WO2021151340A1 - 一种用于接触网隔离开关闸刀角度测量的传感器系统 - Google Patents

一种用于接触网隔离开关闸刀角度测量的传感器系统 Download PDF

Info

Publication number
WO2021151340A1
WO2021151340A1 PCT/CN2020/129766 CN2020129766W WO2021151340A1 WO 2021151340 A1 WO2021151340 A1 WO 2021151340A1 CN 2020129766 W CN2020129766 W CN 2020129766W WO 2021151340 A1 WO2021151340 A1 WO 2021151340A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical fiber
angle
light source
voltage
Prior art date
Application number
PCT/CN2020/129766
Other languages
English (en)
French (fr)
Inventor
胡军
罗博一
张云伟
徐帆
Original Assignee
华东交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东交通大学 filed Critical 华东交通大学
Publication of WO2021151340A1 publication Critical patent/WO2021151340A1/zh
Priority to US17/870,771 priority Critical patent/US11501935B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/34Air-break switches for high tension without arc-extinguishing or arc-preventing means with movable contact adapted to engage an overhead transmission line, e.g. for branching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/26Air-break switches for high tension without arc-extinguishing or arc-preventing means with movable contact that remains electrically connected to one line in open position of switch
    • H01H31/28Air-break switches for high tension without arc-extinguishing or arc-preventing means with movable contact that remains electrically connected to one line in open position of switch with angularly-movable contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication

Definitions

  • the invention relates to the field of angle measurement of an isolating switch, in particular to a sensor system for measuring the angle of a contact line isolating switch knife.
  • Catenary isolation switch is one of the more widely used electrical equipment in electrified railways. It can switch the circuit system without load to form an isolation disconnection point to ensure the safety of power supply during train commutation.
  • the isolation switch needs to be guaranteed when it is opened. There is a sufficient opening angle between the moving and static contacts, and the safety of the adjacent electrical equipment and maintenance personnel is guaranteed.
  • When the isolating switch is closed ensure that there is enough contact area between the moving and static contacts to reach the state of closing in place. Therefore, whether the catenary isolating switch can be opened and closed in place directly affects the operation safety of the train. Therefore, it is necessary to monitor the knife angle of the isolating switch to ensure that the isolating switch can be opened and closed during the opening and closing operations.
  • the existing methods for measuring catenary isolation switches mainly include: 1.
  • the image recognition method is adopted to obtain the position of the isolation switch knife through image processing, and then the current angle information of the knife is calculated. This solution is susceptible to weather and causes errors. The detection rate is higher.
  • the photoelectric encoder Based on the angle measurement method of the photoelectric encoder, the photoelectric encoder currently used integrates photoelectric integration in the sensor, and directly outputs electrical signals to determine the collected angle value.
  • the sensor is installed in a 27.5kV isolation On the conductive arm of the switch, there is a problem that it is difficult to obtain electricity. 3.
  • Angle sensors such as potentiometers and Hall angle sensors are electronic sensors. They are also difficult to supply power and are vulnerable to electromagnetic interference when installed on the conductive arm of a 27.5kV isolating switch.
  • the purpose of the present invention is to provide a sensor system for measuring the angle of the catenary isolating switch.
  • a structure-type optical fiber sensor is used to design a sensor system for Optical fiber angle sensor for measuring the angle of the contact line isolation switch.
  • the optical fiber it has anti-electromagnetic and atomic radiation interference, small diameter, soft, light-weight mechanical properties, insulation, non-inductive electrical properties, water resistance, high temperature resistance, and corrosion resistance.
  • the optical fiber angle sensor of the present invention can meet the requirements of measuring the angle of its knife under the operating conditions of the catenary isolation switch.
  • the sensor system provided by the present invention for measuring the angle of the knife of a catenary isolation switch is realized as follows:
  • a sensor system for measuring the angle of the contact line isolation switch knife including a fiber angle sensor, a base, a support plate, a light source fiber, a laser transmitter, a metal aluminum box, a relay, a step-down power supply module, a control circuit board, and a photoelectric conversion
  • the rotary shafts of the knife are connected together to detect the rotation angle of the knife of the catenary isolation switch.
  • the laser transmitter, relay, step-down power supply module, control circuit board, and photoelectric converter are installed in a metal aluminum box, and the metal aluminum box Place it far away from the isolation switch, and control the opening and closing of the circuit board relay to control the operation of the laser transmitter.
  • the laser transmitter emits the laser beam into the optical fiber of the light source, and receives the laser beam reflected from the optical fiber of the light source through the receiving optical fiber, and then transmits it.
  • the light intensity is converted into a voltage signal to realize the function of photoelectric conversion, and then the converted electrical signal is transmitted to the control circuit board for processing, and finally output the knife angle collected by the optical fiber angle sensor, and the step-down power supply
  • the module reduces the 220V voltage used on the railway to two voltage levels of 12V and 5V to supply power to the laser transmitter, control circuit board, relay, and photoelectric converter respectively.
  • the optical fiber angle sensor of the present invention includes a rotating shaft, a shell, a bracket, an optical fiber probe, and a dial.
  • the rotating shaft passes through the top of the shell and is connected to the dial.
  • Fiber optic probes, and two fiber optic probes are fixed on the inner wall of the housing by the same bracket.
  • the probe on the light source fiber and the probe on the receiving fiber are installed in the same straight line.
  • An opening is set on the scale every 1 degree, and the light source fiber reflects The laser beam irradiates the dial, when the dial rotates 1 degree, the laser beam in the light source fiber is injected into the fiber probe on the receiving fiber through the corresponding opening, and then propagates through the receiving fiber to the photoelectric converter for photoelectric conversion , Every optical signal received by the receiving fiber indicates that the rotation axis rotates 1 degree, the photoelectric converter converts each optical signal into a voltage signal, which is recorded as a pulse signal, and the control circuit board records the voltage from the photoelectric converter The number of pulses can calculate the angle that the optical fiber angle sensor has rotated.
  • the dial of the present invention is provided with 360 openings, each opening corresponds to an angle value, that is, the laser beam from the light source fiber enters the receiving fiber through the opening on the dial, and is converted into a voltage signal by the photoelectric converter.
  • One pulse can be obtained, corresponding to 1 degree.
  • the supporting plate of the present invention includes a metal aluminum plate, a hinge, a steel bar, a nut, a screw, and a first screw hole.
  • the metal aluminum plate is provided with four first screw holes to facilitate the fixing of the base on the metal aluminum plate.
  • One end of the metal aluminum plate is connected by a hinge, and the other end of the steel bar and the other end of the metal aluminum plate are connected by a nut and screw.
  • the switch knife is on the post insulator on the side of the shaft.
  • the base of the present invention includes a U-shaped groove and a second screw hole, a U-shaped groove is arranged in the middle of the base, and a second screw hole is arranged under both sides, which is convenient for fixing the base on the supporting plate.
  • the control circuit board of the present invention transmits the processed knife angle of the catenary isolation switch to the PC of the catenary isolation switch management department through the RS485 communication mode, which is convenient for the staff to view.
  • the method of the present invention for measuring the angle of the catenary isolation switch is to initialize the system first, and when it is necessary to measure the angle of the knife, the control circuit board controls the relay to be turned on, so that the step-down power supply module supplies power to the laser transmitter, so that The laser transmitter emits a laser beam into the optical fiber of the light source, and it is emitted through the optical fiber probe on the optical fiber of the light source.
  • the rotation of the knife drives the rotation axis of the optical fiber angle sensor to rotate, so that the dial rotates, and the dial turns one of the openings to the optical fiber of the light source.
  • the laser beam emitted by the optical fiber probe on the light source fiber passes through the opening of the dial and enters the optical fiber probe of the receiving fiber, and is transmitted to the photoelectric converter through the receiving fiber, and the received light is transmitted by the photoelectric converter.
  • the signal is converted into a corresponding voltage signal, which is a pulse signal.
  • the pulse signal is sent to the control circuit board.
  • the control circuit board counts the number of pulses, and calculates the angle of the knife rotation by counting the number of pulses , And transmitted to the PC of the contact line isolation switch management department through RS485 communication, which is convenient for the staff to view.
  • the present invention adopts the principle of structural optical fiber sensor to design an optical fiber angle sensor for measuring the angle of the knife of the catenary isolation switch, the structure of judging the angle of rotation of the knife by counting the number of pulses can obtain the following benefits Effect:
  • the invention adopts the principle of structural optical fiber sensor to design an optical fiber angle sensor for measuring the angle of the contact line isolation switch.
  • Inductive electrical performance, water resistance, high temperature resistance, corrosion resistance and chemical properties, etc. can meet the measurement of the angle of the catenary isolation switch under the operating conditions of the catenary isolation switch. Since the optical fiber is insulated, the optical fiber angle sensor can be directly installed On the rotary shaft of the catenary isolation switch, the power supply is convenient, the angle measurement is more accurate, the false detection rate can be reduced, and the electromagnetic interference is resisted, which solves the defects of the existing electronic angle sensor.
  • Fig. 1 is a schematic diagram of the installation structure of a sensor system for measuring the angle of the knife of a catenary isolation switch according to the present invention
  • FIG. 2 is a schematic diagram of the structure of an optical fiber angle sensor of a sensor system for measuring the angle of the knife of a catenary isolation switch according to the present invention
  • FIG. 3 is a schematic diagram of the structure of the dial of the sensor system for measuring the angle of the knife of the catenary isolation switch according to the present invention
  • FIG. 4 is a schematic diagram of the structure of a supporting plate of a sensor system for measuring the angle of the knife of a contact line isolation switch according to the present invention
  • Figure 5 is a schematic diagram of the structure of the base of a sensor system for measuring the angle of the knife of a catenary isolation switch according to the present invention
  • Fig. 6 is a flow chart of a scheme for measuring the angle of a catenary isolating switch of a sensor system for measuring the angle of a catenary isolating switch according to the present invention
  • Fig. 7 is a schematic circuit diagram of a photoelectric converter of a sensor system for measuring the angle of the knife of a contact line isolation switch according to the present invention
  • Fig. 8 is a working principle diagram of a sensor system for measuring the angle of the knife of a catenary isolation switch according to the present invention.
  • Fiber optic angle sensor 1 Base 2 Support plate 3 Light source fiber 4 Laser transmitter 5 Metal aluminum box 6 Relay 7 Step-down power module 8 Control circuit board 9 Photoelectric converter 10 Receive fiber 11 Axis of rotation 12 shell 13 Bracket 14 Fiber optic probe 15 Dial 16 Metal aluminum plate 17 hinge 18 Steel bar 19 Nut 20 screw twenty one First screw hole twenty two U-shaped groove twenty three Second screw hole twenty four
  • a sensor system for measuring the angle of a contact line isolation switch in the present invention which includes an optical fiber angle sensor 1, a base 2, a support plate 3, a light source fiber 4, and a laser transmitter 5.
  • the supporting plate 3 is installed on the upper part of the pillar insulator on the side of the rotary shaft of the contact line isolation switch, as the supporting point of the base 2.
  • the optical fiber angle sensor 1 is installed on the base 2, and the optical fiber angle sensor
  • the rotary shaft 12 of 1 is connected with the rotary shaft of the catenary isolating switch knife to detect the rotation angle of the catenary isolating switch knife.
  • the knife is centered on the rotating shaft Rotation drives the rotation axis to rotate, and the rotation axis drives the rotation axis 12 of the optical fiber angle sensor 1 to rotate.
  • the rotation axis of the catenary isolation switch and the rotation axis 12 of the optical fiber angle sensor 1 are coaxially rotating, so the knife rotates The angle is reflected on the optical fiber angle sensor 1, thereby realizing the measurement of the knife angle.
  • the laser transmitter 5, the relay 7, the step-down power module 8, the control circuit board 9, and the photoelectric converter 10 are installed in the metal aluminum box 6, and the The metal aluminum box 6 is placed far away from the isolation switch, and the laser transmitter 5 is controlled by the opening and closing of the control circuit board 9 and the relay 7.
  • the laser transmitter 5 emits a laser beam into the light source fiber 4, and the laser beam is on the light source fiber 4.
  • the laser beam is transmitted to the optical fiber angle sensor 1, and the laser beam reflected from the light source optical fiber 4 is received by the receiving optical fiber 11, and then transmitted to the photoelectric converter 10 to convert the light intensity into a voltage signal to realize photoelectricity.
  • the function of conversion, and then transfer the converted electrical signal to the control circuit board 9 for processing, and finally output the knife angle collected by the optical fiber angle sensor 1, and the step-down power module 8 reduces the 220V voltage used on the railway to 12V and Two voltage levels of 5V supply power for the laser transmitter 5, the control circuit board 9, the relay 7, and the photoelectric converter 10 respectively.
  • the optical fiber angle sensor 1 includes a rotating shaft 12, a housing 13, a bracket 14, an optical fiber probe 15, and a dial 16.
  • the rotating shaft 12 passes through the top of the housing 13 and is connected to the dial 16, extending
  • the ends of the light source fiber 4 and the receiving fiber 11 that enter the housing 13 are respectively connected to the same fiber probe 15, and the two fiber probes 15 are respectively fixed on the inner wall of the housing 13 by the same bracket 14.
  • the probe and the receiving fiber on the light source fiber 4 The probe on 11 is installed in the same straight line.
  • An opening is set on the scale 16 for every 1 degree.
  • the laser beam reflected from the light source fiber 4 shines on the scale 16. When the scale 16 is rotated by 1 degree, the light source fiber 4 is opened.
  • the laser beam enters the optical fiber probe 15 on the receiving fiber 11 through the corresponding opening, and propagates through the receiving fiber 11 to the photoelectric converter 10 for photoelectric conversion, and converts the light intensity signal into a corresponding voltage signal.
  • a light signal indicates that the rotating shaft 12 rotates 1 degree
  • the photoelectric converter 10 converts each light signal into a voltage signal, which is recorded as a pulse signal
  • the control circuit board 9 records the voltage pulse from the photoelectric converter 10
  • the number can calculate the angle that the optical fiber angle sensor 1 has rotated.
  • the scale 16 is provided with 360 openings, and each opening corresponds to an angle value. It is 360 degrees after one rotation, that is, the laser beam from the light source fiber 4 passes through the scale 16
  • the opening of ⁇ is incident into the receiving optical fiber 11, and converted into a voltage signal by the photoelectric converter 10, a pulse corresponding to 1 degree can be obtained.
  • the metal aluminum box 6 is placed under the contact line isolation switch and far away from the knife to prevent the electromagnetic field from interfering with the control circuit board 9.
  • the supporting plate 3 includes a metal aluminum plate 17, a hinge 18, a steel bar 19, a nut 20, a screw 21, and a first screw hole 22.
  • the metal aluminum plate 17 is provided with four first screw holes. 22. It is convenient for the base 2 to be fixed on the metal aluminum plate 17, one end of the steel bar 19 and one end of the metal aluminum plate 17 are connected by a hinge 18, and the other end of the steel bar 19 and the other end of the metal aluminum plate 17 are connected by a nut 20 and a screw 21 Connected, by controlling the distance between the screw 21 and the nut 20, the support plate 3 can be fixed on the post insulator on the side of the rotating shaft of the catenary isolation switch.
  • the base 2 includes a U-shaped groove 23 and a second screw hole 24.
  • a U-shaped groove 23 is provided in the middle of the base 2 and a second screw hole 24 is provided under both sides to facilitate fixing the base 2 to the support plate. 3, through the first screw hole 22 and the second screw hole 24 through the screw 21, so that the base 2 is fixed on the metal aluminum plate 17.
  • the laser transmitter 5 and the control circuit board 9 provide 12V voltage
  • the relay 7 and the photoelectric converter 10 provide 5V voltage.
  • the control circuit board 9 transmits the processed contact line isolation switch knife angle to the PC of the contact line isolation switch management department through the RS485 communication mode, which is convenient for the staff to view.
  • the PC is provided with an upper computer for monitoring the angle of the contact line isolating switch, which is used to check the angle of the corresponding isolating switch.
  • the control circuit board 9 adopts the STM32F103ZET6 control board.
  • the solution of the present invention for measuring the angle of the catenary isolation switch is: firstly initialize the system, and when the angle of the knife needs to be measured, the control circuit board 9 controls the relay 7 to conduct, so that the step-down power supply
  • the module 8 supplies power to the laser transmitter 5 so that the laser transmitter 5 emits a laser beam into the light source fiber 4, which is emitted through the fiber probe 15 on the light source fiber 4.
  • the rotation of the knife drives the rotation axis 12 of the fiber angle sensor 1 to rotate. Make the dial 16 follow to rotate.
  • the dial 16 When the dial 16 turns one of the openings to just below the fiber probe 15 on the light source fiber 4, the laser beam emitted by the fiber probe 15 on the light source fiber 4 passes through the opening of the dial 16 and enters the receiving fiber.
  • the optical fiber probe 15 of 11 it is transmitted to the photoelectric converter 10 through the receiving fiber 11, and the photoelectric converter 10 converts the received optical signal into a corresponding voltage signal, which is a pulse signal, which is sent to the control circuit Board 9, the control circuit board 9 counts the number of pulses, calculates the angle of rotation of the knife by calculating the number of pulses, and transmits it to the PC of the catenary isolation switch management department through RS485 communication, which is convenient for work People view.
  • the photoelectric converter 10 is provided with a photoelectric conversion circuit, which includes a first resistor R1, a photosensitive resistor R2, a third resistor R3, a fourth resistor R4, a first capacitor C1, an inductor L, and a first resistor R1.
  • Two capacitors C2, four-way differential comparator U1 the photoresistor R2 and the first capacitor C1 are connected in parallel and then connected in series between the first resistor R1 and the inductor L, and the other end of the first resistor R1 is connected to the step-down power supply module 8
  • the second capacitor C2 is connected in series between the other end of the inductor L and the GND of the 5V voltage after the step-down power supply module 8 is stepped down.
  • the step-down power supply module 8 steps down the 5V voltage through the first After the resistor R1 is divided into the parallel circuit of the photoresistor R2 and the first capacitor C1, the photoresistor R2 senses and receives the optical signal received by the optical fiber 11, and converts the optical signal into the corresponding resistance value.
  • the resistance of the photoresistor R2 is The change causes the voltage change of the photoresistor R2, and the changed voltage is used as an electrical signal to pass through the LC- ⁇ filter circuit composed of the first capacitor C1, the inductance L, and the second capacitor C2, and then transmit to the four-way differential comparator. The voltage comparison is performed in U1.
  • the output terminal 2 of the four-way differential comparator U1 When the photoresistor R2 detects the optical signal from the receiving optical fiber 11, the output terminal 2 of the four-way differential comparator U1 outputs a high level, that is, a pulse, which compares the four-way differential After connecting the output pin 2 of the U1 and the corresponding pin of the control circuit board 9, the pulse signal can be transmitted to the control circuit board 9.
  • the non-inverting input pin 5 of the four-way differential comparator U1 is connected to the inductor L
  • the third resistor R3 is connected in series between the inverting input terminal 4 of the four-way differential comparator U1 and the GND of the 5V voltage after the step-down power module 8 is stepped down.
  • the fourth resistor R4 is connected in series with the step-down Between the VCC of the 5V voltage after the step-down of the power supply module 8 and the output pin 2 of the four-way differential comparator U1.
  • the control circuit board 9 controls the relay 7 to turn on, so that the step-down power supply module 8 supplies power to the laser transmitter 5, and the laser transmitter 5 emits a laser beam into the light source fiber 4 .
  • the rotation of the knife drives the rotation axis 12 of the optical fiber angle sensor 1 to rotate, so that the dial 16 rotates accordingly, and the dial 16 turns one of the openings to the optical fiber on the light source optical fiber 4.
  • the laser beam emitted from the optical fiber probe 15 on the light source fiber 4 enters the optical fiber probe 15 of the receiving optical fiber 11 through the opening of the dial 16 and is transmitted to the photoelectric converter 10 via the receiving optical fiber 11, and the laser beam is transmitted to the photoelectric converter 10 by the photoelectric converter.
  • 10 Convert the received light signal into a corresponding voltage signal, that is, a pulse signal, send the pulse signal to the control circuit board 9, and the control circuit board 9 counts the number of pulses, and calculates the number of pulses. Calculate the angle of rotation of the knife by counting, and transmit it to the PC of the contact line isolation switch management department through RS485 communication, which is convenient for the staff to view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)

Abstract

一种用于接触网隔离开关闸刀角度测量的传感器系统,包括光纤角度传感器(1)、底座(2)、支撑板(3)、光源光纤(4)、激光发射器(5)、金属铝盒(6)、继电器(7)、降压电源模块(8)、控制电路板(9)、光电转换器(10)、接收光纤(11),由闸刀的转动带动光纤角度传感器(1)的旋转轴(12)转动,控制电路板(9)控制继电器(7)的开断来控制激光发射器(5)工作,由激光发射器(5)向光源光纤(4)中发射激光束,通过接收光纤(11)接收光源光纤(4)中反射出来的激光束,再传输至光电转换器(10)中将光照强度转换为电压信号,实现光电转换的功能,再将转换后的电信号传输至控制电路板(9)中进行处理,最终输出光纤角度传感器(1)采集到的闸刀角度,并通过RS485通信方式传输至接触网隔离开关管理部门的PC机上,便于工作人员查看。

Description

一种用于接触网隔离开关闸刀角度测量的传感器系统 技术领域
本发明涉及隔离开关角度测量领域,尤其涉及一种用于接触网隔离开关闸刀角度测量的传感器系统。
背景技术
接触网隔离开关是电气化铁路使用较为广泛的电气设备之一,可以对电路系统进行无负荷分合操作,形成隔离断开点,以保证列车换相时的供电安全,隔离开关分闸时需要保证动静触头之间有足够的拉开角度,以及保障与之相邻的电气设备和检修工作人员的安全。隔离开关合闸时,要确保动静触头之间要有足够的接触面积,达到合闸到位的状态。因此接触网隔离开关能否分合闸到位直接影响到列车的运行安全,因此有必要对隔离开关的闸刀角度进行监测,以确保隔离开关在分合闸操作过程中分合闸能够到位。
现有用于测量接触网隔离开关的方法主要有:1.采用图像识别法,通过图像处理获取隔离开关闸刀的位置,进而计算出闸刀当前的角度信息,该方案易受天气影响,导致误检率较高。2.基于光电编码器的角度测量法,目前所采用的光电编码器是在传感器中集成了光电一体化,直接输出电信号来判断采集到的角度值,该传感器安装在通有27.5kV的隔离开关导电臂上,存在取电难的问题。3.电位器、霍尔角度传感器等角度传感器属于电子式传感器,安装在通有27.5kV的隔离开关导电臂上也存在供电难的问题,以及易受到电磁干扰问题。
发明内容
为了解决上述问题,本发明的目的在于提供一种用于接触网隔离开关闸刀角度测量的传感器系统,针对接触网隔离开关的运行特点及条件,采用结构型光纤传感器原理设计了一款用于测量接触网隔离开关闸刀角度的光纤角度传感器,根据光纤有抗电磁和原子辐射干扰、径细、质软、重量轻的机械性能、绝缘、无感应的电气性能、耐水、耐高温、耐腐蚀的化学性能等优秀特性,本 发明的光纤角度传感器能满足在接触网隔离开关运行条件下对其闸刀角度进行测量。
为了实现上述目的,本发明提供的一种用于接触网隔离开关闸刀角度测量的传感器系统是这样实现的:
一种用于接触网隔离开关闸刀角度测量的传感器系统,包括光纤角度传感器、底座、支撑板、光源光纤、激光发射器、金属铝盒、继电器、降压电源模块、控制电路板、光电转换器、接收光纤,在接触网隔离开关闸刀转动轴侧的支柱绝缘子上部安装支撑板,作为底座的支撑点,将光纤角度传感器安装在底座上,且光纤角度传感器的旋转轴与接触网隔离开关闸刀转动轴连接在一起,用于检测接触网隔离开关闸刀旋转角度,激光发射器、继电器、降压电源模块、控制电路板、光电转换器安装在金属铝盒中,并将金属铝盒放置到远离隔离开关的地方,由控制电路板继电器的开断来控制激光发射器工作,由激光发射器向光源光纤中发射激光束,通过接收光纤接收光源光纤中反射出来的激光束,再传输至光电转换器中将光照强度转换为电压信号,实现光电转换的功能,再将转换后的电信号传输至控制电路板中进行处理,最终输出光纤角度传感器采集到的闸刀角度,降压电源模块将铁路上用的220V电压降到12V和5V两个电压等级分别为激光发射器、控制电路板、继电器、光电转换器供电。
本发明的光纤角度传感器包括旋转轴、外壳、支架、光纤探头、刻度盘,旋转轴穿过外壳的顶端与刻度盘连接在一起,伸入外壳内的光源光纤和接收光纤端分别接上相同的光纤探头,且两个光纤探头分别由一个相同的支架固定在外壳内壁,光源光纤上的探头和接收光纤上的探头处于同一直线安装,刻度盘上每1度设一个开口,光源光纤中反射出来的激光束照射到刻度盘上,当刻度盘转过1度时,光源光纤中的激光束通过对应的开口射入接收光纤上的光纤探头中,经过接收光纤传播至光电转换器中进行光电转换,接收光纤每接收到一个光信号表明旋转轴转动1度,光电转换器对每个光信号转换成1个电压信号, 记为1个脉冲信号,由控制电路板记录光电转换器传来的电压脉冲个数即可计算出光纤角度传感器转过的角度。
本发明的刻度盘上设有360个开口,每个开口对应1个角度值,即光源光纤传出的激光束通过刻度盘上的开口入射到接收光纤中,经光电转换器转换为电压信号就能得到一个脉冲,对应1度。
本发明的支撑板包括金属铝板、合页、钢条、螺帽、螺丝、第一螺丝孔,金属铝板上设有四个第一螺丝孔,便于底座固定在金属铝板上,钢条的一端与金属铝板的一端通过合页连接起来,钢条的另一端与金属铝板的另一端通过螺帽、螺丝连接起来,通过控制螺丝与螺帽之间的距离,即可将支撑板固定在接触网隔离开关闸刀转动轴侧的支柱绝缘子上。
本发明的底座包括U型槽、第二螺丝孔,底座中间设置U型槽,两边下方设有第二螺丝孔,便于将底座固定在支撑板上。
本发明的控制电路板将处理后的接触网隔离开关闸刀角度通过RS485通信方式传输至接触网隔离开关管理部门的PC机上,便于工作人员查看。
本发明对接触网隔离开关角度测量的方案为:先对系统进行初始化处理,当需要对闸刀角度进行测量时,控制电路板控制继电器导通,使得降压电源模块向激光发射器供电,使激光发射器向光源光纤中发射激光束,经过光源光纤上的光纤探头发出,由闸刀的转动带动光纤角度传感器的旋转轴转动,使得刻度盘跟着转动,刻度盘将其中一个开口转到光源光纤上的光纤探头正下方时,光源光纤上的光纤探头发出的激光束穿过刻度盘的开口进入接收光纤的光纤探头中,经接收光纤传输至光电转换器,由光电转换器将接收到的光信号转换为对应的电压信号,即为一个脉冲信号,将该脉冲信号发送至控制电路板,由控制电路板对出来的脉冲个数进行计数,通过计算脉冲的个数来计算闸刀转动的角度,并通过RS485通信方式传输至接触网隔离开关管理部门的PC机上,便于工作人员查看。
由于本发明采用结构型光纤传感器原理设计了一款用于测量接触网隔离开关闸刀角度的光纤角度传感器,通过记脉冲个数的方式来判断闸刀转动的角度的结构,从而可以得到以下有益效果:
本发明采用结构型光纤传感器原理设计了一款用于测量接触网隔离开关闸刀角度的光纤角度传感器,具有抗电磁和原子辐射干扰、径细、质软、重量轻的机械性能、绝缘、无感应的电气性能、耐水、耐高温、耐腐蚀的化学性能等优秀特性,能够满足在接触网隔离开关运行条件下对其闸刀角度进行测量,由于光纤是绝缘的,可以将光纤角度传感器直接安装在接触网隔离开关闸刀转动轴上,供电方便,角度测量更加准确,能够降低误检率,同时还能抗电磁干扰,解决了现有电子式角度传感器存在的缺陷。
附图说明
图1为本发明一种用于接触网隔离开关闸刀角度测量的传感器系统的安装结构示意图;
图2为本发明一种用于接触网隔离开关闸刀角度测量的传感器系统的光纤角度传感器的结构示意图;
图3为本发明一种用于接触网隔离开关闸刀角度测量的传感器系统的刻度盘的结构示意图;
图4为本发明一种用于接触网隔离开关闸刀角度测量的传感器系统的支撑板的结构示意图;
图5为本发明一种用于接触网隔离开关闸刀角度测量的传感器系统的底座的结构示意图;
图6为本发明一种用于接触网隔离开关闸刀角度测量的传感器系统的接触网隔离开关角度测量的方案流程图;
图7为本发明一种用于接触网隔离开关闸刀角度测量的传感器系统的光电转换器的电路原理图;
图8为本发明一种用于接触网隔离开关闸刀角度测量的传感器系统的工作 原理图。
主要元件符号说明。
光纤角度传感器 1 底座 2
支撑板 3 光源光纤 4
激光发射器 5 金属铝盒 6
继电器 7 降压电源模块 8
控制电路板 9 光电转换器 10
接收光纤 11 旋转轴 12
外壳 13 支架 14
光纤探头 15 刻度盘 16
金属铝板 17 合页 18
钢条 19 螺帽 20
螺丝 21 第一螺丝孔 22
U型槽 23 第二螺丝孔 24
具体实施方式
下面结合实施例并对照附图对本发明作进一步详细说明。
请参阅图1至图8所示为本发明中的一种用于接触网隔离开关闸刀角度测量的传感器系统,包括光纤角度传感器1、底座2、支撑板3、光源光纤4、激光发射器5、金属铝盒6、继电器7、降压电源模块8、控制电路板9、光电转换器10、接收光纤11。
如图1所示,所述的支撑板3安装在接触网隔离开关闸刀转动轴侧的支柱绝缘子上部,作为底座2的支撑点,将光纤角度传感器1安装在底座2上,且光纤角度传感器1的旋转轴12与接触网隔离开关闸刀转动轴连接在一起,用于检测接触网隔离开关闸刀旋转角度,当进行接触网隔离开关的分合闸操作时,闸刀以转动轴为中心进行旋转,带动着转动轴转动,转动轴再带动着光纤角度传感器1的旋转轴12转动,其中接触网隔离开关的转动轴与光纤角度传 感器1的旋转轴12属于同轴转动,所以闸刀转动角度反映到光纤角度传感器1上,进而实现闸刀角度的测量,激光发射器5、继电器7、降压电源模块8、控制电路板9、光电转换器10安装在金属铝盒6中,并将金属铝盒6放置到远离隔离开关的地方,由控制电路板9继电器7的开断来控制激光发射器5工作,由激光发射器5向光源光纤4中发射激光束,激光束在光源光纤4中发生全反射,最终将激光束传输至光纤角度传感器1中,通过接收光纤11接收光源光纤4中反射出来的激光束,再传输至光电转换器10中将光照强度转换为电压信号,实现光电转换的功能,再将转换后的电信号传输至控制电路板9中进行处理,最终输出光纤角度传感器1采集到的闸刀角度,降压电源模块8将铁路上用的220V电压降到12V和5V两个电压等级分别为激光发射器5、控制电路板9、继电器7、光电转换器10供电。
如图2所示,所述的光纤角度传感器1包括旋转轴12、外壳13、支架14、光纤探头15、刻度盘16,旋转轴12穿过外壳13的顶端与刻度盘16连接在一起,伸入外壳13内的光源光纤4和接收光纤11端分别接上相同的光纤探头15,且两个光纤探头15分别由一个相同的支架14固定在外壳13内壁,光源光纤4上的探头和接收光纤11上的探头处于同一直线安装,刻度盘16上每1度设一个开口,光源光纤4中反射出来的激光束照射到刻度盘16上,当刻度盘16转过1度时,光源光纤4中的激光束通过对应的开口射入接收光纤11上的光纤探头15中,经过接收光纤11传播至光电转换器10中进行光电转换,将光强度信号转换为相应的电压信号,接收光纤11每接收到一个光信号表明旋转轴12转动1度,光电转换器10对每个光信号转换成1个电压信号,记为1个脉冲信号,由控制电路板9记录光电转换器10传来的电压脉冲个数即可计算出光纤角度传感器1转过的角度。
如图3所示,所述的刻度盘16上设有360个开口,每个开口对应1个角度值,旋转完一周即为360度,即光源光纤4传出的激光束通过刻度盘16上 的开口入射到接收光纤11中,经光电转换器10转换为电压信号就能得到一个脉冲,对应1度。
所述的金属铝盒6放置在接触网隔离开关下方,且远离闸刀,防止电磁场对控制电路板9产生干扰。
如图4所示,所述的支撑板3包括金属铝板17、合页18、钢条19、螺帽20、螺丝21、第一螺丝孔22,金属铝板17上设有四个第一螺丝孔22,便于底座2固定在金属铝板17上,钢条19的一端与金属铝板17的一端通过合页18连接起来,钢条19的另一端与金属铝板17的另一端通过螺帽20、螺丝21连接起来,通过控制螺丝21与螺帽20之间的距离,即可将支撑板3固定在接触网隔离开关闸刀转动轴侧的支柱绝缘子上。
如图5所示,所述的底座2包括U型槽23、第二螺丝孔24,底座2中间设置U型槽23,两边下方设有第二螺丝孔24,便于将底座2固定在支撑板3上,通过螺丝21穿过第一螺丝孔22和第二螺丝孔24,使得底座2固定在金属铝板17上。
所述的降压电源模块8处理得到的12V和5V两个电压等级中,为激光发射器5、控制电路板9提供12V电压,为继电器7、光电转换器10提供5V电压。
所述的控制电路板9将处理后的接触网隔离开关闸刀角度通过RS485通信方式传输至接触网隔离开关管理部门的PC机上,便于工作人员查看。
所述的PC机上设有接触网隔离开关角度监测上位机,用于查看相应隔离开关的角度。
所述的控制电路板9采用STM32F103ZET6控制板。
如图6所示,本发明对接触网隔离开关角度测量的方案为:先对系统进行初始化处理,当需要对闸刀角度进行测量时,控制电路板9控制继电器7导通,使得降压电源模块8向激光发射器5供电,使激光发射器5向光源光纤4中发 射激光束,经过光源光纤4上的光纤探头15发出,由闸刀的转动带动光纤角度传感器1的旋转轴12转动,使得刻度盘16跟着转动,刻度盘16将其中一个开口转到光源光纤4上的光纤探头15正下方时,光源光纤4上的光纤探头15发出的激光束穿过刻度盘16的开口进入接收光纤11的光纤探头15中,经接收光纤11传输至光电转换器10,由光电转换器10将接收到的光信号转换为对应的电压信号,即为一个脉冲信号,将该脉冲信号发送至控制电路板9,由控制电路板9对出来的脉冲个数进行计数,通过计算脉冲的个数来计算闸刀转动的角度,并通过RS485通信方式传输至接触网隔离开关管理部门的PC机上,便于工作人员查看。
如图7所示,所述的光电转换器10上设有光电转换电路,包括第一电阻R1、光敏电阻R2、第三电阻R3、第四电阻R4、第一电容发C1、电感L、第二电容C2、四路差动比较器U1,光敏电阻R2与第一电容发C1并联后串联在第一电阻R1与电感L之间,第一电阻R1的另一端与降压电源模块8降压后的5V电压的VCC相连,第二电容C2串联在电感L的另一端和降压电源模块8降压后的5V电压的GND之间,降压电源模块8降压后的5V电压通过第一电阻R1后分压到光敏电阻R2与第一电容发C1并联电路上,由光敏电阻R2感应接收光纤11接收到的光信号,并根据光信号转换为对应的电阻值,光敏电阻R2阻值的改变引起光敏电阻R2的电压变化,变化的电压作为一个电信号经过由第一电容发C1、电感L、第二电容C2组成的LC-π型滤波电路滤波处理后传输至四路差动比较器U1中进行电压比较,当光敏电阻R2检测到有接收光纤11传来的光信号时,四路差动比较器U1的输出端2脚输出高电平,即一个脉冲,将四路差动比较器U1的输出端2脚与控制电路板9的对应引脚连接起来后,即可将该脉冲信号传输至控制电路板9中,四路差动比较器U1的同相输入端5脚与电感L的另一端连接,第三电阻R3串联在四路差动比较器U1的反相输入端4脚与降压电源模块8降压后的5V电压的GND之间,第四 电阻R4串联在降压电源模块8降压后的5V电压的VCC与之间四路差动比较器U1的输出端2脚之间。
本发明的工作原理与工作过程如下:
如8所示,需要对闸刀角度进行测量时,控制电路板9控制继电器7导通,使得降压电源模块8向激光发射器5供电,使激光发射器5向光源光纤4中发射激光束,经过光源光纤4上的光纤探头15发出,由闸刀的转动带动光纤角度传感器1的旋转轴12转动,使得刻度盘16跟着转动,刻度盘16将其中一个开口转到光源光纤4上的光纤探头15正下方时,光源光纤4上的光纤探头15发出的激光束穿过刻度盘16的开口进入接收光纤11的光纤探头15中,经接收光纤11传输至光电转换器10,由光电转换器10将接收到的光信号转换为对应的电压信号,即为一个脉冲信号,将该脉冲信号发送至控制电路板9,由控制电路板9对出来的脉冲个数进行计数,通过计算脉冲的个数来计算闸刀转动的角度,并通过RS485通信方式传输至接触网隔离开关管理部门的PC机上,便于工作人员查看。

Claims (3)

  1. 一种用于接触网隔离开关闸刀角度测量的传感器系统,其特征在于:包括光纤角度传感器、底座、支撑板、光源光纤、激光发射器、金属铝盒、继电器、降压电源模块、控制电路板、光电转换器、接收光纤,在接触网隔离开关闸刀转动轴侧的支柱绝缘子上部安装支撑板,作为底座的支撑点,将光纤角度传感器安装在底座上,且光纤角度传感器的旋转轴与接触网隔离开关闸刀转动轴连接在一起,用于检测接触网隔离开关闸刀旋转角度,激光发射器、继电器、降压电源模块、控制电路板、光电转换器安装在金属铝盒中,并将金属铝盒放置到远离隔离开关的地方,由控制电路板继电器的开断来控制激光发射器工作,由激光发射器向光源光纤中发射激光束,通过接收光纤接收光源光纤中反射出来的激光束,再传输至光电转换器中将光照强度转换为电压信号,实现光电转换的功能,再将转换后的电信号传输至控制电路板中进行处理,最终输出光纤角度传感器采集到的闸刀角度;
    所述光纤角度传感器包括旋转轴、外壳、支架、光纤探头、刻度盘,旋转轴穿过外壳的顶端与刻度盘连接在一起,伸入外壳内的光源光纤和接收光纤端分别接上相同的光纤探头,且两个光纤探头分别由一个相同的支架固定在外壳内壁,光源光纤上的探头和接收光纤上的探头处于同一直线安装,刻度盘上每1度设一个开口,光源光纤中反射出来的激光束照射到刻度盘上,当刻度盘转过1度时,光源光纤中的激光束通过对应的开口射入接收光纤上的光纤探头中,经过接收光纤传播至光电转换器中进行光电转换,接收光纤每接收到一个光信号表明旋转轴转动1度,光电转换器对每个光信号转换成1个电压信号,记为1个脉冲信号,由控制电路板记录光电转换器传来的电压脉冲个数即可计算出光纤角度传感器转过的角度;
    所述刻度盘上设有360个开口,每个开口对应1个角度值,即光源光纤传出的激光束通过刻度盘上的开口入射到接收光纤中,经光电转换器转换为电压信号就能得到一个脉冲,对应1度;
    所述支撑板包括金属铝板、合页、钢条、螺帽、螺丝、第一螺丝孔,金属 铝板上设有四个第一螺丝孔,便于底座固定在金属铝板上,钢条的一端与金属铝板的一端通过合页连接起来,钢条的另一端与金属铝板的另一端通过螺帽、螺丝连接起来,通过控制螺丝与螺帽之间的距离,即可将支撑板固定在接触网隔离开关闸刀转动轴侧的支柱绝缘子上;
    所述降压电源模块用于将铁路上用的220V电压降到12V和5V两个电压等级,为激光发射器、控制电路板提供12V电压,为继电器、光电转换器提供5V电压;
    所述光电转换器上设有光电转换电路,包括第一电阻、光敏电阻、第三电阻、第四电阻、第一电容、电感、第二电容、四路差动比较器,光敏电阻与第一电容并联后串联在第一电阻与电感之间,第一电阻的另一端与降压电源模块降压后的5V电压的VCC相连,第二电容串联在电感的另一端和降压电源模块降压后的5V电压的GND之间,降压电源模块降压后的5V电压通过第一电阻后分压到光敏电阻与第一电容并联电路上,由光敏电阻感应接收光纤接收到的光信号,并根据光信号转换为对应的电阻值,光敏电阻阻值的改变引起光敏电阻的电压变化,变化的电压作为一个电信号经过由第一电容、电感、第二电容组成的LC‐π型滤波电路滤波处理后传输至四路差动比较器中进行电压比较,当光敏电阻检测到有接收光纤传来的光信号时,四路差动比较器的输出端2脚输出高电平,即一个脉冲,将四路差动比较器的输出端2脚与控制电路板的对应引脚连接起来后,即可将脉冲信号传输至控制电路板中,四路差动比较器的同相输入端5脚与电感的另一端连接,第三电阻串联在四路差动比较的反相输入端4脚与降压电源模块降压后的5V电压的GND之间,第四电阻串联在降压电源模块降压后的5V电压的VCC与之间四路差动比较器的输出端2脚之间。
  2. 根据权利要求1所述的用于接触网隔离开关闸刀角度测量的传感器系统,其特征在于,所述底座包括U型槽、第二螺丝孔,底座中间设置U型槽,两边下方设有第二螺丝孔,通过螺丝穿过第一螺丝孔和第二螺丝孔,使得底座固定在金属铝板上。
  3. 根据权利要求1所述的用于接触网隔离开关闸刀角度测量的传感器系统,其特征在于:所述系统对接触网隔离开关角度测量的方法为:先对系统进行初始化处理,当需要对闸刀角度进行测量时,控制电路板控制继电器导通,使得降压电源模块向激光发射器供电,使激光发射器向光源光纤中发射激光束,经过光源光纤上的光纤探头发出,由闸刀的转动带动光纤角度传感器的旋转轴转动,使得刻度盘跟着转动,刻度盘将其中一个开口转到光源光纤上的光纤探头正下方时,光源光纤上的光纤探头发出的激光束穿过刻度盘的开口进入接收光纤的光纤探头中,经接收光纤传输至光电转换器,由光电转换器将接收到的光信号转换为对应的电压信号,即为一个脉冲信号,将该脉冲信号发送至控制电路板,由控制电路板对出来的脉冲个数进行计数,通过计算脉冲的个数来计算闸刀转动的角度,并通过RS485通信方式传输至接触网隔离开关管理部门的PC机上,便于工作人员查看。
PCT/CN2020/129766 2020-01-30 2020-11-18 一种用于接触网隔离开关闸刀角度测量的传感器系统 WO2021151340A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/870,771 US11501935B1 (en) 2020-01-30 2022-07-21 Sensor system for measuring angle of gate of isolating switch of overhead lines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010077510.4 2020-01-30
CN202010077510.4A CN111238407B (zh) 2020-01-30 2020-01-30 一种用于接触网隔离开关闸刀角度测量的传感器系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/870,771 Continuation US11501935B1 (en) 2020-01-30 2022-07-21 Sensor system for measuring angle of gate of isolating switch of overhead lines

Publications (1)

Publication Number Publication Date
WO2021151340A1 true WO2021151340A1 (zh) 2021-08-05

Family

ID=70871835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129766 WO2021151340A1 (zh) 2020-01-30 2020-11-18 一种用于接触网隔离开关闸刀角度测量的传感器系统

Country Status (3)

Country Link
US (1) US11501935B1 (zh)
CN (1) CN111238407B (zh)
WO (1) WO2021151340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220359139A1 (en) * 2020-01-30 2022-11-10 East China Jiaotong University Sensor system for measuring angle of gate of isolating switch of overhead lines

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116829910A (zh) * 2020-11-05 2023-09-29 伟勒德工业股份公司 传感设备
CN113327807B (zh) * 2021-07-01 2023-05-16 中国南方电网有限责任公司超高压输电公司贵阳局 高压隔离开关
CN114810842B (zh) * 2022-06-28 2022-09-23 天津德沃尔智能科技有限公司 交叉轴承装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238428A (ja) * 1987-03-27 1988-10-04 Copal Electron Co Ltd 光フアイバエンコ−ダ
WO2001018492A1 (en) * 1999-09-03 2001-03-15 American Precision Industries Inc. Incremental optical encoder
CN103487077A (zh) * 2013-09-13 2014-01-01 长飞光纤光缆有限公司 一种光纤输出的光电编码器
CN103618387A (zh) * 2013-12-10 2014-03-05 国家电网公司 一种感知高压开关设备分合位置的智能装置和方法
CN107917681A (zh) * 2017-11-30 2018-04-17 国网江苏省电力有限公司检修分公司 基于同步带传动的高压隔离开关主轴转角测量装置及方法
CN209249317U (zh) * 2018-12-31 2019-08-13 平高集团有限公司 一种隔离开关及用于安装检测传感器的传感器安装结构
CN111238407A (zh) * 2020-01-30 2020-06-05 华东交通大学 一种用于接触网隔离开关闸刀角度测量的传感器系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323542B (zh) * 2011-05-30 2013-10-23 叶秋诗 一种断路器、开关小车、刀开关动作光检测传感装置
CN202342034U (zh) * 2011-11-28 2012-07-25 西北工业大学 一种用于测量结构角度的光纤角度传感器
CN108317971B (zh) * 2018-01-30 2023-06-16 河南理工大学 一种角度检测装置
CN112781528A (zh) * 2019-11-07 2021-05-11 华东交通大学 一种铁路隔离开关分合闸监测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238428A (ja) * 1987-03-27 1988-10-04 Copal Electron Co Ltd 光フアイバエンコ−ダ
WO2001018492A1 (en) * 1999-09-03 2001-03-15 American Precision Industries Inc. Incremental optical encoder
CN103487077A (zh) * 2013-09-13 2014-01-01 长飞光纤光缆有限公司 一种光纤输出的光电编码器
CN103618387A (zh) * 2013-12-10 2014-03-05 国家电网公司 一种感知高压开关设备分合位置的智能装置和方法
CN107917681A (zh) * 2017-11-30 2018-04-17 国网江苏省电力有限公司检修分公司 基于同步带传动的高压隔离开关主轴转角测量装置及方法
CN209249317U (zh) * 2018-12-31 2019-08-13 平高集团有限公司 一种隔离开关及用于安装检测传感器的传感器安装结构
CN111238407A (zh) * 2020-01-30 2020-06-05 华东交通大学 一种用于接触网隔离开关闸刀角度测量的传感器系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220359139A1 (en) * 2020-01-30 2022-11-10 East China Jiaotong University Sensor system for measuring angle of gate of isolating switch of overhead lines
US11501935B1 (en) * 2020-01-30 2022-11-15 East China Jiaotong University Sensor system for measuring angle of gate of isolating switch of overhead lines

Also Published As

Publication number Publication date
US11501935B1 (en) 2022-11-15
CN111238407A (zh) 2020-06-05
CN111238407B (zh) 2020-12-01
US20220359139A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2021151340A1 (zh) 一种用于接触网隔离开关闸刀角度测量的传感器系统
US20190149089A1 (en) Fault detection and positioning system for cell panel in large-scale photovoltaic array
CN110274630B (zh) 一种低压配电线路分路监测装置及其监测方法
CN112531732B (zh) 变电站无功电气设备与智能机器人联动巡检系统与方法
CN209495732U (zh) 机组振摆和定子线棒测振转子测温物联网监测系统
CN202837484U (zh) 变电站智能巡检机器人超声局放检测系统
CN112781528A (zh) 一种铁路隔离开关分合闸监测系统
CN115389872A (zh) 一种基于电容耦合法的手持式开关柜局放巡检仪及其方法
CN205403962U (zh) 基于红外测温的柱上变压器套管发热故障在线诊断系统
CN206562235U (zh) 一种电梯轿厢运行速度和位置采集装置
CN117647280A (zh) 一种户外电力设备在线监测采集系统
CN102589750B (zh) 自动气象站温度传感器的故障检测结构
CN112255517A (zh) 一种开关柜的局部放电和温度联合在线监测系统
KR100984678B1 (ko) 이상 감지가 가능한 태양광 발전 시스템
CN112118317A (zh) 基于LoRaWAN技术的变电站电缆沟火灾监控系统
CN107966219B (zh) 电力开关柜无源无线测温装置
KR20200039880A (ko) 도시철도 현장 기능실의 무선 네트워크 기반 센싱 모듈
CN104655994B (zh) Gis局放在线监测系统
CN208155462U (zh) 风力发电塔移动式导电轨测温器
CN204649901U (zh) Gis局放在线监测系统
CN110751822A (zh) 铁路信号设备室外智能监测系统
CN221147852U (zh) 一种基于红外测温的开关柜温度监控报警系统
CN116022191B (zh) 一种轨旁轴温及电机温度检测方法及系统
KR20190003104U (ko) 메인 변전실 온도감시 및 역률 제어 시스템
CN205450699U (zh) 道岔缺口监测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916630

Country of ref document: EP

Kind code of ref document: A1