WO2021152710A1 - Information transmission device and information transmission method - Google Patents

Information transmission device and information transmission method Download PDF

Info

Publication number
WO2021152710A1
WO2021152710A1 PCT/JP2020/003048 JP2020003048W WO2021152710A1 WO 2021152710 A1 WO2021152710 A1 WO 2021152710A1 JP 2020003048 W JP2020003048 W JP 2020003048W WO 2021152710 A1 WO2021152710 A1 WO 2021152710A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
data
inspection data
inspection
data group
Prior art date
Application number
PCT/JP2020/003048
Other languages
French (fr)
Japanese (ja)
Inventor
野中 修
智子 後町
弘達 藤原
亮 櫻井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/003048 priority Critical patent/WO2021152710A1/en
Priority to CN202080087794.3A priority patent/CN114830255A/en
Publication of WO2021152710A1 publication Critical patent/WO2021152710A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics

Definitions

  • the present invention relates to an information transmission device and an information transmission method capable of providing a user with customized information such as advice according to an inspection result that can be obtained in daily life.
  • the Internet has become widespread in recent years, and by using the Internet, it is possible to easily obtain information closely related to the user's life.
  • various customized information valid information
  • services that provide this customized information are increasing. For example, services that introduce health foods are often interesting information that is common to many people, so this type of service is often found.
  • Patent Document 1 discloses a remote inspection method for transmitting inspection data by using a sensor chip and a mobile phone as a reader / writer and using a public communication network. Then, in Patent Document 1, it is proposed to store past inspection data and its evaluation results in a database and use these information.
  • Patent Document 2 discloses a biometric information measuring device that integrates personal authentication data and image data photographed by excrement photographing means and transmits the integrated data by communication means. Further, in Patent Document 3, a study list related to an examination is displayed, a medical image based on the medical image information of the subject in the selected study is displayed on the image display screen, and when a history browser is requested, the study of the subject is requested. A method of displaying medical information that displays a history browser representing a list of medical information is disclosed.
  • Patent Document 1-3 describes that biometric information is acquired and this information is remotely transmitted and used. If the subject has no subjective symptoms, it is useful to know that he / she is ill and that he / she may become ill.
  • the user may be inspected not only by a plurality of hospitals and inspection facilities but also by using inspection equipment provided at home or at work. As the inspection device, various devices may be used even if the inspection items are the same, but the above-mentioned Patent Documents 1-3 do not consider this point.
  • the present invention has been made in view of such circumstances, and it is possible to grasp an accurate health condition by considering the situation of the subject and to provide customized information such as advice according to the health condition. It is an object of the present invention to provide a possible information transmission device and information transmission method.
  • the information transmission device includes a first inspection data acquisition unit that acquires a time-series first inspection data group of a subject by a first device, and the first inspection data acquisition unit.
  • a second inspection data acquisition unit that acquires a time-series second inspection data group of the subject by a second device capable of performing an inspection capable of interpolating the inspection data group of the above, and the first inspection data. It has a transmission information determination unit that determines transmission information to be provided to the subject by using the group and the second inspection data group, and has the first inspection data group and the second inspection data group. Complement each other's inspection timing or inspection items.
  • the information transmission device in the first invention, transmits the transmission information according to an inference model learned according to a change pattern of a test data group acquired by a plurality of devices. decide.
  • the transmission information determination unit is acquired by the first inspection data group acquired by the first device and the second device.
  • the second inspection data group is corrected for each of the first and second inspection data groups, the reliability when the corrected inspection data group is inferred as an input is calculated, and the above transmission is performed according to the reliability. Determine the information.
  • the information transmission device is a numerical value common to each of the data included in the inspection data group when the transmission information determination unit corrects each inspection data group in the third invention. Performs four arithmetic operations on.
  • the transmission information determination unit is acquired by the first inspection data group acquired by the first device and the second device.
  • the second inspection data group is corrected for each of the first and second inspection data groups, and the plurality of corrected inspection data groups are combined into one inspection data group, and the combined inspection data group is combined.
  • Inference is performed by inputting to the inference model, and the above-mentioned transmission information is determined based on the inference result.
  • the transmission information determination unit is acquired by the first inspection data group acquired by the first device and the second device.
  • the second inspection data group is corrected for each of the first and second inspection data groups, and each of the corrected plurality of inspection data groups is input to the inference model, and the inference result by each inference model is displayed. A comprehensive judgment is made, and the above-mentioned transmission information is determined based on the judgment result.
  • the first and second inspection data acquisition units are either the inspection data group from the subject or a person other than the subject. If it is the inspection data group from the subject, it is acquired as the first inspection data group or the second inspection data group.
  • the information transmission device is the first to seventh inventions, wherein the first and second inspection data groups are a color sensor, a shape sensor, a hardness sensor, and an olfactory sensor (line) for defecation.
  • the data is obtained according to one of the output results of (including the reaction determination of insects and animals), the gas component sensor, the color change detection sensor when a specific reagent is added, and the shape determination by the magnified observation image.
  • the information transmission method is capable of performing an inspection capable of acquiring a time-series first inspection data group of a subject by a first device and interpolating the first inspection data group.
  • the second inspection data group in time series of the subject is acquired by the second device, and the transmission information to be provided to the subject is transmitted using the first inspection data group and the second inspection data group. Determined, the first inspection data group and the second inspection data group complement each other's inspection timing or inspection item.
  • an information transmission device and an information transmission method capable of grasping an accurate health condition by considering the situation of a subject and providing customized information such as advice according to the health condition are provided. can do.
  • an example in which the present invention is applied to an information transmission system will be described as an embodiment of the present invention.
  • daily inspection data on the health condition is monitored by a first device, a second device, or the like.
  • An information transmission system capable of providing health-related information based on this information will be described.
  • This information transmission system monitors test data on the health condition of the subject using multiple devices on a daily basis. If information is collected only by a single device, there is a restriction that information can be collected only by that device, and the information that can be collected is limited.
  • the inspection data is collected from the devices of a plurality of devices, and the inspection data is combined to make a judgment.
  • inspection data using a plurality of devices is easier than the case of forcing an inspection using the same device, without the burden of binding on the user, and the data acquisition is easy, and the data is unknowingly acquired. It is convenient because it can be provided.
  • inspection data can be acquired under various circumstances, it is possible to increase the amount of data. For example, in order to acquire environment-dependent stress such that blood pressure rises only in the workplace and physical condition changes depending on the season and the course of the day, it is preferable to effectively utilize the data of various devices. That is, in order to effectively utilize the data of various devices, by treating the data as a group of inspection data, it is possible to grasp the health condition of the user in more detail.
  • the one that displays the data changes of different items in different colors on the same graph provides more comprehensive information. May be obtained. Therefore, if the first inspection data group and the second inspection data group are acquired so as to complement each other's inspection timing or inspection item, and can be expressed in a comprehensive and comprehensive expression in an identifiable manner, this expression is used. It is possible to make a judgment or judgment using, and it is possible to make an inference by an inference model using this expression. After obtaining the inference result, a judgment / judgment may be made based on the inference result, and this judgment / judgment result may be connected to another control. Judgment and judgment may adopt a rule-based method or a pattern matching method. As a method of inference using deep learning, simply, the graph itself is represented as an image, an inference model of the result of learning using this as teacher data is prepared, and a similar graph is input to this inference model. You just have to make inferences.
  • the inspection data group consisting of time-series inspection data acquired by different devices depends on the device and the environment, so even if there is a difference in the level of each inspection data. As long as the data of the same person is used, the tendency is the same when viewed as a similar temporal change pattern of biological information. Therefore, the deviation of the inspection data when the inspection is performed by a plurality of devices is performed by addition / subtraction calculation or multiplication / division calculation for each inspection data group so that the levels of the individual data of each inspection data group are substantially the same.
  • the correction is performed to eliminate the problem (see, for example, Graph 34 in FIG. 3). By performing this correction, a plurality of inspection data groups can be treated as a single inspection data group. Therefore, it is possible to increase the data and grasp the accurate health condition of the subject.
  • the deviation of the inspection data when the inspection is performed by a plurality of devices is applied to each inspection data group so that the levels of the individual data of each inspection data group are substantially the same.
  • correction is performed by addition / subtraction calculation or multiplication / division calculation, and the corrected inspection data group is input to the inference model to calculate the reliability of the inference at this time (see, for example, S73 and S77 in FIG. 10). .. If the amount of correction in the correction calculation is changed little by little, the reliability also changes little by little. The information transmission system adopts the inference result when this reliability is the highest.
  • the reliability is calculated while changing the correction amount in the correction calculation little by little, and the inference result when the reliability is the highest is adopted as the inference result of each inspection data group. do.
  • the information transmission system makes a comprehensive judgment based on each inference result, and uses this judgment result as the inference result (see, for example, FIG. 9).
  • the subject in this embodiment is a person who may become a patient depending on the re-examination.
  • this subject is also a person who can regain self-confidence in health, do not have to worry about illness, and enjoy daily life.
  • he is also a person who can become healthy by simple improvement and treatment of life.
  • the information transmission system is composed of, for example, a server, but may be configured by a personal computer capable of exchanging information with the server, a mobile information device such as a smartphone, or the like.
  • the inspection result of the target person in determining the information to be transmitted to the target person, the inspection result of the target person, the equipment required for further inspection based on the inspection result, and the facility with this equipment are used.
  • DB database
  • the equipment required for further inspection based on the inspection result In order to perform this search / inference, it is advisable to provide a database (DB) for storing facilities having facilities.
  • information such as the facility name, access method including telephone, e-mail, map, etc., consultation time, free time, cost estimation, etc. may be included.
  • the number of facilities is not limited to one, and may be multiple.
  • This information transmission system includes a control unit 1, a first device 2a, a second device 2b, a third device 3, a terminal 4, a learning unit 5, a learning request unit 6, an inference engine 7, a database (DB) unit 8, and a related inspection. It consists of 9 institutions (including medical institutions). Of these units, the control unit 1 is arranged in the server, and is the first device 2a, the second device 2b, the third device 3, the terminal 4, the learning unit 5, the learning request unit 6, the inference engine 7, and the DB unit. 8.
  • the related inspection organization 9 can connect to the server through a network such as the Internet.
  • the present embodiment is not limited to this configuration, and for example, the control unit 1, the first device 2a, the second device 2b, the third device 3, the learning unit 5, the learning request unit 6, the inference engine 7, and the like.
  • the DB units 8 may be arranged in the server, and the others may be arranged in another server or an electronic device such as a personal computer.
  • the related inspection agency 9 may have a server function.
  • the control unit 1 is a controller (processor) that controls an information transmission system according to the present embodiment, and is a CPU (Central Processor Unit), a memory, and an HDD that provide files and data to a server or the like or other terminals via a network. It is assumed that the IT device is composed of (Hard Disc Drive) and the like. However, the control unit 1 is not limited to this configuration, and when it is constructed as a small-scale system, it can be configured with something like a personal computer.
  • the control unit 1 has various interface circuits, can cooperate with other devices, and can perform various arithmetic controls by a program.
  • the control unit 1 receives information from each linked device, organizes the information, generates necessary information, and provides this information to the user.
  • the control unit 1 also has a function of outputting a request to each of the linked devices and operating each device.
  • wireless communication or wire communication is performed between the device such as the first device 2a or the terminal 4 or the like owned by the target person (also referred to as a user) and the control unit 1. It is possible to connect by communication.
  • a wireless LAN or a mobile phone communication network is assumed, and short-range wireless communication such as Bluetooth (registered trademark) or infrared communication may be used in combination depending on the situation.
  • the description of the communication unit including the communication circuit, the antenna, the connection terminal, etc. is complicated, so it is omitted in FIG. 1, but the communication unit having the communication circuit, etc. is provided in the part of the arrow indicating the communication in the figure. Has been done.
  • the control unit 1 includes a communication control unit 1a, an ID determination unit 1b, an information provision unit 1c, an inference model specification determination unit 1d, an inference request unit 1e, and a search unit 1f.
  • Each of these parts may be realized by software by a CPU, a program, or the like in the control unit 1, may be realized by a hardware circuit, or may be realized by coordinating software and a hardware circuit. You may. Further, in FIG. 1, since each unit in the control unit 1 cooperates with each other to perform each function, the direction of the signal is omitted, but this will be described separately with a flowchart. For example, in a step like S1 in FIG. 5, the ID determination unit 1b collects information from the first device 2a, the second device 2b, and the like for each of the same users.
  • the communication control unit 1a has a communication circuit and the like, and has a first device 2a, a second device 2b, a third device 3, a terminal 4, a learning unit 5, a learning request unit 6, an inference engine 7, and a database (DB) unit 8. , And the communication unit provided in the related inspection organization 9, and sends and receives data and the like.
  • Each device / part such as the first and second devices 2a and 2b, the third device 3, and the terminal 4 also has a communication unit, but the illustration is omitted in FIG. 1 because it is complicated.
  • the ID determination unit 1b collects information for each same user from the first device 2a and the like. An ID is assigned to each individual in order to identify the individual whose information has been acquired by the first device 2a, the second device 2b, the third device 3, and the related inspection organization 9. In the present embodiment, since the data of each user is handled, the ID determination unit 1b manages which user's information is received and which user is given the guide. In the determination of the specific user, the first device 2a, the second device 2b, and the third device 3 have a biometric authentication function, the user inputs an ID by the terminal 4, and the user uses the first and second devices 2a. This is performed by transmitting an ID through the communication unit in 2b or by reading a unique code from the terminal 4. In addition, in order to protect personal information, management will be strict by encrypting the necessary parts, but since these are general-purpose technologies, detailed description will be omitted.
  • the ID of each device may include information on the model name of the device and unique information indicating which individual it is.
  • the function and performance of the sensor to be mounted may be known from the model name, and the installation location and usage environment may be known from the individual information, and such information may be searchable through a network or the like. If the model name is known, it is possible to determine information on similar devices, and from the installation location and usage environment, determine latitude / longitude, indoor / outdoor, season, weather, temperature characteristics, etc., and take this determination result into consideration. Then, the output information of the device may be corrected.
  • the ID determination unit 1b functions as a first inspection data acquisition unit that acquires a time-series first inspection data group of the subject by the first device (see, for example, S101 in FIG. 4 and S1 in FIG. 5). ). Further, the ID determination unit 1b acquires the second inspection data group in time series of the subject by the second device capable of performing the inspection so as to interpolate the first inspection data group. It functions as an acquisition unit (see, for example, S105 in FIG. 4 and S1 in FIG. 5). The ID determination unit 1b functions as a second inspection data acquisition unit that acquires a time-series second inspection data group of the subject by the second apparatus capable of performing the same inspection as the first apparatus. The first inspection data group and the second inspection data group complement each other's inspection timing or inspection item.
  • the first inspection data acquisition unit and the second inspection data acquisition unit determine whether it is an inspection data group from a target person or an inspection data group from a person other than the target person, and inspect from the target person. If it is a data group, it is acquired as a first inspection data group or a second inspection data group. The acquired first inspection data group and second inspection data group are recorded in the recording unit.
  • the test data group other than the target person may be recorded so that it can be converted into teacher data by associating with the health information of the person other than the target person.
  • the information providing unit 1c has a function of acquiring user information (may refer to the result acquired by another device) in order to provide correct information to the user.
  • the information providing unit 1c acquires the inspection data of the user (specified by the ID) acquired from the first device 2a and the like and the related inspection organization 9. Further, the information providing unit 1c uses the acquired inspection data, various information acquired from the related inspection institution 9, information on the possessed device stored in the DB unit 8, user profile information, and the like to determine the user's health condition. to decide.
  • the health condition includes a disease that is currently present and a disease that may develop in the future, and when the health condition is determined, the user is provided with information related to the health condition. In addition, when the user's illness or the like is determined, information on the facility to be examined or treated is provided to the user as necessary.
  • the control unit 1 checks the current hospital visit status, information such as prescription drugs, past health examination results, etc. by the user's ID and the like. If the institution 9 can be referred to, it becomes easy to determine the association with the device data. This is a security problem because the user who operates the terminal 4 permits the cooperation, or the doctor who operates the related inspection institution (IT device) 9 permits the cooperation. Can be dealt with.
  • the information providing unit 1c recommends information on health to the user, for example, information that when the user will visit the facility to receive the test or treatment, or a facility suitable for receiving the test or treatment.
  • the information providing unit 1c acquires the inspection data transmitted from the first device 2a and the like and the related inspection organization 9. As will be described later, this data is inspection data (time series information) with time information, and is accumulated in a data structure that can be graphed as shown in FIGS. 2 and 3.
  • this data is inspection data (time series information) with time information, and is accumulated in a data structure that can be graphed as shown in FIGS. 2 and 3.
  • the control unit 1 provides information to the user by using the information from the devices in the first device 2a and the like and the related inspection organization 9 and the like.
  • the server may be a modified example in which information is collected in the same manner.
  • the information providing unit 1c collects inspection data from the first device 2a, the second device 2b, and the like, and records the inspection data in the DB unit 8.
  • the frequency of information acquisition and the number of data may differ depending on the first device 2a, the second device 2b, and the like.
  • the increase and decrease of specific health-related numerical values obtained with various devices are arranged in chronological order, and the numerical values measured by changing the devices can be arranged for each device.
  • test data measured by a wearable simple device and the test data measured by a dedicated device at the event venue are recorded separately. Assuming that the wearable device is worn almost all the time, test data that increases or decreases depending on the condition can be obtained in the morning, day and night, before meals, before bedtime, after bedtime, and before waking up.
  • data measured with a dedicated device can be obtained in a form with higher accuracy or more incidental information (such as an inspector or a subjective symptom obtained by an inspector's hearing), although it is sporadic.
  • the test data is accurately obtained by taking off clothes, skipping meals, and eating a dedicated meal. Under such circumstances, there are few differences such as the position and items of the human body to be measured differ from person to person, and the error of the equipment is strictly controlled, so it is an appropriate situation to compare the absolute value with other people. ing.
  • the information providing unit 1c may acquire lifestyle habits such as the user's address, behavioral style at the place of work, eating habits, bedtime, and meal timing on the Internet, and the acquired information is also taken into consideration. Therefore, information such as facilities to be provided to the user may be generated. The acquisition of this information can be complemented by general-purpose or well-known technology.
  • the information providing unit 1c may also customize the information of the facility or the like generated by acquiring the information. Profile information about this facility is obtained as medical institution information from the related inspection institution 9.
  • the information providing unit 1c uses the information of the possessed equipment, etc. stored in the DB unit 8 in addition to the information collected from the related inspection organizations 9 such as the first equipment 2a, etc., when providing the information of the recommended facilities, etc. ..
  • the information recorded in the DB 8 may be recorded in a different recording unit other than the DB unit 8. In this case, there are a plurality of DB parts in FIG. 1, but they are omitted because they are complicated.
  • the information providing unit 1c collects various kinds of information in providing the information. That is, the information providing unit 1c functions as an acquisition unit for acquiring the user's examination data, the user's profile information, and the possessed device information for each examination / medical institution.
  • the information providing unit 1c functions as a transmission information determination unit that determines transmission information to be provided to the target person by using the first inspection data group and the second inspection data group (for example, S107 in FIG. 4 and FIG. 5). S9, S79 in FIG. 10 and the like).
  • the transmission information determination unit determines transmission information according to an inference model learned according to a change pattern of a test data group acquired by a plurality of devices (for example, S107 in FIG. 4, S9 in FIG. 5, S79 in FIG. 10 and the like. reference).
  • the transmission information determination unit selects the first inspection data group acquired by the first device and the second inspection data group acquired by the second device for each of the first and second inspection data groups.
  • the corrected inspection data group is input to, the reliability of the inference result at this time is calculated, and the transmission information is determined according to the reliability (for example, S107 in FIGS. 3 and 4 and S9 in FIG. 5). , FIG. 9 and FIG. 10).
  • the transmission information determination unit performs four arithmetic operations on the numerical values common to each of the data included in the inspection data group.
  • the reliability of the inference may be calculated while making corrections for each device, and the highly reliable one may be used as the inference result.
  • the constants of the specific four arithmetic operations are changed little by little in the time series data for each device.
  • the reliability is increased in the situation where the error is corrected, so that correct inference is possible.
  • the device acquires similar biological information, it is possible to provide reliable information regardless of the error and noise that may be affected by the sensitivity and usage environment.
  • the transmission information determination unit selects the first inspection data group acquired by the first device and the second inspection data group acquired by the second device for each of the first and second inspection data groups.
  • the corrected test data group is combined into one test data group, the combined test data group is input to the inference model to perform inference, and the transmitted information is determined based on the inference result. (See, for example, Graph 34 in FIG. 3, S107 in FIG. 4 and the like).
  • the transmission information determination unit selects the first inspection data group acquired by the first device and the second inspection data group acquired by the second device for each of the first and second inspection data groups. Is corrected to, and each of the corrected plurality of inspection data groups is input to the inference model, the inference result by each inference model is comprehensively judged, and the transmission information is determined based on the judgment result (for example, FIG. 9. See FIG. 10).
  • the information providing unit 1c acquires inspection data that is a time-series pattern of the user for a specific period.
  • This acquired time-series pattern is composed of individual inspection data acquired by measurement at a plurality of different timings, not simply data obtained by one-time measurement, and even changes in the inspection data pattern are used as information. ..
  • a time-series pattern consisting of multiple inspection data it is less susceptible to errors caused by changes in the measurement environment and conditions.
  • it infers the health condition from the end of the specific period to the future period (when the specific period is extended), and makes it possible to predict the future.
  • teacher data can be created by adding the timing information of the user's examination / visit to the medical institution as annotation information to the acquired time series pattern. If there is an inference part that has an inference model generated by learning using this teacher data, what is the timing (when the specific period is extended) beyond the specific period (period for acquiring the time series change pattern)? Can be inferred if Further, if the user's disease name or the like is known, teacher data to which this information is added as annotation information can be generated. By learning using this teacher data, it is possible to generate an inference model that infers health information such as illness. When generating the inference model used here, the specifications of specific input / output information are specified and learning is performed.
  • the time-series change pattern of the user's inspection data is input to the inference unit, the inference unit makes an inference, and based on this inference result, the transmission information at the timing beyond the specific period is determined.
  • a transmission information determination unit is provided. Therefore, it is possible to provide a system, an apparatus, a method, a program, or the like capable of transmitting the prediction information at the timing after the inspection acquisition of the time series pattern.
  • the reliability of user inspection data will decline if there are differences in mechanical performance for each inspection device. For example, when the same user acquires test data (biological information) from a plurality of devices at the same time, the same test data may not be obtained. Therefore, if a large amount of change pattern information of inspection data is acquired by repeating inspections at different dates and times using multiple inspection devices (inspection devices with specific specifications) that can inspect the same inspection item, it is treated as big data. It becomes possible. In this case, the specific period does not have to be a fixed period, and may be a different time width (specific period) depending on the situation.
  • time width here is not the time between measurement timings (inspection interval / measurement interval), but the time interval from the first measurement to the last measurement when acquiring a series of inspection data. say.
  • the "time width” may be rewritten as a specific time width including a lot of time series data in this time width and change pattern information of the inspection data.
  • the information providing unit 1c inputs a change putter of the inspection data into the inference engine 7 in which the inference model generated by the learning unit 5 is set, obtains an inference result regarding advice, and inputs the input inspection data.
  • This service may use personal information, and may require a contract for personal information in order to receive advice. In that sense, the user's profile information may be important.
  • advice may be delivered to a person who takes care of the user, a caregiver, or the like. This also receives valid information such as advice according to the information managed by the user's profile information.
  • the inference model specification determination unit 1d determines the specifications of the inference model to be generated when the inference request unit 1e requests the learning unit 5 to generate the inference model through the learning request unit 6.
  • the control unit 1 acquires the biometric information of the user from the first device 2a and the like, and accumulates the biometric information.
  • the control unit 1 requests the learning unit 5 to generate various inference models through the learning requesting unit 6 using the accumulated biological information as teacher data.
  • the inference model specification determination unit 1d determines what kind of specification the inference model is requested in generating the inference model. For example, as shown in FIG.
  • the inference model specification determination unit 1d may, based on time-series biometric information, what kind of disease it currently has, what kind of disease it may have in the future (when), and whether it will further suffer it. Determine specifications to generate inference models that infer the recommended facilities to receive the necessary tests and treatments if they do not.
  • the inference request unit 1e requests the learning unit 5 to generate an inference model of the specifications determined by the inference model specification determination unit 1d through the learning request unit 6. That is, the inference requesting unit 1e requests the learning unit 5 to generate an inference model through the learning requesting unit 6 when a predetermined number of biological information acquired by the first device 2a or the like is accumulated, and the generated inference is generated.
  • the model is received through the learning request unit (or directly from the learning unit 5). This received inference model is transmitted to the inference engine 7.
  • the control unit 1 may prepare a plurality of inference models and appropriately select the inference model according to the information to be provided to the user.
  • the search unit 1f may be affected by the current disease or any disease in the future (when). Or, when it is found that further examination or treatment is necessary, the examination institution or medical institution having the equipment necessary for the examination or treatment is searched in the database stored in the DB unit 8. These pieces of information may be obtained by inference using the inference engine 7, but may match the accumulated data. Since there are such cases, in the present embodiment, the search unit 1f can be used for searching.
  • the first device 2a and the second device 2b are devices for acquiring test data such as user health-related information such as vital information and sample information.
  • the first device 2a and the second device 2b are inspection devices having specific specifications, and are devices capable of inspecting the same type (similar) health-related information. It suffices if the inspection data groups acquired by the first device 2a and the second device 2b can perform an inspection that can interpolate both data when the inspection timings are different from each other. Further, the first device 2a and the second device 2b do not have to inspect exactly the same inspection items. For example, even when the heart rate is measured while measuring the blood pressure, both data are interpolated with each other. Can be done. Note that FIG.
  • the third device 3 is assumed as a device for acquiring inspection data of a person other than the user.
  • the health-related information includes various sample information such as excrement such as urine and stool of the user, sputum and blood.
  • the first device 2a and the second device 2b acquire the color, shape, amount, and date / time information.
  • the first device 2a and the second device 2b may acquire information according to an instruction from the control unit 1, may acquire information according to a user's operation, or automatically acquire information. May be good.
  • the first device 2a, etc. is used for daily life, work / school activities, meals, sports activities, etc.
  • PHR Personal Health Records
  • PLR Personal Life Records
  • the inspection data of the subject detected by the first device 2a or the like is obtained by acquiring the inspection data in time series using an inspection device having a specific specification and extracting the change pattern information of the inspection data in a specific time width.
  • an inspection device having a specific specification Is. That is, as the first device 2a and the second device 2b, inspection devices of specific specifications (inspection devices of the same type) are used, and the first device 2a and the like measure the inspection items of the same subject at different timings. By doing so, data is acquired in chronological order.
  • a change pattern can be obtained by drawing the measured values on a graph according to the inspection timing. By extracting this change pattern in a specific time width, a test data group can be obtained.
  • the inspection data is based on a color sensor for defecation, a shape sensor, a hardness sensor, an olfactory sensor (including reaction judgment of nematodes and animals), a gas component sensor, a color change detection sensor when a specific reagent is added, and a magnified observation image. It is the data obtained according to one of the output results of any of the shape determinations.
  • the information about the facility recommended by the information providing unit 1c of the control unit 1 is presented to the information terminal 4 of the specific user.
  • the explanation is given on the assumption that this presentation assists the user's behavior, but various variations can be considered.
  • the extent to which the information determination performed in the first device 2a or the like is determined may be changed in relation to the control unit 1. For example, it may be transmitted to the control unit 1 without determining only the result of sensing by the first device 2a or the like. However, in this case, it is necessary to attach information on what kind of data of what kind of person to the sensing signal and transmit this signal. It is preferable that the attached information is associated with which person and which sensing result, but it may be associated with the information of another terminal by adding it.
  • the third device 3 is a device that acquires data of a person different from the user who uses the first device 2a and the second device 2b. Although only one third device 3 is shown in FIG. 1, there may be a plurality of the third devices 3, and an unspecified number of devices are collectively represented in FIG. This makes it possible to record and manage what kind of person has what kind of illness and what kind of health value is in big data.
  • the third device 3 composed of this unspecified majority may acquire different numerical values with different performances.
  • the more such a device participates in this system as a health management device the more various data can be used as a health monitoring device.
  • the complexion will look long before the person became ill. It is possible to utilize data such as whether it has become worse. This data can be used to advise others on early health care, abstinence, and treatment in the event of similar complexion changes.
  • a wearable terminal When a wearable terminal is used as the first device 2a, the second device 2b, and the third device 3, it adheres to the skin or the vicinity of the body depending on the wearing part of the wearable terminal, and the body temperature, heart rate, blood pressure, brain wave, line of sight, etc. It is possible to obtain vital information such as breathing and exhalation.
  • a scale As a scale, a sphygmomanometer, and a measuring instrument for measuring arterial stiffness, which means the hardness of the arterial wall, dedicated precision equipment is installed in health facilities, public baths, pharmacies, shopping malls, etc. The measurer may also be assigned. In such facilities, users often use the measuring device comfortably in their spare time and manage their physical condition based on the measurement results at that time.
  • These measuring devices may be the first device 2a, the second device 2b, and the third device 3.
  • the first device 2a, the second device 2b, and the third device 3 may be requested to fill out a questionnaire before and after the user uses a dedicated terminal or the like.
  • the user's profile information and other information can be identified based on the description in this questionnaire.
  • Such information collection is not limited to the first device 2a and the like, and may be performed by the control unit 1. This information can be used when determining whether or not the specific information has been acquired in step S3 of FIG. 5, which will be described later. If information such as when the doctor went to the doctor can be heard, it can be used as the time Tc information in FIGS. 2 (a) and 2 (b) described later.
  • the first device 2a, the second device 2b, and the third device 3 may be a thermometer or a sphygmomanometer that is already suffering from a specific disease and is used under the guidance of a doctor.
  • the mobile terminal (smartphone) is used as it is. It can be 1 device 2a, 2nd device 2b, and 3rd device 3.
  • a simple health management device and health information acquisition devices have been developed, and these devices may be installed in wearable devices. Such devices are also treated as peripheral devices for smartphones, not stand-alone devices. Since there are many cases, this may also be assumed as a mobile terminal. In addition, even if it is not a wearable device, a simple measuring device may be installed in a place where people gather to provide a health information service. Such a device may be used as the first device 2a, the second device 2b, and the third device 3.
  • the related inspection institution 9 is a facility where the user is inspected, and there are, for example, an inspection facility and a medical facility.
  • the related inspection organization 9 may be a mobile type, for example, a type in which general medical equipment or inspection equipment is mounted on an automobile, train, ship, helicopter, drone, or the like and the patient goes to the patient.
  • the control unit 1 can acquire which medical institution the patient went to, what kind of test result was obtained, and the like from the server that operates the system of the related test institution 9.
  • the server of the related inspection organization 9 may be the same as that of the control unit 1, or some functions may be shared.
  • the terminal 4 is a mobile information terminal, and is a device for receiving information that can be confirmed by the user and related persons. As information, there are health information and facilities recommended according to the health condition.
  • the terminal 4 may be, for example, a smartphone or a tablet PC. In this case, the built-in camera or microphone can be used as an information acquisition unit.
  • a wearable terminal or other home appliances that can be linked may be used as the terminal 4, and information may be acquired by the wearable terminal or the like. Therefore, the first device 2a or the second device 2b and the terminal 4 may be the same, or may be dedicated devices, respectively.
  • the terminal 4 linked with the wearable terminal may acquire information and manage the information. Further, depending on the situation, the functions of the control unit 1 may be possessed by the first device 2a, the second device 2b, the third device 3, and the terminal 4, and the detection, control, and information provision are shared. The configuration may be different.
  • the database (DB) unit 8 has an electrically rewritable non-volatile memory.
  • the DB unit 8 has a data history list for each ID, and this list records the relationship between the acquired data and the inspection date.
  • the ID determination unit 1b receives the inspection data from the first device 2a and the like, the related inspection organization 9 and the like, the DB unit 8 records the inspection data for each ID.
  • the inspection date, inspection equipment (first equipment, second equipment, third equipment, related inspection organization, etc.), inspection location, inspection items, etc. are also recorded.
  • the DB unit 8 organizes the acquired data into 5W1H, that is, WHO (who), WHERE (where), WHERE (date and time), WHAT (which inspection), WHY (why), and HOW (how). This organized data may be recorded.
  • the DB unit 8 may have a owned facility recording unit that records a list of owned equipment for each facility and a visit history recording unit that records an ID and the visit of the user for each facility.
  • the holding facility recording department records a list of equipment owned by facilities such as hospitals, clinics, and inspection institutions.
  • the information providing unit 1c can present the information of the facility having the most suitable equipment for the inspection to the user by searching the possessed facility recording unit. In order to update the information when the medical facility or the like replaces the device, the information may be linked with the information of the related inspection institution 9.
  • the visit history recording unit records visit information indicating which person (identified by ID) came at what time for each facility.
  • the DB unit 8 is constructed as a part of an information transmission system in which medical facilities cooperate, and the DB unit 8 may also be able to access the related inspection institution 9 through the control unit 1. In this case, when the DB unit 8 receives a search command from the control unit 1, the DB unit 8 searches the data in the related inspection organization 9 in addition to the data recorded in the DB unit 8 to search. Output the result.
  • the DB unit 8 functions as a storage unit that stores the user's profile information and the possessed device information for each examination / medical institution.
  • the storage unit is not limited to the DB unit 8, and all or part of its functions may be arranged in the control unit 1 or the like.
  • the learning request unit 6 When the learning request unit 6 receives a request for generating an inference model from the inference request unit 1e in the control unit 1, it conveys the specifications of the inference model to the learning unit 5 and requests the generation of the inference model according to the specifications.
  • the learning request unit 6 includes a data classification recording unit 6a, a specification setting unit 6d, a communication unit 6e, and a control unit 6f.
  • the control unit 6f is a controller (processor) that controls the inside of the learning request unit 6, and is a CPU (Central Processor Unit), a memory, and an HDD (Hard Disc) that provide files and data to a server or the like or other terminals via a network. It is assumed that the IT equipment is composed of Drive) and the like. However, the control unit 6f is not limited to this configuration, and when it is constructed as a small-scale system, it can be configured with something like a personal computer.
  • the control unit 6f has various interface circuits, can be linked with other devices, and can perform various arithmetic controls by a program.
  • the specification setting unit 6d sets what kind of inference model is generated based on the inference model specifications determined by the inference model specification determination unit 1d. Further, the teacher data is generated from the data recorded in the history list of the DB unit 8 so as to satisfy this specification.
  • the communication unit 6e has a communication circuit for communicating with the control unit 1 and the learning unit 5. Through the communication unit 6e, the control unit 1 requests the generation of the inference model, and the learning unit 5 requests the generation of the inference model.
  • the learning unit 5 has an input / output modeling unit 5a, and generates an inference model by machine learning or the like according to the specifications from the learning request unit 6.
  • the input / output modeling unit 5a has a specification collation unit 5b.
  • the specification collation unit 5b determines whether or not the specifications received from the learning request unit 6 and the inference model generated by the input / output modeling unit 5a match. That is, the specification collating unit 5b defines not only the input / output relationship but also the learning method so as to perform learning according to the "required specifications" such as the time required for inference of this inference model, energy, and circuit configuration. Is.
  • the inference model is generated by learning the relationship between the acquired information such as acquired biometric information and biopsy information and the disease, and specifically by learning the relationship between the acquired information and the clinical department / department.
  • the input / output modeling unit 5a Similar to the inference engine 7, the input / output modeling unit 5a has an input layer, a plurality of intermediate layers, and an output layer, obtains the strength of the connection of neurons in the intermediate layer by learning, and generates an inference model.
  • the learning requesting unit 6 extracts the change pattern of the test data acquired from the subject using the test device in a specific time width, and uses the extracted change pattern in the inference engine 7. From the timing when the subject inspects the data, the teacher data is generated with the health advice to be output at a later timing as the inference information. Then, the learning unit 5 generates an inference model by performing learning using the teacher data.
  • the time width that goes back from the time when the test result is obtained has been described, but if the data improves after the test result due to treatment or the like, the treatment may not be successful. You may learn and output prognostic (after getting sick) advice.
  • the learning unit 5 can generate an inference model capable of giving future prediction advice on lifestyle-related improvement and treatment and medication effects by learning using the test data sequence after examination, hospital visit, and medication. You can also do it.
  • the time-series data is used starting from the time of examination, outpatient visit, and medication. Use the previous time-series data when giving advice on tests, hospital visits, medications, etc.
  • Deep learning is a multi-layered structure of the process of "machine learning” using a neural network.
  • a typical example is a "forward propagation neural network” that sends information from front to back to make a judgment.
  • the simplest forward-propagating neural network is an input layer consisting of N1 neurons, an intermediate layer consisting of N2 neurons given by parameters, and N3 corresponding to the number of classes to be discriminated. It suffices if there are three layers of output layers composed of the above neurons.
  • Each neuron in the input layer and the intermediate layer, and each neuron in the intermediate layer and the output layer is connected by a connection weight, and a logic gate can be easily formed in the intermediate layer and the output layer by applying a bias value.
  • the neural network may have three layers as long as it makes a simple discrimination, but by increasing the number of intermediate layers, it is possible to learn how to combine a plurality of features in the process of machine learning. In recent years, those having 9 to 152 layers have become practical from the viewpoints of learning time, determination accuracy, and energy consumption.
  • a "convolutional neural network” that compresses the feature amount of the image, performs a process called “convolution”, operates with the minimum processing, and is strong in pattern recognition may be used.
  • a “recurrent neural network” (fully connected recurrent neural network) that can handle more complicated information and whose meaning changes depending on the order or order may be used.
  • a conventional general-purpose arithmetic processing circuit such as a CPU or FPGA (Field Programmable Gate Array) may be used.
  • a processor called GPU (Graphic Processing Unit) or Tensor Processing Unit (TPU) specialized in matrix calculation is used. good.
  • NPU neural network processing unit
  • AI artificial intelligence
  • machine learning examples include, for example, support vector machines and support vector regression.
  • the learning here is to calculate the weight of the discriminator, the filter coefficient, and the offset, and there is also a method using logistic regression processing.
  • humans need to teach the machine how to make a judgment.
  • a method of deriving the judgment of the image by machine learning is adopted, but in addition, a rule-based method of applying the rules acquired by humans by empirical rules / heuristics may be used.
  • the inference engine 7 has an input / output layer and a neural network similar to the input / output modeling unit 5a of the learning unit 5.
  • the inference engine 7 makes inferences using the inference model generated by the learning unit 5.
  • the inference engine 7 is measured by the first device 2a or the like, inputs time-series biometric information, and infers, for example, an appropriate inspection institution / medical institution for inspecting, treating, or the like the user's health condition. Ask.
  • time-series biometric information it may be inferred when a medical institution will receive a medical examination.
  • control unit 1 may provide information on the recommended facility by using the inference engine 7 in addition to the search unit 1f searching the DB unit 8.
  • the inference engine 7 infers information about the recommended facility using the inference model generated by the learning unit 5.
  • This inference model is generated by learning the relationship between acquired information such as acquired biometric information and biopsy information and the disease, and specifically by learning the relationship between the acquired information and the clinical department / department. In this way, the control unit 1 may output the guide information to be presented by the inference by the inference engine 7.
  • control unit 1 guides medical facilities, etc. with a single judgment based on the acquired information obtained at one time by searching or inference, it unnecessarily brings medical information into life and lives soundly and with peace of mind. May interfere with. Therefore, the accuracy may be improved by using the history (time-series information) of the acquired information a plurality of times.
  • FIG. 2A shows a graph using personal health-related historical data (time-series data) recorded in the recording unit 8.
  • the recording unit 8 records, for example, the specific data A among the data acquired by the specific device A or the data of the device having various inspection functions, and when and which facility the individual visited. is doing.
  • the control unit 1 manages the recording of the recording unit 8.
  • the horizontal axis of the graph shown in FIG. 2 (a) is time, and the vertical axis is health-related data.
  • the data posted on this graph can be treated as if the information were arranged two-dimensionally. Therefore, inference can be made by a method similar to image search, in which a specific object is found from this image.
  • the graph can be used as input and the output can be used as health advice.
  • advice the measurement method, the name of the specific disease that is currently occurring, the name of the specific disease that may occur in the future, the guidance of the treatment / testing facility for the specific disease, etc. are assumed. Details of the graph showing the historical data shown in FIG. 2 will be described later.
  • the recording unit 8 records what kind of facility the person whose health-related information has changed is going to or is going to, and when the control unit 1 centrally manages this record, these data are collected. It is possible to have the learning unit 5 create an inference model by using it as teacher data.
  • the inference engine 7 has an inference model obtained by inference model specification determination unit 1d of the control unit 1 designating an inference model specification and learning according to this specification.
  • the inference engine 7 may have a plurality of inference models because the device data may be different when a new device appears. A plurality of inference models may be prepared and appropriately selected according to the user's inspection data to determine the inference model.
  • new learning is required each time a new device appears, it is assumed that the inference model is often improved or newly created through the learning unit 5 by the designation of the control unit 1. There is. However, when the first device 2a or the like is dedicated and specialized only in inference of a specific disease, it may be a single dedicated inference model.
  • the inference engine 7 is a circuit block centered on an AI chip such as a CPU, GPU, and DSP, like the input / output unit 5a of the learning unit 5, and also includes a memory and the like to form a neural network.
  • the inference engine 7 and the learning unit 5 are connected to a network or the like operated in cooperation with a hospital or the like, and the control unit 1 may be used in cooperation with these. I'm assuming. In this case, there is a possibility that learning and inference information can be exchanged via the related inspection organization 9.
  • the inference engine 7 When it is determined that the inference request unit 1e of the control unit 1 has sufficiently acquired the information of a specific user from the first device 2a or the like, the inference engine 7 is requested to make an inference.
  • the inference engine 7 inputs an information group showing the time-series transition of similar data, infers based on this information group, and outputs medical institution information (visit information, examination information, etc.) suitable for a specific user. It is possible to do. If a group of data similar to a person with a chronic medical condition is input to the inference engine 7, it is better to display a guide to a facility where the same treatment can be performed.
  • the inference engine 7 can estimate the medical institution that has the equipment to inspect a specific user.
  • the biological information (examination data) acquired in time series by the first device 2a and the like will be described.
  • two devices, the first device 2a and the second device 2b, are assumed in order to acquire the inspection data of the user.
  • biological information (examination data) acquired from one of the two devices will be described.
  • FIG. 2 is a graph created using inspection data.
  • the DB unit 8 records test data organized in chronological order for each patient ID, and FIG. 2 shows the test data in a graph.
  • the horizontal axis represents time T
  • the vertical axis plots time-series inspection data.
  • the vertical axis plots the test data, the biological data, the vital data, and the sample data, and any one of these is plotted based on the numerical value D of the test output result of the device to be inspected.
  • the numerical value D is, for example, a value indicating the degree of red color of stool.
  • FIG. 2 it is assumed that the date and time of visit and the like are automatically updated systematically.
  • the example shown in FIG. 2A is a case in which the time-series data changes in the direction of deterioration of health and the user eventually goes to the hospital, as will be described later.
  • FIG. 2 (a) provide the result of inferring how long and what kind of clinical department the patient will go to before the time T1. Is possible.
  • FIG. 2A For the patient in the situation shown in FIG. 2 (a), provide the result of inferring how long and what kind of clinical department the patient will go to before the time T1. Is possible.
  • FIG. 2 As shown in FIG.
  • Fig. 2 (a) is a case in which it is presumed that the patient will go to the hospital in the future.
  • the graph shown in FIG. 2A shows changes in time series of examination data (equipment data) of users who are not currently visiting the hospital. From this time-series test data, it is possible to obtain information on whether or not to visit a medical institution when a specific test result (specific information) is obtained. Therefore, based on the time-series test data, it is possible to guide health information that can grasp one's own health condition before it deteriorates as one goes to the hospital. For example, in FIG.
  • the medical institution in the case of the test data at time T1, it can be inferred that the medical institution is visited at time Tc when time + ⁇ T has elapsed. That is, if the examination data, medical institution information (clinical name, clinical department, date and time information) and the like are accumulated in the DB unit 8, the period until receiving medical treatment at the medical institution can be estimated.
  • Fig. 2 (b) shows a case in which the patient has already visited the hospital and has deteriorated during the hospital visit due to factors other than treatment.
  • the graph shown in FIG. 2B is an example in which a person who goes to the hospital due to illness receives treatment at a clinic when specific information appears at times Tc1 and Tc2.
  • the time-series inspection data as shown in FIG. 2B can be sufficiently utilized to learn such a situation. This example is useful for a guide to the effect that "people with this number usually cannot be treated on their own.” It is effective as information that can prevent further deterioration.
  • Figure 2 (c) shows a case where it is not necessary to go to the clinic.
  • the test data D is lower than the predetermined value (indicated by the broken line in the graph) and there is no need to go to the clinic.
  • the column of the visit date and time is blank.
  • This database may hold the relationship between the type of acquired information (toilet bowl occult blood test information), the clinic, and the owned equipment Mod, and the patient-specific time-series data may be managed in a separate database. Further, by searching a plurality of DBs and organizing the search results, information corresponding to the database recorded in the DB unit 8 may be obtained.
  • FIG. 2 is a graph showing the time-series information for each patient recorded in the DB unit 8, where the horizontal axis is time and the vertical axis is the numerical value of the acquired information. Therefore, the information is two-dimensionally visual. Since it is a two-dimensional diagram, the following two things can be said. First, since it is a diagram, it can be handled in the same way as image judgment, and a general-purpose and easy-to-build AI chip or system such as an inference model for image recognition can be easily diverted, and inference can be easily realized. .. In addition, since the horizontal axis is time, it is possible to effectively use the time-varying information of physical information, and it is possible to easily make a prediction. In addition, it can include information on the characteristics of time changes peculiar to the living body, such as fluctuations and frequency.
  • a certain period within the period for acquiring the historical data corresponds to a specific period, and the inspection data during this specific period is extracted.
  • the extracted time-series inspection data is input to the inference engine 7, the inference engine 7 outputs advice by inference, and the advice is provided to the user.
  • the specific time width may be suitable for giving some advice at a time corresponding to the future after the end of the time width, and a plurality of information retroactive to the time of this advice is acquired. It should be as wide as possible. Further, the specific time width does not have to be strict as determined by the standard, and it is sufficient if a sufficient amount of data can be obtained.
  • time interval of each data is also important information, it is better that the data is obtained with a regular time width and is not discrete. However, even if the measurement time points of the data are discrete within the time width, it is effective as long as the time width is such that the data can be supplemented by interpolation to obtain meaningful data. It may be determined according to some health or medical information.
  • the information transmission device extracts the change pattern of the user's inspection data within a predetermined time width, and determines the transmission information to the user according to the inference model learned together with the time information. It has a decision part.
  • FIG. 3 graphically displays the acquired inspection data.
  • the horizontal axis T represents the measurement timing
  • the vertical axis represents the value of inspection data (DA for the first device, DB for the second device).
  • FIG. 3 illustrates that even if the inspection data has the same items for the same subject, the same value may not be output depending on the device due to the difference in the machine and the installation / measurement environment.
  • the threshold value for determining whether a person is healthy or not requires a detailed examination is indicated as DAT in the first device and DBR in the second device, according to the results shown in this figure, the first device may be determined by time. The measured value is above the threshold value and below the threshold value in the second device. That is, it is not judged only by the fact that the threshold value is exceeded at the timing of T0, but an accurate judgment is made by searching the inspection data as T1, T2 ... T4, going back from the timing T0 that exceeds the threshold value. Can be done.
  • the amount of information is increased so that the change with time can be correctly determined.
  • body fluids such as excrement and blood change depending on the physical condition, meal time, drinking and taking medicine, before and after bathing, before and after sleeping, and the excess and deficiency (living conditions). It is better not to judge.
  • various error factors are faced, so it is desirable to take measures as described here.
  • vital data Before and after a specific treatment such as surgery, vital data may change significantly due to a large physical burden.
  • the test data of such a patient may change significantly at a certain time, and when such a situation is determined and detected, the correction as shown in the present embodiment may be performed. It is better not to do it.
  • the value as data for follow-up observation is increased.
  • the judgment is made by increasing the data measured in various situations, and the judgment is not made only in the special situation for that time (before and after the treatment such as the above-mentioned surgery).
  • Data is not limited to this). That is, even if the inspection data group of the subject is acquired by the first device 2a, it is better to be able to confirm the status of changes over time, but in the example shown in FIG. 3, the amount of data is small. It's too much. Therefore, by acquiring the time-series second inspection data group of the subject by a second device (which may further have a third and a fourth) capable of interpolating the first inspection data group. , By supplementing the data, it is possible to make highly reliable judgments.
  • This second device has a second inspection data acquisition unit, and records the history of the data retroactively by a predetermined time (up to time T4 in the example shown in FIG. 3).
  • a predetermined time up to time T4 in the example shown in FIG. 3.
  • the transmission information determination unit determines the transmission information to be provided to the target person by using the first inspection data group and the second inspection data group, the reliability is enhanced.
  • the first inspection data group and the second inspection data group can provide information with less influence of the special living conditions as described above.
  • a specific time is traced back to T4, but in the above-mentioned follow-up, some measures may be taken such as tracing back to the postoperative period.
  • a technique called stool test is known to prevent this disease.
  • this stool test is performed by the toilet performed at the time of excretion without the subject (user) being aware of it.
  • the graph 31 is created based on the inspection data acquired in the toilet at home by the first device 2a, for example, and the graph 32 is created based on the inspection data acquired in the toilet at the workplace by the second device 2b, for example. Is.
  • the first device 2a used at home may be a simple sensor
  • the second device 2b used at work may be a high-performance sensor with an emphasis on employee health management.
  • the two inspection data may not be simply comparable because they have similar numerical values but different measurement methods and sensors. From another point of view, if the first and second devices are placed in the toilets of stations and public facilities, it is difficult to control the temperature and humidity in this case, and there are many users, so the temperature, etc.
  • the inspection data acquired in the first and second devices 2a and 2b are not simply arranged as shown in the graph 33, but the same devices have the same numerical values as shown in the graph 34. Considering that it has characteristics, correction calculation is performed on the two inspection data.
  • FIG. 3 as shown in Graph 33, the tendency that the output from the first device tends to be low is increased by a predetermined number or emphasized by applying a gain, and these processes are performed. It is shown as graph 34.
  • the inspection data is used as a database in which the device ID and the test result are recorded together, and the data of the same device is uniformly shift-corrected (addition / subtraction) and / or gain-corrected (multiplication / division).
  • This correction calculation makes it possible to compare the vertical movement patterns of data transitions obtained by a plurality of devices, which change according to the acquisition time, in the same manner as other data.
  • the increase / decrease pattern of the test data is reversed depending on the degree of health, or if the pattern is different even after correction, record the measured value so that it can be analyzed so that it will not be erroneously compared. Further, information such as the type of the device used for the measurement, its model number, and the sensor value may be used. With this information, it is possible to compare numerical change patterns from other devices that acquire similar biometric information. In general, biological information rarely changes in minute increments, so the error in the clock information (which determines the accuracy of the horizontal axis of the graph) of each device should be as accurate as minutes.
  • the first device 2a is assumed to be a wearable device
  • the second device 2b is assumed to be a dedicated device.
  • Both are devices for acquiring health-related information of the target person (specific user). Wearable devices have low measurement accuracy, but since they are worn by users on a daily basis, they can make frequent measurements and collect a large amount of information.
  • the dedicated device has high measurement accuracy, but cannot perform frequent measurement as compared with the wearable device.
  • the mobile terminal acquires the health-related numerical value (S101).
  • the wearable type first device 2a routinely acquires a numerical value (test data) for health management such as blood pressure.
  • test data for health management
  • the inspection data acquired by the first device 2a is abnormal, the data is transmitted to the control unit 1 and the process proceeds to step S103. If there is no problem with the loss of energy and time spent on communication and inference, the inspection data acquired in step S101 may be transmitted to the control unit 1.
  • the first device 2a since the inspection data by the first device 2a is used when the history data is combined in step S107, the first device 2a transmits the inspection data to the control unit 1 at predetermined time intervals.
  • the test result of the same person is searched (S103).
  • the ID determination unit 1b of the control unit 1 searches the DB unit 8 for the inspection result of the same person as the user measured in step S101.
  • dedicated sensors may be simple, or errors may easily be included due to restrictions on individual carrying and handling. Therefore, we would like to check and verify whether the health-related numerical values acquired by the terminal include errors, etc., using the results of the health-related numerical values acquired by the dedicated device. As described above, if the inspection data is not abnormal and the inspection data is not transmitted, this step may be skipped.
  • the second device 2b of the dedicated device type acquires the user's health management numerical value (examination data).
  • the second device 2b transmits the inspection data to the control unit 1.
  • Dedicated equipment is calibrated equipment handled by a specific specialized institution or specialist, and is often installed and used in a stable environment, and it is possible to obtain highly reliable results depending on the results of personal terminals. Be expected. Therefore, based on the data acquired by the dedicated device, for example, the result acquired in step S101 can be corrected and handled.
  • the history of the inspection data acquired in steps S101 and S105 is adjusted, and inference is performed using the adjusted history data (S107).
  • the control unit 1 performs a correction operation on the inspection data acquired by the first device 2a and the second device 2b, and generates time-series inspection data (history data) acquired by the same device.
  • the inference engine 7 inputs this historical data and makes an inference to output advice on changes in physical condition and onset or worsening of illness.
  • the inference result is displayed next (S109).
  • the control unit 1 transmits advice based on the inference result to the terminal 4 owned by the user, and the terminal 4 displays the advice.
  • the advice can be changed in various ways depending on what kind of annotation information the inference model has to learn.
  • the annotation information determines the type of clinical department and prescription drug information of the hospital to be visited. If included, these results can be presented as inference output.
  • a database or the like may be searched on the Internet from the inference results, and additional precautions or the like may be presented based on the search results.
  • the user can take actions such as resting, taking medicine, and going to the hospital, so that it is possible to take early measures before becoming aware of it, and it is possible to increase the number of people who continue to live a healthy life.
  • feedback control such as causing a mobile device or an inspection device to perform control to acquire various data when the user comes under the environment. By doing this, it is possible to increase the amount of clues to identify the cause.
  • the information providing unit 1c may customize the information for each user. Specifically, it is conceivable to provide information on an appropriate clinic in the neighborhood of the user's place of residence. In addition to this, the medical staff of the family facility may decide which numerical value to monitor, and the system of this facility manages the data. If the medical facility handles a sufficient number of cases, it is possible to diagnose that this person and this person have similar health information, and that each has a similar tendency to illness. For this purpose, the DB unit 8 may be provided on the server in the hospital to store data. In this case, it is possible to make inferences, considerations, and advice that automatically reflect the environment and eating habits peculiar to the area.
  • FIG. 5 shows a case where the search in the DB unit 8 shown in FIG. 1 and the inference by the inference engine 7 are individually used. You may want to use one of the functions, or you may use both of them in layers, but here is the simplest example.
  • the toilet bowl has an image sensor, a magnified image judgment device such as a microscope, and a sensor that detects special light reflection.
  • a magnified image judgment device such as a microscope
  • a sensor that detects special light reflection The description will be made on the assumption that an array of crystalline nanowires, an olfactory sensor that applies changes in electrical characteristics such as a molecular film, a gas component sensor, and the like are arranged so that the characteristics of the user's excrement can be confirmed.
  • each ID is determined based on the sensor output result (S1).
  • the control unit 1 may acquire the output of the first device 2a or the like through the communication control unit 1a, or the control unit 1 may receive the data transmitted by the first device 2a or the like in the communication control unit 1a. Further, it is assumed that the control unit 1 collects the data recorded by the first device 2a or the like through the communication control unit 1a at a specific timing. At this time, the inspection result is determined based on the sensor output for each ID attached to the sensor output result.
  • the sensors are a color sensor, a shape sensor, a hardness sensor, an olfactory sensor (including reaction judgment of nematodes and animals), a gas component sensor, and a color change detection sensor when a specific reagent is added, based on the output of the image sensor. Then, the shape may be determined by the magnified observation image.
  • stool with occult blood can be determined by a color sensor.
  • the amount, shape, hardness, etc. of excretion may be determined by an image sensor / color sensor, or a method of measuring the color distribution by performing special dyeing may be used.
  • the composition may be detected in a magnified image of the object, or the result of culturing for a specific time may be determined. For example, when the amount of blood mixed in the stool increases, the red color of red blood cells becomes conspicuous, but if this is quantified, the difference from the healthy case can be seen. These are detected in step S1.
  • step S1 when the control unit 1 determines the sensor output result by a determination using a specific program or the like, it then determines whether or not specific information can be obtained (S3).
  • specific information related to the disease for example, a feature such as a numerical value different from the healthy state is detected.
  • step S3 If the specific information cannot be acquired as a result of the determination in step S3, the process returns to step S1. On the other hand, if the specific information can be acquired as a result of the determination in step S3, it is determined whether or not there is a progress inference model (S5). Here, based on the specific information acquired in step S3, whether or not a database capable of suspecting a specific disease and conducting a detailed examination related to this disease is accumulated, and using this data, infer the future progress. Determines if an inference model capable of is set in the inference engine 7.
  • step S5 If there is no transitional inference model as a result of the determination in step S5, an inference specification is created (S13). If it is determined in step S5 that the database has not been accumulated, the control unit 1 requests the DB unit 8 to construct the database. By constructing a database capable of searching for a specific disease, it is possible to quickly construct a system as the number of users increases, even if it is the first device. Also, if you simply build a system that allows people who are sick or not sick to send that fact according to the test data, it is possible to know whether or not they are likely to get sick. You will be able to judge from.
  • inference specifications are created in this step. The detailed operation of creating the inference specification will be described later with reference to FIG. 7.
  • the inference model specification is requested to be created (S15).
  • the specifications of the created inference model are transmitted to the learning unit 5 through the learning request unit 6.
  • the learning unit 5 generates an inference model according to the specifications.
  • the control unit 1 receives the generated inference model through the learning request unit 6.
  • the process returns to step S1. The detailed operation of creating the inference model will be described later with reference to FIG.
  • step S7 If the result of the determination in step S5 is Yes, that is, if there is a database for search and there is also an inference model, the "history search" method is determined (S7). If the result of the determination in step S5 is Yes, it means that there is a database for searching. In this case, the information on the specific disease determined in step S3 is stored in the DB unit 8. Search from inside. In this step, a method of historical search, i.e., how to search the database for facilities for further testing for a user's specific disease is determined. For example, in the case of a digestive system disease, the excrement system test data is mainly searched.
  • step S7 the historical data in the specific time range that goes back to the past on the time axis of the user's health data is searched and used.
  • the results of this search include time information, which makes it possible to predict the future.
  • the specific time width depends on the disease. For example, for the latest future forecast of sudden changes in the medical condition, the latest past change data is important, but for lifestyle-related diseases that gradually worsen, the history over a long span is important. .. Therefore, the time range for history acquisition may be changed depending on the disease to be considered.
  • step S9 the control unit 1 inputs the inspection data so that one level (the level of the inspection data of the first device 2a) and the other level (the level of the inspection data of the second device 2b) match.
  • the correction calculation is performed.
  • the control unit 1 may combine one historical data with the other historical data.
  • step S9 the inference engine 7 uses this historical data to make an inference to output advice on changes in physical condition, onset or worsening of illness.
  • the detailed operation of "inference by combining historical data" in step S7 will be described later with reference to FIG.
  • step S11 When the historical data is combined and the inference is performed, the inference result is displayed next (S11).
  • the control unit 1 transmits the inference result in step S9 to the user's terminal 4, and causes the display unit of the terminal 4 to display the inference result.
  • This step S11 is a step of providing information on examinations and medical assistance to the user who became the information source acquired in step S1 and related persons thereof, and it is assumed that a display or a warning is issued on the terminal 4. .
  • the process returns to step S1.
  • the control unit 1 acquires the sensor detection results from the first device 2a and the second device 2b (S1), and the health state (health state) from these detection results (S1). It is determined whether or not there is specific information related to (disease) (S3). When the specific information is acquired, it is determined whether or not there is a database related to the specific information and whether or not there is an inference model (S5), and if there is a database, this is searched. Then, the correction calculation is performed on the data acquired from the first device 2a so that the levels of the values acquired from the first device 2a and the second device 2b match.
  • step S3 when the specific information is not acquired, the user's profile, behavior, lifestyle, etc. may be determined. By acquiring this information, it is possible to provide appropriate information. In addition, as information, information such as age, gender, and pre-existing illness, address, eating habits, and food information are also effective. This information can be obtained by taking a questionnaire on the terminal 4, inputting and acquiring the information when setting up the information judgment device 2, and inputting by the related inspection institution 9 at the time of going to the hospital. These devices and their devices Information existing on the network may be collected and prepared through.
  • DB search (S7) and inference (S9) are treated independently as separate processes.
  • the present invention is not limited to this, and these may be treated comprehensively.
  • step S9 of FIG. 5 the operation of "inference by combining historical data" in step S9 of FIG. 5 will be described using the flowchart shown in FIG.
  • the first device 2a and the second device 2b are used to extract the change pattern of the user's inspection data within a predetermined specific time width so that the output levels of the devices match.
  • the correction calculation is performed to match the two historical data.
  • infer health advice Based on this combined historical data, infer health advice. This process is performed by the control unit 1 in cooperation with the inference engine 7, the DB unit 8, and the like through the communication control unit 1a.
  • time series data is acquired (S21).
  • the time-series data corresponding to the specific ID recorded in the DB unit 8 is acquired.
  • the time width of the time-series data to be acquired is set to a specific time width, but if the data of the specific time width cannot be acquired, it is set to the time range that can be acquired. This is because if there is no specific time width, the judgment will be based only on the data under a specific situation, and the reliability will be inferior.
  • the specific time span differs between diseases that progress over time, such as colorectal cancer, and diseases that progress in a short period of time, such as influenza.
  • the type of test data depends on the learning of the inference model, but it is desirable that the graph is a specific item used at the time of learning. For example, it is preferable not to infer body weight and blood pressure together. Therefore, it is preferable to make an inference after considering the auxiliary information of the data such as what kind of sensor information of what kind of device.
  • step S21 it is next determined whether or not the time series data for a specific time width can be acquired (S23). For example, if the status of occult blood is detected, it is determined whether or not occult blood was obtained within a range of several months. That is, the specific time span depends on the disease involved.
  • step S23 if the data of the specific time width has not been acquired, no inference is performed (S35). Inference is possible depending on the expected reliability without information of a specific time width, but it can be difficult. Therefore, if it is determined in step S23 that the data of the specific time width has not been acquired, no inference is made. However, there are cases where a clearly dangerous situation can be detected, in which case emergency information may be output before inference.
  • step S35 it is possible to prevent the system from being unable to respond in an emergency without making inferences in step S35, and to make a highly reliable system in which information is output after sufficient data has been collected. That is, in the present embodiment, in the case of a numerical change that is contained in a specific change, the change pattern of the user's inspection data is cut out within a predetermined time width, and inference is performed according to the inference model learned together with the time information. Processing step S35 ends this flow and returns to the original flow.
  • step S23 when the data for a specific time width is acquired, then the data acquisition device information and the acquisition time information are associated with each data (S25).
  • the control unit 1 associates the data acquired in step S21 with information on which device among the first device 2a, the second device 2b, etc., and the acquisition time, and records the data in the DB unit 8. do.
  • By associating these information with the acquired data it is possible to position each data in the graphs shown in FIGS. 2 and 3. If the number of target devices increases, it becomes possible to reduce the influence of errors of individual devices while increasing the number of data when evaluating in chronological order.
  • each data may be added / subtracted or multiplied / divided based on the difference between the average values of the two time-series data.
  • time-series data corrected for each device can be obtained.
  • the reflection of the information may be different by changing the weighting of the data.
  • the control unit 1 inputs the time-series data to the inference engine 7.
  • the inference will include the error of each device, and it is judged that the inference is not consistent and the reliability is low in the specific inference model that learned the increase / decrease information in the same time range as the specific time as teacher data. May be done. Therefore, the reliability of the inference is calculated while making corrections for each device, and the one with high reliability is used as the inference result (S31).
  • the constants of the specific four arithmetic operations are changed little by little for the time series data for each device. By this processing, the reliability is increased in the situation where the error is corrected, so that correct inference is possible.
  • step S31 may be performed after, for example, the control unit 1 determines whether the device is a device that detects similar biological information based on the device ID or the like of each information.
  • the relationship of increase / decrease in data due to changes in health is guaranteed, so it is only necessary to assume reduction of sensitivity and environmental error.
  • the inspection items may be treated uniformly. This is because if the information is treated uniformly, it can be more effective information if the number of data is a medical condition that is effective as a temporal density or a temporal range.
  • the control unit 1 may provide a step for determining the determination.
  • the information output by the device is not only the judgment result data, but also the inspection timing (date and time) information, the information corresponding to the target individual, the inspection content information, and the device-specific information in a specific format. If you have some of these information, such as information on the type of device, you can use this information to correct or select the data. Moreover, not only correction but also weighting is possible. Data acquired by an unreliable device may be lightly weighted so that it is not treated in the same way as other devices. Furthermore, if there are many people who use the same multiple devices, for example, if all the time series data is color-coded and arranged on a graph, the information of multiple devices is mixed instead of the information of a single device. People with similar health tend to have the same tendency.
  • the transition of information so that the information from which device can be identified on a common time axis by color coding or the like according to the information from the specified device acquired at a specific time of a specific person.
  • Identification by color coding is a device that makes it easy for humans to see, but in addition, the shape of the data points drawn at the plot points may be changed so that the device can be identified. , The same effect can be obtained by making additional information displayable or readable in the data at that point.
  • step S31 When inference is performed in step S31, the inference result is acquired (S33).
  • the control unit 1 sets the inference output having the highest reliability value as the inference result when the inference is performed in step S31. It is possible to provide health advice by effectively using the information acquired in various life scenes.
  • time-series data is acquired (S21), and when time-series data for a specific time width can be acquired (S23Yes), each device is used.
  • a correction calculation is performed on the time-series data so that the level is the same, and inference is performed using the history data to which the correction calculation has been performed (S29).
  • the reliability of the inference is determined while making corrections for each device, and the highly reliable one is used as the inference result (S31). Therefore, it is possible to obtain a highly accurate inference result by using the inspection data of a plurality of devices. Further, since the inference is performed using the time series data having a specific time width, it is possible to perform the inference with high accuracy.
  • the change pattern of the test data of the subject is cut out within a predetermined time width, and inference is performed according to the inference model learned together with the time information. ing. That is, when the specific criteria are not satisfied (when the data of the specific time width cannot be acquired (S23No)), the change pattern of the test data of the subject is cut out with the predetermined time width and learned together with the time information. I try not to make inferences according to the inference model.
  • step S13 of FIG. 5 the operation of "creating an inference specification" in step S13 of FIG. 5 will be described using the flowchart shown in FIG.
  • the subroutine for creating the inference specification is the learning unit 5 when the inference model for inference based on the specific information is not set in the inference engine 7. Create a specification for requesting the generation of an inference model.
  • the related disease is determined based on the specific information (S41). Based on the specific information determined in step S3 (FIG. 5), the related disease is determined. For example, since the biometric information related to each disease is determined based on the user's urine test result and stool test result, a table or the like showing the relationship between the test item and the related disease is recorded in the DB section 8 or the like. Then, the related disease can be determined based on this recorded table.
  • the DB section 8 records and organizes the daily health (biological information / examination data) of a large number of patients. Therefore, the control unit 1 determines (searches) a patient other than the user suffering from the related disease determined in step S41.
  • control unit 1 determines whether or not there is a history of patient health information (S45).
  • the control unit 1 determines whether or not the history of the patient's health information determined in step S43 is recorded in the DB unit 8. As a result of this determination, if sufficient data (history of health information) is not accumulated, no inference or inference request is made, and no advice information is given (S51). End this flow and return to the original flow.
  • the control unit 1 searches the health information of the patient who has already been diagnosed with the disease, which is recorded in the DB unit 8, and determines whether or not there is a period or amount of the health information that can be used as the teacher data. do. When this determination is satisfied, historical data is extracted from the time-series data of this patient with a time width necessary for determining the determined related disease, and this time-series data is used as teacher data.
  • This time-series data is information on patients who have already been diagnosed with a disease, and there is biometric data measured by an instructor with specialized knowledge using a relatively accurate measuring device. Therefore, the control unit 1 corrects the substitute data obtained by the household device or the mobile terminal obtained in daily life based on this biometric data (a series of data), and uses this time-series data as the teacher data. do.
  • the control unit 1 inputs the teacher data to the inference engine 7 and acquires the disease information as an output.
  • the above-mentioned biometric data has a different pattern if there is no information such as which time point of the disease corresponds to. If the reasoning is for non-illness, the pattern may be traced back to this point based on the timing of the first visit or the timing of the first diagnosis of the disease. That is, the data of the patient who went to the hospital after the lapse of a predetermined period as shown in FIG. 2 (a) and the data of the person who did not go to the hospital as shown in FIG. 2 (c). A large number of data are collected, learning is performed so that these differences can be determined, and an inference model is created.
  • step S47 when the specification for creating the inference model is created, the specification is set so that the advice for the disease and the current non-illness level are also output (S49).
  • the inference engine 7 creates an inference model specification capable of outputting advice for diseases.
  • the advice such as the stage of the disease may be output, or the user may be able to output information such as at what timing before going to the hospital.
  • the learning for which specifications are created in the flow shown in FIG. 7 can be applied to fields such as the relationship between labor pain and the time of childbirth.
  • By learning the frequency of labor pains retroactively based on childbirth it is possible to generate an inference model that can give advice on how long later to go to the hospital or call a midwife.
  • the learning operation performed by the learning unit 5 when the “inference model creation request” is made in step S15 of FIG. 5 will be described.
  • the history data of the related disease patient determined in FIG. 7 is used as the teacher data to generate an inference model that can obtain the set output.
  • This subroutine for creating an inference model is mainly executed in the input / output modeling unit 5a in the learning unit 5.
  • Teacher data is generally created by adding specific annotations to specific data.
  • data acquired at multiple timings related to the same subject is annotated with that person's health-related information (test results, date and time of hospital visit, advice, etc.).
  • Two teacher data This teacher data was prepared for multiple subjects, and it was possible to infer what kind of health information the transition pattern of time-series data corresponds to.
  • the original data for making this teacher data may be recorded in a file format, or necessary metadata groups may be associated and recorded. This metadata may be for annotation.
  • information such as an ID that identifies the created inference model can be recorded as metadata in the adopted file. It may be. By these treatments, it becomes possible to prevent the AI from becoming a black box.
  • the learning unit 5 sets the input / output of the inference model based on the specifications transmitted from the control unit 1 through the learning request unit 6. That is, what (what kind of information) is input to the inference model, what (what kind of information) is inferred and output, and the like are set. Further, the number of intermediate layers of the neural network is set, and the weighting and the like in each intermediate layer are set as initial values. In this step, the so-called "requirement specifications" of the inference model to be created are set.
  • the teacher data is created by the control unit 1 from the data recorded in the DB unit 8 and transmitted to the learning unit 5 (see S47 and S49 in FIG. 7), this teacher data is input / output modeling unit 5a. Sequentially input to the input section of. Further, since the teacher data is a set of input and output, an inference model is created by determining the weighting of each intermediate layer of the neural network so that the output corresponds to the input.
  • step S65 After inputting all the teacher data in step S63, it is next determined whether or not the model could be created with high reliability (S65). Here, it is determined whether or not the value indicating the reliability of the inference model generated in step S63 is higher than the predetermined value.
  • a highly reliable inference model cannot be created as a result of the determination in step S65, re-learning is performed (S69). Since the reliability is low, the population of teacher data is changed, the process returns to step S63, and the inference model is recreated. If the reliability does not reach a predetermined value even after re-learning a predetermined number of times, the generation of the inference model is terminated and a notification to that effect is transmitted to the control unit 1.
  • a metadata group or a file may be attached to record that the data group or file was not used as teacher data. It is possible to prevent poor quality data groups and files from being used for learning and becoming unsuccessful.
  • step S65 if a highly reliable model can be generated as a result of the determination in step S65, that model is used as an inference model (S67).
  • the learning unit 5 transmits the inference model generated here to the control unit 1.
  • the control unit 1 acquires the specific information based on the inference specification created in step S13, the control unit 1 can set the received inference model in the inference engine 7 and perform inference.
  • the inference model is created, it ends this flow and returns to the original flow.
  • the learning unit 5 to which the teacher data is given performs learning and creates an inference model.
  • re-learning is repeated by selecting the teacher data or selecting the data included in the teacher data until highly reliable inference becomes possible (S65Yes) (see S69). ..
  • S65Yes highly reliable inference becomes possible
  • control unit 1 may exclude the individual data or the data group, assuming that the reliability does not increase. If the control unit 1 tracks the specific biometric data excluded in such a process, the device that output the data, the environment in which the data was obtained, etc., the data or device that is not suitable for use as inference The environment can be specified, and the specified data, devices, etc. may be recorded and excluded when creating an inference model from the next time onward.
  • the metadata indicating what kind of inference model the data group or file was created for inference is associated with this metadata.
  • the optimum inference model may be specified. For example, as health-related information to be inferred becomes specialized, an inference model for colorectal cancer and an inference model for hemorrhoids may be prepared separately. With such a device, it is possible to avoid wasting the output of information such as hemorrhoids to users who are exclusively concerned about colorectal cancer.
  • the data group or file used for inference is associated with the information obtained by converting the inference result into metadata, it is effective when searching for what kind of case becomes what kind of data group or file. Information.
  • the graph 91 shown in FIG. 9 shows the change of the time-series inspection data acquired by the first device 2a
  • the graph 92 shows the change of the time-series inspection data acquired by the second device 2b.
  • the correction calculation is performed on each inspection data while changing the correction value little by little by the correction inputs 91a and 92a, respectively. Then, the corrected inspection data of the first device 2a is input to the inference engine 7a for the first device, and the corrected inspection data of the second device 2b is input to the inference engine 7b for the second device. In this way, each corrected data is input to the corresponding inference model.
  • the reliability of the inference output also changes little by little, so the inference result when the reliability of the inference output becomes appropriate is adopted for each device.
  • the final output is the result that comprehensively reflects the individual inference results.
  • the inference result with higher reliability may be selected, and if there is no big difference in reliability, it may be an intermediate judgment between the two results, or a judgment including both results. good.
  • the result of inference using a plurality of time series data corresponding to a plurality of inference models is comprehensively judged and used as the inference result. Therefore, a method of displaying advice with high accuracy. Can be provided.
  • the control unit 1 corrects the time-series inspection data acquired by the first device 2a by addition / subtraction, multiplication / division, or the like. To give.
  • the control unit 1 inputs the corrected time-series inspection data to the inference engine 7a and causes the inference to be performed.
  • the control unit 1 calculates the reliability of the inference while gradually changing the correction value of the correction operation. In this step, the control unit 1 adopts the inference result when the reliability is the highest as the inference result when the historical data of the first device is used.
  • the control unit 1 corrects the time-series inspection data acquired by the second device 2b by addition / subtraction, multiplication / division, or the like. To give.
  • the control unit 1 inputs the corrected time-series inspection data to the inference engine 7b to perform inference.
  • the control unit 1 calculates the reliability of the inference while gradually changing the correction value of the correction operation. In this step, the control unit 1 adopts the inference result when the reliability is the highest as the inference result when the historical data of the second device is used.
  • steps S71 to S77 the inference results are determined for each of the first device and the second device, and then, if the adopted results are similar, they are adopted for advice (S79).
  • the inference result is adopted as advice.
  • the adopted results are dissimilar, it may be determined by inferring which one may be correct. As shown in FIG. 9, a comprehensive judgment may be made.
  • the time-series inspection data output from the first device and the second device are used for the inference engine for the first device and the inference engine for the second device, respectively.
  • Inference is performed by an inference engine.
  • a correction operation is performed on each time-series inspection data, and the inference when the reliability is the highest is adopted as the inference result for each device.
  • the inference results of the two devices are used to make a comprehensive judgment.
  • the processing is not limited to this, and the processing may be performed using three or more devices.
  • the information transmission system is a first inspection data acquisition unit (ID determination) that acquires a time-series first inspection data group of a subject by the first device 2a. Part 1b), a second inspection data acquisition unit (ID determination unit 1b) that acquires a time-series second inspection data group of the subject by the second device 2b, a first inspection data group, and a first It has a transmission information determination unit (information provision unit 1c) that determines transmission information to be provided to the target person using the inspection data group of 2.
  • the inspection data group is acquired from the first and second devices, and the information to be provided to the target person is generated based on this data.
  • the information transmission system can grasp the accurate health condition by considering the situation of the subject and provide customized information such as advice according to the health condition. can.
  • the transmitted information is determined according to the inference model learned according to the change pattern of the inspection data group acquired by a plurality of devices. That is, in the present embodiment, an inference model is generated using the inspection data group acquired in time series (see, for example, FIG. 8). Further, the inspection data group acquired from the subject is input to the inference engine to obtain the inference result (see, for example, S107 in FIG. 4 and S9 in FIG. 5). By using the time-series test data group, it is possible to identify the disease indicated by the change pattern of the test data, and to infer the disease that will develop in the future, the time of its onset, and the like.
  • the first inspection data group acquired by the first apparatus and the second inspection data group acquired by the second apparatus are the first and second, respectively.
  • the reliability is calculated for each inspection data group of the above, and the reliability when the corrected inspection data group is inferred as an input is calculated, and the transmission information is determined according to the reliability (see, for example, FIGS. 3 and 4). For this reason, when inspection data of multiple different devices is acquired, even if there is a difference in the output level of the device, this is corrected, so more accurate transmission information is determined with abundant data. can do.
  • the first inspection data group acquired by the first apparatus and the second inspection data group acquired by the second apparatus are the first and second, respectively. It is corrected for each test data group of, and the plurality of corrected test data groups are combined into one test data group, and inference is performed by inputting the combined test data group into the inference model, and based on the inference result.
  • the transmitted information is determined (see, for example, S9 in FIGS. 3, 4, and 5). Therefore, the inspection data group acquired by a plurality of devices can be treated as if it were one inspection data group, and the number of data increases, so that more accurate transmission information can be determined.
  • the first inspection data group acquired by the first apparatus and the second inspection data group acquired by the second apparatus are the first and second, respectively. It is corrected for each inspection data group of, and each of the corrected multiple inspection data groups is input to the inference model, the inference result by each inference model is comprehensively judged, and the transmission information is determined based on this judgment result. (See, for example, FIGS. 9 and 10). Therefore, more accurate transmission information can be determined from the inspection data group acquired by a plurality of devices.
  • the first and second inspection data acquisition units determine whether the inspection data group is from the subject or the inspection data group from a person other than the subject.
  • the inspection data group is acquired as the first inspection data group or the second inspection data group.
  • the control unit of the information transmission system inputs the inspection data from the first and second devices 2a and 2b used by the target person and the inspection data from the third device 3 used by other than the target person, the target person And the inspection data of non-target persons can be distinguished. Therefore, the subject can obtain the inspection data by using a plurality of devices, can enrich the inspection data, and can obtain more accurate transmission information.
  • the first device 2a and the second device 2b may be any device for acquiring health-related information of the target person, for example, vital information, sample information, and the like.
  • it can be applied to face image information obtained from a mobile terminal such as a smartphone, heartbeat information based on the face image information, and the like, and these information may be utilized.
  • a device such as a wearable terminal that is used in close contact with the user, and data to be noted such as arrhythmia can be easily acquired by these devices.
  • a history pattern that includes multiple data instead of analyzing single-shot data that may contain errors depending on the equipment, physical condition, eating and drinking, and living scenes, the presence or absence of illness, possibility, recovery, and outpatient visits Information such as when to do it, advice information, etc. can be provided with high accuracy. If this information is of low accuracy, the user will be delayed in seeing the doctor and will be more concerned than necessary.
  • control unit 1 has been described as an IT device composed of a CPU, a memory, an HDD, and the like.
  • part or all of each part may be configured in a hardware circuit, and a gate generated based on the program language described by Verilog.
  • a hardware configuration such as a circuit may be used, or a hardware configuration using software such as a DSP (Digital Signal Processor) may be used. Of course, these may be combined as appropriate.
  • control unit 1 is not limited to the CPU, and may be any element that functions as a controller, and the processing of each unit described above may be performed by one or more processors configured as hardware.
  • each part may be a processor each of which is configured as an electronic circuit, or may be each circuit part of a processor composed of an integrated circuit such as an FPGA (Field Programmable Gate Array).
  • a processor composed of one or more CPUs may execute the functions of each unit by reading and executing the computer program recorded on the recording medium.
  • the controls mainly described in the flowchart can often be set by a program, and may be stored in a recording medium or a recording unit.
  • the recording method to the recording medium and the recording unit may be recorded at the time of product shipment, the distributed recording medium may be used, or may be downloaded via the Internet.
  • the operation in the present embodiment has been described using a flowchart, but the order of the processing procedures may be changed, or any step may be omitted. Steps may be added, and specific processing contents in each step may be changed.
  • the present invention is not limited to the above embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof.
  • various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components of all the components shown in the embodiment may be deleted. In addition, components across different embodiments may be combined as appropriate.

Abstract

Provided are an information transmission device and information transmission method whereby it is possible to take subject conditions into account to accurately ascertain state of health, and provide customized information, such as advice, that corresponds to the state of health. The present invention comprises: an ID identification unit 1b that acquires a time-series first test data group for a subject via a first device 2a, and acquires a time-series second test data group for the subject via a second device 2b that is capable of testing that enables interpolation of the first test data group; and an information provision unit 1c that uses the first test data group and the second test data group to determine transmission information to be provided to the subject. The first test data group and the second test data group complement each other in terms of test timing or test items.

Description

情報伝達装置および情報伝達方法Information transmission device and information transmission method
 本発明は、日常生活において取得可能な検査結果に応じてアドバイス等のカスタマイズ情報をユーザに提供することができる情報伝達装置および情報伝達方法に関する。 The present invention relates to an information transmission device and an information transmission method capable of providing a user with customized information such as advice according to an inspection result that can be obtained in daily life.
 近年インターネットが普及してきており、インターネットを利用することによって、ユーザの生活に密着した情報を容易に取得することができる。この取得した情報を利用することによって、個々のユーザに相応しい様々なカスタマイズ情報(有効情報)を生成し、このカスタマイズ情報を提供するサービスが増えてきている。例えば、健康食品などを紹介するサービスは、多くの人に共通する興味を引く情報であることから、この種のサービスが多く見受けられる。 The Internet has become widespread in recent years, and by using the Internet, it is possible to easily obtain information closely related to the user's life. By using this acquired information, various customized information (valid information) suitable for each user is generated, and services that provide this customized information are increasing. For example, services that introduce health foods are often interesting information that is common to many people, so this type of service is often found.
 また、ネットワーク環境が整備されてきていることから、病院などの専門機関の外部において、遠隔検査を行うことが種々提案されている。例えば、特許文献1には、センサチップと携帯電話をリーダ/ライタとして用い、公共の通信網を利用することによって、検査データを送信する遠隔検査方法が開示されている。そして、この特許文献1には、過去の検査データやその評価結果をデータベースに蓄積し、これらの情報を利用することが提案されている。 In addition, since the network environment has been improved, various proposals have been made to perform remote inspections outside specialized institutions such as hospitals. For example, Patent Document 1 discloses a remote inspection method for transmitting inspection data by using a sensor chip and a mobile phone as a reader / writer and using a public communication network. Then, in Patent Document 1, it is proposed to store past inspection data and its evaluation results in a database and use these information.
 また、特許文献2には、個人認証データと、排泄物撮影手段によって撮影された画像データと、を統合し、この統合したデータを通信手段によって送信する生体情報測定装置が開示されている。さらに、特許文献3には、検査に関するスタディリストを表示し、選択されたスタディにおける被検者の医療画像情報による医療画像を画像表示画面に表示し、ヒストリーブラウザを要求すると、被検者のスタディのリストを表すヒストリーブラウザを表示する医療情報の表示方法が開示されている。 Further, Patent Document 2 discloses a biometric information measuring device that integrates personal authentication data and image data photographed by excrement photographing means and transmits the integrated data by communication means. Further, in Patent Document 3, a study list related to an examination is displayed, a medical image based on the medical image information of the subject in the selected study is displayed on the image display screen, and when a history browser is requested, the study of the subject is requested. A method of displaying medical information that displays a history browser representing a list of medical information is disclosed.
特開2009-258886号公報JP-A-2009-258886 特開2014-031655号公報Japanese Unexamined Patent Publication No. 2014-031655 特許第5294947号公報Japanese Patent No. 5294947
 前述した特許文献1-3には、生体情報を取得し、この情報を遠隔に送信し利用することが記載されている。被検者が自覚症状を有さない場合には、病気にかかっていることや病気になる可能性を知ることができ有益である。ユーザは、複数の病院や検査施設に限らず、自宅や職場等において備えられている検査機器を用いて、検査を受ける場合がある。検査機器は、検査項目が同じであっても、種々の装置が利用される可能性があるが、前述の特許文献1-3には、この点について考慮されていない。 The above-mentioned Patent Document 1-3 describes that biometric information is acquired and this information is remotely transmitted and used. If the subject has no subjective symptoms, it is useful to know that he / she is ill and that he / she may become ill. The user may be inspected not only by a plurality of hospitals and inspection facilities but also by using inspection equipment provided at home or at work. As the inspection device, various devices may be used even if the inspection items are the same, but the above-mentioned Patent Documents 1-3 do not consider this point.
 本発明は、このような事情を鑑みてなされたものであり、対象者の状況を考慮することによって正確な健康状態を把握し、この健康状態に応じたアドバイス等のカスタマイズ情報を提供することが可能な情報伝達装置および情報伝達方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to grasp an accurate health condition by considering the situation of the subject and to provide customized information such as advice according to the health condition. It is an object of the present invention to provide a possible information transmission device and information transmission method.
 上記目的を達成するため第1の発明に係る情報伝達装置は、第1の機器によって対象者の時系列的な第1の検査データ群を取得する第1の検査データ取得部と、上記第1の検査データ群を補間できるような検査が可能な第2の機器によって上記対象者の時系列的な第2の検査データ群を取得する第2の検査データ取得部と、上記第1の検査データ群と上記第2の検査データ群を用いて、上記対象者に提供する伝達情報を決定する伝達情報決定部と、を有し、上記第1の検査データ群と、上記第2の検査データ群は、互いに検査タイミングまたは検査項目を補っている。 In order to achieve the above object, the information transmission device according to the first invention includes a first inspection data acquisition unit that acquires a time-series first inspection data group of a subject by a first device, and the first inspection data acquisition unit. A second inspection data acquisition unit that acquires a time-series second inspection data group of the subject by a second device capable of performing an inspection capable of interpolating the inspection data group of the above, and the first inspection data. It has a transmission information determination unit that determines transmission information to be provided to the subject by using the group and the second inspection data group, and has the first inspection data group and the second inspection data group. Complement each other's inspection timing or inspection items.
 第2の発明に係る情報伝達装置は、上記第1の発明において、上記伝達情報決定部は、複数の機器によって取得された検査データ群の変化パターンに従って学習された推論モデルに従って、上記伝達情報を決定する。
 第3の発明に係る情報伝達装置は、上記第1の発明において、上記伝達情報決定部は、上記第1の機器によって取得された第1の検査データ群と、上記第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した検査データ群を入力として推論した時の信頼性を算出し、該信頼性に従って上記伝達情報を決定する。
 第4の発明に係る情報伝達装置は、上記第3の発明において、上記伝達情報決定部は、上記検査データ群ごとに補正する際に、当該検査データ群に含まれるデータのそれぞれに共通する数値に対して四則演算を行う。
The information transmission device according to the second invention, in the first invention, the transmission information determination unit transmits the transmission information according to an inference model learned according to a change pattern of a test data group acquired by a plurality of devices. decide.
Regarding the information transmission device according to the third invention, in the first invention, the transmission information determination unit is acquired by the first inspection data group acquired by the first device and the second device. The second inspection data group is corrected for each of the first and second inspection data groups, the reliability when the corrected inspection data group is inferred as an input is calculated, and the above transmission is performed according to the reliability. Determine the information.
The information transmission device according to the fourth invention is a numerical value common to each of the data included in the inspection data group when the transmission information determination unit corrects each inspection data group in the third invention. Performs four arithmetic operations on.
 第5の発明に係る情報伝達装置は、上記第1の発明において、上記伝達情報決定部は、上記第1の機器によって取得された第1の検査データ群と、上記第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した複数の検査データ群を1つの検査データ群に合体し、この合体した検査データ群を推論モデルに入力することによって推論を行い、推論結果に基づいて上記伝達情報を決定する。
 第6の発明に係る情報伝達装置は、上記第1の発明において、上記伝達情報決定部は、上記第1の機器によって取得された第1の検査データ群と、上記第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した複数の検査データ群ごとにそれぞれ推論モデルに入力し、各推論モデルによる推論結果を、総合的に判定し、この判定結果に基づいて上記伝達情報を決定する。
Regarding the information transmission device according to the fifth invention, in the first invention, the transmission information determination unit is acquired by the first inspection data group acquired by the first device and the second device. The second inspection data group is corrected for each of the first and second inspection data groups, and the plurality of corrected inspection data groups are combined into one inspection data group, and the combined inspection data group is combined. Inference is performed by inputting to the inference model, and the above-mentioned transmission information is determined based on the inference result.
Regarding the information transmission device according to the sixth invention, in the first invention, the transmission information determination unit is acquired by the first inspection data group acquired by the first device and the second device. The second inspection data group is corrected for each of the first and second inspection data groups, and each of the corrected plurality of inspection data groups is input to the inference model, and the inference result by each inference model is displayed. A comprehensive judgment is made, and the above-mentioned transmission information is determined based on the judgment result.
 第7の発明に係る情報伝達装置は、上記第1の発明において、上記第1、第2の検査データ取得部は、上記対象者からの検査データ群であるか、上記対象者以外の者からの検査データ群であるかを判定し、上記対象者からの検査データ群である場合に、上記第1の検査データ群または上記第2の検査データ群として取得する。 Regarding the information transmission device according to the seventh invention, in the first invention, the first and second inspection data acquisition units are either the inspection data group from the subject or a person other than the subject. If it is the inspection data group from the subject, it is acquired as the first inspection data group or the second inspection data group.
 第8の発明に係る情報伝達装置は、上記第1ないし第7の発明において、上記第1、第2の検査データ群は、排便時用の色センサ、形状センサ、硬度センサ、嗅覚センサ(線虫や動物の反応判定を含む)、ガス成分センサ、特定の試薬添加時の色変化検出センサ、拡大観察画像による形状判定のいずれかの出力結果の1つに従って得られたデータである。 The information transmission device according to the eighth invention is the first to seventh inventions, wherein the first and second inspection data groups are a color sensor, a shape sensor, a hardness sensor, and an olfactory sensor (line) for defecation. The data is obtained according to one of the output results of (including the reaction determination of insects and animals), the gas component sensor, the color change detection sensor when a specific reagent is added, and the shape determination by the magnified observation image.
 第9の発明に係る情報伝達方法は、第1の機器によって対象者の時系列的な第1の検査データ群を取得し、上記第1の検査データ群を補間できるような検査が可能な第2の機器によって上記対象者の時系列的な第2の検査データ群を取得し、上記第1の検査データ群と上記第2の検査データ群を用いて、上記対象者に提供する伝達情報を決定し、上記第1の検査データ群と、上記第2の検査データ群は、互いに検査タイミングまたは検査項目を補っている。 The information transmission method according to the ninth invention is capable of performing an inspection capable of acquiring a time-series first inspection data group of a subject by a first device and interpolating the first inspection data group. The second inspection data group in time series of the subject is acquired by the second device, and the transmission information to be provided to the subject is transmitted using the first inspection data group and the second inspection data group. Determined, the first inspection data group and the second inspection data group complement each other's inspection timing or inspection item.
 本発明によれば、対象者の状況を考慮することによって正確な健康状態を把握し、この健康状態に応じたアドバイス等のカスタマイズ情報を提供することが可能な情報伝達装置および情報伝達方法を提供することができる。 According to the present invention, an information transmission device and an information transmission method capable of grasping an accurate health condition by considering the situation of a subject and providing customized information such as advice according to the health condition are provided. can do.
本発明の一実施形態に係る情報伝達システムの構成を示すブロック図である。It is a block diagram which shows the structure of the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムにおいて、対象者の検査データの時系列的変化を示すグラフである。It is a graph which shows the time-series change of the inspection data of a subject in the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムにおいて、対象者の検査データを測定する機器が複数ある場合における、対象者の検査データの時系列的変化を示すグラフである。It is a graph which shows the time-series change of the inspection data of a subject in the case where there are a plurality of devices which measure the inspection data of a subject in the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムにおいて、検査結果送信の動作の一例を示すフローチャートであるIt is a flowchart which shows an example of the operation of the inspection result transmission in the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムにおいて、検査結果送信の動作の他の例を示すフローチャートである。It is a flowchart which shows another example of the operation of the inspection result transmission in the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムにおいて、履歴データを合わせて推論の動作を示すフローチャートである。It is a flowchart which shows the operation of inference by combining the historical data in the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムにおいて、推論仕様作成の推論の動作を示すフローチャートである。It is a flowchart which shows the operation of the inference of making an inference specification in the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムにおいて、推論モデル作成の動作を示すフローチャートである。It is a flowchart which shows the operation of the inference model creation in the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムの変形例において、対象者の検査データを測定する機器が複数ある場合における、対象者の検査データの時系列的変化を示すグラフである。It is a graph which shows the time-series change of the inspection data of a subject in the case where there are a plurality of devices which measure the inspection data of a subject in the modification of the information transmission system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る情報伝達システムの変形例において、推論仕様作成の推論の動作を示すフローチャートである。It is a flowchart which shows the operation of the inference of making an inference specification in the modification of the information transmission system which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態として、情報伝達システムに本発明を適用した例について説明する。本実施形態においては、対象者の状況を考慮することによって正確な健康状態を把握し、カスタマイズ情報を提供する例として、日々、健康状態に関する検査データを第1機器や第2機器等によってモニタリングし、これらの情報に基づいて、健康に関する情報を提供することが可能な情報伝達システムを説明する。この情報伝達システムは、日々、複数の機器を用いて、対象者の健康状態に関する検査データをモニタリングしている。情報収集を単独の機器でしか行わないと、その機器でしか情報が集まらないという制約があり、集まる情報が限られてしまう。また、単独の機器であると、その機器、或いはその機器の使用環境、設置環境など機器特有の制約で誤差などが発生した場合、判定時にその誤差等が影響してしまう。そこで、本実施形態においては、複数の機器の機器から検査データを収集し、この検査データを合わせて判断するようにしている。この結果、単独の機器では精度があげられなかった状況を対策し、対象者の正確な健康状態を把握するようにしている。 Hereinafter, an example in which the present invention is applied to an information transmission system will be described as an embodiment of the present invention. In the present embodiment, as an example of grasping an accurate health condition by considering the situation of the subject and providing customized information, daily inspection data on the health condition is monitored by a first device, a second device, or the like. , An information transmission system capable of providing health-related information based on this information will be described. This information transmission system monitors test data on the health condition of the subject using multiple devices on a daily basis. If information is collected only by a single device, there is a restriction that information can be collected only by that device, and the information that can be collected is limited. Further, in the case of a single device, if an error occurs due to the device, the usage environment of the device, the installation environment, or other restrictions peculiar to the device, the error or the like affects at the time of determination. Therefore, in the present embodiment, the inspection data is collected from the devices of a plurality of devices, and the inspection data is combined to make a judgment. As a result, we are trying to grasp the accurate health condition of the subject by taking measures against the situation where the accuracy could not be improved by a single device.
 すなわち、複数の機器によって検査データを取得することは、同一の機器を用いての検査を強いる場合に比較し、ユーザに束縛の負担がなく、データ取得が容易であり、無意識の内にデータを提供することが可能となって便利である。また、様々な状況下において検査データを取得できることから、データ量を増やすことが可能である。例えば、職場でのみ血圧が上がるような、環境に依存したストレスや、季節や一日の経緯に依存した体調変化などを取得するには、様々な機器のデータを有効活用することが好ましい。つまり、様々な機器のデータを有効活用するために、データを検査データ群として扱うことによって、より詳しくユーザの健康状態を把握することが可能となる。また、特定の人の特定の時間に特定された機器から取得した情報に従って、共通の時間軸上にいずれの機器からの情報であるかを色分け等によって識別を可能とし、情報値の推移を示すグラフを作成すれば、その人の健康状態の傾向を把握することが可能となる。 That is, acquiring inspection data using a plurality of devices is easier than the case of forcing an inspection using the same device, without the burden of binding on the user, and the data acquisition is easy, and the data is unknowingly acquired. It is convenient because it can be provided. In addition, since inspection data can be acquired under various circumstances, it is possible to increase the amount of data. For example, in order to acquire environment-dependent stress such that blood pressure rises only in the workplace and physical condition changes depending on the season and the course of the day, it is preferable to effectively utilize the data of various devices. That is, in order to effectively utilize the data of various devices, by treating the data as a group of inspection data, it is possible to grasp the health condition of the user in more detail. In addition, according to the information acquired from the device specified at a specific time of a specific person, it is possible to identify which device the information is from on a common time axis by color coding or the like, and the transition of the information value is shown. By creating a graph, it is possible to grasp the tendency of a person's health condition.
 つまり、一般的なグラフでも、同じ項目のデータ変化を表示しただけのものと比較すると、同じグラフ上に、異なる色で異なる項目のデータ変化を併せて表示したものの方が、包括的な情報を得られる場合がある。そこで、第1の検査データ群と、第2の検査データ群を、互いに検査タイミングまたは検査項目を補うように取得し、識別可能に総合的(comprehensive)、包括的な表現で表せば、この表現を用いて判断や判定することが可能となり、またこの表現用いて、推論モデルによって推論することが可能となる。推論結果を得てから、この推論結果に基づいて判断・判定し、この判断・判定結果を、別の制御に繋げてもよい。判断、判定はルールベースとかパターンマッチングの方法を採用してもよい。深層学習などを用いる推論の仕方としては、単純には、グラフそのものを画像として表し、これを教師データとして用いて学習した結果の推論モデルを用意し、この推論モデルに同様のグラフを入力し、推論を行えばよい。 In other words, compared to a general graph that only displays the data changes of the same item, the one that displays the data changes of different items in different colors on the same graph provides more comprehensive information. May be obtained. Therefore, if the first inspection data group and the second inspection data group are acquired so as to complement each other's inspection timing or inspection item, and can be expressed in a comprehensive and comprehensive expression in an identifiable manner, this expression is used. It is possible to make a judgment or judgment using, and it is possible to make an inference by an inference model using this expression. After obtaining the inference result, a judgment / judgment may be made based on the inference result, and this judgment / judgment result may be connected to another control. Judgment and judgment may adopt a rule-based method or a pattern matching method. As a method of inference using deep learning, simply, the graph itself is represented as an image, an inference model of the result of learning using this as teacher data is prepared, and a similar graph is input to this inference model. You just have to make inferences.
 ただし、この場合、複数の機器の機差や仕様の差、設置環境等によって、測定結果のずれが生じる可能性がある。そこで、この測定ズレを対策し、データ量が多いことのメリットを活かしている。また、検査時のユーザの状況を考慮し、その状況を考慮してのアドバイス等のカスタマイズ情報を生成し、このカスタマイズ情報をユーザに知らせることを可能にしている。 However, in this case, there is a possibility that the measurement results may deviate due to differences in the equipment, specifications, installation environment, etc. of multiple devices. Therefore, we take measures against this measurement deviation and take advantage of the large amount of data. In addition, it is possible to consider the situation of the user at the time of inspection, generate customized information such as advice in consideration of the situation, and inform the user of this customized information.
 また、本実施形態に係る情報伝達システムにおいて、異なる機器でそれぞれ取得した時系列的な検査データからなる検査データ群は、機器や環境に依存するため個々の検査データのレベルに相違があっても、同様の生体情報の時間的な変化パターンとしてみれば、同一人のデータである限り、同じ傾向になる。そこで、複数の機器で検査を行った場合の検査データのズレは、各検査データ群の個々のデータのレベルが略一致するように、各検査データ群に対して、加減算演算や乗除算演算によって補正を行って解消している(例えば、図3のグラフ34参照)。この補正を行うことによって、複数の検査データ群を単一の検査データ群として扱うことできる。このため、データを増加させ、対象者の正確な健康状態を把握することが可能となる。 Further, in the information transmission system according to the present embodiment, the inspection data group consisting of time-series inspection data acquired by different devices depends on the device and the environment, so even if there is a difference in the level of each inspection data. As long as the data of the same person is used, the tendency is the same when viewed as a similar temporal change pattern of biological information. Therefore, the deviation of the inspection data when the inspection is performed by a plurality of devices is performed by addition / subtraction calculation or multiplication / division calculation for each inspection data group so that the levels of the individual data of each inspection data group are substantially the same. The correction is performed to eliminate the problem (see, for example, Graph 34 in FIG. 3). By performing this correction, a plurality of inspection data groups can be treated as a single inspection data group. Therefore, it is possible to increase the data and grasp the accurate health condition of the subject.
 また、機器毎にデータの意味合いを変えたり、データ重みづけに差異を持たせたりするなどの工夫によって、機器の差異を軽減することが可能となる。対象とする機器が増えれば、時系列に並べて評価する時のデータ数を増やしながら、個々の機器の誤差の影響を軽減することが可能となる。また、どのデータ(時間情報も含む)がどの機器由来であるかが分かれば、ある機器が、特定のタイミングで何かの要因で信頼性が低くなったとしても、その特定タイミング以前のデータのみを採用し、この採用されたデータを用いて判定するような工夫が出来る。例えば、特定の機器の不具合などで、異常なデータが出るようになった場合、その機器を利用するユーザに間違った情報提供がなさせるような問題が発生しうるが、他の機器の結果を参照することによって、この問題を防止することが出来る。また、ユーザがどの機器を利用する頻度が高いかなどの判断が出来る場合は、専らその機器だけで判断しながら、必要に応じて他の機器を用いた検査結果を反映するような使い方も可能となる。この場合も、この「反映」することによって、機器固有の問題を防止することが可能となる。 In addition, it is possible to reduce the difference between devices by changing the meaning of data for each device and giving a difference in data weighting. If the number of target devices increases, it becomes possible to reduce the influence of errors of individual devices while increasing the number of data when evaluating in chronological order. Also, if you know which data (including time information) comes from which device, even if a device becomes unreliable at a specific timing for some reason, only the data before that specific timing Can be devised to make a judgment using the adopted data. For example, if abnormal data is output due to a malfunction of a specific device, a problem may occur that causes the user who uses that device to provide incorrect information, but the results of other devices may be reported. By reference, this problem can be prevented. In addition, if it is possible to determine which device the user frequently uses, it is possible to use it so that the inspection results using other devices are reflected as necessary while making a judgment solely on that device. It becomes. In this case as well, by "reflecting" this, it is possible to prevent problems specific to the device.
 また、本実施形態に係る情報伝達システムにおいて、複数の機器で検査を行った場合の検査データのズレは、各検査データ群の個々のデータのレベルが略一致するように、各検査データ群に対して、加減算演算や乗除算演算によって補正を行い、この補正した検査データ群を推論モデルに入力し、このときの推論の信頼性を算出している(例えば、図10のS73、S77参照)。補正演算における補正量を少しずつ変化させると、信頼性も少しずつ変化する。情報伝達システムは、この信頼性が最も高いときの推論結果を採用する。 Further, in the information transmission system according to the present embodiment, the deviation of the inspection data when the inspection is performed by a plurality of devices is applied to each inspection data group so that the levels of the individual data of each inspection data group are substantially the same. On the other hand, correction is performed by addition / subtraction calculation or multiplication / division calculation, and the corrected inspection data group is input to the inference model to calculate the reliability of the inference at this time (see, for example, S73 and S77 in FIG. 10). .. If the amount of correction in the correction calculation is changed little by little, the reliability also changes little by little. The information transmission system adopts the inference result when this reliability is the highest.
 また、本実施形態に係る情報伝達システムにおいて、補正演算における補正量を少しずつ変化させながら、信頼性を算出し、この信頼性が最も高いときの推論結果を各検査データ群の推論結果として採用する。情報伝達システムは、各推論結果に基づいて、総合的に判断し、この判断結果を推論結果とする(例えば、図9参照)。 Further, in the information transmission system according to the present embodiment, the reliability is calculated while changing the correction amount in the correction calculation little by little, and the inference result when the reliability is the highest is adopted as the inference result of each inspection data group. do. The information transmission system makes a comprehensive judgment based on each inference result, and uses this judgment result as the inference result (see, for example, FIG. 9).
 本実施形態における対象者は、再検査によっては、患者となるかもしれない者である。また、この対象者は、再検査の結果によっては、健康に自信を取り戻し、病気の心配をせず、さらに日々の暮らしを楽しむことができる者でもある。また、簡単な生活の改善や治療などで、同様に健康体となることが出来る者でもある。 The subject in this embodiment is a person who may become a patient depending on the re-examination. In addition, depending on the results of the re-examination, this subject is also a person who can regain self-confidence in health, do not have to worry about illness, and enjoy daily life. In addition, he is also a person who can become healthy by simple improvement and treatment of life.
 本実施形態に係る情報伝達システムは、例えば、サーバによって構成されるが、サーバと情報のやり取りが可能なパーソナルコンピュータ、スマートフォン等の携帯情報機器等によって構成してもよい。 The information transmission system according to the present embodiment is composed of, for example, a server, but may be configured by a personal computer capable of exchanging information with the server, a mobile information device such as a smartphone, or the like.
 また、本実施形態においては、対象者への伝達情報を決定するにあたって、対象者の検査結果、またこの検査結果に基づいて更に検査等のために必要となる設備、この設備のある施設に基づいて、検索および/または推論を行う。この検索・推論を行うために、設備を有する施設を記憶するデータベース(DB)を設けておくとよい。また、伝達情報を提供するにあたって、施設名や電話やメール、地図等を含むアクセス方法、診察時間や空き時間、費用概算等の情報を含んでもよい。また、施設は、一つに限らず、複数であってもよい。 Further, in the present embodiment, in determining the information to be transmitted to the target person, the inspection result of the target person, the equipment required for further inspection based on the inspection result, and the facility with this equipment are used. To search and / or infer. In order to perform this search / inference, it is advisable to provide a database (DB) for storing facilities having facilities. In addition, in providing the transmitted information, information such as the facility name, access method including telephone, e-mail, map, etc., consultation time, free time, cost estimation, etc. may be included. Further, the number of facilities is not limited to one, and may be multiple.
 次に、図1を用いて、本発明の一実施形態にかかわる情報伝達システムの構成を説明する。この情報伝達システムは、制御部1、第1機器2a、第2機器2b、第3機器3、端末4、学習部5、学習依頼部6、推論エンジン7、データベース(DB)部8、関連検査機関(医療機関等を含む)9とからなる。これらの各部の内、制御部1は、サーバ内に配置され、第1機器2a、第2機器2b、第3機器3、端末4、学習部5、学習依頼部6、推論エンジン7、DB部8、関連検査機関9は、インターネット等のネットワークを通じてサーバに接続可能としている。しかし、本実施形態は、この構成に限定されることなく、例えば、制御部1、第1機器2a、第2機器2b、第3機器3、学習部5、学習依頼部6、推論エンジン7、DB部8の内のいずれか1つまたは複数が、サーバ内に配置され、他は別のサーバやパーソナルコンピュータ等の電子機器に、配置されていてもよい。更に、関連検査機関9が、サーバの機能を有してもよい。 Next, the configuration of the information transmission system according to the embodiment of the present invention will be described with reference to FIG. This information transmission system includes a control unit 1, a first device 2a, a second device 2b, a third device 3, a terminal 4, a learning unit 5, a learning request unit 6, an inference engine 7, a database (DB) unit 8, and a related inspection. It consists of 9 institutions (including medical institutions). Of these units, the control unit 1 is arranged in the server, and is the first device 2a, the second device 2b, the third device 3, the terminal 4, the learning unit 5, the learning request unit 6, the inference engine 7, and the DB unit. 8. The related inspection organization 9 can connect to the server through a network such as the Internet. However, the present embodiment is not limited to this configuration, and for example, the control unit 1, the first device 2a, the second device 2b, the third device 3, the learning unit 5, the learning request unit 6, the inference engine 7, and the like. Any one or more of the DB units 8 may be arranged in the server, and the others may be arranged in another server or an electronic device such as a personal computer. Further, the related inspection agency 9 may have a server function.
 制御部1は、本実施形態に係る情報伝達システムを制御するコントローラ(プロセッサ)であり、サーバ等や、ネットワークを通じて他の端末にファイルやデータなどを提供するCPU(Central Processor Unit)、メモリ、HDD(Hard Disc Drive)等から構成されているIT機器を想定している。しかし、制御部1は、この構成に限らず、小規模なシステムとして構築する場合は、パーソナルコンピュータのようなものでも構成は可能である。制御部1は、各種のインターフェース回路を有し、他の機器と連携することができ、プログラムによってさまざまな演算制御が可能である。 The control unit 1 is a controller (processor) that controls an information transmission system according to the present embodiment, and is a CPU (Central Processor Unit), a memory, and an HDD that provide files and data to a server or the like or other terminals via a network. It is assumed that the IT device is composed of (Hard Disc Drive) and the like. However, the control unit 1 is not limited to this configuration, and when it is constructed as a small-scale system, it can be configured with something like a personal computer. The control unit 1 has various interface circuits, can cooperate with other devices, and can perform various arithmetic controls by a program.
 制御部1は、連携する各装置から情報を受け取り、情報を整理し、必要な情報を生み出し、この情報をユーザに提供する。制御部1は、連携する各装置に依頼を出力し、また各装置を操作するような機能も有している。本実施形態においては、システムの自由度の高さや使い勝手を想定し、第1機器2a等の機器や対象者(ユーザともいう)が有する端末4等と制御部1の間は、無線通信や有線通信で接続可能となっている。このための通信としては、無線LANや携帯電話通信網を想定し、状況に応じてブルートゥース(登録商標)や赤外通信などの近距離無線などを併用してもよい。通信回路、アンテナや接続端子等からなる通信部の記載は煩雑になるので図1においては省略してあるが、図中の通信を示す矢印の部分には、通信回路等を有する通信部が設けられている。 The control unit 1 receives information from each linked device, organizes the information, generates necessary information, and provides this information to the user. The control unit 1 also has a function of outputting a request to each of the linked devices and operating each device. In the present embodiment, assuming a high degree of freedom and usability of the system, wireless communication or wire communication is performed between the device such as the first device 2a or the terminal 4 or the like owned by the target person (also referred to as a user) and the control unit 1. It is possible to connect by communication. As the communication for this purpose, a wireless LAN or a mobile phone communication network is assumed, and short-range wireless communication such as Bluetooth (registered trademark) or infrared communication may be used in combination depending on the situation. The description of the communication unit including the communication circuit, the antenna, the connection terminal, etc. is complicated, so it is omitted in FIG. 1, but the communication unit having the communication circuit, etc. is provided in the part of the arrow indicating the communication in the figure. Has been done.
 制御部1は、通信制御部1a、ID判定部1b、情報提供部1c、推論モデル仕様決定部1d、推論依頼部1e、検索部1fを有する。これらの各部は、制御部1内のCPUおよびプログラム等による、ソフトウエアによって実現してもよく、またハードウエア回路によって実現してもよく、またソフトウエアとハードウエア回路を協働させることによって実現してもよい。また、図1において、制御部1内の各部は、互いに連携してそれぞれの機能を果たすため信号の方向は省略しているが、これは、別途、フローチャートで説明する。例えば、図5のS1のようなステップにおいて、ID判定部1bは、第1機器2a、第2機器2b等から、同一のユーザ毎に情報を収集している。 The control unit 1 includes a communication control unit 1a, an ID determination unit 1b, an information provision unit 1c, an inference model specification determination unit 1d, an inference request unit 1e, and a search unit 1f. Each of these parts may be realized by software by a CPU, a program, or the like in the control unit 1, may be realized by a hardware circuit, or may be realized by coordinating software and a hardware circuit. You may. Further, in FIG. 1, since each unit in the control unit 1 cooperates with each other to perform each function, the direction of the signal is omitted, but this will be described separately with a flowchart. For example, in a step like S1 in FIG. 5, the ID determination unit 1b collects information from the first device 2a, the second device 2b, and the like for each of the same users.
 通信制御部1aは、通信回路等を有し、第1機器2a、第2機器2b、第3機器3、端末4、学習部5、学習依頼部6、推論エンジン7、データベース(DB)部8、および関連検査機関9内に設けられた通信部と、データ等の送受信を行う。第1、第2機器2a、2b、第3機器3、端末4等の各機器・各部もそれぞれ通信部を有しているが、図1においては煩雑になるため、図示を省略している。 The communication control unit 1a has a communication circuit and the like, and has a first device 2a, a second device 2b, a third device 3, a terminal 4, a learning unit 5, a learning request unit 6, an inference engine 7, and a database (DB) unit 8. , And the communication unit provided in the related inspection organization 9, and sends and receives data and the like. Each device / part such as the first and second devices 2a and 2b, the third device 3, and the terminal 4 also has a communication unit, but the illustration is omitted in FIG. 1 because it is complicated.
 ID判定部1bは、第1機器2a等から、同一のユーザ毎に情報を収集する。第1機器2a、第2機器2b、第3機器3、関連検査機関9によって情報が取得された個人を特定するため、個人毎にIDが割り当てられている。本実施形態においては、ユーザ個々のデータを取り扱うので、どのユーザの情報を受け取って、どのユーザにガイドを出すかの管理は、ID判定部1bが行っている。この特定ユーザの判定は、第1機器2a、第2機器2b、第3機器3が生体認証機能を有したり、ユーザが端末4によってIDを入力したり、ユーザが第1、第2機器2a、2b内の通信部を通じてIDを送信したり、また端末4が固有のコードを読み取ったりすることによって行う。なお、個人情報を保護するために、必要な部分を暗号化することによって管理を厳しくするが、これらは汎用的な技術であることから、詳しい説明を省略する。 The ID determination unit 1b collects information for each same user from the first device 2a and the like. An ID is assigned to each individual in order to identify the individual whose information has been acquired by the first device 2a, the second device 2b, the third device 3, and the related inspection organization 9. In the present embodiment, since the data of each user is handled, the ID determination unit 1b manages which user's information is received and which user is given the guide. In the determination of the specific user, the first device 2a, the second device 2b, and the third device 3 have a biometric authentication function, the user inputs an ID by the terminal 4, and the user uses the first and second devices 2a. This is performed by transmitting an ID through the communication unit in 2b or by reading a unique code from the terminal 4. In addition, in order to protect personal information, management will be strict by encrypting the necessary parts, but since these are general-purpose technologies, detailed description will be omitted.
 各機器のIDとしては、その機器の機種名に関する情報やどの個体であるかを示す固有の情報を含むようにしてもよい。機種名から搭載するセンサの機能、性能などを、また個体情報から設置場所や利用環境などを分かるようにしてもよく、またこれらの情報を、ネットワークなどを通じて検索可能にしてもよい。機種名が分かれば、類似機器の情報を判定することが可能であり、また設置場所、利用環境から、緯度経度や室内室外、季節、天候、温度特性などを判定し、この判定結果を加味して、その機器の出力情報の補正を行ってもよい。 The ID of each device may include information on the model name of the device and unique information indicating which individual it is. The function and performance of the sensor to be mounted may be known from the model name, and the installation location and usage environment may be known from the individual information, and such information may be searchable through a network or the like. If the model name is known, it is possible to determine information on similar devices, and from the installation location and usage environment, determine latitude / longitude, indoor / outdoor, season, weather, temperature characteristics, etc., and take this determination result into consideration. Then, the output information of the device may be corrected.
 ID判定部1bは、第1の機器によって対象者の時系列的な第1の検査データ群を取得する第1の検査データ取得部として機能する(例えば、図4のS101、図5のS1参照)。また、ID判定部1bは、上記第1の検査データ群を補間できるような検査が可能な第2の機器によって対象者の時系列的な第2の検査データ群を取得する第2の検査データ取得部として機能する(例えば、図4のS105、図5のS1参照)。ID判定部1bは、第1の機器と同様の検査が可能な第2機器によって、対象者の時系列的な第2の検査データ群を取得する第2の検査データ取得部として機能する。第1の検査データ群と、第2の検査データ群は、互いに検査タイミングまたは検査項目を補っている。 The ID determination unit 1b functions as a first inspection data acquisition unit that acquires a time-series first inspection data group of the subject by the first device (see, for example, S101 in FIG. 4 and S1 in FIG. 5). ). Further, the ID determination unit 1b acquires the second inspection data group in time series of the subject by the second device capable of performing the inspection so as to interpolate the first inspection data group. It functions as an acquisition unit (see, for example, S105 in FIG. 4 and S1 in FIG. 5). The ID determination unit 1b functions as a second inspection data acquisition unit that acquires a time-series second inspection data group of the subject by the second apparatus capable of performing the same inspection as the first apparatus. The first inspection data group and the second inspection data group complement each other's inspection timing or inspection item.
 第1の検査データ取得部および第2の検査データ取得部は、対象者からの検査データ群であるか、対象者以外の者からの検査データ群であるかを判定し、対象者からの検査データ群である場合に、第1の検査データ群または第2の検査データ群として取得する。この取得した第1の検査データ群と第2の検査データ群は、記録部に記録される。対象者以外の検査データ群は、その対象者以外の人の健康情報と紐づけて教師データ化できるように記録しておいてもよい。 The first inspection data acquisition unit and the second inspection data acquisition unit determine whether it is an inspection data group from a target person or an inspection data group from a person other than the target person, and inspect from the target person. If it is a data group, it is acquired as a first inspection data group or a second inspection data group. The acquired first inspection data group and second inspection data group are recorded in the recording unit. The test data group other than the target person may be recorded so that it can be converted into teacher data by associating with the health information of the person other than the target person.
 情報提供部1cは、ユーザに正しい情報を提供するために、ユーザの情報を取得(他の装置が取得してあった結果を参照してもよい)する機能を有する。また、情報提供部1cは、第1機器2a等や関連検査機関9から取得したユーザ(IDによって特定される)の検査データを取得する。さらに情報提供部1cは取得した検査データや、関連検査機関9から取得した種々の情報、およびDB部8に記憶された保有機器に関する情報やユーザのプロフィール情報等を用いて、ユーザの健康状態を判断する。健康状態としては、現在かかっている疾病や、将来、発症する可能性のある疾病を含み、健康状態を判断すると、ユーザに健康状態に関連する情報を提供する。また、ユーザの疾病等を判断した場合には、必要に応じて検査や治療を受けるべき施設に関する情報をユーザに提供する。 The information providing unit 1c has a function of acquiring user information (may refer to the result acquired by another device) in order to provide correct information to the user. In addition, the information providing unit 1c acquires the inspection data of the user (specified by the ID) acquired from the first device 2a and the like and the related inspection organization 9. Further, the information providing unit 1c uses the acquired inspection data, various information acquired from the related inspection institution 9, information on the possessed device stored in the DB unit 8, user profile information, and the like to determine the user's health condition. to decide. The health condition includes a disease that is currently present and a disease that may develop in the future, and when the health condition is determined, the user is provided with information related to the health condition. In addition, when the user's illness or the like is determined, information on the facility to be examined or treated is provided to the user as necessary.
 また、特定の状況の利用者の健康状態を確認するために、制御部1が利用者のID等によって、現在の通院状況や、処方薬などの情報、過去の健康診断結果などを、関連検査機関9に照会できるようにしておけば、機器データとの関連付けの判定が容易になる。これは、端末4を操作するユーザがその連携を許可したり、また関連検査機関(のIT機器)9を操作する医師が、連携を許諾するような操作したりする等によって、セキュリティ上の問題を対策することが出来る。 In addition, in order to confirm the health condition of the user in a specific situation, the control unit 1 checks the current hospital visit status, information such as prescription drugs, past health examination results, etc. by the user's ID and the like. If the institution 9 can be referred to, it becomes easy to determine the association with the device data. This is a security problem because the user who operates the terminal 4 permits the cooperation, or the doctor who operates the related inspection institution (IT device) 9 permits the cooperation. Can be dealt with.
 すなわち、情報提供部1cは、ユーザに健康に関する情報、例えば、いつ頃、検査や治療を受けるために施設を訪問することになるという情報や、検査や治療を受けるに適した施設を推奨するための情報を提供する。情報提供部1cは、第1機器2a等や関連検査機関9から送信されてきた検査データを取得する。このデータは、後述するように、時間情報が付された検査データ(時系列情報)であり、図2および図3に示すようなグラフにできるようなデータ構造で蓄積される。なお、本実施形態においては、第1機器2a等や関連検査機関9等における機器からの情報を用いて制御部1がユーザへ情報提供を行うことを想定しているが、関連検査機関9を有するサーバが、同様に情報を収集するような変形例であってもよい。 That is, the information providing unit 1c recommends information on health to the user, for example, information that when the user will visit the facility to receive the test or treatment, or a facility suitable for receiving the test or treatment. Provide information about. The information providing unit 1c acquires the inspection data transmitted from the first device 2a and the like and the related inspection organization 9. As will be described later, this data is inspection data (time series information) with time information, and is accumulated in a data structure that can be graphed as shown in FIGS. 2 and 3. In the present embodiment, it is assumed that the control unit 1 provides information to the user by using the information from the devices in the first device 2a and the like and the related inspection organization 9 and the like. The server may be a modified example in which information is collected in the same manner.
 また、これらの情報を提供するために、情報提供部1cは、第1機器2a、第2機器2b等から検査データを収集し、DB部8に記録する。第1機器2aや第2機器2b等によって、情報取得の頻度やデータ数は異なっていてもよい。つまり様々な機器で得られた特定の健康関連数値の増減が時系列で整理されており、機器を変えて測定した数値は機器ごとに整理が可能となっている。 Further, in order to provide such information, the information providing unit 1c collects inspection data from the first device 2a, the second device 2b, and the like, and records the inspection data in the DB unit 8. The frequency of information acquisition and the number of data may differ depending on the first device 2a, the second device 2b, and the like. In other words, the increase and decrease of specific health-related numerical values obtained with various devices are arranged in chronological order, and the numerical values measured by changing the devices can be arranged for each device.
 例えば、同じ血圧でも、ウェアラブルの簡易機器で測定した検査データと、催し物会場において専用装置によって測定した検査データは、分離可能に記録しておく。ウェアラブル機器はほぼ常に装着していると想定すると、一日の朝昼晩や食前食後、就寝前就寝後、起床前起床後において、状態に応じて増減する検査データが得られる。また、専用装置で測定したものは、単発的ではあるが、より高精度、あるいは、より付随情報がある形(検査員や、検査員聞き取りによる自覚症状など)でのデータが得られる。また、専用機器での測定の場合、わざわざ服を脱いだり、食事を抜いたり、専用の食事を取ったりして、正確に取得された検査データとなる。このような状況下では、測定する人体の位置や項目が人によって違うといった違いが少なく、機器の誤差も厳密に管理されており、絶対値を他の人と比較するうえでは適切な状況になっている。 For example, even if the blood pressure is the same, the test data measured by a wearable simple device and the test data measured by a dedicated device at the event venue are recorded separately. Assuming that the wearable device is worn almost all the time, test data that increases or decreases depending on the condition can be obtained in the morning, day and night, before meals, before bedtime, after bedtime, and before waking up. In addition, data measured with a dedicated device can be obtained in a form with higher accuracy or more incidental information (such as an inspector or a subjective symptom obtained by an inspector's hearing), although it is sporadic. In addition, in the case of measurement with a dedicated device, the test data is accurately obtained by taking off clothes, skipping meals, and eating a dedicated meal. Under such circumstances, there are few differences such as the position and items of the human body to be measured differ from person to person, and the error of the equipment is strictly controlled, so it is an appropriate situation to compare the absolute value with other people. ing.
 また、情報提供部1cは、ユーザの住所や勤務する場所における行動様式や食生活や就寝時間や食事のタイミングなど生活習慣等を、インターネット上において取得してもよく、この取得した情報も加味して、ユーザに提供する施設等の情報を生成してもよい。これらの情報の取得は、汎用または広く知られた技術で補完が可能である。これらの情報を取得することによって生成した施設等の情報のカスタマイズも、また、情報提供部1cが行ってもよい。この施設に関するプロフィール情報は、関連検査機関9から医療機関情報として取得する。 In addition, the information providing unit 1c may acquire lifestyle habits such as the user's address, behavioral style at the place of work, eating habits, bedtime, and meal timing on the Internet, and the acquired information is also taken into consideration. Therefore, information such as facilities to be provided to the user may be generated. The acquisition of this information can be complemented by general-purpose or well-known technology. The information providing unit 1c may also customize the information of the facility or the like generated by acquiring the information. Profile information about this facility is obtained as medical institution information from the related inspection institution 9.
 また、情報提供部1cは、推奨施設等の情報提供に当たって、第1機器2a等、関連検査機関9から収集した情報に加えて、DB部8に記憶されている保有機器等の情報も利用する。もちろん、このDB8の中に記録された情報は、DB部8以外の異なる記録部に記録されたものであってもよい。この場合には、図1におけるDB部は複数となるが、煩雑になるので省略している。情報提供部1cは、情報を提供するにあたって、種々の情報を集める。すなわち、情報提供部1cは、ユーザの検査データと、ユーザのプロフィール情報と、検査・医療機関ごとの保有機器情報を取得する取得部として機能する。 In addition, the information providing unit 1c uses the information of the possessed equipment, etc. stored in the DB unit 8 in addition to the information collected from the related inspection organizations 9 such as the first equipment 2a, etc., when providing the information of the recommended facilities, etc. .. Of course, the information recorded in the DB 8 may be recorded in a different recording unit other than the DB unit 8. In this case, there are a plurality of DB parts in FIG. 1, but they are omitted because they are complicated. The information providing unit 1c collects various kinds of information in providing the information. That is, the information providing unit 1c functions as an acquisition unit for acquiring the user's examination data, the user's profile information, and the possessed device information for each examination / medical institution.
 情報提供部1cは、第1の検査データ群と第2の検査データ群を用いて、対象者に提供する伝達情報を決定する伝達情報決定部として機能する(例えば、図4のS107、図5のS9、図10のS79等参照)。伝達情報決定部は、複数の機器によって取得された検査データ群の変化パターンに従って学習された推論モデルに従って、伝達情報を決定する(例えば、図4のS107、図5のS9、図10のS79等参照)。 The information providing unit 1c functions as a transmission information determination unit that determines transmission information to be provided to the target person by using the first inspection data group and the second inspection data group (for example, S107 in FIG. 4 and FIG. 5). S9, S79 in FIG. 10 and the like). The transmission information determination unit determines transmission information according to an inference model learned according to a change pattern of a test data group acquired by a plurality of devices (for example, S107 in FIG. 4, S9 in FIG. 5, S79 in FIG. 10 and the like. reference).
 伝達情報決定部は、第1の機器によって取得された第1の検査データ群と、第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した検査データ群を入力し、このときの推論結果の信頼性を算出し、該信頼性に従って伝達情報を決定する(例えば、図3、図4のS107、図5のS9、図9、図10参照)。伝達情報決定部は、検査データ群ごとに補正する際に、当該検査データ群に含まれるデータのそれぞれに共通する数値に対して四則演算を行う。 The transmission information determination unit selects the first inspection data group acquired by the first device and the second inspection data group acquired by the second device for each of the first and second inspection data groups. The corrected inspection data group is input to, the reliability of the inference result at this time is calculated, and the transmission information is determined according to the reliability (for example, S107 in FIGS. 3 and 4 and S9 in FIG. 5). , FIG. 9 and FIG. 10). When making corrections for each inspection data group, the transmission information determination unit performs four arithmetic operations on the numerical values common to each of the data included in the inspection data group.
 四則演算としては、例えば、同様の生体情報を取得する機器の場合、機器別の補正をしながら、推論の信頼性を算出し、信頼性が高いものを推論結果としてもよい。四則演算を行うにあたっては、機器別の時系列データに特定の四則演算の定数を少しずつ変えながら行う。この処理によって、誤差を補正した状況で信頼性が高くなるので、正しい推論が可能となる。このような工夫によって、同じような生体情報を取得する機器であれば、その感度や使用環境によって左右されうる誤差、ノイズにかかわらず、信頼性を確保した情報提供が可能となる。また、同じような生体情報である必要は必ずしもなく、脈拍と心拍、呼吸数といった異なるデータであっても、データの大小関係を含めて類似の変化をするものであれば、補正と信頼性判定によって、総合的に正しい推論が可能となる。 As the four arithmetic operations, for example, in the case of a device that acquires the same biological information, the reliability of the inference may be calculated while making corrections for each device, and the highly reliable one may be used as the inference result. When performing the four arithmetic operations, the constants of the specific four arithmetic operations are changed little by little in the time series data for each device. By this processing, the reliability is increased in the situation where the error is corrected, so that correct inference is possible. With such a device, if the device acquires similar biological information, it is possible to provide reliable information regardless of the error and noise that may be affected by the sensitivity and usage environment. In addition, it is not always necessary to have the same biological information, and even if different data such as pulse, heart rate, and respiratory rate are used, if they have similar changes including the magnitude relationship of the data, correction and reliability judgment are performed. Allows comprehensively correct inference.
 伝達情報決定部は、第1の機器によって取得された第1の検査データ群と、第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した複数の検査データ群を1つの検査データ群に合体し、この合体した検査データ群を推論モデルに入力することによって推論を行い、推論結果に基づいて伝達情報を決定する(例えば、図3のグラフ34、図4のS107等参照)。伝達情報決定部は、第1の機器によって取得された第1の検査データ群と、第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した複数の検査データ群ごとにそれぞれ推論モデルに入力し、各推論モデルによる推論結果を、総合的に判定し、判定結果に基づいて上記伝達情報を決定する(例えば、図9、図10参照)。 The transmission information determination unit selects the first inspection data group acquired by the first device and the second inspection data group acquired by the second device for each of the first and second inspection data groups. The corrected test data group is combined into one test data group, the combined test data group is input to the inference model to perform inference, and the transmitted information is determined based on the inference result. (See, for example, Graph 34 in FIG. 3, S107 in FIG. 4 and the like). The transmission information determination unit selects the first inspection data group acquired by the first device and the second inspection data group acquired by the second device for each of the first and second inspection data groups. Is corrected to, and each of the corrected plurality of inspection data groups is input to the inference model, the inference result by each inference model is comprehensively judged, and the transmission information is determined based on the judgment result (for example, FIG. 9. See FIG. 10).
 前述したように、情報提供部1cは、ユーザの特定期間の時系列パターンとなる検査データを取得する。この取得する時系列パターンは、単に1回だけの測定によって得たデータではなく、複数の異なるタイミングに測定によって取得した個々の検査データによって構成され、検査データのパターンの変化までを情報として利用する。複数の検査データからなる時系列パターンを使用することよって、測定環境や状況の変化によって生ずる誤差の影響を受け難くしている。さらに、特定期間の終了時期から将来の時期(特定期間の延長時)における健康状態を推論し、将来に対する予測を可能にしている。 As described above, the information providing unit 1c acquires inspection data that is a time-series pattern of the user for a specific period. This acquired time-series pattern is composed of individual inspection data acquired by measurement at a plurality of different timings, not simply data obtained by one-time measurement, and even changes in the inspection data pattern are used as information. .. By using a time-series pattern consisting of multiple inspection data, it is less susceptible to errors caused by changes in the measurement environment and conditions. Furthermore, it infers the health condition from the end of the specific period to the future period (when the specific period is extended), and makes it possible to predict the future.
 また、取得した時系列パターンに対して、ユーザの検査・医療機関への来院のタイミング情報をアノテーション情報として付与すれば教師データができる。この教師データを用いて学習することによって生成された推論モデルを有する推論部があれば、特定期間(時系列変化パターンを取得するための期間)から先のタイミング(特定期間の延長時)に何が起こるかの推論ができる。また、ユーザの病名等が分かれば、この情報をアノテーション情報として付与した教師データを生成することができる。この教師データを用いて学習することによって、病気等の健康情報を推論する推論モデルを生成することができる。なお、ここで使用される推論モデルを生成する際には、特定の入出力情報の仕様を規定し、学習を行う。 In addition, teacher data can be created by adding the timing information of the user's examination / visit to the medical institution as annotation information to the acquired time series pattern. If there is an inference part that has an inference model generated by learning using this teacher data, what is the timing (when the specific period is extended) beyond the specific period (period for acquiring the time series change pattern)? Can be inferred if Further, if the user's disease name or the like is known, teacher data to which this information is added as annotation information can be generated. By learning using this teacher data, it is possible to generate an inference model that infers health information such as illness. When generating the inference model used here, the specifications of specific input / output information are specified and learning is performed.
 したがって、本実施形態においては、ユーザの検査データの時系列変化パターンを、推論部に入力し、推論部が推論を行い、この推論結果に基づいて、特定期間から先のタイミングにおける伝達情報を決定する伝達情報決定部を設けている。このため、時系列パターンの検査取得時から先のタイミングにおける予測情報を伝達することができるシステム、装置、方法、プログラム等が提供できる。 Therefore, in the present embodiment, the time-series change pattern of the user's inspection data is input to the inference unit, the inference unit makes an inference, and based on this inference result, the transmission information at the timing beyond the specific period is determined. A transmission information determination unit is provided. Therefore, it is possible to provide a system, an apparatus, a method, a program, or the like capable of transmitting the prediction information at the timing after the inspection acquisition of the time series pattern.
 ユーザの検査データは、個々の検査機器ごとに機械的な性能の差等があると、信頼性が低下していまう。例えば、同一ユーザが同時期に、複数の機器で検査データ(生体情報)を取得した際に、同一の検査データとならないことがある。そこで、同一の検査項目を検査できる複数の検査機器(特定の仕様の検査機器)を用いて、異なる日時で検査を繰り返すことによって、検査データの変化パターン情報を多数取得すれば、ビックデータとして扱うことが可能となる。この場合、特定期間としては、固定の期間とする必要はなく、状況に応じて異なる時間幅(特定期間)としてもよい。なお、ここでいう「時間幅」は、測定タイミングと測定タイミングの間の時間(検査間隔・測定間隔)ではなく、一連の検査データの取得にあたって、最初の測定から最後の測定までの時間間隔をいう。「時間幅」は、この時間幅の中にたくさんの時系列データが含まれており、検査データの変化パターン情報を含む特定の時間幅と書き直してもよい。 The reliability of user inspection data will decline if there are differences in mechanical performance for each inspection device. For example, when the same user acquires test data (biological information) from a plurality of devices at the same time, the same test data may not be obtained. Therefore, if a large amount of change pattern information of inspection data is acquired by repeating inspections at different dates and times using multiple inspection devices (inspection devices with specific specifications) that can inspect the same inspection item, it is treated as big data. It becomes possible. In this case, the specific period does not have to be a fixed period, and may be a different time width (specific period) depending on the situation. The "time width" here is not the time between measurement timings (inspection interval / measurement interval), but the time interval from the first measurement to the last measurement when acquiring a series of inspection data. say. The "time width" may be rewritten as a specific time width including a lot of time series data in this time width and change pattern information of the inspection data.
 本実施形態において情報提供部1cは、学習部5によって生成された推論モデルが設定された推論エンジン7に、検査データの変化パターを入力し、アドバイスに関する推論結果を得て、入力された検査データに対応するユーザに提供する。このサービスは個人情報を利用する場合があり、アドバイス等の提供を受けるために個人情報の契約などが必要な場合がある。その意味で、ユーザのプロフィール情報が重要な場合もある。また、ユーザが幼児や高齢の場合は、そのユーザの世話をする人、介助者などにアドバイスを届けてもよい。これもユーザのプロフィール情報で管理した情報に従ってアドバイスなどの有効情報が届く。 In the present embodiment, the information providing unit 1c inputs a change putter of the inspection data into the inference engine 7 in which the inference model generated by the learning unit 5 is set, obtains an inference result regarding advice, and inputs the input inspection data. Provide to users corresponding to. This service may use personal information, and may require a contract for personal information in order to receive advice. In that sense, the user's profile information may be important. In addition, when the user is an infant or an elderly person, advice may be delivered to a person who takes care of the user, a caregiver, or the like. This also receives valid information such as advice according to the information managed by the user's profile information.
 推論モデル仕様決定部1dは、推論依頼部1eが学習依頼部6を通じて学習部5に推論モデルの生成を依頼する際に、生成する推論モデルの仕様を決定する。制御部1は、第1機器2a等からユーザの生体情報を取得し、この生体情報を蓄積している。制御部1は、蓄積した生体情報を教師データとして、学習依頼部6を通じて、学習部5に種々の推論モデルの生成を依頼する。推論モデル仕様決定部1dは、推論モデルの生成に当たって、どのような仕様の推論モデルを依頼するかを決定する。例えば、後述する図2(a)に示すように、時系列的な生体情報が蓄積されている場合に、推論モデル仕様決定部1dは、どのような検査データ(値)となると、ユーザは何日後に医療施設で治療を受けることになるかを推論するための推論モデルの仕様を決定する。また、推論モデル仕様決定部1dは、時系列的な生体情報に基づいて、現在、どんな疾病にかかっているか、また将来(いつ頃)どんな疾病にかかる可能性があるか、更に疾病にかかるかもしれない場合に必要な検査や治療を受けるために推奨される施設を推論する推論モデルを生成するための仕様を決定する。 The inference model specification determination unit 1d determines the specifications of the inference model to be generated when the inference request unit 1e requests the learning unit 5 to generate the inference model through the learning request unit 6. The control unit 1 acquires the biometric information of the user from the first device 2a and the like, and accumulates the biometric information. The control unit 1 requests the learning unit 5 to generate various inference models through the learning requesting unit 6 using the accumulated biological information as teacher data. The inference model specification determination unit 1d determines what kind of specification the inference model is requested in generating the inference model. For example, as shown in FIG. 2A, which will be described later, when time-series biometric information is accumulated, what kind of inspection data (value) does the inference model specification determination unit 1d have, and what is the user? Determine the specifications of an inference model to infer whether you will be treated in a medical facility in a day. In addition, the inference model specification determination unit 1d may, based on time-series biometric information, what kind of disease it currently has, what kind of disease it may have in the future (when), and whether it will further suffer it. Determine specifications to generate inference models that infer the recommended facilities to receive the necessary tests and treatments if they do not.
 推論依頼部1eは、推論モデル仕様決定部1dによって決定された仕様の推論モデルの生成を、学習依頼部6を通じて、学習部5に依頼する。すなわち、推論依頼部1eは、第1機器2a等によって取得した生体情報が所定数蓄積している場合に、学習依頼部6を通じて、学習部5に推論モデルの生成を依頼し、生成された推論モデルを、学習依頼部を通じて(または直接学習部5から)受信する。この受信した推論モデルは、推論エンジン7に送信される。なお、制御部1は、推論モデルを複数用意し、ユーザに提供すべき情報に応じて、適宜、推論モデルを選択するとよい。 The inference request unit 1e requests the learning unit 5 to generate an inference model of the specifications determined by the inference model specification determination unit 1d through the learning request unit 6. That is, the inference requesting unit 1e requests the learning unit 5 to generate an inference model through the learning requesting unit 6 when a predetermined number of biological information acquired by the first device 2a or the like is accumulated, and the generated inference is generated. The model is received through the learning request unit (or directly from the learning unit 5). This received inference model is transmitted to the inference engine 7. The control unit 1 may prepare a plurality of inference models and appropriately select the inference model according to the information to be provided to the user.
 検索部1fは、第1機器2a、第2機器2b、第3機器によって取得されたユーザの生体情報に基づいて、現在かかっている疾病、また将来(いつ頃)どんな疾病にかかる可能性があるか、さらに検査や治療が必要であることが判明した際に、検査や治療に必要な設備を有する検査機関や医療機関を、DB部8に蓄積されているデータベースの中で、検索を行う。これらの情報は、推論エンジン7を用いて、推論によって取得してもよいが、蓄積されているデータと一致する場合もある。このようなケースもあることから、本実施形態では、検索部1fによる検索を可能としている。 Based on the user's biometric information acquired by the first device 2a, the second device 2b, and the third device, the search unit 1f may be affected by the current disease or any disease in the future (when). Or, when it is found that further examination or treatment is necessary, the examination institution or medical institution having the equipment necessary for the examination or treatment is searched in the database stored in the DB unit 8. These pieces of information may be obtained by inference using the inference engine 7, but may match the accumulated data. Since there are such cases, in the present embodiment, the search unit 1f can be used for searching.
 第1機器2aおよび第2機器2bは、ユーザの健康関連情報、例えば、バイタル情報、検体情報等の検査データを取得するための機器である。第1機器2aと第2機器2bは、特定仕様の検査機器であり、同種(同様)の健康関連情報の検査が可能な機器である。第1機器2aと第2機器2bによって取得された検査データ群が、互いの検査タイミングが異なっている場合に、両データを補間できるような検査ができればよい。また、第1機器2aと第2機器2bは全く同一の検査項目を検査しなくてもよく、例えば血圧を測定しながら、心拍数を測定した場合であっても、両データは互いに補間することができる。なお、図1には、ユーザの検査データを取得するための機器として、第1機器2aおよび第2機器2bの2つのみを記載しているが、2つに限らず、3以上であってもよい。また、後述するように、ユーザ以外の者の検査データを取得するための機器として、本実施形態においては、第3機器3を想定している。 The first device 2a and the second device 2b are devices for acquiring test data such as user health-related information such as vital information and sample information. The first device 2a and the second device 2b are inspection devices having specific specifications, and are devices capable of inspecting the same type (similar) health-related information. It suffices if the inspection data groups acquired by the first device 2a and the second device 2b can perform an inspection that can interpolate both data when the inspection timings are different from each other. Further, the first device 2a and the second device 2b do not have to inspect exactly the same inspection items. For example, even when the heart rate is measured while measuring the blood pressure, both data are interpolated with each other. Can be done. Note that FIG. 1 shows only two devices, the first device 2a and the second device 2b, as devices for acquiring the user's inspection data, but the number is not limited to two and is three or more. May be good. Further, as will be described later, in the present embodiment, the third device 3 is assumed as a device for acquiring inspection data of a person other than the user.
 第1機器2a等が取得する健康関連情報としては、種々の情報があり、例えば、ユーザの体温、血圧、心拍等のバイタル情報がある。また健康関連情報としては、ユーザの尿、大便等の排泄物や、痰や、血液等、種々の検体情報がある。大便の場合には、第1機器2a、第2機器2bは、その色、形状、量、日時情報を取得する。第1機器2a、第2機器2bは、制御部1からの指示に従って情報を取得してもよく、またユーザの操作に応じて情報を取得してもよく、また自動的に情報を取得してもよい。さらに、第1機器2a等は、医療・健康情報である情報「パーソナル・ヘルス・レコード((Personal Health Records : PHR) 」に、日常生活、職場/学校での活動、食事、スポーツ活動など、日常生活の様々な活動データを加えたパーソナル・ライフ・レコード(Personal Life Records : PLR) を収集・活用してもよい。取得した情報は、第1機器2a等内の通信部(図示を省略)を通じて、制御部1に送信される。 There are various kinds of health-related information acquired by the first device 2a and the like, and for example, there is vital information such as the user's body temperature, blood pressure, and heartbeat. The health-related information includes various sample information such as excrement such as urine and stool of the user, sputum and blood. In the case of stool, the first device 2a and the second device 2b acquire the color, shape, amount, and date / time information. The first device 2a and the second device 2b may acquire information according to an instruction from the control unit 1, may acquire information according to a user's operation, or automatically acquire information. May be good. Furthermore, the first device 2a, etc. is used for daily life, work / school activities, meals, sports activities, etc. in the information "Personal Health Records (PHR)" which is medical / health information. Personal Life Records (PLR), which includes various activity data of daily life, may be collected and utilized. The acquired information is obtained through the communication unit (not shown) in the first device 2a, etc. , Is transmitted to the control unit 1.
 第1機器2a等が検出する対象者の検査データは、特定の仕様の検査機器を用いて時系列的に検査データを取得し、該検査データの変化パターン情報を特定の時間幅で抽出したものである。すなわち、第1機器2a、第2機器2bとして、特定仕様の検査機器(同一のタイプの検査機器)を用い、第1機器2a等が、同一の対象者の検査項目について、異なるタイミングで測定することによって、時系列的にデータを取得する。この時系列的なデータを用いて、検査タイミングに応じて測定値をグラフ上に描くことによって、変化パターンを得ることができる。この変化パターンを特定の時間幅で抽出することによって、検査データ群を得ることができる。検査データは、排便時用の色センサ、形状センサ、硬度センサ、嗅覚センサ(線虫や動物の反応判定を含む)、ガス成分センサ、特定の試薬添加時の色変化検出センサ、拡大観察画像による形状判定のいずれかの出力結果の一つに従って得られたデータである。 The inspection data of the subject detected by the first device 2a or the like is obtained by acquiring the inspection data in time series using an inspection device having a specific specification and extracting the change pattern information of the inspection data in a specific time width. Is. That is, as the first device 2a and the second device 2b, inspection devices of specific specifications (inspection devices of the same type) are used, and the first device 2a and the like measure the inspection items of the same subject at different timings. By doing so, data is acquired in chronological order. Using this time-series data, a change pattern can be obtained by drawing the measured values on a graph according to the inspection timing. By extracting this change pattern in a specific time width, a test data group can be obtained. The inspection data is based on a color sensor for defecation, a shape sensor, a hardness sensor, an olfactory sensor (including reaction judgment of nematodes and animals), a gas component sensor, a color change detection sensor when a specific reagent is added, and a magnified observation image. It is the data obtained according to one of the output results of any of the shape determinations.
 第1機器2a、第2機器2bが、特定ユーザに関する情報を得た場合、制御部1の情報提供部1cが推奨する施設に関する情報を、特定ユーザの情報端末4に提示する。この提示が、ユーザの行動を補助することを想定して、説明を行うが、様々な変形が考えらる。 When the first device 2a and the second device 2b obtain the information about the specific user, the information about the facility recommended by the information providing unit 1c of the control unit 1 is presented to the information terminal 4 of the specific user. The explanation is given on the assumption that this presentation assists the user's behavior, but various variations can be considered.
 第1機器2a等において行われる情報判定は、どこまで判定するかは、制御部1との関係で変更してもよい。例えば、第1機器2a等においてセンシングした結果のみを判定せずに制御部1に送信してもよい。ただし、この場合には、どのような人のどのようなデータであるかの情報を、センシング信号に添付し、この信号を送信する必要がある。この添付情報は、どの人か、どのセンシング結果か、が対応付けられていることが好ましいが、別の端末の情報に、加味することによって、対応付けてもよい。 The extent to which the information determination performed in the first device 2a or the like is determined may be changed in relation to the control unit 1. For example, it may be transmitted to the control unit 1 without determining only the result of sensing by the first device 2a or the like. However, in this case, it is necessary to attach information on what kind of data of what kind of person to the sensing signal and transmit this signal. It is preferable that the attached information is associated with which person and which sensing result, but it may be associated with the information of another terminal by adding it.
 第3機器3は、第1機器2a、第2機器2bを利用するユーザとは異なる人のデータを取得する機器である。図1には、第3機器3は1個しか記載していないが、複数あってもよく、図1には不特定多数の機器を一括して表現している。これによって、どのような人がどのような病気で、どのような健康数値となっているかをビッグデータにして記録し、また管理することが可能となる。 The third device 3 is a device that acquires data of a person different from the user who uses the first device 2a and the second device 2b. Although only one third device 3 is shown in FIG. 1, there may be a plurality of the third devices 3, and an unspecified number of devices are collectively represented in FIG. This makes it possible to record and manage what kind of person has what kind of illness and what kind of health value is in big data.
 この不特定多数からなる第3機器3は、異なる数値を異なる性能で取得するものであってもよい。このような機器が健康管理機器としてこのシステムに参加すればするほど、様々なデータを健康見守り機器として利用することができる。極端な例では、各人のスマホによる日々の自分撮り撮影の結果とその人の他の健康数値を、併せてビッグデータ化すると、その人が病気になった時よりもどのくらい前から、顔色が悪くなったか等のデータを活用することができる。このデータを活用すれば、類似の顔色変化がある場合に、他の人に対して、早めの健康管理、節制、治療をアドバイスすることが出来る。 The third device 3 composed of this unspecified majority may acquire different numerical values with different performances. The more such a device participates in this system as a health management device, the more various data can be used as a health monitoring device. In an extreme case, if the results of daily selfies taken by each person's smartphone and other health figures of that person are combined into big data, the complexion will look long before the person became ill. It is possible to utilize data such as whether it has become worse. This data can be used to advise others on early health care, abstinence, and treatment in the event of similar complexion changes.
 第1機器2a、第2機器2b、第3機器3としてウェアラブル端末を利用する場合には、ウェアラブル端末の装着部位によって、皮膚やあるいは身体近傍に密着し、体温、心拍、血圧、脳波、視線、呼吸、呼気などのバイタル情報を得ることが可能となる。また、体重計、血圧計、動脈壁の硬さを意味する動脈スティフネスを測定する測定器として、専用の精密な機器が、健康施設、公衆浴場、薬局、ショッピングモール等に配置され、さらに専門の計測者も一緒に配置されている場合がある。このような施設において、ユーザは空き時間などに測定機器を気楽に利用し、この時の測定結果に基づいて体調管理する場合も多い。これらの測定機器を第1機器2a、第2機器2b、第3機器3としてもよい。 When a wearable terminal is used as the first device 2a, the second device 2b, and the third device 3, it adheres to the skin or the vicinity of the body depending on the wearing part of the wearable terminal, and the body temperature, heart rate, blood pressure, brain wave, line of sight, etc. It is possible to obtain vital information such as breathing and exhalation. In addition, as a scale, a sphygmomanometer, and a measuring instrument for measuring arterial stiffness, which means the hardness of the arterial wall, dedicated precision equipment is installed in health facilities, public baths, pharmacies, shopping malls, etc. The measurer may also be assigned. In such facilities, users often use the measuring device comfortably in their spare time and manage their physical condition based on the measurement results at that time. These measuring devices may be the first device 2a, the second device 2b, and the third device 3.
 また、第1機器2a、第2機器2b、第3機器3は、ユーザが専用の端末等を使用した前後に、アンケートに記入を依頼する場合がある。このような場合には、このアンケートの記載に基づいて、ユーザのプロフィール情報やその他の情報を特定できる。このような情報収集は、第1機器2a等に限らず、制御部1が行ってもよい。この情報は、後述する図5のステップS3における特定情報を取得したか否かの判定の際に使用することができる。何時、医者に行ったかの情報なども聞き取りできれば、後述する図2(a)、図2(b)における時刻Tc情報として使用することができる。 In addition, the first device 2a, the second device 2b, and the third device 3 may be requested to fill out a questionnaire before and after the user uses a dedicated terminal or the like. In such cases, the user's profile information and other information can be identified based on the description in this questionnaire. Such information collection is not limited to the first device 2a and the like, and may be performed by the control unit 1. This information can be used when determining whether or not the specific information has been acquired in step S3 of FIG. 5, which will be described later. If information such as when the doctor went to the doctor can be heard, it can be used as the time Tc information in FIGS. 2 (a) and 2 (b) described later.
 第1機器2a、第2機器2b、第3機器3は、すでに特定の疾患にかかっていて、医師の指導のもとで使用している体温計や血圧計などでもよい。また、スマートフォンの有するカメラで撮影した顔や爪などの色や顔の表情、患部の画像、喉がおかしくなった時の声をマイクで収音する場合等では、携帯端末(スマートフォン)がそのまま第1機器2a、第2機器2b、第3機器3となりうる。 The first device 2a, the second device 2b, and the third device 3 may be a thermometer or a sphygmomanometer that is already suffering from a specific disease and is used under the guidance of a doctor. In addition, when the color and facial expression of the face and claws taken by the camera of the smartphone, the image of the affected area, and the voice when the throat becomes strange are picked up by the microphone, the mobile terminal (smartphone) is used as it is. It can be 1 device 2a, 2nd device 2b, and 3rd device 3.
 最近では、簡易の健康管理機器や健康情報取得機器が開発されており、これらの機器がウェアラブル機器に搭載される場合がある、このような装置もスタンドアローンではなく、スマートフォンの周辺機器として扱われる場合が多いので、これも携帯端末として想定してもよい。また、ウェアラブルな機器でなくとも、簡易な測定機器を、人が集まる場所に設置し、健康情報サービスを提供している場合がある。このような機器を第1機器2a、第2機器2b、第3機器3として利用してもよい。 Recently, simple health management devices and health information acquisition devices have been developed, and these devices may be installed in wearable devices. Such devices are also treated as peripheral devices for smartphones, not stand-alone devices. Since there are many cases, this may also be assumed as a mobile terminal. In addition, even if it is not a wearable device, a simple measuring device may be installed in a place where people gather to provide a health information service. Such a device may be used as the first device 2a, the second device 2b, and the third device 3.
 関連検査機関9は、ユーザが検査を受ける施設であり、例えば、検査施設や医療施設がある。この関連検査機関9は、移動型、例えば、自動車、列車、船、ヘリコプター、ドローン等に一般医療機器や検査機器を搭載し、患者のもとに出向くタイプであっても勿論構わない。制御部1は、どの医療機関に行ったか、またどのような検査結果が出たかなどを関連検査機関9のシステムを運営するサーバなどから取得可能である。もちろん、関連検査機関9のサーバが制御部1と同じであってもよく、また一部の機能を分担してもよい。 The related inspection institution 9 is a facility where the user is inspected, and there are, for example, an inspection facility and a medical facility. Of course, the related inspection organization 9 may be a mobile type, for example, a type in which general medical equipment or inspection equipment is mounted on an automobile, train, ship, helicopter, drone, or the like and the patient goes to the patient. The control unit 1 can acquire which medical institution the patient went to, what kind of test result was obtained, and the like from the server that operates the system of the related test institution 9. Of course, the server of the related inspection organization 9 may be the same as that of the control unit 1, or some functions may be shared.
 端末4は、前述したように、携帯情報端末であり、ユーザやその関係者が確認可能な情報を受け取るための装置である。情報としては、健康情報や、健康状態に応じて推奨される施設がある。端末4は、例えばスマートフォンやタブレットPCであってもよく、この場合には、内蔵カメラやマイクを情報取得部として利用することができる。また、連携可能なウェアラブル端末その他の家電を端末4として使用してもよく、ウェアラブル端末等によって情報を取得してもよい。したがって、第1機器2aや第2機器2bと端末4は同じものであってもよく、またそれぞれ専用機器であってもよい。ウエラブル端末と連携する端末4が、情報取得や情報の管理を行うようにしてもよい。さらに、状況に応じて、制御部1が有する機能を第1機器2aや第2機器2bや第3機器3や端末4が有してもよく、分担して検出や制御や情報提供を行うような構成にしてもよい。 As described above, the terminal 4 is a mobile information terminal, and is a device for receiving information that can be confirmed by the user and related persons. As information, there are health information and facilities recommended according to the health condition. The terminal 4 may be, for example, a smartphone or a tablet PC. In this case, the built-in camera or microphone can be used as an information acquisition unit. Further, a wearable terminal or other home appliances that can be linked may be used as the terminal 4, and information may be acquired by the wearable terminal or the like. Therefore, the first device 2a or the second device 2b and the terminal 4 may be the same, or may be dedicated devices, respectively. The terminal 4 linked with the wearable terminal may acquire information and manage the information. Further, depending on the situation, the functions of the control unit 1 may be possessed by the first device 2a, the second device 2b, the third device 3, and the terminal 4, and the detection, control, and information provision are shared. The configuration may be different.
 データベース(DB)部8は、電気的に書き換え可能な不揮発性メモリを有する。DB部8は、ID別データ履歴一覧を有し、この一覧は取得データと検査日の関係を記録する。前述したように、ID判定部1bは、第1機器2a等や関連検査機関9等から、検査データを受信するので、DB部8は、ID別に検査データを記録する。この際、検査日、検査機器(第1機器か、第2機器か、第3機器か、関連検査機関か等)と検査場所、検査項目等も併せて記録する。さらに、検査をどのように、また何のための検査か等についても記録する。DB部8は、取得したデータを、5W1H、すなわち、WHO(誰が)、WHERE(どこで)、WHEN(日時)、WHAT(どの検査)、WHY(何故)、HOW(どのように)に整理し、この整理されたデータを記録してもよい。 The database (DB) unit 8 has an electrically rewritable non-volatile memory. The DB unit 8 has a data history list for each ID, and this list records the relationship between the acquired data and the inspection date. As described above, since the ID determination unit 1b receives the inspection data from the first device 2a and the like, the related inspection organization 9 and the like, the DB unit 8 records the inspection data for each ID. At this time, the inspection date, inspection equipment (first equipment, second equipment, third equipment, related inspection organization, etc.), inspection location, inspection items, etc. are also recorded. In addition, record how and what the test is for. The DB unit 8 organizes the acquired data into 5W1H, that is, WHO (who), WHERE (where), WHERE (date and time), WHAT (which inspection), WHY (why), and HOW (how). This organized data may be recorded.
 また、DB部8は、施設別保有機器一覧を記録した保有施設記録部と、施設別にIDとそのユーザの来院を記録した来院履歴記録部を有していてもよい。保有施設記録部は、病院やクリニックや検査機関など施設が保有する機器の一覧を記録する。情報提供部1cは、保有施設記録部を検索することによって、検査に最適な機器がある施設の情報をユーザに提示することが可能となる。医療施設等が装置を買い替えた場合等に応じて、情報をアップデートするために、関連検査機関9の情報と連携してもよい。また、来院履歴記録部は、施設ごとに、どの人(IDで特定される)が何時来たかという来院情報を記録する。 Further, the DB unit 8 may have a owned facility recording unit that records a list of owned equipment for each facility and a visit history recording unit that records an ID and the visit of the user for each facility. The holding facility recording department records a list of equipment owned by facilities such as hospitals, clinics, and inspection institutions. The information providing unit 1c can present the information of the facility having the most suitable equipment for the inspection to the user by searching the possessed facility recording unit. In order to update the information when the medical facility or the like replaces the device, the information may be linked with the information of the related inspection institution 9. In addition, the visit history recording unit records visit information indicating which person (identified by ID) came at what time for each facility.
 DB部8は、医療施設が連携する情報伝達システムの一部に構築されており、DB部8が制御部1を通じて、関連検査機関9についてもアクセス可能としてもよい。この場合には、制御部1からDB部8が検索命令を受けると、DB部8がDB部8内に記録されたデータに加えて、関連検査機関9内のデータについても検索を行い、検索結果を出力する。DB部8は、ユーザのプロフィール情報と、検査・医療機関ごとの保有機器情報を記憶する記憶部として機能する。なお、この記憶部は、DB部8に限らず、制御部1内等にその機能の全部、または一部を配置してもよい。 The DB unit 8 is constructed as a part of an information transmission system in which medical facilities cooperate, and the DB unit 8 may also be able to access the related inspection institution 9 through the control unit 1. In this case, when the DB unit 8 receives a search command from the control unit 1, the DB unit 8 searches the data in the related inspection organization 9 in addition to the data recorded in the DB unit 8 to search. Output the result. The DB unit 8 functions as a storage unit that stores the user's profile information and the possessed device information for each examination / medical institution. The storage unit is not limited to the DB unit 8, and all or part of its functions may be arranged in the control unit 1 or the like.
 学習依頼部6は、制御部1内の推論依頼部1eから推論モデルの生成の依頼を受けると、学習部5に推論モデルの仕様等を伝え、仕様に沿った推論モデルの生成を依頼する。学習依頼部6は、データ分類記録部6a、仕様設定部6d、通信部6e、制御部6fを有する。 When the learning request unit 6 receives a request for generating an inference model from the inference request unit 1e in the control unit 1, it conveys the specifications of the inference model to the learning unit 5 and requests the generation of the inference model according to the specifications. The learning request unit 6 includes a data classification recording unit 6a, a specification setting unit 6d, a communication unit 6e, and a control unit 6f.
 制御部6fは、学習依頼部6内を制御するコントローラ(プロセッサ)であり、サーバ等や、ネットワークを通じて他の端末にファイルやデータなどを提供するCPU(Central Processor Unit)、メモリ、HDD(Hard Disc Drive)等から構成されているIT機器を想定している。しかし、制御部6fは、この構成に限らず、小規模なシステムとして構築する場合は、パーソナルコンピュータのようなものでも構成は可能である。制御部6fは、各種のインターフェース回路を有し、他の機器と連携することができ、プログラムによってさまざまな演算制御が可能である。 The control unit 6f is a controller (processor) that controls the inside of the learning request unit 6, and is a CPU (Central Processor Unit), a memory, and an HDD (Hard Disc) that provide files and data to a server or the like or other terminals via a network. It is assumed that the IT equipment is composed of Drive) and the like. However, the control unit 6f is not limited to this configuration, and when it is constructed as a small-scale system, it can be configured with something like a personal computer. The control unit 6f has various interface circuits, can be linked with other devices, and can perform various arithmetic controls by a program.
 データ分類部6aは、対象物種類A画像群6bを有し、この中に教師データ6cを記録している。対象物種類A画像群6bは、学習部5において推論モデルを生成する際に使用する画像群であり、種類A、種類B・・・と多数の画像群を有する。この画像群に基づいて教師データ6cを生成する。すなわち、図2、図3に示すように、検査データを検査日毎にプロットするとグラフを描くことができ、このグラフを画像として扱うことができる。データ記録分類部6aには、DB部8に記録されたデータ履歴一覧に基づく、教師データ6cが記録される。 The data classification unit 6a has an object type A image group 6b, and the teacher data 6c is recorded in the image group 6b. The object type A image group 6b is an image group used when the learning unit 5 generates an inference model, and has a large number of image groups such as type A, type B, and so on. Teacher data 6c is generated based on this image group. That is, as shown in FIGS. 2 and 3, a graph can be drawn by plotting the inspection data for each inspection date, and this graph can be treated as an image. The data record classification unit 6a records the teacher data 6c based on the data history list recorded in the DB unit 8.
 仕様設定部6dは、推論モデル仕様決定部1dによって決定された推論モデルの仕様に基づいて、どのような推論モデルを生成するかを設定する。また、この仕様を満足するように、DB部8の履歴一覧に記録されているデータから教師データを生成する。 The specification setting unit 6d sets what kind of inference model is generated based on the inference model specifications determined by the inference model specification determination unit 1d. Further, the teacher data is generated from the data recorded in the history list of the DB unit 8 so as to satisfy this specification.
 通信部6eは、制御部1および学習部5と通信するための通信回路を有する。この通信部6eを通じて、制御部1から推論モデルの生成の依頼を受け、また学習部5に推論モデルの生成を依頼する。 The communication unit 6e has a communication circuit for communicating with the control unit 1 and the learning unit 5. Through the communication unit 6e, the control unit 1 requests the generation of the inference model, and the learning unit 5 requests the generation of the inference model.
 学習部5は、入出力モデル化部5aを有し、学習依頼部6からの仕様に従って、機械学習等によって推論モデルを生成する。入出力モデル化部5aは、仕様照合部5bを有する。この仕様照合部5bは、学習依頼部6から受信した仕様と、入出力モデル化部5aによって生成された推論モデルが合っているか否かを判断する。すなわち、仕様照合部5bは、入出力関係のみならず、この推論モデルの推論にかかる時間やエネルギーや回路構成など、「要求仕様」に沿った学習を行うよう、学習の仕方などを規定するものである。 The learning unit 5 has an input / output modeling unit 5a, and generates an inference model by machine learning or the like according to the specifications from the learning request unit 6. The input / output modeling unit 5a has a specification collation unit 5b. The specification collation unit 5b determines whether or not the specifications received from the learning request unit 6 and the inference model generated by the input / output modeling unit 5a match. That is, the specification collating unit 5b defines not only the input / output relationship but also the learning method so as to perform learning according to the "required specifications" such as the time required for inference of this inference model, energy, and circuit configuration. Is.
 推論モデルは、取得した生体情報、生検情報など取得情報と疾患の関係を学習し、具体的には、取得情報と診療科・部門の関係を学習することによって生成する。入出力モデル化部5aは、推論エンジン7と同様に、入力層、複数の中間層、出力層を有し、中間層のニューロンの結合の強さを学習によって求め、推論モデルを生成する。 The inference model is generated by learning the relationship between the acquired information such as acquired biometric information and biopsy information and the disease, and specifically by learning the relationship between the acquired information and the clinical department / department. Similar to the inference engine 7, the input / output modeling unit 5a has an input layer, a plurality of intermediate layers, and an output layer, obtains the strength of the connection of neurons in the intermediate layer by learning, and generates an inference model.
 このような推論モデルの生成にあたっては、学習依頼部6が検査機器を用いて被検者から取得した検査データの変化パターンを特定の時間幅で抽出し、この抽出した変化パターンを推論エンジン7に入力し、被検者が検査したタイミングから、後のタイミングにおいて出力されるべき健康アドバイスをアノテーション情報とした、教師データを生成する。そして、学習部5は、この教師データを用いて学習を行うことによって、推論モデルを生成する。なお、本実施形態においては、検査結果が出た時点から遡る時間幅について説明したが、検査結果の後、治療等でデータが良くなる場合、治療がうまくいっていない場合があるので、その差異を学習して、予後(病気にかかった後)のアドバイスを出力してもよい。 In generating such an inference model, the learning requesting unit 6 extracts the change pattern of the test data acquired from the subject using the test device in a specific time width, and uses the extracted change pattern in the inference engine 7. From the timing when the subject inspects the data, the teacher data is generated with the health advice to be output at a later timing as the inference information. Then, the learning unit 5 generates an inference model by performing learning using the teacher data. In this embodiment, the time width that goes back from the time when the test result is obtained has been described, but if the data improves after the test result due to treatment or the like, the treatment may not be successful. You may learn and output prognostic (after getting sick) advice.
 また、学習部5は、検査、通院、服薬の後の検査データ列を用いて学習すれば、生活習慣改善や治療や服薬の効果の将来予想アドバイスを行うことが可能な推論モデルを生成することも出来る。この場合には、検査、通院、服薬の時点を起点として、その後の時系列データを利用する。検査、通院、服薬などをアドバイスする場合は、この前の時系列データを利用する。 In addition, the learning unit 5 can generate an inference model capable of giving future prediction advice on lifestyle-related improvement and treatment and medication effects by learning using the test data sequence after examination, hospital visit, and medication. You can also do it. In this case, the time-series data is used starting from the time of examination, outpatient visit, and medication. Use the previous time-series data when giving advice on tests, hospital visits, medications, etc.
 ここで、学習部5が行う学習の一例として、深層学習について、説明する。「深層学習(ディープ・ラーニング)」は、ニューラル・ネットワークを用いた「機械学習」の過程を多層構造化したものである。情報を前から後ろに送って判定を行う「順伝搬型ニューラル・ネットワーク」が代表的なものである。順伝搬型ニューラル・ネットワークは、最も単純なものでは、N1個のニューロンで構成される入力層、パラメータで与えられるN2個のニューロンで構成される中間層、判別するクラスの数に対応するN3個のニューロンで構成される出力層の3層があればよい。入力層と中間層、中間層と出力層の各ニューロンはそれぞれが結合加重で結ばれ、中間層と出力層はバイアス値が加えられることによって、論理ゲートを容易に形成できる。 Here, deep learning will be described as an example of learning performed by the learning unit 5. "Deep learning" is a multi-layered structure of the process of "machine learning" using a neural network. A typical example is a "forward propagation neural network" that sends information from front to back to make a judgment. The simplest forward-propagating neural network is an input layer consisting of N1 neurons, an intermediate layer consisting of N2 neurons given by parameters, and N3 corresponding to the number of classes to be discriminated. It suffices if there are three layers of output layers composed of the above neurons. Each neuron in the input layer and the intermediate layer, and each neuron in the intermediate layer and the output layer is connected by a connection weight, and a logic gate can be easily formed in the intermediate layer and the output layer by applying a bias value.
 ニューラル・ネットワークは、簡単な判別を行うのであれば3層でもよいが、中間層を多数にすることによって、機械学習の過程において複数の特徴量の組み合わせ方を学習することも可能となる。近年では、9層~152層のものが、学習にかかる時間や判定精度、消費エネルギーの観点から実用的になっている。また、画像の特徴量を圧縮する、「畳み込み」と呼ばれる処理を行い、最小限の処理で動作し、パターン認識に強い「畳み込み型ニューラル・ネットワーク」を利用してもよい。また、より複雑な情報を扱え、順番や順序によって意味合いが変わる情報分析に対応して、情報を双方向に流れる「再帰型ニューラル・ネットワーク」(全結合リカレントニューラルネット)を利用してもよい。 The neural network may have three layers as long as it makes a simple discrimination, but by increasing the number of intermediate layers, it is possible to learn how to combine a plurality of features in the process of machine learning. In recent years, those having 9 to 152 layers have become practical from the viewpoints of learning time, determination accuracy, and energy consumption. Alternatively, a "convolutional neural network" that compresses the feature amount of the image, performs a process called "convolution", operates with the minimum processing, and is strong in pattern recognition may be used. In addition, a "recurrent neural network" (fully connected recurrent neural network) that can handle more complicated information and whose meaning changes depending on the order or order may be used.
 これらの技術を実現するために、CPUやFPGA(Field Programmable Gate Array)等の従来からある汎用的な演算処理回路を使用してもよい。しかし、これに限らず、ニューラル・ネットワークの処理の多くが行列の掛け算であることから、行列計算に特化したGPU(Graphic Processing Unit)やTensor Processing Unit(TPU)と呼ばれるプロセッサを利用してもよい。近年ではこのような人工知能(AI)専用ハードの「ニューラル・ネットワーク・プロセッシング・ユニット(NPU)」がCPU等その他の回路とともに集積して組み込み可能に設計され、処理回路の一部になっている場合もある。 In order to realize these technologies, a conventional general-purpose arithmetic processing circuit such as a CPU or FPGA (Field Programmable Gate Array) may be used. However, not limited to this, since most of the processing of neural networks is matrix multiplication, even if a processor called GPU (Graphic Processing Unit) or Tensor Processing Unit (TPU) specialized in matrix calculation is used. good. In recent years, such a "neural network processing unit (NPU)" dedicated to artificial intelligence (AI) has been designed so that it can be integrated and incorporated together with other circuits such as a CPU, and has become a part of processing circuits. In some cases.
 その他、機械学習の方法としては、例えば、サポートベクトルマシン、サポートベクトル回帰という手法もある。ここでの学習は、識別器の重み、フィルター係数、オフセットを算出するものあり、これ以外にも、ロジスティック回帰処理を利用する手法もある。機械に何かを判定させる場合、人間が機械に判定の仕方を教える必要がある。本実施形態においては、画像の判定を、機械学習によって導出する手法を採用したが、そのほか、人間が経験則・ヒューリスティクスによって獲得したルールを適応するルールベースの手法を用いてもよい。 Other methods of machine learning include, for example, support vector machines and support vector regression. The learning here is to calculate the weight of the discriminator, the filter coefficient, and the offset, and there is also a method using logistic regression processing. When making a machine judge something, humans need to teach the machine how to make a judgment. In the present embodiment, a method of deriving the judgment of the image by machine learning is adopted, but in addition, a rule-based method of applying the rules acquired by humans by empirical rules / heuristics may be used.
 推論エンジン7は、学習部5の入出力モデル化部5aと同様の入出力層、ニューラル・ネットワークを有している。推論エンジン7は、学習部5によって生成された推論モデルを用いて、推論を行う。例えば、推論エンジン7は、第1機器2a等によって測定され、時系列的な生体情報を入力し、例えば、ユーザの健康状態を検査、治療等を行うに適切な検査機関・医療機関を推論によって求める。また、時系列的な生体情報に基づいて、いつ頃、医療機関で受診を受けることになるかの推論等を行ってもよい。 The inference engine 7 has an input / output layer and a neural network similar to the input / output modeling unit 5a of the learning unit 5. The inference engine 7 makes inferences using the inference model generated by the learning unit 5. For example, the inference engine 7 is measured by the first device 2a or the like, inputs time-series biometric information, and infers, for example, an appropriate inspection institution / medical institution for inspecting, treating, or the like the user's health condition. Ask. In addition, based on time-series biometric information, it may be inferred when a medical institution will receive a medical examination.
 このように、制御部1は、検索部1fがDB部8を検索する以外にも、推論エンジン7を利用して、推奨施設に関する情報を提供しても良い。推論エンジン7は、学習部5が生成した推論モデルを用いて、推奨施設に関する情報の推論を行う。この推論モデルは、取得した生体情報、生検情報など取得情報と疾患の関係を学習し、具体的には、取得情報と診療科・部門の関係を学習することによって生成する。このように、制御部1は、推論エンジン7による推論によっても、提示すべきガイド情報を出力してもよい。 As described above, the control unit 1 may provide information on the recommended facility by using the inference engine 7 in addition to the search unit 1f searching the DB unit 8. The inference engine 7 infers information about the recommended facility using the inference model generated by the learning unit 5. This inference model is generated by learning the relationship between acquired information such as acquired biometric information and biopsy information and the disease, and specifically by learning the relationship between the acquired information and the clinical department / department. In this way, the control unit 1 may output the guide information to be presented by the inference by the inference engine 7.
 制御部1が検索によって、または推論によって、一度に得られた取得情報に基づいて、一回の判定で医療施設などをガイドすると、いたずらに生活に医療情報を持ち込んで、健全に安心して生活するのを妨げる可能性がある。そこで、複数回の取得情報の履歴(時系列的情報)を用いて、精度アップしてもよい。 When the control unit 1 guides medical facilities, etc. with a single judgment based on the acquired information obtained at one time by searching or inference, it unnecessarily brings medical information into life and lives soundly and with peace of mind. May interfere with. Therefore, the accuracy may be improved by using the history (time-series information) of the acquired information a plurality of times.
 図2(a)に、記録部8に記録された個人の健康関連の履歴データ(時系列的データ)を用いたグラフを示す。この記録部8には、例えば、特定機器Aによって取得されたデータ、または様々の検査機能がある機器のデータの内、特定のデータAと、その個人が何時、どの施設を受診したかを記録している。制御部1は記録部8の記録を管理している。 FIG. 2A shows a graph using personal health-related historical data (time-series data) recorded in the recording unit 8. The recording unit 8 records, for example, the specific data A among the data acquired by the specific device A or the data of the device having various inspection functions, and when and which facility the individual visited. is doing. The control unit 1 manages the recording of the recording unit 8.
 図2(a)に示すグラフの横軸は時間であり、縦軸は健康関連データである。このグラフ上に転記したデータはあたかも二次元上に情報を配置した画像データとして扱うことができる。そこで、この画像から特定のものを見つけ出すという、画像検索と同様の手法によって、推論が可能である。つまり、グラフが入力となり出力を健康に関するアドバイスとすればよい。アドバイスとしては、測定方法、現在かかっている特定疾病の名称、将来かかる可能性のある特定疾病の名称、特定疾病の治療・検査施設の案内等が想定される。図2に示す履歴データを示すグラフの詳細については後述する。 The horizontal axis of the graph shown in FIG. 2 (a) is time, and the vertical axis is health-related data. The data posted on this graph can be treated as if the information were arranged two-dimensionally. Therefore, inference can be made by a method similar to image search, in which a specific object is found from this image. In other words, the graph can be used as input and the output can be used as health advice. As advice, the measurement method, the name of the specific disease that is currently occurring, the name of the specific disease that may occur in the future, the guidance of the treatment / testing facility for the specific disease, etc. are assumed. Details of the graph showing the historical data shown in FIG. 2 will be described later.
 記録部8に、健康関係情報が変化した人が、どのような施設に行くことになったか、あるいは行っているかを記録し、制御部1がこの記録を一元管理すると、これらのデータを集め、教師データとして用いて、学習部5に推論モデルを作成させることが可能となる。 The recording unit 8 records what kind of facility the person whose health-related information has changed is going to or is going to, and when the control unit 1 centrally manages this record, these data are collected. It is possible to have the learning unit 5 create an inference model by using it as teacher data.
 推論エンジン7は、制御部1の推論モデル仕様決定部1dが推論モデルの仕様を指定し、この仕様に従った学習によって得られた推論モデルを有する。推論エンジン7は、新たな機器が登場した場合には、機器データが異なる場合があるので、推論モデルは、複数あってもよい。複数の推論モデルを用意しておき、ユーザの検査データによって、適宜選択して推論モデルを決めてもよい。また、新たな機器が登場するたびに、新たな学習が必要になることから、制御部1の指定で学習部5を通じて、推論モデルが改良されたり新作されたりすることが多いことを想定している。ただし、第1機器2a等が専用となっており、特定の疾患の推論のみに特化した場合は、単独の専用推論モデルであってもよい。 The inference engine 7 has an inference model obtained by inference model specification determination unit 1d of the control unit 1 designating an inference model specification and learning according to this specification. The inference engine 7 may have a plurality of inference models because the device data may be different when a new device appears. A plurality of inference models may be prepared and appropriately selected according to the user's inspection data to determine the inference model. In addition, since new learning is required each time a new device appears, it is assumed that the inference model is often improved or newly created through the learning unit 5 by the designation of the control unit 1. There is. However, when the first device 2a or the like is dedicated and specialized only in inference of a specific disease, it may be a single dedicated inference model.
 なお、推論エンジン7は、学習部5の入出力部5aと同様に、CPU、GPU、DSPなどAIチップを中心とした回路ブロックで、メモリなども搭載してニューラル・ネットワークを構成している。この推論エンジン7や学習部5が、病院などが連携して運営するネットワーク等に接続されており、これらと協働して制御部1が利用できる場合があり得ることを、本実施形態においては想定している。この場合、関連検査機関9を経由して、学習や推論の情報がやり取りできる可能性もある。 The inference engine 7 is a circuit block centered on an AI chip such as a CPU, GPU, and DSP, like the input / output unit 5a of the learning unit 5, and also includes a memory and the like to form a neural network. In the present embodiment, the inference engine 7 and the learning unit 5 are connected to a network or the like operated in cooperation with a hospital or the like, and the control unit 1 may be used in cooperation with these. I'm assuming. In this case, there is a possibility that learning and inference information can be exchanged via the related inspection organization 9.
 制御部1の推論依頼部1eが第1機器2a等から特定のユーザの情報を十分取得できたと判定した時に、推論エンジン7に推論を依頼する。推論エンジン7は、類似のデータの時系列的な推移を示す情報群を入力し、この情報群に基づいて推論し、特定のユーザに適した医療機関情報(来院情報、検査情報など)を出力することが可能である。常に通院しており、慢性化した病状を有する人と類似のデータ群が推論エンジン7に入力された場合は、同様の治療が出来る施設がガイド表示された方が良い。推論エンジン7は、特定のユーザを検査すべき機器を保有している医療機関の推定が可能である。 When it is determined that the inference request unit 1e of the control unit 1 has sufficiently acquired the information of a specific user from the first device 2a or the like, the inference engine 7 is requested to make an inference. The inference engine 7 inputs an information group showing the time-series transition of similar data, infers based on this information group, and outputs medical institution information (visit information, examination information, etc.) suitable for a specific user. It is possible to do. If a group of data similar to a person with a chronic medical condition is input to the inference engine 7, it is better to display a guide to a facility where the same treatment can be performed. The inference engine 7 can estimate the medical institution that has the equipment to inspect a specific user.
 また、今後、家電等の機器に健康見守りの機能が搭載される可能性は高まるので、ユーザが特別な設備が設置された場所に行かずとも、これらの機器によって生活の中で様々な情報が取得され、ユーザが意識せずとも有効な健康管理が出来る。例えば、温水便座や便器などに取り付けたセンサが、便の量や色を検知し、この検知結果を診断に生かす方法などが多く提案されている。 In addition, since it is more likely that home appliances and other devices will be equipped with health monitoring functions in the future, these devices will provide various information in daily life without the user having to go to a place where special equipment is installed. It is acquired and effective health management can be performed without the user being aware of it. For example, many methods have been proposed in which a sensor attached to a warm water toilet seat or a toilet bowl detects the amount and color of stool, and the detection result is used for diagnosis.
 次に、図2を用いて、第1機器2a等によって時系列的に取得される生体情報(検査データ)について説明する。前述したように、本実施形態においては、ユーザの検査データを取得するために、第1機器2aおよび第2機器2bの2つの機器を想定している。図2では、2つの機器の内の1つの機器から取得した生体情報(検査データ)について説明する。 Next, using FIG. 2, the biological information (examination data) acquired in time series by the first device 2a and the like will be described. As described above, in the present embodiment, two devices, the first device 2a and the second device 2b, are assumed in order to acquire the inspection data of the user. In FIG. 2, biological information (examination data) acquired from one of the two devices will be described.
 図2は、検査データを用いて作成したグラフである。DB部8には、患者IDごとに、時系列で整理された検査データが記録されており、図2は検査データをグラフに示したものである。図2において、横軸は時間Tを示し、縦軸には時系列の検査データをプロットする。縦軸にプロットするのは、検査データ、生体データ、バイタルデータ、検体データであって、これらのいずれかについて、検査する機器の検査出力結果の数値Dに基づいてプロットする。数値Dとしては、例えば、大便の赤色の程度を示す値である。 FIG. 2 is a graph created using inspection data. The DB unit 8 records test data organized in chronological order for each patient ID, and FIG. 2 shows the test data in a graph. In FIG. 2, the horizontal axis represents time T, and the vertical axis plots time-series inspection data. The vertical axis plots the test data, the biological data, the vital data, and the sample data, and any one of these is plotted based on the numerical value D of the test output result of the device to be inspected. The numerical value D is, for example, a value indicating the degree of red color of stool.
また、図2では、来院日時等もシステム的に自動で更新されることを想定している。来院日時は、当然、複数あり得るが、煩雑さを避けるために、単純化して、例えば、特定診療科の初診の日時でもよい。図2(a)に示す例は、後述するように、時系列データが健康悪化の方向に向かって変化し、やがてユーザが通院に至ったケースである。図2(a)に示すような状況の患者には、時刻T1より前であれば、あとどれ位で、どのような診療科のある病院に行くことになるかを推論した結果を提供することが可能である。なお、この例以外にも、図2(b)に示すように、すでに他の兆候を自覚しているために通院しており、バイタルデータが得られる場合であっても、これらの情報をDB部8に記録しておく。ただし、まったく通院していなくてもバイタルデータだけがある人もいる。 Further, in FIG. 2, it is assumed that the date and time of visit and the like are automatically updated systematically. Of course, there may be a plurality of visit dates and times, but in order to avoid complication, for example, the date and time of the first visit of a specific clinical department may be used. The example shown in FIG. 2A is a case in which the time-series data changes in the direction of deterioration of health and the user eventually goes to the hospital, as will be described later. For the patient in the situation shown in FIG. 2 (a), provide the result of inferring how long and what kind of clinical department the patient will go to before the time T1. Is possible. In addition to this example, as shown in FIG. 2B, even if the patient has already visited the hospital because he / she is aware of other signs and vital data can be obtained, this information is stored in the DB. Record in Part 8. However, some people have only vital data even if they do not go to the hospital at all.
 先に説明したように、図2(a)は、これから通院するであろうと推測されるケースである。図2(a)に示すグラフは、現在、通院していないユーザの検査データ(機器データ)の時系列的に変化を示す。この時系列的な検査データから、特定の検査結果(特定情報)を取得した時に、通常、医療機関に来院するかの情報が得ることができる。そこで、時系列的な検査データに基づいて、病院に行くほど悪化する前に、自身の健康状態を把握できるような健康情報をガイドすることが可能となる。例えば、図2(a)においては、時刻T1における検査データの場合に、時間+ΔTが経過した時刻Tcに、医療機関を訪れることを推論することができる。すなわち、DB部8に、検査データ、医療機関情報(医院名、診療科、日時情報)等が蓄積されていれば、医療機関で診療を受けるまでの期間が推測できる。 As explained earlier, Fig. 2 (a) is a case in which it is presumed that the patient will go to the hospital in the future. The graph shown in FIG. 2A shows changes in time series of examination data (equipment data) of users who are not currently visiting the hospital. From this time-series test data, it is possible to obtain information on whether or not to visit a medical institution when a specific test result (specific information) is obtained. Therefore, based on the time-series test data, it is possible to guide health information that can grasp one's own health condition before it deteriorates as one goes to the hospital. For example, in FIG. 2A, in the case of the test data at time T1, it can be inferred that the medical institution is visited at time Tc when time + ΔT has elapsed. That is, if the examination data, medical institution information (clinical name, clinical department, date and time information) and the like are accumulated in the DB unit 8, the period until receiving medical treatment at the medical institution can be estimated.
 図2(b)は、既に通院している場合であり、治療以外の要因で、通院中に悪化したケースである。図2(b)に示すグラフは、病気で通院している人が、時刻Tc1、Tc2において、特定情報が出現すると、医院で治療を受ける例である。図2(b)に示すような時系列的な検査データは、このような状況を学習するに、十分利用が可能である。この例は、「この数値の人は普通、自分では治療できない」という趣旨のガイドに有効である。さらなる悪化を未然に防止できる情報となって有効である。 Fig. 2 (b) shows a case in which the patient has already visited the hospital and has deteriorated during the hospital visit due to factors other than treatment. The graph shown in FIG. 2B is an example in which a person who goes to the hospital due to illness receives treatment at a clinic when specific information appears at times Tc1 and Tc2. The time-series inspection data as shown in FIG. 2B can be sufficiently utilized to learn such a situation. This example is useful for a guide to the effect that "people with this number usually cannot be treated on their own." It is effective as information that can prevent further deterioration.
 図2(c)は、医院に行く必要なないケースである。このケースでは、検査データDは、所定値(グラフ中破線で示す)よりも低く、医院に行く必要がない。この場合、図2に示したDB部8のデータベースにおいて、来院日時の欄は空欄となる。 Figure 2 (c) shows a case where it is not necessary to go to the clinic. In this case, the test data D is lower than the predetermined value (indicated by the broken line in the graph) and there is no need to go to the clinic. In this case, in the database of the DB unit 8 shown in FIG. 2, the column of the visit date and time is blank.
 DB部8には、来院した医院や診療科の情報、疾病の病名、保有設備の情報などが整理されて記録されている。このため、設備の事まで考えが及ばない患者にも、最適な施設を推奨することが可能となる。このデータベースは、取得情報の種別(便器の潜血検査情報)と医院と保有設備Modの関係を保持すればよく、患者別時系列データは別のデータベース管理でも良い。また、複数のDBを検索し、検索結果を整理することによって、DB部8に記録されるデータベースに相当する情報が得られる構成にしてもよい。 In the DB section 8, information on the clinics and clinical departments visited, the names of diseases, information on owned equipment, etc. are organized and recorded. For this reason, it is possible to recommend the optimal facility even for patients who do not even think about the facility. This database may hold the relationship between the type of acquired information (toilet bowl occult blood test information), the clinic, and the owned equipment Mod, and the patient-specific time-series data may be managed in a separate database. Further, by searching a plurality of DBs and organizing the search results, information corresponding to the database recorded in the DB unit 8 may be obtained.
 図2は、DB部8に記録された患者ごとの時系列情報をグラフによって示しており、横軸が時間で縦軸が取得情報を数値化したものである。このため、2次元にビジュアルな情報となっている。2次元の図になっていることから、次の二つのことが言える。まず図であることから、画像判定と同様に扱うことができ、画像認識の推論モデルのような汎用的で構築しやすいAIチップもしくはシステムを簡単に流用でき、推論を容易に実現することができる。また、横軸が時間であることから、身体的な情報の時間変化の情報を有効利用でき、予測などを簡単にできる。また、揺らぎや頻度といった、生体特有の時間変化の特徴に関する情報を盛り込める。 FIG. 2 is a graph showing the time-series information for each patient recorded in the DB unit 8, where the horizontal axis is time and the vertical axis is the numerical value of the acquired information. Therefore, the information is two-dimensionally visual. Since it is a two-dimensional diagram, the following two things can be said. First, since it is a diagram, it can be handled in the same way as image judgment, and a general-purpose and easy-to-build AI chip or system such as an inference model for image recognition can be easily diverted, and inference can be easily realized. .. In addition, since the horizontal axis is time, it is possible to effectively use the time-varying information of physical information, and it is possible to easily make a prediction. In addition, it can include information on the characteristics of time changes peculiar to the living body, such as fluctuations and frequency.
 例えば、ユーザが、寝ている時、起きている時、朝と昼と夜、食前、食後、入浴前後といった情報を考慮しやすいという点があげられる。また、心拍や呼吸などは揺らぎが適当な方がリラックスしていて健康的という研究もある。 For example, it is easy for the user to consider information such as when sleeping, when waking up, morning and day and night, before meals, after meals, and before and after bathing. In addition, there is a study that it is more relaxed and healthier to have appropriate fluctuations in heart rate and breathing.
 また、図2において、履歴データを取得している期間の内のある期間が特定期間に相当し、この特定期間の間の検査データが抽出される。この抽出された時系列的な検査データが、推論エンジン7に入力され、推論エンジン7は推論によってアドバイスを出力し、ユーザにアドバイスが提供される。また、特定の時間幅は、その時間幅の終了時点から後の未来に相当する時点で、何らかのアドバイスが出来るのに相応しいものであればよく、このアドバイス時点に対して遡った複数の情報が取得できる幅であれば良い。また、特定の時間幅は、規格によって決めるような、厳密なものでなくともよく、十分なデータ量が得られれば良い。各データの時間間隔なども重要な情報となるので、規則的な時間幅で得られた、離散的ではないものであった方が良い。しかし、時間幅内においてデータの測定時点が離散的であっても、データを補間によって補って意味のあるデータが得られる程度の時間幅であるならば有効である。何らかの健康、医療関係情報に従って決められるものでもよい。 Further, in FIG. 2, a certain period within the period for acquiring the historical data corresponds to a specific period, and the inspection data during this specific period is extracted. The extracted time-series inspection data is input to the inference engine 7, the inference engine 7 outputs advice by inference, and the advice is provided to the user. In addition, the specific time width may be suitable for giving some advice at a time corresponding to the future after the end of the time width, and a plurality of information retroactive to the time of this advice is acquired. It should be as wide as possible. Further, the specific time width does not have to be strict as determined by the standard, and it is sufficient if a sufficient amount of data can be obtained. Since the time interval of each data is also important information, it is better that the data is obtained with a regular time width and is not discrete. However, even if the measurement time points of the data are discrete within the time width, it is effective as long as the time width is such that the data can be supplemented by interpolation to obtain meaningful data. It may be determined according to some health or medical information.
 また、グラフの横軸の幅を適当に規定することによって、予測などの精度を推論モデルによって切り替えることも可能である。時間幅が1年程度であれば、数か月オーダーの予測が可能になり、時間幅が1週間程度では、数日オーダーの予測に向いており、病気の特徴に応じて適切な幅を変えることが出来る。例えば、腫瘍のように徐々に進行するものと、インフルエンザなど感染症のように急激に治るものと悪化するものを見極めなければならない場合では、適当な時間幅が異なる。つまり、本実施形態に係る情報伝達装置は、予め定められた時間幅でユーザの検査データの変化パターンを抽出し、時間情報と共に学習された推論モデルに従って、ユーザへの伝達情報を決定する伝達情報決定部を有する。 It is also possible to switch the accuracy of prediction etc. by the inference model by appropriately defining the width of the horizontal axis of the graph. If the time width is about one year, it is possible to predict orders for several months, and if the time width is about one week, it is suitable for forecasting orders for several days, and the appropriate width is changed according to the characteristics of the disease. Can be done. For example, when it is necessary to distinguish between a tumor that progresses gradually and an infectious disease such as influenza that cures rapidly and worsens, the appropriate time range differs. That is, the information transmission device according to the present embodiment extracts the change pattern of the user's inspection data within a predetermined time width, and determines the transmission information to the user according to the inference model learned together with the time information. It has a decision part.
 次に、図3を用いて、ユーザが第1機器2aおよび第2機器2bにおいて測定し、複数の検査データを取得した場合について、説明する。図3は、取得した検査データをグラフで表示している。この図3において、横軸Tは測定タイミング、縦軸は検査データ(第1機器であればDA、第2機器であればDB)の値を表したものである。 Next, with reference to FIG. 3, a case where the user measures with the first device 2a and the second device 2b and acquires a plurality of inspection data will be described. FIG. 3 graphically displays the acquired inspection data. In FIG. 3, the horizontal axis T represents the measurement timing, and the vertical axis represents the value of inspection data (DA for the first device, DB for the second device).
 図3は、同じ対象者に対する同様の項目の検査データであっても、機器によっては機差や設置・測定環境の違いによって、同じ値が出力されない場合があることを図示している。例えば、仮に、健康であるか要精密検査を判定するための閾値を、第1機器ではDARと示し、第2機器ではDBRと示した時に、この図示の結果によると、時間によって第1機器では測定値が閾値を上回り、第2機器では閾値を下回っている。つまり、T0というタイミングで閾値を上回ったという事だけで判断するのではなく、その閾値を超えたタイミングT0からさかのぼって、T1、T2・・・T4と検査データを検索することによって、正確な判断が出来る。 FIG. 3 illustrates that even if the inspection data has the same items for the same subject, the same value may not be output depending on the device due to the difference in the machine and the installation / measurement environment. For example, if the threshold value for determining whether a person is healthy or not requires a detailed examination is indicated as DAT in the first device and DBR in the second device, according to the results shown in this figure, the first device may be determined by time. The measured value is above the threshold value and below the threshold value in the second device. That is, it is not judged only by the fact that the threshold value is exceeded at the timing of T0, but an accurate judgment is made by searching the inspection data as T1, T2 ... T4, going back from the timing T0 that exceeds the threshold value. Can be done.
 ただし、第1機器2aを用いた検査履歴は一つしかないので、さらに正確な判断を行うとすると、他の機器に蓄積されたデータも参照することが好ましい。そこで、第1機器2aと同様の測定項目を測定可能な機器(第2機器2b)のデータも参照することによって、グラフ33に示すように、情報量を増やし、経時変化が正しく判定されるようにしている。例えば、排泄物や血液など体液などは、体調や食事の時間、飲酒や服薬、入浴の前後、睡眠の前後、その過不足(生活の状況)によって変化するので、一回の検査で、すべてを判定しない方が良い。特に、日常的に見守りを行う機器の場合、様々な誤差要因に直面することから、ここで説明するような対策を行うことが望ましい。 However, since there is only one inspection history using the first device 2a, it is preferable to refer to the data accumulated in other devices when making a more accurate judgment. Therefore, by referring to the data of the device (second device 2b) capable of measuring the same measurement items as the first device 2a, as shown in the graph 33, the amount of information is increased so that the change with time can be correctly determined. I have to. For example, body fluids such as excrement and blood change depending on the physical condition, meal time, drinking and taking medicine, before and after bathing, before and after sleeping, and the excess and deficiency (living conditions). It is better not to judge. In particular, in the case of equipment that is monitored on a daily basis, various error factors are faced, so it is desirable to take measures as described here.
 なお、手術のような特定の治療の前後では、大きな身体的負担によって、バイタルデータが大きく変化する可能性がある。また、このような患者の検査データは、ある時を境に大きく変化してしまう可能性があり、このような状況が判定、検出された場合などは、本実施形態に示すような補正は、行わないようにした方が良い。さらに、この時点から後の日常で得られる検査情報は、分けて管理、判定することで、経過観察用のデータとしての価値も高まる。 Before and after a specific treatment such as surgery, vital data may change significantly due to a large physical burden. In addition, the test data of such a patient may change significantly at a certain time, and when such a situation is determined and detected, the correction as shown in the present embodiment may be performed. It is better not to do it. Furthermore, by managing and judging the inspection information obtained in daily life from this point onward separately, the value as data for follow-up observation is increased.
 先に説明した生活の状況による誤差を軽減するには、様々な状況で測定したデータを増やして判定し、その時限りの特殊状況だけで判定しないようにしている(前述の手術等の治療前後のデータはこの限りではない)。つまり、第1機器2aによって対象者の検査データ群を取得するにしても、時系列的な変化の状況までを確認できるものである方がよいが、図3に示す例では、データ量が少なすぎている。そこで、第1の検査データ群を補間できるような、第2の機器(さらに第3、第4があってもよい)によって対象者の時系列的な第2の検査データ群を取得することで、データを補うようにして、信頼性の高い判断を可能としている。この第2の機器は、第2の検査データ取得部を有し、そのデータの履歴を、所定の時間遡って(図3に示す例では、時刻T4まで)記録するようにしている。第1の検査データ群と第2の検査データ群を用いて、伝達情報決定部が、対象者に提供する伝達情報を決定すると信頼性が高まる。第1の検査データ群と、第2の検査データ群は、互いに検査タイミングまたは検査項目を補うことで、上述したような特別な生活状況の影響を減らした情報提供が可能となる。ここでは、T4まで、特定の時間をさかのぼったが、上記経過観察では、手術後まで遡る等、の工夫があってもよい。 In order to reduce the error due to the living situation explained above, the judgment is made by increasing the data measured in various situations, and the judgment is not made only in the special situation for that time (before and after the treatment such as the above-mentioned surgery). Data is not limited to this). That is, even if the inspection data group of the subject is acquired by the first device 2a, it is better to be able to confirm the status of changes over time, but in the example shown in FIG. 3, the amount of data is small. It's too much. Therefore, by acquiring the time-series second inspection data group of the subject by a second device (which may further have a third and a fourth) capable of interpolating the first inspection data group. , By supplementing the data, it is possible to make highly reliable judgments. This second device has a second inspection data acquisition unit, and records the history of the data retroactively by a predetermined time (up to time T4 in the example shown in FIG. 3). When the transmission information determination unit determines the transmission information to be provided to the target person by using the first inspection data group and the second inspection data group, the reliability is enhanced. By supplementing the inspection timing or inspection items with each other, the first inspection data group and the second inspection data group can provide information with less influence of the special living conditions as described above. Here, a specific time is traced back to T4, but in the above-mentioned follow-up, some measures may be taken such as tracing back to the postoperative period.
 少し具体的に、消化器系の疾患の予防を考慮した例を説明する。この疾患の予防として、検便という手法が知られている。図3の例では、この検便を、対象者(ユーザ)が意識せずとも、排せつの際に行うトイレによって行うことを想定している。グラフ31は、例えば第1機器2aによって家庭のトイレにおいて取得した検査データに基づいて作成され、またグラフ32は、例えば第2機器2bによって職場のトイレにおいて取得した検査データに基づいて作成されたグラフである。 A little more concretely, an example considering prevention of digestive system diseases will be explained. A technique called stool test is known to prevent this disease. In the example of FIG. 3, it is assumed that this stool test is performed by the toilet performed at the time of excretion without the subject (user) being aware of it. The graph 31 is created based on the inspection data acquired in the toilet at home by the first device 2a, for example, and the graph 32 is created based on the inspection data acquired in the toilet at the workplace by the second device 2b, for example. Is.
 このように、生活のパターンとして、プライベートとオフィシャルな環境下で、二つのトイレのデータが利用できれば、多くの検査機会が生まれ、豊富な情報が取得可能となる。職場では緊張して高めのデータが出る場合なども補正でき、あるいは、職場以外では気づかなかった傾向なども判定できる機会が増える。 In this way, if the data of two toilets can be used in a private and official environment as a pattern of life, many inspection opportunities will be created and a wealth of information can be obtained. In the workplace, it is possible to correct cases where high data is obtained due to tension, or there are more opportunities to judge trends that were not noticed outside the workplace.
 同一ユーザについて、同一の検査項目で検査したとしても、使用した機器や管理の仕方の相違等のため、測定誤差や精度などが相違してしまう。このため、2つの検査データを、グラフ33に示すように、同じグラフ上に記載することが正しいとは限らない。例えば、家庭で使用した第1機器2aは簡易センサであり、職場で使用した第2機器2bは従業員の健康管理を重視して高性能のセンサである可能性がある。このような状況から、2つの検査データは、類似の数値であるが測定方法やセンサが異なるので単純に比較できない可能性がある。また、別の観点では、第1、第2機器を、駅や公共施設のトイレに配置したとすると、この場合には温湿度の管理が困難であり、また利用者も多いことから、温度など環境による誤差や部品劣化や汚れなどの誤差要因が乗ってきやすいので、同じスケール上において、数値解析するのは困難である。しかし、特定人物の健康管理情報を収集するためには、種々の機器によって取得したデータを総合的に利用することによって、情報の数を増やし、情報の価値を高めるのがよい。また、トイレ設備が頻繁に更新される場合には、機器変更前後でデータを等しく扱うことが出来なってしまう。この点についても考慮してデータを扱うようにするのがよい。 Even if the same user is inspected with the same inspection items, measurement errors and accuracy will differ due to differences in the equipment used and management methods. Therefore, it is not always correct to describe the two inspection data on the same graph as shown in the graph 33. For example, the first device 2a used at home may be a simple sensor, and the second device 2b used at work may be a high-performance sensor with an emphasis on employee health management. Under these circumstances, the two inspection data may not be simply comparable because they have similar numerical values but different measurement methods and sensors. From another point of view, if the first and second devices are placed in the toilets of stations and public facilities, it is difficult to control the temperature and humidity in this case, and there are many users, so the temperature, etc. It is difficult to perform numerical analysis on the same scale because error factors such as environmental errors, deterioration of parts, and dirt are likely to occur. However, in order to collect health management information of a specific person, it is better to increase the number of information and increase the value of the information by comprehensively using the data acquired by various devices. In addition, if the toilet equipment is updated frequently, the data cannot be handled equally before and after the equipment change. It is better to handle the data in consideration of this point as well.
 そこで、本実施形態においては、第1、第2機器2a、2bにおいて取得した検査データを、グラフ33に示すように単純に並べるのではなく、グラフ34に示すように、同じ機器は同様の数値特性があると考え、2つの検査データに対して、補正演算を行っている。図3では、グラフ33のように第1機器からの出力が低く出がちな傾向があるのを、所定数増加させている、あるいは、ゲインをかけて強調し、これらの処理を行った図をグラフ34として示している。)すなわち、検査データを、機器のIDと検査結果を合わせて記録したデータベースとし、同じ機器のデータは一律にシフト補正(加減算)、および/またはゲイン補正(乗除算)する。この補正演算によって、複数の機器で得られた、取得時間に応じて変化するデータ推移の上下動パターンを、他のデータと同様に比較することが可能となる。 Therefore, in the present embodiment, the inspection data acquired in the first and second devices 2a and 2b are not simply arranged as shown in the graph 33, but the same devices have the same numerical values as shown in the graph 34. Considering that it has characteristics, correction calculation is performed on the two inspection data. In FIG. 3, as shown in Graph 33, the tendency that the output from the first device tends to be low is increased by a predetermined number or emphasized by applying a gain, and these processes are performed. It is shown as graph 34. ) That is, the inspection data is used as a database in which the device ID and the test result are recorded together, and the data of the same device is uniformly shift-corrected (addition / subtraction) and / or gain-corrected (multiplication / division). This correction calculation makes it possible to compare the vertical movement patterns of data transitions obtained by a plurality of devices, which change according to the acquisition time, in the same manner as other data.
 ただし、健康の程度に応じて、検査データの増減パターンが逆転する等、補正してもパターンが異なる場合には、誤って比較されないように、測定した数値を解析できるように記録しておく。また測定に使用した機器の種類やその型番、またセンサ数値といった情報でもよい。この情報があれば、類似の生体情報を取得する他の機器からの数値変化パターンの比較が可能となる。一般には生体情報は分刻みで変化することは少ないので、各機器の持つ時計情報(これによってグラフの横軸の正確さが決まる)の誤差は分単位程度の精度があれば良い。 However, if the increase / decrease pattern of the test data is reversed depending on the degree of health, or if the pattern is different even after correction, record the measured value so that it can be analyzed so that it will not be erroneously compared. Further, information such as the type of the device used for the measurement, its model number, and the sensor value may be used. With this information, it is possible to compare numerical change patterns from other devices that acquire similar biometric information. In general, biological information rarely changes in minute increments, so the error in the clock information (which determines the accuracy of the horizontal axis of the graph) of each device should be as accurate as minutes.
 上述したような考え方によって、体調変化、病気の発病や悪化に適切な時間範囲での健康関連数値が豊富に得られるので、これらの情報に基づいて、情報提供部1cは利用者に早めにアドバイスすることが可能となる。特定機器の離散的時系列データを使った推論を行う時に、その離散的な時間の間隔を補う情報を補正しながらデータ化することによって、データを豊富にし、このデータを用いて推論を行うことによって、確度の高いアドバイスが可能となる。 Based on the above-mentioned way of thinking, abundant health-related numerical values can be obtained within an appropriate time range for changes in physical condition and the onset or worsening of illness. Based on this information, the information providing department 1c advises the user as soon as possible. It becomes possible to do. When making inferences using discrete time-series data of a specific device, enrich the data by converting it into data while correcting the information that supplements the discrete time intervals, and make inferences using this data. This enables highly accurate advice.
 次に、図4に示すフローチャートを用いて、情報伝達システムにおける検査結果の送信の動作の一例について説明する。このフローは、主として、制御部1内のCPUがメモリに記憶されたプログラムに従って、情報伝達システム全体を制御することによって、実行される。 Next, an example of the operation of transmitting the inspection result in the information transmission system will be described using the flowchart shown in FIG. This flow is mainly executed by the CPU in the control unit 1 controlling the entire information transmission system according to the program stored in the memory.
 図4に示す例では、第1機器2aはウェアラブル機器であり、第2機器2bは専用機器を想定している。いずれも対象者(特定のユーザ)の健康関連情報を取得するための機器である。ウェアラブル機器は、測定精度は低いが、ユーザが日常身に着けているので、頻繁に測定を行い、多数の情報を集めることができる。一方、専用機器は、測定精度は高いが、ウェアラブル機器に比較すれば、頻繁な測定を行うことができない。ユーザが複数つの機器を用いて検査データを取得することによって、互いの欠点を補い、データの精度を高め、かつデータ数を多くすることができる。すなわち、複数の特徴の異なる機器のそれぞれの利点を補強し、個々の日常に密着した健康管理が可能となる。 In the example shown in FIG. 4, the first device 2a is assumed to be a wearable device, and the second device 2b is assumed to be a dedicated device. Both are devices for acquiring health-related information of the target person (specific user). Wearable devices have low measurement accuracy, but since they are worn by users on a daily basis, they can make frequent measurements and collect a large amount of information. On the other hand, the dedicated device has high measurement accuracy, but cannot perform frequent measurement as compared with the wearable device. By acquiring inspection data using a plurality of devices, the user can compensate for each other's shortcomings, improve the accuracy of the data, and increase the number of data. That is, it is possible to reinforce the advantages of each of the devices having different characteristics and to manage the health of each individual in close contact with daily life.
 図4に示す検査結果送信のフローが開始すると、携帯端末が健康関連数値を取得する(S101)。ここでは、ウェアラブルタイプの第1機器2aが、日常的に、例えば血圧など、健康管理用数値(検査データ)を取得する。第1機器2aが取得した検査データが異常である場合に、制御部1に送信し、ステップS103に進む。通信や推論に費やすエネルギーや時間のロスが問題なければ、ステップS101において取得した検査データを制御部1に送信してもよい。後述するように、ステップS107において履歴データを合わせる際に、第1機器2aによる検査データを使用するので、第1機器2aは、所定時間間隔で検査データを制御部1に送信する。 When the flow of transmitting the test result shown in FIG. 4 starts, the mobile terminal acquires the health-related numerical value (S101). Here, the wearable type first device 2a routinely acquires a numerical value (test data) for health management such as blood pressure. When the inspection data acquired by the first device 2a is abnormal, the data is transmitted to the control unit 1 and the process proceeds to step S103. If there is no problem with the loss of energy and time spent on communication and inference, the inspection data acquired in step S101 may be transmitted to the control unit 1. As will be described later, since the inspection data by the first device 2a is used when the history data is combined in step S107, the first device 2a transmits the inspection data to the control unit 1 at predetermined time intervals.
 端末が健康関連数値を取得すると、同一人の検査結果を検索する(S103)。ここでは、制御部1のID判定部1bは、DB部8において、ステップS101において測定したユーザと同一人の検査結果を検索する。個人が所有する端末では、専用のセンサ類が簡易なものであったり、個人の持ち運びや取り扱い上の制約で誤差を含みやすかったりする。そこで、専用機器が取得した健康関連数値の結果を用いて、端末で取得した健康関連数値が誤差を含まないか等をチェック、検証したいからである。前述したように、検査データが異常でなく、検査データが送信されなかった場合には、このステップをスキップしてもよい。 When the terminal acquires the health-related numerical value, the test result of the same person is searched (S103). Here, the ID determination unit 1b of the control unit 1 searches the DB unit 8 for the inspection result of the same person as the user measured in step S101. For terminals owned by individuals, dedicated sensors may be simple, or errors may easily be included due to restrictions on individual carrying and handling. Therefore, we would like to check and verify whether the health-related numerical values acquired by the terminal include errors, etc., using the results of the health-related numerical values acquired by the dedicated device. As described above, if the inspection data is not abnormal and the inspection data is not transmitted, this step may be skipped.
 次に、専用機器によって対応データを取得する(S105)。ここでは、専用機器タイプの第2機器2bが、ユーザの健康管理数値(検査データ)を取得する。第2機器2bは検査データを取得すると、検査データを制御部1に送信する。専用機器は特定の専門機関や専門家が扱う校正された機器であり、安定した環境下に設置され利用される場合が多く、個人用の端末の結果よって、信頼性の高い結果を得ることが期待される。そこで、専用機器によって取得されたデータをもとに、例えば、ステップS101によって取得した結果を補正して扱うような使い方が可能となる。 Next, acquire the corresponding data using a dedicated device (S105). Here, the second device 2b of the dedicated device type acquires the user's health management numerical value (examination data). When the second device 2b acquires the inspection data, the second device 2b transmits the inspection data to the control unit 1. Dedicated equipment is calibrated equipment handled by a specific specialized institution or specialist, and is often installed and used in a stable environment, and it is possible to obtain highly reliable results depending on the results of personal terminals. Be expected. Therefore, based on the data acquired by the dedicated device, for example, the result acquired in step S101 can be corrected and handled.
 続いて、ステップS101とS105において取得した検査データの履歴を調整し、この調整した履歴データを用いて推論を行う(S107)。図3を用いて説明したように、第1機器2aと第2機器2bは、同一であっても、機器の誤差等があるために、検査データの値がずれることがある。しかし、同一人であれば、機器が違っていても、時系列的に取得した検査データの傾向は同一になる。そこで、制御部1は、第1機器2aと第2機器2bで取得した検査データに対して補正演算を施し、あたかも同一の機器で取得した時系列的な検査データ(履歴データ)を生成する。推論エンジン7は、この履歴データを入力し、体調変化、病気の発病や悪化に対するアドバイスを出力するための推論を行う。 Subsequently, the history of the inspection data acquired in steps S101 and S105 is adjusted, and inference is performed using the adjusted history data (S107). As described with reference to FIG. 3, even if the first device 2a and the second device 2b are the same, the values of the inspection data may deviate due to an error of the device or the like. However, if the same person is used, the tendency of the inspection data acquired in time series will be the same even if the equipment is different. Therefore, the control unit 1 performs a correction operation on the inspection data acquired by the first device 2a and the second device 2b, and generates time-series inspection data (history data) acquired by the same device. The inference engine 7 inputs this historical data and makes an inference to output advice on changes in physical condition and onset or worsening of illness.
 推論を行うと、次に、推論結果を表示する(S109)。ここでは、制御部1は、ユーザが保有する端末4に、推論結果に基づくアドバイスを送信し、端末4はアドバイスを表示する。この時、推論モデルがどのようなアノテーション情報を持って学習をするかによって、アドバイスはいろいろな変更が可能であり、例えば、アノテーション情報が、通院すべき病院の診療科の種別や処方薬情報を含むのであれば、こうした結果を推論の出力として提示することが可能となる。また、これらの推論結果のみならず、推論結果からデータベースなどをインターネット検索し、検索結果に基づいて追加の注意事項などを提示してもよい。また、ユーザの検査データの履歴や、所持する携帯端末の履歴などから、どのような状況下で、どのような検査データの傾向があるかを判定することも可能であり、この判定は推論で行っても、またルールベースで行ってもよい。つまり、高血圧の兆候が認められた人の場合、どのような場合に高血圧傾向になるかは、履歴データの中で高い値を出力するユーザの状況を判定すれば分析、提示が可能となり、ケースによっては職場でのストレスなどが影響していることなどが提示できる。 After making an inference, the inference result is displayed next (S109). Here, the control unit 1 transmits advice based on the inference result to the terminal 4 owned by the user, and the terminal 4 displays the advice. At this time, the advice can be changed in various ways depending on what kind of annotation information the inference model has to learn. For example, the annotation information determines the type of clinical department and prescription drug information of the hospital to be visited. If included, these results can be presented as inference output. In addition to these inference results, a database or the like may be searched on the Internet from the inference results, and additional precautions or the like may be presented based on the search results. It is also possible to determine what kind of inspection data tends to be under what circumstances from the history of the user's inspection data and the history of the mobile terminal in possession, and this determination is by reasoning. You can do it, or you can do it on a rule basis. In other words, in the case of a person with signs of hypertension, it is possible to analyze and present when the tendency to hypertension occurs by judging the situation of the user who outputs a high value in the historical data. Depending on the situation, it can be shown that stress in the workplace has an effect.
 また、単に、高い数値が出た日時を提示するだけでも、ユーザは、それを見て、自分の健康が、どのような環境、季節、一日のどの時間帯などによって、どのような傾向になるかを類推することができる。ユーザは、この判断に応じて、休息、服薬、通院などの行動に移せるため、自覚前の早めの措置が可能となり、健康な生活を続ける人を増やすことが出来る。また、ユーザは、検査データの数値が悪化する傾向のある環境が分かれば、その環境下に来た時に、様々なデータを取得するような制御を携帯機器や検査機器に実行させる等のフィードバック制御を行うことによって、原因の特定する手がかり情報を増やすことができる。 In addition, even if the user simply presents the date and time when the high number appears, the user sees it and what kind of tendency his / her health depends on what kind of environment, season, what time of day, etc. It can be inferred whether it will be. According to this judgment, the user can take actions such as resting, taking medicine, and going to the hospital, so that it is possible to take early measures before becoming aware of it, and it is possible to increase the number of people who continue to live a healthy life. In addition, if the user knows an environment in which the numerical value of the inspection data tends to deteriorate, feedback control such as causing a mobile device or an inspection device to perform control to acquire various data when the user comes under the environment. By doing this, it is possible to increase the amount of clues to identify the cause.
 本実施形態における検査結果送信のフローにおいては、専用機器や健康診断結果における誤差はほとんど無視できると考え、ばらつき要因の多いウェアラブル機器(S1)において取得した結果を補正している。このため、日常的に得られる健康データが、専用機器における検査時と異なるのか、同じなのかを判定できる。 In the flow of transmitting the test result in the present embodiment, it is considered that the error in the dedicated device and the health diagnosis result can be almost ignored, and the result acquired in the wearable device (S1) having many variation factors is corrected. Therefore, it is possible to determine whether the health data obtained on a daily basis is different or the same as that at the time of the inspection with the dedicated device.
 この結果、専用機器で測定した場合は、たまたま数値が良く、一方、生活シーンにおいて測定した数値が、それより悪い結果が出た場合に、正確に判定できるようになる。この場合には、例えば、食後は注意とか、起床時に注意といった健康アドバイスを行うことが可能となる。この健康アドバイスは、ユーザの端末4等、ユーザがアクセスしやすい機器などに提示すればよい。最近では、ユーザのテレビに表示することが可能であり、またAIスピーカー、健康管理洗面台など、携帯端末以外でも、情報を特定個人に発信する技術が広く提供されているので、これらを利用してもよい。 As a result, when measured with a dedicated device, the numerical value happens to be good, while when the numerical value measured in the daily life scene gives a worse result, it becomes possible to accurately judge. In this case, for example, it is possible to give health advice such as caution after eating or caution when waking up. This health advice may be presented to a device such as a user's terminal 4 that is easily accessible by the user. Recently, it is possible to display on the user's TV, and technologies for transmitting information to specific individuals other than mobile terminals such as AI speakers and health care wash basins have been widely provided, so we will use these. You may.
 図4のフローの説明にあたっては、血圧計のような専用のセンサを設けた機器を中心に説明したが、血圧に限るものではなく、脈拍や心拍等の情報にも適用できる。これらは撮像素子、加速度センサ等、特別な用途以外の携帯端末が搭載可能な汎用または、広く知られた技術で補完できる。2つの機器が同じ項目(例えば、血圧と血圧)を測定する機器で必要はなく、一方は血圧、一方は脈拍でも良い。何れの心拍数の時に、どのような血圧になるかなど、相関がある場合でも相関がない場合でも、心拍数が高い状態が続くと、高血圧患者では心疾患の発症リスクが高まるので、総合的な判定には役立つ場合が多い。様々な機器が様々な健康関係データを取得可能なので、ユーザによって見守り機器や要注意データを変えてもよく、症状によって何れの病院に行けばよいか等のアドバイスが可能である。 The explanation of the flow in FIG. 4 focused on a device provided with a dedicated sensor such as a sphygmomanometer, but it is not limited to blood pressure and can be applied to information such as pulse and heart rate. These can be complemented by general-purpose or widely known technologies that can be mounted on mobile terminals other than special applications such as image sensors and acceleration sensors. It is not necessary for the two devices to measure the same item (for example, blood pressure and blood pressure), one may be blood pressure and the other may be pulse. Regardless of whether there is a correlation or no correlation, such as at what heart rate and what kind of blood pressure, if the heart rate continues to be high, the risk of developing heart disease increases in hypertensive patients, so it is comprehensive. It is often useful for making a good judgment. Since various devices can acquire various health-related data, it is possible to change the monitoring device and the data requiring attention depending on the user, and it is possible to give advice such as which hospital to go to depending on the symptomatology.
 このように、各ユーザへの情報のカスタマイズも情報提供部1cが行えばよい。具体的には、ユーザの居住地の近所で、適切なクリニックに関する情報等を提供することが考えられる。これ以外にも、かかりつけの施設の医療従事者が、何れの数値をモニタするかを決め、この施設の有するシステムがデータを管理するようにしてもよい。その医療施設が十分な数の症例を扱っているのであれば、この人とこの人の健康情報が類似していることから、それぞれに同様の疾病の傾向があるなどの診断することが出来る。このために、DB部8を院内のサーバに設け、データを蓄積するようにしてもよい。この場合には、その地域特有の環境や食習慣などが自動的に反映された推論や考察やアドバイスが可能となる。 In this way, the information providing unit 1c may customize the information for each user. Specifically, it is conceivable to provide information on an appropriate clinic in the neighborhood of the user's place of residence. In addition to this, the medical staff of the family facility may decide which numerical value to monitor, and the system of this facility manages the data. If the medical facility handles a sufficient number of cases, it is possible to diagnose that this person and this person have similar health information, and that each has a similar tendency to illness. For this purpose, the DB unit 8 may be provided on the server in the hospital to store data. In this case, it is possible to make inferences, considerations, and advice that automatically reflect the environment and eating habits peculiar to the area.
 次に、図5に示すフローチャートを用いて、情報伝達システムにおける検査結果の送信の動作の他の例について説明する。このフローも、主として、制御部1内のCPUがメモリに記憶されたプログラムに従って、情報伝達システム全体を制御することによって、実行される。また、図5に示すフローは、図1に示したDB部8における検索と、推論エンジン7による推論等の機能を個別に利用する場合を示す。どちらかの一方の機能を使用する場合や、両方を重ねて使用する場合もあり得るが、ここでは、最も簡潔な例を示している。 Next, another example of the operation of transmitting the inspection result in the information transmission system will be described using the flowchart shown in FIG. This flow is also mainly executed by the CPU in the control unit 1 controlling the entire information transmission system according to the program stored in the memory. Further, the flow shown in FIG. 5 shows a case where the search in the DB unit 8 shown in FIG. 1 and the inference by the inference engine 7 are individually used. You may want to use one of the functions, or you may use both of them in layers, but here is the simplest example.
 図5のフローを説明するにあたって、第1機器2a、第2機器2b、第3機器3として、便器に画像センサや顕微鏡のような拡大画像判定器、特殊な光の反射などを検出するセンサ、結晶性ナノワイヤーのアレイや、分子膜などの電気特性の変化を応用した嗅覚センサ、ガス成分センサ等が配置され、ユーザの排泄物の特徴を確認できる場合を想定して説明する。 In explaining the flow of FIG. 5, as the first device 2a, the second device 2b, and the third device 3, the toilet bowl has an image sensor, a magnified image judgment device such as a microscope, and a sensor that detects special light reflection. The description will be made on the assumption that an array of crystalline nanowires, an olfactory sensor that applies changes in electrical characteristics such as a molecular film, a gas component sensor, and the like are arranged so that the characteristics of the user's excrement can be confirmed.
 図5に示す検査結果送信のフローが開始すると、まず、ID毎に、センサ出力結果に基づいて判定する(S1)。ここでは、制御部1が通信制御部1aを通じて第1機器2a等の出力を取得する場合や、第1機器2a等が送信したデータを制御部1が通信制御部1aで受けとる場合がある。また、第1機器2a等が記録していたデータを特定のタイミングで通信制御部1aを通じて制御部1が収集するような方法などを想定している。このとき、センサ出力結果に添付されたID毎に、センサ出力に基づいて、検査結果の判定を行う。センサとしては、色センサ、形状センサ、硬度センサ、嗅覚センサ(線虫や動物の反応判定を含む)、ガス成分センサ、特定の試薬添加時の色変化検出センサであり、イメージセンサの出力に基づいて、拡大観察画像による形状判定を行ってもよい。 When the flow of inspection result transmission shown in FIG. 5 starts, first, each ID is determined based on the sensor output result (S1). Here, the control unit 1 may acquire the output of the first device 2a or the like through the communication control unit 1a, or the control unit 1 may receive the data transmitted by the first device 2a or the like in the communication control unit 1a. Further, it is assumed that the control unit 1 collects the data recorded by the first device 2a or the like through the communication control unit 1a at a specific timing. At this time, the inspection result is determined based on the sensor output for each ID attached to the sensor output result. The sensors are a color sensor, a shape sensor, a hardness sensor, an olfactory sensor (including reaction judgment of nematodes and animals), a gas component sensor, and a color change detection sensor when a specific reagent is added, based on the output of the image sensor. Then, the shape may be determined by the magnified observation image.
 前述のユーザの排泄物の特徴を確認する場合には、例えば、潜血のある便などは色センサで判定が可能である。また、排せつの量や形状、硬さなどは、イメージセンサ・色センサによって判定してもよいし、特殊な染色を行って色の分布などを測定する方法でも良い。あるいは、対象物を拡大した画像で組成を検出してもよく、特定の時間、培養した結果を判定してもよい。例えば、便に混ざる血液が増えると赤血球の赤色が目立ってくるが、これを数値化すると、健康な場合との差異が分かる。ステップS1において、これらを検出する。 When confirming the characteristics of the user's excrement described above, for example, stool with occult blood can be determined by a color sensor. Further, the amount, shape, hardness, etc. of excretion may be determined by an image sensor / color sensor, or a method of measuring the color distribution by performing special dyeing may be used. Alternatively, the composition may be detected in a magnified image of the object, or the result of culturing for a specific time may be determined. For example, when the amount of blood mixed in the stool increases, the red color of red blood cells becomes conspicuous, but if this is quantified, the difference from the healthy case can be seen. These are detected in step S1.
 ステップS1において、制御部1が特定のプログラム等を用いた判断等によって、センサ出力結果の判定を行うと、次に、特定情報を得ることが出来たか否かを判定する(S3)。ここでは、ステップS1における判定結果に基づいて、疾病と関連する特定情報、例えば、健康な状態と差異がある数値などの特徴が検出されたか否かを判定する。 In step S1, when the control unit 1 determines the sensor output result by a determination using a specific program or the like, it then determines whether or not specific information can be obtained (S3). Here, based on the determination result in step S1, it is determined whether or not specific information related to the disease, for example, a feature such as a numerical value different from the healthy state is detected.
 ステップS3における判定の結果、特定情報を取得できない場合には、ステップS1に戻る。一方、ステップS3における判定の結果、特定情報を取得できた場合には、経過推論モデルが有るか否かを判定する(S5)。ここでは、ステップS3において取得した特定情報に基づいて、特定疾患を疑い、この疾患に関する精密検査等を可能なデータベースが蓄積されているか否かと、このデータを用いて、今後の経過を推論することが可能な推論モデルが推論エンジン7に設定されているか否かを判定する。 If the specific information cannot be acquired as a result of the determination in step S3, the process returns to step S1. On the other hand, if the specific information can be acquired as a result of the determination in step S3, it is determined whether or not there is a progress inference model (S5). Here, based on the specific information acquired in step S3, whether or not a database capable of suspecting a specific disease and conducting a detailed examination related to this disease is accumulated, and using this data, infer the future progress. Determines if an inference model capable of is set in the inference engine 7.
 ステップS5における判定の結果、経過推論モデルが無い場合には、推論の仕様を作成する(S13)。ステップS5において、データベースが蓄積されていないと判定されていた場合には、制御部1は、データベースの構築をDB部8に要求する。特定疾患に関する検索が可能なデータベースを構築しておくことによって、初めての機器であっても、利用者が増加するにつれて、迅速にシステムを構築することができる。また、単純に、病気になっている人や病気になっていない人が、その旨を検査データに合わせて送信するようなシステムを構築しておけば、病気になりそうかどうかは取得したデータから判定ができるようになる。また、このような単なる予測を超えた、より正確な推論まで出来る方が良いので、このための推論を取得するために、まず、このステップで、推論の仕様を作成する。推論仕様の作成の詳しい動作については、図7を用いて後述する。 If there is no transitional inference model as a result of the determination in step S5, an inference specification is created (S13). If it is determined in step S5 that the database has not been accumulated, the control unit 1 requests the DB unit 8 to construct the database. By constructing a database capable of searching for a specific disease, it is possible to quickly construct a system as the number of users increases, even if it is the first device. Also, if you simply build a system that allows people who are sick or not sick to send that fact according to the test data, it is possible to know whether or not they are likely to get sick. You will be able to judge from. In addition, it is better to be able to make more accurate inferences beyond such simple predictions, so in order to obtain inferences for this purpose, first, inference specifications are created in this step. The detailed operation of creating the inference specification will be described later with reference to FIG. 7.
 ステップS13において推論の仕様を作成すると、推論モデルの仕様の作成を依頼する(S15)。ここでは、作成した推論モデルの仕様を、学習依頼部6を通じて、学習部5に送信する。学習部5は、仕様に従って、推論モデルを生成する。制御部1は、生成された推論モデルを、学習依頼部6を通じて受信する。推論モデルの作成依頼を行うと、ステップS1に戻る。推論モデルの作成の詳しい動作については、図8を用いて後述する。 When the inference specification is created in step S13, the inference model specification is requested to be created (S15). Here, the specifications of the created inference model are transmitted to the learning unit 5 through the learning request unit 6. The learning unit 5 generates an inference model according to the specifications. The control unit 1 receives the generated inference model through the learning request unit 6. When the inference model creation request is made, the process returns to step S1. The detailed operation of creating the inference model will be described later with reference to FIG.
 ステップS5における判定の結果、Yesであった場合、すなわち、検索用のデータベースがあり、推論モデルもある場合には、「履歴検索」方法を決定する(S7)。ステップS5における判定の結果がYesの場合には、検索用のデータベースがある場合であり、この場合には、ステップS3において判定された特定疾患に関する情報を、DB部8に記録されているデータの中から検索する。このステップでは、履歴検索の方法、すなわち、ユーザの特定疾患に関して更なる検査を行うための施設を、データベースから如何にして検索するかを決定する。例えば、消化器系の疾患であれば、主に、排泄物系の検査データを検索する。また、救急の疾患であれば、短期的な履歴でよく、慢性的なものであれば、長期間の履歴を検索する。この時、期間が長すぎて、データが多い場合は、データを間引くようにしてもよい。 If the result of the determination in step S5 is Yes, that is, if there is a database for search and there is also an inference model, the "history search" method is determined (S7). If the result of the determination in step S5 is Yes, it means that there is a database for searching. In this case, the information on the specific disease determined in step S3 is stored in the DB unit 8. Search from inside. In this step, a method of historical search, i.e., how to search the database for facilities for further testing for a user's specific disease is determined. For example, in the case of a digestive system disease, the excrement system test data is mainly searched. In addition, if it is an emergency disease, a short-term history is sufficient, and if it is a chronic disease, a long-term history is searched. At this time, if the period is too long and there is a large amount of data, the data may be thinned out.
 1回の1種類のデータだけを用いて、時間軸で先のパターンから、将来を予測することは困難である。そこで、ステップS7においては、ユーザの健康データの時間軸を過去に遡った特定時間範囲での履歴データを検索し、これを利用する。この検索の結果は、時間の情報が含まれているので、将来の予想が可能となる。特定時間幅は、疾病によって異なる。例えば、病状が急変する直近の将来の予想なら、直近の過去の変化データが重要だが、生活習慣病のように、徐々に悪化していくものであれば、長いスパンでの履歴が重要となる。従って、考察すべき疾病によって、履歴取得の時間範囲を変更してもよい。 It is difficult to predict the future from the previous pattern on the time axis using only one type of data at a time. Therefore, in step S7, the historical data in the specific time range that goes back to the past on the time axis of the user's health data is searched and used. The results of this search include time information, which makes it possible to predict the future. The specific time width depends on the disease. For example, for the latest future forecast of sudden changes in the medical condition, the latest past change data is important, but for lifestyle-related diseases that gradually worsen, the history over a long span is important. .. Therefore, the time range for history acquisition may be changed depending on the disease to be considered.
 履歴検索方法を決定すると、次に、一方の履歴データを他方の履歴データに合わせ、推論を行う(S9)。本実施形態においては、第1機器2aと第2機器2bの両機器によってユーザの検査データを取得している。図3を用いて説明したように、第1機器2aと第2機器2bの検査結果のレベルが一致していない。そこで、ステップS9においては、制御部1は、一方のレベル(第1機器2aの検査データのレベル)と他方のレベル(第2機器2bの検査データのレベル)が一致するように、検査データに対して補正演算を行っている。この場合、制御部1は、一方の履歴データを他方の履歴データを合わせてもよい。 After deciding the history search method, next, one history data is matched with the other history data, and inference is performed (S9). In the present embodiment, the user's inspection data is acquired by both the first device 2a and the second device 2b. As described with reference to FIG. 3, the levels of the inspection results of the first device 2a and the second device 2b do not match. Therefore, in step S9, the control unit 1 inputs the inspection data so that one level (the level of the inspection data of the first device 2a) and the other level (the level of the inspection data of the second device 2b) match. On the other hand, the correction calculation is performed. In this case, the control unit 1 may combine one historical data with the other historical data.
 履歴データを合わせると、ステップS9において、推論エンジン7は、この履歴データを用いて、体調変化、病気の発病や悪化に対するアドバイスを出力するための推論を行う。ステップS7における「履歴データを合わせて推論」の詳細な動作については、図6を用いて後述する。 When the historical data is combined, in step S9, the inference engine 7 uses this historical data to make an inference to output advice on changes in physical condition, onset or worsening of illness. The detailed operation of "inference by combining historical data" in step S7 will be described later with reference to FIG.
 履歴データを合わせ、推論を行うと、次に、推論結果を表示する(S11)。ここでは、制御部1は、ステップS9における推論結果をユーザの端末4に送信し、端末4の表示部に推論結果を表示させる。このステップS11は、ステップS1において取得した情報源となったユーザや、その関係者に、検査や診療補助の情報を提供するステップであり、端末4に表示や警告が出ることを想定している。推論結果の表示を行うと、ステップS1に戻る。 When the historical data is combined and the inference is performed, the inference result is displayed next (S11). Here, the control unit 1 transmits the inference result in step S9 to the user's terminal 4, and causes the display unit of the terminal 4 to display the inference result. This step S11 is a step of providing information on examinations and medical assistance to the user who became the information source acquired in step S1 and related persons thereof, and it is assumed that a display or a warning is issued on the terminal 4. .. When the inference result is displayed, the process returns to step S1.
 このように、本実施形態における検査結果送信のフローにおいては、制御部1は、第1機器2a、第2機器2bからのセンサ検出結果を取得し(S1)、これらの検出結果から健康状態(疾病)に関係する特定情報があるか否かを判定している(S3)。特定情報を取得した場合には、特定情報に関連したデータベースが有るか否かと推論モデルが有るか否かを判定し(S5)、データベースが有った場合にはこれを検索している。そして、第1機器2a、第2機器2bから取得した値のレベルが一致するように、第1機器2aから取得したデータに対して補正演算を行っている。補正演算によって2つの履歴データを合わせると、この履歴データを用いて推論を行い(S9)、推論結果を表示している。このため、ユーザが複数の機器によって検査データを取得できる場合に、それぞれの機器の出力のレベルを一致させることができ、このため検査データを豊富にすることができる。豊富な検査データを用いて、精度の高い、予測・推論を行うことができる。この結果、日々、日常生活の中で、ユーザは健康チェックを行うことができ、また健康状態に応じて、アドバイスを受けることができる。 As described above, in the flow of transmitting the inspection result in the present embodiment, the control unit 1 acquires the sensor detection results from the first device 2a and the second device 2b (S1), and the health state (health state) from these detection results (S1). It is determined whether or not there is specific information related to (disease) (S3). When the specific information is acquired, it is determined whether or not there is a database related to the specific information and whether or not there is an inference model (S5), and if there is a database, this is searched. Then, the correction calculation is performed on the data acquired from the first device 2a so that the levels of the values acquired from the first device 2a and the second device 2b match. When the two historical data are combined by the correction calculation, inference is performed using this historical data (S9), and the inference result is displayed. Therefore, when the user can acquire the inspection data by a plurality of devices, the output levels of the respective devices can be matched, and therefore the inspection data can be enriched. Highly accurate prediction and inference can be performed using abundant inspection data. As a result, the user can perform a health check in daily life and receive advice according to the health condition.
 また、推論モデルが無い場合には(S5→No)、特定情報に応じた推論を行うための、推論の仕様を作成し(S13)、学習部5(学習依頼部6を通じて)に推論モデルの生成を依頼している(S15)。このため、ユーザの健康状態に応じた推論モデルを順次追加することができる。 If there is no inference model (S5 → No), an inference specification for performing inference according to specific information is created (S13), and the inference model is sent to the learning unit 5 (through the learning request unit 6). Requesting generation (S15). Therefore, it is possible to sequentially add inference models according to the user's health condition.
 なお、図5に示すフローチャートにおいて、例えば、ステップS3において、特定情報を取得しなかった場合に、ユーザのプロフィールや行動、生活習慣等を判定するようにしてもよい。これらの情報を取得しておくことによって、適切な情報提供が可能となる。また、情報としては、年齢や性別や既往症などの情報や、住所や食習慣や食べ物の情報なども有効である。この情報は端末4にてアンケートを取るような方法、情報判定機器2をセットアップする時に入力して取得する方法、通院時に関連検査機関9にて入力する方法などがあり、これらの装置やその装置を通じてネットワーク上に存在する情報を集めて用意してもよい。 In the flowchart shown in FIG. 5, for example, in step S3, when the specific information is not acquired, the user's profile, behavior, lifestyle, etc. may be determined. By acquiring this information, it is possible to provide appropriate information. In addition, as information, information such as age, gender, and pre-existing illness, address, eating habits, and food information are also effective. This information can be obtained by taking a questionnaire on the terminal 4, inputting and acquiring the information when setting up the information judgment device 2, and inputting by the related inspection institution 9 at the time of going to the hospital. These devices and their devices Information existing on the network may be collected and prepared through.
 また、図5に示すフローチャートにおいては、DB検索(S7)と推論(S9)を別の処理として独立に扱った。しかし、これに限らず、これらを総合的に扱ってもよい。例えば、推論を行った後、DBを検索するような方法もあり、学習時に検査装置情報を含むDB内の情報も含めて学習した推論モデルを使用して、保有する機材等の設備まで出力する推論を行ってもよい。この場合には、「このクリニックには〇〇検査装置があります」といった表示が可能になる。 Further, in the flowchart shown in FIG. 5, DB search (S7) and inference (S9) are treated independently as separate processes. However, the present invention is not limited to this, and these may be treated comprehensively. For example, there is a method of searching the DB after making an inference, and using the inference model learned including the information in the DB including the inspection device information at the time of learning, the equipment such as the equipment owned is output. You may make inferences. In this case, it is possible to display such as "This clinic has XX inspection equipment".
 次に、図6に示すフローチャートを用いて、図5のステップS9の「履歴データを合わせて推論」の動作について説明する。このフローは、前述したように、第1機器2a、第2機器2bを用いて、予め定められた特定時間幅でユーザの検査データの変化パターンを抽出し、各機器の出力レベルが一致するように、補正演算を行って、2つの履歴データを合わせる。この合わせた履歴データに基づいて、健康に関するアドバイスの推論を行う。この処理は、制御部1が、通信制御部1aを通じて、推論エンジン7やDB部8などと連携して行う。 Next, the operation of "inference by combining historical data" in step S9 of FIG. 5 will be described using the flowchart shown in FIG. In this flow, as described above, the first device 2a and the second device 2b are used to extract the change pattern of the user's inspection data within a predetermined specific time width so that the output levels of the devices match. The correction calculation is performed to match the two historical data. Based on this combined historical data, infer health advice. This process is performed by the control unit 1 in cooperation with the inference engine 7, the DB unit 8, and the like through the communication control unit 1a.
 図6に示すフローが開始すると、時系列データを取得する(S21)。ここでは、DB部8に記録されている特定IDに対応する時系列のデータを取得する。取得する時系列データの時間幅は、特定の時間幅にするが、特定の時間幅のデータを取得できない場合には、取得できる時間範囲とする。特定の時間幅がないと、特定の状況下のデータのみでの判定となり信頼性が劣るからである。特定の時間幅は、大腸癌のように時間をかけて進行する疾病と、インフルエンザのように短期間で進行する疾病では、異なる。また、検査データの種別は、推論モデルの学習に依存するが、学習時に使用した特定の項目のグラフになることが望ましく、例えば体重と血圧を一緒に推論しない事が好ましい。したがって、どのような機器のどのようなセンサの情報であるか等、データの補助情報を考慮した上で、推論することが好ましい。 When the flow shown in FIG. 6 starts, time series data is acquired (S21). Here, the time-series data corresponding to the specific ID recorded in the DB unit 8 is acquired. The time width of the time-series data to be acquired is set to a specific time width, but if the data of the specific time width cannot be acquired, it is set to the time range that can be acquired. This is because if there is no specific time width, the judgment will be based only on the data under a specific situation, and the reliability will be inferior. The specific time span differs between diseases that progress over time, such as colorectal cancer, and diseases that progress in a short period of time, such as influenza. Further, the type of test data depends on the learning of the inference model, but it is desirable that the graph is a specific item used at the time of learning. For example, it is preferable not to infer body weight and blood pressure together. Therefore, it is preferable to make an inference after considering the auxiliary information of the data such as what kind of sensor information of what kind of device.
 ステップS21において、時系列データを取得すると、次に、特定時間幅分の時系列データを取得できたか否かを判定する(S23)。例えば、潜血の状況を検出したのであれば、潜血が数か月の幅で得られたか否かを判定する。すなわち、特定の時間幅は、関連する疾病に応じて異なる。 When the time series data is acquired in step S21, it is next determined whether or not the time series data for a specific time width can be acquired (S23). For example, if the status of occult blood is detected, it is determined whether or not occult blood was obtained within a range of several months. That is, the specific time span depends on the disease involved.
 ステップS23における判定の結果、特定時間幅のデータを取得していない場合には、推論を行わない(S35)。特定の時間幅の情報がなくても、期待する信頼性によっては推論が可能であるが、それも難しい場合がある。そこで、ステップS23において、特定時間幅のデータを取得していないと判定された場合には、推論しない。ただし、明らかに危険な状況を検出できる場合もあり、その場合は、推論以前に、緊急情報を出力すれば良い。 As a result of the determination in step S23, if the data of the specific time width has not been acquired, no inference is performed (S35). Inference is possible depending on the expected reliability without information of a specific time width, but it can be difficult. Therefore, if it is determined in step S23 that the data of the specific time width has not been acquired, no inference is made. However, there are cases where a clearly dangerous situation can be detected, in which case emergency information may be output before inference.
 つまり、取得したデータが、顕著に問題のある数値の場合には、推論で長期予想をする時間的猶予はないことから、変化が顕著な場合に警告表示する。この対応によってステップS35において推論をしなくても緊急時に対応できないことを防止し、十分なデータが集まってから、情報を出力するという信頼性の高いシステムにすることが出来る。つまり、本実施形態では、特定の変化で収まっている数値変化の場合、あらかじめ定められた時間幅でユーザの検査データの変化パターンを切り取って時間情報と共に学習された推論モデルに従って推論を行う。ステップS35を処理すると、このフローを終了し、元のフローに戻る。 In other words, if the acquired data is a numerical value that has a significant problem, there is no time to make a long-term forecast by reasoning, so a warning is displayed when the change is significant. With this response, it is possible to prevent the system from being unable to respond in an emergency without making inferences in step S35, and to make a highly reliable system in which information is output after sufficient data has been collected. That is, in the present embodiment, in the case of a numerical change that is contained in a specific change, the change pattern of the user's inspection data is cut out within a predetermined time width, and inference is performed according to the inference model learned together with the time information. Processing step S35 ends this flow and returns to the original flow.
 ステップS23における判定の結果、特定時間幅分のデータを取得すると、次に、各データにデータ取得機器情報と取得時刻情報を関連付ける(S25)。ここでは、制御部1が、ステップS21において取得したデータに、第1機器2a、第2機器2b等の内のいずれの機器で取得されたか、また取得時刻に関する情報を関連付け、DB部8に記録する。取得データにこれらの情報を関連付けることによって、図2および図3に示したグラフにおいて、各データの位置づけができるようにする。対象とする機器が増えれば、時系列に並べて評価する時のデータ数を増やしながら、個々の機器の誤差の影響を軽減することが可能となる。また、どのデータ(時間情報も含む)がどの機器由来であるかが分かれば、ある機器が、特定のタイミングで何かの要因で信頼性が低くなったとしても、そのタイミング以前のデータのみを採用し、この採用されたデータに基づいて判定するような工夫が出来る。また、ユーザがどの機器を利用する頻度が高いかなどの判断が出来る場合は、もっぱらその機器だけで判断しながら、必要に応じて他の機器を用いた検査結果を反映するような使い方も可能となる。 As a result of the determination in step S23, when the data for a specific time width is acquired, then the data acquisition device information and the acquisition time information are associated with each data (S25). Here, the control unit 1 associates the data acquired in step S21 with information on which device among the first device 2a, the second device 2b, etc., and the acquisition time, and records the data in the DB unit 8. do. By associating these information with the acquired data, it is possible to position each data in the graphs shown in FIGS. 2 and 3. If the number of target devices increases, it becomes possible to reduce the influence of errors of individual devices while increasing the number of data when evaluating in chronological order. Also, if you know which data (including time information) comes from which device, even if a device becomes unreliable at a specific timing for some reason, only the data before that timing will be displayed. It can be adopted and devised to make a judgment based on the adopted data. In addition, if it is possible to determine which device the user frequently uses, it is possible to use it to reflect the inspection results using other devices as necessary while making a judgment solely on that device. It becomes.
 続いて、機器別の時系列データを増減する(S27)。図3を用いて説明したように、複数の機器によって、ユーザの時系列的検査データを取得した場合には、個々の機器の誤差や特性の差等があることから、複数の時系列的検査データを同一のグラフにプロットすることができない(図3のグラフ33参照)。但し、同一人の時系列的検査データであることから、データの変化パターンの傾向は同じである。そこで、複数の時系列的検査データに対して、補正演算を行うことによって、複数の時系列的検査データを同一のグラフにプロットできるようにしている。補正演算としては、2つの時系列的データの平均値の差分等に基づいて、各データに対して加減算してもよく、また乗除算してもよい。この補正演算の結果、機器別に補正された時系列的データを得ることができる。また、ある特定のデータが重要で、他の特定のデータが重要でない場合には、データに対する重みづけを変更する等によって、情報の反映に差異を設けるようにしてもよい。 Subsequently, increase / decrease the time series data for each device (S27). As described with reference to FIG. 3, when the user's time-series inspection data is acquired by a plurality of devices, there are errors and characteristic differences between the individual devices. Therefore, the plurality of time-series inspections are performed. The data cannot be plotted on the same graph (see Graph 33 in FIG. 3). However, since the data is time-series inspection data of the same person, the tendency of the change pattern of the data is the same. Therefore, by performing a correction calculation on a plurality of time-series inspection data, it is possible to plot the plurality of time-series inspection data on the same graph. As the correction operation, each data may be added / subtracted or multiplied / divided based on the difference between the average values of the two time-series data. As a result of this correction calculation, time-series data corrected for each device can be obtained. Further, when certain specific data is important and other specific data is not important, the reflection of the information may be different by changing the weighting of the data.
 ステップS27において、時系列データの増減を行うと、次に、まとめて推論モデルに入力する(S29)。ステップS27において、機器別に時系列データを生成したので、制御部1は、この時系列的データを推論エンジン7に入力する。この場合、各機器の持つ誤差も含めての推論となってしまい、特定時間と同じ時間範囲の増減情報を教師データとして学習した特定の推論モデルでは、つじつまが合わず、信頼性が低いと判定される可能性がある。そこで、機器別の補正をしながら、推論の信頼性を算出し、信頼性が高いものを推論結果とする(S31)。ここでは、機器別の時系列データに特定の四則演算の定数を少しずつ変えながら行う。この処理によって、誤差を補正した状況で信頼性が高くなるので、正しい推論が可能となる。 When the time series data is increased or decreased in step S27, the data are collectively input to the inference model (S29). Since the time-series data was generated for each device in step S27, the control unit 1 inputs the time-series data to the inference engine 7. In this case, the inference will include the error of each device, and it is judged that the inference is not consistent and the reliability is low in the specific inference model that learned the increase / decrease information in the same time range as the specific time as teacher data. May be done. Therefore, the reliability of the inference is calculated while making corrections for each device, and the one with high reliability is used as the inference result (S31). Here, the constants of the specific four arithmetic operations are changed little by little for the time series data for each device. By this processing, the reliability is increased in the situation where the error is corrected, so that correct inference is possible.
 ステップS31における処理は、同様の生体情報を検出する機器であるかを、例えば制御部1が、各情報の機器ID等に基づいて判定してから行ってもよい。これによって、健康変化によるデータの増減関係などは保証されるので、感度や環境誤差などの軽減等のみを想定すればよい。ただし、健康変化によるデータの増減関係などが一致する検査項目であれば、一律に扱ってもよい。一律に扱う方が、データ数が時間的な密度、あるいは時間的なレンジとして有効になるような病状であれば、より有効な情報となりえるからである。この場合、どのような検査項目であるかの情報をデータが持っておればよく、同等に扱えるか否か、あるいは、特定の疾患を想定して、どこまでのデータを一括して扱うかなどを決めるステップを、制御部1が設ければよい。 The process in step S31 may be performed after, for example, the control unit 1 determines whether the device is a device that detects similar biological information based on the device ID or the like of each information. As a result, the relationship of increase / decrease in data due to changes in health is guaranteed, so it is only necessary to assume reduction of sensitivity and environmental error. However, if the inspection items have the same increase / decrease relationship of data due to changes in health, they may be treated uniformly. This is because if the information is treated uniformly, it can be more effective information if the number of data is a medical condition that is effective as a temporal density or a temporal range. In this case, it is sufficient for the data to have information on what kind of test item it is, and whether or not it can be treated equally, or how much data should be handled collectively assuming a specific disease, etc. The control unit 1 may provide a step for determining the determination.
 つまり、機器の出力する情報が、単に判定結果のデータだけではなく、特定のフォーマットで、検査のタイミング(日時)情報、対象となる個人に対応する情報、検査の内容の情報、機器固有の情報、機器の種別の情報など、これらの情報の中の幾つかを有していれば、これらの情報を利用して、データを補正したり、取捨選択をしたりすることが可能となる。また、補正のみならず、重みづけが可能となる。信頼性の低い機器によって取得したデータは重みづけを軽くし、他の機器と同等に扱わないような工夫を行ってもよい。さらに、同様の複数の機器を利用する人が多数いれば、例えば、すべて時系列データに色分けしてグラフ上に並べてみると、単一の機器の情報でなく、複数機器の情報が混在しても同様の健康状態の人は同様の傾向となる。 That is, the information output by the device is not only the judgment result data, but also the inspection timing (date and time) information, the information corresponding to the target individual, the inspection content information, and the device-specific information in a specific format. If you have some of these information, such as information on the type of device, you can use this information to correct or select the data. Moreover, not only correction but also weighting is possible. Data acquired by an unreliable device may be lightly weighted so that it is not treated in the same way as other devices. Furthermore, if there are many people who use the same multiple devices, for example, if all the time series data is color-coded and arranged on a graph, the information of multiple devices is mixed instead of the information of a single device. People with similar health tend to have the same tendency.
 つまり、特定の人の特定の時間に取得した特定された機器からの情報に従って、共通の時間軸上にいずれの機器からの情報であるかを色分け等によって識別が可能なように、情報の推移を示すグラフを作成すれば、その人の健康状態の傾向を把握し、それを伝達することが可能となる。グラフ上に既に説明した、様々な補正などを加えて判定してもよい。色分け等による識別は、人間が目で見てもわかりやすくした工夫であるが、その他、プロットするポイントに描いて示すデータの点の形状を変えて、機器の識別が出来るようにしても良いし、そのポイントのデータに付記的な情報を表示可能としたり読み取り可能としたりしても、同様の効果を得ることが出来る。 That is, the transition of information so that the information from which device can be identified on a common time axis by color coding or the like according to the information from the specified device acquired at a specific time of a specific person. By creating a graph showing the above, it is possible to grasp the tendency of the person's health condition and convey it. The judgment may be made by adding various corrections and the like already described on the graph. Identification by color coding is a device that makes it easy for humans to see, but in addition, the shape of the data points drawn at the plot points may be changed so that the device can be identified. , The same effect can be obtained by making additional information displayable or readable in the data at that point.
 ステップS31において推論を行うと、推論結果を取得する(S33)。ここでは、制御部1は、ステップS31において推論を行った際に、最も信頼性の数値が高い推論出力を推論結果とする。様々な生活シーンで取得された情報を有効に利用した健康アドバイスが可能となる。 When inference is performed in step S31, the inference result is acquired (S33). Here, the control unit 1 sets the inference output having the highest reliability value as the inference result when the inference is performed in step S31. It is possible to provide health advice by effectively using the information acquired in various life scenes.
 このように、図6に示す履歴データを合わせて推論のフローでは、時系列データを取得し(S21)、特定時間幅分の時系列データを取得できた場合には(S23Yes)、機器別の時系列データに対して、同一のレベルになるように補正演算を行い、この補正演算が施された履歴データを用いて推論を行っている(S29)。そして、機器別に補正を行いながら、推論の信頼性を判定し、信頼性の高いものを推論結果としている(S31)。このため、複数の機器の検査データを用いて精度の高い推論結果を得ることができる。また、特定時間幅の時系列データを用いて、推論を行っていることから、精度の高い推論を行うことができる。 In this way, in the flow of inference by combining the historical data shown in FIG. 6, time-series data is acquired (S21), and when time-series data for a specific time width can be acquired (S23Yes), each device is used. A correction calculation is performed on the time-series data so that the level is the same, and inference is performed using the history data to which the correction calculation has been performed (S29). Then, the reliability of the inference is determined while making corrections for each device, and the highly reliable one is used as the inference result (S31). Therefore, it is possible to obtain a highly accurate inference result by using the inspection data of a plurality of devices. Further, since the inference is performed using the time series data having a specific time width, it is possible to perform the inference with high accuracy.
 また、本実施形態においては、特定の変化で収まっている数値変化の場合、あらかじめ定められた時間幅で対象者の検査データの変化パターンを切り取って時間情報と共に学習された推論モデルに従って推論を行っている。つまり、特定の基準を満たさない場合には(特定時間幅のデータを取得できない場合(S23No))、予め定められた時間幅で対象者の検査データの変化パターンを切り取って時間情報と共に学習された推論モデルに従って推論は行わないようにしている。 Further, in the present embodiment, in the case of a numerical change that is contained in a specific change, the change pattern of the test data of the subject is cut out within a predetermined time width, and inference is performed according to the inference model learned together with the time information. ing. That is, when the specific criteria are not satisfied (when the data of the specific time width cannot be acquired (S23No)), the change pattern of the test data of the subject is cut out with the predetermined time width and learned together with the time information. I try not to make inferences according to the inference model.
 次に、図7に示すフローチャートを用いて、図5のステップS13の「推論仕様の作成」の動作を説明する。この推論仕様の作成のサブルーチンは、ステップS3において特定情報を取得したの判定した際に、この特定情報に基づいて推論するための推論モデルが推論エンジン7に設定されていない場合に、学習部5に推論モデルの生成を依頼するための仕様を作成する。 Next, the operation of "creating an inference specification" in step S13 of FIG. 5 will be described using the flowchart shown in FIG. When it is determined that the specific information has been acquired in step S3, the subroutine for creating the inference specification is the learning unit 5 when the inference model for inference based on the specific information is not set in the inference engine 7. Create a specification for requesting the generation of an inference model.
 推論仕様作成のフローが開始すると、まず、特定情報よって関連疾患を判定する(S41)。ステップS3(図5)において判定した特定情報に基づいて、関連する疾患を判定する。例えば、ユーザの尿の検査結果や便の検査結果に基づいて、それぞれ、どのような疾病に関連する生体情報が決まるので、DB部8等に検査項目と関連疾病の関係を示す表等を記録しておけば、この記録されている表に基づいて、関連する疾患を判定することができる。 When the flow for creating inference specifications starts, first, the related disease is determined based on the specific information (S41). Based on the specific information determined in step S3 (FIG. 5), the related disease is determined. For example, since the biometric information related to each disease is determined based on the user's urine test result and stool test result, a table or the like showing the relationship between the test item and the related disease is recorded in the DB section 8 or the like. Then, the related disease can be determined based on this recorded table.
 関連疾患が分かると、次に、関連疾患患者の判定を行う(S43)。DB部8には、多数の患者の日々の健康上(生体情報・検査データ)等が記録され、整理されている。そこで、制御部1は、ステップS41において判定した関連疾病を患っているユーザ以外の患者を判定(検索)する。 Once the related disease is known, the patient with the related disease is determined (S43). The DB section 8 records and organizes the daily health (biological information / examination data) of a large number of patients. Therefore, the control unit 1 determines (searches) a patient other than the user suffering from the related disease determined in step S41.
 次に、患者の健康情報の履歴が有るか否かを判定する(S45)。ここでは、制御部1は、ステップS43で判定した患者の健康情報の履歴が、DB部8に記録されているか否かを判定する。この判定の結果、十分なデータ(健康情報の履歴)が蓄積されていない場合には、推論や推論依頼を行わず、アドバイス情報なしとする(S51)。このフローを終了し、元のフローに戻る。 Next, it is determined whether or not there is a history of patient health information (S45). Here, the control unit 1 determines whether or not the history of the patient's health information determined in step S43 is recorded in the DB unit 8. As a result of this determination, if sufficient data (history of health information) is not accumulated, no inference or inference request is made, and no advice information is given (S51). End this flow and return to the original flow.
 一方、ステップS45における判定の結果、健康情報の履歴が有る場合には、関連疾患毎の時間幅で履歴データを入力し、疾患を出力する(S47)。ここでは、制御部1は、DB部8に記録されている、既に疾患を診断されている患者の健康情報を検索し、この健康情報が教師データとして使用できる期間、あるいは量があるかを判定する。この判定を満たした場合に、この患者の時系列的なデータの内、判定されている関連疾患を判定するに必要な時間幅で履歴データを抽出し、この時系列データを教師データとする。この時系列データは、すでに疾患を診断されている患者の情報であり、比較的正確な測定装置を用い、専門的な知識のある指導員のもと測定した生体データがある。そこで、制御部1は、この生体データ(データの連なり)を基準として、日常で得られた家庭用機器とか携帯端末によって得られた代用データを補正し、この時系列的なデータを教師データとする。制御部1は、この教師データを推論エンジン7に入力し、疾患情報を出力として取得する。 On the other hand, if there is a history of health information as a result of the determination in step S45, the history data is input in the time width for each related disease and the disease is output (S47). Here, the control unit 1 searches the health information of the patient who has already been diagnosed with the disease, which is recorded in the DB unit 8, and determines whether or not there is a period or amount of the health information that can be used as the teacher data. do. When this determination is satisfied, historical data is extracted from the time-series data of this patient with a time width necessary for determining the determined related disease, and this time-series data is used as teacher data. This time-series data is information on patients who have already been diagnosed with a disease, and there is biometric data measured by an instructor with specialized knowledge using a relatively accurate measuring device. Therefore, the control unit 1 corrects the substitute data obtained by the household device or the mobile terminal obtained in daily life based on this biometric data (a series of data), and uses this time-series data as the teacher data. do. The control unit 1 inputs the teacher data to the inference engine 7 and acquires the disease information as an output.
 上述の生体データ(データの連なり)は、病気のどの時点に相当するか等の情報がないと、パターンが異なってくる。もし、未病用の推論であれば、最初の来院時や、最初の疾病診断のタイミングを基準とし、この時点に遡ったパターンにしてもよい。つまり、図2(a)に示すような、所定期間経過後に病院に行ったような患者のデータや、図2(c)に示すような、病院には行かないで済んでいる人のデータを大量に集め、これらの差異を判定できるような学習を行い、推論モデルを作成する。この推論モデルを用いて推論すれば、得られたデータがどちらのパターンに類似しているか、また病気になりそうか否か等の判定可能となる。図2(b)に示すような、通院が始まってから取得した場合のデータでは、治療によってパターンが変化する可能性がある。しかし、薬の効果までを含めて将来を推論するニーズもあるので、通院開始の時点などが分かるような教師データを作成し、学習する方法もある。 The above-mentioned biometric data (data sequence) has a different pattern if there is no information such as which time point of the disease corresponds to. If the reasoning is for non-illness, the pattern may be traced back to this point based on the timing of the first visit or the timing of the first diagnosis of the disease. That is, the data of the patient who went to the hospital after the lapse of a predetermined period as shown in FIG. 2 (a) and the data of the person who did not go to the hospital as shown in FIG. 2 (c). A large number of data are collected, learning is performed so that these differences can be determined, and an inference model is created. By inferring using this inference model, it is possible to determine which pattern the obtained data resembles, and whether or not the patient is likely to get sick. In the data obtained after the start of the hospital visit as shown in FIG. 2 (b), the pattern may change depending on the treatment. However, there is also a need to infer the future, including the effects of the drug, so there is also a method of creating and learning teacher data that shows the time of the start of hospital visits.
 推論の信頼性が高まるように、時系列データ群を補正しながら教師データとして作成した推論モデルを用いて推論する際に、時系列データ群を補正しながら入力し、信頼性が高かった推論結果を採用するという方法によって、確度の高い予測ができる。また、その他の参考情報で、その疾病に直接関係はなくとも時間と共に変化する生体情報があれば、別のデータとして教師データとする。 When inferring using the inference model created as teacher data while correcting the time series data group so that the reliability of the inference is improved, the inference result with high reliability was input while correcting the time series data group. By adopting the method, highly accurate prediction can be made. In addition, if there is other reference information that changes with time even if it is not directly related to the disease, it will be used as teacher data as separate data.
 ステップS47において、推論モデル作成用の仕様を作成すると、さらに、疾病用のアドバイス、現在の未病のレベルを合わせて出力するような仕様とする(S49)。ここでは、推論エンジン7が、疾病用のアドバイスを出力することのできる推論モデルの仕様を作成する。その際、疾患がどの段階にあるか等のアドバイスを出力するしてもよく、またユーザが、現在、通院する前のどのタイミングにいるか等の情報を出力できるようにしてもよい。ステップS47、S49において推論モデル作成のための仕様を作成すると、本フローを終了し、元のフローに戻る。 In step S47, when the specification for creating the inference model is created, the specification is set so that the advice for the disease and the current non-illness level are also output (S49). Here, the inference engine 7 creates an inference model specification capable of outputting advice for diseases. At that time, the advice such as the stage of the disease may be output, or the user may be able to output information such as at what timing before going to the hospital. When the specifications for creating the inference model are created in steps S47 and S49, this flow ends and returns to the original flow.
 なお、図7のフローにおいて仕様の作成対象とする学習は、陣痛と出産の時期の関係などの分野への応用が可能である。出産を基準にさかのぼったタイミングで陣痛の頻度を学習すれば、後どれくらいの期間後に病院に行くとか、助産婦を呼ぶとかのアドバイスが可能な推論モデルを生成することができる。 Note that the learning for which specifications are created in the flow shown in FIG. 7 can be applied to fields such as the relationship between labor pain and the time of childbirth. By learning the frequency of labor pains retroactively based on childbirth, it is possible to generate an inference model that can give advice on how long later to go to the hospital or call a midwife.
 次に、図8に示すフローチャートを用いて、図5のステップS15において「推論モデル作成依頼」がなされた場合に、学習部5によって行われる学習動作を説明する。ここでは、図7において判定した関連疾患患者の履歴データを教師データとして用いて、設定された出力を得られるような推論モデルを生成する。この推論モデル作成のサブルーチンは、主として、学習部5内の入出力モデル化部5aにおいて実行される。 Next, using the flowchart shown in FIG. 8, the learning operation performed by the learning unit 5 when the “inference model creation request” is made in step S15 of FIG. 5 will be described. Here, the history data of the related disease patient determined in FIG. 7 is used as the teacher data to generate an inference model that can obtain the set output. This subroutine for creating an inference model is mainly executed in the input / output modeling unit 5a in the learning unit 5.
 教師データは一般には特定のデータに特定のアノテーションを付けて作成する。このフローにおいては、同一の対象者に関連して複数のタイミングで取得したデータ(取得情報)群に、その人の健康関連情報(検査結果や通院の日時やアドバイスなど)をアノテーションすることによって一つの教師データとする。この教師データを複数の対象者分を用意し、時系列データの推移パターンがどのような健康情報と対応するかを推論可能とした。この教師データにするための元データはファイル形式で記録してもよく、必要なメタデータ群を関連付けて記録できるようにしてもよい。このメタデータには、アノテーション用のものがあってもよい。また、推論モデル作成時には、必要に応じて取捨選択されるので、その推論モデルの根拠として、採用されたファイルには、作成された推論モデルを特定するIDなどの情報をメタデータとして記録できるようにしてもよい。これらの処理によって、AIのブラックボックス化を防止することが可能となる。 Teacher data is generally created by adding specific annotations to specific data. In this flow, data (acquired information) acquired at multiple timings related to the same subject is annotated with that person's health-related information (test results, date and time of hospital visit, advice, etc.). Two teacher data. This teacher data was prepared for multiple subjects, and it was possible to infer what kind of health information the transition pattern of time-series data corresponds to. The original data for making this teacher data may be recorded in a file format, or necessary metadata groups may be associated and recorded. This metadata may be for annotation. In addition, when creating an inference model, it is selected as needed, so as a basis for the inference model, information such as an ID that identifies the created inference model can be recorded as metadata in the adopted file. It may be. By these treatments, it becomes possible to prevent the AI from becoming a black box.
 推論モデル作成のフローが動作を開始すると、まず、入出力を設定する(S61)。ここでは、学習部5は、制御部1から学習依頼部6を通じて送信されてきた仕様に基づいて、推論モデルの入出力を設定する。すなわち、推論モデルに何(どのような情報)が入力され、何(どのような情報)が推論されて出力されるか等を設定する。さらに、ニューラル・ネットワークの中間層の数を設定し、各中間層における重み付け等を初期値に設定する。このステップでは、これから作成する推論モデルのいわば、「要求仕様」を設定している。 When the inference model creation flow starts operating, first set the input / output (S61). Here, the learning unit 5 sets the input / output of the inference model based on the specifications transmitted from the control unit 1 through the learning request unit 6. That is, what (what kind of information) is input to the inference model, what (what kind of information) is inferred and output, and the like are set. Further, the number of intermediate layers of the neural network is set, and the weighting and the like in each intermediate layer are set as initial values. In this step, the so-called "requirement specifications" of the inference model to be created are set.
 続いて、教師データを入力し、モデルを作成する(S63)。教師データは、制御部1がDB部8に記録されているデータの中から作成し、学習部5に送信するので(図7のS47、S49参照)、この教師データを入出力モデル化部5aの入力部に順次、入力する。また、教師データは、入力と出力のセットとなっていることから、入力に応じた出力となるように、ニューラル・ネットワークの各中間層の重み付けを決定することによって、推論モデルを作成する。 Next, input the teacher data and create a model (S63). Since the teacher data is created by the control unit 1 from the data recorded in the DB unit 8 and transmitted to the learning unit 5 (see S47 and S49 in FIG. 7), this teacher data is input / output modeling unit 5a. Sequentially input to the input section of. Further, since the teacher data is a set of input and output, an inference model is created by determining the weighting of each intermediate layer of the neural network so that the output corresponds to the input.
 ステップS63において全教師データを入力すると、次に、高信頼性でモデルが作成できたか否かを判定する(S65)。ここでは、ステップS63において生成された推論モデルの信頼性を示す値が所定値より高いか否かを判定する。 After inputting all the teacher data in step S63, it is next determined whether or not the model could be created with high reliability (S65). Here, it is determined whether or not the value indicating the reliability of the inference model generated in step S63 is higher than the predetermined value.
 ステップS65における判定の結果、高信頼性の推論モデルを作成できない場合には、再学習を行う(S69)。信頼性が低いことから、教師データの母集合の変更等を行い、ステップS63に戻り、推論モデルを再作成する。なお、所定回数に亘って再学習を行っても信頼性が所定値に達しない場合には、推論モデルの生成を終了し、その旨を制御部1に送信する。再学習する場合にも、データ群、あるいはファイルが、教師データとして使われなかった旨を記録するメタデータを付けるようにしてもよい。良質でないデータ群、ファイルが、また、学習に使われてうまくいかない状況になるのを防止することが出来る。 If a highly reliable inference model cannot be created as a result of the determination in step S65, re-learning is performed (S69). Since the reliability is low, the population of teacher data is changed, the process returns to step S63, and the inference model is recreated. If the reliability does not reach a predetermined value even after re-learning a predetermined number of times, the generation of the inference model is terminated and a notification to that effect is transmitted to the control unit 1. When re-learning, a metadata group or a file may be attached to record that the data group or file was not used as teacher data. It is possible to prevent poor quality data groups and files from being used for learning and becoming unsuccessful.
 一方、ステップS65における判定の結果、高信頼性のモデルが生成できた場合には、そのモデルを推論モデルとする(S67)。学習部5は、ここで生成された推論モデルを制御部1に送信する。制御部1は、ステップS13において推論仕様を作成した際に基となった特定情報を取得した際に、受信した推論モデルを推論エンジン7に設定し、推論を行うことができる。推論モデルを作成されると、このフローを終了し、元のフローに戻る。 On the other hand, if a highly reliable model can be generated as a result of the determination in step S65, that model is used as an inference model (S67). The learning unit 5 transmits the inference model generated here to the control unit 1. When the control unit 1 acquires the specific information based on the inference specification created in step S13, the control unit 1 can set the received inference model in the inference engine 7 and perform inference. When the inference model is created, it ends this flow and returns to the original flow.
 このように、推論モデル作成のフローでは、教師データが与えられた学習部5が、学習を行って推論モデルを作成する。このフローでは、高信頼性の推論が可能になるまで(S65Yes)、教師データを取捨選択したり、また教師データに入れ込んだデータを取捨選択したりして、再学習を繰り返す(S69参照)。この学習によって、未病段階における健康数値変化パターンの変化の特徴を、病気になるパターンと照合する推論モデルを作成する。 In this way, in the flow of creating an inference model, the learning unit 5 to which the teacher data is given performs learning and creates an inference model. In this flow, re-learning is repeated by selecting the teacher data or selecting the data included in the teacher data until highly reliable inference becomes possible (S65Yes) (see S69). .. Through this learning, we create an inference model that matches the characteristics of changes in the health numerical change pattern in the pre-illness stage with the pattern of getting sick.
 再学習の際の教師データの取捨選択の過程で、特定疾病と無関係のデータがあると、制御部1は、信頼性が高くならないとして、その個別データあるいはデータ群を排除すればよい。このような過程で排除された特定の生体データやそのデータを出力した機器やそのデータが得られた環境等を、制御部1が追跡すれば、推論として使用するに適していないデータや機器や環境を特定でき、この特定されたデータや機器等を記録しておいて、次回、以降、推論モデル作成の際に排除することを考慮してもよい。 In the process of selecting teacher data at the time of re-learning, if there is data unrelated to the specific disease, the control unit 1 may exclude the individual data or the data group, assuming that the reliability does not increase. If the control unit 1 tracks the specific biometric data excluded in such a process, the device that output the data, the environment in which the data was obtained, etc., the data or device that is not suitable for use as inference The environment can be specified, and the specified data, devices, etc. may be recorded and excluded when creating an inference model from the next time onward.
 この利用不可データ情報があれば、特定疾病の兆候がある場合に利用すべき生体情報取得機器やデータや環境を絞り込むことが出来る。例えば大腸がんの兆候を検出するために、便検査履歴などは重要だが、異なる器官の情報である心拍数などを同様に扱うことは、データ量の増大と計算の複雑さから、避けた方が好ましい。しかし、同じ種別の生体情報であれば、機器の違いや測定方法の差異を加味しても、データ数を増やすことや、追跡することが好ましい場合が多い。 With this unusable data information, it is possible to narrow down the biometric information acquisition devices, data, and environment that should be used when there are signs of a specific disease. For example, in order to detect signs of colorectal cancer, stool test history is important, but treating heart rate, which is information on different organs, in the same way should be avoided due to the increase in data volume and complexity of calculation. Is preferable. However, if it is the same type of biological information, it is often preferable to increase the number of data or to track it even if the difference in equipment and the difference in measurement method are taken into consideration.
 一方で、何年も前に別の機器で測定した変化のない観便結果等と、最近の急変した観便結果を合わせて教師データ化し、この教師データを用いて学習しても、あまり効果のある学習にはならない。最近の特定機器を用いて行った観便結果のデータに、その機器を使わなかった時の観便結果のデータの内、単位時間(例えば、図4のS3参照)内に得られたデータの数が足りない場合や、精度が悪くて使えないため間引きされたデータを補うと、観便結果のデータ情報量が増えるので、効果的な教師データになる可能性が高い。すなわち、推論モデルに入力する情報量が適切であれば、推論結果の信頼性も高くなる。 On the other hand, it is not very effective to combine the unchanged stool results measured with another device many years ago and the recent sudden changes in stool results into teacher data and learn using this teacher data. It will not be a learning process. In addition to the data of the stool viewing results performed using the recent specific device, the data obtained within the unit time (for example, see S3 in FIG. 4) among the data of the stool viewing results when the device is not used. If the number is insufficient, or if the data that has been thinned out is supplemented because it is inaccurate and cannot be used, the amount of data information of the viewing result will increase, so there is a high possibility that it will be effective teacher data. That is, if the amount of information input to the inference model is appropriate, the reliability of the inference result is also high.
 次に、図9および図10を用いて、履歴データを合わせて推論(図6参照)の動作の変形例について説明する。前述した図3の例は、1つの機器だけでは、データ量が不十分で、適切な推論が出来ない場合を想定しており、複数の機器の情報を用いて補うことによって、推論の結果が正しくなるようにしている。しかし、図9に示すように、各々の機器が持つ、特定人物に関するデータ履歴が十分ある場合は、図3のグラフ34に示したように、単位時間内の情報量補足をせずに、それぞれの機器用の推論モデルでの推論を実行して、その結果を総合判定してもよい。また、検査タイミングのみならず、異なる情報を出力する機器からの情報を加味し、この加味した情報に基づいて判断した方が正確な判定が出来ることから、異なる検査項目の検査データを補う機器の情報そのものを補うことによって、推論の結果の信頼性を向上させてもよい。 Next, a modified example of the operation of inference (see FIG. 6) will be described with reference to FIGS. 9 and 10. In the example of FIG. 3 described above, it is assumed that the amount of data is insufficient with only one device and appropriate inference cannot be performed. By supplementing with the information of a plurality of devices, the inference result can be obtained. I'm trying to be correct. However, as shown in FIG. 9, when each device has a sufficient data history regarding a specific person, as shown in Graph 34 of FIG. 3, each device does not supplement the amount of information within a unit time. You may perform inference with the inference model for the device and make a comprehensive judgment of the result. In addition, not only the inspection timing but also the information from the device that outputs different information is added, and the judgment can be made more accurately by making a judgment based on this added information. By supplementing the information itself, the reliability of the inference result may be improved.
 推論モデルへのデータ群、ファイル等を入れ込む際に、どのような推論モデルによって推論することを目的として作成されたデータ群やファイルであるかを示すメタデータを関連付けておき、このメタデータによって、最適な推論モデルを指定できるようにしても良い。例えば、推論する健康関連情報が専門化してくると、大腸がん用の推論モデルと痔疾用の推論モデルが別に用意される可能性がある。このような工夫で、もっぱら大腸がんなどの心配をしているユーザに、痔疾などの情報を出力するような無駄をせずに済む。また、推論に使われたデータ群やファイルに、推論の結果をメタデータ化した情報を関連付けておけば、どのような症例がどのようなデータ群、ファイルになるかを検索する場合などに有効な情報となる。 When inserting data groups, files, etc. into the inference model, the metadata indicating what kind of inference model the data group or file was created for inference is associated with this metadata. , The optimum inference model may be specified. For example, as health-related information to be inferred becomes specialized, an inference model for colorectal cancer and an inference model for hemorrhoids may be prepared separately. With such a device, it is possible to avoid wasting the output of information such as hemorrhoids to users who are exclusively concerned about colorectal cancer. In addition, if the data group or file used for inference is associated with the information obtained by converting the inference result into metadata, it is effective when searching for what kind of case becomes what kind of data group or file. Information.
 この時、学習で使った教師データを測定した機器と、推論モデルに入力するデータを得た機器は機器毎に差異がある。例えば、図9に示すグラフ91は、第1機器2aによって取得した時系列的な検査データの変化を示し、グラフ92は第2機器2bによって取得した時系列的な検査データの変化を示す。 At this time, there is a difference between the device that measured the teacher data used in learning and the device that obtained the data to be input to the inference model. For example, the graph 91 shown in FIG. 9 shows the change of the time-series inspection data acquired by the first device 2a, and the graph 92 shows the change of the time-series inspection data acquired by the second device 2b.
 このように、機器によって差異があることから、それぞれの検査データに対して、それぞれ補正入力91a、92aによって、少しずつ補正値を変えながら、補正演算を施す。そして、補正された第1機器2aの検査データを第1機器用の推論エンジン7aに入力し、補正された第2機器2bの検査データを第2機器用の推論エンジン7bに入力する。このように、それぞれ補正したデータを対応する推論モデルに入力する。 As described above, since there is a difference depending on the device, the correction calculation is performed on each inspection data while changing the correction value little by little by the correction inputs 91a and 92a, respectively. Then, the corrected inspection data of the first device 2a is input to the inference engine 7a for the first device, and the corrected inspection data of the second device 2b is input to the inference engine 7b for the second device. In this way, each corrected data is input to the corresponding inference model.
 補正値を少しずつ変えると、少しずつ推論出力の信頼性も変わるので、それぞれの機器毎に、推論出力の信頼性が適切になった時の推論結果を採用する。それぞれの機器毎に推論結果が決まると、個々の推論結果を総合的に反映した結果を最終的な出力とする。総合的判断としては、信頼性が高い方の推論結果を選択してもよく、信頼性に大差がなければ、両結果の中間的な判断としてもよく、さらに両結果を含むような判断としてもよい。このように、本変形例では、複数の推論モデルに対応した複数の時系列データを用いて推論した結果を、総合的に判断して推論結果とする、このため、確度の高いアドバイス表示の方法が提供できる。 If the correction value is changed little by little, the reliability of the inference output also changes little by little, so the inference result when the reliability of the inference output becomes appropriate is adopted for each device. When the inference result is determined for each device, the final output is the result that comprehensively reflects the individual inference results. As a comprehensive judgment, the inference result with higher reliability may be selected, and if there is no big difference in reliability, it may be an intermediate judgment between the two results, or a judgment including both results. good. As described above, in this modification, the result of inference using a plurality of time series data corresponding to a plurality of inference models is comprehensively judged and used as the inference result. Therefore, a method of displaying advice with high accuracy. Can be provided.
 次に、図10に示すフローチャートを用いて、履歴データを合わせて推論の変形例の動作について説明する。この処理は、図6の場合と同様に、制御部1が、通信制御部1aを通じて、推論エンジン7やDB部8などと連携して行う。 Next, using the flowchart shown in FIG. 10, the operation of the modified example of inference will be described together with the historical data. Similar to the case of FIG. 6, this process is performed by the control unit 1 through the communication control unit 1a in cooperation with the inference engine 7, the DB unit 8, and the like.
 図10に示すフローチャートの動作が開始すると、まず、第1機器の履歴の数値を補正しながら推論する(S71)。ここでは、図9のグラフ91と補正入力91aを用いて説明したように、制御部1は、第1機器2aによって取得した時系列的な検査データに対して、加減算や乗除算等による補正演算を施す。制御部1は、この補正された時系列的な検査データを推論エンジン7aに入力し、推論を行わせる。 When the operation of the flowchart shown in FIG. 10 starts, first, inference is made while correcting the numerical value of the history of the first device (S71). Here, as described using the graph 91 of FIG. 9 and the correction input 91a, the control unit 1 corrects the time-series inspection data acquired by the first device 2a by addition / subtraction, multiplication / division, or the like. To give. The control unit 1 inputs the corrected time-series inspection data to the inference engine 7a and causes the inference to be performed.
 続いて、信頼性が適切になる補正値における結果を採用する(S73)。前述したように、制御部1は補正演算の補正値を少しずつ変えながら、推論の信頼性を算出している。このステップでは、制御部1は、信頼性が最も高くなったときの推論結果を、第1機器の履歴データを用いたときの推論結果として採用する。 Subsequently, the result at the correction value that makes the reliability appropriate is adopted (S73). As described above, the control unit 1 calculates the reliability of the inference while gradually changing the correction value of the correction operation. In this step, the control unit 1 adopts the inference result when the reliability is the highest as the inference result when the historical data of the first device is used.
 次に、第2機器の履歴の数値を補正しながら、推論する(S75)。ここでは、図9のグラフ92と補正入力92aを用いて説明したように、制御部1は、第2機器2bによって取得した時系列的な検査データに対して、加減算や乗除算等による補正演算を施す。制御部1は、この補正された時系列的な検査データを推論エンジン7bに入力し、推論を行わせる。 Next, infer while correcting the numerical value in the history of the second device (S75). Here, as described using the graph 92 of FIG. 9 and the correction input 92a, the control unit 1 corrects the time-series inspection data acquired by the second device 2b by addition / subtraction, multiplication / division, or the like. To give. The control unit 1 inputs the corrected time-series inspection data to the inference engine 7b to perform inference.
 続いて、信頼性が適切になる補正値における結果を採用する(S77)。前述したように、制御部1は補正演算の補正値を少しずつ変えながら、推論の信頼性を算出している。このステップでは、制御部1は、信頼性が最も高くなったときの推論結果を、第2機器の履歴データを用いたときの推論結果として採用する。 Subsequently, the result at the correction value that makes the reliability appropriate is adopted (S77). As described above, the control unit 1 calculates the reliability of the inference while gradually changing the correction value of the correction operation. In this step, the control unit 1 adopts the inference result when the reliability is the highest as the inference result when the historical data of the second device is used.
 ステップS71~S77において、第1機器および第2機器のそれぞれについて、推論結果を決定すると、次に、採用された結果が類似ならアドバイスに採用する(S79)。ここでは、ステップS73およびS77において採用された結果が類似していれば、推論結果をアドバイスとして採用する。採用された結果が非類似の場合には、どちらが正しい可能性があるかを推論する等によって、決定してもよい。図9に示したように、総合的に判断してもよい。 In steps S71 to S77, the inference results are determined for each of the first device and the second device, and then, if the adopted results are similar, they are adopted for advice (S79). Here, if the results adopted in steps S73 and S77 are similar, the inference result is adopted as advice. If the adopted results are dissimilar, it may be determined by inferring which one may be correct. As shown in FIG. 9, a comprehensive judgment may be made.
 このように、履歴データを合わせて推論の変形例においては、第1の機器および第2の機器からそれぞれ出力された時系列的な検査データを、それぞれ第1機器用推論エンジンと第2機器用推論エンジンによって推論を行っている。この推論の際に、各時系列的な検査データに対して補正演算を施し、信頼性が最も高ったときの推論を、各機器に対する推論結果として採用している。最終的には、2つの機器の推論結果を用いて、総合的な判断を行っている。 In this way, in the modified example of inference by combining historical data, the time-series inspection data output from the first device and the second device are used for the inference engine for the first device and the inference engine for the second device, respectively. Inference is performed by an inference engine. At the time of this inference, a correction operation is performed on each time-series inspection data, and the inference when the reliability is the highest is adopted as the inference result for each device. Finally, the inference results of the two devices are used to make a comprehensive judgment.
 なお、本変形例においては、第1機器2aと第2機器2bの2つの機器を用いていたが、これに限らず、3つ以上の機器を用いて、処理を行ってもよい。 In this modification, two devices, the first device 2a and the second device 2b, are used, but the processing is not limited to this, and the processing may be performed using three or more devices.
 以上説明したように、本発明の一実施形態における情報伝達システムは、第1の機器2aによって対象者の時系列的な第1の検査データ群を取得する第1の検査データ取得部(ID判定部1b)と、第2の機器2bによって対象者の時系列的な第2の検査データ群を取得する第2の検査データ取得部(ID判定部1b)と、第1の検査データ群と第2の検査データ群を用いて、対象者に提供する伝達情報を決定する伝達情報決定部(情報提供部1c)を有している。第1および第2の機器から検査データ群を取得し、このデータ基づいて、対象者に提供する情報を生成している。すなわち、複数の機器から検査データを取得していることから、データの数を増加させることができ、また種々の状況でデータを取得できるので、より精度の高い情報を生成できる。このように、本発明の一実施形態に係る情報伝達システムは、対象者の状況を考慮することによって正確な健康状態を把握し、この健康状態に応じたアドバイス等のカスタマイズ情報を提供することができる。 As described above, the information transmission system according to the embodiment of the present invention is a first inspection data acquisition unit (ID determination) that acquires a time-series first inspection data group of a subject by the first device 2a. Part 1b), a second inspection data acquisition unit (ID determination unit 1b) that acquires a time-series second inspection data group of the subject by the second device 2b, a first inspection data group, and a first It has a transmission information determination unit (information provision unit 1c) that determines transmission information to be provided to the target person using the inspection data group of 2. The inspection data group is acquired from the first and second devices, and the information to be provided to the target person is generated based on this data. That is, since the inspection data is acquired from a plurality of devices, the number of data can be increased, and the data can be acquired in various situations, so that more accurate information can be generated. As described above, the information transmission system according to the embodiment of the present invention can grasp the accurate health condition by considering the situation of the subject and provide customized information such as advice according to the health condition. can.
 また、本発明の一実施形態においては、複数の機器によって取得された検査データ群の変化パターンに従って学習された推論モデルに従って、伝達情報を決定している。すなわち、本実施形態においては、時系列的に取得した検査データ群を用いて推論モデルを生成している(例えば、図8参照)。また、対象者から取得した検査データ群を推論エンジンに入力し、推論結果を得るようにしている(例えば、図4のS107、図5のS9参照)。時系列的な検査データ群を使用することによって、検査データの変化パターンが示す、疾病を特定し、また将来発病する疾病、その発病時期等を推論することができる。 Further, in one embodiment of the present invention, the transmitted information is determined according to the inference model learned according to the change pattern of the inspection data group acquired by a plurality of devices. That is, in the present embodiment, an inference model is generated using the inspection data group acquired in time series (see, for example, FIG. 8). Further, the inspection data group acquired from the subject is input to the inference engine to obtain the inference result (see, for example, S107 in FIG. 4 and S9 in FIG. 5). By using the time-series test data group, it is possible to identify the disease indicated by the change pattern of the test data, and to infer the disease that will develop in the future, the time of its onset, and the like.
 また、本発明の一実施形態においては、第1の機器によって取得された第1の検査データ群と、第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した検査データ群を入力として推論した時の信頼性を算出し、該信頼性に従って伝達情報を決定している(例えば、図3、図4参照)。このため、異なる複数の機器の検査データを取得した場合、機器の出力のレベルに差があっても、これを補正しているので、豊富なデータ数でもって、より精度の高い伝達情報を決定することができる。 Further, in one embodiment of the present invention, the first inspection data group acquired by the first apparatus and the second inspection data group acquired by the second apparatus are the first and second, respectively. The reliability is calculated for each inspection data group of the above, and the reliability when the corrected inspection data group is inferred as an input is calculated, and the transmission information is determined according to the reliability (see, for example, FIGS. 3 and 4). For this reason, when inspection data of multiple different devices is acquired, even if there is a difference in the output level of the device, this is corrected, so more accurate transmission information is determined with abundant data. can do.
 また、本発明の一実施形態においては、第1の機器によって取得された第1の検査データ群と、第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した複数の検査データ群を1つの検査データ群に合体し、この合体した検査データ群を推論モデルに入力することによって推論を行い、推論結果に基づいて伝達情報を決定している(例えば、図3、図4、図5のS9参照)。このため、複数の機器で取得した検査データ群をあたかも1つの検査データ群のように扱え、データ数が増加するので、より精度の高い伝達情報を決定することができる。 Further, in one embodiment of the present invention, the first inspection data group acquired by the first apparatus and the second inspection data group acquired by the second apparatus are the first and second, respectively. It is corrected for each test data group of, and the plurality of corrected test data groups are combined into one test data group, and inference is performed by inputting the combined test data group into the inference model, and based on the inference result. The transmitted information is determined (see, for example, S9 in FIGS. 3, 4, and 5). Therefore, the inspection data group acquired by a plurality of devices can be treated as if it were one inspection data group, and the number of data increases, so that more accurate transmission information can be determined.
 また、本発明の一実施形態においては、第1の機器によって取得された第1の検査データ群と、第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した複数の検査データ群ごとにそれぞれ推論モデルに入力し、各推論モデルによる推論結果を、総合的に判定し、この判定結果に基づいて伝達情報を決定している(例えば、図9、図10参照)。このため、複数の機器で取得した検査データ群から、より精度の高い伝達情報を決定することができる。 Further, in one embodiment of the present invention, the first inspection data group acquired by the first apparatus and the second inspection data group acquired by the second apparatus are the first and second, respectively. It is corrected for each inspection data group of, and each of the corrected multiple inspection data groups is input to the inference model, the inference result by each inference model is comprehensively judged, and the transmission information is determined based on this judgment result. (See, for example, FIGS. 9 and 10). Therefore, more accurate transmission information can be determined from the inspection data group acquired by a plurality of devices.
 また、本発明の一実施形態においては、第1、第2の検査データ取得部は、対象者からの検査データ群であるか、対象者以外の者からの検査データ群であるかを判定し(図1のID判定部1b参照)、対象者からの検査データ群である場合に、第1の検査データ群または上記第2の検査データ群として取得している。情報伝達システムの制御部が、対象者が使用する第1、第2機器2a、2bからの検査データと、対象者以外が使用する第3機器3からの検査データを入力する場合に、対象者と非対象者の検査データを区別することができる。このため、対象者は複数の機器を使用して検査データを得ることができ、検査データを豊富にし、より精度の高い伝達情報を得ることができる。 Further, in one embodiment of the present invention, the first and second inspection data acquisition units determine whether the inspection data group is from the subject or the inspection data group from a person other than the subject. (Refer to the ID determination unit 1b in FIG. 1), in the case of the inspection data group from the subject, the inspection data group is acquired as the first inspection data group or the second inspection data group. When the control unit of the information transmission system inputs the inspection data from the first and second devices 2a and 2b used by the target person and the inspection data from the third device 3 used by other than the target person, the target person And the inspection data of non-target persons can be distinguished. Therefore, the subject can obtain the inspection data by using a plurality of devices, can enrich the inspection data, and can obtain more accurate transmission information.
 本実施形態の説明に当たっては、第1機器2aまたは第2機器2bとして、トイレに併設された各種センサで検便、採便等を行った結果を有効利用することについて多々説明したが、当然、これに限るものではない。第1機器2a、第2機器2bとしては、対象者の健康関連情報、例えば、バイタル情報、検体情報等を取得するための機器であればよい。最も簡単な例ではスマートフォンなどの携帯端末で得られた顔画像情報、それに基づく心拍情報などにも応用でき、これらの情報を活用してもよい。また、ウェアラブル端末などユーザに密着した状態で使用する機器と連携してもよく、例えば、不整脈のような注意すべきデータも、これらの機器で簡単に取得できる。歩行時の加速度センサのパターンなどによっても、足に影響する健康問題の検出が可能である。機器や体調、飲食や生活シーンの状況によって誤差を含みうる単発のデータの解析でなく、複数のデータを含んでいる履歴パターンを用いて解析することによって、疾病の有無や可能性や回復、通院すべき時期などの情報、アドバイス情報等が、高い精度で提供可能となる。これらの情報が低い精度の場合には、ユーザが診察を受けるのが遅れ、必要以上の心配をすることになる。 In the explanation of this embodiment, it has been explained many times that the results of stool test, stool collection, etc. performed by various sensors attached to the toilet are effectively used as the first device 2a or the second device 2b. It is not limited to. The first device 2a and the second device 2b may be any device for acquiring health-related information of the target person, for example, vital information, sample information, and the like. In the simplest example, it can be applied to face image information obtained from a mobile terminal such as a smartphone, heartbeat information based on the face image information, and the like, and these information may be utilized. In addition, it may be linked with a device such as a wearable terminal that is used in close contact with the user, and data to be noted such as arrhythmia can be easily acquired by these devices. It is also possible to detect health problems that affect the feet by the pattern of the acceleration sensor during walking. By analyzing using a history pattern that includes multiple data, instead of analyzing single-shot data that may contain errors depending on the equipment, physical condition, eating and drinking, and living scenes, the presence or absence of illness, possibility, recovery, and outpatient visits Information such as when to do it, advice information, etc. can be provided with high accuracy. If this information is of low accuracy, the user will be delayed in seeing the doctor and will be more worried than necessary.
 多くのこれまでの提案には、このような精度に対する対策が不十分であったが、本実施形態においては精度を考慮し、かつ、対象者の状況を考慮して、対象者が無理なく医療機関等に足を運べる情報を提供できる。正確な健康状態を把握するための検査や治療を受けることができる施設の情報を提供することができるので、ユーザは、この健康把握で、治療を受けたり、生活習慣の改善を行ったりして、より健康的な生活を送ることができる。 Many of the proposals so far have insufficient measures against such accuracy, but in this embodiment, the subject is treated reasonably in consideration of the accuracy and the situation of the subject. It is possible to provide information that can be visited by institutions. Since it is possible to provide information on facilities where tests and treatments can be received to grasp the accurate health condition, users can receive treatment and improve their lifestyles with this health grasp. , You can lead a healthier life.
 なお、本発明の一実施形態においては、制御部1は、CPU、メモリ、HDD等から構成されているIT機器として説明した。しかし、CPUとプログラムによってソフトウエア的に構成する以外にも、各部の一部または全部をハードウエア回路で構成してもよく、ヴェリログ(Verilog)によって記述されたプログラム言語に基づいて生成されたゲート回路等のハードウエア構成でもよく、またDSP(Digital Signal Processor)等のソフトを利用したハードウエア構成を利用してもよい。これらは適宜組み合わせてもよいことは勿論である。 In one embodiment of the present invention, the control unit 1 has been described as an IT device composed of a CPU, a memory, an HDD, and the like. However, in addition to being configured in software by a CPU and a program, part or all of each part may be configured in a hardware circuit, and a gate generated based on the program language described by Verilog. A hardware configuration such as a circuit may be used, or a hardware configuration using software such as a DSP (Digital Signal Processor) may be used. Of course, these may be combined as appropriate.
 また、制御部1は、CPUに限らず、コントローラとしての機能を果たす素子であればよく、上述した各部の処理は、ハードウエアとして構成された1つ以上のプロセッサが行ってもよい。例えば、各部は、それぞれが電子回路として構成されたプロセッサであっても構わないし、FPGA(Field Programmable Gate Array)等の集積回路で構成されたプロセッサにおける各回路部であってもよい。または、1つ以上のCPUで構成されるプロセッサが、記録媒体に記録されたコンピュータプログラムを読み込んで実行することによって、各部としての機能を実行しても構わない。 Further, the control unit 1 is not limited to the CPU, and may be any element that functions as a controller, and the processing of each unit described above may be performed by one or more processors configured as hardware. For example, each part may be a processor each of which is configured as an electronic circuit, or may be each circuit part of a processor composed of an integrated circuit such as an FPGA (Field Programmable Gate Array). Alternatively, a processor composed of one or more CPUs may execute the functions of each unit by reading and executing the computer program recorded on the recording medium.
 また、本明細書において説明した技術のうち、主にフローチャートで説明した制御に関しては、プログラムで設定可能であることが多く、記録媒体や記録部に収められる場合もある。この記録媒体、記録部への記録の仕方は、製品出荷時に記録してもよく、配布された記録媒体を利用してもよく、インターネットを通じてダウンロードしたものでもよい。 In addition, among the techniques described in this specification, the controls mainly described in the flowchart can often be set by a program, and may be stored in a recording medium or a recording unit. The recording method to the recording medium and the recording unit may be recorded at the time of product shipment, the distributed recording medium may be used, or may be downloaded via the Internet.
 また、本発明の一実施形態においては、フローチャートを用いて、本実施形態における動作を説明したが、処理手順は、順番を変えてもよく、また、いずれかのステップを省略してもよく、ステップを追加してもよく、さらに各ステップ内における具体的な処理内容を変更してもよい。 Further, in one embodiment of the present invention, the operation in the present embodiment has been described using a flowchart, but the order of the processing procedures may be changed, or any step may be omitted. Steps may be added, and specific processing contents in each step may be changed.
 また、特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず」、「次に」等の順番を表現する言葉を用いて説明したとしても、特に説明していない箇所では、この順で実施することが必須であることを意味するものではない。 In addition, even if the scope of claims, the specification, and the operation flow in the drawings are explained using words expressing the order such as "first" and "next" for convenience, in the parts not particularly explained, It does not mean that it is essential to carry out in this order.
 本発明は、上記実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせによって、種々の発明を形成できる。例えば、実施形態に示される全構成要素の幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components of all the components shown in the embodiment may be deleted. In addition, components across different embodiments may be combined as appropriate.
1・・・制御部、1a・・・通信制御部、1b・・・ID判定部、1c・・・情報提供部、1d・・・推論モデル仕様決定部、1e・・・推論依頼部、1f・・・検索部、2a・・・第1機器、2b・・・第2機器、4・・・端末、5・・・学習部、5a・・・入出力モデル化部、5b・・・仕様照合部、6・・・学習依頼部、6a・・・記録部、6b・・・対象物種類A画像群、6c・・・教師データ、6d・・・仕様設定部、6e・・・通信部、6f・・・制御部、7・・・推論エンジン、8・・・DB部、8a・・・ID別履歴一覧 1 ... Control unit, 1a ... Communication control unit, 1b ... ID determination unit, 1c ... Information provision unit, 1d ... Inference model specification determination unit, 1e ... Inference request unit, 1f ... Search unit, 2a ... 1st device, 2b ... 2nd device, 4 ... Terminal, 5 ... Learning unit, 5a ... Input / output modeling unit, 5b ... Specifications Collation unit, 6 ... Learning request unit, 6a ... Recording unit, 6b ... Object type A image group, 6c ... Teacher data, 6d ... Specification setting unit, 6e ... Communication unit , 6f ... Control unit, 7 ... Inference engine, 8 ... DB unit, 8a ... History list by ID

Claims (9)

  1.  第1の機器によって対象者の時系列的な第1の検査データ群を取得する第1の検査データ取得部と、
     上記第1の検査データ群を補間できるような検査が可能な第2の機器によって上記対象者の時系列的な第2の検査データ群を取得する第2の検査データ取得部と、
     上記第1の検査データ群と上記第2の検査データ群を用いて、上記対象者に提供する伝達情報を決定する伝達情報決定部と、
     を有し、
     上記第1の検査データ群と、上記第2の検査データ群は、互いに検査タイミングまたは検査項目を補っていることを特徴とする情報伝達装置。
    A first inspection data acquisition unit that acquires a time-series first inspection data group of a subject by a first device, and a first inspection data acquisition unit.
    A second inspection data acquisition unit that acquires a time-series second inspection data group of the subject by a second device capable of performing an inspection capable of interpolating the first inspection data group, and a second inspection data acquisition unit.
    A transmission information determination unit that determines transmission information to be provided to the target person using the first inspection data group and the second inspection data group.
    Have,
    An information transmission device characterized in that the first inspection data group and the second inspection data group complement each other in inspection timing or inspection items.
  2.  上記伝達情報決定部は、複数の機器によって取得された検査データ群の変化パターンに従って学習された推論モデルに従って、上記伝達情報を決定することを特徴とする請求項1に記載の情報伝達装置。 The information transmission device according to claim 1, wherein the transmission information determination unit determines the transmission information according to an inference model learned according to a change pattern of a test data group acquired by a plurality of devices.
  3.  上記伝達情報決定部は、上記第1の機器によって取得された第1の検査データ群と、上記第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した検査データ群を入力として推論した時の信頼性を算出し、該信頼性に従って上記伝達情報を決定することを特徴とする請求項1に記載の情報伝達装置。 The transmission information determination unit performs the first and second inspections of the first inspection data group acquired by the first device and the second inspection data group acquired by the second device. The information transmission device according to claim 1, wherein the information transmission device is corrected for each data group, the reliability when the corrected inspection data group is inferred as an input is calculated, and the transmission information is determined according to the reliability. ..
  4.  上記伝達情報決定部は、上記検査データ群ごとに補正する際に、当該検査データ群に含まれるデータのそれぞれに共通する数値に対して四則演算を行うことを特徴とする請求項3に記載の情報伝達装置。 The third aspect of claim 3, wherein the transmission information determination unit performs four arithmetic operations on numerical values common to each of the data included in the inspection data group when correcting each inspection data group. Information transmission device.
  5.  上記伝達情報決定部は、上記第1の機器によって取得された第1の検査データ群と、上記第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した複数の検査データ群を1つの検査データ群に合体し、この合体した検査データ群を推論モデルに入力することによって推論を行い、推論結果に基づいて上記伝達情報を決定することを特徴とする請求項1に記載の情報伝達装置。 The transmission information determination unit performs the first and second inspections of the first inspection data group acquired by the first device and the second inspection data group acquired by the second device. Correction is made for each data group, the corrected plurality of inspection data groups are combined into one inspection data group, inference is performed by inputting the combined inspection data group into the inference model, and the above transmission is performed based on the inference result. The information transmission device according to claim 1, wherein the information is determined.
  6.  上記伝達情報決定部は、上記第1の機器によって取得された第1の検査データ群と、上記第2の機器よって取得された第2の検査データ群を、第1、第2のそれぞれの検査データ群ごとに補正し、この補正した複数の検査データ群ごとにそれぞれ推論モデルに入力し、各推論モデルによる推論結果を、総合的に判定して上記伝達情報を決定することを特徴とする請求項1に記載の情報伝達装置。 The transmission information determination unit performs the first and second inspections of the first inspection data group acquired by the first device and the second inspection data group acquired by the second device. A claim characterized in that correction is made for each data group, each of the corrected plurality of inspection data groups is input to the inference model, and the inference result by each inference model is comprehensively judged to determine the above-mentioned transmission information. Item 1. The information transmission device according to item 1.
  7.  上記第1、第2の検査データ取得部は、上記対象者からの検査データ群であるか、上記対象者以外の者からの検査データ群であるかを判定し、上記対象者からの検査データ群である場合に、上記第1の検査データ群または上記第2の検査データ群として取得することを特徴とする請求項1に記載の情報伝達装置。 The first and second inspection data acquisition units determine whether the inspection data group is from the target person or the inspection data group from a person other than the target person, and the inspection data from the target person is determined. The information transmission device according to claim 1, wherein when the group is a group, the data is acquired as the first inspection data group or the second inspection data group.
  8.  上記第1、第2の検査データ群は、排便時用の色センサ、形状センサ、硬度センサ、嗅覚センサ(線虫や動物の反応判定を含む)、ガス成分センサ、特定の試薬添加時の色変化検出センサ、拡大観察画像による形状判定のいずれかの出力結果の1つに従って得られたデータであることを特徴とする請求項1ないし7に記載の情報伝達装置。 The first and second inspection data groups include a color sensor for defecation, a shape sensor, a hardness sensor, an olfactory sensor (including reaction determination of nematodes and animals), a gas component sensor, and a color when a specific reagent is added. The information transmission device according to claim 1 to 7, wherein the data is obtained according to one of the output results of either the change detection sensor or the shape determination based on the magnified observation image.
  9.  第1の機器によって対象者の時系列的な第1の検査データ群を取得し、
     上記第1の検査データ群を補間できるような検査が可能な第2の機器によって上記対象者の時系列的な第2の検査データ群を取得し、
     上記第1の検査データ群と上記第2の検査データ群を用いて、上記対象者に提供する伝達情報を決定し、
     上記第1の検査データ群と、上記第2の検査データ群は、互いに検査タイミングまたは検査項目を補っていることを特徴とする情報伝達方法。
    Acquire the time-series first inspection data group of the subject by the first device,
    The second inspection data group in time series of the subject is acquired by the second device capable of performing the inspection so as to interpolate the first inspection data group.
    Using the first test data group and the second test data group, the transmission information to be provided to the subject is determined.
    An information transmission method characterized in that the first inspection data group and the second inspection data group complement each other's inspection timings or inspection items.
PCT/JP2020/003048 2020-01-28 2020-01-28 Information transmission device and information transmission method WO2021152710A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/003048 WO2021152710A1 (en) 2020-01-28 2020-01-28 Information transmission device and information transmission method
CN202080087794.3A CN114830255A (en) 2020-01-28 2020-01-28 Information transmission device and information transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003048 WO2021152710A1 (en) 2020-01-28 2020-01-28 Information transmission device and information transmission method

Publications (1)

Publication Number Publication Date
WO2021152710A1 true WO2021152710A1 (en) 2021-08-05

Family

ID=77078051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003048 WO2021152710A1 (en) 2020-01-28 2020-01-28 Information transmission device and information transmission method

Country Status (2)

Country Link
CN (1) CN114830255A (en)
WO (1) WO2021152710A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251461A (en) * 2001-02-23 2002-09-06 Arkray Inc Data transmitting and receiving device, data managing device, data processing device and program
JP2010142273A (en) * 2008-12-16 2010-07-01 Omron Healthcare Co Ltd Biomarker management apparatus
JP2014006734A (en) * 2012-06-25 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Health information management system, health information management method, management server, conversion server, relay device, and program
JP2019032772A (en) * 2017-08-09 2019-02-28 富士通株式会社 Data generation program, data generation method and data generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002251461A (en) * 2001-02-23 2002-09-06 Arkray Inc Data transmitting and receiving device, data managing device, data processing device and program
JP2010142273A (en) * 2008-12-16 2010-07-01 Omron Healthcare Co Ltd Biomarker management apparatus
JP2014006734A (en) * 2012-06-25 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Health information management system, health information management method, management server, conversion server, relay device, and program
JP2019032772A (en) * 2017-08-09 2019-02-28 富士通株式会社 Data generation program, data generation method and data generation device

Also Published As

Publication number Publication date
CN114830255A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
KR102116664B1 (en) Online based health care method and apparatus
CN105260588B (en) A kind of health guards robot system and its data processing method
US20190287661A1 (en) Related systems and method for correlating medical data and diagnostic and health treatment follow-up conditions of patients monitored in real-time
US9596991B2 (en) Self-examination apparatus and method for self-examination
US20210398275A1 (en) Oral health prediction apparatus and method using machine learning algorithm
WO2013006044A1 (en) Patient mobile computing system and method for exacerbation prediction
KR102028674B1 (en) A method, server and program for reserving medical treatment with terminal
JP2010142273A (en) Biomarker management apparatus
CN104427942A (en) Measurement assistance device, measurement assistance method, control program, and recording medium
EP3547320A2 (en) Related systems and method for correlating medical data and diagnostic and health treatment follow-up conditions of patients monitored in real-time
WO2021140731A1 (en) Information transmitting device and information transmitting method
Ahmed An intelligent healthcare service to monitor vital signs in daily life–a case study on health-iot
US20230079951A1 (en) System for configuring patient monitoring
Egejuru et al. Development of a mobile-based hypertension risk monitoring system
WO2021152710A1 (en) Information transmission device and information transmission method
CN113140315B (en) Health self-testing system, server and health detection system
US7877341B2 (en) Self-adaptive data pre-fetch by artificial neuron network
WO2021181634A1 (en) Teacher data collection requesting device, and teacher data collection method
WO2021171596A1 (en) Inference system, learning request device, and learning request method
KR20220071331A (en) A method for providing health care AI primary doctor functional services
KR20220072050A (en) A recording medium on which the AI doctor&#39;s service provision program is recorded
KR20220072049A (en) Program for providing services of artificial intelligence doctors
WO2021176622A1 (en) Sensor determination device and sensor determination method
Hargreaves et al. Informing the Design of “Lifestyle Monitoring” Technology for the Detection of Health Deterioration in Long-term Conditions: a qualitative study of people living with heart failure
CN113782132B (en) Dynamic updating method, device and medium of label information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP