WO2021151250A1 - Method to add new radio for a user equipment - Google Patents

Method to add new radio for a user equipment Download PDF

Info

Publication number
WO2021151250A1
WO2021151250A1 PCT/CN2020/074111 CN2020074111W WO2021151250A1 WO 2021151250 A1 WO2021151250 A1 WO 2021151250A1 CN 2020074111 W CN2020074111 W CN 2020074111W WO 2021151250 A1 WO2021151250 A1 WO 2021151250A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc connection
cell
combination
message
connection reconfiguration
Prior art date
Application number
PCT/CN2020/074111
Other languages
French (fr)
Inventor
Xiaoyu Li
Ling Xie
Bhanu Kiran JANGA
Utsav SINHA
Uttam Pattanayak
Subashini Krishnamurthy
Rishika TINDOLA
Sohrab AHMAD
Reza Shahidi
Qingxin Chen
Bhupesh Manoharlal Umatt
Ammar Kitabi
Aiping Zhang
Anindya Majumder
Vidya Sagar PUTTA
Tom Chin
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/074111 priority Critical patent/WO2021151250A1/en
Publication of WO2021151250A1 publication Critical patent/WO2021151250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, but without limitation, to addition of new radio for a user equipment.
  • Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.
  • UTRAN Universal Terrestrial Radio Access Network
  • the UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS) , a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • a wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) .
  • a UE may communicate with a base station via downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the base station to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the base station.
  • a base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE.
  • a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters.
  • RF radio frequency
  • a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
  • a method of wireless communication includes establishing, by a user equipment (UE) , a first connection with a first cell and, while the first connection between the UE and the first cell is present, detecting a trigger condition. The method also includes, based on the trigger condition and while the UE has not added a second cell group: initiating, by the UE, a local release of the first connection, and transmitting, by the UE, a tracking area update request to the first cell.
  • UE user equipment
  • an apparatus configured for wireless communication includes means for establishing, by a user equipment (UE) , a first connection with a first cell.
  • the apparatus also includes means for detecting a trigger condition while the first connection between the UE and the first cell is present.
  • the apparatus also includes means for initiating, by the UE, a local release of the first connection based on the trigger condition and while the UE has not added a second cell group.
  • the apparatus further includes means for transmitting, by the UE, a tracking area update request to the first cell based on the trigger condition and while the UE has not added a second cell group.
  • a non-transitory computer-readable medium having program code recorded thereon.
  • the program code further includes code to establish, by a user equipment (UE) , a first connection with a first cell and, while the first connection between the UE and the first cell is present, detect a trigger condition.
  • the program code also includes code to, based on the trigger condition and while the UE has not added a second cell group: initiate, by the UE, a local release of the first connection, and transmit, by the UE, a tracking area update request to the first cell.
  • an apparatus configured for wireless communication.
  • the apparatus includes at least one processor, and a memory coupled to the processor.
  • the processor is configured to establish, by a user equipment (UE) , a first connection with a first cell and, while the first connection between the UE and the first cell is present, detect a trigger condition.
  • the processor is further configured to, based on the trigger condition and while the UE has not added a second cell group: initiate, by the UE, a local release of the first connection, and transmit, by the UE, a tracking area update request to the first cell.
  • UE user equipment
  • an apparatus configured for wireless communication.
  • the apparatus includes an interface configured for wireless communication and a processor system coupled to the interface.
  • the processor system is configured to establish, by a user equipment (UE) , a first connection with a first cell and, while the first connection between the UE and the first cell is present, detect a trigger condition.
  • the processor system is further configured to, based on the trigger condition and while the UE has not added a second cell group: initiate, by the UE, a local release of the first connection, and transmit, by the UE, a tracking area update request to the first cell.
  • UE user equipment
  • FIG. 1 is a block diagram illustrating details of a wireless communication system according to some aspects.
  • FIG. 2 is a block diagram conceptually illustrating a design of a base station and a UE configured according to some aspects.
  • FIG. 3 is a block diagram illustrating a wireless communication system with communications that add new radio for a user equipment in accordance with some aspects of the present disclosure.
  • FIG. 4 is a ladder diagrams illustrating an example of adding new radio for a user equipment according to aspects of the present disclosure.
  • FIG. 5 is a ladder diagrams illustrating another example of adding new radio for a user equipment according to aspects of the present disclosure.
  • FIG. 6 is a flow diagram illustrating example blocks executed by a UE according to some aspects.
  • FIG. 7 is a block diagram conceptually illustrating an example design of a UE according to some aspects of the present disclosure.
  • FIG. 8 is a block diagram conceptually illustrating an example design of a base station according to some aspects of the present disclosure.
  • NR new radio
  • the various aspects and techniques described herein may include or relate to how to add a NR capability to a UE, such as a non-standalone (NSA) UE, that is in a long-term evolution (LTE) connected state and that failed to report a NR measurement report or failed to add a secondary cell group (SCG) .
  • a UE such as a non-standalone (NSA) UE, that is in a long-term evolution (LTE) connected state and that failed to report a NR measurement report or failed to add a secondary cell group (SCG) .
  • LTE long-term evolution
  • SCG secondary cell group
  • the UE may miss reporting the NR measurement report or fails to add the SCG because of multi-subscriber identification module (MSIM) dual SIM dual standby (DSDS) UE activities on the other Sub (e.g., Sub2) , the UE does not timely start or send the NR measurement report (e.g., because an NR signal is not stable, too many LTE/NR frequencies to measure, etc. ) , and/or network handling issues (e.g., NW is handling IP multimedia subsystem (IMS) bearer adding so ignores NR bearer adding) .
  • MSIM multi-subscriber identification module
  • DSDS dual SIM dual standby
  • a UE may add NR capabilities (e.g., add a NR bearer) while the UE is in a NSA cell and has established a LTE connection.
  • NR capabilities e.g., add a NR bearer
  • a UE may establish a first connection with a first cell, such as a LTE connection with a NSA cell. While the first connection between the UE and the first cell is present, the UE may detect a trigger condition.
  • Detection of the trigger condition may include determining that the UE failed to add a secondary cell group and/or a NR bearer, determining that the UE was unable to send a measurement report (e.g., a NR measurement report) , exiting a low power mode and/or a standalone mode, activating a NR capability and/or NR mode, deconfiguring at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, and/or receiving a user input, such as a user input requesting to connect to NR.
  • the UE may initiate a local release of the first connection, and transmit a tracking area update request to the first cell.
  • the UE may receive a reconfiguration message from the network, send a NR measurement report, and add a SCG (e.g., a NR bearer) .
  • a SCG e.g., a NR bearer
  • the UE may add NR capabilities after the UE failed to report a NR measurement report or failed to add a secondary cell group (SCG) .
  • This disclosure relates generally to providing or participating in communication as between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE long-term evolution
  • GSM Global System for Mobile communications
  • 5G 5 th Generation
  • NR new radio
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like.
  • UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) .
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA network may, for example implement a radio technology such as GSM.
  • 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN.
  • GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) .
  • the radio access network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) .
  • PSTN public switched telephone network
  • UEs subscriber handsets
  • a mobile phone operator's network may include one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network.
  • UTRANs Universal Terrestrial Radio Access Networks
  • An operator network may also include one or more LTE networks, and/or one or more other networks.
  • the various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
  • RATs radio access technologies
  • RANs radio access networks
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • GSM Global System for Mobile Communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • UMTS universal mobile telecommunications system
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • 5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTIs transmission time intervals
  • TDD dynamic, low-latency time division duplex
  • FDD frequency division duplex
  • advanced wireless technologies such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth.
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth.
  • subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
  • the scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
  • LTE terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to LTE applications.
  • the present disclosure is concerned with shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces, such as those of 5G NR.
  • wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to one of skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
  • Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • FIG. 1 is a block diagram illustrating an example of a wireless communications system 100 that supports adding new radio capability for a user equipment.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or NR network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR NR network.
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be referred to as forward link transmissions while uplink transmissions may also be referred to as reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and, therefore, provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone (UE 115a) , a personal digital assistant (PDA) , a wearable device (UE 115d) , a tablet computer, a laptop computer (UE 115g) , or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet-of-things (IoT) device, an Internet-of-everything (IoE) device, an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles (UE 115e and UE 115f) , meters (UE 115b and UE 115c) , or the like.
  • WLL wireless local loop
  • IoT Internet-of-things
  • IoE Internet-of-everything
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via machine-to-machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In other cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 may facilitate the scheduling of resources for D2D communications.
  • D2D communications may be carried out between UEs 115 without the involvement of a
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one packet data network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP multimedia subsystem (IMS) , or a packet-switched (PS) streaming service.
  • IMS
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • Wireless communications system 100 may include operations by different network operating entities (e.g., network operators) , in which each network operator may share spectrum.
  • a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time.
  • certain resources e.g., time
  • a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum.
  • the network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum.
  • These time resources, prioritized for use by the network operating entity may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
  • Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
  • wireless communications system 100 may use both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ license assisted access (LAA) , LTE-unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band (NR-U) , such as the 5 GHz ISM band.
  • LAA license assisted access
  • LTE-U LTE-unlicensed
  • NR-U unlicensed band
  • UE 115 and base station 105 of the wireless communications system 100 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum.
  • UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum.
  • UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
  • LBT listen before talk
  • CCA clear channel assessment
  • a CCA may include an energy detection procedure to determine whether there are any other active transmissions on the shared channel. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter.
  • RSSI received signal strength indicator
  • a CCA also may include message detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence.
  • an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
  • ACK/NACK acknowledge/negative-acknowledge
  • a first category no LBT or CCA is applied to detect occupancy of the shared channel.
  • a second category (CAT 2 LBT) , which may also be referred to as an abbreviated LBT, a single-shot LBT, or a 25- ⁇ s LBT, provides for the node to perform a CCA to detect energy above a predetermined threshold or detect a message or preamble occupying the shared channel.
  • the CAT 2 LBT performs the CCA without using a random back-off operation, which results in its abbreviated length, relative to the next categories.
  • a third category performs CCA to detect energy or messages on a shared channel, but also uses a random back-off and fixed contention window. Therefore, when the node initiates the CAT 3 LBT, it performs a first CCA to detect occupancy of the shared channel. If the shared channel is idle for the duration of the first CCA, the node may proceed to transmit. However, if the first CCA detects a signal occupying the shared channel, the node selects a random back-off based on the fixed contention window size and performs an extended CCA. If the shared channel is detected to be idle during the extended CCA and the random number has been decremented to 0, then the node may begin transmission on the shared channel.
  • CAT 3 LBT performs CCA to detect energy or messages on a shared channel, but also uses a random back-off and fixed contention window. Therefore, when the node initiates the CAT 3 LBT, it performs a first CCA to detect occupancy of the shared channel. If the shared channel is idle for the duration of the first CCA, the no
  • the node decrements the random number and performs another extended CCA.
  • the node would continue performing extended CCA until the random number reaches 0. If the random number reaches 0 without any of the extended CCAs detecting channel occupancy, the node may then transmit on the shared channel. If at any of the extended CCA, the node detects channel occupancy, the node may re-select a new random back-off based on the fixed contention window size to begin the countdown again.
  • a fourth category (CAT 4 LBT) , which may also be referred to as a full LBT procedure, performs the CCA with energy or message detection using a random back-off and variable contention window size.
  • the sequence of CCA detection proceeds similarly to the process of the CAT 3 LBT, except that the contention window size is variable for the CAT 4 LBT procedure.
  • base stations 105 and UEs 115 may be operated by the same or different network operating entities. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In other examples, each base station 105 and UE 115 may be operated by a single network operating entity. Requiring each base station 105 and UE 115 of different network operating entities to contend for shared resources may result in increased signaling overhead and communication latency.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot, while in other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • a UE’s ability to add 5G may be impacted based on an network infrastructure, such as a configuration of a core network (e.g., 130) .
  • a network infrastructure such as a configuration of a core network (e.g., 130) .
  • NSA non-standalone
  • LTE long-term evolution
  • NW network
  • NR new radio
  • SCG secondary cell group
  • a UE having a non-standalone (NSA) mode and in a long-term evolution (LTE) in connected state may be triggered by a network (NW) (e.g., 130) for new radio (NR) measurement and secondary cell group (SCG) only once during the whole LTE connection.
  • NW network
  • NR new radio
  • SCG secondary cell group
  • the network may removes the NR measurement configuration after a time period (e.g., 3 seconds) if a measurement report is not received by the network from the UE.
  • the UE if the UE failed to report NR measurement report or failed to add SCG, the UE has to wait a while until next network NR adding periodicity or a next LTE new connection. Having to wait may reduce the UE’s ability to utilize 5G communication and negatively impact a user experience.
  • NR new radio
  • UE user equipment
  • the various aspects and techniques described herein may include or relate to how to add a NR capability to a UE, such as a non-standalone (NSA) UE, that is in a long-term evolution (LTE) connected state and that failed to report a NR measurement report or failed to add a secondary cell group (SCG) .
  • a UE may establish a first connection with a first cell, such as a LTE connection with a NSA cell. While the first connection between the UE and the first cell is present, the UE may detect a trigger condition.
  • Detection of the trigger condition may include determining that the UE failed to add a secondary cell group and/or a NR bearer, determining that the UE was unable to send a measurement report (e.g., a NR measurement report) , exiting a low power mode and/or a standalone mode, activating a NR capability and/or NR mode, deconfiguring at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, and/or receiving a user input, such as a user input requesting to connect to NR.
  • the UE may initiate a local release of the first connection, and transmit a tracking area update request to the first cell.
  • the UE may receive a reconfiguration message from the network, send a NR measurement report, and add a SCG (e.g., a NR bearer) .
  • a SCG e.g., a NR bearer
  • the UE may add NR capabilities after the UE failed to report a NR measurement report or failed to add a secondary cell group (SCG) .
  • FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be one of the base station and one of the UEs in FIG. 1.
  • base station 105 may be equipped with antennas 234a through 234t
  • UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc.
  • the data may be for the PDSCH, etc.
  • the transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t.
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
  • the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the PUSCH) from a data source 262 and control information (e.g., for the PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 105.
  • the uplink signals from the UE 115 may be received by the antennas 234, processed by the demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 115.
  • the processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the controllers/processors 240 and 280 may direct the operation at the base station 105 and the UE 115, respectively.
  • the controller/processor 240 and/or other processors and modules at the base station 105 may perform or direct the execution of various processes for the techniques described herein.
  • the controllers/processor 280 and/or other processors and modules at the UE 115 may also perform or direct the execution of the functional blocks illustrated in FIGs. 3-7, and/or other processes for the techniques described herein.
  • the memories 242 and 282 may store data and program codes for the base station 105 and the UE 115, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 3 is a block diagram of an example wireless communications system 300 to add a new radio (NR) capability for a user equipment.
  • wireless communications system 300 may implement aspects of wireless communication system 100.
  • wireless communications system 300 may include UE 115, one or more base stations, such as a first base station 105 and a second base station 305, and core network 130. Although one UE and two base station are illustrated, in other implementations, wireless communications system 300 may include multiple UEs 115, a single base station 105 or more than two base stations 105, or both.
  • UE 115 can include a variety of components (e.g., structural, hardware components) used for carrying out one or more functions described herein.
  • these components can include a processor 302, a memory 304, a transmitter 316, a receiver 318, a frequency monitor 320, a measurement report generator 322, and a release operator 323.
  • Processor 302 may be configured to execute instructions stored at memory 304 to perform the operations described herein.
  • processor 302 includes or corresponds to controller/processor 280
  • memory 304 includes or corresponds to memory 282.
  • memory 304 may be configured to store RRC connection information 306, capability information 307, modes 308, one or more measurement reports 309, and one or more trigger conditions 310.
  • the RRC connection information 306 may include RRC connection request information, RRC connection setup information, or RRC connection reconfiguration information.
  • the RRC connection setup information may include or indicate DL-SCH, C-RNTI, SRB Identity, DL AM RLC, UL AM RLC, UL-SCH Config, PHR Config, Uplink Power Control, or a combination thereof, as illustrative, non-limiting examples.
  • the RRC connection reconfirmation information may include or indicate EPS Radio Bearer Identity, RLC Mode, PDCP Sequence Number, or a combination thereof, as illustrative, non-limiting examples.
  • Capability information 307 may include or indicate one or more capabilities of UE 115.
  • capability information 307 may include or indicate capabilities for 4G-LTE (utra) , EN-DC (eutra-nr) , 5G (nr) , or a combination thereof.
  • capability information 307 include a multi-radio access technology dual connectivity (MRDC) capability or a new radio (NR) capability.
  • MRDC multi-radio access technology dual connectivity
  • NR new radio
  • capability information 307 may indicate whether or not UE 115 supports EUTRA-NR radio access technology.
  • EUTRA-NR specific capabilities may be specified in the EU-MRDC-Capability container.
  • Modes 308 may include or indicate one or more modes supported by UE 115.
  • modes 308 may include or indicate a low power mode, a NR active/deactive mode, a NSA mode, standalone mode, or a combination thereof.
  • the one or more measurement reports 309 may include one or more measurement reports, such as one or more measurement reports generated by measurement report generator 322.
  • the one or more trigger conditions 310 may include one or more criteria or conditions to be detected by UE 115.
  • the one or more criteria or conditions may include determining that UE 115 failed to add a secondary cell group (SCG) , determining that UE 115 was unable to send a measurement report, exiting a low power mode, activating a NR capability, receiving another RRC connection reconfiguration message, deconfiguring at least one layer of UE 115 such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
  • the one or more criteria or conditions may include receiving an input via a user interface of the UE 115.
  • the input may include a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode, or a combination thereof.
  • Transmitter 316 is configured to transmit data to one or more other devices, and receiver 318 is configured to receive data from one or more other devices.
  • transmitter 316 may transmit data, and receiver 318 may receive data, via a wireless network.
  • transmitter 316 and receiver 318 may be replaced with a transceiver.
  • transmitter 316, receiver 318, or both may include or correspond to one or more components of UE 115 described with reference to FIG. 2.
  • Frequency monitor 320 may be configured to monitor one or more frequencies.
  • the one or more frequencies may include or correspond to one or more 5G NR channels specified in the Measurement Objects received in the RRC Connection Reconfiguration, a 5G-NR primary synchronization signal, a 5G-NR secondary synchronization signal,
  • Measurement report generator 322 may generate a measurement report.
  • measurement report generator 322 may generate a measurement report (e.g., SN-gNB Measurement) using measurement results from frequency monitor 320.
  • the measurement report may include, such as measurement results for 5G NR cells.
  • the measurement report may include measResultNeighCellListNR-r15 ⁇ pci-r15, measResultCell-r15 ⁇ , or a combination thereof, as illustrative, non-limiting examples.
  • UE 115 may store the measurement report at memory 304 as part of the one or more measurement reports 309.
  • the release operator 323 may be configured to initiate or perform a local release operation (e.g, 380) , to generate a tracking area update request (e.g., 382) , or a combination thereof.
  • the tracking area update request may include location information corresponding to UE 115.
  • release operator 323 may perform one or more operations based on or responsive to detection of a trigger condition (e.g., 310) .
  • Base station 105 may include an eNB (LTE) with a coverage area 334 and base station 305 (e.g., a second base station) may include a 5G NB (NR) with a coverage area 336.
  • base station 105 includes or corresponds to a first cell and base station 305 includes or corresponds to a second cell.
  • each base station 105, 305 may include one or more components, such as a processor, a memory, a transmitter, a receiver, or a combination thereof, as illustrative, non-limiting examples.
  • An example of base station 105, 305 is described further herein at least with reference to FIG. 8.
  • Core network 130 may include a 4G core network, a 5G core, an evolved packet core (EPC) .
  • Core network may be coupled, e.g., communicatively coupled, to base station 105 and base station 305. Additionally, or alternatively, it is noted that base station 105 and base station 305 may be coupled, e.g., communicatively coupled, to at least receive requests to activate and deactivate one or more NR bearers (e.g., a 5G bearer) .
  • NR bearers e.g., a 5G bearer
  • UE 115 and a network may perform one or more operations to add NR capabilities to UE 115.
  • a network entity e.g., core network 130, first base station 105, second base station 305, or a combination thereof
  • FIGS. 4 and 5 depict ladder diagrams illustrating examples of adding NR capability to UE.
  • FIG. 4 depicts a ladder diagram 400 illustrating an example of adding NR for UE 115
  • FIG. 5 depicts a ladder diagram 500 illustrating another example of adding NR for UE 115.
  • a system of the ladder diagram includes UE 115 and a network entity 401.
  • Network entity 401 may include or correspond to core network 130, first base station 105, second base station 305, or a combination thereof.
  • network entity 401 includes core network 130.
  • network entity 401 includes first base station 105 (e.g., a first cell) , such as a NSA cell.
  • UE 115 is in a connected state on a first cell.
  • UE 115 may have established a connection with the first cell, such as first base station 105.
  • the first connection may include a LTE connection.
  • network entity 401 may send a configuration message, such as an RRC connection setup, to enable UE 115 to configure one or more components of UE 115 for communication via the first connection.
  • the RRC connection setup may include DL-SCH, C-RNTI, SRB Identity, DL AM RLC, UL AM RLC, UL-SCH Config, PHR Config, Uplink Power Control, or a combination thereof, as illustrative, non-limiting examples.
  • UE 115 may signal completion of the RRC connection to network entity 401.
  • signaling completions of the RRC connection may include transmitting a NAS attach request.
  • UE 115 and network entity 401 communicate one or more messages between network entity 401 and UE 115 to exchange UE capabilities.
  • the UE capabilities may include or correspond to capability information 307.
  • network entity 401 may request UE 115 for “UE capabilities” .
  • the UE capabilities may be requested for 4G-LTE (utra) , EN-DC (eutra-nr) , 5G (nr) , or a combination thereof.
  • UE 115 may transmit a report of UE capabilities, such as a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability.
  • MRDC multi-radio access technology dual connectivity
  • NR new radio
  • the report may indicate one or more UE capabilities, such as whether or not UE 115 supports EUTRA-NR radio access technology.
  • EUTRA-NR specific capabilities may be specified in the EU-MRDC-Capability container.
  • the report (e.g., response) may also include information indicating one or more frequency band, such as one or more 5G frequency bands, supported by UE 115.
  • network entity 401 transmits a reconfigure message, such as an RRC connection reconfiguration message.
  • the reconfiguration message at 406 includes an attach accept indication, an activate default bearer request, and one or more measurement objection for NR.
  • the RRC connection reconfiguration message at 406 may be sent to activate a default radio bearer and may also include an attach accept message as a NAS payload, measurement objections for 5G NR frequencies, or a combination thereof.
  • the reconfigure message at 40 may include, EPS Radio Bearer Identity, RLC Mode, PDCP Sequence Number, or a combination thereof.
  • UE 115 may signal completion of a corresponding reconfiguration to network entity 401.
  • UE 115 may monitor one more frequencies to generate a measurement report. For example, UE 115 may monitor one or more frequencies using frequency monitor 320. To illustrate, UE 115 may initiate measurement of 5G NR channels specified in the Measurement Objects received in the RRC Connection Reconfiguration. These measurements are scheduled during measurement gaps. To illustrate, UE 115 may acquire a 5G-NR primary synchronization signal, a 5G-NR secondary synchronization signal, or both, and measure a signal quality of the acquired synchronization signal (s) . Additionally, or alternatively, UE 115 may generate the measurement report (e.g., SN-gNB Measurement) using measurement report generator 322.
  • the measurement report e.g., SN-gNB Measurement
  • the measurement report may include measurement results from frequency monitor 320, such as measurement results for 5G NR cells.
  • the measurement report may include measResultNeighCellListNR-r15 ⁇ pci-r15, measResultCell-r15 ⁇ , or a combination thereof, as illustrative, non-limiting examples.
  • UE 115 may store the measurement report at memory 304 as part of the one or more measurement reports 309.
  • UE 115 may not monitor one or more frequencies, may not generate the measurement report, may encounter a delay in reporting NR measurement results, may not transmit the measurement report, may not add a SCG, or a combination thereof. For example, UE 115 may be been in a low power mode in which NR features are deactivated to conserver power. Additionally, or alternatively, the NR features may be deactivated based on an input (e.g., a user input) . In some implementations, UE 115 may have too many frequencies to measure to timely generate and transmit measurement report, one or more NR signals may not be stable, or a combination thereof.
  • UE 115 may be delayed in reporting the measurement report due to other higher priority data to be communicated by UE 115.
  • UE 115 may be delayed due to multi-subscriber identification module (MSIM) dual SIM dual standby (DSDS) UE activities on another other Sub (e.g., Sub2) .
  • MSIM multi-subscriber identification module
  • DSDS dual SIM dual standby
  • UE 115 may be unable to report the measurement report to network entity 401 as a result of network handling issues, such as the network (e.g., base station 105, core network 130, etc. ) is handling IP multimedia subsystem (IMS) bearer adding –e.g., the network issue cause the network to ignore adding NR bearer to UE 115.
  • IMS IP multimedia subsystem
  • UE 115 may indicate that UE 115 is not configured for 5G. For example, UE 115 may not display an icon (e.g., a 5G icon) .
  • trigger condition may include or correspond one or more trigger conditions 310. Detecting the trigger condition may include determining that UE 115 failed to add a secondary cell group (SCG) , determining that UE 115 was unable to send a measurement report, exiting a low power mode, activating a NR capability, receiving another RRC connection reconfiguration message, deconfiguring at least one layer of UE 115 such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof. Additionally, or alternatively, detecting the trigger condition may include receiving an input via a user interface of the UE 115. For example, the input may include a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode, or a combination thereof.
  • SCG secondary cell group
  • detecting the trigger condition may include receiving an input via a user interface of the UE 115.
  • the input may include a request to connect to a NR network, a
  • UE 115 initiates and performs a local release of the first connection. For example, UE 115 may initiate or perform the local release based on or responsive to detection of the trigger condition. To illustrate, performing the local release may disconnect UE 115 from the first connection. In some implementations, UE 115 may initiate or perform the local release using release operator 323.
  • UE 115 transmits a request, such as a tracking area update request.
  • UE 115 may transmit the request at 412 based on or responsive to detection of the trigger condition.
  • the tracking area update may include or correspond to tracking area update 382.
  • UE 115 may generate tracking area update 382 and transmit tracking area update 382 to network entity 401.
  • network entity 401 may transmit an accept message, such as a tracking area update accept.
  • the local release at 410 is described as being performed prior to transmitting the request 412, in other implementations, the local release may be initiated or performed subsequent to or concurrently with transmitting the request.
  • network entity 401 transmits a reconfigure message, such as another RRC connection reconfiguration message.
  • network entity 401 may transmit the reconfigure message responsive to the request at 412.
  • the reconfiguration message at 406 includes an attach accept indication, an activate default bearer request, and one or more measurement objection for NR.
  • the reconfigure message at 414 may include the at least some of the same information included in the reconfigure message at 406.
  • the RRC connection reconfiguration message may be sent to activate a default radio bearer and may also include an attach accept message as a NAS payload, measurement objections for 5G NR frequencies, or a combination thereof.
  • UE 115 may signal completion of a corresponding reconfiguration to network entity 401.
  • UE 115 transmits a measurement report.
  • the measurement report may include or correspond to the one or more measurement reports 309.
  • UE 115 may monitor one more frequencies to generate a measurement report based on the reconfigure message at 414 –e.g., UE 115 may monitor one or more frequencies indicated by the reconfigure message at 414.
  • UE 115 may send a stored measurement report (e.g., 309) , such as a measurement report generated based on one or more frequencies indicted by the reconfigure message at 406.
  • UE 115 may determine whether one or more frequencies indicated by the reconfigure message at 414 match the one or more frequencies indicated by the reconfigure message at 406 and, based on a match, may send the stored measurement report generated based on the reconfigure message at 406.
  • network entity 401 transmits a reconfigure message, such as an RRC connection reconfiguration message.
  • the reconfigure message at 418 may include information to assign 5G radio resources to UE 115.
  • UE 115 may signal completion of a corresponding reconfiguration to network entity 401.
  • UE 115 may signal the receipt of the reconfigure message (at 418) .
  • UE 115 may transmit a message the indicates NR RRC Reconfiguration Complete.
  • UE 115 is configured for 5G capability.
  • UE 115 may be configured based on the reconfigure message at 418.
  • UE 115 may have added a SCG, a NR bearer, or a combination thereof.
  • UE 115 may indicate that UE 115 is configured for 5G –e.g., UE 115 may display an icon (e.g., a 5G icon) .
  • UE 115 may connect to the 5G network and communicate data via a second connection, such as a NR connection via the 5G network.
  • a second connection such as a NR connection via the 5G network.
  • UE 115 may establish (at 402) a first connection with a first cell. While the first connection between the UE and the first cell is present, UE 115 may detecting (at 408) a trigger condition.
  • the trigger condition may include or correspond to UE 115 exiting a low power mode, receiving an input to connect to NR, receiving a reconfigure message to deactivate at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, deconfiguring/deactivating at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, or a combination thereof.
  • UE 115 may initiate (at 410) a local release of the first connection and transmit (at 412) a tracking area update request to the first cell.
  • UE 115 is in a connected state on a first cell.
  • UE 115 may have established a connection with the first cell, such as first base station 105.
  • the first connection may include a LTE connection.
  • network entity 401 may send a configuration message, such as an RRC connection setup, to enable UE 115 to configure one or more components of UE 115 for communication via the first connection.
  • the RRC connection setup may include DL-SCH, C-RNTI, SRB Identity, DL AM RLC, UL AM RLC, UL-SCH Config, PHR Config, Uplink Power Control, or a combination thereof, as illustrative, non-limiting examples.
  • UE 115 may signal completion of the RRC connection to network entity 401.
  • signaling completions of the RRC connection may include transmitting a NAS attach request.
  • UE 115 and network entity 401 communicate one or more messages between network entity 401 and UE 115 to exchange UE capabilities.
  • the UE capabilities may include or correspond to capability information 307.
  • network entity 401 may request UE 115 for “UE capabilities” .
  • the UE capabilities may be requested for 4G-LTE (utra) , EN-DC (eutra-nr) , 5G (nr) , or a combination thereof.
  • UE 115 may transmit a report of UE capabilities, such as a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability.
  • MRDC multi-radio access technology dual connectivity
  • NR new radio
  • the report may indicate one or more UE capabilities, such as whether or not UE 115 supports EUTRA-NR radio access technology.
  • EUTRA-NR specific capabilities may be specified in the EU-MRDC-Capability container.
  • the report (e.g., response) may also include information indicating one or more frequency band, such as one or more 5G frequency bands, supported by UE 115.
  • network entity 401 transmits a first reconfigure message, such as a first RRC connection reconfiguration message.
  • the first reconfiguration message at 406 includes an attach accept indication, an activate default bearer request, and one or more measurement objection for NR.
  • the first RRC connection reconfiguration message at 406 may be sent to activate a default radio bearer and may also include an attach accept message as a NAS payload, measurement objections for 5G NR frequencies, or a combination thereof.
  • the reconfigure message at 40 may include, EPS Radio Bearer Identity, RLC Mode, PDCP Sequence Number, or a combination thereof.
  • network entity 401 may send the first reconfigure message more than once, such as periodically (e.g., every 20 seconds) .
  • network entity 401 may send the first reconfigure message once, e.g., once per establishment of the first connection, such as an LTE connection with a network.
  • UE 115 transmits a reconfigure complete message to signal completion of a corresponding reconfiguration (e.g., the first reconfigure message) to network entity 401.
  • UE 115 may monitor one more frequencies to generate a measurement report.
  • UE 115 may monitor one or more frequencies using frequency monitor 320.
  • UE 115 may initiate measurement of 5G NR channels specified in the Measurement Objects received in the RRC Connection Reconfiguration. These measurements may be scheduled during measurement gaps.
  • UE 115 may acquire a 5G-NR primary synchronization signal, a 5G-NR secondary synchronization signal, or both, and measure a signal quality of the acquired synchronization signal (s) .
  • UE 115 may generate the measurement report (e.g., SN-gNB Measurement) using measurement report generator 322.
  • the measurement report may include measurement results from 5G NR cells.
  • the measurement report may include measResultNeighCellListNR-r15 ⁇ pci-r15, measResultCell-r15 ⁇ , or a combination thereof, as illustrative, non-limiting examples.
  • UE 115 may store the measurement report at memory 304 as part of the one or more measurement reports 309.
  • UE 115 may experience a reporting delay of a measurement report.
  • UE 115 may not monitor one or more frequencies, may not generate the measurement report, may encounter a delay in reporting NR measurement results, may not transmit the measurement report, may not add a SCG, or a combination thereof.
  • UE 115 may be been in a low power mode in which NR features are deactivated to conserver power. Additionally, or alternatively, the NR features may be deactivated based on an input (e.g., a user input) .
  • UE 115 may have too many frequencies to measure to timely generate and transmit measurement report, one or more NR signals may not be stable, or a combination thereof. Additionally, or alternatively, UE 115 may be delayed in reporting the measurement report due to other higher priority data to be communicated by UE 115. In some implementations, UE 115 may be delayed due to multi-subscriber identification module (MSIM) dual SIM dual standby (DSDS) UE activities on another other Sub (e.g., Sub2) . In other implementations, UE 115 may be unable to report the measurement report to network entity 401 as a result of network handling issues, such as the network (e.g., base station 105, core network 130, etc.
  • MSIM multi-subscriber identification module
  • DSDS dual SIM dual standby
  • UE 115 may be unable to report the measurement report to network entity 401 as a result of network handling issues, such as the network (e.g., base station 105, core network 130, etc.
  • IMS IP multimedia subsystem
  • UE 115 may indicate that UE 115 is not configured for 5G. For example, UE 115 may not display an icon (e.g., a 5G icon) .
  • network entity 401 transmits a second reconfigure message, such as a second RRC connection reconfiguration message.
  • the second reconfiguration message at 406 may not include one or more measurement objection for NR –e.g., no 5G NR frequencies may be indicated for monitoring.
  • the second reconfigure message may be sent at least a time period or duration after the first reconfigure message is sent by network entity 401. For example, if network entity 401 does not receive a measurement report from UE 115 within a particular amount of time, such as 3 seconds, after sending the first reconfigure message, network entity 401 transmits the second reconfigure message.
  • the second reconfigure message instructs UE 115 to remove the previously sent NR measurement objects.
  • UE 115 transmits a reconfigure complete message to signal completion of a corresponding reconfiguration (e.g., the second reconfigure message) to network entity 401.
  • UE 115 may deconfigure at least one layer of UE 115 such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs.
  • the at least one layer may have been previously configured responsive to the first reconfigure message at 506.
  • trigger condition may include or correspond one or more trigger conditions 310. Detecting the trigger condition may include determining that UE 115 failed to add a secondary cell group (SCG) , determining that UE 115 was unable to send a measurement report, exiting a low power mode, activating a NR capability, receiving another RRC connection reconfiguration message, deconfiguring at least one layer of UE 115 such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof. Additionally, or alternatively, detecting the trigger condition may include receiving an input via a user interface of the UE 115. For example, the input may include a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode, or a combination thereof.
  • SCG secondary cell group
  • detecting the trigger condition may include receiving an input via a user interface of the UE 115.
  • the input may include a request to connect to a NR network, a
  • UE 115 initiates and performs a local release of the first connection. For example, UE 115 may initiate or perform the local release based on or responsive to detection of the trigger condition. To illustrate, performing the local release may disconnect UE 115 from the first connection. In some implementations, UE 115 may initiate or perform the local release using release operator 323.
  • UE 115 transmits a request, such as a tracking area update request.
  • UE 115 may transmit the request at 412 based on or responsive to detection of the trigger condition.
  • the tracking area update may include or correspond to tracking area update 382.
  • UE 115 may generate tracking area update 382 and transmit tracking area update 382 to network entity 401.
  • network entity 401 may transmit an accept message, such as a tracking area update accept.
  • the local release at 410 is described as being performed prior to transmitting the request 412, in other implementations, the local release may be initiated or performed subsequent to or concurrently with transmitting the request.
  • network entity 401 transmits an accept, such as a tracking area update accept.
  • the accept may be responsive to the request at 520.
  • network entity 401 transmits a third reconfigure message, such as a third RRC connection reconfiguration message.
  • network entity 401 may transmit the third reconfigure message responsive to the request at 520.
  • the third reconfiguration message at 524 includes an attach accept indication, an activate default bearer request, and one or more measurement objection for NR.
  • the third reconfigure message at 524 may include the at least some of the same information included in the first reconfigure message at 506.
  • the third RRC connection reconfiguration message may be sent to activate a default radio bearer and may also include an attach accept message as a NAS payload, measurement objections for 5G NR frequencies, or a combination thereof.
  • UE 115 may signal completion of a corresponding reconfiguration to network entity 401.
  • UE 115 transmits a measurement report.
  • the measurement report may include or correspond to the one or more measurement reports 309.
  • UE 115 may monitor one more frequencies to generate a measurement report based on the third reconfigure message at 524 –e.g., UE 115 may monitor one or more frequencies indicated by the third reconfigure message at 524.
  • UE 115 may send a stored measurement report (e.g., 309) , such as a measurement report generated based on one or more frequencies indicted by the first reconfigure message at 506.
  • UE 115 may determine whether one or more frequencies indicated by the third reconfigure message at 524 match the one or more frequencies indicated by the first reconfigure message at 506 and, based on a match, may send the stored measurement report generated based on the first reconfigure message at 506.
  • network entity 401 transmits a fourth reconfigure message, such as a fourth RRC connection reconfiguration message.
  • the fourth reconfigure message at 530 may include information to assign 5G radio resources to UE 115.
  • UE 115 may signal completion of a corresponding reconfiguration to network entity 401.
  • UE 115 may signal the receipt of the fourth reconfigure message (at 530) .
  • UE 115 may transmit a message the indicates NR RRC Reconfiguration Complete.
  • UE 115 is configured for 5G capability.
  • UE 115 may be configured based on the reconfigure message at 418.
  • UE 115 may have added a SCG, a NR bearer, or a combination thereof.
  • UE 115 may indicate that UE 115 is configured for 5G –e.g., UE 115 may display an icon (e.g., a 5G icon) .
  • UE 115 may connect to the 5G network and communicate data via a second connection, such as a NR connection via the 5G network.
  • a second connection such as a NR connection via the 5G network.
  • UE 115 may establish (at 502) a first connection with a first cell. While the first connection between the UE and the first cell is present, UE 115 may detecting (at 516) a trigger condition.
  • the trigger condition may include or correspond to UE 115 exiting a low power mode, receiving an input to connect to NR, receiving a reconfigure message to deactivate at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, deconfiguring/deactivating at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, or a combination thereof.
  • UE 115 may initiate (at 518) a local release of the first connection and transmit (at 520) a tracking area update request to the first cell.
  • UE 115 may transmit the measurement report. Responsive to the measurement report, network entity 401 may send the fourth reconfigure message to enable UE 115 to add a SCG and be 5G capable.
  • UE 115 may deactive 5G capability, such as in response to receiving a user input or based on entering a low power or power save mode. In such implementation, UE 115 may deactivate the 5G capability and maintain the first connection. While the 5G capability is deactivated, and if UE 115 still has the first connection, UE 115 may detect the trigger condition and initiate the local release and tracking area update request. For example, UE 115 may detect the trigger condition including exiting the low power or power save mode or an input to activate the 5G capability.
  • FIGS. 3-5 illustrate operations between a UE 115 and network entity 401 in which NR capability is added to UE 115.
  • the UE may add NR capabilities after the UE failed to report a NR measurement report or failed to add a secondary cell group (SCG) –e.g., a Pscell.
  • SCG secondary cell group
  • FIG. 6 is flow diagrams illustrating example methods performed by a UE for communication.
  • the example blocks may cause UE to add new radio (NR) for the UE according to some aspects of the present disclosure.
  • the example blocks will also be described with respect to UE 115 as illustrated in FIG. 7.
  • FIG. 7 is a block diagram conceptually illustrating an example design of a UE configured to add new radio (NR) for the UE to one aspect of the present disclosure.
  • UE 115 includes the structure, hardware, and components as illustrated for UE 115 of FIGS. 2 or 3.
  • UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 115 that provide the features and functionality of UE 115.
  • UE 115 under control of controller/processor 280, transmits and receives signals via wireless radios 701a-r and antennas 252a-r.
  • Wireless radios 701a-r includes various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266.
  • UE 115 may also include power supply 750, I/O device 760, display 770, or a combination thereof.
  • Display 770 may be configured to present an indicator 772, such as an icon, to indicate whether or not UE 115 is NR capable.
  • memory 282 may include RRC connection information 702, capability information 703, mode information 704, one or more measurement reports 705, one or more trigger conditions 706, a frequency monitor 707, a measurement report generator 708, and a release operator 709.
  • RRC connection information 702, capability information 703, mode information 704, one or more measurement reports 705, one or more trigger conditions 706 may include or correspond to RRC connection information 306, capability information 307, modes 308, one or more measurement reports 309, one or more trigger conditions 310, respectively.
  • Frequency monitor 707, measurement report generator 708, and release operator 709 may include or correspond to frequency monitor 320, measurement report generator 322, and release operator 323, respectively.
  • frequency monitor 707, measurement report generator 708, and release operator 709, or a combination thereof may include or correspond to processor (s) 302.
  • UE 115 may receive signals from and/or transmit signal to a base station, such as base station 105, 305 or base station 105 as illustrated in FIG. 8.
  • method 600 may be performed by UE 115.
  • method 600 may be performed by an apparatus configured for wireless communication.
  • the apparatus may include at least one processor, and a memory coupled to the processor.
  • the processor may be configured to perform operations of method 600.
  • method 600 may be performed or executed using a non-transitory computer-readable medium having program code recorded thereon.
  • the program code may be program code executable by a computer for causing the computer to perform operations of method 600.
  • a UE establishes a first connection with a first cell.
  • the first cell may include or correspond to base station 105 (e.g., eNB (LTE) ) of FIG. 3 having coverage area 334.
  • the UE may include a non-standalone (NSA) capable UE and the first cell may include a NSA cell.
  • the first connection includes a long-term evolution (LTE) connection.
  • the first connection between the UE and the first cell may correspond to the UE being in a radio resource control (RRC) connected state on the first cell.
  • RRC radio resource control
  • the first connection may be established based on or using RRC connection information 702.
  • UE 115 may establish the first connection using wireless radios 701a-r and antennas 252a-r.
  • establishing the first connection includes the UE transmitting a radio resource control (RRC) connection request, receiving a RRC connection setup message, and transmitting a RRC connection setup complete message.
  • RRC radio resource control
  • UE 115 may transmit the RRC connection request, receive the RRC connection setup message, transmit the RRC connection setup complete message, or a combination thereof, using wireless radios 701a-r and antennas 252a-r.
  • the UE detects a trigger condition while the first connection between the UE and the first cell is present.
  • the trigger condition may include or correspond to the one or more trigger conditions 706.
  • UE 115 may establish the first connection using wireless radios 501a-r and antennas 252a-r, controller/processor 280, I/O device 760, or a combination thereof.
  • detecting the trigger condition includes determining that the UE failed to add a secondary cell group (SCG) , determining that the UE was unable to send a measurement report, exiting a low power mode, activating a NR capability, receiving a second RRC connection reconfiguration message, deconfiguring at least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
  • detecting the trigger condition may include receiving an input via a user interface (e.g., 760) of the UE.
  • the input may include a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode, or a combination thereof.
  • the UE based on the trigger condition and while the UE has not added a second cell group, initiates a local release of the first connection and transmits a tracking area update request to the first cell.
  • the local release and the tracking area update request may include or correspond to local release 380 and tracking area update 382, respectively.
  • the tracking area update request may include an indication of a location of the UE.
  • UE 115 may initiate and/or perform the local release using release operator 709. Additionally, or alternatively, UE may transmit the tracking area update request using wireless radios 701a-r and antennas 252a-r.
  • method 600 may include the UE performing the local release of the first connection to end the first connection.
  • UE may perform the local release using release operator 709. Additionally, or alternatively, initiating the local release and transmitting the tracking area update request are performed after expiration of a time period following detection of the trigger condition.
  • the time period may be at least 3 seconds. As another example, the time period is may be least 20 seconds.
  • method 600 may include the UE receiving a UE capability enquiry and transmitting UE capability information.
  • the UE capability information may include or correspond to capability information 703.
  • the UE capability information may indicate a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
  • MRDC multi-radio access technology dual connectivity
  • NR new radio
  • method 600 may include the UE receiving a first RRC connection reconfiguration message and transmitting a first RRC connection reconfiguration complete message.
  • the first RRC connection reconfiguration message may include or correspond to reconfiguration message (at 506) of FIG. 5.
  • the first RRC connection reconfiguration message may indicate one or more new radio (NR) measurement objects.
  • the one or more NR measurement objection may include or correspond to RRC connection information 702, the one or more measurement reports 705, or a combination thereof.
  • the UE may store the NR measurement objects. Additionally, or alternatively, initiating the local release of the first connection, or transmitting the tracking area update request to the first cell, may occur within less than a predetermined time duration or period (20 seconds) after receiving the first RRC connection reconfiguration message.
  • method 600 may include the UE monitoring one or more frequencies based on the one or more measurement objects. For example, UE 115 may monitor one or more frequencies using frequency monitor 707. Additionally, or alternatively, the UE may generate, based on monitoring the one or more frequencies, a measurement report. For example, UE 115 may generate the measurement report using measurement report generator 708. In some implementations, the UE may delay transmission of the measurement report.
  • method 600 may include the UE receiving a second RRC connection reconfiguration message and transmitting a second RRC connection reconfiguration complete message.
  • the first RRC connection reconfiguration message may include or correspond to reconfiguration message (at 512) of FIG. 5.
  • the UE may receive the second RRC connection reconfiguration message after the first RRC connection reconfiguration message. Additionally, or alternatively, the UE may receive the second RRC connection reconfiguration message at least three seconds after the first RRC connection reconfiguration message.
  • the second RRC connection reconfiguration message does not indicate NR measurement objects.
  • the UE based on the second RRC connection reconfiguration message, the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) .
  • the UE may configure, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR synchronization signal blocks (SSBs) and, based on the second RRC connection reconfiguration message, deconfigure the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
  • SSBs NR synchronization signal blocks
  • method 600 may include the UE controlling presentation of an indicator to indicate NR communication is available or not available.
  • the indicator may include or correspond to indicator 772.
  • method 600 may include the UE determining whether the UE is engaged in a high priority session is on-going via the first connection.
  • the UE may initiate the local release, or transmit the tracking area update request, based on a determination that the UE is not engaged in the high priority session.
  • method 600 may include the UE, after transmitting the tracking area update request, establishing a second connection with a second cell. Additionally, or alternatively, the UE may receive, from the first cell, a tracking are update acceptance message. In some implementations, the first cell and the second cell are the same cell, the second connection comprises a long-term evolution (LTE) connection, or a combination thereof.
  • LTE long-term evolution
  • method 600 may include the UE receiving a third RRC connection reconfiguration message and transmitting a third RRC connection reconfiguration complete message.
  • the third RRC connection reconfiguration message may include or correspond to the reconfiguration message at 524 of FIG. 5.
  • the third RRC connection reconfiguration message may indicate one or more new radio (NR) measurement objects.
  • the UE may transmit the measurement report based on receipt of the third RRC connection reconfiguration message.
  • the measurement report may include or correspond to the one or more measurement reports 705.
  • method 600 may include the UE receiving a fourth RRC connection reconfiguration message.
  • the fourth RRC connection reconfiguration message may include or correspond to the reconfiguration message at 530 of FIG. 5.
  • the fourth RRC connection reconfiguration message may indicate a cell of a NR network.
  • the UE may connect to the cell of the NR network, such as the base station 305 (e.g., 5G NGB (NR) ) having coverage area 336.
  • the cell of the NR network may include a Pscell, a secondary cell group, or an NR bearer. Additionally, or alternatively, the UE may communicate data over the NR network via the cell of the NR network.
  • method 600 enables a UE to add a NR capability.
  • the UE may add NR capabilities after the UE failed to report a NR measurement report or failed to add a secondary cell group (SCG) .
  • SCG secondary cell group
  • one or more blocks (or operations) described with reference to FIG. 7 may be combined with one or more blocks (or operations) of another of figure.
  • one or more blocks of FIG. 4 may be combined with one or more blocks (or operations) of another of FIGS. 2 or 3.
  • one or more operations described above with reference to FIGS. 1-5 may be combine with one or more operations described with reference to FIG. 8.
  • FIG. 8 is a block diagram conceptually illustrating an example design of a base station 105 configured to configure UE 115 to add NR according to some aspects of the present disclosure.
  • FIG. 8 may include or correspond to base station (s) 105, 305 of FIG. 3. Additionally, or alternatively, FIG. 6 (e.g., 105) may include or correspond to the core network 130.
  • Base station 105 includes the structure, hardware, and components as illustrated for base station 105 of FIGS. 2 or 3.
  • base station 105 includes controller/processor 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of base station 105 that provide the features and functionality of base station 105.
  • Base station 105 under control of controller/processor 240, transmits and receives signals via wireless radios 801a-t and antennas 234a-t.
  • Wireless radios 801a-t includes various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator/demodulators 232a-t, transmit processor 220, TX MIMO processor 230, MIMO detector 236, and receive processor 238.
  • memory 242 may include RRC connection information 802, capability information 803, one or more measurement reports 804, and tracking area update information 805.
  • RRC connection information 802, capability information 803, one or more measurement reports 804, and tracking area update information 805 may include or correspond to RRC connection information 702, capability information 703, one or more measurement reports 705, and tracking area update 382, respectively.
  • Base station 105 may receive signals from and/or transmit signal to a UE, such as UE 115 as illustrated in FIG. 7.
  • one or more blocks (or operations) described with reference to FIG. 8 may be combined with one or more blocks (or operations) of another of figure.
  • one or more blocks of FIG. 8 may be combined with one or more blocks (or operations) of another of FIGS. 2 or 3.
  • one or more operations described above with reference to FIGS. 1-5 may be combine with one or more operations described with reference to FIG. 8.
  • adding a new radio may include a wireless receiving device (e.g., a user equipment (UE) ) establishing a first connection with a first cell.
  • a wireless receiving device e.g., a user equipment (UE)
  • UE user equipment
  • adding the NR of some aspects may further include the wireless receiving device detecting a trigger condition while the first connection between the wireless receiving device and the first cell is present.
  • adding the NR may include the wireless receiving device initiating a local release of the first connection by the wireless receiving device based on the trigger condition and while the wireless receiving device has not added a second cell group.
  • adding the NR may include the wireless receiving device transmitting a tracking area update request to the first cell based on the trigger condition and while the wireless receiving device has not added a second cell group.
  • the wireless receiving device may include a memory storing instructions and a processor coupled to the memory and configured to execute the instructions to perform one or more operations or functions as described herein.
  • the wireless receiving device includes a non-standalone (NSA) capable UE, the first cell includes a NSA cell, the first connection includes a long-term evolution (LTE) connection, or, a combination thereof.
  • NSA non-standalone
  • LTE long-term evolution
  • the first connection between the wireless receiving device and the first cell corresponds to the wireless receiving device being in a radio resource control (RRC) connected state on the first cell.
  • RRC radio resource control
  • the wireless receiving device establishing the first connection includes transmitting a radio resource control (RRC) connection request, receiving a RRC connection setup message and transmitting a RRC connection setup complete message.
  • RRC radio resource control
  • the wireless receiving device receives a UE capability enquiry, and transmits UE capability information.
  • the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
  • MRDC multi-radio access technology dual connectivity
  • NR new radio
  • the wireless receiving device receives a first RRC connection reconfiguration message, and transmits a first RRC connection reconfiguration complete message.
  • the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  • NR new radio
  • the wireless receiving device monitors one or more frequencies based on the one or more measurement objects.
  • the wireless receiving device in combination with the eighth aspect, generates, based on monitoring the one or more frequencies, a measurement report.
  • the wireless receiving device delays transmission of the measurement report.
  • the wireless receiving device receives a second RRC connection reconfiguration message, and transmits a second RRC connection reconfiguration complete message.
  • the wireless receiving device receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
  • the second RRC connection reconfiguration message does not indicate NR measurement objects
  • the wireless receiving device configures, based on the second RRC connection reconfiguration message, one or more of layers such that the wireless receiving device does not monitor to measure for NR synchronization signal blocks (SSBs) .
  • SSBs NR synchronization signal blocks
  • the wireless receiving device configures, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the wireless receiving device for measuring NR synchronization signal blocks (SSBs) and deconfigures, based on the second RRC connection reconfiguration message, the at least one layer of the wireless receiving device such that the at least one layer is not configured for measuring the SSBs.
  • SSBs NR synchronization signal blocks
  • the wireless receiving device controls presentation of an indicator to indicate NR communication is available or not available.
  • detecting the trigger condition includes the wireless receiving device determining that the UE failed to add a secondary cell group.
  • detecting the trigger condition includes the wireless receiving device determining that the UE was unable to send the measurement report.
  • detecting the trigger condition includes the wireless receiving device exiting a low power mode.
  • detecting the trigger condition includes the wireless receiving device activating a NR capability.
  • detecting the trigger condition includes the wireless receiving device receiving the second RRC connection reconfiguration message, deconfiguring at least one layer of the wireless receiving device such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
  • detecting the trigger condition includes the wireless receiving device receiving an input via a user interface of the wireless receiving device.
  • the input includes a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
  • initiating the local release and transmitting the tracking area update request are performed after expiration of a time period following detection of the trigger condition.
  • initiating the local release of the first connection, or transmitting the tracking area update request to the first cell occur within less than a predetermined time duration or period after receiving the first RRC connection reconfiguration message.
  • the wireless receiving device performs the local release of the first connection to end the first connection.
  • the tracking area update request includes an indication of a location of the wireless receiving device.
  • the wireless receiving device determines whether the wireless receiving device is engaged in a high priority session is on-going via the first connection, and the wireless receiving device initiates the local release or transmits the tracking area update request based on a determination that the wireless receiving device is not engaged in the high priority session.
  • the wireless receiving device establishes a second connection with a second cell after transmitting the tracking area update request.
  • the first cell and the second cell are the same cell
  • the second connection includes a long-term evolution (LTE) connection, or a combination thereof.
  • LTE long-term evolution
  • the wireless receiving device receives, from the first cell, a tracking are update acceptance message.
  • the wireless receiving device receives a third RRC connection reconfiguration message and transmits a third RRC connection reconfiguration complete message.
  • the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  • NR new radio
  • the wireless receiving device transmits the measurement report based on receipt of the third RRC connection reconfiguration message.
  • an apparatus configured for wireless communication includes means for establishing, by a user equipment (UE) , a first connection with a first cell, means for detecting a trigger condition while the first connection between the UE and the first cell is present, means for initiating, by the UE, a local release of the first connection based on the trigger condition and while the UE has not added a second cell group, and means for transmitting, by the UE, a tracking area update request to the first cell based on the trigger condition and while the UE has not added a second cell group.
  • UE user equipment
  • the UE includes a non-standalone (NSA) capable UE
  • the first cell includes a NSA cell
  • the first connection includes a long-term evolution (LTE) connection, or a combination thereof.
  • NSA non-standalone
  • LTE long-term evolution
  • the first connection between the UE and the first cell corresponds to the UE being in a radio resource control (RRC) connected state on the first cell.
  • RRC radio resource control
  • the means for establishing the first connection includes means for transmitting a radio resource control (RRC) connection request, means for receiving a RRC connection setup message, and means for transmitting a RRC connection setup complete message.
  • RRC radio resource control
  • the apparatus further includes means for receiving a UE capability enquiry, and means for transmitting UE capability information.
  • the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
  • MRDC multi-radio access technology dual connectivity
  • NR new radio
  • the apparatus further includes means for receiving a first RRC connection reconfiguration message, and means for transmitting a first RRC connection reconfiguration complete message.
  • the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  • NR new radio
  • the apparatus further includes means for monitoring one or more frequencies based on the one or more measurement objects.
  • the apparatus further includes means for generating, based on monitoring the one or more frequencies, a measurement report.
  • the apparatus further includes means for delaying transmission of the measurement report.
  • the apparatus further includes means for receiving a second RRC connection reconfiguration message, and means for transmitting a second RRC connection reconfiguration complete message
  • the UE receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
  • the second RRC connection reconfiguration message does not indicate NR measurement objects, and based on the second RRC connection reconfiguration message, the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) .
  • SSBs NR synchronization signal blocks
  • the apparatus further includes means for configuring, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR synchronization signal blocks (SSBs) , and means for deconfiguring, based on the second RRC connection reconfiguration message, the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
  • SSBs NR synchronization signal blocks
  • the apparatus further includes means for controlling presentation of an indicator to indicate NR communication is available or not available
  • the means for detecting the trigger condition includes means for determining that the UE failed to add a secondary cell group.
  • the means for detecting the trigger condition includes means for determining that the UE was unable to send the measurement report.
  • the means for detecting the trigger condition includes means for exiting a low power mode
  • the means for detecting the trigger condition includes means for activating a NR capability.
  • the means for detecting the trigger condition includes means for receiving the second RRC connection reconfiguration message, means for deconfiguring at least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
  • the means for detecting the trigger condition includes means for receiving an input via a user interface of the UE.
  • the input includes a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
  • the local release is initiated and the tracking area update request is transmitted after expiration of a time period following detection of the trigger condition.
  • the local release of the first connection is initiated, or the tracking area update request to the first cell is transmitted, within less than a predetermined time duration or period after receiving the first RRC connection reconfiguration message.
  • the apparatus further includes means for performing the local release of the first connection to end the first connection.
  • the tracking area update request includes an indication of a location of the UE.
  • the apparatus further includes means for determining whether the UE is engaged in a high priority session is on-going via the first connection, and where the UE initiates the local release and transmits the tracking area update request based on a determination that the UE is not engaged in the high priority session.
  • the means for establishing a second connection with a second cell after transmission of the tracking area update request In a sixty-second aspect, alone or in combination with one or more of the thirty-fourth through sixty-first aspects, the means for establishing a second connection with a second cell after transmission of the tracking area update request.
  • the first cell and the second cell are the same cell
  • the second connection includes a long-term evolution (LTE) connection, or a combination thereof.
  • LTE long-term evolution
  • the apparatus further includes means for receiving, from the first cell, a tracking are update acceptance message.
  • the apparatus further includes means for receiving a third RRC connection reconfiguration message, and means for transmitting a third RRC connection reconfiguration complete message.
  • the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  • NR new radio
  • the apparatus further includes means for transmitting the measurement report based on receipt of the third RRC connection reconfiguration message.
  • a non-transitory computer-readable medium has program code recorded thereon, the program code including program code executable by a computer for causing the computer to establish, by a user equipment (UE) , a first connection with a first cell, while the first connection between the UE and the first cell is present, detect a trigger condition, and based on the trigger condition and while the UE has not added a second cell group: initiate a local release of the first connection, and transmit a tracking area update request to the first cell.
  • UE user equipment
  • the UE includes a non-standalone (NSA) capable UE.
  • NSA non-standalone
  • the UE includes the first cell includes a NSA cell.
  • the UE includes the first connection includes a long-term evolution (LTE) connection, and the first connection between the UE and the first cell corresponds to the UE being in a radio resource control (RRC) connected state on the first cell.
  • LTE long-term evolution
  • RRC radio resource control
  • the program code further causes the computer to transmit a radio resource control (RRC) connection request, receive a RRC connection setup message, and transmit a RRC connection setup complete message.
  • RRC radio resource control
  • the program code further causes the computer to receive a UE capability enquiry, and transmit UE capability information.
  • the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
  • MRDC multi-radio access technology dual connectivity
  • NR new radio
  • the program code further causes the computer to receive a first RRC connection reconfiguration message, and transmit a first RRC connection reconfiguration complete message.
  • the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  • NR new radio
  • the program code further causes the computer to monitor one or more frequencies based on the one or more measurement objects.
  • the program code further causes the computer to generate, based on monitoring the one or more frequencies, a measurement report.
  • the program code further causes the computer to delay transmission of the measurement report
  • the program code further causes the computer to receive a second RRC connection reconfiguration message, and transmit a second RRC connection reconfiguration complete message.
  • the UE receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
  • the second RRC connection reconfiguration message does not indicate NR measurement objects, and based on the second RRC connection reconfiguration message, the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) .
  • SSBs NR synchronization signal blocks
  • the program code further causes the computer to configure, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR synchronization signal blocks (SSBs) and, based on the second RRC connection reconfiguration message, deconfigure the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
  • SSBs NR synchronization signal blocks
  • the program code further causes the computer to control presentation of an indicator to indicate NR communication is available or not available.
  • the program code further causes the computer to determine that the UE failed to add a secondary cell group.
  • the program code further causes the computer to determine that the UE was unable to send the measurement report.
  • the program code further causes the computer to exit a low power mode.
  • the program code further causes the computer to activate a NR capability.
  • the program code further causes the computer to receive the second RRC connection reconfiguration message, deconfigure at least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
  • the program code further causes the computer to receive an input via a user interface of the UE.
  • the input includes a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
  • the local release is initiated and the tracking area update request is transmitted after expiration of a time period following detection of the trigger condition.
  • the local release is initiated, or the tracking area update request is transmitted, within less than a predetermined time duration or period after receipt the first RRC connection reconfiguration message.
  • the program code further causes the computer to perform the local release of the first connection to end the first connection.
  • the tracking area update request includes an indication of a location of the UE.
  • the program code further causes the computer to determine whether the UE is engaged in a high priority session is on-going via the first connection, and where the UE initiates the local release and transmits the tracking area update request based on a determination that the UE is not engaged in the high priority session.
  • the program code further causes the computer to after transmitting the tracking area update request, establish a second connection with a second cell.
  • the first cell and the second cell are the same cell
  • the second connection includes a long-term evolution (LTE) connection, or a combination thereof.
  • LTE long-term evolution
  • the program code further causes the computer to receive, from the first cell, a tracking are update acceptance message.
  • the program code further causes the computer to receive a third RRC connection reconfiguration message, and transmit a third RRC connection reconfiguration complete message.
  • the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  • NR new radio
  • the program code further causes the computer to transmit the measurement report based on receipt of the third RRC connection reconfiguration message.
  • an apparatus configured for wireless communication includes at least one processor and a memory coupled to the at least one processor, where the at least one processor is configured to establish, by a user equipment (UE) , a first connection with a first cell, while the first connection between the UE and the first cell is present, detect a trigger condition, and based on the trigger condition and while the UE has not added a second cell group: initiate a local release of the first connection, and transmit a tracking area update request to the first cell.
  • UE user equipment
  • the UE includes a non-standalone (NSA) capable UE
  • the first cell includes a NSA cell
  • the first connection includes a long-term evolution (LTE) connection, or a combination thereof.
  • NSA non-standalone
  • LTE long-term evolution
  • the first connection between the UE and the first cell corresponds to the UE being in a radio resource control (RRC) connected state on the first cell.
  • RRC radio resource control
  • the at least one processor is configured to transmit a radio resource control (RRC) connection request, receive a RRC connection setup message, and transmit a RRC connection setup complete message.
  • RRC radio resource control
  • the at least one processor is further configured to receive a UE capability enquiry, and transmit UE capability information.
  • the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
  • MRDC multi-radio access technology dual connectivity
  • NR new radio
  • the at least one processor is further configured to receive a first RRC connection reconfiguration message, and transmit a first RRC connection reconfiguration complete message.
  • the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  • NR new radio
  • the at least one processor is further configured to monitor one or more frequencies based on the one or more measurement objects.
  • the at least one processor is further configured to generate, based on monitoring the one or more frequencies, a measurement report.
  • the at least one processor is further configured to delay transmission of the measurement report.
  • the at least one processor is further configured to receive a second RRC connection reconfiguration message, and transmit a second RRC connection reconfiguration complete message.
  • the UE receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
  • the second RRC connection reconfiguration message does not indicate NR measurement objects
  • the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) .
  • SSBs NR synchronization signal blocks
  • the at least one processor is further configured to configure, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR synchronization signal blocks (SSBs) , and based on the second RRC connection reconfiguration message, deconfigure the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
  • SSBs NR synchronization signal blocks
  • the at least one processor is further configured to control presentation of an indicator to indicate NR communication is available or not available.
  • the at least one processor is configured to determine that the UE failed to add a secondary cell group.
  • the at least one processor is configured to determine that the UE was unable to send the measurement report.
  • the at least one processor is configured to exit a low power mode.
  • the at least one processor is configured to activate a NR capability.
  • the at least one processor is configured to receive the second RRC connection reconfiguration message, deconfigure at least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
  • the at least one processor is configured to receive an input via a user interface of the UE.
  • the input includes a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
  • the local release is initiated and the tracking area update request is transmitted after expiration of a time period following detection of the trigger condition.
  • the local release of the first connection is initiated, or the tracking area update request to the first cell is transmitted, within less than a predetermined time duration or period after receiving the first RRC connection reconfiguration message.
  • the at least one processor is further configured to perform the local release of the first connection to end the first connection.
  • the tracking area update request includes an indication of a location of the UE.
  • the at least one processor is further configured to determine whether the UE is engaged in a high priority session is on-going via the first connection, and where the UE initiates the local release and transmits the tracking area update request based on a determination that the UE is not engaged in the high priority session.
  • the at least one processor is further configured to establish a second connection with a second cell.
  • the first cell and the second cell are the same cell
  • the second connection includes a long-term evolution (LTE) connection, or a combination thereof.
  • LTE long-term evolution
  • the at least one processor is further configured to receive, from the first cell, a tracking are update acceptance message.
  • the at least one processor is further configured to receive a third RRC connection reconfiguration message, and transmit a third RRC connection reconfiguration complete message.
  • the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  • NR new radio
  • the at least one processor is further configured to transmit the measurement report based on receipt of the third RRC connection reconfiguration message.
  • the functional blocks and modules in FIGS. 1-8 may include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • a connection may be properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium.
  • DSL digital subscriber line
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to addition of new radio for a user equipment (UE). For example, a method of wireless communication includes establishing, by a UE, a first connection with a first cell. The method also include, while the first connection between the UE and the first cell is present, detecting a trigger condition. The method further includes, based on the trigger condition and while the UE has not added a second cell group: initiating, by the UE, a local release of the first connection, and transmitting, by the UE, a tracking area update request to the first cell. Other aspects and features are also claimed and described.

Description

METHOD TO ADD NEW RADIO FOR A USER EQUIPMENT TECHNICAL FIELD
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, but without limitation, to addition of new radio for a user equipment.
INTRODUCTION
Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, and the like. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources. One example of such a network is the Universal Terrestrial Radio Access Network (UTRAN) . The UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS) , a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP) . Examples of multiple-access network formats include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
A wireless communication network may include a number of base stations or node Bs that can support communication for a number of user equipments (UEs) . A UE may communicate with a base station via downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
A base station may transmit data and control information on the downlink to a UE and/or may receive data and control information on the uplink from the UE. On the downlink, a transmission from the base station may encounter interference due to transmissions from neighbor base stations or from other wireless radio frequency (RF) transmitters. On the uplink, a transmission from the UE may encounter interference from uplink transmissions of other UEs communicating with the neighbor base stations or from other wireless RF transmitters. This interference may degrade performance on both the downlink and uplink.
As the demand for mobile broadband access continues to increase, the possibilities of interference and congested networks grows with more UEs accessing the long-range wireless  communication networks and more short-range wireless systems being deployed in communities. Research and development continue to advance wireless technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.
BRIEF SUMMARY
In one aspect of the disclosure, according to some aspects, a method of wireless communication includes establishing, by a user equipment (UE) , a first connection with a first cell and, while the first connection between the UE and the first cell is present, detecting a trigger condition. The method also includes, based on the trigger condition and while the UE has not added a second cell group: initiating, by the UE, a local release of the first connection, and transmitting, by the UE, a tracking area update request to the first cell.
In an additional aspect of the disclosure, an apparatus configured for wireless communication includes means for establishing, by a user equipment (UE) , a first connection with a first cell. The apparatus also includes means for detecting a trigger condition while the first connection between the UE and the first cell is present. The apparatus also includes means for initiating, by the UE, a local release of the first connection based on the trigger condition and while the UE has not added a second cell group. The apparatus further includes means for transmitting, by the UE, a tracking area update request to the first cell based on the trigger condition and while the UE has not added a second cell group.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon. The program code further includes code to establish, by a user equipment (UE) , a first connection with a first cell and, while the first connection between the UE and the first cell is present, detect a trigger condition. The program code also includes code to, based on the trigger condition and while the UE has not added a second cell group: initiate, by the UE, a local release of the first connection, and transmit, by the UE, a tracking area update request to the first cell.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes at least one processor, and a memory coupled to the processor. The processor is configured to establish, by a user equipment (UE) , a first connection with a first cell and, while the first connection between the UE and the first cell is present, detect a trigger condition. The processor is further configured to, based on the trigger condition and while the UE has not added a second cell group: initiate, by the UE, a local release of the first connection, and transmit, by the UE, a tracking area update request to  the first cell.
In an additional aspect of the disclosure, an apparatus configured for wireless communication is disclosed. The apparatus includes an interface configured for wireless communication and a processor system coupled to the interface. The processor system is configured to establish, by a user equipment (UE) , a first connection with a first cell and, while the first connection between the UE and the first cell is present, detect a trigger condition. The processor system is further configured to, based on the trigger condition and while the UE has not added a second cell group: initiate, by the UE, a local release of the first connection, and transmit, by the UE, a tracking area update request to the first cell.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purpose of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
A further understanding of the nature and advantages of the present disclosure may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
FIG. 1 is a block diagram illustrating details of a wireless communication system according to some aspects.
FIG. 2 is a block diagram conceptually illustrating a design of a base station and a UE configured according to some aspects.
FIG. 3 is a block diagram illustrating a wireless communication system with  communications that add new radio for a user equipment in accordance with some aspects of the present disclosure.
FIG. 4 is a ladder diagrams illustrating an example of adding new radio for a user equipment according to aspects of the present disclosure.
FIG. 5 is a ladder diagrams illustrating another example of adding new radio for a user equipment according to aspects of the present disclosure.
FIG. 6 is a flow diagram illustrating example blocks executed by a UE according to some aspects.
FIG. 7 is a block diagram conceptually illustrating an example design of a UE according to some aspects of the present disclosure.
FIG. 8 is a block diagram conceptually illustrating an example design of a base station according to some aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to limit the scope of the disclosure. Rather, the detailed description includes specific details for the purpose of providing a thorough understanding of the inventive subject matter. It will be apparent to those skilled in the art that these specific details are not required in every case and that, in some instances, well-known structures and components are shown in block diagram form for clarity of presentation.
In the present disclosure, various aspects and techniques regarding adding new radio (NR) for a user equipment are disclosed. To illustrate, the various aspects and techniques described herein may include or relate to how to add a NR capability to a UE, such as a non-standalone (NSA) UE, that is in a long-term evolution (LTE) connected state and that failed to report a NR measurement report or failed to add a secondary cell group (SCG) . For example, the UE may miss reporting the NR measurement report or fails to add the SCG because of multi-subscriber identification module (MSIM) dual SIM dual standby (DSDS) UE activities on the other Sub (e.g., Sub2) , the UE does not timely start or send the NR measurement report (e.g., because an NR signal is not stable, too many LTE/NR frequencies to measure, etc. ) , and/or network handling issues (e.g., NW is handling IP multimedia subsystem (IMS) bearer adding so ignores NR bearer adding) .
As described further herein, a UE may add NR capabilities (e.g., add a NR bearer) while the UE is in a NSA cell and has established a LTE connection. For example, a UE may  establish a first connection with a first cell, such as a LTE connection with a NSA cell. While the first connection between the UE and the first cell is present, the UE may detect a trigger condition. Detection of the trigger condition may include determining that the UE failed to add a secondary cell group and/or a NR bearer, determining that the UE was unable to send a measurement report (e.g., a NR measurement report) , exiting a low power mode and/or a standalone mode, activating a NR capability and/or NR mode, deconfiguring at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, and/or receiving a user input, such as a user input requesting to connect to NR. Based on the trigger condition and while the UE has not added a second cell group, the UE may initiate a local release of the first connection, and transmit a tracking area update request to the first cell. After sending the tracking area update request, the UE may receive a reconfiguration message from the network, send a NR measurement report, and add a SCG (e.g., a NR bearer) . Thus, by initiating the local release and sending the tracking area update request, the UE may add NR capabilities after the UE failed to report a NR measurement report or failed to add a secondary cell group (SCG) .
This disclosure relates generally to providing or participating in communication as between two or more wireless devices in one or more wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, GSM networks, 5 th Generation (5G) or new radio (NR) networks (sometimes referred to as “5G NR” networks/systems/devices) , as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
A CDMA network, for example, may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, and the like. UTRA includes wideband-CDMA (W-CDMA) and low chip rate (LCR) . CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
A TDMA network may, for example implement a radio technology such as GSM. 3GPP defines standards for the GSM EDGE (enhanced data rates for GSM evolution) radio access network (RAN) , also denoted as GERAN. GERAN is the radio component of GSM/EDGE, together with the network that joins the base stations (for example, the Ater and Abis interfaces) and the base station controllers (A interfaces, etc. ) . The radio access  network represents a component of a GSM network, through which phone calls and packet data are routed from and to the public switched telephone network (PSTN) and Internet to and from subscriber handsets, also known as user terminals or user equipments (UEs) . A mobile phone operator's network may include one or more GERANs, which may be coupled with Universal Terrestrial Radio Access Networks (UTRANs) in the case of a UMTS/GSM network. An operator network may also include one or more LTE networks, and/or one or more other networks. The various different network types may use different radio access technologies (RATs) and radio access networks (RANs) .
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and Global System for Mobile Communications (GSM) are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the universal mobile telecommunications system (UMTS) mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-A are considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard  sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
5G NR devices, networks, and systems may be implemented to use optimized OFDM-based waveform features. These features may include scalable numerology and transmission time intervals (TTIs) ; a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 1, 5, 10, 20 MHz, and the like bandwidth. For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz bandwidth. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz bandwidth. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500MHz bandwidth.
The scalable numerology of 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with uplink/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive uplink/downlink that may be flexibly configured on a per-cell basis to dynamically switch between uplink and downlink to meet the current traffic needs.
For clarity, certain aspects of the apparatus and techniques may be described below with reference to exemplary LTE implementations or in an LTE-centric way, and LTE  terminology may be used as illustrative examples in portions of the description below; however, the description is not intended to be limited to LTE applications. Indeed, the present disclosure is concerned with shared access to wireless spectrum between networks using different radio access technologies or radio air interfaces, such as those of 5G NR.
Moreover, it should be understood that, in operation, wireless communication networks adapted according to the concepts herein may operate with any combination of licensed or unlicensed spectrum depending on loading and availability. Accordingly, it will be apparent to one of skill in the art that the systems, apparatus and methods described herein may be applied to other communications systems and applications than the particular examples provided.
While aspects and embodiments are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and/or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregated, distributed, or OEM devices or systems incorporating one or more described aspects. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. It is intended that innovations described herein may be practiced in a wide variety of implementations, including both large/small devices, chip-level components, multi-component systems (e.g. RF-chain, communication interface, processor) , distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any  other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
FIG. 1 is a block diagram illustrating an example of a wireless communications system 100 that supports adding new radio capability for a user equipment. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or NR network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be referred to as forward link transmissions while uplink transmissions may also be referred to as reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and, therefore, provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone (UE 115a) , a personal digital assistant (PDA) , a wearable device (UE 115d) , a tablet computer, a laptop computer (UE 115g) , or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet-of-things (IoT) device, an Internet-of-everything (IoE) device, an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles (UE 115e and UE 115f) , meters (UE 115b and UE 115c) , or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via  machine-to-machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In other cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In certain cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 may facilitate the scheduling of resources for D2D communications. In other cases, D2D communications may be carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul  links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one packet data network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP multimedia subsystem (IMS) , or a packet-switched (PS) streaming service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter  band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
Wireless communications system 100 may include operations by different network operating entities (e.g., network operators) , in which each network operator may share spectrum. In some instances, a network operating entity may be configured to use an entirety of a designated shared spectrum for at least a period of time before another network operating entity uses the entirety of the designated shared spectrum for a different period of time. Thus, in order to allow network operating entities use of the full designated shared spectrum, and in order to mitigate interfering communications between the different network operating entities, certain resources (e.g., time) may be partitioned and allocated to the different network operating entities for certain types of communication.
For example, a network operating entity may be allocated certain time resources reserved for exclusive communication by the network operating entity using the entirety of the shared spectrum. The network operating entity may also be allocated other time resources where the entity is given priority over other network operating entities to communicate using the shared spectrum. These time resources, prioritized for use by the network operating entity, may be utilized by other network operating entities on an opportunistic basis if the prioritized network operating entity does not utilize the resources. Additional time resources may be allocated for any network operator to use on an opportunistic basis.
Access to the shared spectrum and the arbitration of time resources among different network operating entities may be centrally controlled by a separate entity, autonomously  determined by a predefined arbitration scheme, or dynamically determined based on interactions between wireless nodes of the network operators.
In various implementations, wireless communications system 100 may use both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ license assisted access (LAA) , LTE-unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band (NR-U) , such as the 5 GHz ISM band. In some cases, UE 115 and base station 105 of the wireless communications system 100 may operate in a shared radio frequency spectrum band, which may include licensed or unlicensed (e.g., contention-based) frequency spectrum. In an unlicensed frequency portion of the shared radio frequency spectrum band, UEs 115 or base stations 105 may traditionally perform a medium-sensing procedure to contend for access to the frequency spectrum. For example, UE 115 or base station 105 may perform a listen before talk (LBT) procedure such as a clear channel assessment (CCA) prior to communicating in order to determine whether the shared channel is available.
A CCA may include an energy detection procedure to determine whether there are any other active transmissions on the shared channel. For example, a device may infer that a change in a received signal strength indicator (RSSI) of a power meter indicates that a channel is occupied. Specifically, signal power that is concentrated in a certain bandwidth and exceeds a predetermined noise floor may indicate another wireless transmitter. A CCA also may include message detection of specific sequences that indicate use of the channel. For example, another device may transmit a specific preamble prior to transmitting a data sequence. In some cases, an LBT procedure may include a wireless node adjusting its own backoff window based on the amount of energy detected on a channel and/or the acknowledge/negative-acknowledge (ACK/NACK) feedback for its own transmitted packets as a proxy for collisions.
In general, four categories of LBT procedure have been suggested for sensing a shared channel for signals that may indicate the channel is already occupied. In a first category (CAT 1 LBT) , no LBT or CCA is applied to detect occupancy of the shared channel. A second category (CAT 2 LBT) , which may also be referred to as an abbreviated LBT, a single-shot LBT, or a 25-μs LBT, provides for the node to perform a CCA to detect energy above a predetermined threshold or detect a message or preamble occupying the shared channel. The CAT 2 LBT performs the CCA without using a random back-off operation, which results in its abbreviated length, relative to the next categories.
A third category (CAT 3 LBT) performs CCA to detect energy or messages on a shared channel, but also uses a random back-off and fixed contention window. Therefore, when the node initiates the CAT 3 LBT, it performs a first CCA to detect occupancy of the shared channel. If the shared channel is idle for the duration of the first CCA, the node may proceed to transmit. However, if the first CCA detects a signal occupying the shared channel, the node selects a random back-off based on the fixed contention window size and performs an extended CCA. If the shared channel is detected to be idle during the extended CCA and the random number has been decremented to 0, then the node may begin transmission on the shared channel. Otherwise, the node decrements the random number and performs another extended CCA. The node would continue performing extended CCA until the random number reaches 0. If the random number reaches 0 without any of the extended CCAs detecting channel occupancy, the node may then transmit on the shared channel. If at any of the extended CCA, the node detects channel occupancy, the node may re-select a new random back-off based on the fixed contention window size to begin the countdown again.
A fourth category (CAT 4 LBT) , which may also be referred to as a full LBT procedure, performs the CCA with energy or message detection using a random back-off and variable contention window size. The sequence of CCA detection proceeds similarly to the process of the CAT 3 LBT, except that the contention window size is variable for the CAT 4 LBT procedure.
Use of a medium-sensing procedure to contend for access to an unlicensed shared spectrum may result in communication inefficiencies. This may be particularly evident when multiple network operating entities (e.g., network operators) are attempting to access a shared resource. In wireless communications system 100, base stations 105 and UEs 115 may be operated by the same or different network operating entities. In some examples, an individual base station 105 or UE 115 may be operated by more than one network operating entity. In other examples, each base station 105 and UE 115 may be operated by a single network operating entity. Requiring each base station 105 and UE 115 of different network operating entities to contend for shared resources may result in increased signaling overhead and communication latency.
In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in  unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a  beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In certain implementations, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In additional cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot, while in other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications  system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier, ” as may be used herein, refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
In some implementations, a UE’s ability to add 5G may be impacted based on an network infrastructure, such as a configuration of a core network (e.g., 130) . For example, based on a first infrastructure, a UE having a non-standalone (NSA) mode and in a long-term evolution (LTE) in connected state, may be triggered by a network (NW) (e.g., 1400 for new radio (NR) measurement and secondary cell group (SCG) multiple times, such as periodically –e.g., every 20 seconds. As another example, based on a first infrastructure, a UE having a non-standalone (NSA) mode and in a long-term evolution (LTE) in connected state, may be triggered by a network (NW) (e.g., 130) for new radio (NR) measurement and secondary cell group (SCG) only once during the whole LTE connection. In some implementations of the second infrastructure, the network may removes the NR measurement configuration after a time period (e.g., 3 seconds) if a measurement report is not received by the network from the UE. In such implementations of the first infrastructure or the second infrastructure, if the UE failed to report NR measurement report or failed to add SCG, the UE has to wait a while until next network NR adding periodicity or a next LTE new connection. Having to wait may reduce the UE’s ability to utilize 5G communication and negatively impact a user experience.
In the present disclosure, various aspects and techniques regarding adding new radio (NR) for a user equipment (UE) 115 are disclosed. To illustrate, the various aspects and techniques described herein may include or relate to how to add a NR capability to a UE, such as a non-standalone (NSA) UE, that is in a long-term evolution (LTE) connected state and that failed to report a NR measurement report or failed to add a secondary cell group (SCG) . For example, a UE may establish a first connection with a first cell, such as a LTE connection with a NSA cell. While the first connection between the UE and the first cell is present, the UE may detect a trigger condition. Detection of the trigger condition may include determining that the UE failed to add a secondary cell group and/or a NR bearer, determining that the UE was unable to send a measurement report (e.g., a NR measurement report) , exiting a low power mode and/or a standalone mode, activating a NR capability and/or NR mode, deconfiguring at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, and/or receiving a user input, such as a user input requesting to connect to NR. Based on the trigger condition and while the UE has not added a second cell group, the UE may initiate a local release of the first connection, and transmit a tracking area update request to the first cell. After sending the tracking area update request, the UE may receive a reconfiguration message from the network, send a NR measurement report, and add a SCG (e.g., a NR bearer) . Thus, by initiating the local release and sending the tracking area update request, the UE may add NR capabilities after the UE failed to report  a NR measurement report or failed to add a secondary cell group (SCG) .
FIG. 2 shows a block diagram of a design of a base station 105 and a UE 115, which may be one of the base station and one of the UEs in FIG. 1. As shown in FIG. 2, base station 105 may be equipped with antennas 234a through 234t, and UE 115 may be equipped with antennas 252a through 252r for facilitating wireless communications.
At base station 105, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid-ARQ (automatic repeat request) indicator channel (PHICH) , physical downlink control channel (PDCCH) , enhanced physical downlink control channel (EPDCCH) , MTC physical downlink control channel (MPDCCH) , etc. The data may be for the PDSCH, etc. The transmit processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal. A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 232a through 232t may be transmitted via the antennas 234a through 234t, respectively.
At UE 115, the antennas 252a through 252r may receive the downlink signals from the base station 105 and may provide received signals to the demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 115 to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at the UE 115, a transmit processor 264 may receive and process data (e.g., for the PUSCH) from a data source 262 and control information (e.g., for the PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators 254a through 254r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 105. At the base station 105, the uplink signals from the UE 115 may be received by the antennas 234, processed by the demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 115. The processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The controllers/ processors  240 and 280 may direct the operation at the base station 105 and the UE 115, respectively. The controller/processor 240 and/or other processors and modules at the base station 105 may perform or direct the execution of various processes for the techniques described herein. The controllers/processor 280 and/or other processors and modules at the UE 115 may also perform or direct the execution of the functional blocks illustrated in FIGs. 3-7, and/or other processes for the techniques described herein. The  memories  242 and 282 may store data and program codes for the base station 105 and the UE 115, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
FIG. 3 is a block diagram of an example wireless communications system 300 to add a new radio (NR) capability for a user equipment. In some examples, wireless communications system 300 may implement aspects of wireless communication system 100. For example, wireless communications system 300 may include UE 115, one or more base stations, such as a first base station 105 and a second base station 305, and core network 130. Although one UE and two base station are illustrated, in other implementations, wireless communications system 300 may include multiple UEs 115, a single base station 105 or more than two base stations 105, or both.
UE 115 can include a variety of components (e.g., structural, hardware components) used for carrying out one or more functions described herein. For example, these components can include a processor 302, a memory 304, a transmitter 316, a receiver 318, a frequency monitor 320, a measurement report generator 322, and a release operator 323. Processor 302 may be configured to execute instructions stored at memory 304 to perform the operations described herein. In some implementations, processor 302 includes or  corresponds to controller/processor 280, and memory 304 includes or corresponds to memory 282. In addition to the instructions stored at memory 304, memory 304 may be configured to store RRC connection information 306, capability information 307, modes 308, one or more measurement reports 309, and one or more trigger conditions 310.
The RRC connection information 306 may include RRC connection request information, RRC connection setup information, or RRC connection reconfiguration information. The RRC connection request information may include or indicate UL-SCH, C-RNTI, UE-Identity = S-TMSI, Establishment Cause = mo-Signalling, or a combination thereof, as illustrative, non-limiting examples. The RRC connection setup information may include or indicate DL-SCH, C-RNTI, SRB Identity, DL AM RLC, UL AM RLC, UL-SCH Config, PHR Config, Uplink Power Control, or a combination thereof, as illustrative, non-limiting examples. The RRC connection reconfirmation information may include or indicate EPS Radio Bearer Identity, RLC Mode, PDCP Sequence Number, or a combination thereof, as illustrative, non-limiting examples.
Capability information 307 may include or indicate one or more capabilities of UE 115. For example, capability information 307 may include or indicate capabilities for 4G-LTE (utra) , EN-DC (eutra-nr) , 5G (nr) , or a combination thereof. To illustrate, capability information 307 include a multi-radio access technology dual connectivity (MRDC) capability or a new radio (NR) capability. Additionally, or alternatively, capability information 307 may indicate whether or not UE 115 supports EUTRA-NR radio access technology. EUTRA-NR specific capabilities may be specified in the EU-MRDC-Capability container.
Modes 308 may include or indicate one or more modes supported by UE 115. For example, modes 308 may include or indicate a low power mode, a NR active/deactive mode, a NSA mode, standalone mode, or a combination thereof.
The one or more measurement reports 309 may include one or more measurement reports, such as one or more measurement reports generated by measurement report generator 322.
The one or more trigger conditions 310 may include one or more criteria or conditions to be detected by UE 115. For example, the one or more criteria or conditions may include determining that UE 115 failed to add a secondary cell group (SCG) , determining that UE 115 was unable to send a measurement report, exiting a low power mode, activating a NR capability, receiving another RRC connection reconfiguration message, deconfiguring at least one layer of UE 115 such that the at least one layer is not configured for measuring NR  synchronization signal blocks SSBs, or a combination thereof. Additionally, or alternatively, the one or more criteria or conditions may include receiving an input via a user interface of the UE 115. For example, the input may include a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode, or a combination thereof..
Transmitter 316 is configured to transmit data to one or more other devices, and receiver 318 is configured to receive data from one or more other devices. For example, transmitter 316 may transmit data, and receiver 318 may receive data, via a wireless network. In some implementations, transmitter 316 and receiver 318 may be replaced with a transceiver. Additionally, or alternatively, transmitter 316, receiver 318, or both may include or correspond to one or more components of UE 115 described with reference to FIG. 2.
Frequency monitor 320 may be configured to monitor one or more frequencies. The one or more frequencies may include or correspond to one or more 5G NR channels specified in the Measurement Objects received in the RRC Connection Reconfiguration, a 5G-NR primary synchronization signal, a 5G-NR secondary synchronization signal,
Measurement report generator 322 may generate a measurement report. For example, measurement report generator 322 may generate a measurement report (e.g., SN-gNB Measurement) using measurement results from frequency monitor 320. To illustrate, the measurement report may include, such as measurement results for 5G NR cells. To illustrate, the measurement report may include measResultNeighCellListNR-r15 {pci-r15, measResultCell-r15} , or a combination thereof, as illustrative, non-limiting examples. UE 115 may store the measurement report at memory 304 as part of the one or more measurement reports 309.
The release operator 323 may be configured to initiate or perform a local release operation (e.g, 380) , to generate a tracking area update request (e.g., 382) , or a combination thereof. The tracking area update request may include location information corresponding to UE 115. In some implementations, release operator 323 may perform one or more operations based on or responsive to detection of a trigger condition (e.g., 310) .
Base station 105 (e.g., a first base station) may include an eNB (LTE) with a coverage area 334 and base station 305 (e.g., a second base station) may include a 5G NB (NR) with a coverage area 336. In some implementations, base station 105 includes or corresponds to a first cell and base station 305 includes or corresponds to a second cell. Although not shown, each base station 105, 305 may include one or more components, such as a processor, a memory, a transmitter, a receiver, or a combination thereof, as illustrative, non-limiting  examples. An example of base station 105, 305 is described further herein at least with reference to FIG. 8.
Core network 130 may include a 4G core network, a 5G core, an evolved packet core (EPC) . Core network may be coupled, e.g., communicatively coupled, to base station 105 and base station 305. Additionally, or alternatively, it is noted that base station 105 and base station 305 may be coupled, e.g., communicatively coupled, to at least receive requests to activate and deactivate one or more NR bearers (e.g., a 5G bearer) .
During operation of system 300, UE 115 and a network, such as a network entity (e.g., core network 130, first base station 105, second base station 305, or a combination thereof) may perform one or more operations to add NR capabilities to UE 115. Referring to FIGS. 4 and 5, examples of adding NR capability to UE 115 are shown. FIGS. 4 and 5 depict ladder diagrams illustrating examples of adding NR capability to UE. For example, FIG. 4 depicts a ladder diagram 400 illustrating an example of adding NR for UE 115, and FIG. 5 depicts a ladder diagram 500 illustrating another example of adding NR for UE 115. As shown in FIGS. 4 and 5, a system of the ladder diagram includes UE 115 and a network entity 401. Network entity 401 may include or correspond to core network 130, first base station 105, second base station 305, or a combination thereof. For example, in some implementations, network entity 401 includes core network 130. As another example, network entity 401 includes first base station 105 (e.g., a first cell) , such as a NSA cell.
Referring to FIG. 4, during operation, at 402, UE 115 is in a connected state on a first cell. For example, UE 115 may have established a connection with the first cell, such as first base station 105. To illustrate, the first connection may include a LTE connection. In some implementations, to establish the first connection, network entity 401 may send a configuration message, such as an RRC connection setup, to enable UE 115 to configure one or more components of UE 115 for communication via the first connection. To illustrate, the RRC connection setup may include DL-SCH, C-RNTI, SRB Identity, DL AM RLC, UL AM RLC, UL-SCH Config, PHR Config, Uplink Power Control, or a combination thereof, as illustrative, non-limiting examples. Additionally, UE 115 may signal completion of the RRC connection to network entity 401. In some implementations, signaling completions of the RRC connection may include transmitting a NAS attach request.
At 404, UE 115 and network entity 401 communicate one or more messages between network entity 401 and UE 115 to exchange UE capabilities. The UE capabilities may include or correspond to capability information 307. In some implementations, network entity 401 may request UE 115 for “UE capabilities” . For example, the UE capabilities may  be requested for 4G-LTE (utra) , EN-DC (eutra-nr) , 5G (nr) , or a combination thereof. In response to the request for UE capabilities, UE 115 may transmit a report of UE capabilities, such as a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability. The report may indicate one or more UE capabilities, such as whether or not UE 115 supports EUTRA-NR radio access technology. EUTRA-NR specific capabilities may be specified in the EU-MRDC-Capability container. Additionally, or alternatively, the report (e.g., response) may also include information indicating one or more frequency band, such as one or more 5G frequency bands, supported by UE 115.
At 406, network entity 401 transmits a reconfigure message, such as an RRC connection reconfiguration message. In some implementations, the reconfiguration message at 406 includes an attach accept indication, an activate default bearer request, and one or more measurement objection for NR. To illustrate, the RRC connection reconfiguration message at 406 may be sent to activate a default radio bearer and may also include an attach accept message as a NAS payload, measurement objections for 5G NR frequencies, or a combination thereof. As an illustrative, non-limiting example, the reconfigure message at 40 may include, EPS Radio Bearer Identity, RLC Mode, PDCP Sequence Number, or a combination thereof. In some implementations, responsive to the reconfigure message at 406, UE 115 may signal completion of a corresponding reconfiguration to network entity 401.
In some implementations, based on receipt of the reconfigure message at 406, UE 115 may monitor one more frequencies to generate a measurement report. For example, UE 115 may monitor one or more frequencies using frequency monitor 320. To illustrate, UE 115 may initiate measurement of 5G NR channels specified in the Measurement Objects received in the RRC Connection Reconfiguration. These measurements are scheduled during measurement gaps. To illustrate, UE 115 may acquire a 5G-NR primary synchronization signal, a 5G-NR secondary synchronization signal, or both, and measure a signal quality of the acquired synchronization signal (s) . Additionally, or alternatively, UE 115 may generate the measurement report (e.g., SN-gNB Measurement) using measurement report generator 322. The measurement report may include measurement results from frequency monitor 320, such as measurement results for 5G NR cells. To illustrate, the measurement report may include measResultNeighCellListNR-r15 {pci-r15, measResultCell-r15} , or a combination thereof, as illustrative, non-limiting examples. UE 115 may store the measurement report at memory 304 as part of the one or more measurement reports 309.
In some implementations, after receiving the reconfigure message at 406, UE 115  may not monitor one or more frequencies, may not generate the measurement report, may encounter a delay in reporting NR measurement results, may not transmit the measurement report, may not add a SCG, or a combination thereof. For example, UE 115 may be been in a low power mode in which NR features are deactivated to conserver power. Additionally, or alternatively, the NR features may be deactivated based on an input (e.g., a user input) . In some implementations, UE 115 may have too many frequencies to measure to timely generate and transmit measurement report, one or more NR signals may not be stable, or a combination thereof. Additionally, or alternatively, UE 115 may be delayed in reporting the measurement report due to other higher priority data to be communicated by UE 115. In some implementations, UE 115 may be delayed due to multi-subscriber identification module (MSIM) dual SIM dual standby (DSDS) UE activities on another other Sub (e.g., Sub2) . In other implementations, UE 115 may be unable to report the measurement report to network entity 401 as a result of network handling issues, such as the network (e.g., base station 105, core network 130, etc. ) is handling IP multimedia subsystem (IMS) bearer adding –e.g., the network issue cause the network to ignore adding NR bearer to UE 115. In such situations, when UE is unable report the measurement report, add a SCG, or both, UE 115 may indicate that UE 115 is not configured for 5G. For example, UE 115 may not display an icon (e.g., a 5G icon) .
At 408, UE 115 detects a trigger condition. For example, trigger condition may include or correspond one or more trigger conditions 310. Detecting the trigger condition may include determining that UE 115 failed to add a secondary cell group (SCG) , determining that UE 115 was unable to send a measurement report, exiting a low power mode, activating a NR capability, receiving another RRC connection reconfiguration message, deconfiguring at least one layer of UE 115 such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof. Additionally, or alternatively, detecting the trigger condition may include receiving an input via a user interface of the UE 115. For example, the input may include a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode, or a combination thereof.
At 410, UE 115 initiates and performs a local release of the first connection. For example, UE 115 may initiate or perform the local release based on or responsive to detection of the trigger condition. To illustrate, performing the local release may disconnect UE 115 from the first connection. In some implementations, UE 115 may initiate or perform the local release using release operator 323.
At 412, UE 115 transmits a request, such as a tracking area update request. For example, UE 115 may transmit the request at 412 based on or responsive to detection of the trigger condition. The tracking area update may include or correspond to tracking area update 382. To illustrate, UE 115 may generate tracking area update 382 and transmit tracking area update 382 to network entity 401. In some implementations, responsive to receiving tracking area update request, network entity 401 may transmit an accept message, such as a tracking area update accept. Although the local release at 410 is described as being performed prior to transmitting the request 412, in other implementations, the local release may be initiated or performed subsequent to or concurrently with transmitting the request.
At 414, network entity 401 transmits a reconfigure message, such as another RRC connection reconfiguration message. For example, network entity 401 may transmit the reconfigure message responsive to the request at 412. In some implementations, the reconfiguration message at 406 includes an attach accept indication, an activate default bearer request, and one or more measurement objection for NR. For example, the reconfigure message at 414 may include the at least some of the same information included in the reconfigure message at 406. To illustrate, the RRC connection reconfiguration message may be sent to activate a default radio bearer and may also include an attach accept message as a NAS payload, measurement objections for 5G NR frequencies, or a combination thereof. In some implementations, responsive to the reconfigure message at 414, UE 115 may signal completion of a corresponding reconfiguration to network entity 401.
At 416, UE 115 transmits a measurement report. For example, the measurement report may include or correspond to the one or more measurement reports 309. In some implementations, UE 115 may monitor one more frequencies to generate a measurement report based on the reconfigure message at 414 –e.g., UE 115 may monitor one or more frequencies indicated by the reconfigure message at 414. In other implementations, UE 115 may send a stored measurement report (e.g., 309) , such as a measurement report generated based on one or more frequencies indicted by the reconfigure message at 406. To illustrate, UE 115 may determine whether one or more frequencies indicated by the reconfigure message at 414 match the one or more frequencies indicated by the reconfigure message at 406 and, based on a match, may send the stored measurement report generated based on the reconfigure message at 406.
At 418, network entity 401 transmits a reconfigure message, such as an RRC connection reconfiguration message. The reconfigure message at 418 may include information to assign 5G radio resources to UE 115. To illustrate, the reconfigure message at  418 may include nr-Config-r15, endc-ReleaseAndAdd-r15, nr-SecondaryCellGroupConfig-r15 = CG-Config, nr-RadioBearerConfig-r15 = NR-RRCRadioBearerConfig, --cellGroupID, --rlc-BearerToAddModList, --mac-CellGroupConfig, --physicalCellGroupConfig, --reconfigurationWithSync = {newUE-Identity = C-RNTI} , --rlf-TimersAndConstants, --rlmInSyncOutOfSyncThreshold, --spCellConfigDedicated, p_MaxEUTRA-r15, --sk-Counter-r15, --nr-RadioBearerConfig1-r15, --nr-RadioBearerConfig2-r15, --tdm-PatternConfig-r15, --nonCriticalExtension, or a combination thereof, as illustrative, non-limiting examples.
In some implementations, responsive to the reconfigure message at 418, UE 115 may signal completion of a corresponding reconfiguration to network entity 401. To illustrate, UE 115 may signal the receipt of the reconfigure message (at 418) . For example, UE 115 may transmit a message the indicates NR RRC Reconfiguration Complete. To illustrate, the message may include scg-ConfigResponseNR-r15 = NR, RRCReconfigurationComplete, or a combination thereof, as illustrative, non-limiting examples.
At 422, UE 115 is configured for 5G capability. For example, UE 115 may be configured based on the reconfigure message at 418. To illustrate, UE 115 may have added a SCG, a NR bearer, or a combination thereof. Accordingly, UE 115 may indicate that UE 115 is configured for 5G –e.g., UE 115 may display an icon (e.g., a 5G icon) .
After being configured for NR capability (e.g., 5G capability) , UE 115 may connect to the 5G network and communicate data via a second connection, such as a NR connection via the 5G network.
In some implementations, UE 115 may establish (at 402) a first connection with a first cell. While the first connection between the UE and the first cell is present, UE 115 may detecting (at 408) a trigger condition. In some implementations, the trigger condition may include or correspond to UE 115 exiting a low power mode, receiving an input to connect to NR, receiving a reconfigure message to deactivate at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, deconfiguring/deactivating at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, or a combination thereof. Based on the trigger condition and while the UE has not added a second cell group, UE 115 may initiate (at 410) a local release of the first connection and transmit (at 412) a tracking area update request to the first cell.
Referring to FIG. 5, during operation, at 502, UE 115 is in a connected state on a first cell. For example, UE 115 may have established a connection with the first cell, such as first base station 105. To illustrate, the first connection may include a LTE connection. In some  implementations, to establish the first connection, network entity 401 may send a configuration message, such as an RRC connection setup, to enable UE 115 to configure one or more components of UE 115 for communication via the first connection. To illustrate, the RRC connection setup may include DL-SCH, C-RNTI, SRB Identity, DL AM RLC, UL AM RLC, UL-SCH Config, PHR Config, Uplink Power Control, or a combination thereof, as illustrative, non-limiting examples. Additionally, UE 115 may signal completion of the RRC connection to network entity 401. In some implementations, signaling completions of the RRC connection may include transmitting a NAS attach request.
At 504, UE 115 and network entity 401 communicate one or more messages between network entity 401 and UE 115 to exchange UE capabilities. The UE capabilities may include or correspond to capability information 307. In some implementations, network entity 401 may request UE 115 for “UE capabilities” . For example, the UE capabilities may be requested for 4G-LTE (utra) , EN-DC (eutra-nr) , 5G (nr) , or a combination thereof. In response to the request for UE capabilities, UE 115 may transmit a report of UE capabilities, such as a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability. The report may indicate one or more UE capabilities, such as whether or not UE 115 supports EUTRA-NR radio access technology. EUTRA-NR specific capabilities may be specified in the EU-MRDC-Capability container. Additionally, or alternatively, the report (e.g., response) may also include information indicating one or more frequency band, such as one or more 5G frequency bands, supported by UE 115.
At 506, network entity 401 transmits a first reconfigure message, such as a first RRC connection reconfiguration message. In some implementations, the first reconfiguration message at 406 includes an attach accept indication, an activate default bearer request, and one or more measurement objection for NR. To illustrate, the first RRC connection reconfiguration message at 406 may be sent to activate a default radio bearer and may also include an attach accept message as a NAS payload, measurement objections for 5G NR frequencies, or a combination thereof. As an illustrative, non-limiting example, the reconfigure message at 40 may include, EPS Radio Bearer Identity, RLC Mode, PDCP Sequence Number, or a combination thereof. In some implementations, when UE 115 is in a connected state (e.g., the first connection has been established) , network entity 401 may send the first reconfigure message more than once, such as periodically (e.g., every 20 seconds) . In other implementations, when UE 115 is in a connected state (e.g., the first connection has been established) , network entity 401 may send the first reconfigure message once, e.g., once per establishment of the first connection, such as an LTE connection with a network. At 508,  responsive to the first reconfigure message at 506, UE 115 transmits a reconfigure complete message to signal completion of a corresponding reconfiguration (e.g., the first reconfigure message) to network entity 401.
Based on receipt of the first reconfigure message at 506, UE 115 may monitor one more frequencies to generate a measurement report. UE 115 may monitor one or more frequencies using frequency monitor 320. To illustrate, UE 115 may initiate measurement of 5G NR channels specified in the Measurement Objects received in the RRC Connection Reconfiguration. These measurements may be scheduled during measurement gaps. To illustrate, UE 115 may acquire a 5G-NR primary synchronization signal, a 5G-NR secondary synchronization signal, or both, and measure a signal quality of the acquired synchronization signal (s) . Additionally, or alternatively, UE 115 may generate the measurement report (e.g., SN-gNB Measurement) using measurement report generator 322. The measurement report may include measurement results from 5G NR cells. To illustrate, the measurement report may include measResultNeighCellListNR-r15 {pci-r15, measResultCell-r15} , or a combination thereof, as illustrative, non-limiting examples. UE 115 may store the measurement report at memory 304 as part of the one or more measurement reports 309.
At 510, UE 115 may experience a reporting delay of a measurement report. To illustrate, in some implementations, after receiving the first reconfigure message at 506, UE 115 may not monitor one or more frequencies, may not generate the measurement report, may encounter a delay in reporting NR measurement results, may not transmit the measurement report, may not add a SCG, or a combination thereof. For example, UE 115 may be been in a low power mode in which NR features are deactivated to conserver power. Additionally, or alternatively, the NR features may be deactivated based on an input (e.g., a user input) . In some implementations, UE 115 may have too many frequencies to measure to timely generate and transmit measurement report, one or more NR signals may not be stable, or a combination thereof. Additionally, or alternatively, UE 115 may be delayed in reporting the measurement report due to other higher priority data to be communicated by UE 115. In some implementations, UE 115 may be delayed due to multi-subscriber identification module (MSIM) dual SIM dual standby (DSDS) UE activities on another other Sub (e.g., Sub2) . In other implementations, UE 115 may be unable to report the measurement report to network entity 401 as a result of network handling issues, such as the network (e.g., base station 105, core network 130, etc. ) is handling IP multimedia subsystem (IMS) bearer adding –e.g., the network issue cause the network to ignore adding NR bearer to UE 115. In such situations, when UE is unable report the measurement report, add a SCG, or both, UE 115 may indicate  that UE 115 is not configured for 5G. For example, UE 115 may not display an icon (e.g., a 5G icon) .
At 512, network entity 401 transmits a second reconfigure message, such as a second RRC connection reconfiguration message. In some implementations, the second reconfiguration message at 406 may not include one or more measurement objection for NR –e.g., no 5G NR frequencies may be indicated for monitoring. The second reconfigure message may be sent at least a time period or duration after the first reconfigure message is sent by network entity 401. For example, if network entity 401 does not receive a measurement report from UE 115 within a particular amount of time, such as 3 seconds, after sending the first reconfigure message, network entity 401 transmits the second reconfigure message. In some implementations, the second reconfigure message instructs UE 115 to remove the previously sent NR measurement objects.
At 514, responsive to the second reconfigure message at 512, UE 115 transmits a reconfigure complete message to signal completion of a corresponding reconfiguration (e.g., the second reconfigure message) to network entity 401. To illustrate, responsive to the second reconfigure message, UE 115 may deconfigure at least one layer of UE 115 such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs. The at least one layer may have been previously configured responsive to the first reconfigure message at 506.
At 516, UE 115 detects a trigger condition. For example, trigger condition may include or correspond one or more trigger conditions 310. Detecting the trigger condition may include determining that UE 115 failed to add a secondary cell group (SCG) , determining that UE 115 was unable to send a measurement report, exiting a low power mode, activating a NR capability, receiving another RRC connection reconfiguration message, deconfiguring at least one layer of UE 115 such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof. Additionally, or alternatively, detecting the trigger condition may include receiving an input via a user interface of the UE 115. For example, the input may include a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode, or a combination thereof.
At 518, UE 115 initiates and performs a local release of the first connection. For example, UE 115 may initiate or perform the local release based on or responsive to detection of the trigger condition. To illustrate, performing the local release may disconnect UE 115 from the first connection. In some implementations, UE 115 may initiate or perform the local  release using release operator 323.
At 520, UE 115 transmits a request, such as a tracking area update request. For example, UE 115 may transmit the request at 412 based on or responsive to detection of the trigger condition. The tracking area update may include or correspond to tracking area update 382. To illustrate, UE 115 may generate tracking area update 382 and transmit tracking area update 382 to network entity 401. In some implementations, responsive to receiving tracking area update request, network entity 401 may transmit an accept message, such as a tracking area update accept. Although the local release at 410 is described as being performed prior to transmitting the request 412, in other implementations, the local release may be initiated or performed subsequent to or concurrently with transmitting the request.
At 522, network entity 401 transmits an accept, such as a tracking area update accept. The accept may be responsive to the request at 520. At 524, network entity 401 transmits a third reconfigure message, such as a third RRC connection reconfiguration message. For example, network entity 401 may transmit the third reconfigure message responsive to the request at 520. In some implementations, the third reconfiguration message at 524 includes an attach accept indication, an activate default bearer request, and one or more measurement objection for NR. For example, the third reconfigure message at 524 may include the at least some of the same information included in the first reconfigure message at 506. To illustrate, the third RRC connection reconfiguration message may be sent to activate a default radio bearer and may also include an attach accept message as a NAS payload, measurement objections for 5G NR frequencies, or a combination thereof. At 526, responsive to the third reconfigure message at 524, UE 115 may signal completion of a corresponding reconfiguration to network entity 401.
At 528, UE 115 transmits a measurement report. For example, the measurement report may include or correspond to the one or more measurement reports 309. In some implementations, UE 115 may monitor one more frequencies to generate a measurement report based on the third reconfigure message at 524 –e.g., UE 115 may monitor one or more frequencies indicated by the third reconfigure message at 524. In other implementations, UE 115 may send a stored measurement report (e.g., 309) , such as a measurement report generated based on one or more frequencies indicted by the first reconfigure message at 506. To illustrate, UE 115 may determine whether one or more frequencies indicated by the third reconfigure message at 524 match the one or more frequencies indicated by the first reconfigure message at 506 and, based on a match, may send the stored measurement report generated based on the first reconfigure message at 506.
At 530, network entity 401 transmits a fourth reconfigure message, such as a fourth RRC connection reconfiguration message. The fourth reconfigure message at 530 may include information to assign 5G radio resources to UE 115. To illustrate, the fourth reconfigure message at 530 may include nr-Config-r15, endc-ReleaseAndAdd-r15, nr-SecondaryCellGroupConfig-r15 = CG-Config, nr-RadioBearerConfig-r15 = NR-RRCRadioBearerConfig, --cellGroupID, --rlc-BearerToAddModList, --mac-CellGroupConfig, --physicalCellGroupConfig, --reconfigurationWithSync = {newUE-Identity = C-RNTI} , --rlf-TimersAndConstants, --rlmInSyncOutOfSyncThreshold, --spCellConfigDedicated, p_MaxEUTRA-r15, --sk-Counter-r15, --nr-RadioBearerConfig1-r15, --nr-RadioBearerConfig2-r15, --tdm-PatternConfig-r15, --nonCriticalExtension, or a combination thereof, as illustrative, non-limiting examples.
In some implementations, responsive to the fourth reconfigure message at 530, UE 115 may signal completion of a corresponding reconfiguration to network entity 401. To illustrate, UE 115 may signal the receipt of the fourth reconfigure message (at 530) . For example, UE 115 may transmit a message the indicates NR RRC Reconfiguration Complete. To illustrate, the message may include scg-ConfigResponseNR-r15 = NR, RRCReconfigurationComplete, or a combination thereof, as illustrative, non-limiting examples.
At 532, UE 115 is configured for 5G capability. For example, UE 115 may be configured based on the reconfigure message at 418. To illustrate, UE 115 may have added a SCG, a NR bearer, or a combination thereof. Accordingly, UE 115 may indicate that UE 115 is configured for 5G –e.g., UE 115 may display an icon (e.g., a 5G icon) .
After being configured for NR capability (e.g., 5G capability) , UE 115 may connect to the 5G network and communicate data via a second connection, such as a NR connection via the 5G network.
In some implementations, UE 115 may establish (at 502) a first connection with a first cell. While the first connection between the UE and the first cell is present, UE 115 may detecting (at 516) a trigger condition. In some implementations, the trigger condition may include or correspond to UE 115 exiting a low power mode, receiving an input to connect to NR, receiving a reconfigure message to deactivate at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, deconfiguring/deactivating at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs, or a combination thereof. Based on the trigger condition and while the UE has not added a second cell group, UE 115 may initiate (at 518) a local release of the first connection and  transmit (at 520) a tracking area update request to the first cell.
In some implementations, responsive to the first reconfigure message, UE 115 may transmit the measurement report. Responsive to the measurement report, network entity 401 may send the fourth reconfigure message to enable UE 115 to add a SCG and be 5G capable. In some such implementations, while UE 115 is 5G capable, UE 115 may deactive 5G capability, such as in response to receiving a user input or based on entering a low power or power save mode. In such implementation, UE 115 may deactivate the 5G capability and maintain the first connection. While the 5G capability is deactivated, and if UE 115 still has the first connection, UE 115 may detect the trigger condition and initiate the local release and tracking area update request. For example, UE 115 may detect the trigger condition including exiting the low power or power save mode or an input to activate the 5G capability.
Thus, FIGS. 3-5 illustrate operations between a UE 115 and network entity 401 in which NR capability is added to UE 115. To illustrate, by initiating the local release and sending the tracking area update request, the UE may add NR capabilities after the UE failed to report a NR measurement report or failed to add a secondary cell group (SCG) –e.g., a Pscell.
FIG. 6 is flow diagrams illustrating example methods performed by a UE for communication. For example, the example blocks may cause UE to add new radio (NR) for the UE according to some aspects of the present disclosure. The example blocks will also be described with respect to UE 115 as illustrated in FIG. 7. FIG. 7 is a block diagram conceptually illustrating an example design of a UE configured to add new radio (NR) for the UE to one aspect of the present disclosure. UE 115 includes the structure, hardware, and components as illustrated for UE 115 of FIGS. 2 or 3. For example, UE 115 includes controller/processor 280, which operates to execute logic or computer instructions stored in memory 282, as well as controlling the components of UE 115 that provide the features and functionality of UE 115. UE 115, under control of controller/processor 280, transmits and receives signals via wireless radios 701a-r and antennas 252a-r. Wireless radios 701a-r includes various components and hardware, as illustrated in FIG. 2 for UE 115, including modulator/demodulators 254a-r, MIMO detector 256, receive processor 258, transmit processor 264, and TX MIMO processor 266. UE 115 may also include power supply 750, I/O device 760, display 770, or a combination thereof. Display 770 may be configured to present an indicator 772, such as an icon, to indicate whether or not UE 115 is NR capable.
As shown, memory 282 may include RRC connection information 702, capability information 703, mode information 704, one or more measurement reports 705, one or more  trigger conditions 706, a frequency monitor 707, a measurement report generator 708, and a release operator 709. RRC connection information 702, capability information 703, mode information 704, one or more measurement reports 705, one or more trigger conditions 706 may include or correspond to RRC connection information 306, capability information 307, modes 308, one or more measurement reports 309, one or more trigger conditions 310, respectively. Frequency monitor 707, measurement report generator 708, and release operator 709 may include or correspond to frequency monitor 320, measurement report generator 322, and release operator 323, respectively. In some aspects, frequency monitor 707, measurement report generator 708, and release operator 709, or a combination thereof, may include or correspond to processor (s) 302. UE 115 may receive signals from and/or transmit signal to a base station, such as base station 105, 305 or base station 105 as illustrated in FIG. 8.
Referring to FIG. 6, a sample flow diagram of a method 600 of UE operations for communication is shown. In some implementations, method 600 may be performed by UE 115. In other implementations, method 600 may be performed by an apparatus configured for wireless communication. For example, the apparatus may include at least one processor, and a memory coupled to the processor. The processor may be configured to perform operations of method 600. In other implementations, method 600 may be performed or executed using a non-transitory computer-readable medium having program code recorded thereon. The program code may be program code executable by a computer for causing the computer to perform operations of method 600.
As illustrated at block 602, a UE establishes a first connection with a first cell. The first cell may include or correspond to base station 105 (e.g., eNB (LTE) ) of FIG. 3 having coverage area 334. The UE may include a non-standalone (NSA) capable UE and the first cell may include a NSA cell. In some implementations, the first connection includes a long-term evolution (LTE) connection. The first connection between the UE and the first cell may correspond to the UE being in a radio resource control (RRC) connected state on the first cell. The first connection may be established based on or using RRC connection information 702. In some implementations, UE 115 may establish the first connection using wireless radios 701a-r and antennas 252a-r.
In some implementations, establishing the first connection includes the UE transmitting a radio resource control (RRC) connection request, receiving a RRC connection setup message, and transmitting a RRC connection setup complete message. For example UE 115 may transmit the RRC connection request, receive the RRC connection setup  message, transmit the RRC connection setup complete message, or a combination thereof, using wireless radios 701a-r and antennas 252a-r.
At block 604, the UE detects a trigger condition while the first connection between the UE and the first cell is present. The trigger condition may include or correspond to the one or more trigger conditions 706. In some implementations, UE 115 may establish the first connection using wireless radios 501a-r and antennas 252a-r, controller/processor 280, I/O device 760, or a combination thereof.
In some implementations, detecting the trigger condition includes determining that the UE failed to add a secondary cell group (SCG) , determining that the UE was unable to send a measurement report, exiting a low power mode, activating a NR capability, receiving a second RRC connection reconfiguration message, deconfiguring at least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof. Additionally, or alternatively, detecting the trigger condition may include receiving an input via a user interface (e.g., 760) of the UE. For example, the input may include a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode, or a combination thereof.
At block 606, the UE, based on the trigger condition and while the UE has not added a second cell group, initiates a local release of the first connection and transmits a tracking area update request to the first cell. The local release and the tracking area update request may include or correspond to local release 380 and tracking area update 382, respectively. The tracking area update request may include an indication of a location of the UE. In some implementations, UE 115 may initiate and/or perform the local release using release operator 709. Additionally, or alternatively, UE may transmit the tracking area update request using wireless radios 701a-r and antennas 252a-r.
In some implementations, method 600 may include the UE performing the local release of the first connection to end the first connection. For example, UE may perform the local release using release operator 709. Additionally, or alternatively, initiating the local release and transmitting the tracking area update request are performed after expiration of a time period following detection of the trigger condition. For example, the time period may be at least 3 seconds. As another example, the time period is may be least 20 seconds.
In some implementations, method 600 may include the UE receiving a UE capability enquiry and transmitting UE capability information. For example, the UE capability information may include or correspond to capability information 703. The UE capability information may indicate a multi-radio access technology dual connectivity (MRDC)  capability, a new radio (NR) capability, or a combination thereof.
In some implementations, method 600 may include the UE receiving a first RRC connection reconfiguration message and transmitting a first RRC connection reconfiguration complete message. For example, the first RRC connection reconfiguration message may include or correspond to reconfiguration message (at 506) of FIG. 5. The first RRC connection reconfiguration message may indicate one or more new radio (NR) measurement objects. For example, the one or more NR measurement objection may include or correspond to RRC connection information 702, the one or more measurement reports 705, or a combination thereof. In some implementations, the UE may store the NR measurement objects. Additionally, or alternatively, initiating the local release of the first connection, or transmitting the tracking area update request to the first cell, may occur within less than a predetermined time duration or period (20 seconds) after receiving the first RRC connection reconfiguration message.
In some implementations, method 600 may include the UE monitoring one or more frequencies based on the one or more measurement objects. For example, UE 115 may monitor one or more frequencies using frequency monitor 707. Additionally, or alternatively, the UE may generate, based on monitoring the one or more frequencies, a measurement report. For example, UE 115 may generate the measurement report using measurement report generator 708. In some implementations, the UE may delay transmission of the measurement report.
In some implementations, method 600 may include the UE receiving a second RRC connection reconfiguration message and transmitting a second RRC connection reconfiguration complete message. For example, the first RRC connection reconfiguration message may include or correspond to reconfiguration message (at 512) of FIG. 5. The UE may receive the second RRC connection reconfiguration message after the first RRC connection reconfiguration message. Additionally, or alternatively, the UE may receive the second RRC connection reconfiguration message at least three seconds after the first RRC connection reconfiguration message.
In some implementations, the second RRC connection reconfiguration message does not indicate NR measurement objects. In some such implementations, based on the second RRC connection reconfiguration message, the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) . For example, the UE may configure, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR  synchronization signal blocks (SSBs) and, based on the second RRC connection reconfiguration message, deconfigure the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
In some implementations, method 600 may include the UE controlling presentation of an indicator to indicate NR communication is available or not available. For example, the indicator may include or correspond to indicator 772.
In some implementations, method 600 may include the UE determining whether the UE is engaged in a high priority session is on-going via the first connection. The UE may initiate the local release, or transmit the tracking area update request, based on a determination that the UE is not engaged in the high priority session.
In some implementations, method 600 may include the UE, after transmitting the tracking area update request, establishing a second connection with a second cell. Additionally, or alternatively, the UE may receive, from the first cell, a tracking are update acceptance message. In some implementations, the first cell and the second cell are the same cell, the second connection comprises a long-term evolution (LTE) connection, or a combination thereof.
In some implementations, method 600 may include the UE receiving a third RRC connection reconfiguration message and transmitting a third RRC connection reconfiguration complete message. For example, the third RRC connection reconfiguration message may include or correspond to the reconfiguration message at 524 of FIG. 5. The third RRC connection reconfiguration message may indicate one or more new radio (NR) measurement objects. In some implementations, the UE may transmit the measurement report based on receipt of the third RRC connection reconfiguration message. The measurement report may include or correspond to the one or more measurement reports 705.
In some implementations, method 600 may include the UE receiving a fourth RRC connection reconfiguration message. For example, the fourth RRC connection reconfiguration message may include or correspond to the reconfiguration message at 530 of FIG. 5. The fourth RRC connection reconfiguration message may indicate a cell of a NR network. In some such implementations, the UE may connect to the cell of the NR network, such as the base station 305 (e.g., 5G NGB (NR) ) having coverage area 336. For example, the cell of the NR network may include a Pscell, a secondary cell group, or an NR bearer. Additionally, or alternatively, the UE may communicate data over the NR network via the cell of the NR network.
Thus, method 600 enables a UE to add a NR capability. To illustrate, by initiating the  local release and sending the tracking area update request, the UE may add NR capabilities after the UE failed to report a NR measurement report or failed to add a secondary cell group (SCG) .
It is noted that one or more blocks (or operations) described with reference to FIG. 7 may be combined with one or more blocks (or operations) of another of figure. For example, one or more blocks of FIG. 4 may be combined with one or more blocks (or operations) of another of FIGS. 2 or 3. Additionally, or alternatively, one or more operations described above with reference to FIGS. 1-5 may be combine with one or more operations described with reference to FIG. 8.
FIG. 8 is a block diagram conceptually illustrating an example design of a base station 105 configured to configure UE 115 to add NR according to some aspects of the present disclosure. FIG. 8 may include or correspond to base station (s) 105, 305 of FIG. 3. Additionally, or alternatively, FIG. 6 (e.g., 105) may include or correspond to the core network 130.
Base station 105 includes the structure, hardware, and components as illustrated for base station 105 of FIGS. 2 or 3. For example, base station 105 includes controller/processor 240, which operates to execute logic or computer instructions stored in memory 242, as well as controlling the components of base station 105 that provide the features and functionality of base station 105. Base station 105, under control of controller/processor 240, transmits and receives signals via wireless radios 801a-t and antennas 234a-t. Wireless radios 801a-t includes various components and hardware, as illustrated in FIG. 2 for base station 105, including modulator/demodulators 232a-t, transmit processor 220, TX MIMO processor 230, MIMO detector 236, and receive processor 238. As shown, memory 242 may include RRC connection information 802, capability information 803, one or more measurement reports 804, and tracking area update information 805. RRC connection information 802, capability information 803, one or more measurement reports 804, and tracking area update information 805 may include or correspond to RRC connection information 702, capability information 703, one or more measurement reports 705, and tracking area update 382, respectively. Base station 105 may receive signals from and/or transmit signal to a UE, such as UE 115 as illustrated in FIG. 7.
It is noted that one or more blocks (or operations) described with reference to FIG. 8 may be combined with one or more blocks (or operations) of another of figure. For example, one or more blocks of FIG. 8 may be combined with one or more blocks (or operations) of another of FIGS. 2 or 3. Additionally, or alternatively, one or more operations described  above with reference to FIGS. 1-5 may be combine with one or more operations described with reference to FIG. 8.
In some aspects, adding a new radio (NR) , such as a new NR capability, may include a wireless receiving device (e.g., a user equipment (UE) ) establishing a first connection with a first cell. Adding the NR of some aspects may further include the wireless receiving device detecting a trigger condition while the first connection between the wireless receiving device and the first cell is present. Additionally, or alternatively, in some aspects, adding the NR may include the wireless receiving device initiating a local release of the first connection by the wireless receiving device based on the trigger condition and while the wireless receiving device has not added a second cell group. Additionally, or alternatively, in some aspects, adding the NR may include the wireless receiving device transmitting a tracking area update request to the first cell based on the trigger condition and while the wireless receiving device has not added a second cell group. In some implementations, the wireless receiving device may include a memory storing instructions and a processor coupled to the memory and configured to execute the instructions to perform one or more operations or functions as described herein.
In a first aspect, the wireless receiving device includes a non-standalone (NSA) capable UE, the first cell includes a NSA cell, the first connection includes a long-term evolution (LTE) connection, or, a combination thereof.
In a second aspect, alone or in combination with one or more of the first aspect, the first connection between the wireless receiving device and the first cell corresponds to the wireless receiving device being in a radio resource control (RRC) connected state on the first cell.
In a third aspect, alone or in combination with one or more of the first and second aspects, the wireless receiving device establishing the first connection includes transmitting a radio resource control (RRC) connection request, receiving a RRC connection setup message and transmitting a RRC connection setup complete message.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the wireless receiving device receives a UE capability enquiry, and transmits UE capability information.
In a fifth aspect, in combination with the fourth aspect, the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
In a sixth aspect, alone or in combination with one or more of the first through fifth  aspects, the wireless receiving device receives a first RRC connection reconfiguration message, and transmits a first RRC connection reconfiguration complete message.
In a seventh aspect, in combination with the sixth aspect, the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
In an eighth aspect, in combination with the seventh aspect, the wireless receiving device monitors one or more frequencies based on the one or more measurement objects.
In a ninth aspect, in combination with the eighth aspect, the wireless receiving device generates, based on monitoring the one or more frequencies, a measurement report.
In a tenth aspect, in combination with the ninth aspect, the wireless receiving device delays transmission of the measurement report.
In an eleventh aspect, alone or in combination with one or more of the first through tenth aspects, the wireless receiving device receives a second RRC connection reconfiguration message, and transmits a second RRC connection reconfiguration complete message.
In a twelfth aspect, in combination with the eleventh aspect, the wireless receiving device receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
In a thirteenth aspect, in combination with the eleventh through twelfth aspect, the second RRC connection reconfiguration message does not indicate NR measurement objects, and the wireless receiving device configures, based on the second RRC connection reconfiguration message, one or more of layers such that the wireless receiving device does not monitor to measure for NR synchronization signal blocks (SSBs) .
In a fourteenth aspect, alone or in combination with one or more of the eleventh through thirteenth aspects, the wireless receiving device configures, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the wireless receiving device for measuring NR synchronization signal blocks (SSBs) and deconfigures, based on the second RRC connection reconfiguration message, the at least one layer of the wireless receiving device such that the at least one layer is not configured for measuring the SSBs.
In a fifteenth aspect, alone or in combination with one or more of the sixth through fourteenth aspects, the wireless receiving device controls presentation of an indicator to indicate NR communication is available or not available.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, detecting the trigger condition includes the wireless receiving device  determining that the UE failed to add a secondary cell group.
In a seventeenth aspect, alone or in combination with one or more of the first through fifteenth aspects, detecting the trigger condition includes the wireless receiving device determining that the UE was unable to send the measurement report.
In an eighteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, detecting the trigger condition includes the wireless receiving device exiting a low power mode.
In a nineteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, detecting the trigger condition includes the wireless receiving device activating a NR capability.
In a twentieth aspect, alone or in combination with one or more of the first through fifteenth aspects, detecting the trigger condition includes the wireless receiving device receiving the second RRC connection reconfiguration message, deconfiguring at least one layer of the wireless receiving device such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
In a twenty-first aspect, alone or in combination with one or more of the first through fifteenth aspects, detecting the trigger condition includes the wireless receiving device receiving an input via a user interface of the wireless receiving device.
In a twenty-second aspect, in combination with the twenty-first aspects, the input includes a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
In a twenty-third aspect, alone or in combination with one or more of the first through twenty-second aspects, initiating the local release and transmitting the tracking area update request are performed after expiration of a time period following detection of the trigger condition.
In a twenty-fourth aspect, alone or in combination with one or more of the first through twenty-third aspects, initiating the local release of the first connection, or transmitting the tracking area update request to the first cell, occur within less than a predetermined time duration or period after receiving the first RRC connection reconfiguration message.
In a twenty-fifth aspect, alone or in combination with one or more of the first through twenty-third aspects, the wireless receiving device performs the local release of the first connection to end the first connection.
In a twenty-sixth aspect, alone or in combination with one or more of the first through  twenty-fifth aspects, the tracking area update request includes an indication of a location of the wireless receiving device.
In a twenty-seventh aspect, alone or in combination with one or more of the first through twenty-sixth aspects, the wireless receiving device determines whether the wireless receiving device is engaged in a high priority session is on-going via the first connection, and the wireless receiving device initiates the local release or transmits the tracking area update request based on a determination that the wireless receiving device is not engaged in the high priority session.
In a twenty-eighth aspect, alone or in combination with one or more of the first through eighteenth aspects, the wireless receiving device establishes a second connection with a second cell after transmitting the tracking area update request.
In a twenty-ninth aspect, in combination with the twenty-eighth aspect, the first cell and the second cell are the same cell, the second connection includes a long-term evolution (LTE) connection, or a combination thereof.
In a thirtieth aspect, alone or in combination with one or more of the first through twenty-ninth aspects, the wireless receiving device receives, from the first cell, a tracking are update acceptance message.
In a thirty-first aspect, alone or in combination with one or more of the first through thirtieth aspects, the wireless receiving device receives a third RRC connection reconfiguration message and transmits a third RRC connection reconfiguration complete message.
In a thirty-second aspect, in combination with the thirty-first aspect, the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
In a thirty-third aspect, alone or in combination with one or more of the thirty-first through thirty-second aspects, the wireless receiving device transmits the measurement report based on receipt of the third RRC connection reconfiguration message.
In a thirty-fourth aspect, an apparatus configured for wireless communication includes means for establishing, by a user equipment (UE) , a first connection with a first cell, means for detecting a trigger condition while the first connection between the UE and the first cell is present, means for initiating, by the UE, a local release of the first connection based on the trigger condition and while the UE has not added a second cell group, and means for transmitting, by the UE, a tracking area update request to the first cell based on the trigger condition and while the UE has not added a second cell group.
In a thirty-fifth aspect, alone or in combination with the thirty-fourth aspect, the UE includes a non-standalone (NSA) capable UE, the first cell includes a NSA cell, the first connection includes a long-term evolution (LTE) connection, or a combination thereof.
In a thirty-sixth aspect, alone or in combination with one or more of the thirty-fourth through thirty-fifth aspects, the first connection between the UE and the first cell corresponds to the UE being in a radio resource control (RRC) connected state on the first cell.
In a thirty-seventh aspect, alone or in combination with one or more of the thirty-fourth through thirty-sixth aspects, the means for establishing the first connection includes means for transmitting a radio resource control (RRC) connection request, means for receiving a RRC connection setup message, and means for transmitting a RRC connection setup complete message.
In a thirty-eighth aspect, alone or in combination with one or more of the thirty-fourth through thirty-seventh aspects, the apparatus further includes means for receiving a UE capability enquiry, and means for transmitting UE capability information.
In a thirty-ninth aspect, alone or in combination with the thirty-eighth aspect, the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
In a fortieth aspect, alone or in combination with one or more of the thirty-fourth through thirty-ninth aspects, the apparatus further includes means for receiving a first RRC connection reconfiguration message, and means for transmitting a first RRC connection reconfiguration complete message.
In a forty-first aspect, alone or in combination with the fortieth aspect, the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
In a forty-second aspect, alone or in combination with the forty-first aspect, the apparatus further includes means for monitoring one or more frequencies based on the one or more measurement objects.
In a forty-third aspect, alone or in combination with the forty-second aspect, the apparatus further includes means for generating, based on monitoring the one or more frequencies, a measurement report.
In a forty-fourth aspect, alone or in combination with the forty-third aspect, the apparatus further includes means for delaying transmission of the measurement report.
In a forty-fifth aspect, alone or in combination with one or more of the thirty-fourth through forty-fourth aspects, the apparatus further includes means for receiving a second  RRC connection reconfiguration message, and means for transmitting a second RRC connection reconfiguration complete message
In a forty-sixth aspect, alone or in combination with the forty-fifth aspect, the UE receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
In a forty-seventh aspect, alone or in combination with one or more of the forty-fifth through forty-sixth aspects, the second RRC connection reconfiguration message does not indicate NR measurement objects, and based on the second RRC connection reconfiguration message, the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) .
In a forty-eighth aspect, alone or in combination with one or more of the forty-fifth through forty-sixth aspects, the apparatus further includes means for configuring, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR synchronization signal blocks (SSBs) , and means for deconfiguring, based on the second RRC connection reconfiguration message, the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
In a forty-ninth aspect, alone or in combination with one or more of the fortieth through forty-eighth aspects, the apparatus further includes means for controlling presentation of an indicator to indicate NR communication is available or not available
In a fiftieth aspect, alone or in combination with one or more of the thirty-fourth through forty-ninth aspects, the means for detecting the trigger condition includes means for determining that the UE failed to add a secondary cell group.
In a fifty-first aspect, alone or in combination with one or more of the thirty-fourth through forty-ninth aspects, the means for detecting the trigger condition includes means for determining that the UE was unable to send the measurement report.
In a fifty-second aspect, alone or in combination with one or more of the thirty-fourth through forty-ninth aspects, the means for detecting the trigger condition includes means for exiting a low power mode
In a fifty-third aspect, alone or in combination with one or more of the thirty-fourth through forty-ninth aspects, the means for detecting the trigger condition includes means for activating a NR capability.
In a fifty-fourth aspect, alone or in combination with one or more of the thirty-fourth through forty-ninth aspects, the means for detecting the trigger condition includes means for receiving the second RRC connection reconfiguration message, means for deconfiguring at  least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
In a fifty-fifth aspect, alone or in combination with one or more of the thirty-fourth through forty-ninth aspects, the means for detecting the trigger condition includes means for receiving an input via a user interface of the UE.
In a fifty-sixth aspect, alone or in combination with the fifty-fifth aspect, the input includes a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
In a fifty-seventh aspect, alone or in combination with one or more of the thirty-fourth through fifty-sixth aspects, the local release is initiated and the tracking area update request is transmitted after expiration of a time period following detection of the trigger condition.
In a fifty-eighth aspect, alone or in combination with one or more of the thirty-fourth through fifty-seventh aspects, the local release of the first connection is initiated, or the tracking area update request to the first cell is transmitted, within less than a predetermined time duration or period after receiving the first RRC connection reconfiguration message.
In a fifty-ninth aspect, alone or in combination with one or more of the thirty-fourth through fifty-eighth aspects, the apparatus further includes means for performing the local release of the first connection to end the first connection.
In a sixtieth aspect, alone or in combination with one or more of the thirty-fourth through fifty-ninth aspects, the tracking area update request includes an indication of a location of the UE.
In a sixty-first aspect, alone or in combination with one or more of the thirty-fourth through sixtieth aspects, the apparatus further includes means for determining whether the UE is engaged in a high priority session is on-going via the first connection, and where the UE initiates the local release and transmits the tracking area update request based on a determination that the UE is not engaged in the high priority session.
In a sixty-second aspect, alone or in combination with one or more of the thirty-fourth through sixty-first aspects, the means for establishing a second connection with a second cell after transmission of the tracking area update request.
In a sixty-third aspect, alone or in combination with the sixty-second aspect, the first cell and the second cell are the same cell, the second connection includes a long-term evolution (LTE) connection, or a combination thereof.
In a sixty-fourth aspect, alone or in combination with one or more of the sixty-fourth through sixty-third aspects, the apparatus further includes means for receiving, from the first cell, a tracking are update acceptance message.
In a sixty-fifth aspect, alone or in combination with one or more of the thirty-fourth through sixty-fourth aspects, the apparatus further includes means for receiving a third RRC connection reconfiguration message, and means for transmitting a third RRC connection reconfiguration complete message.
In a sixty-sixth aspect, alone or in combination with the sixty-fifth aspect, the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
In a sixty-seventh aspect, alone or in combination with one or more of the sixty-fifth through sixty-sixth aspects, the apparatus further includes means for transmitting the measurement report based on receipt of the third RRC connection reconfiguration message.
In a sixty-eighth aspect, a non-transitory computer-readable medium has program code recorded thereon, the program code including program code executable by a computer for causing the computer to establish, by a user equipment (UE) , a first connection with a first cell, while the first connection between the UE and the first cell is present, detect a trigger condition, and based on the trigger condition and while the UE has not added a second cell group: initiate a local release of the first connection, and transmit a tracking area update request to the first cell.
In a sixty-ninth aspect, alone or in combination with the sixty-eighth aspect, the UE includes a non-standalone (NSA) capable UE.
In a seventieth aspect, alone or in combination with the sixty-eighth through sixty-ninth aspects, the UE includes the first cell includes a NSA cell.
In a seventy-first aspect, alone or in combination with the sixty-eighth through seventieth aspects, the UE includes the first connection includes a long-term evolution (LTE) connection, and the first connection between the UE and the first cell corresponds to the UE being in a radio resource control (RRC) connected state on the first cell.
In a seventy-second aspect, alone or in combination with one or more of the sixty-eighth through seventy-first aspects, to establish the first connection, the program code further causes the computer to transmit a radio resource control (RRC) connection request, receive a RRC connection setup message, and transmit a RRC connection setup complete message.
In a seventy-third aspect, alone or in combination with one or more of the sixty-eighth through seventy-first aspects, the program code further causes the computer to receive a UE capability enquiry, and transmit UE capability information.
In a seventy-fourth aspect, alone or in combination with seventy-third aspect, the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
In a seventy-fifth aspect, alone or in combination with one or more of the sixty-eighth through seventy-fourth aspects, the program code further causes the computer to receive a first RRC connection reconfiguration message, and transmit a first RRC connection reconfiguration complete message.
In a seventy-sixth aspect, alone or in combination with the seventy-fifth aspect, the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
In a seventy-seventh aspect, alone or in combination with the seventy-sixth aspect, the program code further causes the computer to monitor one or more frequencies based on the one or more measurement objects.
In a seventy-eighth aspect, alone or in combination with the seventy-seventh aspect, the program code further causes the computer to generate, based on monitoring the one or more frequencies, a measurement report.
In a seventy-ninth aspect, alone or in combination with the seventy-eighth aspect, the program code further causes the computer to delay transmission of the measurement report
In an eightieth aspect, alone or in combination with one or more of the sixty-eighth through seventy-ninth aspects, the program code further causes the computer to receive a second RRC connection reconfiguration message, and transmit a second RRC connection reconfiguration complete message.
In an eighty-first aspect, alone or in combination with the eightieth aspect, the UE receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
In an eighty-second aspect, alone or in combination with the eightieth aspect, the second RRC connection reconfiguration message does not indicate NR measurement objects, and based on the second RRC connection reconfiguration message, the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) .
In an eighty-third aspect, alone or in combination with one or more of eightieth through eighty-second aspects, the program code further causes the computer to configure, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR synchronization signal blocks (SSBs) and, based on the second RRC connection reconfiguration message, deconfigure the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
In an eighty-fourth aspect, alone or in combination with one or more of the seventy-fifth through eighty-third aspects, the program code further causes the computer to control presentation of an indicator to indicate NR communication is available or not available.
In an eighty-fifth aspect, alone or in combination with one or more of the sixty-eighth through eighty-fourth aspects, to detect the trigger condition, the program code further causes the computer to determine that the UE failed to add a secondary cell group.
In an eighty-sixth aspect, alone or in combination with one or more of the sixty-eighth through eighty-fourth aspects, to detect the trigger condition, the program code further causes the computer to determine that the UE was unable to send the measurement report.
In an eighty-seventh aspect, alone or in combination with one or more of the sixty-eighth through eighty-fourth aspects, to detect the trigger condition, the program code further causes the computer to exit a low power mode.
In an eighty-eighth aspect, alone or in combination with one or more of the sixty-eighth through eighty-fourth aspects, to detect the trigger condition, the program code further causes the computer to activate a NR capability.
In an eighty-ninth aspect, alone or in combination with one or more of the sixty-eighth through eighty-fourth aspects, to detect the trigger condition, the program code further causes the computer to receive the second RRC connection reconfiguration message, deconfigure at least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
In an ninetieth aspect, alone or in combination with one or more of the sixty-eighth through eighty-fourth aspects, to detect the trigger condition, the program code further causes the computer to receive an input via a user interface of the UE.
In a ninety-first aspect, alone or in combination with the ninetieth aspect, the input includes a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
In a ninety-second aspect, alone or in combination with one or more of the sixty-eighth through ninety-first aspects, the local release is initiated and the tracking area update  request is transmitted after expiration of a time period following detection of the trigger condition.
In a ninety-third aspect, alone or in combination with one or more of the sixty-eighth through ninety-second aspects, the local release is initiated, or the tracking area update request is transmitted, within less than a predetermined time duration or period after receipt the first RRC connection reconfiguration message.
In a ninety-fourth aspect, alone or in combination with one or more of the sixty-eighth through ninety-third aspects, the program code further causes the computer to perform the local release of the first connection to end the first connection.
In a ninety-fifth aspect, alone or in combination with one or more of the sixty-eighth through ninety-fourth aspects, the tracking area update request includes an indication of a location of the UE.
In a ninety-sixth aspect, alone or in combination with one or more of the sixty-eighth through ninety-fifth aspects, the program code further causes the computer to determine whether the UE is engaged in a high priority session is on-going via the first connection, and where the UE initiates the local release and transmits the tracking area update request based on a determination that the UE is not engaged in the high priority session.
In a ninety-seventh aspect, alone or in combination with one or more of the sixty-eighth through ninety-sixth aspects, the program code further causes the computer to after transmitting the tracking area update request, establish a second connection with a second cell.
In a ninety-eighth aspect, alone or in combination with the ninety-seventh aspect, the first cell and the second cell are the same cell, the second connection includes a long-term evolution (LTE) connection, or a combination thereof.
In a ninety-ninth aspect, alone or in combination with one or more of the sixty-eighth through ninety-eighth aspects, the program code further causes the computer to receive, from the first cell, a tracking are update acceptance message.
In a hundredth aspect, alone or in combination with one or more of the sixty-eighth through ninety-ninth aspects, the program code further causes the computer to receive a third RRC connection reconfiguration message, and transmit a third RRC connection reconfiguration complete message.
In a hundred and first aspect, alone or in combination with the hundredth aspect, the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
In a hundred and second aspect, alone or in combination with one or more of the hundredth through hundred and first aspects, the program code further causes the computer to transmit the measurement report based on receipt of the third RRC connection reconfiguration message.
In a hundred and third aspect, an apparatus configured for wireless communication includes at least one processor and a memory coupled to the at least one processor, where the at least one processor is configured to establish, by a user equipment (UE) , a first connection with a first cell, while the first connection between the UE and the first cell is present, detect a trigger condition, and based on the trigger condition and while the UE has not added a second cell group: initiate a local release of the first connection, and transmit a tracking area update request to the first cell.
In a hundred and fourth aspect, alone or in combination with the hundred and third aspect, the UE includes a non-standalone (NSA) capable UE, the first cell includes a NSA cell, the first connection includes a long-term evolution (LTE) connection, or a combination thereof.
In a hundred and fifth aspect, alone or in combination with one or more of the hundred and third through hundred and fourth aspects, the first connection between the UE and the first cell corresponds to the UE being in a radio resource control (RRC) connected state on the first cell.
In a hundred and sixth aspect, alone or in combination with one or more of the hundred and third through hundred and fifth aspects, to establish the first connection, the at least one processor is configured to transmit a radio resource control (RRC) connection request, receive a RRC connection setup message, and transmit a RRC connection setup complete message.
In a hundred and seventh aspect, alone or in combination with one or more of the hundred and third through hundred and sixth aspects, the at least one processor is further configured to receive a UE capability enquiry, and transmit UE capability information.
In a hundred and eighth aspect, alone or in combination with hundred and seventh aspect, the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
In a hundred and ninth aspect, alone or in combination with one or more of the hundred and third through hundred and eighth aspects, the at least one processor is further configured to receive a first RRC connection reconfiguration message, and transmit a first RRC connection reconfiguration complete message.
In a hundred and tenth aspect, alone or in combination with the hundred and ninth aspect, the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
In a hundred and eleventh aspect, alone or in combination with the hundred and tenth aspect, the at least one processor is further configured to monitor one or more frequencies based on the one or more measurement objects.
In a hundred and twelfth aspect, alone or in combination with the hundred and eleventh aspect, the at least one processor is further configured to generate, based on monitoring the one or more frequencies, a measurement report.
In a hundred and thirteenth aspect, alone or in combination with the hundred and twelfth aspect, the at least one processor is further configured to delay transmission of the measurement report.
In a hundred and fourteenth aspect, alone or in combination with one or more of the hundred and third through hundred and twelfth aspects, the at least one processor is further configured to receive a second RRC connection reconfiguration message, and transmit a second RRC connection reconfiguration complete message.
In a hundred and fifteenth aspect, alone or in combination with the hundred and fourteenth aspect, the UE receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
In a hundred and sixteenth aspect, alone or in combination with the hundred and fourteenth aspect, the second RRC connection reconfiguration message does not indicate NR measurement objects, and based on the second RRC connection reconfiguration message, the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) .
In a hundred and seventeenth aspect, alone or in combination with one or more of the hundred and fourteenth through hundred and sixteenth aspects, the at least one processor is further configured to configure, based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR synchronization signal blocks (SSBs) , and based on the second RRC connection reconfiguration message, deconfigure the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
In a hundred and eighteenth aspect, alone or in combination with one or more of the hundred and ninth through hundred and seventeenth aspects, the at least one processor is  further configured to control presentation of an indicator to indicate NR communication is available or not available.
In a hundred and nineteenth aspect, alone or in combination with one or more of the hundred and third through hundred and eighteenth aspects, to detect the trigger condition, the at least one processor is configured to determine that the UE failed to add a secondary cell group.
In a hundred and twentieth aspect, alone or in combination with one or more of the hundred and third through hundred and eighteenth aspects, to detect the trigger condition, the at least one processor is configured to determine that the UE was unable to send the measurement report.
In a hundred and twenty-first aspect, alone or in combination with one or more of the hundred and third through hundred and eighteenth aspects, to detect the trigger condition, the at least one processor is configured to exit a low power mode.
In a hundred and twenty-second aspect, alone or in combination with one or more of the hundred and third through hundred and eighteenth aspects, to detect the trigger condition, the at least one processor is configured to activate a NR capability.
In a hundred and twenty-third aspect, alone or in combination with one or more of the hundred and third through hundred and eighteenth aspects, to detect the trigger condition, the at least one processor is configured to receive the second RRC connection reconfiguration message, deconfigure at least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs, or a combination thereof.
In a hundred and twenty-fourth aspect, alone or in combination with one or more of the hundred and third through hundred and eighteenth aspects, to detect the trigger condition, the at least one processor is configured to receive an input via a user interface of the UE.
In a hundred and twenty-fifth aspect, alone or in combination with hundred and twenty-fourth aspect, the input includes a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
In a hundred and twenty-sixth aspect, alone or in combination with one or more of the hundred and third through hundred and twenty-fifth aspects, the local release is initiated and the tracking area update request is transmitted after expiration of a time period following detection of the trigger condition.
In a hundred and twenty-seventh aspect, alone or in combination with one or more of the hundred and third through hundred and twenty-sixth aspects, the local release of the first connection is initiated, or the tracking area update request to the first cell is transmitted,  within less than a predetermined time duration or period after receiving the first RRC connection reconfiguration message.
In a hundred and twenty-eighth aspect, alone or in combination with one or more of the hundred and third through hundred and twenty-seventh aspects, the at least one processor is further configured to perform the local release of the first connection to end the first connection.
In a hundred and twenty-ninth aspect, alone or in combination with one or more of the hundred and third through hundred and twenty-eighth aspects, the tracking area update request includes an indication of a location of the UE.
In a hundred and thirtieth aspect, alone or in combination with one or more of the hundred and third through hundred and twenty-ninth aspects, the at least one processor is further configured to determine whether the UE is engaged in a high priority session is on-going via the first connection, and where the UE initiates the local release and transmits the tracking area update request based on a determination that the UE is not engaged in the high priority session.
In a hundred and thirty-first aspect, alone or in combination with one or more of the hundred and third through hundred and thirtieth aspects, after transmission of the tracking area update request, the at least one processor is further configured to establish a second connection with a second cell.
In a hundred and thirty-second aspect, alone or in combination with the hundred and thirty-first aspect, the first cell and the second cell are the same cell, the second connection includes a long-term evolution (LTE) connection, or a combination thereof.
In a hundred and thirty-third aspect, alone or in combination with one or more of the hundred and third through hundred and thirty-second aspects, the at least one processor is further configured to receive, from the first cell, a tracking are update acceptance message.
In a hundred and thirty-fourth aspect, alone or in combination with one or more of the hundred and third through hundred and thirty-third aspects, the at least one processor is further configured to receive a third RRC connection reconfiguration message, and transmit a third RRC connection reconfiguration complete message.
In a hundred and thirty-fifth aspect, alone or in combination with one or more of the hundred and thirty-fourth aspect, the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
In a hundred and thirty-sixth aspect, alone or in combination with one or more of the hundred and thirty-fourth through hundred and thirty-fifth aspects, the at least one processor  is further configured to transmit the measurement report based on receipt of the third RRC connection reconfiguration message.
Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The functional blocks and modules in FIGS. 1-8 may include processors, electronics devices, hardware devices, electronics components, logical circuits, memories, software codes, firmware codes, etc., or any combination thereof.
Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure. Skilled artisans will also readily recognize that the order or combination of components, methods, or interactions that are described herein are merely examples and that the components, methods, or interactions of the various aspects of the present disclosure may be combined or performed in ways other than those illustrated and described herein.
The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a  plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. Computer-readable storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, a connection may be properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, or digital subscriber line (DSL) , then the coaxial cable, fiber optic cable, twisted pair, or DSL, are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any  combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) or any of these in any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
WHAT IS CLAIMED IS:

Claims (34)

  1. A method for wireless communication, the method comprising:
    establishing, by a user equipment (UE) , a first connection with a first cell;
    while the first connection between the UE and the first cell is present, detecting a trigger condition; and
    based on the trigger condition and while the UE has not added a second cell group:
    initiating, by the UE, a local release of the first connection; and
    transmitting, by the UE, a tracking area update request to the first cell.
  2. The method of claim 1, wherein:
    the UE comprises a non-standalone (NSA) capable UE;
    the first cell comprises a NSA cell;
    the first connection comprises a long-term evolution (LTE) connection; or
    a combination thereof.
  3. The method of any of claims 1-2, wherein:
    the first connection between the UE and the first cell corresponds to the UE being in a radio resource control (RRC) connected state on the first cell.
  4. The method of any of claims 1-3, wherein, establishing the first connection comprises:
    transmitting, by the UE, a radio resource control (RRC) connection request;
    receiving, by the UE, a RRC connection setup message; and
    transmitting, by the UE, a RRC connection setup complete message.
  5. The method of any of claims 1-4, further comprising:
    receiving, by the UE, a UE capability enquiry; and
    transmitting, by the UE, UE capability information.
  6. The method of claim 5, wherein the UE capability information indicates a multi-radio access technology dual connectivity (MRDC) capability, a new radio (NR) capability, or a combination thereof.
  7. The method of any of claims 1-6, further comprising:
    receiving, by the UE, a first RRC connection reconfiguration message; and
    transmitting, by the UE, a first RRC connection reconfiguration complete message.
  8. The method of claim 7, wherein the first RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  9. The method of claim 8, further comprising:
    monitoring, by the UE, one or more frequencies based on the one or more measurement objects.
  10. The method of claim 9, further comprising:
    generating, by the UE based on monitoring the one or more frequencies, a measurement report.
  11. The method of claim 10, further comprising:
    delaying, by the UE, transmission of the measurement report.
  12. The method of any of claims 1-11, further comprising:
    receiving, by the UE, a second RRC connection reconfiguration message; and
    transmitting, by the UE, a second RRC connection reconfiguration complete message.
  13. The method of claim 12, wherein:
    the UE receives the second RRC connection reconfiguration message after the first RRC connection reconfiguration message.
  14. The method of any of claims 12-13, wherein:
    the second RRC connection reconfiguration message does not indicate NR measurement objects; and
    based on the second RRC connection reconfiguration message, the UE configures one or more of layers such that the UE does not monitor to measure for NR synchronization signal blocks (SSBs) .
  15. The method of any of claims 12-14, further comprising:
    configuring, by the UE based on the NR measurement objects indicated by first RRC connection reconfiguration message, at least one layer of the UE for measuring NR synchronization signal blocks (SSBs) ; and
    based on the second RRC connection reconfiguration message, deconfiguring, by the UE, the at least one layer of the UE such that the at least one layer is not configured for measuring the SSBs.
  16. The method of any of claims 7-15, further comprising:
    controlling, by the UE, presentation of an indicator to indicate NR communication is available or not available.
  17. The method of any of claims 1-16, wherein, detecting the trigger condition comprises:
    determining, by the UE, that the UE failed to add a secondary cell group.
  18. The method of any of claims 1-16, wherein, detecting the trigger condition comprises:
    determining, by the UE, that the UE was unable to send the measurement report.
  19. The method of any of claims 1-16, wherein, detecting the trigger condition comprises:
    exiting, by the UE, a low power mode.
  20. The method of any of claims 1-16, wherein, detecting the trigger condition comprises:
    activating, by the UE, a NR capability.
  21. The method of any of claims 1-16, wherein, detecting the trigger condition comprises:
    receiving, by the UE, the second RRC connection reconfiguration message;
    deconfiguring at least one layer of the UE such that the at least one layer is not configured for measuring NR synchronization signal blocks SSBs; or
    a combination thereof.
  22. The method of any of claims 1-16, wherein, detecting the trigger condition comprises:
    receiving, by the UE, an input via a user interface of the UE.
  23. The method of claim 22, wherein:
    the input comprises a request to connect to a NR network, a request to active a NR capability, or a request to exit a low power mode.
  24. The method of any of claims 1-23, wherein:
    initiating the local release and transmitting the tracking area update request are performed after expiration of a time period following detection of the trigger condition.
  25. The method of any of claims 1-24, wherein:
    initiating the local release of the first connection, or transmitting the tracking area update request to the first cell, occur within less than a predetermined time duration or period after receiving the first RRC connection reconfiguration message.
  26. The method of any of claims 1-25, further comprising:
    performing, by the UE, the local release of the first connection to end the first connection.
  27. The method of any of claims 1-26, wherein:
    the tracking area update request comprises an indication of a location of the UE.
  28. The method of any of claims 1-27, further comprising:
    determining, by the UE, whether the UE is engaged in a high priority session is on-going via the first connection; and
    wherein the UE initiates the local release and transmits the tracking area update request based on a determination that the UE is not engaged in the high priority session.
  29. The method of any of claims 1-28, wherein:
    after transmitting the tracking area update request, establishing, by the UE, a second connection with a second cell.
  30. The method of claim 29, wherein:
    the first cell and the second cell are the same cell;
    the second connection comprises a long-term evolution (LTE) connection; or
    a combination thereof.
  31. The method of any of claims 1-30, further comprising:
    receiving, by the UE from the first cell, a tracking are update acceptance message.
  32. The method of any of claims 1-31, further comprising:
    receiving, by the UE, a third RRC connection reconfiguration message; and
    transmitting, by the UE, a third RRC connection reconfiguration complete message.
  33. The method of claim 32, wherein the third RRC connection reconfiguration message indicates one or more new radio (NR) measurement objects.
  34. The method of any of claims 32-33, further comprising:
    transmitting, by the UE, the measurement report based on receipt of the third RRC connection reconfiguration message.
PCT/CN2020/074111 2020-01-31 2020-01-31 Method to add new radio for a user equipment WO2021151250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074111 WO2021151250A1 (en) 2020-01-31 2020-01-31 Method to add new radio for a user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074111 WO2021151250A1 (en) 2020-01-31 2020-01-31 Method to add new radio for a user equipment

Publications (1)

Publication Number Publication Date
WO2021151250A1 true WO2021151250A1 (en) 2021-08-05

Family

ID=77078578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074111 WO2021151250A1 (en) 2020-01-31 2020-01-31 Method to add new radio for a user equipment

Country Status (1)

Country Link
WO (1) WO2021151250A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180136862A (en) * 2017-06-15 2018-12-26 삼성전자주식회사 Method and apparatus for handling mobility in dual rrc system
WO2019153300A1 (en) * 2018-02-11 2019-08-15 Nokia Shanghai Bell Co., Ltd. Method and devices for communicating with a core network
CN110557777A (en) * 2019-05-16 2019-12-10 Oppo广东移动通信有限公司 Network connection control method, terminal and storage medium
CN110636593A (en) * 2019-09-16 2019-12-31 Oppo广东移动通信有限公司 Connection mode control method, terminal and storage medium
CN110662279A (en) * 2019-09-27 2020-01-07 中兴通讯股份有限公司 Connection state control method, device, first communication node and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180136862A (en) * 2017-06-15 2018-12-26 삼성전자주식회사 Method and apparatus for handling mobility in dual rrc system
WO2019153300A1 (en) * 2018-02-11 2019-08-15 Nokia Shanghai Bell Co., Ltd. Method and devices for communicating with a core network
CN110557777A (en) * 2019-05-16 2019-12-10 Oppo广东移动通信有限公司 Network connection control method, terminal and storage medium
CN110636593A (en) * 2019-09-16 2019-12-31 Oppo广东移动通信有限公司 Connection mode control method, terminal and storage medium
CN110662279A (en) * 2019-09-27 2020-01-07 中兴通讯股份有限公司 Connection state control method, device, first communication node and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "UE category for EN-DC", 3GPP DRAFT; R2-1707824 UE CATEGORIES FOR EN-DC AND NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051317773 *

Similar Documents

Publication Publication Date Title
US10904907B2 (en) Variable packet delay budgets for wireless communications
US20210051592A1 (en) Innovative signaling approaches to network for overheating indication in new radio (nr) and multi-radio dual connectivity (mr-dc)
US11930533B2 (en) Channel occupancy time aware sensing and resource selection for new radio-unlicensed sidelink
CN111066373A (en) Method, apparatus and system for supporting long term channel sensing in shared spectrum
KR20200052891A (en) User equipment-specific scheduling request iterations
US11153826B2 (en) Procedure-based uplink power control
US11818621B2 (en) Handling of listen before talk failures during radio resource control procedures
EP3874801B1 (en) Channel quality reporting using random access messages
KR102255083B1 (en) Slot format indicator in frequency division duplexing
US20220377795A1 (en) Configured grant channel occupancy time sharing procedure
EP4029159A1 (en) Capability-based determination of a shared data channel tci state
US20230292309A1 (en) On-demand scheduling request design
WO2021138884A1 (en) Signaling design for uplink precoding with restricted uplink transmit power
WO2021055137A1 (en) Dynamic switching of local oscillator signal frequency for up-conversion and down-conversion in time division duplex wireless communication
US11576205B2 (en) Enhanced measurements for new radio-unlicensed
US11729825B2 (en) Channel access enhancement for new radio-unlicensed
WO2022155896A1 (en) User equipment-determined single transmission-reception point and multi-transmission-reception point channel state information reporting
WO2021151250A1 (en) Method to add new radio for a user equipment
US11641672B2 (en) Adaptive energy detection threshold medium access based on deployment and traffic type
US11991641B2 (en) Network-controlled power control on side-link communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916605

Country of ref document: EP

Kind code of ref document: A1