WO2021149811A1 - Organic matter decomposer and use therefor - Google Patents

Organic matter decomposer and use therefor Download PDF

Info

Publication number
WO2021149811A1
WO2021149811A1 PCT/JP2021/002294 JP2021002294W WO2021149811A1 WO 2021149811 A1 WO2021149811 A1 WO 2021149811A1 JP 2021002294 W JP2021002294 W JP 2021002294W WO 2021149811 A1 WO2021149811 A1 WO 2021149811A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
organic matter
decomposition material
water
material according
Prior art date
Application number
PCT/JP2021/002294
Other languages
French (fr)
Japanese (ja)
Inventor
誠 ▲高▼谷
昌宏 島村
淳一 諸田
Original Assignee
株式会社日本環境科学研究所
株式会社村上開明堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本環境科学研究所, 株式会社村上開明堂 filed Critical 株式会社日本環境科学研究所
Priority to JP2021572822A priority Critical patent/JPWO2021149811A1/ja
Publication of WO2021149811A1 publication Critical patent/WO2021149811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to an organic decomposition material and its use.
  • Priority is claimed based on Japanese Patent Application No. 2020-010241 filed in Japan on January 24, 2020, and the contents thereof are incorporated herein by reference.
  • Wastewater such as domestic wastewater contains organic matter, nitrogen, phosphorus, oils and fats, etc., and when these flow directly into rivers, the neighboring sea area becomes eutrophicated and red tides occur, causing damage to fisheries and the ecosystem. It may be destroyed.
  • the activated sludge method is known as a method for decomposing organic pollutants contained in domestic wastewater.
  • activated sludge containing dozens of aerobic bacteria, protozoa, and micrometazoa is used.
  • organic matter in sewage is decomposed by the metabolism of the microbial population.
  • Patent Document 1 As a system for biologically treating wastewater containing organic pollutants, for example, a wastewater treatment system using a carrier carrying Bacillus subtilis BN1001 and Bacillus subtilis var. Natto is available. It is disclosed (Patent Document 1).
  • a sponge containing a resin such as urethane is used as a carrier for supporting microorganisms (Patent Document 2).
  • a resin such as urethane
  • Patent Document 2 a resin containing a resin such as urethane
  • the generation of fine plastic particles (microplastics) originating from resin has been regarded as a problem in the natural environment and living environment.
  • compost is usually produced by mixing plant organic matter, livestock manure, etc., which are the raw materials of compost, with soil microorganisms and decomposing the organic matter, and it takes about several months to produce compost.
  • an object of the present invention is to provide a carrier (organic matter decomposing material) on which microorganisms are supported, which has higher organic matter decomposition efficiency.
  • Another object of the present invention is to provide a water quality purification method and a compost production method using an organic decomposition material.
  • the present invention includes the following aspects.
  • An organic matter decomposing material containing a carrier and a microbial population supported on the carrier.
  • the carrier contains foamed glass, and the microbial population is Bacillus subtilis BN1001 (International). Depositary accession number NITE BP-02608) and Bacillus subtilis var. Natto, an organic decomposition material.
  • the organic decomposition material according to [1] which is used for purifying contaminated water.
  • [3] The organic decomposition material according to [2], wherein the contaminated water is seawater.
  • the organic matter decomposing material according to [2] or [3], wherein the contaminated water is breeding water for aquatic organisms.
  • an organic matter decomposing material having a higher organic matter decomposing efficiency. Further, according to the present invention, it is possible to provide a water quality purification method and a compost production method using an organic matter decomposing material.
  • Example 2 It is a photograph of the bottom surface of the water tank of the control group in Example 1. It is a photograph of the bottom surface of the aquarium to which only microorganisms were added in Example 1. It is a photograph of the bottom surface of the aquarium in which the foamed glass that does not carry microorganisms is installed in Example 1. It is a photograph of the bottom surface of the water tank in which the organic matter decomposition material was installed in Example 1. It is a graph which shows the time-dependent change of COD in Example 2. It is a graph which shows the time-dependent change of the total nitrogen concentration in Example 2. It is a graph which shows the time-dependent change of the nitrite nitrogen concentration in Example 2. It is a graph which shows the time-dependent change of the total phosphorus concentration in Example 2.
  • Example 2 It is a photograph of the filtered water tank of the target group and the experimental group in Example 2. It is a photograph of a filterified water tank in which an organic matter decomposition material is installed in Example 2. It is a photograph of an organic matter decomposition material one month after being installed in a filtered water tank in Example 2. It is a photograph of the control group blue-green aquarium generation indoor aquarium in Example 2. It is a photograph of the indoor aquarium without the occurrence of blue-green algae in the experimental group in Example 2. It is a graph which shows the temperature transition of the compost in the summer in Example 3. It is a graph which shows the temperature transition of the compost in the winter in Example 3. It is a graph which shows the main compost component by experiment category in Example 3.
  • the present invention is, in one embodiment, an organic decomposition material containing a carrier and a microbial population supported on the carrier, the carrier containing foamed glass, and the microbial population is Bacillus.
  • organic decomposition materials including Bacillus subtilis BN1001 (international deposit accession number NITE BP-02608) and Bacillus subtilis var. Natto.
  • the organic matter decomposing material according to the present embodiment is a microbial population including Bacillus subtilis BN1001 (international deposit accession number NITE BP-02608) and Bacillus subtilis var. Natto described in Patent Document 1. Also, it has higher organic matter decomposition efficiency than the carrier containing foamed glass.
  • BN1001 is a type of soil-derived Bacillus subtilis (Bacillus subtilis). It has been deposited internationally at 5-8) under the accession number NITE BP-02608. As natto bacteria, Bacillus subtilis var. Any bacterium classified as natto can be used without particular limitation. Hereinafter, a mixture of Bacillus subtilis BN1001 (international deposit accession number NITE BP-02608) and Bacillus subtilis var. Natto may be referred to as microorganism A.
  • the microbial population containing the microbial A is supported on a carrier, so that the handleability is improved. For example, when a microbial population containing microbial A comes into contact with water, the microbial population containing microbial A may be washed away with water and lost, but the microbial population containing microbial A should be supported on a carrier. This facilitates the establishment of a microbial population containing the microbial A. As a result, the microbial population containing the microorganism A can stably grow on the carrier, and as a result, the organic matter decomposition efficiency of the organic matter decomposition material according to the present embodiment is improved.
  • the above-mentioned carrier contains foamed glass. Glass is generally chemically stable and resistant to corrosion in the natural environment, has low toxicity to living organisms, has moderate strength and is resistant to wear. Therefore, the organic decomposition material according to the present embodiment can be used for a long period of time while maintaining its function.
  • the organic decomposition material according to the present embodiment is placed in the natural environment and is not recovered for a long period of time, the organic decomposition material does not adversely affect the natural environment. That is, the organic decomposition material according to the present embodiment has a low environmental load. Therefore, even if the organic matter decomposition material flows out into the environment, the impact on the environment is small.
  • a carrier for retaining microorganisms for example, a sponge containing a resin such as urethane is used (see, for example, Patent Document 2), but in recent years, fine plastic particles (microplastics) have been generated in the natural environment and living environment. Is regarded as a problem. Since the organic decomposition material according to the present embodiment does not contain plastic, it does not generate microplastic.
  • the carrier contained in the above-mentioned organic decomposition material includes foamed glass.
  • the foamed glass has a large number of pores, and some of these pores lead to the outside of the foamed glass.
  • Foam glass can also be called porous glass.
  • the shape of the foamed glass is not particularly limited, and examples thereof include a spherical shape, a rod shape, a needle shape, a plate shape, an indefinite shape, a scale shape, a spindle shape, and a block shape.
  • the size of the foamed glass is not particularly limited, and when the shape of the foamed glass is spherical, the diameter of the foamed glass may be 0.1 cm to 10 cm.
  • the length When the shape of the foamed glass is rod-shaped, the length may be 1 cm to 100 cm.
  • the thickness may be 1 cm to 10 cm.
  • the porosity of the foamed glass may be, for example, 40 to 75%.
  • the porosity of the foamed glass can be measured by a mercury press-fitting method or the like.
  • the diameter of the pores of the foamed glass may be, for example, 0.01 ⁇ m to 10 mm and may be distributed. The distribution is preferably 2.0 ⁇ m to 10 mm.
  • the method for producing foamed glass is not particularly limited, and for example, it is produced by mixing crushed glass and a foaming agent to obtain a mixture and firing this mixture before a microbial population containing microorganism A is supported. (See, for example, Japanese Patent No. 5382657).
  • the type of glass used as a raw material for foamed glass is not particularly limited, and examples thereof include soda-lime glass, borosilicate glass, and aluminosilicate glass.
  • the raw material glass is not particularly limited, and for example, waste glass derived from a mirror, a cathode ray tube, a liquid crystal, a plasma display, or the like may be used.
  • Examples of the effervescent agent include calcium such as calcium carbonate and calcium hydroxide; magnesium such as magnesium carbonate and magnesium hydroxide; and red iron oxide and ferrite.
  • the firing temperature and firing time are not particularly limited and can be appropriately set by those skilled in the art.
  • the above-mentioned foaming agent generates gas at a temperature at which the glass softens, and as a result, a large number of pores are formed inside the glass to produce foamed glass.
  • the carrier contained in the above-mentioned organic decomposition material may further contain a carrier other than the foamed glass (other carrier).
  • a carrier other than the foamed glass other carrier.
  • the material of the other carrier include carbides, minerals, metals or metal salts, silicon, polymers and the like. More specifically, charcoal, sand, diatomaceous earth, zeolite, pearlite, bentonite, ceramics, alumina, gypsum, silica gel and the like can be mentioned.
  • Microorganism A is supported on the carrier contained in the organic matter decomposing material according to the present embodiment.
  • the carrier may further carry a microorganism other than the microorganism A.
  • microorganisms other than microorganism A include Bacillus subtilis, lactic acid bacteria, yeast and the like other than BN1001.
  • the mass of the microorganism A supported on the carrier is not particularly limited as long as the microorganism A is contained to such an extent that the effect of the present invention is exhibited, but is 0 with respect to the mass of the carrier. It may be .0001% to 0.001%.
  • the dry mass preferably BN1001 bacterium is 10% by mass to 90% by mass, and the natto bacterium. Is contained in an amount of 10% by mass to 90% by mass, more preferably 40% by mass to 60% by mass of BN1001 bacteria and 60% by mass to 40% by mass of natto bacteria.
  • the organic substance decomposition material according to the present embodiment is not limited to a state in which the microbial population containing microbial A is supported as long as the microbial population containing microbial A can survive and proliferate during use.
  • the microbial population containing microbial A is supported.
  • the carrier may be in a state of being wet with a culture solution, water, or the like.
  • the organic matter decomposing material according to the present embodiment may be supported by, for example, dormant spores or the like, and in this case, the carrier may be in a dry state. Since the Bacillus subtilis spores are excellent in resistance to high temperature near 100 ° C., low temperature below freezing point, ultraviolet rays, high pressure, chemicals and the like, the organic decomposition material on which the Bacillus subtilis spores are supported is excellent in storage stability.
  • the organic decomposition material according to the present embodiment may further contain a carbon source, a nitrogen source, an inorganic nutrient source, a fixing agent and the like.
  • Examples of the carbon source include glucose, fructose, sucrose, maltose, lactose, starch and the like.
  • nitrogen source examples include amino acids, urea, peptone, bouillon, yeast extract, soybean flour, soybean meal, cottonseed oil cake, corn steep liquor, bran, soymilk, meat extract and the like.
  • inorganic nutrient sources include potassium chloride, magnesium sulfate, sodium chloride, potassium phosphate, calcium carbonate, vitamins, and other trace elements.
  • Examples of the adhesive material include inorganic powders, polysaccharides, and polymers.
  • Examples of the inorganic powder include bentonite, kaolin, gypsum and the like.
  • Examples of the polysaccharide include starch, cellulose and the like.
  • the method for supporting the microbial population containing the microbial A on the carrier is not particularly limited, and for example, a liquid containing the microbial population containing the microbial A by impregnating the culture solution of the microbial population containing the microbial A with a spray or the like. Is sprayed onto the carrier, a microbial population containing a dry powdered microbial A is brought into contact with the carrier, and a mixture of the microbial population containing microbial A and a fixing agent is applied to the carrier.
  • the organic decomposition material described above may be used for purifying contaminated water.
  • the contaminated water is not particularly limited as long as it can be purified by an organic decomposition material, and is domestic wastewater generated in kitchens, kitchens, toilets, bathrooms, etc .; aquatic organism breeding water; in livestock barns such as pig farms and chicken farms. Wastewater generated; Factory wastewater generated in food factories, drinking water factories, etc .; Wastewater in sewage treatment plants, etc .; Rainwater, rivers, lakes, marshes, water in the natural environment such as the ocean, etc. can be mentioned.
  • the above-mentioned contaminated water may be seawater or fresh water. Since the microorganism A is Bacillus subtilis and can survive even in seawater, the above-mentioned organic matter decomposing material can purify contaminated water in seawater.
  • the breeding water for aquatic organisms is not particularly limited as long as it can be purified by an organic matter decomposing material, and for example, water that comes into contact with aquatic organisms, water that contains food residues of aquatic organisms, water that contains excrement of aquatic organisms, and the like. It may be.
  • the breeding water may be stored in a container such as an aquarium, or may be water in a natural environment such as a lake or the ocean.
  • the organic matter decomposing material may be used by being put in a storage container. You may float it on the surface and use it.
  • the aquatic organism is not particularly limited, and may be, for example, fish, reptiles, crustaceans, shellfish, mammals, birds, insects, and the like.
  • the aquatic organism may also be a farmed aquatic product.
  • Examples of cultured aquaculture products include fish, crustaceans, shellfish and the like.
  • aquatic organism breeding water More specific examples of aquatic organism breeding water include ornamental aquatic organism breeding water, aquaculture water product breeding water in aquaculture tanks, and aquaculture water product breeding water in lakes, marines, and the like.
  • the above-mentioned organic matter decomposing material may be used for promoting composting of organic matter.
  • the organic substance is not particularly limited as long as it is decomposed by a microbial population containing microorganism A carried on the carrier, and is not particularly limited, and is, for example, animal excrement such as feces and urine; wood, green manure, deciduous leaves, rice husks, and the like. Plants such as waste, straw, weeds, aquatic plants, seaweeds, bamboo, bamboo powder; food residues, wastewater biological treatment surplus sludge, etc. can be mentioned.
  • the microbial population containing the microorganism A contained in the organic matter decomposing material efficiently grows in the pores of the foamed glass contained in the carrier, and the microbial population containing the grown microbial A efficiently decomposes the organic matter.
  • the decomposition rate of the organic matter can be increased, and as a result, compost can be produced from the organic matter in a short time.
  • the compost produced by contacting the organic matter with the organic matter decomposing material is more than the compost produced by contacting the organic matter with the microbial population containing the microorganism A not supported on the carrier. It has a low C / N ratio, a high content of nitrogen, phosphoric acid, and potassium, and is of high quality.
  • the present invention provides the use of the above-mentioned organic decomposition material for the purification of the above-mentioned contaminated water. In one embodiment, the present invention provides the use of the above-mentioned organic decomposition material for promoting composting of the above-mentioned organic matter.
  • the present invention provides a method for purifying the quality of contaminated water, which comprises a step of bringing the above-mentioned organic decomposition material into contact with contaminated water.
  • the organic matter decomposing material may further carry microorganisms other than the microorganism A. Further, as the contaminated water, the same one as described above can be exemplified.
  • the method for biologically treating the contaminated water according to the present embodiment may be, for example, as follows. Further, the above-mentioned organic matter decomposition material can also be used, for example, in a biological treatment tank of a wastewater treatment system. In the present specification, contaminated water may be referred to as wastewater.
  • the wastewater treatment method of the present embodiment is a method for biologically treating wastewater, which comprises a step of aeration of wastewater in the presence of the above-mentioned organic decomposition material, and the aeration air volume is 500 L / min or more. be.
  • the wastewater may be any type, but it may be oil-containing wastewater.
  • the concentration of the fats and oils in the wastewater is not particularly limited, but may be, for example, 30 to 1000 mg / L.
  • Microorganism A secretes an organic hydrolase.
  • the organic hydrolase is not particularly limited and preferably contains a fat-degrading enzyme lipase, a starch-degrading enzyme amylase, or a proteolytic enzyme protease, and more preferably contains a fat-degrading enzyme lipase. Further, the above-mentioned organic hydrolase may be further added to the waste water.
  • the aeration air volume is preferably 1000 L / min or more, and more preferably 1500 L / min or more. When the aeration air volume is within the above range, oxygen necessary for the growth of the microorganism A can be supplied.
  • the upper limit of the aeration air volume is not particularly limited, but it is realistic to be about 2000 L / min or less in terms of the performance of the aeration device.
  • the aeration step may be performed in a grease trap.
  • an aeration device to the grease trap to supply oxygen necessary for the growth of microorganism A.
  • a grease trap is a water storage tank in which the inside of the tank is divided into a plurality of sections, and is provided with a water inlet for introducing drainage and a drainage port for draining drainage, and traps oil and fat in the drainage in the trap. This is to prevent the water from flowing directly into the sewer.
  • a normal grease trap does not biologically treat wastewater, but such a grease trap can be said to biologically treat wastewater.
  • the wastewater treatment method of the present embodiment difficult-to-decompose components such as fats and oils, starch, and proteins in wastewater can be decomposed remarkably efficiently, so that high treated water quality can be obtained and generation of bad odor and sludge is small. .. Therefore, the wastewater treatment method of the present embodiment is not limited to food factories and food processing factories, but is suitably used for wastewater treatment in factories, research facilities, livestock barns, sewage treatment plants, etc. that discharge wastewater containing organic pollutants. Can be done.
  • Wastewater can also be treated by the following batch type wastewater treatment method using the above-mentioned organic matter decomposition material.
  • the batch type wastewater treatment method of the present embodiment includes a wastewater introduction step of introducing wastewater into a raw water tank and a flow rate adjusting tank that biologically treat the wastewater, an aeration step of aerating the introduced wastewater, and standing still after aeration. It is a method of repeating each step of the wastewater introduction step, the aeration step, the stand-up step and the drainage step, which comprises a standing step and a discharging step of discharging the treated water after standing, and the raw water tank and / or the flow rate.
  • the adjusting tank contains the above-mentioned organic decomposition material, and the aeration air volume of the flow rate adjusting tank is 500 L / min or more.
  • wastewater and organic hydrolases are the same as those described above.
  • the raw water tank may not only contain the wastewater, but may also biologically treat the wastewater.
  • the raw water tank may contain an organic decomposition material.
  • the high molecular weight organic pollutants can be reduced to medium or low molecular weight by the organic matter hydrolase secreted from the microorganism A. Further, an organic hydrolase may be added to the raw water tank.
  • the flow control tank not only regulates the amount of wastewater, but also biologically treats the wastewater.
  • the flow rate adjusting tank contains an organic decomposition material. Since the organic matter decomposing material is contained in the flow rate adjusting tank, the organic pollutants having medium and low molecular weight in the raw water tank can be further biodegraded.
  • the aeration air volume of the flow rate adjusting tank is preferably 1000 L / min or more, and more preferably 1500 L / min or more.
  • oxygen necessary for the growth of the microorganism A in the flow rate adjusting tank can be supplied.
  • the upper limit of the aeration air volume of the flow rate adjusting tank is not particularly limited, but it is realistic to be about 2000 L / min or less in terms of the performance of the aeration device.
  • the batch type wastewater treatment method is a method of performing wastewater treatment while repeating a cycle of introducing wastewater, aeration, standing (precipitation), and discharging treated water (supernatant water) in one biological treatment tank. Since SS (suspended solids) often floats on the surface during the standing step, it is preferable to discharge the treated water from water (between the sludge interface and the water surface) instead of from the water surface.
  • the sludge sedimentation property is good. Since one biological treatment tank doubles as an aeration tank and a settling tank, there are advantages such as a simple structure of the apparatus. Further, since the aeration time, the standing time, and the like can be easily changed, the wastewater treatment conditions can be easily adjusted according to the changes in the amount of wastewater, the water temperature, and the like.
  • the batch wastewater treatment method of the present embodiment difficult-to-decompose components such as fats and oils, starch, and proteins in the wastewater can be decomposed remarkably efficiently, so that high treated water quality can be obtained and foul odors and sludge are generated. There are few. Therefore, the batch wastewater treatment method of the present embodiment is suitable not only for food manufacturing factories and food processing factories, but also for wastewater treatment in factories, research facilities, livestock barns, sewage treatment plants, etc. that discharge wastewater containing organic pollutants. Can be used for.
  • the present invention provides a compost production method for producing compost from an organic substance, which comprises a step of bringing the above-mentioned organic matter decomposition material into contact with an organic substance.
  • the carrier of the organic matter decomposing material may further carry a microorganism other than the microorganism A. Examples of the organic matter used as a raw material for compost include the same as those described above.
  • compost can be produced by, for example, the following method using an organic decomposition material.
  • the compost production method of the present embodiment it is preferable to keep the compost raw material in an aerobic state.
  • the compost production method of the present embodiment may include, for example, a pretreatment step and a fermentation step.
  • the air permeability, water content, pH, etc. of the compost raw material may be adjusted. Further, in the pretreatment step, unsuitable substances for fermentation such as food packaging plastics and metals may be removed. In the fermentation process, the organic matter of the compost raw material is decomposed.
  • the organic matter that is the raw material for compost may be mixed with auxiliary materials and composted.
  • auxiliary material include inorganic materials such as zeolite, vermiculite, and perlite; and soil conditioners such as wood-based raw materials such as rice husks and sawdust.
  • the compost may be added to the compost raw material as a return compost.
  • lime or the like may be added to the compost raw material in order to adjust the pH.
  • the water content may be adjusted.
  • anaerobic fermentation can be suppressed, and the generation of hydrogen sulfide and the like and the generation of offensive odors associated with the anaerobic fermentation can be suppressed.
  • the particle size of the compost raw material is not particularly limited as long as a good quality compost can be produced.
  • the air permeability can be improved. It can promote aerobic fermentation.
  • aerobic fermentation is carried out by performing fermentation within an appropriate range of air permeability, water content, pH and the like.
  • the aerobic fermentation is appropriately advanced and the temperature of the compost raw material is maintained at 60 ° C. or higher for 48 hours or longer.
  • pathogens, parasite eggs and the like that can be contained in the compost raw material can be killed and weed seeds and the like can be inactivated.
  • the earlier the time until the compost raw material temperature reaches 60 ° C. the shorter the fermentation step is.
  • the above-mentioned organic matter decomposition material is mixed with the compost raw material. Further, in the initial fermentation step (before switching), the temperature of the compost raw material can be maintained at 60 ° C. or higher for 48 hours or more by fermenting the compost raw material using the above-mentioned organic matter decomposition material. As a result, the effect of killing pathogens, parasite eggs, etc. that can be contained in the compost raw material, and the effect of inactivating weed seeds, etc. are further improved. Further, as a result, the time required for the compost raw material temperature to reach 60 ° C. can be shortened within 25 hours, which leads to shortening of the fermentation process.
  • compost can be produced from the organic matter in a short time by bringing the organic matter into contact with the organic matter decomposing material.
  • Examples of equipment used in the fermentation process include sedimentation type, silo type, tunnel type, batch type and the like.
  • a method of mixing for example, a method by turning back or a method using a mixer may be used.
  • examples of the method of ventilating the compost raw material include an air supply method and an intake method.
  • the compost raw material may be heated and kept warm.
  • Example 1 Purification of goldfish breeding water
  • 2L commercially available external connection type filtration device
  • a water tank equipped with a commercially available filtration device was prepared. Further, in the experimental group, a water tank in which only the microbial population containing the microorganism A was added (experimental group 1), a water tank in which the foamed glass in which the microbial population containing the microbial A was not supported (experimental group 2) was placed, and 1 mg / mg in advance. A water tank (Experimental Group 3) was prepared in which an organic decomposition material in which a foam glass was impregnated with a microbial population containing L microorganism A was placed.
  • Experimental Group 1 a microbial population containing 0.012 mL (concentration equivalent to 1 mg / L) of microbial A was added dropwise to the water tank every week.
  • Experimental Group 3 the organic matter decomposition material was impregnated with a microbial population containing 0.012 mL (concentration equivalent to 1 mg / L) of microbial A every week.
  • the foamed glass used had a size of 3 to 10 mm.
  • a microbial population containing Bacillus A a microbial population consisting of Bacillus subtilis BN1001 and Bacillus subtilis var. Natto was used.
  • foamed glass a glass waste material generated in the manufacture of automobile mirrors was used as a material and fired with a foaming agent.
  • organic matter decomposing material a foamed glass on which a microbial population containing the above-mentioned microbial A was supported was used.
  • Example 2 Purification of carp breeding water
  • Carp were bred in an indoor aquarium, and the water quality purification effect of the organic matter decomposition material was examined by water quality analysis in the indoor aquarium and observation of blue-green algae.
  • the size of the foamed glass contained in the organic decomposition material was 3 to 35 mm.
  • the organic matter decomposition material was impregnated with a microbial population containing 4 mL (concentration equivalent to 1 mg / L) of microbial A every 28 days. The same microbial population as in Example 1 was used as the microbial population containing the microorganism A.
  • FIG. 9 is a photograph of the conventional filtered water tank in the control group and the filtered water tank in the experimental group. Table 2 shows the implementation conditions and results.
  • FIG. 5 is a graph showing the time course of COD
  • FIG. 6 is a graph showing the time course of total nitrogen concentration
  • FIG. 7 is a graph showing the time course of nitrite nitrogen concentration
  • FIG. 8 is a graph showing total phosphorus. It is a graph which shows the time-dependent change of concentration.
  • FIG. 12 is a photograph showing the observation results of blue-green algae in the filtered water tank of the control group
  • FIG. 13 is a photograph showing the observation results of blue-green algae in the filtered water tank of the experimental group.
  • FIGS. 10 and 11 are photographs of the organic matter decomposition material immediately after being installed in the filtered water tank.
  • FIG. 11 is a photograph of the organic matter decomposition material 30 days after being installed in the filtered water tank. As a result, it was confirmed that the microbial population containing the microbial A was propagated in the organic matter decomposing material 30 days after being installed in the filtered water tank.
  • Example 3 (Promotion of compost production) Compost was produced by mixing organic matter decomposing material and cow dung, and the composting promoting action of organic matter decomposing material was examined. The same microbial population as that used in Example 1 was used as the microbial population containing the microorganism A constituting the organic matter decomposing material. As the foamed glass, a crushed powdery one was used.
  • Table 4 and FIG. 16 show the analysis results of the main components of compost after one month in summer and winter.
  • the components were analyzed after 6 months had passed to complete the compost, and this was used as an index of the components of the compost produced by the conventional production method.
  • the C / N ratio was lower and the values of nitrogen, phosphoric acid, and potassium were higher when the organic matter decomposition material of Experimental Group 3 was used than in the control group one month after the start of production.
  • the compost in Experimental Group 3 had a lower C / N ratio and higher nitrogen, phosphoric acid, and potassium values than those in Experimental Group 2, and were of high quality. Moreover, in summer and winter, the odor of compost was reduced when the organic matter decomposition material was used.
  • FIG. 14 is a graph showing the temperature transition of the compost produced in the summer
  • FIG. 15 is a graph showing the temperature transition of the compost produced in the winter.
  • Example 4 Three aquariums containing 15 L of seawater were prepared, and five damselfishes were bred in each aquarium. The nitrite nitrogen concentration in the breeding water was measured over time, and the water purification effect of the organic matter decomposing material was examined. As the microbial population containing microbial A, the same microbial population as in Example 1 was used.
  • a water tank in which only a microbial population containing microbial A is added (experimental group 1)
  • a water tank in which foamed glass in which a microbial population containing microbial A is not supported (experimental group 2) is placed, and 1 mg / L of microbial A is contained in advance.
  • a water tank (Experimental Group 3) was prepared in which an organic decomposition material impregnated with a microbial population was impregnated into foam glass.
  • a microbial population containing 15 mL (concentration equivalent to 1 mg / L) of microbial A was dropped into a water tank.
  • FIGS. 17 to 20 The measurement results of the nitrite nitrogen concentration in the breeding water are shown in FIGS. 17 to 20.
  • FIG. 17 is a graph showing the measurement results of the experimental group 1
  • FIG. 18 is a graph showing the measurement results of the experimental group 2
  • FIG. 19 is a graph showing the measurement results of the experimental group 3.
  • the microorganism containing the microorganism A is more than the case where only the microorganism population containing the microorganism A is added to the aquarium or the foamed glass in which the microorganism population containing the microorganism A is not supported is installed in the aquarium. It was clarified that the decomposition of organic substances such as nitrite nitrogen proceeds more efficiently when the organic substance decomposition material containing the group and the foamed glass is installed in the water tank.
  • an organic matter decomposing material having a higher organic matter decomposing efficiency. Further, according to the present invention, it is possible to provide a water quality purification method and a compost production method using an organic matter decomposing material.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

An organic matter decomposer which contains a carrier and a microbial population carried by the carrier, wherein the carrier contains foam glass, and the microbial population includes Bacillus subtilis (BN1001 strain) (Accession number at International Depositary Authority: NITE BP-02608) and Bacillus subtilis var. natto.

Description

有機物分解材及びその使用Organic decomposition materials and their use
 本発明は、有機物分解材及びその使用に関する。2020年1月24日に日本に出願された特願2020-010241号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an organic decomposition material and its use. Priority is claimed based on Japanese Patent Application No. 2020-010241 filed in Japan on January 24, 2020, and the contents thereof are incorporated herein by reference.
 生活排水等の排水は有機物、窒素、リン、油脂等を含有し、これらが河川へ直接流れ込むと、近隣の海域が富栄養化して赤潮等が発生し、漁業被害が引き起こされたり、生態系が破壊されたりする場合がある。 Wastewater such as domestic wastewater contains organic matter, nitrogen, phosphorus, oils and fats, etc., and when these flow directly into rivers, the neighboring sea area becomes eutrophicated and red tides occur, causing damage to fisheries and the ecosystem. It may be destroyed.
 生活排水に含まれる有機汚濁物を分解する方法として、例えば、活性汚泥法が知られており、この方法においては、数十種類の好気性細菌・原生動物・微小後生動物を含む活性汚泥を用いて、微生物集団の代謝により汚水の有機物が分解される。 For example, the activated sludge method is known as a method for decomposing organic pollutants contained in domestic wastewater. In this method, activated sludge containing dozens of aerobic bacteria, protozoa, and micrometazoa is used. As a result, organic matter in sewage is decomposed by the metabolism of the microbial population.
 有機汚濁物を含む排水を生物学的に処理するシステムとして、例えば、バチルス・サブチリス(Bacillus subtilis)BN1001菌及び納豆菌(Bacillus subtilis var. natto)が担持されている担体を用いた排水処理システムが開示されている(特許文献1)。 As a system for biologically treating wastewater containing organic pollutants, for example, a wastewater treatment system using a carrier carrying Bacillus subtilis BN1001 and Bacillus subtilis var. Natto is available. It is disclosed (Patent Document 1).
 このような処理システムにおいて、微生物を担持する担体として、例えば、ウレタン等の樹脂を含むスポンジが利用されている(特許文献2)。しかし、近年、自然環境、生活環境において樹脂を起源とする微小なプラスチック粒子(マイクロプラスチック)の発生が問題視されている。 In such a treatment system, for example, a sponge containing a resin such as urethane is used as a carrier for supporting microorganisms (Patent Document 2). However, in recent years, the generation of fine plastic particles (microplastics) originating from resin has been regarded as a problem in the natural environment and living environment.
 ところで、堆肥は、通常、堆肥の原料である植物性有機物、家畜糞尿等を土壌微生物と混合し、有機物を分解させることにより製造され、堆肥の製造には数か月程度の期間を要する。 By the way, compost is usually produced by mixing plant organic matter, livestock manure, etc., which are the raw materials of compost, with soil microorganisms and decomposing the organic matter, and it takes about several months to produce compost.
国際公開第2016/031804号International Publication No. 2016/031804 特許第5641548号公報Japanese Patent No. 5641548
 しかしながら、従来の微生物が担持されている担体は、有機物の分解効率の点において改良の余地があった。そこで、本発明は、より有機物の分解効率の高い、微生物が担持された担体(有機物分解材)を提供することを目的とする。また、本発明は、有機物分解材を用いた、水質浄化方法、堆肥製造方法を提供することを目的とする。 However, the conventional carrier on which microorganisms are supported has room for improvement in terms of the decomposition efficiency of organic substances. Therefore, an object of the present invention is to provide a carrier (organic matter decomposing material) on which microorganisms are supported, which has higher organic matter decomposition efficiency. Another object of the present invention is to provide a water quality purification method and a compost production method using an organic decomposition material.
 本発明は、以下の態様を含む。
[1]担体と、前記担体に担持されている微生物集団と、を含有する有機物分解材であって、前記担体は発泡ガラスを含み、前記微生物集団はバチルス・サブチリス(Bacillus subtilis)BN1001菌(国際寄託の受託番号 NITE BP-02608)及び納豆菌(Bacillus subtilis var. natto)を含む、有機物分解材。
[2]汚染水の浄化用である、[1]に記載の有機物分解材。
[3]前記汚染水が海水である、[2]に記載の有機物分解材。
[4]前記汚染水が水中生物の飼育水である、[2]又は[3]に記載の有機物分解材。[5]前記水中生物が養殖水産生物である、[4]に記載の有機物分解材。
[6]有機物の堆肥化促進用である、[1]に記載の有機物分解材。
[7]前記有機物が動物の排泄物である、[6]に記載の有機物分解材。
[8]前記有機物が食品残渣である、[6]に記載の有機物分解材。
[9][2]~[5]のいずれかに記載の有機物分解材を汚染水に接触させる工程を含む、前記汚染水の水質浄化方法。
[10]有機物から堆肥を製造する堆肥製造方法であって、[6]~[8]のいずれかに記載の有機物分解材を前記有機物に接触させる工程を含む、堆肥製造方法。
The present invention includes the following aspects.
[1] An organic matter decomposing material containing a carrier and a microbial population supported on the carrier. The carrier contains foamed glass, and the microbial population is Bacillus subtilis BN1001 (International). Depositary accession number NITE BP-02608) and Bacillus subtilis var. Natto, an organic decomposition material.
[2] The organic decomposition material according to [1], which is used for purifying contaminated water.
[3] The organic decomposition material according to [2], wherein the contaminated water is seawater.
[4] The organic matter decomposing material according to [2] or [3], wherein the contaminated water is breeding water for aquatic organisms. [5] The organic matter decomposing material according to [4], wherein the aquatic organism is a farmed aquaculture product.
[6] The organic matter decomposition material according to [1], which is used for promoting composting of organic matter.
[7] The organic matter decomposing material according to [6], wherein the organic matter is animal excrement.
[8] The organic matter decomposing material according to [6], wherein the organic matter is a food residue.
[9] The method for purifying the water quality of contaminated water, which comprises a step of bringing the organic decomposition material according to any one of [2] to [5] into contact with contaminated water.
[10] A compost production method for producing compost from an organic substance, which comprises a step of bringing the organic substance decomposition material according to any one of [6] to [8] into contact with the organic substance.
 本発明によれば、より有機物の分解効率の高い有機物分解材を提供することができる。また、本発明によれば、有機物分解材を用いた、水質浄化方法、堆肥製造方法を提供することができる。 According to the present invention, it is possible to provide an organic matter decomposing material having a higher organic matter decomposing efficiency. Further, according to the present invention, it is possible to provide a water quality purification method and a compost production method using an organic matter decomposing material.
実施例1における、対照区の水槽の底面の写真である。It is a photograph of the bottom surface of the water tank of the control group in Example 1. 実施例1における、微生物のみを添加した水槽の底面の写真である。It is a photograph of the bottom surface of the aquarium to which only microorganisms were added in Example 1. 実施例1における、微生物を担持していない発泡ガラスを設置した水槽の底面の写真である。It is a photograph of the bottom surface of the aquarium in which the foamed glass that does not carry microorganisms is installed in Example 1. 実施例1における、有機物分解材を設置した水槽の底面の写真である。It is a photograph of the bottom surface of the water tank in which the organic matter decomposition material was installed in Example 1. 実施例2における、CODの経時的変化を示すグラフである。It is a graph which shows the time-dependent change of COD in Example 2. 実施例2における、総窒素濃度の経時変化を表すグラフである。It is a graph which shows the time-dependent change of the total nitrogen concentration in Example 2. 実施例2における、亜硝酸態窒素濃度の経時変化を表すグラフである。It is a graph which shows the time-dependent change of the nitrite nitrogen concentration in Example 2. 実施例2における、総リン濃度の経時変化を表すグラフである。It is a graph which shows the time-dependent change of the total phosphorus concentration in Example 2. 実施例2における、対象区、実験区のろ過水槽の写真である。It is a photograph of the filtered water tank of the target group and the experimental group in Example 2. 実施例2における、有機物分解材を設置したろ化水槽の写真である。It is a photograph of a filterified water tank in which an organic matter decomposition material is installed in Example 2. 実施例2における、ろ過水槽に設置して1か月後の有機物分解材の写真である。It is a photograph of an organic matter decomposition material one month after being installed in a filtered water tank in Example 2. 実施例2における、対照区アオコ発生室内水槽の写真である。It is a photograph of the control group blue-green aquarium generation indoor aquarium in Example 2. 実施例2における、実験区アオコ発生なし室内水槽の写真である。It is a photograph of the indoor aquarium without the occurrence of blue-green algae in the experimental group in Example 2. 実施例3における、夏季における堆肥の温度推移を表すグラフである。It is a graph which shows the temperature transition of the compost in the summer in Example 3. 実施例3における、冬季における堆肥の温度推移を表すグラフである。It is a graph which shows the temperature transition of the compost in the winter in Example 3. 実施例3における、実験区分別主要堆肥成分を表すグラフである。It is a graph which shows the main compost component by experiment category in Example 3. 実施例4における、実験区1の亜硝酸態窒素濃度経時変化を表すグラフである。It is a graph which shows the time-dependent change of the nitrite nitrogen concentration of the experimental group 1 in Example 4. 実施例4における、実験区2の亜硝酸態窒素濃度経時変化を表すグラフである。It is a graph which shows the time-dependent change of the nitrite nitrogen concentration of the experimental group 2 in Example 4. 実施例4における、実験区3の亜硝酸態窒素濃度経時変化を表すグラフである。It is a graph which shows the time-dependent change of the nitrite nitrogen concentration of the experimental group 3 in Example 4.
[有機物分解材]
 本発明は、1実施形態において、担体と、前記担体に担持されている微生物集団と、を含有する有機物分解材であって、前記担体は発泡ガラスを含み、前記微生物集団はバチルス・サブチリス(Bacillus subtilis)BN1001菌(国際寄託の受託番号 NITE BP-02608)及び納豆菌(Bacillus subtilis var. natto)を含む、有機物分解材を提供する。
 本実施形態に係る有機物分解材は、特許文献1に記載のバチルス・サブチリス(Bacillus subtilis)BN1001菌(国際寄託の受託番号 NITE BP-02608)及び納豆菌(Bacillus subtilis var. natto)を含む微生物集団、並びに、発泡ガラスを含む担体よりも、高い有機物分解効率を有する。
[Organic decomposition material]
The present invention is, in one embodiment, an organic decomposition material containing a carrier and a microbial population supported on the carrier, the carrier containing foamed glass, and the microbial population is Bacillus. Provided are organic decomposition materials including Bacillus subtilis BN1001 (international deposit accession number NITE BP-02608) and Bacillus subtilis var. Natto.
The organic matter decomposing material according to the present embodiment is a microbial population including Bacillus subtilis BN1001 (international deposit accession number NITE BP-02608) and Bacillus subtilis var. Natto described in Patent Document 1. Also, it has higher organic matter decomposition efficiency than the carrier containing foamed glass.
 BN1001菌は、土壌由来のバチルス・サブチリス(枯草菌)の一種であり、2018年1月11日付で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に、受託番号NITE BP-02608として国際寄託されている。納豆菌としては、Bacillus subtilis var. nattoに分類される菌であれば、特に制限なく用いることができる。以下、バチルス・サブチリス(Bacillus subtilis)BN1001菌(国際寄託の受託番号 NITE BP-02608)及び納豆菌(Bacillus subtilis var. natto)の混合物を微生物Aと呼ぶ場合がある。 BN1001 is a type of soil-derived Bacillus subtilis (Bacillus subtilis). It has been deposited internationally at 5-8) under the accession number NITE BP-02608. As natto bacteria, Bacillus subtilis var. Any bacterium classified as natto can be used without particular limitation. Hereinafter, a mixture of Bacillus subtilis BN1001 (international deposit accession number NITE BP-02608) and Bacillus subtilis var. Natto may be referred to as microorganism A.
 微生物Aを含む微生物集団は、担体に担持されていることにより、取り扱い性が向上する。例えば、微生物Aを含む微生物集団が水に接触した場合、微生物Aを含む微生物集団が水とともに流失して失われてしまう場合があるが、微生物Aを含む微生物集団を担体に担持させておくことにより微生物Aを含む微生物集団を定着させやすくなる。これにより、微生物Aを含む微生物集団は担体において安定して増殖することができ、その結果、本実施形態に係る有機物分解材の有機物分解効率が向上する。 The microbial population containing the microbial A is supported on a carrier, so that the handleability is improved. For example, when a microbial population containing microbial A comes into contact with water, the microbial population containing microbial A may be washed away with water and lost, but the microbial population containing microbial A should be supported on a carrier. This facilitates the establishment of a microbial population containing the microbial A. As a result, the microbial population containing the microorganism A can stably grow on the carrier, and as a result, the organic matter decomposition efficiency of the organic matter decomposition material according to the present embodiment is improved.
 上述の担体は発泡ガラスを含む。ガラスは一般的に、自然環境において化学的に安定で腐食されにくく、生物に対する毒性が低く、適度な強度を有し摩耗しにくい。そのため、本実施形態に係る有機物分解材は機能を保持したまま長期間にわたり使用することができる。 The above-mentioned carrier contains foamed glass. Glass is generally chemically stable and resistant to corrosion in the natural environment, has low toxicity to living organisms, has moderate strength and is resistant to wear. Therefore, the organic decomposition material according to the present embodiment can be used for a long period of time while maintaining its function.
 また、本実施形態に係る有機物分解材を自然環境に配置したまま長期間にわたり回収しない場合であっても、有機物分解材は自然環境に悪影響を及ぼさない。すなわち、本実施形態に係る有機物分解材は環境負荷が低い。そのため、有機物分解材が環境中へ流出した場合であっても、環境に対する影響は小さい。 Further, even if the organic decomposition material according to the present embodiment is placed in the natural environment and is not recovered for a long period of time, the organic decomposition material does not adversely affect the natural environment. That is, the organic decomposition material according to the present embodiment has a low environmental load. Therefore, even if the organic matter decomposition material flows out into the environment, the impact on the environment is small.
 微生物を保持する担体として、例えば、ウレタン等の樹脂を含むスポンジが利用されているが(例えば、特許文献2を参照)、近年、自然環境、生活環境において微小なプラスチック粒子(マイクロプラスチック)の発生が問題視されている。本実施形態に係る有機物分解材はプラスチックを含まないため、マイクロプラスチックを発生させない。 As a carrier for retaining microorganisms, for example, a sponge containing a resin such as urethane is used (see, for example, Patent Document 2), but in recent years, fine plastic particles (microplastics) have been generated in the natural environment and living environment. Is regarded as a problem. Since the organic decomposition material according to the present embodiment does not contain plastic, it does not generate microplastic.
(担体)
 本実施形態において、上述の有機物分解材が含有する担体は、発泡ガラスを含む。発泡ガラスは、多数の細孔を有しており、これらの細孔の一部は発泡ガラスの外部へ通じている。発泡ガラスは多孔質ガラスということもできる。
(Carrier)
In the present embodiment, the carrier contained in the above-mentioned organic decomposition material includes foamed glass. The foamed glass has a large number of pores, and some of these pores lead to the outside of the foamed glass. Foam glass can also be called porous glass.
 発泡ガラスの形状としては特に限定されず、例えば、球状、棒状、針状、板状、不定形状、鱗片状、紡錘状、ブロック等が挙げられる。発泡ガラスの大きさは特に限定されず、発泡ガラスの形状が球状である場合、発泡ガラスの直径は、0.1cm~10cmであってもよい。また、発泡ガラスの形状が棒状である場合、長さは1cm~100cmであってもよい。また、発泡ガラスの形状が板状である場合、厚さは1cm~10cmであってもよい。 The shape of the foamed glass is not particularly limited, and examples thereof include a spherical shape, a rod shape, a needle shape, a plate shape, an indefinite shape, a scale shape, a spindle shape, and a block shape. The size of the foamed glass is not particularly limited, and when the shape of the foamed glass is spherical, the diameter of the foamed glass may be 0.1 cm to 10 cm. When the shape of the foamed glass is rod-shaped, the length may be 1 cm to 100 cm. When the foamed glass has a plate shape, the thickness may be 1 cm to 10 cm.
 発泡ガラスの気孔率は、例えば、40~75%であってもよい。発泡ガラスの気孔率は水銀圧入法などで測定することができる。 The porosity of the foamed glass may be, for example, 40 to 75%. The porosity of the foamed glass can be measured by a mercury press-fitting method or the like.
 発泡ガラスの細孔の直径は、例えば、0.01μm~10mmで分布があってもよい。好ましくは2.0μm~10mmの分布である。 The diameter of the pores of the foamed glass may be, for example, 0.01 μm to 10 mm and may be distributed. The distribution is preferably 2.0 μm to 10 mm.
 発泡ガラスの製造方法は特に限定されず、例えば、微生物Aを含む微生物集団が担持される前に、粉砕したガラスと発泡剤とを混合して混合物を得て、この混合物を焼成することにより製造することができる(例えば、特許第5382657号公報を参照)。 The method for producing foamed glass is not particularly limited, and for example, it is produced by mixing crushed glass and a foaming agent to obtain a mixture and firing this mixture before a microbial population containing microorganism A is supported. (See, for example, Japanese Patent No. 5382657).
 発泡ガラスの原料となるガラスの種類は特に限定されず、例えば、ソーダ石灰ガラス、ほうケイ酸ガラス、アルミノケイ酸ガラス等が挙げられる。原料のガラスとしては、特に限定されず、例えば、鏡、ブラウン管、液晶、プラズマディスプレイ等に由来する廃ガラスを用いてもよい。 The type of glass used as a raw material for foamed glass is not particularly limited, and examples thereof include soda-lime glass, borosilicate glass, and aluminosilicate glass. The raw material glass is not particularly limited, and for example, waste glass derived from a mirror, a cathode ray tube, a liquid crystal, a plasma display, or the like may be used.
 発泡剤としては、例えば、炭酸カルシウム、水酸化カルシウム等のカルシウム;炭酸マグネシウム、水酸化マグネシウム等のマグネシウム;ベンガラ、フェライト等が挙げられる。 Examples of the effervescent agent include calcium such as calcium carbonate and calcium hydroxide; magnesium such as magnesium carbonate and magnesium hydroxide; and red iron oxide and ferrite.
 焼成温度及び焼成時間は、特に限定されず、当業者であれば、適宜設定することができる。焼成する工程において、上述の発泡剤は、ガラスが軟化する温度でガスを発生させ、その結果、ガラス内部に多数の細孔が形成されて、発泡ガラスが製造される。 The firing temperature and firing time are not particularly limited and can be appropriately set by those skilled in the art. In the step of firing, the above-mentioned foaming agent generates gas at a temperature at which the glass softens, and as a result, a large number of pores are formed inside the glass to produce foamed glass.
 上述の有機物分解材が含有する担体は、更に、発泡ガラス以外の担体(その他の担体)を含んでもよい。その他の担体の材料としては、例えば、炭化物、鉱物、金属又は金属塩、ケイ素、高分子等が挙げられる。より具体的には、炭、砂、珪藻土、ゼオライト、パーライト、ベントナイト、セラミクス、アルミナ、石膏、シリカゲル等が挙げられる。 The carrier contained in the above-mentioned organic decomposition material may further contain a carrier other than the foamed glass (other carrier). Examples of the material of the other carrier include carbides, minerals, metals or metal salts, silicon, polymers and the like. More specifically, charcoal, sand, diatomaceous earth, zeolite, pearlite, bentonite, ceramics, alumina, gypsum, silica gel and the like can be mentioned.
(微生物集団)
 本実施形態に係る有機物分解材が含有する担体には、微生物Aが担持されている。担体には、更に、微生物A以外の微生物が担持されていてもよい。微生物A以外の微生物としては、BN1001菌以外の枯草菌、乳酸菌、酵母菌などを挙げることができる。
(Microbial population)
Microorganism A is supported on the carrier contained in the organic matter decomposing material according to the present embodiment. The carrier may further carry a microorganism other than the microorganism A. Examples of microorganisms other than microorganism A include Bacillus subtilis, lactic acid bacteria, yeast and the like other than BN1001.
 本実施形態に係る有機物分解材において、担体に担持される微生物Aの質量は、微生物Aが本願発明の効果を奏する程度に含有されていれば特に限定されないが、担体の質量に対して、0.0001%~0.001%であってもよい。 In the organic matter decomposition material according to the present embodiment, the mass of the microorganism A supported on the carrier is not particularly limited as long as the microorganism A is contained to such an extent that the effect of the present invention is exhibited, but is 0 with respect to the mass of the carrier. It may be .0001% to 0.001%.
 また、本実施形態に係る有機物分解材が含有する担体に担持されている微生物Aを含む微生物集団全体を基準として、乾燥質量で、好ましくは、BN1001菌は10質量%~90質量%、納豆菌は10質量%~90質量%含まれ、より好ましくは、BN1001菌が40質量%~60質量%、納豆菌が60質量%~40質量%含まれる。 Further, based on the entire microbial population containing the microorganism A supported on the carrier contained in the organic substance decomposition material according to the present embodiment, the dry mass, preferably BN1001 bacterium is 10% by mass to 90% by mass, and the natto bacterium. Is contained in an amount of 10% by mass to 90% by mass, more preferably 40% by mass to 60% by mass of BN1001 bacteria and 60% by mass to 40% by mass of natto bacteria.
 本実施形態に係る有機物分解材は、使用時に微生物Aを含む微生物集団が生存し増殖できる限り、微生物Aを含む微生物集団が担持されている状態は限定されず、例えば、微生物Aを含む微生物集団が担体に担持されており、担体が培養液、水等で濡れている状態であってもよい。 The organic substance decomposition material according to the present embodiment is not limited to a state in which the microbial population containing microbial A is supported as long as the microbial population containing microbial A can survive and proliferate during use. For example, the microbial population containing microbial A is supported. Is supported on a carrier, and the carrier may be in a state of being wet with a culture solution, water, or the like.
 また、本実施形態に係る有機物分解材は、例えば、休眠状態の芽胞等が担持されていてもよく、この場合、担体が乾燥している状態であってもよい。バチルス・サブチリスの芽胞は、100℃近くの高温、氷点下の低温、紫外線、高圧、薬品等に対する耐性に優れるため、バチルス・サブチリスの芽胞が担持されている有機物分解材は保存安定性に優れる。 Further, the organic matter decomposing material according to the present embodiment may be supported by, for example, dormant spores or the like, and in this case, the carrier may be in a dry state. Since the Bacillus subtilis spores are excellent in resistance to high temperature near 100 ° C., low temperature below freezing point, ultraviolet rays, high pressure, chemicals and the like, the organic decomposition material on which the Bacillus subtilis spores are supported is excellent in storage stability.
 本実施形態に係る有機物分解材は、更に、炭素源、窒素源、無機栄養源、固着剤等を含んでいてもよい。 The organic decomposition material according to the present embodiment may further contain a carbon source, a nitrogen source, an inorganic nutrient source, a fixing agent and the like.
 炭素源としては、例えば、グルコース、フルクトース、スクロース、マルトース、ラクトース、デンプン等が挙げられる。 Examples of the carbon source include glucose, fructose, sucrose, maltose, lactose, starch and the like.
 窒素源としては、例えば、アミノ酸、尿素、ペプトン、ブイヨン、酵母エキス、大豆粉、大豆粕、綿実油粕、コーンスティープリカー、フスマ、豆乳、肉エキス等が挙げられる。 Examples of the nitrogen source include amino acids, urea, peptone, bouillon, yeast extract, soybean flour, soybean meal, cottonseed oil cake, corn steep liquor, bran, soymilk, meat extract and the like.
 無機栄養源としては、塩化カリウム、硫酸マグネシウム、塩化ナトリウム、リン酸カリウム、炭酸カルシウム、ビタミン類、その他の微量元素等が挙げられる。 Examples of inorganic nutrient sources include potassium chloride, magnesium sulfate, sodium chloride, potassium phosphate, calcium carbonate, vitamins, and other trace elements.
 固着剤の材料としては、無機粉体、多糖類、高分子等が挙げられる。無機粉体としては、例えば、ベントナイト、カオリン、石膏等が挙げられる。多糖類としては、例えば、デンプン、セルロース等が挙げられる。 Examples of the adhesive material include inorganic powders, polysaccharides, and polymers. Examples of the inorganic powder include bentonite, kaolin, gypsum and the like. Examples of the polysaccharide include starch, cellulose and the like.
 微生物Aを含む微生物集団を担体に担持させる方法としては特に限定されず、例えば、担体を微生物Aを含む微生物集団の培養液に含浸させる、スプレー等を用いて微生物Aを含む微生物集団を含む液体を担体に吹き付ける、乾燥した粉末状の微生物Aを含む微生物集団を担体に接触させる、微生物Aを含む微生物集団と固着剤との混合物を担体に塗布する等の方法が挙げられる。 The method for supporting the microbial population containing the microbial A on the carrier is not particularly limited, and for example, a liquid containing the microbial population containing the microbial A by impregnating the culture solution of the microbial population containing the microbial A with a spray or the like. Is sprayed onto the carrier, a microbial population containing a dry powdered microbial A is brought into contact with the carrier, and a mixture of the microbial population containing microbial A and a fixing agent is applied to the carrier.
 1実施形態において、上述の有機物分解材は、汚染水の浄化用であってもよい。汚染水としては、有機物分解材により浄化できるものである限り特に限定されず、キッチン、厨房、トイレ、浴室等において発生した生活排水;水中生物の飼育水;養豚場、養鶏場等の畜舎等において発生した排水;食品工場、飲料水工場等において発生した工場排水;下水処理場等における排水;雨水、河川、湖沼、海洋等の自然環境中の水等が挙げられる。上述の汚染水は、海水であってもよいし、淡水であってもよい。
 微生物Aは、バチルス・サブチリスであり、海水中であっても生存することができるため、上述の有機物分解材は、海水の汚染水を浄化することができる。
In one embodiment, the organic decomposition material described above may be used for purifying contaminated water. The contaminated water is not particularly limited as long as it can be purified by an organic decomposition material, and is domestic wastewater generated in kitchens, kitchens, toilets, bathrooms, etc .; aquatic organism breeding water; in livestock barns such as pig farms and chicken farms. Wastewater generated; Factory wastewater generated in food factories, drinking water factories, etc .; Wastewater in sewage treatment plants, etc .; Rainwater, rivers, lakes, marshes, water in the natural environment such as the ocean, etc. can be mentioned. The above-mentioned contaminated water may be seawater or fresh water.
Since the microorganism A is Bacillus subtilis and can survive even in seawater, the above-mentioned organic matter decomposing material can purify contaminated water in seawater.
 水中生物の飼育水は、有機物分解材によって浄化できるものであれば特に限定されず、例えば、水中生物が接触した水、水中生物の餌の残渣を含む水、水中生物の排泄物を含む水等であってもよい。飼育水は、水槽等の容器に収容されていてもよいし、湖沼、海洋等の自然環境にある水であってもよい。 The breeding water for aquatic organisms is not particularly limited as long as it can be purified by an organic matter decomposing material, and for example, water that comes into contact with aquatic organisms, water that contains food residues of aquatic organisms, water that contains excrement of aquatic organisms, and the like. It may be. The breeding water may be stored in a container such as an aquarium, or may be water in a natural environment such as a lake or the ocean.
 また、有機物分解材が汚染水に接触することができる限り、有機物分解材は収容容器に入れて用いてもよく、例えば、この収容容器を、汚染水に沈めて用いてもよいし、汚染水に浮かべて用いてもよい。 Further, as long as the organic matter decomposing material can come into contact with the contaminated water, the organic matter decomposing material may be used by being put in a storage container. You may float it on the surface and use it.
 水中生物としては特に限定されず、例えば、魚類、爬虫類、甲殻類、貝類、哺乳類、鳥類、昆虫等であってもよい。また、水中生物は、養殖水産生物であってもよい。養殖水産生物としては、例えば、魚類、甲殻類、貝類等が挙げられる。 The aquatic organism is not particularly limited, and may be, for example, fish, reptiles, crustaceans, shellfish, mammals, birds, insects, and the like. The aquatic organism may also be a farmed aquatic product. Examples of cultured aquaculture products include fish, crustaceans, shellfish and the like.
 水中生物の飼育水のより具体的な例としては、観賞用の水中生物の飼育水、養殖水産生物の水槽内の飼育水、湖沼、海洋等における養殖水産生物の飼育水等が挙げられる。 More specific examples of aquatic organism breeding water include ornamental aquatic organism breeding water, aquaculture water product breeding water in aquaculture tanks, and aquaculture water product breeding water in lakes, marines, and the like.
 1実施形態において、上述の有機物分解材は、有機物の堆肥化促進用であってもよい。有機物としては、担体に担持されている微生物Aを含む微生物集団によって分解されるものであれば特に限定されず、例えば、糞、尿等の動物の排泄物;木材、緑肥、落葉、もみ殻、おがくず、ワラ、雑草、水草、海草、竹、竹粉等の植物体;食品残渣、排水生物処理余剰汚泥等が挙げられる。 In one embodiment, the above-mentioned organic matter decomposing material may be used for promoting composting of organic matter. The organic substance is not particularly limited as long as it is decomposed by a microbial population containing microorganism A carried on the carrier, and is not particularly limited, and is, for example, animal excrement such as feces and urine; wood, green manure, deciduous leaves, rice husks, and the like. Plants such as waste, straw, weeds, aquatic plants, seaweeds, bamboo, bamboo powder; food residues, wastewater biological treatment surplus sludge, etc. can be mentioned.
 有機物分解材が含有する微生物Aを含む微生物集団は、担体に含まれる発泡ガラスの細孔内で効率よく増殖し、増殖した微生物Aを含む微生物集団は効率よく有機物を分解する。実施例において後述するように、有機物と有機物分解材とを接触させることにより、有機物の分解速度を高めることができ、その結果、短時間で有機物から堆肥を製造することができる。
 また、実施例において後述するように、有機物と担体に担持されていない微生物Aを含む微生物集団とを接触させて製造した堆肥よりも、有機物と有機物分解材とを接触させて製造した堆肥は、C/N比が低く、窒素、リン酸、カリウムの含有量が高く、高品質である。
The microbial population containing the microorganism A contained in the organic matter decomposing material efficiently grows in the pores of the foamed glass contained in the carrier, and the microbial population containing the grown microbial A efficiently decomposes the organic matter. As will be described later in the examples, by bringing the organic matter into contact with the organic matter decomposing material, the decomposition rate of the organic matter can be increased, and as a result, compost can be produced from the organic matter in a short time.
Further, as will be described later in the examples, the compost produced by contacting the organic matter with the organic matter decomposing material is more than the compost produced by contacting the organic matter with the microbial population containing the microorganism A not supported on the carrier. It has a low C / N ratio, a high content of nitrogen, phosphoric acid, and potassium, and is of high quality.
 1実施形態において、本発明は、上述の有機物分解材の、上述の汚染水の浄化のための使用を提供する。
 1実施形態において、本発明は、上述の有機物分解材の、上述の有機物の堆肥化促進のための使用を提供する。
In one embodiment, the present invention provides the use of the above-mentioned organic decomposition material for the purification of the above-mentioned contaminated water.
In one embodiment, the present invention provides the use of the above-mentioned organic decomposition material for promoting composting of the above-mentioned organic matter.
[水質浄化方法]
 1実施形態において、本発明は、上述の有機物分解材を汚染水に接触させる工程を含む、汚染水の水質浄化方法を提供する。上述したように、有機物分解材には、微生物A以外の微生物が更に担持されていてもよい。また、汚染水としては、上述したものと同様のものを例示できる。
[Water purification method]
In one embodiment, the present invention provides a method for purifying the quality of contaminated water, which comprises a step of bringing the above-mentioned organic decomposition material into contact with contaminated water. As described above, the organic matter decomposing material may further carry microorganisms other than the microorganism A. Further, as the contaminated water, the same one as described above can be exemplified.
 本実施形態に係る汚染水を生物学的に処理する方法は、例えば、次のようなものであってもよい。また、上述の有機物分解材は、例えば、排水処理システムの生物処理槽において用いることもできる。本明細書において、汚染水は排水という場合がある。 The method for biologically treating the contaminated water according to the present embodiment may be, for example, as follows. Further, the above-mentioned organic matter decomposition material can also be used, for example, in a biological treatment tank of a wastewater treatment system. In the present specification, contaminated water may be referred to as wastewater.
(排水処理方法)
 本実施形態の排水処理方法は、上述の有機物分解材の存在下で排水を曝気する工程と、を備える、排水を生物学的に処理する方法であって、曝気風量は、500L/分以上である。
(Wastewater treatment method)
The wastewater treatment method of the present embodiment is a method for biologically treating wastewater, which comprises a step of aeration of wastewater in the presence of the above-mentioned organic decomposition material, and the aeration air volume is 500 L / min or more. be.
 排水は、どのようなものであってもよいが、油脂含有排水であってもよい。排水が油脂を含有する場合、排水中の油脂の濃度は、特に限定されることではないが、例えば30~1000mg/Lであってもよい。 The wastewater may be any type, but it may be oil-containing wastewater. When the wastewater contains fats and oils, the concentration of the fats and oils in the wastewater is not particularly limited, but may be, for example, 30 to 1000 mg / L.
 微生物Aは有機物加水分解酵素を分泌する。有機物加水分解酵素としては特に限定されず、油脂分解酵素リパーゼ、デンプン分解酵素アミラーゼ、またはタンパク質分解酵素プロテアーゼが含まれていることが好ましく、油脂分解酵素リパーゼが含まれていることがより好ましい。また、排水に対して、さらに、上述の有機物加水分解酵素を添加してもよい。 Microorganism A secretes an organic hydrolase. The organic hydrolase is not particularly limited and preferably contains a fat-degrading enzyme lipase, a starch-degrading enzyme amylase, or a proteolytic enzyme protease, and more preferably contains a fat-degrading enzyme lipase. Further, the above-mentioned organic hydrolase may be further added to the waste water.
 曝気風量は、1000L/分以上であることが好ましく、1500L/分以上であることがより好ましい。曝気風量が上記範囲内であることにより、微生物Aの増殖に必要な酸素を供給することができる。曝気風量の上限値は特に限定されないが、曝気装置の性能上、2000L/分以下程度が現実的である。 The aeration air volume is preferably 1000 L / min or more, and more preferably 1500 L / min or more. When the aeration air volume is within the above range, oxygen necessary for the growth of the microorganism A can be supplied. The upper limit of the aeration air volume is not particularly limited, but it is realistic to be about 2000 L / min or less in terms of the performance of the aeration device.
 前記曝気工程はグリーストラップ中で行ってもよい。この場合、グリーストラップに曝気装置を追加して、微生物Aの増殖に必要な酸素を供給することが好ましい。なお、グリーストラップとは、槽内が複数の区画に区切られた貯水槽であり、排水が導入される入水口と、排水が排出される排水口を備え、排水中の油脂をトラップ内に捕捉して、直接下水道等に流出するのを防ぐものである。 The aeration step may be performed in a grease trap. In this case, it is preferable to add an aeration device to the grease trap to supply oxygen necessary for the growth of microorganism A. A grease trap is a water storage tank in which the inside of the tank is divided into a plurality of sections, and is provided with a water inlet for introducing drainage and a drainage port for draining drainage, and traps oil and fat in the drainage in the trap. This is to prevent the water from flowing directly into the sewer.
 通常のグリーストラップは、排水を生物学的に処理するものではないが、このようなグリーストラップは、排水を生物学的に処理するものであるといえる。 A normal grease trap does not biologically treat wastewater, but such a grease trap can be said to biologically treat wastewater.
 前記曝気工程をグリーストラップ中で行うことにより、グリーストラップに溜まる油脂がほとんど目立たなくなり、スカムもほぼなくなり、悪臭も低減する。このため、グリーストラップの清掃作業を簡略化することができる。 By performing the aeration step in the grease trap, the oil and fat accumulated in the grease trap becomes almost inconspicuous, the scum is almost eliminated, and the foul odor is reduced. Therefore, the cleaning work of the grease trap can be simplified.
 本実施形態の排水処理方法によれば、排水中の油脂、デンプン、タンパク質等の難分解成分を格段に効率よく分解することができるため、高い処理水質が得られ、悪臭や汚泥の発生も少ない。このため、本実施形態の排水処理方法は、食品工場、食品加工工場に限らず、有機汚染物質を含む排水を排出する工場や研究施設、畜舎、下水処理場等における排水処理に好適に用いることができる。 According to the wastewater treatment method of the present embodiment, difficult-to-decompose components such as fats and oils, starch, and proteins in wastewater can be decomposed remarkably efficiently, so that high treated water quality can be obtained and generation of bad odor and sludge is small. .. Therefore, the wastewater treatment method of the present embodiment is not limited to food factories and food processing factories, but is suitably used for wastewater treatment in factories, research facilities, livestock barns, sewage treatment plants, etc. that discharge wastewater containing organic pollutants. Can be done.
 排水は、上述の有機物分解材を用いて、次に示すような回分式排水処理方法によって処理することもできる。 Wastewater can also be treated by the following batch type wastewater treatment method using the above-mentioned organic matter decomposition material.
(回分式排水処理方法)
 本実施形態の回分式排水処理方法は、排水を生物学的に処理する原水槽及び流量調整槽内に排水を導入する排水導入工程と、導入した排水を曝気する曝気工程と、曝気後に静置する静置工程と、静置後に処理水を排出する排出工程と、を備え、排水導入工程、曝気工程、静置工程及び排出工程の各工程を繰り返す方法であって、原水槽及び/又は流量調整槽は、上述の有機物分解材を含み、流量調整槽の曝気風量は、500L/分以上である。
(Distribution type wastewater treatment method)
The batch type wastewater treatment method of the present embodiment includes a wastewater introduction step of introducing wastewater into a raw water tank and a flow rate adjusting tank that biologically treat the wastewater, an aeration step of aerating the introduced wastewater, and standing still after aeration. It is a method of repeating each step of the wastewater introduction step, the aeration step, the stand-up step and the drainage step, which comprises a standing step and a discharging step of discharging the treated water after standing, and the raw water tank and / or the flow rate. The adjusting tank contains the above-mentioned organic decomposition material, and the aeration air volume of the flow rate adjusting tank is 500 L / min or more.
 排水、有機物加水分解酵素としては、上述したものと同様のものを例示できる。 Examples of wastewater and organic hydrolases are the same as those described above.
(原水槽)
 原水槽は、排水を収容するだけでなく、排水を生物学的に処理してもよい。原水槽において排水を生物学的に処理する場合、原水槽中に有機物分解材が含まれていてもよい。原水槽において、微生物Aから分泌された有機物加水分解酵素により、高分子有機汚濁物を中・低分子化することができる。また、さらに、有機物加水分解酵素を原水槽に添加してもよい。
(Raw water tank)
The raw water tank may not only contain the wastewater, but may also biologically treat the wastewater. When the wastewater is biologically treated in the raw water tank, the raw water tank may contain an organic decomposition material. In the raw water tank, the high molecular weight organic pollutants can be reduced to medium or low molecular weight by the organic matter hydrolase secreted from the microorganism A. Further, an organic hydrolase may be added to the raw water tank.
(流量調整槽)
 流量調整槽は、排水の量を調整するだけでなく、排水を生物学的に処理する。具体的には、流量調整槽中には、有機物分解材が含まれる。流量調整槽中に有機物分解材が含まれることにより、原水槽中で中・低分子化された有機汚濁物を、更に生物分解処理することができる。
(Flow rate adjustment tank)
The flow control tank not only regulates the amount of wastewater, but also biologically treats the wastewater. Specifically, the flow rate adjusting tank contains an organic decomposition material. Since the organic matter decomposing material is contained in the flow rate adjusting tank, the organic pollutants having medium and low molecular weight in the raw water tank can be further biodegraded.
 流量調整槽の曝気風量は、1000L/分以上であることが好ましく、1500L/分以上であることがより好ましい。流量調整槽の曝気風量が上記範囲内であることにより、流量調整槽中の微生物Aの増殖に必要な酸素を供給することができる。流量調整槽の曝気風量の上限値は特に限定されないが、曝気装置の性能上、2000L/分以下程度が現実的である。 The aeration air volume of the flow rate adjusting tank is preferably 1000 L / min or more, and more preferably 1500 L / min or more. When the aeration air volume of the flow rate adjusting tank is within the above range, oxygen necessary for the growth of the microorganism A in the flow rate adjusting tank can be supplied. The upper limit of the aeration air volume of the flow rate adjusting tank is not particularly limited, but it is realistic to be about 2000 L / min or less in terms of the performance of the aeration device.
 回分式排水処理方法とは、1つの生物処理槽内で、排水導入、曝気、静置(沈殿)、処理水(上澄水)を排出するサイクルを繰り返しながら排水処理を行う方法である。静置工程中に、表面にSS(浮遊物質)が浮上することが多いため、処理水の排出は、水面からではなく、水中(汚泥界面と水面の間)から行うことが好ましい。 The batch type wastewater treatment method is a method of performing wastewater treatment while repeating a cycle of introducing wastewater, aeration, standing (precipitation), and discharging treated water (supernatant water) in one biological treatment tank. Since SS (suspended solids) often floats on the surface during the standing step, it is preferable to discharge the treated water from water (between the sludge interface and the water surface) instead of from the water surface.
 回分式排水処理方法では、排水導入時や静置時に嫌気状態となるため、脱窒菌による脱窒効果が期待できること、静置時間を長くとることができるため、汚泥の沈降性がよいこと、1つの生物処理槽が、曝気槽と沈殿槽を兼ねるため、装置の構造が単純であること等の利点がある。また、曝気時間や静置時間等を容易に変更できるため、排水量や水温等の変化に合わせて排水処理条件を容易に調整することができる。 In the batch type wastewater treatment method, since it becomes anaerobic when the wastewater is introduced or left standing, the denitrification effect by denitrifying bacteria can be expected, and since the standing time can be long, the sludge sedimentation property is good. Since one biological treatment tank doubles as an aeration tank and a settling tank, there are advantages such as a simple structure of the apparatus. Further, since the aeration time, the standing time, and the like can be easily changed, the wastewater treatment conditions can be easily adjusted according to the changes in the amount of wastewater, the water temperature, and the like.
 本実施形態の回分式排水処理方法によれば、排水中の油脂、デンプン、タンパク質等の難分解成分を格段に効率よく分解することができるため、高い処理水質が得られ、悪臭や汚泥の発生も少ない。このため、本実施形態の回分式排水処理方法は、食品製造工場、食品加工工場に限らず、有機汚染物質を含む排水を排出する工場や研究施設、畜舎、下水処理場等における排水処理に好適に用いることができる。 According to the batch wastewater treatment method of the present embodiment, difficult-to-decompose components such as fats and oils, starch, and proteins in the wastewater can be decomposed remarkably efficiently, so that high treated water quality can be obtained and foul odors and sludge are generated. There are few. Therefore, the batch wastewater treatment method of the present embodiment is suitable not only for food manufacturing factories and food processing factories, but also for wastewater treatment in factories, research facilities, livestock barns, sewage treatment plants, etc. that discharge wastewater containing organic pollutants. Can be used for.
[堆肥製造方法]
 1実施形態において、本発明は、有機物から堆肥を製造する堆肥製造方法であって、上述の有機物分解材を有機物に接触させる工程を含む、堆肥製造方法を提供する。上述したように、有機物分解材の担体には、微生物A以外の微生物がさらに担持されていてもよい。堆肥の原料となる有機物としては、上述したものと同様のものを例示できる。
[Compost manufacturing method]
In one embodiment, the present invention provides a compost production method for producing compost from an organic substance, which comprises a step of bringing the above-mentioned organic matter decomposition material into contact with an organic substance. As described above, the carrier of the organic matter decomposing material may further carry a microorganism other than the microorganism A. Examples of the organic matter used as a raw material for compost include the same as those described above.
 より具体的には、有機物分解材を用いて、例えば、次に示すような方法により堆肥を製造することができる。 More specifically, compost can be produced by, for example, the following method using an organic decomposition material.
 本実施形態の堆肥製造方法においては、堆肥の原料を好気性の状態に保つことが好ましい。本実施形態の堆肥製造方法は、例えば、前処理工程、発酵工程を含むものであってもよい。 In the compost production method of the present embodiment, it is preferable to keep the compost raw material in an aerobic state. The compost production method of the present embodiment may include, for example, a pretreatment step and a fermentation step.
 前処理工程においては、堆肥原料の、通気性、水分量、pH等を調節してもよい。また、前処理工程においては、食品包装プラスチック、金属等の発酵不適物を除去してもよい。発酵工程においては、堆肥原料の有機物を分解する。 In the pretreatment step, the air permeability, water content, pH, etc. of the compost raw material may be adjusted. Further, in the pretreatment step, unsuitable substances for fermentation such as food packaging plastics and metals may be removed. In the fermentation process, the organic matter of the compost raw material is decomposed.
 堆肥原料である有機物は副資材と混合されて堆肥化されてもよい。副資材としては、例えば、ゼオライト、バーミキュライト、パーライト等の無機資材;もみ殻、おがくずなどの木質系原料等の土壌改良材が挙げられる。また、堆肥原料に、堆肥を返送堆肥として添加してもよい。また、pHを調整するために、石灰等を堆肥原料に添加してもよい。 The organic matter that is the raw material for compost may be mixed with auxiliary materials and composted. Examples of the auxiliary material include inorganic materials such as zeolite, vermiculite, and perlite; and soil conditioners such as wood-based raw materials such as rice husks and sawdust. Further, the compost may be added to the compost raw material as a return compost. In addition, lime or the like may be added to the compost raw material in order to adjust the pH.
 堆肥原料として水分量の多い動物の糞尿等を用いる場合、水分調整を行ってもよい。堆肥原料に含まれる水分量を適切な量に保つことにより、嫌気性発酵を抑制することができ、嫌気性発酵に伴う硫化水素等の発生、異臭の発生を抑制することができる。 When using animal manure or the like having a large amount of water as a compost raw material, the water content may be adjusted. By keeping the amount of water contained in the compost raw material at an appropriate amount, anaerobic fermentation can be suppressed, and the generation of hydrogen sulfide and the like and the generation of offensive odors associated with the anaerobic fermentation can be suppressed.
 堆肥原料の粒径は良質な堆肥を製造することができる限り特に限定されず、例えば、当業者に公知の技術を参照して堆肥原料の粒径を設定することにより、通気性を向上させて好気性発酵を促進させることができる。 The particle size of the compost raw material is not particularly limited as long as a good quality compost can be produced. For example, by setting the particle size of the compost raw material with reference to a technique known to those skilled in the art, the air permeability can be improved. It can promote aerobic fermentation.
 一般的に発酵工程においては、通気性、水分量、pH等が適切な範囲内で発酵を行うことにより、好気性発酵が行われる。初期の発酵工程(切替し前)においては、好気性発酵を適度に進めて、48時間以上にわたり、堆肥原料の温度が60℃以上に保持されることが好ましい。これにより、堆肥原料に含まれ得る病原菌、寄生虫卵等を死滅させ、雑草種子等を不活化することができる。また、初期の発酵工程(切替し前)において、堆肥原料温度が60℃に到達するまでの時間が早いほど、発酵工程の短縮化につながる。 Generally, in the fermentation process, aerobic fermentation is carried out by performing fermentation within an appropriate range of air permeability, water content, pH and the like. In the initial fermentation step (before switching), it is preferable that the aerobic fermentation is appropriately advanced and the temperature of the compost raw material is maintained at 60 ° C. or higher for 48 hours or longer. As a result, pathogens, parasite eggs and the like that can be contained in the compost raw material can be killed and weed seeds and the like can be inactivated. Further, in the initial fermentation step (before switching), the earlier the time until the compost raw material temperature reaches 60 ° C., the shorter the fermentation step is.
 前処理工程及び/又は発酵工程において、上述の有機物分解材は堆肥原料と混合される。また、初期の発酵工程(切替し前)において、上述の有機物分解材を用いて堆肥原料を発酵させることにより、48時間以上にわたり、堆肥原料の温度が60℃以上に保持することができる。これにより、堆肥原料に含まれ得る病原菌、寄生虫卵等を死滅させる効果、雑草種子等を不活化する効果がより一層向上する。また、これにより、堆肥原料温度が60℃に到達するまでの時間は25時間以内に短縮することができ、発酵工程の短縮化につながる。 In the pretreatment step and / or fermentation step, the above-mentioned organic matter decomposition material is mixed with the compost raw material. Further, in the initial fermentation step (before switching), the temperature of the compost raw material can be maintained at 60 ° C. or higher for 48 hours or more by fermenting the compost raw material using the above-mentioned organic matter decomposition material. As a result, the effect of killing pathogens, parasite eggs, etc. that can be contained in the compost raw material, and the effect of inactivating weed seeds, etc. are further improved. Further, as a result, the time required for the compost raw material temperature to reach 60 ° C. can be shortened within 25 hours, which leads to shortening of the fermentation process.
 実施例において後述するように、有機物と有機物分解材とを接触させることにより、短時間で有機物から堆肥を製造することができる。 As will be described later in the examples, compost can be produced from the organic matter in a short time by bringing the organic matter into contact with the organic matter decomposing material.
 発酵工程において用いられる設備としては、例えば、堆積式、サイロ式、トンネル式、回分式等が挙げられる。発酵工程においては、好気性発酵を進めるために、堆肥原料を混合することが好ましい。混合する方法としては、例えば、切り返しによる方法であってもよいし、混合機を用いた方法であってもよい。 Examples of equipment used in the fermentation process include sedimentation type, silo type, tunnel type, batch type and the like. In the fermentation step, it is preferable to mix the compost raw materials in order to promote aerobic fermentation. As a method of mixing, for example, a method by turning back or a method using a mixer may be used.
 発酵工程において、堆肥原料へ通気する方法としては、例えば、送気方式、吸気方式等が挙げられる。 In the fermentation process, examples of the method of ventilating the compost raw material include an air supply method and an intake method.
 堆肥原料が発酵して有機物が分解されるために要する時間を短縮するために、例えば、外気温が低い場合には、堆肥原料を加温、保温してもよい。 In order to shorten the time required for the compost raw material to ferment and decompose organic matter, for example, when the outside air temperature is low, the compost raw material may be heated and kept warm.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1]
(金魚の飼育水の浄化)
 市販の外部接続方式のろ過装置(2L)を備えた20Lサイズの水槽(実質12L)を4槽用意し、市販のろ材と有機物分解材を場合わけして金魚を飼育し、水槽底面の汚物(金魚の糞、餌の残渣等)を観察することにより、有機物分解材の水質浄化作用を検討した。実施条件及び結果を表1に示す。
[Example 1]
(Purification of goldfish breeding water)
Four 20L size aquariums (substantially 12L) equipped with a commercially available external connection type filtration device (2L) are prepared, and goldfish are bred by separating commercially available filter media and organic matter decomposition materials, and filth on the bottom of the aquarium (substantially 12L). By observing goldfish manure, food residue, etc.), the water purification effect of the organic matter decomposition material was examined. The implementation conditions and results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 対照区では、市販のろ過装置を備えた水槽を用意した。また、実験区では、微生物Aを含む微生物集団のみを添加した水槽(実験区1)、微生物Aを含む微生物集団が担持されていない発泡ガラスを置いた水槽(実験区2)、事前に1mg/Lの微生物Aを含む微生物集団を発泡ガラスに含浸させた有機物分解材を置いた水槽(実験区3)を準備した。実験区1では、1週間毎に、0.012mL(濃度は1mg/L相当)の微生物Aを含む微生物集団を水槽中に滴下した。実験区3では、1週間毎に、0.012mL(濃度は1mg/L相当)の微生物Aを含む微生物集団を有機物分解材に含浸させた。発泡ガラスは、サイズが3~10mmのものを用いた。 In the control area, a water tank equipped with a commercially available filtration device was prepared. Further, in the experimental group, a water tank in which only the microbial population containing the microorganism A was added (experimental group 1), a water tank in which the foamed glass in which the microbial population containing the microbial A was not supported (experimental group 2) was placed, and 1 mg / mg in advance. A water tank (Experimental Group 3) was prepared in which an organic decomposition material in which a foam glass was impregnated with a microbial population containing L microorganism A was placed. In Experimental Group 1, a microbial population containing 0.012 mL (concentration equivalent to 1 mg / L) of microbial A was added dropwise to the water tank every week. In Experimental Group 3, the organic matter decomposition material was impregnated with a microbial population containing 0.012 mL (concentration equivalent to 1 mg / L) of microbial A every week. The foamed glass used had a size of 3 to 10 mm.
 ここで、微生物Aを含む微生物集団として、バチルス・サブチリス(Bacillus subtilis)BN1001菌及び納豆菌(Bacillus subtilis var. natto)からなる微生物集団を用いた。 Here, as a microbial population containing Bacillus A, a microbial population consisting of Bacillus subtilis BN1001 and Bacillus subtilis var. Natto was used.
 発泡ガラスは、自動車ミラー製造において発生したガラス廃材を材料として、発泡剤を用いて焼成して製造したものを用いた。有機物分解材は、発泡ガラスに上述の微生物Aを含む微生物集団を担持させたものを用いた。 As the foamed glass, a glass waste material generated in the manufacture of automobile mirrors was used as a material and fired with a foaming agent. As the organic matter decomposing material, a foamed glass on which a microbial population containing the above-mentioned microbial A was supported was used.
 これらの水槽において、5匹の金魚を28日間飼育した。各水槽の底面において、金魚の糞、餌の食べ残し等の汚物の有無について観察した。観察結果を図1~4に示す。 Five goldfish were bred in these aquariums for 28 days. At the bottom of each aquarium, the presence or absence of filth such as goldfish droppings and leftover food was observed. The observation results are shown in FIGS. 1 to 4.
 その結果、対照区の水槽の底面、実験区1、2の水槽の底面のいずれにおいても、汚物が確認された。これに対し、実験区3の水槽の底面においては、汚物は確認されなかった。 As a result, filth was confirmed on both the bottom surface of the water tank in the control group and the bottom surface of the water tanks in the experimental groups 1 and 2. On the other hand, no filth was found on the bottom surface of the water tank in Experimental Group 3.
 以上の結果から、有機物分解材を設置した水槽においては、有機物が効率的に分解されることが明らかになった。また、微生物Aを含む微生物集団のみを水槽に添加する場合や、微生物Aを含む微生物集団が担持されていない発泡ガラスを水槽に設置する場合よりも、微生物Aを含む微生物集団と発泡ガラスを含有する有機物分解材を水槽に設置した場合の方が、有機物の分解がより効率的に進行することが明らかになった。 From the above results, it was clarified that organic matter is efficiently decomposed in the aquarium in which the organic matter decomposition material is installed. Further, the microbial population containing the microbial A and the foamed glass are contained more than when only the microbial population containing the microbial A is added to the aquarium or when the foamed glass in which the microbial population containing the microbial A is not supported is installed in the aquarium. It was clarified that the decomposition of organic substances proceeded more efficiently when the organic substance decomposition material was installed in the water tank.
[実施例2]
(コイの飼育水の浄化)
 室内水槽においてコイを飼育し、室内水槽における水質分析、アオコの観察により、有機物分解材の水質浄化作用を検討した。有機物分解材が含有する発泡ガラスのサイズは3~35mmであった。また、実験区においては、28日毎に、4mL(濃度は1mg/L相当)の微生物Aを含む微生物集団を有機物分解材に含浸させた。微生物Aを含む微生物集団は実施例1と同一のものを用いた。
[Example 2]
(Purification of carp breeding water)
Carp were bred in an indoor aquarium, and the water quality purification effect of the organic matter decomposition material was examined by water quality analysis in the indoor aquarium and observation of blue-green algae. The size of the foamed glass contained in the organic decomposition material was 3 to 35 mm. Moreover, in the experimental group, the organic matter decomposition material was impregnated with a microbial population containing 4 mL (concentration equivalent to 1 mg / L) of microbial A every 28 days. The same microbial population as in Example 1 was used as the microbial population containing the microorganism A.
 対照区では、従来方式のポリプロピレン製担体と牡蠣殻をろ材としたろ過水槽(4m)を備えた室内水槽(12m)を用意した。また、実験区では、対照区と同等の従来方式のろ過水槽に加えて、事前に4mLの微生物Aを含む微生物集団(濃度は1mg/L相当)を発泡ガラスに含浸させた有機物分解材をろ材としたろ過水槽(4m)を備えた室内水槽(12m)を準備した。図9は、対照区の従来方式のろ過水槽及び実験区のろ過水槽の写真である。実施条件及び結果を表2に示す。 In the control group, an indoor water tank (12 m 3 ) equipped with a conventional polypropylene carrier and a filtered water tank (4 m 3 ) using an oyster shell as a filter medium was prepared. In the experimental group, in addition to the conventional filtration water tank equivalent to the control group, an organic decomposition material obtained by impregnating foam glass with a microbial population (concentration equivalent to 1 mg / L) containing 4 mL of microbial A in advance was used as a filter medium. and filtering water tank (4m 3) was prepared indoor water tank (12m 3) having a. FIG. 9 is a photograph of the conventional filtered water tank in the control group and the filtered water tank in the experimental group. Table 2 shows the implementation conditions and results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これら室内水槽において、各室内水槽に100匹のコイを56日間飼育した。続いて、各水槽の飼育水について、化学的酸素要求量(Chemical Oxygen Demand,COD)、総窒素濃度、亜硝酸態窒素濃度、総リン濃度を測定した。また、室内水槽内のアオコを観察した。 In these indoor aquariums, 100 carp were bred in each indoor aquarium for 56 days. Subsequently, the chemical oxygen demand (Chemical Oxygen Demand, COD), total nitrogen concentration, nitrite nitrogen concentration, and total phosphorus concentration were measured for the breeding water in each aquarium. We also observed the blue-green algae in the indoor aquarium.
 図5はCODの経時変化を表すグラフであり、図6は総窒素濃度の経時変化を表すグラフであり、図7は亜硝酸態窒素濃度の経時変化を表すグラフであり、図8は総リン濃度の経時変化を表すグラフである。その結果、いずれの数値も、有機物分解材を設置した水槽において、値は低かった。特に亜硝酸態窒素濃度と総リン濃度に関しては、観察開始後56日目においても実験区は検出限界以下の結果であった。 FIG. 5 is a graph showing the time course of COD, FIG. 6 is a graph showing the time course of total nitrogen concentration, FIG. 7 is a graph showing the time course of nitrite nitrogen concentration, and FIG. 8 is a graph showing total phosphorus. It is a graph which shows the time-dependent change of concentration. As a result, all the values were low in the water tank in which the organic matter decomposition material was installed. In particular, regarding the nitrite nitrogen concentration and the total phosphorus concentration, the results in the experimental group were below the detection limit even on the 56th day after the start of observation.
 図12は対照区のろ過水槽におけるアオコの観察結果を示す写真であり、図13は実験区のろ過水槽におけるアオコの観察結果を示す写真である。その結果、対照区の室内水槽においてはアオコが確認された。これに対し、実験区の室内水槽においてはアオコは確認されなかった。 FIG. 12 is a photograph showing the observation results of blue-green algae in the filtered water tank of the control group, and FIG. 13 is a photograph showing the observation results of blue-green algae in the filtered water tank of the experimental group. As a result, blue-green algae were confirmed in the indoor aquarium of the control plot. On the other hand, no blue-green algae were found in the indoor aquarium in the experimental area.
 以上の結果から、有機物分解材を設置した室内水槽においては、有機物が効率的に分解されることが明らかになった。 From the above results, it was clarified that organic matter is efficiently decomposed in the indoor water tank in which the organic matter decomposition material is installed.
 また、ろ過水槽に設置した実験区の有機物分解材がどのように変化するかについて、観察した。結果を図10、11に示す。図10は、ろ過水槽に設置した直後の有機物分解材の写真である。図11は、ろ過水槽に設置して30日後の有機物分解材の写真である。その結果、ろ過水槽に設置して30日後の有機物分解材は、微生物Aを含む微生物集団が繁殖していることが確認された。 In addition, we observed how the organic matter decomposing material in the experimental plot installed in the filtered water tank changed. The results are shown in FIGS. 10 and 11. FIG. 10 is a photograph of the organic matter decomposition material immediately after being installed in the filtered water tank. FIG. 11 is a photograph of the organic matter decomposition material 30 days after being installed in the filtered water tank. As a result, it was confirmed that the microbial population containing the microbial A was propagated in the organic matter decomposing material 30 days after being installed in the filtered water tank.
[実施例3]
(堆肥製造の促進作用)
 有機物分解材と牛糞を混合して堆肥を製造し、有機物分解材の堆肥化促進作用を検討した。有機物分解材を構成する微生物Aを含む微生物集団は実施例1において用いたものと同一のものを用いた。発泡ガラスは、粉砕された粉末状のものを用いた。
[Example 3]
(Promotion of compost production)
Compost was produced by mixing organic matter decomposing material and cow dung, and the composting promoting action of organic matter decomposing material was examined. The same microbial population as that used in Example 1 was used as the microbial population containing the microorganism A constituting the organic matter decomposing material. As the foamed glass, a crushed powdery one was used.
 初期発酵工程(切替し前76時間)の実証実験を夏季(外気温12℃~30℃)及び冬季(外気温1℃~16℃)の2回実施した。
 対照区では、牛糞と竹粉のみから堆肥を製造した。また、実験区では、牛糞と竹粉を材料として、微生物Aを含む微生物集団が担持されていない発泡ガラスを用いた場合(実験区1)、微生物集団のみを用いた場合(実験区2)、微生物Aを含む微生物集団と発泡ガラスからなる有機物分解材を用いた場合(実験区3)について検討した。それぞれについて、堆肥製造時の温度、臭気、C/N比、窒素、リン酸、カリウムについて解析した。温度については、自動記録機能のついた自動温度計を用いて1時間毎に測定した。C/N比、窒素、リン酸、カリウムについては、財団法人日本土壌協会「堆肥等有機物分析法」(2010年版)に準じた方法で分析した。また、製造中の堆肥の臭気を3段階で評価した。実施条件と結果を、表3、4に示す。
Demonstration experiments of the initial fermentation process (76 hours before switching) were carried out twice in summer (outside temperature 12 ° C to 30 ° C) and winter (outside temperature 1 ° C to 16 ° C).
In the control plot, compost was produced only from cow dung and bamboo flour. Further, in the experimental group, when using foamed glass in which the microbial population containing the microbial A is not supported (experimental group 1) or when only the microbial population is used (experimental group 2) using cow manure and bamboo powder as materials, The case where an organic decomposition material consisting of a microbial population containing microbial A and foamed glass was used (Experimental Group 3) was examined. For each, the temperature, odor, C / N ratio, nitrogen, phosphoric acid, and potassium during compost production were analyzed. The temperature was measured every hour using an automatic thermometer with an automatic recording function. The C / N ratio, nitrogen, phosphoric acid, and potassium were analyzed by a method according to the "Organic matter analysis method such as compost" (2010 edition) of the Japan Soil Association. In addition, the odor of compost during production was evaluated on a three-point scale. The implementation conditions and results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、対照区及び実験区において、材料として、1トンの牛糞と、50kgの竹粉とを用いた。実験区1、3において用いた発泡ガラスの重量は20kgであった。また、実験区2、3においては、20kgの培地を用いて培養した微生物Aを含む微生物集団の菌数に相当する微生物Aを含む微生物集団を用いた。実験区3においては、予め微生物Aを含む微生物集団を発泡ガラスに含侵させた有機物分解材を用いた。 As shown in Table 3, 1 ton of cow dung and 50 kg of bamboo powder were used as materials in the control group and the experimental group. The weight of the foamed glass used in Experimental Groups 1 and 3 was 20 kg. Further, in Experimental Groups 2 and 3, a microbial population containing microbial A corresponding to the number of microbial populations containing microbial A cultured in 20 kg of medium was used. In Experimental Group 3, an organic decomposition material in which a microbial population containing microbial A was previously impregnated in foamed glass was used.
 夏季及び冬季における1か月経過した堆肥の主要成分の分析結果を表4及び図16に示す。ただし、夏季の対照区では、6か月経過させて堆肥を完成させた後に成分を分析し、これを従来の製造方法によって製造された堆肥の成分の指標とした。分析の結果、夏季では、製造開始6か月経過後の対照区と、製造開始1か月経過後の実験区3の有機物分解材を用いた場合とが、ほぼ同様な結果となった。冬季では、製造開始1か月経過後の対照区より、実験区3の有機物分解材を用いた場合が、C/N比は低く、窒素、リン酸、カリウムの値が高かった。また、冬季では、実験区2よりも実験区3の堆肥の方が、C/N比は低く、窒素、リン酸、カリウムの値が高く、高品質であった。
 また、夏季及び冬季では、有機物分解材を用いた場合、堆肥の臭気が低減された。
Table 4 and FIG. 16 show the analysis results of the main components of compost after one month in summer and winter. However, in the control plot in summer, the components were analyzed after 6 months had passed to complete the compost, and this was used as an index of the components of the compost produced by the conventional production method. As a result of the analysis, in the summer, almost the same results were obtained when the control group 6 months after the start of production and the organic decomposition material of the experimental group 3 1 month after the start of production were used. In winter, the C / N ratio was lower and the values of nitrogen, phosphoric acid, and potassium were higher when the organic matter decomposition material of Experimental Group 3 was used than in the control group one month after the start of production. In winter, the compost in Experimental Group 3 had a lower C / N ratio and higher nitrogen, phosphoric acid, and potassium values than those in Experimental Group 2, and were of high quality.
Moreover, in summer and winter, the odor of compost was reduced when the organic matter decomposition material was used.
 図14は夏季に製造した堆肥の温度推移を表すグラフであり、図15は冬季に製造した堆肥の温度推移を表すグラフである。その結果、いずれの場合も、実験区3の堆肥が60℃に到達するまでの時間が最も短かった。 FIG. 14 is a graph showing the temperature transition of the compost produced in the summer, and FIG. 15 is a graph showing the temperature transition of the compost produced in the winter. As a result, in each case, the time required for the compost in Experimental Group 3 to reach 60 ° C. was the shortest.
 以上の結果から、有機物分解材を用いた堆肥製造においては、有機物が効率的に分解され、従来方式に比べ早期製造が可能であることが明らかになった。 From the above results, it was clarified that in the compost production using the organic matter decomposition material, the organic matter is decomposed efficiently and the production can be performed earlier than the conventional method.
[実施例4]
 15Lの海水を入れた水槽を3個用意し、1個の水槽あたり5匹のスズメダイを飼育した。飼育水の亜硝酸態窒素濃度を経時的に測定し、有機物分解材の水質浄化作用を検討した。微生物Aを含む微生物集団は、実施例1と同一のものを用いた。
[Example 4]
Three aquariums containing 15 L of seawater were prepared, and five damselfishes were bred in each aquarium. The nitrite nitrogen concentration in the breeding water was measured over time, and the water purification effect of the organic matter decomposing material was examined. As the microbial population containing microbial A, the same microbial population as in Example 1 was used.
 微生物Aを含む微生物集団のみを添加した水槽(実験区1)、微生物Aを含む微生物集団が担持されていない発泡ガラスを置いた水槽(実験区2)、事前に1mg/Lの微生物Aを含む微生物集団を発泡ガラスに含浸させた有機物分解材を置いた水槽(実験区3)を準備した。
 実験区1では、15mL(濃度は1mg/L相当)の微生物Aを含む微生物集団を水槽中に滴下した。実験区1では、実験開始から20日目に、1.5mL(濃度は1mg/L相当)の微生物Aを含む微生物集団を追加で投与した。
 実験区3では、15mL(濃度は1mg/L相当)の微生物Aを含む微生物集団を有機物分解材に含浸させた。実験区3では、実験開始から20日目に、1.5mL(濃度は1mg/L相当)の微生物Aを含む微生物集団を追加で有機物分解材に含浸させた。
 実験区2、実験区3では、それぞれ、200gの発泡ガラスを用いた。発泡ガラスは、実施例1と同一のものを用いた。
 飼育水の亜硝酸態窒素濃度は、アクアチェックECOを用いて測定した。
A water tank in which only a microbial population containing microbial A is added (experimental group 1), a water tank in which foamed glass in which a microbial population containing microbial A is not supported (experimental group 2) is placed, and 1 mg / L of microbial A is contained in advance. A water tank (Experimental Group 3) was prepared in which an organic decomposition material impregnated with a microbial population was impregnated into foam glass.
In Experimental Group 1, a microbial population containing 15 mL (concentration equivalent to 1 mg / L) of microbial A was dropped into a water tank. In Experimental Group 1, on the 20th day from the start of the experiment, an additional microbial population containing 1.5 mL (concentration equivalent to 1 mg / L) of microbial A was administered.
In Experimental Group 3, the organic matter decomposition material was impregnated with a microbial population containing 15 mL (concentration equivalent to 1 mg / L) of microbial A. In Experimental Group 3, on the 20th day from the start of the experiment, the organic matter decomposition material was additionally impregnated with a microbial population containing 1.5 mL (concentration equivalent to 1 mg / L) of microbial A.
In Experimental Group 2 and Experimental Group 3, 200 g of foamed glass was used, respectively. As the foamed glass, the same one as in Example 1 was used.
The nitrite nitrogen concentration in the breeding water was measured using Aquacheck ECO.
 飼育水の亜硝酸態窒素濃度の測定結果を図17~20に示す。図17は、実験区1の測定結果を示すグラフであり、図18は、実験区2の測定結果を示すグラフであり、図19は、実験区3の測定結果を示すグラフである。 The measurement results of the nitrite nitrogen concentration in the breeding water are shown in FIGS. 17 to 20. FIG. 17 is a graph showing the measurement results of the experimental group 1, FIG. 18 is a graph showing the measurement results of the experimental group 2, and FIG. 19 is a graph showing the measurement results of the experimental group 3.
 この結果から、海水中において、微生物Aを含む微生物集団のみを水槽に添加する場合や、微生物Aを含む微生物集団が担持されていない発泡ガラスを水槽に設置する場合よりも、微生物Aを含む微生物集団と発泡ガラスを含有する有機物分解材を水槽に設置した場合の方が、亜硝酸態窒素等の有機物の分解がより効率的に進行することが明らかになった。 From this result, in seawater, the microorganism containing the microorganism A is more than the case where only the microorganism population containing the microorganism A is added to the aquarium or the foamed glass in which the microorganism population containing the microorganism A is not supported is installed in the aquarium. It was clarified that the decomposition of organic substances such as nitrite nitrogen proceeds more efficiently when the organic substance decomposition material containing the group and the foamed glass is installed in the water tank.
 本発明によれば、より有機物の分解効率の高い有機物分解材を提供することができる。また、本発明によれば、有機物分解材を用いた、水質浄化方法、堆肥製造方法を提供することができる。 According to the present invention, it is possible to provide an organic matter decomposing material having a higher organic matter decomposing efficiency. Further, according to the present invention, it is possible to provide a water quality purification method and a compost production method using an organic matter decomposing material.

Claims (10)

  1.  担体と、
     前記担体に担持されている微生物集団と、を含有する有機物分解材であって、
     前記担体は発泡ガラスを含み、
     前記微生物集団はバチルス・サブチリス(Bacillus subtilis)BN1001菌(国際寄託の受託番号 NITE BP-02608)及び納豆菌(Bacillus subtilis var. natto)を含む、有機物分解材。
    With the carrier
    An organic decomposition material containing a microbial population supported on the carrier.
    The carrier comprises foamed glass
    The microbial population is an organic decomposition material containing Bacillus subtilis BN1001 (international deposit accession number NITE BP-02608) and Bacillus subtilis var. Natto.
  2.  汚染水の浄化用である、請求項1に記載の有機物分解材。 The organic decomposition material according to claim 1, which is used for purifying contaminated water.
  3.  前記汚染水が海水である、請求項2に記載の有機物分解材。 The organic decomposition material according to claim 2, wherein the contaminated water is seawater.
  4.  前記汚染水が水中生物の飼育水である、請求項2又は3に記載の有機物分解材。 The organic decomposition material according to claim 2 or 3, wherein the contaminated water is breeding water for aquatic organisms.
  5.  前記水中生物が養殖水産生物である、請求項4に記載の有機物分解材。 The organic decomposition material according to claim 4, wherein the aquatic organism is a farmed aquaculture product.
  6.  有機物の堆肥化促進用である、請求項1に記載の有機物分解材。 The organic decomposition material according to claim 1, which is used for promoting composting of organic substances.
  7.  前記有機物が動物の排泄物である、請求項6に記載の有機物分解材。 The organic matter decomposing material according to claim 6, wherein the organic matter is animal excrement.
  8.  前記有機物が食品残渣である、請求項6に記載の有機物分解材。 The organic decomposition material according to claim 6, wherein the organic substance is a food residue.
  9.  請求項2~5のいずれか一項に記載の有機物分解材を汚染水に接触させる工程を含む、前記汚染水の水質浄化方法。 The water quality purification method for contaminated water, which comprises a step of bringing the organic decomposition material according to any one of claims 2 to 5 into contact with contaminated water.
  10.  有機物から堆肥を製造する堆肥製造方法であって、請求項6~8のいずれか一項に記載の有機物分解材を前記有機物に接触させる工程を含む、堆肥製造方法。 A compost production method for producing compost from an organic substance, which comprises a step of bringing the organic substance decomposition material according to any one of claims 6 to 8 into contact with the organic substance.
PCT/JP2021/002294 2020-01-24 2021-01-22 Organic matter decomposer and use therefor WO2021149811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021572822A JPWO2021149811A1 (en) 2020-01-24 2021-01-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010241 2020-01-24
JP2020010241 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149811A1 true WO2021149811A1 (en) 2021-07-29

Family

ID=76992984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002294 WO2021149811A1 (en) 2020-01-24 2021-01-22 Organic matter decomposer and use therefor

Country Status (2)

Country Link
JP (1) JPWO2021149811A1 (en)
WO (1) WO2021149811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196828A1 (en) * 2021-03-19 2022-09-22 株式会社村上開明堂 Oil-treating carrier and oil-treating method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285492A (en) * 1992-04-03 1993-11-02 Central Res Inst Of Electric Power Ind Seawater purifying material and method
JPH06285490A (en) * 1993-04-01 1994-10-11 Sharp Corp Drainage treatment process
JP2001259672A (en) * 2000-03-24 2001-09-25 Sanyo Electric Co Ltd Waste water treating device and recycling method of waste water treating material
JP2009183819A (en) * 2008-02-04 2009-08-20 Tama Tlo Ltd Excreta treating material and excreta treating device equipped with the same
JP2010142708A (en) * 2008-12-17 2010-07-01 Tottori Prefecture Apparatus and method for purifying urine sewage
WO2016031804A1 (en) * 2014-08-25 2016-03-03 株式会社日本環境科学研究所 Composition, support, wastewater treatment system, wastewater treating method, deodorization method, and batch wastewater treating method
WO2019244263A1 (en) * 2018-06-19 2019-12-26 株式会社日本環境科学研究所 Wastewater treatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285492A (en) * 1992-04-03 1993-11-02 Central Res Inst Of Electric Power Ind Seawater purifying material and method
JPH06285490A (en) * 1993-04-01 1994-10-11 Sharp Corp Drainage treatment process
JP2001259672A (en) * 2000-03-24 2001-09-25 Sanyo Electric Co Ltd Waste water treating device and recycling method of waste water treating material
JP2009183819A (en) * 2008-02-04 2009-08-20 Tama Tlo Ltd Excreta treating material and excreta treating device equipped with the same
JP2010142708A (en) * 2008-12-17 2010-07-01 Tottori Prefecture Apparatus and method for purifying urine sewage
WO2016031804A1 (en) * 2014-08-25 2016-03-03 株式会社日本環境科学研究所 Composition, support, wastewater treatment system, wastewater treating method, deodorization method, and batch wastewater treating method
WO2019244263A1 (en) * 2018-06-19 2019-12-26 株式会社日本環境科学研究所 Wastewater treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196828A1 (en) * 2021-03-19 2022-09-22 株式会社村上開明堂 Oil-treating carrier and oil-treating method

Also Published As

Publication number Publication date
JPWO2021149811A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US7604742B2 (en) Soil conditioning products from organic waste
CN102161550B (en) Method for producing feed additive from livestock and poultry breeding wastewater and purifying breeding wastewater to reclaimed water
ES2712163T3 (en) Composition, support, wastewater treatment system, wastewater treatment method, deodorization method and discontinuous wastewater treatment method
KR20020012210A (en) Method of high-concentration culture of nitrifying bacteria or denitrifying bactetia contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying bacteria, and method of weight loss treatment of activated sludge
Chynoweth et al. Anaerobic treatment of piggery slurry-review
CN110950436A (en) Seawater pond culture tail water treatment system and method
CN107673558B (en) Black and odorous water body purification method
CN109293138A (en) A kind of aquaculture wastewater purifying treatment method
CN106277320A (en) A kind of Penaeus vannamei freshwater cultivation water regulation method
JP2008011814A (en) Method for using circulation type regenerated water
Nagadomi et al. Simultaneous removal of chemical oxygen demand and nitrate in aerobic treatment of sewage wastewater using an immobilized photosynthetic bacterium of porous ceramic plates
CN105585210A (en) Novel technology for treating aquaculture wastewater of fungus-aquatic plant symbiotic system
WO2021149811A1 (en) Organic matter decomposer and use therefor
US5795480A (en) Method and system for the treatment of livestock wastewater
RU2721534C1 (en) Method of water treatment for cultivation of hydrobionts in closed volumes and device implementing thereof
JP2001523539A (en) Preparation method of microorganism culture for wastewater treatment
WO2018190772A1 (en) Composition for aquaculture
CN103880184B (en) A kind of without the ultra-clean sewage water treatment method of sludge organism ball and system
JP2006212612A (en) Method for decomposing and extinguishing excrement and urine of hog raising using composite fermentation method in composite microorganism dynamic system analysis of composite microorganism system
JP2002239573A (en) Method for cleaning water
CN111471611A (en) Rhodococcus ruber HDRR1 for purifying inorganic nitrogen and phosphorus in tail water of seawater pond culture and application thereof
CN106434424B (en) Vibrios and application thereof with dirty seawater denitrification ability
CN110468063B (en) Microbial solid preparation, preparation method and application
CN109399859A (en) A kind of sewage disposal system using electrolysis method joint biological treatment
JPH05309385A (en) Biological treatment material and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21743753

Country of ref document: EP

Kind code of ref document: A1