前記回転軸を中心として回転可能な第1の回転主板と、前記第1の回転主板に設けられた複数の第1の羽根と、を有し、前記第1のケーシングは、前記回転軸の方向における両端部のうちの一方の端部に設けられ、気流を吸込むための第1の吸込み孔が形成されている第1の側板と、他方の端部に設けられ、連通孔が形成されている第1の固定主板と、前記第1の羽根車の外周に対向している第1の周壁と、を有し、前記横流ファンは、前記第1の回転主板において前記第1の羽根が設けられている面の反対側の面に設けられている第2の羽根車と、前記第2の羽根車の回転外周に配置された舌部と、前記第2の羽根車を挟んで前記舌部と対向した位置において、前記回転外周に沿って配置されているスクロールケーシングと、を有し、前記回転外周において前記舌部と前記スクロールケーシングとで挟まれた領域のうち一方の領域に気流が吸い込まれる吸込み領域が形成され、他方の領域に気流が吹き出される吹出し領域が形成されており、前記第2の羽根車において前記回転軸の軸方向における両端部のうち一方の端部が、前記第1の回転主板において前記第1の羽根が設けられている面の反対側の面に接続され、前記第1の羽根車の直径が前記第2の羽根車の直径よりも小さくなるよう構成されているものである。 The blower according to the present disclosure includes a first centrifugal fan and a cross flow fan provided coaxially with the rotation shaft, and the first centrifugal fan is housed in the first casing and the first casing. The first impeller has a first impeller, and the first impeller has a first rotating main plate that can rotate about the rotation axis, and a plurality of first plates provided on the first rotating main plate. The first casing is provided at one end of both ends in the direction of the rotation axis, and a first suction hole for sucking airflow is formed. It has one side plate, a first fixed main plate provided at the other end and formed with a communication hole, and a first peripheral wall facing the outer periphery of the first impeller. The cross-flow fan is provided on a second impeller provided on the surface of the first rotating main plate opposite to the surface on which the first blade is provided, and on the outer circumference of rotation of the second impeller. The tongue portion is provided with a tongue portion arranged and a scroll casing arranged along the rotation outer periphery at a position facing the tongue portion with the second impeller sandwiching the second impeller, and the tongue portion is provided on the rotation outer periphery. A suction region for sucking airflow is formed in one region of the region sandwiched between the scroll casing and the scroll casing, and a blowout region for blowing airflow is formed in the other region. One end of both ends of the rotating shaft in the axial direction is connected to the surface of the first rotating main plate opposite to the surface on which the first blade is provided, and the first impeller Is configured so that the diameter of the second impeller is smaller than the diameter of the second impeller.
 本開示によれば、送風機において第1の遠心ファンの第1の羽根車の羽根径は第1の横流ファンの第2の羽根車の羽根径よりも小さく構成されている。従って、送風機の運転時、第1の遠心ファンの第1のケーシングの第1の固定主板に形成された連通孔において、第1の横流ファンの吸込み領域に対応する側で気流が昇圧する。その結果、気流が連通孔を介して第1の遠心ファンから第1の横流ファンへ漏出することが低減される。すなわち、第1の遠心ファンの第1の羽根車と第1の横流ファンの第2の羽根車のそれぞれにモーターを設けることなく、連通孔を介した気流の漏出が低減される。従って、本開示によれば、送風機の大型化を抑えつつ省エネ性能の向上を図ることができる。 According to the present disclosure, in the blower, the blade diameter of the first impeller of the first centrifugal fan is smaller than the blade diameter of the second impeller of the first cross flow fan. Therefore, when the blower is operated, the airflow is boosted on the side corresponding to the suction region of the first cross-flow fan in the communication hole formed in the first fixed main plate of the first casing of the first centrifugal fan. As a result, the leakage of the airflow from the first centrifugal fan to the first cross current fan through the communication hole is reduced. That is, the leakage of the air flow through the communication hole is reduced without providing a motor for each of the first impeller of the first centrifugal fan and the second impeller of the first cross flow fan. Therefore, according to the present disclosure, it is possible to improve the energy-saving performance while suppressing the increase in size of the blower.
実施の形態1に係る送風機の斜視図である。It is a perspective view of the blower which concerns on Embodiment 1. FIG. 実施の形態1に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on Embodiment 1. FIG. 実施の形態1に係る送風機の横断面図である。It is sectional drawing of the blower which concerns on Embodiment 1. FIG. 実施の形態1に係る送風機の横断面図である。It is sectional drawing of the blower which concerns on Embodiment 1. FIG. 実施の形態1に係る送風機を備えた室内機ユニットの斜視透視図である。FIG. 5 is a perspective perspective view of an indoor unit unit including a blower according to the first embodiment. 実施の形態1に係る送風機を備えた空気調和装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the air conditioner provided with the blower which concerns on Embodiment 1. FIG. 従来例の送風機の縦断面図である。It is a vertical cross-sectional view of the blower of a conventional example. 実施の形態1の性能改善効果を示すグラフである。It is a graph which shows the performance improvement effect of Embodiment 1. FIG. 実施の形態1の変形例1に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on the modification 1 of Embodiment 1. FIG. 実施の形態1の変形例2に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on the modification 2 of Embodiment 1. FIG. 実施の形態1の変形例3に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on the modification 3 of Embodiment 1. FIG. 実施の形態1の変形例4に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on the modification 4 of Embodiment 1. FIG. 実施の形態1の変形例5に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on the modification 5 of Embodiment 1. FIG. 実施の形態1の変形例6に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on the modification 6 of Embodiment 1. FIG. 実施の形態2に係る送風機の斜視図である。It is a perspective view of the blower which concerns on Embodiment 2. FIG. 実施の形態2の変形例に係る送風機の横断面図である。It is a cross-sectional view of the blower which concerns on the modification of Embodiment 2. 実施の形態3に係る送風機の横断面図である。It is sectional drawing of the blower which concerns on Embodiment 3. FIG. 実施の形態3に係る送風機の横断面図である。It is sectional drawing of the blower which concerns on Embodiment 3. FIG. 実施の形態3の変形例に係る送風機の横断面図である。It is a cross-sectional view of the blower which concerns on the modification of Embodiment 3. 実施の形態4に係る送風機の横断面図である。It is sectional drawing of the blower which concerns on Embodiment 4. FIG. 実施の形態4の変形例に係る送風機の横断面図である。It is sectional drawing of the blower which concerns on the modification of Embodiment 4. 実施の形態5に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on Embodiment 5. FIG. 実施の形態5に係る送風機の横断面図である。It is sectional drawing of the blower which concerns on Embodiment 5. FIG. 実施の形態5の変形例に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on the modification of Embodiment 5. 実施の形態6に係る送風機の横断面図である。It is sectional drawing of the blower which concerns on Embodiment 6. 実施の形態6に係る第1の遠心ファンの縦断面図である。It is a vertical sectional view of the 1st centrifugal fan which concerns on Embodiment 6. 実施の形態7に係る送風機の斜視図である。It is a perspective view of the blower which concerns on Embodiment 7. 実施の形態7に係る送風機の縦断面図である。It is a vertical sectional view of the blower which concerns on Embodiment 7. 実施の形態7の性能改善効果を示すグラフである。It is a graph which shows the performance improvement effect of Embodiment 7.
 以下、本開示に係る送風機及び空気調和装置の実施の形態を、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、図面に示す送風機及び空気調和装置は、本開示の送風機及び空気調和装置が適用される機器の一例を示すものであり、図面に示された送風機及び空気調和装置によって本開示の適用機器が限定されるものではない。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これらは説明のためのものであって、本開示を限定するものではない。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係又は形状等が実際のものとは異なる場合がある。また、各図面において符号AFと共に示す矢印は、気流の流れを示すものである。 Hereinafter, embodiments of the blower and air conditioner according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Further, the blower and the air conditioner shown in the drawings show an example of the equipment to which the blower and the air conditioner of the present disclosure are applied, and the blower and the air conditioner shown in the drawings provide the applicable equipment of the present disclosure. It is not limited. Further, in the following description, terms indicating directions (for example, "top", "bottom", "right", "left", "front", "rear", etc.) are appropriately used for ease of understanding. These are for illustration purposes only and are not intended to limit this disclosure. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common in the entire text of the specification. In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one. Further, the arrows shown with the reference numeral AF in each drawing indicate the flow of the air flow.
実施の形態1.
 図1は実施の形態1に係る送風機の斜視図である。図2は実施の形態1に係る送風機の縦断面図である。図3は実施の形態1に係る送風機の横断面図である。図4は実施の形態1に係る送風機の横断面図である。図2は、図1の面PAで送風機10を切断し、上方から示す図である。面PAは、後述する回転軸20を含む水平面である。図3は図1の面PBで切断した図であり、図2のD-D断面図に相当する。図4は図1の面PCで切断した図であり、図2のE-E断面図に相当する。面PB及び面PCは回転軸20が直交する面である。
Embodiment 1.
FIG. 1 is a perspective view of the blower according to the first embodiment. FIG. 2 is a vertical cross-sectional view of the blower according to the first embodiment. FIG. 3 is a cross-sectional view of the blower according to the first embodiment. FIG. 4 is a cross-sectional view of the blower according to the first embodiment. FIG. 2 is a view showing the blower 10 cut from the surface PA of FIG. 1 from above. The surface PA is a horizontal plane including a rotation shaft 20 described later. FIG. 3 is a view cut along the plane PB of FIG. 1, and corresponds to a DD cross-sectional view of FIG. FIG. 4 is a view cut by the surface PC of FIG. 1, and corresponds to a cross-sectional view taken along the line EE of FIG. The plane PB and the plane PC are planes on which the rotation axes 20 are orthogonal to each other.
 図1~4に示すように、実施の形態1に係る送風機10は、第1の遠心ファン11と横流ファン12とを備えている。第1の遠心ファン11と横流ファン12とは同軸に設けられている。すなわち、第1の遠心ファン11及び横流ファン12は、回転軸20を中心として回転するよう設けられている。第1の遠心ファン11は片吸多翼ファンであり、第1の羽根車31と第1のケーシング8とを有している。第1の羽根車31は、第1の回転主板21と、第1の回転主板21の一方の面に立設された複数の第1の羽根211と、を有している。 As shown in FIGS. 1 to 4, the blower 10 according to the first embodiment includes a first centrifugal fan 11 and a cross flow fan 12. The first centrifugal fan 11 and the cross flow fan 12 are provided coaxially. That is, the first centrifugal fan 11 and the cross flow fan 12 are provided so as to rotate about the rotation shaft 20. The first centrifugal fan 11 is a single-suction multi-blade fan, and has a first impeller 31 and a first casing 8. The first impeller 31 has a first rotating main plate 21 and a plurality of first blades 211 erected on one surface of the first rotating main plate 21.
 第1のケーシング8は、第1の固定主板1と、第1の側板2と、第1の周壁3とを有している。第1の固定主板1と第1の側板2とは、第1の遠心ファン11及び横流ファン12の回転軸20の方向において互いに対向している。第1の周壁3は、第1の固定主板1の外縁部と第1の側板2の外縁部とを接続し、第1の羽根車31の外周に対向している。第1の側板2には気流を吸い込む第1の吸込み孔4が形成されている。第1の固定主板1には第1の連通孔5が形成されている。第1の回転主板21は、第1の固定主板1の第1の連通孔5に位置している。 The first casing 8 has a first fixed main plate 1, a first side plate 2, and a first peripheral wall 3. The first fixed main plate 1 and the first side plate 2 face each other in the direction of the rotation shaft 20 of the first centrifugal fan 11 and the cross flow fan 12. The first peripheral wall 3 connects the outer edge portion of the first fixed main plate 1 and the outer edge portion of the first side plate 2 and faces the outer periphery of the first impeller 31. The first side plate 2 is formed with a first suction hole 4 for sucking airflow. A first communication hole 5 is formed in the first fixed main plate 1. The first rotating main plate 21 is located in the first communication hole 5 of the first fixed main plate 1.
 横流ファン12は、第2の羽根車32と舌部6とスクロールケーシング7とを有している。第2の羽根車32は、第1の羽根車31と同軸に設けられている。第2の羽根車32は、第1の回転主板21において、第1の羽根車31の複数の第1の羽根211が立設されている面の反対側の面に接続されている。スクロールケーシング7は、基部71と延伸部72とを有している。基部71は、第2の羽根車32の回転外周において、周方向の略半分の部分に沿っている。延伸部72は、基部71の一方の端部に連続しており、第2の羽根車32の外周から離れる方向に伸びている。舌部6は、第2の羽根車32の回転外周において、基部71が沿っていない部分の一部に近接して設けられている。舌部6とスクロールケーシング7の基部71とは対向している。図4に示すように、第2の羽根車32の回転外周において舌部6とスクロールケーシング7とで挟まれた領域のうち一方の領域に気流が吸い込まれる吸込み領域22が形成され、他方の領域に気流が吹き出される吹出し領域23が形成されている。 The cross flow fan 12 has a second impeller 32, a tongue portion 6, and a scroll casing 7. The second impeller 32 is provided coaxially with the first impeller 31. The second impeller 32 is connected to the surface of the first rotating main plate 21 opposite to the surface on which the plurality of first blades 211 of the first impeller 31 are erected. The scroll casing 7 has a base portion 71 and an extension portion 72. The base 71 is along a substantially half portion in the circumferential direction on the outer circumference of rotation of the second impeller 32. The extending portion 72 is continuous with one end of the base portion 71 and extends in a direction away from the outer circumference of the second impeller 32. The tongue portion 6 is provided close to a part of the portion where the base portion 71 does not follow on the rotational outer circumference of the second impeller 32. The tongue portion 6 and the base portion 71 of the scroll casing 7 face each other. As shown in FIG. 4, a suction region 22 in which airflow is sucked is formed in one region of the region sandwiched between the tongue portion 6 and the scroll casing 7 on the rotational outer circumference of the second impeller 32, and the other region. A blowout region 23 is formed in which the airflow is blown out.
 モーター13は、横流ファン12の回転軸20の方向における両端部のうち、第1の遠心ファン11が位置している端部とは反対の端部の側に設けられている。送風機10は、モーター13が回転することにより、第1の遠心ファン11及び横流ファン12が回転するよう構成されている。 The motor 13 is provided on the side of both ends of the cross flow fan 12 in the direction of the rotation shaft 20 opposite to the end where the first centrifugal fan 11 is located. The blower 10 is configured so that the first centrifugal fan 11 and the cross flow fan 12 rotate as the motor 13 rotates.
 図2に示されるように、送風機10において、第1の羽根車31の羽根径Dsは第2の羽根車32の羽根径Dcよりも小さい。すなわち、第1の羽根車31の直径は第2の羽根車32の直径よりも小さい。図3に示されるように、送風機10の内部を第1の遠心ファン11の側から回転軸20の軸方向に見た場合、横流ファン12の舌部6の一部及びスクロールケーシング7の一部は視認され、第2の羽根車32は視認されない。換言すると、第2の羽根車32、第1の固定主板1、及び第1の回転主板21を回転軸20方向に透視すると、第2の羽根車32は第1の固定主板1に覆われている。また、図4に示されるように、送風機10の内部を横流ファン12の側から回転軸20の軸方向に見た場合、第1の固定主板1と第1の回転主板21とは重なり有っている。換言すると、第2の羽根車32、第1の固定主板1、及び第1の回転主板21を回転軸20方向に透視すると、第1の固定主板1は第1の回転主板21で覆われている。 As shown in FIG. 2, in the blower 10, the blade diameter Ds of the first impeller 31 is smaller than the blade diameter Dc of the second impeller 32. That is, the diameter of the first impeller 31 is smaller than the diameter of the second impeller 32. As shown in FIG. 3, when the inside of the blower 10 is viewed from the side of the first centrifugal fan 11 in the axial direction of the rotating shaft 20, a part of the tongue portion 6 of the cross flow fan 12 and a part of the scroll casing 7 Is visible, and the second impeller 32 is not visible. In other words, when the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are viewed through in the direction of the rotating shaft 20, the second impeller 32 is covered with the first fixed main plate 1. There is. Further, as shown in FIG. 4, when the inside of the blower 10 is viewed from the side of the cross flow fan 12 in the axial direction of the rotating shaft 20, the first fixed main plate 1 and the first rotating main plate 21 overlap each other. ing. In other words, when the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are viewed through in the direction of the rotating shaft 20, the first fixed main plate 1 is covered with the first rotating main plate 21. There is.
 なお、本実施の形態1では、送風機10の内部を第1の遠心ファン11の側から回転軸20の軸方向に見ると、第2の羽根車32は第1の固定主板1に覆われるよう構成されているが、これに限るものではない。第2の羽根車32の吸込み領域22の側において、第2の羽根車32の少なくとも一部が第1の固定主板1により覆われていればよい。 In the first embodiment, when the inside of the blower 10 is viewed from the side of the first centrifugal fan 11 in the axial direction of the rotating shaft 20, the second impeller 32 is covered with the first fixed main plate 1. It is configured, but not limited to this. At least a part of the second impeller 32 may be covered with the first fixed main plate 1 on the side of the suction region 22 of the second impeller 32.
 また、本実施の形態1では、送風機10の内部を横流ファン12の側から回転軸20の軸方向に見た場合、第1の固定主板1と第1の回転主板21とは重なりあっているがこれに限るものではない。第1の固定主板1の少なくとも一部が第1の回転主板21で覆われていればよい。 Further, in the first embodiment, when the inside of the blower 10 is viewed from the side of the cross flow fan 12 in the axial direction of the rotating shaft 20, the first fixed main plate 1 and the first rotating main plate 21 overlap each other. However, it is not limited to this. It is sufficient that at least a part of the first fixed main plate 1 is covered with the first rotating main plate 21.
 すなわち、第2の羽根車32、第1の固定主板1、及び第1の回転主板21を回転軸20方向に透視した場合に、第2の羽根車32の吸込み領域22の側において、第2の羽根車32の少なくとも一部が第1の固定主板1により覆われているか、若しくは、第1の固定主板1の少なくとも一部が第1の回転主板21で覆われていればよい。 That is, when the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are viewed through in the direction of the rotating shaft 20, the second impeller 32 is on the side of the suction region 22. It suffices that at least a part of the impeller 32 is covered with the first fixed main plate 1, or at least a part of the first fixed main plate 1 is covered with the first rotating main plate 21.
 次に、実施の形態1に係る送風機10の気流について、図5を参照して説明する。図5には、室内空間300の壁部203に設けられた室内機ユニット201が示されている。図5において、室内機ユニット201の内部構成を示すために、室内機ユニット201は筐体の外郭のみが示されている。また、図の複雑化を避けるため、図5において室内機ユニット201に搭載されている構造物のうちの一部の構造物は省略されている。なお、図5では、1つの送風機10が室内機ユニット201に設けられている構成が示されているが、これに限るものではなく、室内機ユニット201には複数の送風機10が搭載されていてもよい。図5に示されるように、室内機ユニット201において、室内機ユニット201の筐体を構成するパネルと送風機10との間に、第1の熱交換器17が設けられている。 Next, the air flow of the blower 10 according to the first embodiment will be described with reference to FIG. FIG. 5 shows an indoor unit 201 provided on the wall portion 203 of the indoor space 300. In FIG. 5, in order to show the internal configuration of the indoor unit 201, only the outer shell of the housing of the indoor unit 201 is shown. Further, in order to avoid complication of the drawing, some of the structures mounted on the indoor unit unit 201 are omitted in FIG. Note that FIG. 5 shows a configuration in which one blower 10 is provided in the indoor unit 201, but the present invention is not limited to this, and the indoor unit 201 is equipped with a plurality of blowers 10. May be good. As shown in FIG. 5, in the indoor unit 201, a first heat exchanger 17 is provided between the panel constituting the housing of the indoor unit 201 and the blower 10.
 室内空間300において、空気調和装置200の運転時、室内空間300から室内機ユニット201の図示省略の吸込口を介して室内機ユニット201の内部へ気流が流れる。室内機ユニット201の内部へ流れる気流は、第1の熱交換器17などの構造物を介して送風機10の第1の遠心ファン11及び横流ファン12へ分離して流れる。 In the indoor space 300, when the air conditioner 200 is operated, an air flow flows from the indoor space 300 to the inside of the indoor unit unit 201 through a suction port (not shown) of the indoor unit unit 201. The airflow flowing into the indoor unit 201 is separated and flows to the first centrifugal fan 11 and the cross current fan 12 of the blower 10 via a structure such as the first heat exchanger 17.
 第1の遠心ファン11に流れた気流は、第1の羽根車31にて昇圧及び加速され、一部が第1の連通孔5を介して横流ファン12の風路へ流れ、スクロールケーシング7により静圧回復され、室内機ユニット201の図示省略の吹出口から室内空間300へ吐出され、循環する。横流ファン12に流れた気流は、第2の羽根車32にて昇圧及び加速され、一部が第1の遠心ファン11の風路へ流れ、第1のケーシング8により静圧回復され、室内機ユニット201の図示省略の吹出口から室内空間300へ吐出され、循環する。すなわち、第2の羽根車32の外周に位置する第1の連通孔5を介して、第1の遠心ファン11の風路と横流ファン12の風路との間で気流の交換が行われる。特に、横流ファン12の吸込み領域22へ漏出した気流は主に第2の羽根車32へ流れる。 The airflow flowing through the first centrifugal fan 11 is boosted and accelerated by the first impeller 31, and a part of the airflow flows through the first communication hole 5 to the air passage of the cross flow fan 12, and is provided by the scroll casing 7. The static pressure is restored, and the indoor unit 201 is discharged from the air outlet (not shown) into the indoor space 300 and circulates. The airflow flowing through the cross flow fan 12 is boosted and accelerated by the second impeller 32, partly flows into the air passage of the first centrifugal fan 11, is statically restored by the first casing 8, and is an indoor unit. It is discharged from the air outlet of the unit 201 (not shown) to the indoor space 300 and circulates. That is, the airflow is exchanged between the air passage of the first centrifugal fan 11 and the air passage of the cross flow fan 12 through the first communication hole 5 located on the outer periphery of the second impeller 32. In particular, the airflow leaking to the suction region 22 of the cross flow fan 12 mainly flows to the second impeller 32.
 なお、第1の遠心ファン11を吐出した気流、及び横流ファン12を吐出した気流が、室内機ユニット201内にて合流後に室内空間300へ吐出しても、送風機10の送風効果に支障はない。 Even if the airflow discharged from the first centrifugal fan 11 and the airflow discharged from the cross flow fan 12 merge into the indoor unit 201 and then discharged into the indoor space 300, the blowing effect of the blower 10 is not hindered. ..
 図6を参照して、空気調和装置200の動作を冷房運転を例に説明する。空気調和装置200は、室内空間300に配置された室内機ユニット201と、屋外空間301に配置された室外機ユニット202とを備えている。室外機ユニット202は、圧縮機15と、四方弁16と、第2の熱交換器171と、送風機18と、絞り装置19と、を有している。室内機ユニット201の第1の熱交換器17は、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する。室外機ユニット202の第2の熱交換器171は、冷房運転時に凝縮器として機能し、暖房運転時に蒸発器として機能する。圧縮機15にて高温高圧ガスとなった冷媒は、四方弁16を介して室外機ユニット202に搭載する第2の熱交換器171に流れ、室外の空気へ放熱して液相冷媒又は液主体冷媒となる。液相冷媒又は液主体冷媒は、絞り装置19にて減圧され室内機ユニット201の第1の熱交換器17へ流れる。第1の熱交換器17において、送風機10により発生する気流と低温低圧二相冷媒とは熱交換を行い、室外機ユニット202へ戻り、再度四方弁16を介して圧縮機15へ吸入される。このように、圧縮機15と、四方弁16と、第1の熱交換器17と、第2の熱交換器171と、絞り装置19と、でヒートポンプが形成されている。 With reference to FIG. 6, the operation of the air conditioner 200 will be described by taking a cooling operation as an example. The air conditioner 200 includes an indoor unit unit 201 arranged in the indoor space 300 and an outdoor unit unit 202 arranged in the outdoor space 301. The outdoor unit 202 includes a compressor 15, a four-way valve 16, a second heat exchanger 171 and a blower 18, and a throttle device 19. The first heat exchanger 17 of the indoor unit unit 201 functions as an evaporator during the cooling operation and as a condenser during the heating operation. The second heat exchanger 171 of the outdoor unit unit 202 functions as a condenser during the cooling operation and as an evaporator during the heating operation. The refrigerant that has become a high-temperature and high-pressure gas in the compressor 15 flows through the four-way valve 16 to the second heat exchanger 171 mounted on the outdoor unit 202, dissipates heat to the outdoor air, and is a liquid phase refrigerant or a liquid main component. It becomes a refrigerant. The liquid phase refrigerant or the liquid-based refrigerant is depressurized by the throttle device 19 and flows to the first heat exchanger 17 of the indoor unit 201. In the first heat exchanger 17, the airflow generated by the blower 10 and the low-temperature low-pressure two-phase refrigerant exchange heat, return to the outdoor unit 202, and are sucked into the compressor 15 again through the four-way valve 16. As described above, the compressor 15, the four-way valve 16, the first heat exchanger 17, the second heat exchanger 171 and the throttle device 19 form a heat pump.
 図6において、送風機10は室内機ユニット201内の気流において第1の熱交換器17の下流に配置されているが、これに限るものではない。送風機10を第1の熱交換器17の上流に配置してもよい。さらに、送風機10と同様の構成を有する送風機を送風機18として室外機ユニット202に搭載しても、同様の効果が得られる。 In FIG. 6, the blower 10 is arranged downstream of the first heat exchanger 17 in the air flow in the indoor unit 201, but is not limited to this. The blower 10 may be arranged upstream of the first heat exchanger 17. Further, even if a blower having the same configuration as the blower 10 is mounted on the outdoor unit 202 as the blower 18, the same effect can be obtained.
 ここで、本開示の実施の形態1に係る送風機10の性能改善効果について、従来例と比較して説明する。図7は、従来例の送風機を示す断面図である。図7に示すように、従来例の送風機では、第2の羽根車32の羽根径Dcは第1の羽根車31の羽根径Dsと同一の長さを有している。この場合、第1の羽根車31と第2の羽根車32との接続部近傍の第1の連通孔5を介して、第1の羽根車31の外周を覆っている第1のケーシング8の内部から横流ファン12の吸込み領域22へ向かって、第1のケーシング8の外部への漏出気流110が多くなる。その結果、第1の羽根車31が漏出気流110に与えるエネルギーが散逸し、第1の遠心ファン11の送風性能が低下する。なお、第2の羽根車32の羽根径Dcが第1の羽根車31の羽根径Dsよりも小さい場合も、同様に、第1の連通孔5を介する第1のケーシング8の内部から外部への気流の漏出に起因する、送風性能の低下が生じる。 Here, the performance improvement effect of the blower 10 according to the first embodiment of the present disclosure will be described in comparison with the conventional example. FIG. 7 is a cross-sectional view showing a conventional blower. As shown in FIG. 7, in the conventional blower, the blade diameter Dc of the second impeller 32 has the same length as the blade diameter Ds of the first impeller 31. In this case, the first casing 8 covering the outer periphery of the first impeller 31 through the first communication hole 5 near the connection portion between the first impeller 31 and the second impeller 32. The leakage airflow 110 to the outside of the first casing 8 increases from the inside toward the suction region 22 of the cross flow fan 12. As a result, the energy given to the leaked airflow 110 by the first impeller 31 is dissipated, and the blowing performance of the first centrifugal fan 11 deteriorates. When the blade diameter Dc of the second impeller 32 is smaller than the blade diameter Ds of the first impeller 31, similarly, from the inside to the outside of the first casing 8 through the first communication hole 5. Due to the leakage of the airflow in the airflow, the ventilation performance deteriorates.
 これに対し、本実施の形態1に係る送風機10においては、図2に示すように第1の羽根車31の羽根径Dsに対して第2の羽根車32の羽根径Dcが大きい。従って、第2の羽根車32により第1の連通孔5近傍が昇圧し、第1のケーシング8の内部から第1のケーシング8の外部への漏出気流110が軽減され、送風機10の性能が向上する。 On the other hand, in the blower 10 according to the first embodiment, as shown in FIG. 2, the blade diameter Dc of the second impeller 32 is larger than the blade diameter Ds of the first impeller 31. Therefore, the vicinity of the first communication hole 5 is boosted by the second impeller 32, the leakage airflow 110 from the inside of the first casing 8 to the outside of the first casing 8 is reduced, and the performance of the blower 10 is improved. do.
 さらに、本実施の形態1では、第2の羽根車32、第1の固定主板1、及び第1の回転主板21を回転軸20方向に透視した場合に、第2の羽根車32の吸込み領域22の側において、第2の羽根車32の少なくとも一部が第1の固定主板1により覆われている。この構成により、第1のケーシング8の内部から第1のケーシング8の外部への通風抵抗が向上して漏出気流110が軽減し、送風機10の性能が向上する。また、第2の羽根車32、第1の固定主板1、及び第1の回転主板21を回転軸20方向に透視した場合に、第1の固定主板1の少なくとも一部が第1の回転主板21で覆われている。この構成によっても、第1のケーシング8の内部から第1のケーシング8の外部への通風抵抗が向上して漏出気流110が軽減し、送風機10の性能が向上する。 Further, in the first embodiment, when the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are seen through in the rotation axis 20 direction, the suction region of the second impeller 32 is obtained. On the side of 22, at least a part of the second impeller 32 is covered by the first fixed main plate 1. With this configuration, the ventilation resistance from the inside of the first casing 8 to the outside of the first casing 8 is improved, the leaked airflow 110 is reduced, and the performance of the blower 10 is improved. Further, when the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are viewed through in the direction of the rotating shaft 20, at least a part of the first fixed main plate 1 is the first rotating main plate. It is covered with 21. Also with this configuration, the ventilation resistance from the inside of the first casing 8 to the outside of the first casing 8 is improved, the leaked airflow 110 is reduced, and the performance of the blower 10 is improved.
 また、横流ファン12を流れる気流が多くなることで、横流ファン12の吸込み領域22から吹出し領域23へ流れる気流の慣性力が大きくなる。その結果、第1の遠心ファン11から横流ファン12への吸込み領域22側の漏出気流110が軽減し、送風機10の性能が向上する。特に、図4に示すように第1の連通孔5の孔径Dhを第2の羽根車32の羽根径Dcよりも小さくすることで、漏出気流110が小さくなる。図8は、実施の形態1の性能改善効果を示すグラフである。図8は、横軸に第1の羽根車31と第2の羽根車32の羽根径比(Dc/Ds)をとり、縦軸に性能比(静圧×風量/入力)をとっている。図8に示す性能改善効果の例のように、特に羽根径比(Dc/Ds)に関し、1<Dc/Ds<1.6とすることで、第1の羽根車31の羽根径と第2の羽根車32の羽根径が同一径である場合に比べて性能改善効果を得られることを発明者らの試験で確認している。特に、1.05<Dc/Ds<1.45とすることで性能110%以上となり効果が大きい。 Further, as the amount of airflow flowing through the cross-flow fan 12 increases, the inertial force of the airflow flowing from the suction region 22 of the cross-flow fan 12 to the blow-out region 23 increases. As a result, the leakage airflow 110 on the suction region 22 side from the first centrifugal fan 11 to the cross flow fan 12 is reduced, and the performance of the blower 10 is improved. In particular, as shown in FIG. 4, the leakage airflow 110 is reduced by making the hole diameter Dh of the first communication hole 5 smaller than the blade diameter Dc of the second impeller 32. FIG. 8 is a graph showing the performance improvement effect of the first embodiment. In FIG. 8, the horizontal axis represents the blade diameter ratio (Dc / Ds) of the first impeller 31 and the second impeller 32, and the vertical axis represents the performance ratio (static pressure × air volume / input). As in the example of the performance improvement effect shown in FIG. 8, especially regarding the blade diameter ratio (Dc / Ds), by setting 1 <Dc / Ds <1.6, the blade diameter of the first impeller 31 and the second It has been confirmed by the tests of the inventors that the performance improvement effect can be obtained as compared with the case where the blade diameters of the impeller 32 of the above are the same. In particular, setting 1.05 <Dc / Ds <1.45 results in a performance of 110% or more, which is highly effective.
 以上のように実施の形態1のように構成した送風機10及びそれを搭載する空気調和装置200においては、第1の羽根車31の羽根径Dsに対して第2の羽根車32の羽根径Dcが大きく構成している。従って、別体の回転モーター、若しくは複雑な追加機構を設けることなく送風機10の漏出気流110を軽減できる。その結果、送風機10、及びそれを搭載する空気調和装置200の小型化と省エネ性向上の両立が可能である。 In the blower 10 configured as described in the first embodiment and the air conditioner 200 equipped with the blower 10 as described above, the blade diameter Dc of the second impeller 32 is relative to the blade diameter Ds of the first impeller 31. Is largely configured. Therefore, the leaked airflow 110 of the blower 10 can be reduced without providing a separate rotary motor or a complicated additional mechanism. As a result, it is possible to achieve both miniaturization of the blower 10 and the air conditioner 200 on which the blower 10 is mounted and improvement of energy saving.
 なお、室内機ユニット201の送風機10の搭載数は1以上でもよく、回転軸20の向きは問わない。また第1の熱交換器17は、伝熱管が扁平形状であってもよいし、冷媒の流れの向きはファンの回転軸20に対して水平方向でも、垂直方向でもよい。また、図5中の室内機ユニット201は、壁掛け型を例に図示しているが、形態を限定するものではなく、床置き型、天井吊り下げ型、天井埋め込み型でもよい。 The number of blowers 10 mounted on the indoor unit 201 may be 1 or more, and the orientation of the rotating shaft 20 does not matter. Further, in the first heat exchanger 17, the heat transfer tube may have a flat shape, and the direction of the flow of the refrigerant may be horizontal or perpendicular to the rotation axis 20 of the fan. Further, although the indoor unit unit 201 in FIG. 5 is illustrated by taking a wall-mounted type as an example, the form is not limited, and the indoor unit unit 201 may be a floor-standing type, a ceiling-suspended type, or a ceiling-embedded type.
 図9~図14は第1の連通孔5及び第1の回転主板21に関する変形例を示す断面図である。図9~図14は、図2と同様、送風機10を図1の面PAで切断した断面図である。 9 to 14 are cross-sectional views showing a modified example of the first communication hole 5 and the first rotating main plate 21. 9 to 14 are cross-sectional views of the blower 10 cut along the surface PA of FIG. 1, as in FIG. 2.
<変形例1>
 図9に示す変形例1では、第1の回転主板21の外径は第1の連通孔5よりも大きい。換言すると、示す変形例1では、第2の羽根車32、第1の固定主板1、及び第1の回転主板21を回転軸20方向に透視すると、第2の羽根車32の吸込み領域22側において、第1の固定主板1が第1の回転主板21で覆われている。この構成によっても、上述の効果と同様の効果、すなわち気流の漏出100の低減、送風機10の性能向上が得られる。
<Modification example 1>
In the modified example 1 shown in FIG. 9, the outer diameter of the first rotating main plate 21 is larger than that of the first communication hole 5. In other words, in the modified example 1 shown, when the second impeller 32, the first fixed main plate 1, and the first rotating main plate 21 are viewed through in the rotation axis 20 direction, the suction region 22 side of the second impeller 32 is seen. In, the first fixed main plate 1 is covered with the first rotating main plate 21. With this configuration, the same effect as the above-mentioned effect, that is, reduction of airflow leakage 100 and improvement of the performance of the blower 10 can be obtained.
<変形例2>
 図10に示す変形例2では、第1の回転主板21の、回転軸20の周方向に溝24が設けられ、第1の連通孔5の孔径Dhが第1の羽根車31の羽根径Dsよりも小さくなっている。また、第1の固定主板1を回転軸20の軸方向に見た場合、第1の連通孔5の孔径は第2の羽根車32の羽根径Dcよりも小さくなっている。この構成によっても、漏出気流110が低減され、送風機10の性能が向上する。
<Modification 2>
In the second modification shown in FIG. 10, a groove 24 is provided in the circumferential direction of the rotating shaft 20 of the first rotating main plate 21, and the hole diameter Dh of the first communication hole 5 is the blade diameter Ds of the first impeller 31. Is smaller than Further, when the first fixed main plate 1 is viewed in the axial direction of the rotating shaft 20, the hole diameter of the first communication hole 5 is smaller than the blade diameter Dc of the second impeller 32. This configuration also reduces the leaked airflow 110 and improves the performance of the blower 10.
<変形例3>
 図11に示す変形例3では、第1の連通孔5の開口端の一部あるいは全周に絞り機構25が設けられている。絞り機構25は、横流ファン12から第1の遠心ファン11へ向かうにつれ、内径が次第に小さくなるよう構成されている。かかる構成により、第1の羽根車31と第2の羽根車32との接続部である第1の回転主板21の外周と、第1の連通孔5とに囲まれる連通空間が高圧化され、漏出気流110が低減され、送風機10の性能が向上する。
<Modification example 3>
In the modified example 3 shown in FIG. 11, the diaphragm mechanism 25 is provided on a part or the entire circumference of the opening end of the first communication hole 5. The throttle mechanism 25 is configured such that the inner diameter gradually decreases from the cross flow fan 12 toward the first centrifugal fan 11. With this configuration, the communication space surrounded by the outer circumference of the first rotating main plate 21, which is the connecting portion between the first impeller 31 and the second impeller 32, and the first communication hole 5, is increased in pressure. The leaked airflow 110 is reduced, and the performance of the blower 10 is improved.
<変形例4>
 図12に示す変形例4では、変形例3の絞り機構25に加え、第1の羽根車31と第2の羽根車32との接続部に羽根26が設けられている。羽根26は図11に示す第1の回転主板21の外周に設けられている。かかる構成により、第1の羽根車31と第2の羽根車32との接続部である第1の回転主板21の外周と、第1の連通孔5とに囲まれる連通空間が高圧化され、漏出気流110が低減され、送風機10の性能が向上する。
<Modification example 4>
In the modified example 4 shown in FIG. 12, in addition to the throttle mechanism 25 of the modified example 3, the vanes 26 are provided at the connecting portion between the first impeller 31 and the second impeller 32. The blades 26 are provided on the outer periphery of the first rotating main plate 21 shown in FIG. With this configuration, the communication space surrounded by the outer circumference of the first rotating main plate 21, which is the connecting portion between the first impeller 31 and the second impeller 32, and the first communication hole 5, is increased in pressure. The leaked airflow 110 is reduced, and the performance of the blower 10 is improved.
<変形例5>
 図13に示す変形例5のように、第1の回転主板21を横流ファン12の舌部6及びスクロールケーシング7に囲まれる空間にずらして配置し、連通空間を高圧下してもよい。
<Modification 5>
As in the modified example 5 shown in FIG. 13, the first rotating main plate 21 may be arranged so as to be offset from the space surrounded by the tongue portion 6 and the scroll casing 7 of the cross flow fan 12, and the communication space may be lowered under high pressure.
<変形例6>
 図14に示す変形例6のように、第1の回転主板21を第1の遠心ファン11の第1のケーシング8に囲まれる空間にずらして配置し、連通空間を高圧してもよい。
<Modification 6>
As in the modified example 6 shown in FIG. 14, the first rotating main plate 21 may be arranged so as to be offset from the space surrounded by the first casing 8 of the first centrifugal fan 11, and the communication space may be pressurized.
実施の形態2.
 図15は本実施の形態2の第1の回転主板21を備える羽根車30を示す斜視図である。実施の形態2は、実施の形態1の第1の回転主板21に関するものであり、送風機10及び空気調和装置200の構成は実施の形態1と同様であるため、説明を省略し、同様の部材あるいは相当部分には同じ符号を付している。
Embodiment 2.
FIG. 15 is a perspective view showing an impeller 30 including the first rotating main plate 21 of the second embodiment. The second embodiment relates to the first rotating main plate 21 of the first embodiment, and since the configurations of the blower 10 and the air conditioner 200 are the same as those of the first embodiment, the description thereof will be omitted and the same members will be used. Alternatively, the same reference numerals are given to the corresponding parts.
 実施の形態2に係る第1の回転主板21には、回転軸20の方向に見て第2の羽根車32の内周側の一部に、回転軸20の方向に貫通する第1の貫通穴27が形成されている。図15に示すように、第1の貫通穴27は2つ形成されている。 The first rotating main plate 21 according to the second embodiment has a first penetration penetrating in the direction of the rotating shaft 20 through a part of the inner peripheral side of the second impeller 32 when viewed in the direction of the rotating shaft 20. A hole 27 is formed. As shown in FIG. 15, two first through holes 27 are formed.
 実施の形態2のように構成した第1の回転主板21を備える送風機10は、第1の遠心ファン11の第1の羽根車31近傍の風路が、横流ファン12の第2の羽根車32の吸込み領域22における第2の羽根車32の下流と、第1の回転主板21の一部に形成された第1の貫通穴27を介して連通する。従って、第1の遠心ファン11の風路と横流ファン12の圧力差が低減され、その結果、漏出気流110が低減され、送風機10の性能が向上する。 In the blower 10 including the first rotating main plate 21 configured as in the second embodiment, the air passage near the first impeller 31 of the first centrifugal fan 11 is the second impeller 32 of the cross current fan 12. It communicates with the downstream of the second impeller 32 in the suction region 22 via a first through hole 27 formed in a part of the first rotating main plate 21. Therefore, the pressure difference between the air passage of the first centrifugal fan 11 and the cross flow fan 12 is reduced, and as a result, the leaked airflow 110 is reduced and the performance of the blower 10 is improved.
<変形例>
 図16は実施の形態2の変形例を示す図である。図16は、図15の面PFにおける断面図である。図16には第1の貫通穴27の位置の変形例が示されている。図16に示すように、第1の貫通穴27は第1の羽根車31の内周側に形成されてもよい。図16の変形例では、第1の貫通穴27は3つ形成されている。
<Modification example>
FIG. 16 is a diagram showing a modified example of the second embodiment. FIG. 16 is a cross-sectional view taken along the plane PF of FIG. FIG. 16 shows a modified example of the position of the first through hole 27. As shown in FIG. 16, the first through hole 27 may be formed on the inner peripheral side of the first impeller 31. In the modified example of FIG. 16, three first through holes 27 are formed.
 なお、図15及び図16は第1の貫通穴27の数を限定するものでない。第1の羽根車31若しくは第2の羽根車32に形成される第1の貫通穴27の数は1つ、あるいは4つ以上でもよい。 Note that FIGS. 15 and 16 do not limit the number of first through holes 27. The number of the first through holes 27 formed in the first impeller 31 or the second impeller 32 may be one or four or more.
実施の形態3.
 図17は本実施の形態3に係る送風機10を示す、図3に対応する断面図である。図17において、第1の羽根車31外周の周方向の気流のノズル近傍で周回する気流111が破線の矢印で示され、第1の遠心ファン11の気流112が実線の矢印で示されている。図18は実施の形態3に係る送風機10を示す、図4に対応する断面図である。実施の形態3は、実施の形態1の第1の連通孔5に関するものであり、送風機10及び空気調和装置200の構成は実施の形態1と同様であるため、説明を省略し、同様の部材あるいは相当部分には同じ符号を付している。
Embodiment 3.
FIG. 17 is a cross-sectional view corresponding to FIG. 3, showing the blower 10 according to the third embodiment. In FIG. 17, the airflow 111 orbiting in the vicinity of the nozzle of the airflow in the circumferential direction around the outer periphery of the first impeller 31 is indicated by a broken line arrow, and the airflow 112 of the first centrifugal fan 11 is indicated by a solid arrow. .. FIG. 18 is a cross-sectional view corresponding to FIG. 4, showing the blower 10 according to the third embodiment. The third embodiment relates to the first communication hole 5 of the first embodiment, and the configuration of the blower 10 and the air conditioner 200 is the same as that of the first embodiment. Alternatively, the same reference numerals are given to the corresponding parts.
 実施の形態3に係る第1の連通孔5は、回転軸20の軸方向から見て第2の羽根車32の吹出し領域23の側の単位角度当たりの開口面積が、回転軸20の軸方向から見て第2の羽根車32の吸込み領域22の側の単位角度当たりの開口面積に対して大きくなるよう構成されている。 In the first communication hole 5 according to the third embodiment, the opening area per unit angle on the blowout region 23 side of the second impeller 32 when viewed from the axial direction of the rotary shaft 20 is the axial direction of the rotary shaft 20. The second impeller 32 is configured to be larger than the opening area per unit angle on the suction region 22 side.
 第1の連通孔5を回転軸20の軸方向から見て第2の羽根車32の吹出し領域23側の単位角度当たりの開口面積は、次のように画定することができる。図18に示すように、回転軸20の軸方向から見て、横流ファン12の舌部6から第2の羽根車32の回転方向へ円周を周り、スクロールケーシング7に到達するまでの角度をαとする。αで切り取られる第1の連通孔5の開口部の面積をS1とする。回転軸20の軸方向から見て、横流ファン12の舌部6から第2の羽根車32の回転方向に対し反対方向へ円周を周り、スクロールケーシング7から離れるまでの角度をβとする。βで切り取られる第1の連通孔5の開口部の面積をS2とする。そして、S1/α<S2/βとなるよう第1の連通孔5の開口面積を画定してもよい。 The opening area per unit angle of the second impeller 32 on the blowout region 23 side when the first communication hole 5 is viewed from the axial direction of the rotating shaft 20 can be defined as follows. As shown in FIG. 18, when viewed from the axial direction of the rotating shaft 20, the angle from the tongue portion 6 of the cross flow fan 12 to the rotation direction of the second impeller 32 around the circumference and reaching the scroll casing 7 is determined. Let α be. Let S1 be the area of the opening of the first communication hole 5 cut out by α. When viewed from the axial direction of the rotating shaft 20, the angle from the tongue portion 6 of the cross flow fan 12 to the circumference of the second impeller 32 in the direction opposite to the rotating direction and away from the scroll casing 7 is defined as β. Let S2 be the area of the opening of the first communication hole 5 cut out by β. Then, the opening area of the first communication hole 5 may be defined so that S1 / α <S2 / β.
 以上、実施の形態3のように構成した送風機10は、第1の連通孔5が気流から見て第2の羽根車32の吹出し領域23側が吸込み領域22側に対して大きくなるように構成されている。従って、圧力差が比較的小さい第2の羽根車32の吹出し領域23側で第1の遠心ファン11から横流ファン12への気流の漏出の量を増やし、第1の遠心ファン11において、吹出し領域23側から吸込み領域22の側へ周回する気流を減らすことができる。その結果、第1の連通孔5の吸込み領域22の側における第1の遠心ファン11から横流ファン12への気流の漏出が低減され、送風機10の性能が改善され、送風機10の高性能化が可能となる。 As described above, in the blower 10 configured as in the third embodiment, the first communication hole 5 is configured so that the blowout region 23 side of the second impeller 32 is larger than the suction region 22 side when viewed from the air flow. ing. Therefore, the amount of airflow leaking from the first centrifugal fan 11 to the cross flow fan 12 is increased on the blowout region 23 side of the second impeller 32 where the pressure difference is relatively small, and the blowout region is increased in the first centrifugal fan 11. The airflow circulating from the 23 side to the suction region 22 side can be reduced. As a result, the leakage of airflow from the first centrifugal fan 11 to the cross flow fan 12 on the side of the suction region 22 of the first communication hole 5 is reduced, the performance of the blower 10 is improved, and the performance of the blower 10 is improved. It will be possible.
<変形例>
 図19は実施の形態3に係る第1の連通孔5の変形例を示す、図4に対応する断面図である。図19に示す変形例では、第2の羽根車32の吹出し領域23のみ、第1の連通孔5の開口端の回転軸20との距離が少なくとも一部をDc/2より大きく形成され、第2の羽根車32の吸込み領域22の第1の連通孔5の開口端の回転軸20との距離がDc/2より小さく形成されている。これにより、吹出し領域23の側のみ、第2の羽根車32よりも外周側に第1の連通孔5が開口している。この構成により、第1の遠心ファン11を流れる気流112(図17参照)の誘引効果が大きくなり、送風機10の性能が向上する。なお、第1の連通孔5の開口形状の図心の位置に関して、回転軸20からの偏心方向や偏心率は、吹出し領域23側であれば図19に示す例と異なってもよい。第1の連通孔5の図心位置の回転軸20からの偏心方向や偏心率は、送風機10の作動条件に合わせて調整される。
<Modification example>
FIG. 19 is a cross-sectional view corresponding to FIG. 4, showing a modified example of the first communication hole 5 according to the third embodiment. In the modified example shown in FIG. 19, only the blowout region 23 of the second impeller 32 is formed so that the distance from the rotation shaft 20 of the opening end of the first communication hole 5 is at least partly larger than Dc / 2. The distance of the suction region 22 of the impeller 32 of 2 from the rotating shaft 20 at the opening end of the first communication hole 5 is formed to be smaller than Dc / 2. As a result, the first communication hole 5 is opened only on the side of the blowout region 23 on the outer peripheral side of the second impeller 32. With this configuration, the effect of attracting the airflow 112 (see FIG. 17) flowing through the first centrifugal fan 11 is increased, and the performance of the blower 10 is improved. Regarding the position of the center of gravity of the opening shape of the first communication hole 5, the eccentric direction and the eccentricity from the rotating shaft 20 may be different from the example shown in FIG. 19 as long as it is on the blowout region 23 side. The eccentric direction and the eccentricity from the rotation shaft 20 at the centroid position of the first communication hole 5 are adjusted according to the operating conditions of the blower 10.
実施の形態4.
 図20は本実施の形態4に係る送風機10を示す、図4に対応する断面図である。実施の形態4は、実施の形態1の第1の固定主板1に関するものであり、送風機10及び空気調和装置200の構成は実施の形態1と同様であるため、説明を省略し、同様あるいは相当部分には同じ符号を付している。
Embodiment 4.
FIG. 20 is a cross-sectional view corresponding to FIG. 4, showing the blower 10 according to the fourth embodiment. The fourth embodiment relates to the first fixed main plate 1 of the first embodiment, and the configurations of the blower 10 and the air conditioner 200 are the same as those of the first embodiment. The same code is attached to the part.
 実施の形態4に係る第1の固定主板1は、以下の特徴を有している。第2の羽根車32側から回転軸20の軸方向に見て、第2の羽根車32の回転中心をO、横流ファン12の舌部6からスクロールケーシング7に対しておろした垂線50とスクロールケーシング7との接点をCA、スクロールケーシング7の巻き始め位置をSBとする。垂線50とは、スクロールケーシング7の延伸部72において、舌部6と対向する側の側面に直交する直線である。スクロールケーシング7の巻き始め位置とは、スクロールケーシング7の基部71において、延伸部72の反対側の端部である。そして、回転中心Oと接点CAとを結ぶ直線LOAと、回転中心Oと巻き始め位置SBとを結ぶ直線LOBとが、第1の固定主板1を切り取る範囲に、回転軸20方向に貫通する第2の貫通穴127が形成されている。 The first fixed main plate 1 according to the fourth embodiment has the following features. When viewed from the second impeller 32 side in the axial direction of the rotating shaft 20, the center of rotation of the second impeller 32 is O, and the vertical line 50 and the scroll drawn from the tongue 6 of the cross flow fan 12 to the scroll casing 7 are scrolled. The contact point with the casing 7 is CA, and the winding start position of the scroll casing 7 is SB. The vertical line 50 is a straight line orthogonal to the side surface of the extending portion 72 of the scroll casing 7 on the side facing the tongue portion 6. The winding start position of the scroll casing 7 is an end portion of the base portion 71 of the scroll casing 7 on the opposite side of the stretched portion 72. Then, the straight line LOA connecting the rotation center O and the contact CA and the straight line LOB connecting the rotation center O and the winding start position SB penetrate in the rotation axis 20 direction within the range where the first fixed main plate 1 is cut off. 2 through holes 127 are formed.
 実施の形態4のように構成した送風機10においては、圧力差が比較的小さい第2の羽根車32の吹出し領域23側の気流の漏出の量が増加され、吸込み領域22からの気流の漏出が低減される。従って、送風機10の性能を改善される。 In the blower 10 configured as in the fourth embodiment, the amount of airflow leaking from the blowout region 23 side of the second impeller 32 having a relatively small pressure difference is increased, and the airflow leaks from the suction region 22. It will be reduced. Therefore, the performance of the blower 10 is improved.
<変形例>
 図21は実施の形態4に係る送風機10の変形例を示す、図4に対応した断面図である。図21に示す変形例のように、第2の貫通穴127の一部が直線LOAと直線LOBとが第1の固定主板1を切り取る範囲から外れていてもよい。特に第2の貫通穴127を垂線50よりも気流の上流側に設けることで大きな性能改善効果が得られる。
<Modification example>
FIG. 21 is a cross-sectional view corresponding to FIG. 4, showing a modified example of the blower 10 according to the fourth embodiment. As in the modified example shown in FIG. 21, a part of the second through hole 127 may be out of the range where the straight LOA and the straight LOB cut out the first fixed main plate 1. In particular, by providing the second through hole 127 on the upstream side of the airflow with respect to the perpendicular line 50, a large performance improvement effect can be obtained.
実施の形態5.
 図22は本実施の形態5に係る送風機10を示す、図2に対応した断面図である。図23は本実施の形態5の効果を示す、図4に対応した断面図である。実施の形態5は、実施の形態1の第1のケーシング8の第1の周壁3に関するものであり、送風機10及び空気調和装置200の構成は実施の形態1と同様であるため、説明を省略し、同様の部材あるいは相当部分には同じ符号を付している。
Embodiment 5.
FIG. 22 is a cross-sectional view corresponding to FIG. 2, showing the blower 10 according to the fifth embodiment. FIG. 23 is a cross-sectional view corresponding to FIG. 4, showing the effect of the fifth embodiment. The fifth embodiment relates to the first peripheral wall 3 of the first casing 8 of the first embodiment, and the configuration of the blower 10 and the air conditioner 200 is the same as that of the first embodiment, and thus the description thereof is omitted. However, the same reference numerals are given to similar members or corresponding parts.
 実施の形態5に係る第1のケーシング8の第1の周壁3は、傾斜部28を有している。傾斜部28は、第1のケーシング8において、横流ファン12の吸込み領域22に対応する側に設けられている。図22に示すように、第1のケーシング8において第1の固定主板1側よりも第1の側板2側が狭くなるように傾斜している。換言すると、傾斜部28は、第1の固定主板1から第1の側板2へ向かうにつれて、回転軸20へ近づくように傾斜している。 The first peripheral wall 3 of the first casing 8 according to the fifth embodiment has an inclined portion 28. The inclined portion 28 is provided on the side of the first casing 8 corresponding to the suction region 22 of the cross flow fan 12. As shown in FIG. 22, the first casing 8 is inclined so that the first side plate 2 side is narrower than the first fixed main plate 1 side. In other words, the inclined portion 28 is inclined so as to approach the rotation shaft 20 as it goes from the first fixed main plate 1 to the first side plate 2.
 以上、実施の形態5のように構成した送風機10は、横流ファン12の吸込み領域22に対応する側に位置する第1の遠心ファン11の第1のケーシング8の第1の周壁3の傾斜部28が、第1の側板2側が狭くなるように傾斜している。従って、第1の羽根車31の外周の周方向の気流の速度が第1の固定主板1の側の近傍で上昇する。このとき、図23に示すように、気流に半径方向外側に作用する遠心力60が大きくなるため、第1の連通孔5からの漏出気流110が低減し、送風機10の性能が改善する。また、傾斜部28が上述のように傾斜しているため、外周側のスペース性が改善し、空気調和装置200に搭載するにあたり、筐体構造を小型にできる。その結果、実施の形態5によれば、送風機10の省エネ性向上と小型化とを両立することができる。 As described above, in the blower 10 configured as in the fifth embodiment, the inclined portion of the first peripheral wall 3 of the first casing 8 of the first centrifugal fan 11 located on the side corresponding to the suction region 22 of the cross flow fan 12. 28 is inclined so that the first side plate 2 side is narrowed. Therefore, the velocity of the airflow in the circumferential direction of the outer circumference of the first impeller 31 increases in the vicinity of the side of the first fixed main plate 1. At this time, as shown in FIG. 23, since the centrifugal force 60 acting on the airflow outward in the radial direction becomes large, the leakage airflow 110 from the first communication hole 5 is reduced, and the performance of the blower 10 is improved. Further, since the inclined portion 28 is inclined as described above, the space on the outer peripheral side is improved, and the housing structure can be miniaturized when mounted on the air conditioner 200. As a result, according to the fifth embodiment, it is possible to achieve both improvement in energy saving and miniaturization of the blower 10.
<変形例>
 図24は実施の形態5に係る送風機10の変形例を示す、図2に対応した断面図である。図24に示す変形例のように、第1のケーシング8の第1の周壁3の傾斜部28を、第1の側板2近傍の一部のみに設けても、上述の効果が得られる。第1の周壁3において傾斜部28を設ける範囲は、送風機10の動作点により適宜調整されてよい。
<Modification example>
FIG. 24 is a cross-sectional view corresponding to FIG. 2, showing a modified example of the blower 10 according to the fifth embodiment. As in the modified example shown in FIG. 24, the above-mentioned effect can be obtained even if the inclined portion 28 of the first peripheral wall 3 of the first casing 8 is provided only in a part near the first side plate 2. The range in which the inclined portion 28 is provided on the first peripheral wall 3 may be appropriately adjusted depending on the operating point of the blower 10.
実施の形態6.
 図25は本実施の形態6に係る第1の遠心ファン11を示す、図3に対応した断面図である。図26は本実施の形態6に係る送風機10を示すG-G断面図である。実施の形態6は、実施の形態1の第1のケーシング8の第1の周壁3に関するものであり、送風機10及び空気調和装置200の構成は実施の形態1と同様であるため、説明を省略し、同様あるいは相当部分には同じ符号を付している。
Embodiment 6.
FIG. 25 is a cross-sectional view corresponding to FIG. 3, showing the first centrifugal fan 11 according to the sixth embodiment. FIG. 26 is a cross-sectional view taken along the line GG showing the blower 10 according to the sixth embodiment. The sixth embodiment relates to the first peripheral wall 3 of the first casing 8 of the first embodiment, and the configuration of the blower 10 and the air conditioner 200 is the same as that of the first embodiment, and thus the description thereof is omitted. However, the same or corresponding parts are given the same reference numerals.
 実施の形態6に係る第1のケーシング8の第1の周壁3において、気流が吹き出す吹出ノズル29は、図26に示すように、第1の固定主板1から第1の側板2へ向かって回転軸20に近づくように傾斜している。すなわち、吹出ノズル29は、回転軸20と吹出ノズル29の吹出し口への延伸方向51とに水平な面(G-G断面)から透視した場合、側板の2側の端部と回転軸20と間の距離が、第1の固定主板1の側の端部と回転軸20との間の距離よりも、短くなるように傾斜している。 In the first peripheral wall 3 of the first casing 8 according to the sixth embodiment, the blowout nozzle 29 from which the airflow blows out rotates from the first fixed main plate 1 to the first side plate 2 as shown in FIG. It is tilted so as to approach the axis 20. That is, when the blowout nozzle 29 is viewed from a plane (GG cross section) horizontal to the rotary shaft 20 and the extension direction 51 of the blowout nozzle 29 to the blowout port, the two end portions of the side plate and the rotary shaft 20 The distance between them is inclined so as to be shorter than the distance between the end on the side of the first fixed main plate 1 and the rotating shaft 20.
 実施の形態6のように構成した送風機10は、吹出ノズル29を第1の側板2側が狭くなるように傾斜して構成している。従って、第1の羽根車31の外周の周方向の気流の吹出ノズル29近傍で周回する気流113に関し、第1の固定主板1側近傍での速度が上昇する。このとき、気流113の慣性力と半径方向外側に作用する遠心力60が大きくなるため、横流ファン12の吸込み領域22近傍の第1の連通孔5からの漏出気流110が低減し、送風機10の性能が改善する。 In the blower 10 configured as in the sixth embodiment, the blow nozzle 29 is tilted so that the first side plate 2 side is narrowed. Therefore, with respect to the airflow 113 that orbits in the vicinity of the airflow outlet nozzle 29 in the circumferential direction of the outer circumference of the first impeller 31, the velocity in the vicinity of the first fixed main plate 1 side increases. At this time, since the inertial force of the airflow 113 and the centrifugal force 60 acting on the outer side in the radial direction become large, the leakage airflow 110 from the first communication hole 5 near the suction region 22 of the cross flow fan 12 is reduced, and the blower 10 Performance improves.
実施の形態7.
 図27は本実施の形態7に係る送風機10を示す斜視図である。図28は本実施の形態7に係る送風機10を図27の面PHで切断し、上方から示す図である。実施の形態7は、空気調和装置200に備える実施の形態1の送風機10において第2の羽根車32に関するものであり、空気調和装置200の構成は実施の形態1と同様であるため、説明を省略し、同様の部材あるいは相当部分には同じ符号を付している。
Embodiment 7.
FIG. 27 is a perspective view showing the blower 10 according to the seventh embodiment. FIG. 28 is a view showing the blower 10 according to the seventh embodiment cut from the plane PH of FIG. 27 from above. The seventh embodiment relates to the second impeller 32 in the blower 10 of the first embodiment provided in the air conditioner 200, and the configuration of the air conditioner 200 is the same as that of the first embodiment. It is omitted, and the same reference numerals are given to similar members or corresponding parts.
 実施の形態7に係る送風機10は、第1の遠心ファン11と、横流ファン12と、第2の遠心ファン14と、を有している。第2の遠心ファン14は、第2のケーシング408と第3の羽根車33とを有している。第3の羽根車33は、第2の回転主板421と、第2の回転主板421の一方の面に立設された複数の第2の羽根411と、を有している。第2のケーシング408は、第2の固定主板401と、第2の側板402と、第2の周壁403とを有している。第2の固定主板401と第2の側板402とは、第2の遠心ファン14及び横流ファン12の回転軸20の方向において互いに対向している。第2の周壁403は、第2の固定主板401の外縁部と第2の側板402の外縁部とを接続し、第3の羽根車33の外周に対向している。第2の側板402には気流を吸い込む第2の吸込み孔404が形成されている。第2の固定主板401には第2の連通孔405が形成されている。第2の回転主板421は、第2の固定主板401の第2の連通孔405に位置している。すなわち、第2の遠心ファン14は、第1の遠心ファン11と同様の構成を有する片吸多翼ファンである。そして、第1の遠心ファン11及び第2の遠心ファン14は、回転軸20の方向において、上述の各構成要素が対称となるよう配置されている。 The blower 10 according to the seventh embodiment has a first centrifugal fan 11, a cross current fan 12, and a second centrifugal fan 14. The second centrifugal fan 14 has a second casing 408 and a third impeller 33. The third impeller 33 has a second rotating main plate 421 and a plurality of second blades 411 erected on one surface of the second rotating main plate 421. The second casing 408 has a second fixed main plate 401, a second side plate 402, and a second peripheral wall 403. The second fixed main plate 401 and the second side plate 402 face each other in the direction of the rotation shaft 20 of the second centrifugal fan 14 and the cross flow fan 12. The second peripheral wall 403 connects the outer edge portion of the second fixed main plate 401 and the outer edge portion of the second side plate 402, and faces the outer periphery of the third impeller 33. The second side plate 402 is formed with a second suction hole 404 for sucking airflow. A second communication hole 405 is formed in the second fixed main plate 401. The second rotating main plate 421 is located in the second communication hole 405 of the second fixed main plate 401. That is, the second centrifugal fan 14 is a single-suction multi-blade fan having the same configuration as the first centrifugal fan 11. The first centrifugal fan 11 and the second centrifugal fan 14 are arranged so that the above-mentioned components are symmetrical in the direction of the rotation axis 20.
 実施の形態1と同様、横流ファン12の第2の羽根車32において回転軸20の軸方向における両端部のうち一方の端部が、第1の回転主板21において第1の羽根211が設けられている面の反対側の面に接続されている。そして、第2の羽根車32において回転軸20の方向における両端部のうち他方の端部が、第2の回転主板421において第2の羽根411が設けられている面の反対側の面に接続されている。第2の羽根車32の端部と第3の羽根車33とは、第2の遠心ファン14の第2のケーシング408の第2の固定主板401の第2の連通孔405を介して接続されている。 Similar to the first embodiment, the second impeller 32 of the cross flow fan 12 is provided with one end of both ends of the rotating shaft 20 in the axial direction, and the first blade 211 is provided on the first rotating main plate 21. It is connected to the opposite side of the surface. Then, in the second impeller 32, the other end of both ends in the direction of the rotating shaft 20 is connected to the surface of the second rotating main plate 421 opposite to the surface on which the second blade 411 is provided. Has been done. The end of the second impeller 32 and the third impeller 33 are connected via a second communication hole 405 of the second fixed main plate 401 of the second casing 408 of the second centrifugal fan 14. ing.
 以上、実施の形態7のように構成した送風機10において、横流ファン12は、回転軸20方向の両端に設けられた第1の遠心ファン11及び第2の遠心ファン14と、それぞれの第1のケーシング8の第1の固定主板1の第1の連通孔5を介して接続されている。従って、第1の遠心ファン11及び第2の遠心ファン14から横流ファン12へ流れる気流に関して回転軸20の方向の対称性を保つことができる。その結果、横流ファン12の吸込み領域22の気流に関し、回転軸20の軸方向の速度成分の減少に伴う回転半径方向の速度成分が増加し、半径方向の慣性力が増加し、第1の遠心ファン11から横流ファン12の吸込み領域22への漏出気流110が減少する。従って、送風機10の性能が改善する。 As described above, in the blower 10 configured as in the seventh embodiment, the cross flow fan 12 includes the first centrifugal fan 11 and the second centrifugal fan 14 provided at both ends in the rotation axis 20 direction, and the first of each. The casing 8 is connected via the first communication hole 5 of the first fixed main plate 1. Therefore, the symmetry in the direction of the rotation axis 20 can be maintained with respect to the air flow flowing from the first centrifugal fan 11 and the second centrifugal fan 14 to the cross flow fan 12. As a result, with respect to the airflow in the suction region 22 of the cross flow fan 12, the velocity component in the radial direction of rotation increases as the velocity component in the axial direction of the rotating shaft 20 decreases, the inertial force in the radial direction increases, and the first centrifugal force increases. The leakage airflow 110 from the fan 11 to the suction region 22 of the cross flow fan 12 is reduced. Therefore, the performance of the blower 10 is improved.
 図29は実施の形態7に係る羽根幅に対する性能改善効果を示すグラフである。図29は、横軸に第1の羽根車31と第2の羽根車32に関する各羽根幅比[L1/(L1+L2)]をとり、縦軸に送風機10の最大性能比をとっている。第1の遠心ファン11の第1の羽根車31の各羽根幅の総和をL1、横流ファン12の第2の羽根車32の各羽根幅の総和をL2としたとき、羽根幅比[L1/(L1+L2)]を、0.3<L1/(L1+L2)<0.85とすると、95パーセント以上の最大性能比を示す。これは、第2の遠心ファン14の第3の羽根車33の各羽根幅の総和と横流ファン12の第2の羽根車32の各羽根幅の総和との関係においても同様である。 FIG. 29 is a graph showing the performance improvement effect on the blade width according to the seventh embodiment. In FIG. 29, the horizontal axis represents each blade width ratio [L1 / (L1 + L2)] with respect to the first impeller 31 and the second impeller 32, and the vertical axis represents the maximum performance ratio of the blower 10. When the sum of the blade widths of the first impeller 31 of the first centrifugal fan 11 is L1 and the sum of the blade widths of the second impeller 32 of the cross flow fan 12 is L2, the blade width ratio [L1 / When (L1 + L2)] is 0.3 <L1 / (L1 + L2) <0.85, a maximum performance ratio of 95% or more is shown. This also applies to the relationship between the sum of the blade widths of the third impeller 33 of the second centrifugal fan 14 and the sum of the blade widths of the second impeller 32 of the cross flow fan 12.
 第1の羽根車31の羽根幅と第2の羽根車32の羽根幅との関係、及び第3の羽根車33の羽根幅と第2の羽根車32との関係を、上述の羽根幅比、すなわち0.3<L1/(L1+L2)<0.85として製品筐体に搭載すれば、以下の効果が得られる。すなわち、第1の遠心ファン11及び第2の遠心ファン14を流れる気流112の漏出及び偏流による送風ロス、及び第1の遠心ファン11及び第2の遠心ファン14のそれぞれの第1のケーシング8外周面の通風抵抗を低減することができる。従って、送風機10のより大きな性能改善効果が得られる。 The relationship between the blade width of the first impeller 31 and the blade width of the second impeller 32, and the relationship between the blade width of the third impeller 33 and the second impeller 32 are as described above. That is, if it is mounted on the product housing with 0.3 <L1 / (L1 + L2) <0.85, the following effects can be obtained. That is, the airflow loss due to the leakage and drift of the airflow 112 flowing through the first centrifugal fan 11 and the second centrifugal fan 14, and the outer periphery of the first casing 8 of each of the first centrifugal fan 11 and the second centrifugal fan 14. The ventilation resistance of the surface can be reduced. Therefore, a greater performance improving effect of the blower 10 can be obtained.
 1 第1の固定主板、2 第1の側板、3 第1の周壁、4 第1の吸込み孔、5 第1の連通孔、6 舌部、7 スクロールケーシング、8 第1のケーシング、10 送風機、11 第1の遠心ファン、12 横流ファン、13 モーター、14 第2の遠心ファン、15 圧縮機、16 四方弁、17 第1の熱交換器、18 送風機、19 絞り装置、20 回転軸、21 第1の回転主板、22 吸込み領域、23 吹出し領域、24 溝、25 絞り機構、26 羽根、27 第1の貫通穴、28 傾斜部、29 吹出ノズル、30 羽根車、31 第1の羽根車、32 第2の羽根車、33 第3の羽根車、50 垂線、51 延伸方向、60 遠心力、71 基部、72 延伸部、100 漏出、110 漏出気流、111 気流、112 気流、127 第2の貫通穴、171 第2の熱交換器、200 空気調和装置、201 室内機ユニット、202 室外機ユニット、211 第1の羽根、300 室内空間、301 屋外空間、401 第2の固定主板、402 第2の側板、403 第2の周壁、404 第2の吸込み孔、405 第2の連通孔、408 第2のケーシング、411 第2の羽根、421 第2の回転主板、PA 面、PB 面、PC 面、PH 面、CA 接点、Dc 羽根径、Dh 孔径、Ds 羽根径、O 回転中心、LOA 直線、LOB 直線。 1 1st fixed main plate, 2 1st side plate, 3 1st peripheral wall, 4 1st suction hole, 5 1st communication hole, 6 tongue, 7 scroll casing, 8 1st casing, 10 blower, 11 1st centrifugal fan, 12 cross flow fan, 13 motor, 14 2nd centrifugal fan, 15 compressor, 16 four-way valve, 17 1st heat exchanger, 18 blower, 19 throttle device, 20 rotating shaft, 21st 1 rotating main plate, 22 suction area, 23 blowout area, 24 grooves, 25 throttle mechanism, 26 blades, 27 first through hole, 28 inclined part, 29 blowout nozzle, 30 impeller, 31 first impeller, 32 2nd impeller, 33 3rd impeller, 50 vertical line, 51 extension direction, 60 centrifugal force, 71 base, 72 extension part, 100 leakage, 110 leakage airflow, 111 airflow, 112 airflow, 127 second through hole , 171 Second heat exchanger, 200 Air conditioner, 201 Indoor unit, 202 Outdoor unit, 211 First blade, 300 Indoor space, 301 Outdoor space, 401 Second fixed main plate, 402 Second side plate , 403 2nd peripheral wall, 404 2nd suction hole, 405 2nd communication hole, 408 2nd casing, 411 2nd blade, 421 2nd rotating main plate, PA surface, PB surface, PC surface, PH Surface, CA contact, Dc blade diameter, Dh hole diameter, Ds blade diameter, O rotation center, LOA straight line, LOB straight line.

Claims (15)

  1.  回転軸と同軸に設けられている第1の遠心ファンと横流ファンとを備え、
     前記第1の遠心ファンは、第1のケーシングと、前記第1のケーシングに収容されている第1の羽根車と、を有し、前記第1の羽根車は前記回転軸を中心として回転可能な第1の回転主板と、前記第1の回転主板に設けられた複数の第1の羽根と、を有し、
     前記第1のケーシングは、前記回転軸の方向における両端部のうちの一方の端部に設けられ、気流を吸込むための第1の吸込み孔が形成されている第1の側板と、他方の端部に設けられ、連通孔が形成されている第1の固定主板と、前記第1の羽根車の外周に対向している第1の周壁と、を有し、
     前記横流ファンは、前記第1の回転主板において前記第1の羽根が設けられている面の反対側の面に設けられている第2の羽根車と、前記第2の羽根車の回転外周に配置された舌部と、前記第2の羽根車を挟んで前記舌部と対向した位置において、前記回転外周に沿って配置されているスクロールケーシングと、を有し、前記回転外周において前記舌部と前記スクロールケーシングとで挟まれた領域のうち一方の領域に気流が吸い込まれる吸込み領域が形成され、他方の領域に気流が吹き出される吹出し領域が形成されており、
     前記第2の羽根車において前記回転軸の軸方向における両端部のうち一方の端部が、前記第1の回転主板において前記第1の羽根が設けられている面の反対側の面に接続され、
     前記第1の羽根車の直径が前記第2の羽根車の直径よりも小さくなるよう構成されている送風機。
    It is equipped with a first centrifugal fan and a cross current fan that are provided coaxially with the rotating shaft.
    The first centrifugal fan has a first casing and a first impeller housed in the first casing, and the first impeller is rotatable about the rotation axis. First rotating main plate, and a plurality of first blades provided on the first rotating main plate.
    The first casing is provided at one end of both ends in the direction of the rotation axis, and is formed with a first suction hole for sucking airflow, and the other end. It has a first fixed main plate provided in the portion and formed with a communication hole, and a first peripheral wall facing the outer periphery of the first impeller.
    The cross flow fan is provided on a second impeller provided on the surface of the first rotating main plate opposite to the surface on which the first vane is provided, and on the outer peripheral rotation of the second impeller. The tongue portion is provided with a tongue portion arranged and a scroll casing arranged along the rotation outer periphery at a position facing the tongue portion with the second impeller sandwiching the second impeller, and the tongue portion is provided on the rotation outer periphery. A suction region for sucking airflow is formed in one region of the region sandwiched between the scroll casing and the scroll casing, and a blowout region for blowing airflow is formed in the other region.
    In the second impeller, one end of both ends of the rotating shaft in the axial direction is connected to the surface of the first rotating main plate opposite to the surface on which the first blade is provided. ,
    A blower configured such that the diameter of the first impeller is smaller than the diameter of the second impeller.
  2.  前記第2の羽根車と前記第1の固定主板と前記第1の回転主板とを前記回転軸の軸方向に透視した場合、前記第2の羽根車の前記吸込み領域の側において、前記第2の羽根車の少なくとも一部は前記第1の固定主板で覆われている請求項1に記載の送風機。 When the second impeller, the first fixed main plate, and the first rotating main plate are viewed through in the axial direction of the rotating shaft, the second impeller is on the side of the suction region of the second impeller. The blower according to claim 1, wherein at least a part of the impeller is covered with the first fixed main plate.
  3.  前記第1の固定主板の少なくとも一部は前記第1の回転主板で覆われている請求項1に記載の送風機。 The blower according to claim 1, wherein at least a part of the first fixed main plate is covered with the first rotating main plate.
  4.  前記第1の羽根車の羽根径をDs、前記第2の羽根車の羽根径をDcとしたとき、1<Dc/Ds<1.6となるよう構成されている請求項1~3のいずれか一項に記載の送風機。 Any of claims 1 to 3 configured such that 1 <Dc / Ds <1.6 when the blade diameter of the first impeller is Ds and the blade diameter of the second impeller is Dc. The blower described in item 1.
  5.  前記第1のケーシングの前記第1の固定主板を前記回転軸の軸方向に見た場合、前記連通孔の孔径は前記第2の羽根車の羽根径よりも小さい請求項1~4のいずれか一項に記載の送風機。 Any one of claims 1 to 4, wherein when the first fixed main plate of the first casing is viewed in the axial direction of the rotating shaft, the hole diameter of the communication hole is smaller than the blade diameter of the second impeller. The blower described in item 1.
  6.  前記第1の回転主板の外径は前記連通孔よりも大きい請求項1~5のいずれか一項に記載の送風機。 The blower according to any one of claims 1 to 5, wherein the outer diameter of the first rotating main plate is larger than the communication hole.
  7.  前記第1の回転主板には、前記回転軸の軸方向から見て前記第2の羽根車の内周側に、前記回転軸の軸方向に貫通する第1の貫通穴が形成されている請求項1~6のいずれか一項に記載の送風機。 A claim in which the first rotating main plate is formed with a first through hole penetrating in the axial direction of the rotating shaft on the inner peripheral side of the second impeller when viewed from the axial direction of the rotating shaft. The blower according to any one of items 1 to 6.
  8.  前記連通孔は、前記回転軸の軸方向から見て前記第2の羽根車の前記吹出し領域の側の単位角度当たりの開口面積が、前記回転軸の方向から見て前記第2の羽根車の前記吸込み領域の側の単位角度当たりの開口面積に対して大きくなるよう構成されている請求項1~7のいずれか一項に記載の送風機。 In the communication hole, the opening area per unit angle of the second impeller on the side of the blowout region of the second impeller when viewed from the axial direction of the rotating shaft is the same as that of the second impeller when viewed from the direction of the rotating shaft. The blower according to any one of claims 1 to 7, which is configured to be larger than the opening area per unit angle on the side of the suction region.
  9.  前記第1の固定主板は、前記第2の羽根車側から前記回転軸の軸方向に見た場合、前記舌部から前記スクロールケーシングに対しておろした垂線と前記スクロールケーシングとの接点と、前記第2の羽根車の回転中心とを結ぶ直線と、前記回転中心と前記スクロールケーシングの巻き始め位置とを結ぶ直線と、が前記第1の固定主板を切り取る範囲に第2の貫通穴が形成されている請求項1~8のいずれか一項に記載の送風機。 When viewed from the second impeller side in the axial direction of the rotating shaft, the first fixed main plate has a vertical line drawn from the tongue to the scroll casing, a contact point between the scroll casing, and the scroll casing. A second through hole is formed in a range where the straight line connecting the rotation center of the second impeller and the straight line connecting the rotation center and the winding start position of the scroll casing cut out the first fixed main plate. The blower according to any one of claims 1 to 8.
  10.  前記第1のケーシングの前記第1の周壁は、前記第1のケーシングを前記回転軸に水平な面で切断し、前記回転軸に直交する方向から見た場合、前記第1のケーシングにおいて前記第1の固定主板の側よりも前記第1の側板の側が狭くなるように傾斜して傾斜部を有している請求項1~9のいずれか一項に記載の送風機。 The first peripheral wall of the first casing is formed in the first casing when the first casing is cut at a plane horizontal to the rotation axis and viewed from a direction orthogonal to the rotation axis. The blower according to any one of claims 1 to 9, which has an inclined portion that is inclined so that the side of the first side plate is narrower than the side of the fixed main plate of 1.
  11.  前記第1のケーシングの前記第1の周壁において、気流が吹き出す吹出ノズルは、前記回転軸と前記吹出ノズルの吹出し口への延伸方向とに水平な面から透視した場合、前記第1の側板の側の端部と前記回転軸と間の距離が、前記第1の固定主板の側の端部と前記回転軸との間の距離よりも、短くなるように傾斜している請求項1~10のいずれか一項に記載の送風機。 In the first peripheral wall of the first casing, when the blowout nozzle from which the airflow blows out is seen through from a surface horizontal to the rotation axis and the extending direction of the blowout nozzle to the blowout port, the blowout nozzle of the first side plate. Claims 1 to 10 in which the distance between the side end and the rotating shaft is inclined so as to be shorter than the distance between the side end of the first fixed main plate and the rotating shaft. The blower described in any one of the items.
  12.  さらに第2の遠心ファンを備え、
     前記第2の遠心ファンは、第2のケーシングと、前記第2のケーシングに収容されている第3の羽根車と、を有し、前記第3の羽根車は前記回転軸を中心として回転可能な第2の回転主板と、前記第2の回転主板に設けられた複数の第2の羽根と、を有し、
     前記第2のケーシングは、前記回転軸の軸方向における両端部のうちの一方の端部に設けられ、気流を吸込むための第2の吸込み孔が形成されている第2の側板と、他方の端部に設けられ、連通孔が形成されている第2の固定主板と、前記第3の羽根車の外周に対向している第2の周壁と、を有し、
     前記第2の羽根車において前記回転軸の軸方向における両端部のうち他方の端部が、前記第2の回転主板において前記第2の羽根が設けられている面の反対側の面に接続されている請求項1~3のいずれか一項に記載の送風機。
    In addition, it is equipped with a second centrifugal fan.
    The second centrifugal fan has a second casing and a third impeller housed in the second casing, and the third impeller is rotatable about the rotation axis. A second rotating main plate and a plurality of second blades provided on the second rotating main plate.
    The second casing is provided at one end of both ends in the axial direction of the rotating shaft, and is formed with a second suction hole for sucking airflow, and a second side plate and the other. It has a second fixed main plate provided at the end and formed with a communication hole, and a second peripheral wall facing the outer periphery of the third impeller.
    In the second impeller, the other end of both ends of the rotating shaft in the axial direction is connected to the surface of the second rotating main plate opposite to the surface on which the second blade is provided. The blower according to any one of claims 1 to 3.
  13.  前記第1の遠心ファンの前記第1の羽根車の各羽根幅の総和及び前記第2の遠心ファンの前記第3の羽根車の各羽根幅の総和をそれぞれL1とし、前記横流ファンの前記第2の羽根車の各羽根幅の総和をL2としたとき、0.3<L1/(L1+L2)<0.85となるよう構成されている請求項12に記載の送風機。 The sum of the blade widths of the first impeller of the first centrifugal fan and the sum of the blade widths of the third impeller of the second centrifugal fan are L1, and the sum of the blade widths of the cross current fan is L1. The blower according to claim 12, wherein 0.3 <L1 / (L1 + L2) <0.85, where L2 is the sum of the blade widths of the impellers of 2.
  14.  圧縮機と、凝縮器と、蒸発器とを有するヒートポンプを備え、前記ヒートポンプにおいて、前記凝縮器及び前記蒸発器の少なくとも一方に気体を送風する請求項1~13のいずれか一項に記載の送風機が設けられている空気調和装置。 The blower according to any one of claims 1 to 13, further comprising a heat pump having a compressor, a condenser, and an evaporator, and blowing gas to at least one of the condenser and the evaporator in the heat pump. An air conditioner provided with.
  15.  冷房運転時に前記蒸発器として機能し、暖房運転時に前記凝縮器として機能する第1の熱交換器が搭載された室内機ユニットと、冷房運転時に前記凝縮器として機能し、暖房運転時に前記蒸発器として機能する第2の熱交換器が搭載された室外機ユニットと、を備え、
     前記送風機は前記室内機ユニット及び前記室外機ユニットの少なくとも一方に搭載されている請求項14に記載の空気調和装置。
    An indoor unit unit equipped with a first heat exchanger that functions as the evaporator during the cooling operation and functions as the condenser during the heating operation, and the evaporator that functions as the condenser during the cooling operation and during the heating operation. Equipped with an outdoor unit unit equipped with a second heat exchanger that functions as
    The air conditioner according to claim 14, wherein the blower is mounted on at least one of the indoor unit and the outdoor unit.
PCT/JP2020/003206 2020-01-29 2020-01-29 Air blower and air conditioning device WO2021152731A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021573694A JP7282215B2 (en) 2020-01-29 2020-01-29 Blowers and air conditioners
PCT/JP2020/003206 WO2021152731A1 (en) 2020-01-29 2020-01-29 Air blower and air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003206 WO2021152731A1 (en) 2020-01-29 2020-01-29 Air blower and air conditioning device

Publications (1)

Publication Number Publication Date
WO2021152731A1 true WO2021152731A1 (en) 2021-08-05

Family

ID=77078729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003206 WO2021152731A1 (en) 2020-01-29 2020-01-29 Air blower and air conditioning device

Country Status (2)

Country Link
JP (1) JP7282215B2 (en)
WO (1) WO2021152731A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822494U (en) * 1981-08-06 1983-02-12 株式会社東芝 Cooling system
JPH0163926U (en) * 1987-10-16 1989-04-25
CN104421189A (en) * 2013-09-04 2015-03-18 广东美的暖通设备有限公司 Blowing-in fan and air conditioner with same
JP2018084368A (en) * 2016-11-24 2018-05-31 株式会社富士通ゼネラル Indoor equipment of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822494B2 (en) 2011-03-17 2015-11-24 大阪瓦斯株式会社 Bathroom heating dryer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822494U (en) * 1981-08-06 1983-02-12 株式会社東芝 Cooling system
JPH0163926U (en) * 1987-10-16 1989-04-25
CN104421189A (en) * 2013-09-04 2015-03-18 广东美的暖通设备有限公司 Blowing-in fan and air conditioner with same
JP2018084368A (en) * 2016-11-24 2018-05-31 株式会社富士通ゼネラル Indoor equipment of air conditioner

Also Published As

Publication number Publication date
JP7282215B2 (en) 2023-05-26
JPWO2021152731A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
KR101179805B1 (en) Sirocco fan and air conditioner
JP6600005B2 (en) Air conditioner outdoor unit and refrigeration cycle apparatus
WO2019224869A1 (en) Centrifugal air blower, air blowing device, air conditioning device, and refrigeration cycle device
CN106481574B (en) Centrifugal fan and air conditioner comprising same
CN109247023B (en) Centrifugal blower, air conditioner, and refrigeration cycle device
CN112352108B (en) Multi-blade blower and air conditioner
EP4008911A1 (en) Axial fan for outdoor unit of air conditioner
JP6035508B2 (en) Blower and outdoor unit using it
WO2020213031A1 (en) Air blower, indoor unit for air conditioning device, and air conditioning device
KR20200068887A (en) Turbo fan and air-conditioner having the same
WO2018092262A1 (en) Propeller fan and refrigeration cycle device
WO2021152731A1 (en) Air blower and air conditioning device
WO2019030867A1 (en) Propeller fan, blower, and refrigeration cycle apparatus
TW202045822A (en) Centrifugal blower, air conditioning device, and refrigeration cycle device
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
JP7113819B2 (en) Propeller fan and refrigeration cycle device
JP7130061B2 (en) Centrifugal blowers, blowers, air conditioners and refrigeration cycle devices
WO2023223383A1 (en) Cross flow fan, blowing device, and refrigeration cycle device
CN112145475A (en) Impeller with external blades
JP7378505B2 (en) Centrifugal blower and air conditioner equipped with it
WO2017060973A1 (en) Air blower, outdoor unit, and refrigeration cycle device
WO2023084652A1 (en) Cross-flow fan, blowing device, and refrigeration cycle device
JP6925571B1 (en) Blower, indoor unit and air conditioner
JP7466765B2 (en) Blower, air conditioner and refrigeration cycle device
WO2023286208A1 (en) Indoor unit and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916650

Country of ref document: EP

Kind code of ref document: A1