WO2021149470A1 - Light emitting element and display device - Google Patents

Light emitting element and display device Download PDF

Info

Publication number
WO2021149470A1
WO2021149470A1 PCT/JP2020/049243 JP2020049243W WO2021149470A1 WO 2021149470 A1 WO2021149470 A1 WO 2021149470A1 JP 2020049243 W JP2020049243 W JP 2020049243W WO 2021149470 A1 WO2021149470 A1 WO 2021149470A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
region
control member
display device
Prior art date
Application number
PCT/JP2020/049243
Other languages
French (fr)
Japanese (ja)
Inventor
知明 鈴木
啓司 杉
好則 内田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2021573043A priority Critical patent/JPWO2021149470A1/ja
Publication of WO2021149470A1 publication Critical patent/WO2021149470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present disclosure relates to a light emitting element and a display device incorporating such a light emitting element.
  • Patent Publication does not mention any technique for controlling the traveling direction of light passing through the light extraction structure depending on the position of the organic EL element in the display device. That is, there is no mention of in what state the image from the display device is emitted to which region of the external space.
  • an object of the present disclosure is a display device having a configuration and structure capable of reliably and accurately controlling which area of the external space the image from the display device is emitted in what state. It is an object of the present invention to provide a light emitting element suitable for use in such a display device.
  • the display device of the present disclosure for achieving the above object is Light emitting part and Light emission direction control member through which the light emitted from the light emitting unit passes
  • a display device having a display panel provided with a plurality of light emitting elements including the above.
  • the light emission direction control member is composed of a first region and a second region surrounding the first region.
  • the refractive index value n 1 of the material constituting the first region is different from the refractive index value n 2 of the material constituting the second region.
  • the light emitting device of the present disclosure for achieving the above object is Light emitting part and Light emission direction control member through which the light emitted from the light emitting unit passes Including
  • the light emission direction control member is composed of a first region and a second region surrounding the first region.
  • the refractive index value n 1 of the material constituting the first region is different from the refractive index value n 2 of the material constituting the second region.
  • FIG. 1 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the display device of the first embodiment.
  • FIG. 2 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the display device of the first embodiment.
  • 3A and 3B are schematic views showing the positional relationship between the light emitting element and the reference point in the display device of the first embodiment.
  • 4A, 4B, 4C and 4D, the change in D 0-X with respect to a change in D 1-X is a diagram schematically showing changes in D 0-Y to changes in D 1-Y.
  • a change in D 0-X with respect to a change in D 1-X is a diagram schematically showing changes in D 0-Y to changes in D 1-Y.
  • 6A, 6B, 6C and 6D the change in D 0-X with respect to a change in D 1-X
  • the change in D 0-Y with respect to a change in D 1-X is a diagram schematically showing changes in D 0-Y to changes in D 1-Y.
  • 7A, 7B, 7C and 7D the change in D 0-X with respect to a change in D 1-X
  • FIGS. 8A and 8B are diagrams schematically showing an example of the arrangement relationship of the light emitting unit, the light emission direction control member, and the third region in the display device of the first embodiment.
  • FIG. 9 is a diagram schematically showing an example of the arrangement relationship of the light emitting unit, the light emission direction control member, and the third region in the display device of the first embodiment.
  • 10A, 10B and 10C show the cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member. It is a schematic diagram which looked at the light emission direction control member from above.
  • 11A, 11B and 11C show the cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member. It is a schematic diagram which looked at the light emission direction control member from above. 12A and 12B are light emission directions for showing the cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member. It is a schematic diagram which looked at the control member from above. 13A, 13B and 13C are schematic partial cross-sectional views of a light emitting direction control member and the like in the light emitting element of the first embodiment.
  • FIG. 14A, 14B and 14C are schematic partial cross-sectional views of a light emitting direction control member and the like in the light emitting element of the first embodiment.
  • 15A, 15B and 15C are schematic partial cross-sectional views of a light emitting direction control member and the like in the light emitting element of the first embodiment.
  • FIG. 16 shows the first region and the second light emitting element (red light emitting element), the second light emitting element (green light emitting element), and the third light emitting element (blue light emitting element), respectively, in the display device of the first embodiment. It is a schematic view which looked at the light emission direction control member from above which shows the example which the area is optimized.
  • FIG. 16 shows the first region and the second light emitting element (red light emitting element), the second light emitting element (green light emitting element), and the third light emitting element (blue light emitting element), respectively, in the display device of the first embodiment. It is a schematic view which looked at the light emission direction control member from above which shows the example
  • FIG. 17 is a graph showing the result of simulating the relationship between the light beam angle ⁇ (unit: degree) and the light amount (luminance) when the distance D 0 is changed in the light emitting element of the first embodiment.
  • 18A and 18B are diagrams schematically showing the positional relationship between the light emitting element and the reference point in the display device of the second embodiment.
  • FIG. 19 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the display device of the third embodiment.
  • FIG. 20 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the display device of the third embodiment.
  • FIG. 21 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the display device of the fourth embodiment.
  • FIG. 22 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the display device of the fourth embodiment.
  • FIG. 23 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the modified example-1 of the display device of the first embodiment.
  • FIG. 24 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the modified example-1 of the display device of the first embodiment.
  • FIG. 25 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the modification 2 of the display device of the first embodiment.
  • FIG. 26 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the modification 2 of the display device of the first embodiment.
  • FIG. 27 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the modification 3 of the display device of the first embodiment.
  • FIG. 28 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the modification 3 of the display device of the first embodiment.
  • FIGS. 30C and 30D are diagrams schematically showing an arrangement of light emitting elements in the display device of the first embodiment.
  • FIGS. 30C and 30D are diagrams schematically showing the arrangement relationship between the second electrode and the color filter layer in the display device of the first embodiment.
  • FIG. 31 is a conceptual diagram of an image display device constituting the head-mounted display of the fifth embodiment.
  • FIG. 32 is a schematic view of the head-mounted display of the fifth embodiment as viewed from above.
  • FIG. 33 is a schematic view of the head-mounted display of the fifth embodiment as viewed from the front.
  • 34A and 34B are a schematic view of the head-mounted display of Example 5 viewed from the side, and a part of the reflective volume hologram diffraction grating in the head-mounted display of Example 5, respectively. It is a schematic cross-sectional view shown by. 35A and 35B show an example in which the display device of the present disclosure is applied to an interchangeable lens type single-lens reflex type digital still camera, and a front view of the digital still camera is shown in FIG. 35A and a rear view is shown in FIG. 35B.
  • Example 1 Description of the light emitting element of the present disclosure and the display device of the present disclosure in general 2.
  • Example 1 light emitting element of the present disclosure and display device of the present disclosure
  • Example 2 Modification of Example 1
  • Example 3 Modification of Example 1 to Example 2
  • Example 4 Application of Example 1 to Example 2
  • Example 5 Example in which the display devices of Examples 1 to 4 are applied to a head-mounted display
  • n 1 and n 2 may be satisfied in the light-emitting element provided in the display panel constituting the display device of the light-emitting element or the disclosure of the present disclosure.
  • n 1> n 2 It may be n 1 ⁇ n 2 , and it may be determined according to the specifications required for the display device, but as will be described later, n 1 ⁇ n 2 is preferable.
  • the number of the first regions may be 1 or more. That is, the number of the first regions may be 1, or may be 2 or more.
  • the light emission direction control member has a flat plate shape and is in contact with the outer edge portion of the light emission direction control member from the outer edge portion.
  • the outer region (sometimes referred to as the "third region” for convenience) is occupied by a material having a refractive index value n 3 that is smaller than the refractive index value n 2 of the material constituting the second region. It can be in the form of Alternatively, in the light emitting element of the present disclosure or the light emitting element provided in the display panel constituting the display device of the present disclosure, the light emission direction control member may be in the form of a lens, specifically, light.
  • the emission direction control member may be in the form of a hemisphere or a part of the sphere, and broadly, may be in the form of a shape suitable for functioning as a lens. can. Further, in the light emitting element of the present disclosure including the various preferable forms described above or the light emitting element provided in the display panel constituting the display device of the present disclosure, the form satisfying n 1 ⁇ n 2. can do.
  • the light emitting elements of the present disclosure including the various preferable forms described above or the light emitting elements provided in the display panel constituting the display device of the present disclosure are collectively referred to as "the light emitting elements of the present disclosure”. May be called.
  • the emission direction of the light emitted from the center of the light emitting unit and passed through the light emission direction control member from the light emission direction control member. Can have different configurations.
  • a light emitting element having such a configuration may be referred to as a "light emitting element having the first configuration".
  • the light emitting element provided in the display panel At least in part, the value of the distance D 0 can be non-zero.
  • the various normals are vertical lines with respect to the light emitting surface of the display panel. Further, various normal projection images described later are normal projection images with respect to the light emitting surface of the display panel.
  • a reference point is set, At least a part of the light emitting element provided in the display panel is emitted from the center of the light emitting portion and passes through the light emitting direction control member depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion.
  • the emission direction of the light emitted from the light emission direction control member can be set.
  • a light emitting element having such a configuration may be referred to as a “second configuration light emitting element”.
  • the reference point may include some extent. That is, in the following description, the "reference point" includes the "reference area”. The same applies to the following. Then, the value of the distance D 0 can be configured to depend on the value of the distance D 1.
  • a reference point is set, In at least a part of the light emitting elements provided in the display panel, the value of (n 2 ⁇ n 1 ) is set depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion. can do.
  • a light emitting element having such a configuration may be referred to as a "light emitting element having a third configuration".
  • the light emitting elements and the like of the present disclosure include.
  • a reference point is set,
  • a virtual plane perpendicular to the thickness direction of the light emitting direction control member depends on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion.
  • the cross-sectional shape of the first region hereinafter, may be referred to as “horizontal cross-sectional shape” for convenience) when the light emission direction control member is cut in the virtual horizontal plane) can be set.
  • a light emitting element having such a configuration may be referred to as a “fourth light emitting element”.
  • the horizontal cross-sectional shape of the first region is essentially arbitrary, but polygons including triangles, quadrangles, hexagons and octagons (including regular polygons), and circles. , Oval, oval, a shape corresponding to a carryt symbol, a fan shape, and a shape corresponding to a rambolt ring.
  • all the light emitting elements provided in the display panel may have certain parameters in the same first region or second region, or may have certain parameters in different first regions or second regions. May be. As an example, for example, even if the positions and sizes in which the first region is formed are different, all the light emitting elements provided in the display panel may have the same horizontal cross-sectional shape of the first region. However, they may have different horizontal cross-sectional shapes of the first region. The same applies to the following.
  • the reference point can be configured as assumed in the display panel, and in this case, (A) The reference point is not located in the central area of the display panel (B) One reference point is assumed (C) Multiple reference points are assumed (D) The reference point is If one is assumed, the reference point is not included in the central area of the display panel, and if multiple reference points are assumed, at least one reference point is not included in the central area of the display panel. be able to. In these cases, the value of the distance D 0 in a part of the light-emitting element is 0, the value of the distance D 0 in the remaining light-emitting element can have a structure not zero.
  • the light emission direction control member may be composed of only the second region in some cases.
  • the reference point can be configured to be outside (outside) of the display panel.
  • (F) A configuration in which a plurality of reference points are assumed can be used.
  • the light emitted from each light emitting element and passing through the light emission direction control member may be configured to converge (concentrate) on a certain region of the space outside the display device.
  • the light emitted from each light emitting element and passing through the light emission direction control member may be diverged in the space outside the display device.
  • the value of the distance D 0 can be non-zero in all the light emitting elements.
  • the light emitted from each light emitting element and passing through the light emitting direction control member can be configured to be parallel light.
  • the light emission direction control member when the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member.
  • the cross-sectional shape of the first region (horizontal cross-sectional shape of the first region) is constant or constant along the thickness direction of the light emission direction control member in at least a part of the light emitting element provided in the display panel. , Can be in a changing form.
  • the horizontal cross-sectional shape of the first region becomes larger from the light incident surface to the light emitting surface of the light emitting direction control member, or It can be in a smaller form.
  • a normal line passing through the center of gravity of the first region of the light emitting direction control member and a first region passing through the center of gravity of the first region of the light emitting direction control member in at least a part of the light emitting element provided on the display panel, a normal line passing through the center of gravity of the first region of the light emitting direction control member and a first region passing through the center of gravity of the first region of the light emitting direction control member.
  • the axes of the above can be in the form of intersecting at an angle exceeding 0 degrees. That is, the first region can be in a form extending diagonally with respect to the normal passing through the center of the light emitting portion when viewed as a whole.
  • the depth of the first region is H 1 and the thickness of the light emission direction control member is H 0 .
  • 0.5 ⁇ H 1 / H 0 ⁇ 1.0 Can be made into a satisfying form.
  • the lower part of the first region may be occupied by the material constituting the second region, or the upper part of the first region may be occupied by the material constituting the second region. ..
  • the above-mentioned value of H 1 / H 0 can be in a form depending on the value of the distance D 1.
  • a reference point is set,
  • the plurality of light emitting elements are arranged in a first direction and a second direction different from the first direction.
  • the distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0
  • the distance from the reference point to the normal passing through the center of the light emitting part is D 1 year
  • the values of the first direction and the second direction of the distance D 0 are D 0-X and D 0-Y
  • the values of the first direction and the second direction of the distance D 1 are D 1-.
  • D 0-X with respect to the change in D 1-X is changed linearly
  • D 0-Y with respect to the change in D 1-Y changes linearly
  • D 0-X with respect to the change in D 1-X is changed linearly
  • D 0-Y with respect to the change in D 1-Y changes nonlinearly
  • D 0-X with respect to the change in D 1-X is changed to a non-linear
  • D 0-Y with respect to the change in D 1-Y changes linearly
  • D 0-X with respect to the change in D 1-X is changed to a non-linear
  • D 0-Y with respect to the change in D 1-Y can be in the form of changes nonlinearly.
  • the D 0-X with respect to the change in D 1-X changes linearly
  • D 0-Y with respect to the change in D 1-Y varies linearly
  • the D 0-X k X ⁇ D 1-X
  • D 0-Y k Y ⁇ D 1-Y Means that holds true.
  • k X and k Y are constants. That is, D 0-X and D 0-Y change based on the linear function.
  • the D 0-X with respect to the change in D 1-X changes nonlinearly
  • D 0-Y with respect to the change in D 1-Y varies linearly
  • the D 0-X f X (D 1-X )
  • D 0-Y f Y (D 1-Y ) Means that holds true.
  • f X and f Y are functions that are not linear functions (for example, quadratic functions).
  • changes in the D 0-X with respect to a change in D 1-X may be a step change.
  • the change in D 0-X with respect to a change in D 1-X a change in the D 0-Y to changes in D 1-Y , It may be invariant or it may be a constant change.
  • a reference point is set,
  • the distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , and the distance from the reference point to the normal passing through the center of the light emitting part is D 1 Then, as the value of the distance D 1 increases, the value of the distance D 0 can be increased.
  • the distance depending of the value of D 1 i.e., if Kaware the value of the distance D 1, the position of the first region ( That is, at least one term of the value of the distance D 0 ), the shape, the relationship between n 1 and n 2 , the size, the height, and the number may be changed.
  • the light emitting unit provided in the light emitting element can be in a form including an organic electroluminescence layer. That is, the display device of the present disclosure including various preferable forms and configurations described above can be in a form composed of an organic electroluminescence display device (organic EL display device), and the light emitting element can be an organic electroluminescence display device. It can be in the form of an element (organic EL element). Alternatively, the light emitting unit may have a form including a light emitting diode (LED).
  • LED light emitting diode
  • a color filter layer may be provided on the light incident side or the light emitting side of the light emitting direction control member.
  • the normal projection image of the light emission direction control member matches the normal projection image of the color filter layer, is included in the normal projection image of the color filter layer, or includes the normal projection image of the color filter layer. It can be in the form.
  • (D) A form in which the normal passing through the center of the light emitting portion, the normal passing through the center of gravity of the first region of the light emitting direction control member, and the normal passing through the center of the color filter layer do not match can be mentioned.
  • the center of the color filter layer refers to the area center of gravity point of the area occupied by the color filter layer.
  • a light absorption layer black matrix layer
  • the color filter layer is composed of a resin to which a colorant composed of a desired pigment or dye is added, and by selecting the pigment or dye, light transmission in a target wavelength range such as red, green, or blue is transmitted. It is adjusted so that the rate is high and the light transmittance in other wavelength ranges is low.
  • a part of the third region located between the outer edges of the adjacent light emission direction control members, or in some cases, may be.
  • a light absorption layer black matrix layer
  • black matrix layer can be formed between the adjacent light emitting elements, and this also ensures that the occurrence of color mixing between the adjacent light emitting elements can be suppressed. ..
  • These light absorption layers are made of, for example, a black resin film (specifically, for example, a black polyimide resin) having an optical density of 1 or more mixed with a black colorant, or also. , It is composed of a thin film filter that utilizes the interference of thin films.
  • the thin film filter is formed by stacking two or more thin films made of, for example, a metal, a metal nitride or a metal oxide, and attenuates light by utilizing the interference of the thin films.
  • Specific examples of the thin film filter include those in which Cr and chromium (III) oxide (Cr 2 O 3 ) are alternately laminated.
  • Examples of the material constituting the first region, the material constituting the second region, and the material constituting the third region include transparent resin materials such as acrylic resin, epoxy resin, polycarbonate resin, and polyimide resin, and transparent inorganic material. Materials can be mentioned. Specifically, as a material constituting a flat plate-shaped or lens-shaped light emission direction control member, a transparent resin material such as an acrylic resin, an epoxy resin, a polycarbonate resin, a polyimide resin, or a transparent inorganic material such as SiO 2 is used. Can be mentioned. In addition, as a transparent resin material, a photosensitive resin material including an ultraviolet curable resin material, a thermosetting resin material, and a thermoplastic resin material can be broadly mentioned.
  • the material constituting the first region, the material constituting the second region, and the material constituting the third region may be composed of the same material (however, the refractive index is different), or may be composed of materials having different refractive indexes. You may.
  • the first region may be in an air-filled state or in a vacuum state.
  • the third region may be filled with air or in a vacuum state.
  • the top surface of the flat plate-shaped light emission direction control member may be flat, may have an upward convex shape, or may have a concave shape, but the display panel may have a concave shape. From the viewpoint of improving the brightness in the front direction, it is preferable that the top surface of the flat plate-shaped light emission direction control member is flat.
  • the flat plate-shaped light emission direction control member can be obtained by a combination of a photolithography technique and an etching method, or can be formed based on a nanoprint method.
  • the lens-shaped light emission direction control member can be obtained by melt-flowing a transparent resin material, or by etching back, or a photo using a gray tone mask.
  • the formation of the first region can be obtained at the same time as the formation of the light emission direction control member, or separately from the formation of the light emission direction control member, by a combination of the photolithography technique and the etching method, and can be applied to the nanoprint method. It can also be formed based on.
  • the planar shape of the flat plate-shaped light emitting direction control member is preferably similar to the light emitting region described later, or the light emitting region is preferably included in the normal projection image of the flat plate-shaped light emitting direction control member.
  • a circle, an ellipse and an oval, and a polygon including a triangle, a quadrangle, a hexagon and an octagon can be mentioned.
  • a columnar shape or a truncated cone shape (the top surface corresponds to the cut head, or the bottom surface corresponds to the cut head) can be mentioned.
  • the portion of the ridge where the side surface of the second region intersects the side surface of the columnar or truncated cone-shaped light emitting direction control member may be rounded, or the portion of the columnar or truncated cone-shaped light emitting direction control member may be rounded.
  • the portion of the ridge where the side surface and the top surface of the two regions intersect may be rounded or may be cut out.
  • the portion of the top surface of the second region intersecting with the top surface of the first region of the light emission direction control member may be rounded or may be cut out.
  • the outer edge of the flat plate-shaped light emission direction control member is preferably vertical or substantially vertical.
  • the inclination angle of the outer edge portion of the flat plate-shaped light emission direction control member is 80 degrees to 100 degrees, preferably 81.8 degrees or more, 98.2 degrees or less, more preferably 84.0 degrees or more. 96.0 degrees or less, more preferably 86.0 degrees or more, 94.0 degrees or less, particularly preferably 88.0 degrees or more, 92.0 degrees or less, most preferably 90 degrees can be exemplified.
  • the average height of the flat plate-shaped light emitting direction control member can be exemplified as 1.5 ⁇ m or more and 2.5 ⁇ m or less, whereby the light condensing effect in the vicinity of the outer edge portion of the flat plate-shaped light emitting direction control member can be exemplified. Can be effectively enhanced.
  • the shortest distance between the outer edges of adjacent light emission direction control members is 0.4 ⁇ m or more and 1.2 ⁇ m or less, preferably 0.6 ⁇ m or more and 1.2 ⁇ m or less, more preferably 0.8 ⁇ m or more and 1.2 ⁇ m or less. More preferably, 0.8 ⁇ m or more and 1.0 ⁇ m or less can be mentioned.
  • the shortest distance between the adjacent light emission direction control members is the same as the lower limit value of the visible light wavelength band.
  • the functional deterioration of the third region can be suppressed, and as a result, the light collecting effect in the vicinity of the outer edge portion of the light emission direction control member can be effectively enhanced.
  • the maximum value of the shortest distance between the outer edges of the adjacent light emission direction control members as 1.2 ⁇ m, the size of the light emission direction control member can be reduced, and as a result, the light emission direction control member The light collection effect in the vicinity of the outer edge can be effectively enhanced.
  • the maximum distance (maximum distance in the height direction) from the light emitting unit to the bottom surface of the light emitting direction control member is more than 0.35 ⁇ m and 7 ⁇ m or less, preferably 1.3 ⁇ m or more, 7 ⁇ m or less, more preferably 2.8 ⁇ m or more. , 7 ⁇ m or less, more preferably 3.8 ⁇ m or more, and 7 ⁇ m or less.
  • the maximum distance from the light emitting unit to the light emitting direction control member is 7 ⁇ m or less, deterioration of the viewing angle characteristic can be suppressed.
  • the distance between the centers of the adjacent light emission direction control members is preferably 1 ⁇ m or more and 10 ⁇ m or less, and by setting it to 10 ⁇ m or less, the wave nature of light appears remarkably. A high light-collecting effect can be imparted.
  • the number of flat plate-shaped light emission direction control members for one pixel is essentially arbitrary, and may be 1 or more.
  • the number of flat plate-shaped light emission direction control members may be three, and when one pixel is composed of four sub-pixels.
  • the number of flat plate-shaped light emission direction control members may be four.
  • the distance between the center of the light emitting portion of the light emitting element and the center of the light emitting portion of the light emitting element adjacent to the light emitting element can be exemplified by 1 ⁇ m to 10 ⁇ m.
  • the display panel emits at least a first light emitting element (for example, a red light emitting element) that emits a first color (for example, red) and a second color (for example, green). It has a plurality of light emitting element units composed of two light emitting elements (for example, a green light emitting element) and a third light emitting element (for example, a blue light emitting element) that emits a third color (for example, blue). Ori, Each of the first light emitting element, the second light emitting element, and the third light emitting element can be in a form in which the first region and the second region are optimized.
  • a first light emitting element for example, a red light emitting element
  • a second color for example, green
  • a third light emitting element for example, a blue light emitting element
  • the position and shape of the first region, the relationship between n 1 and n 2 , the size, the height, and the number are optimized.
  • Each of the blue light emitting elements in which the light emitting unit for emitting light and the blue color filter layer are combined is provided as sub-pixels, and one pixel is composed of these sub-pixels.
  • each of a red light emitting element composed of a light emitting unit that emits red light, a green light emitting element composed of a light emitting unit that emits green light, and a blue light emitting element composed of a light emitting unit that emits blue light is subordinate.
  • a light emitting element composed of a light emitting unit that emits a fourth color (light) other than red, green, and blue may be further combined as a sub-pixel, or a display that generates a monochromatic image. It can also be a device.
  • a delta arrangement can be mentioned, or a stripe arrangement, a diagonal arrangement, a rectangle arrangement, and a pentile arrangement can be mentioned.
  • the display device can be used, for example, as a monitor device constituting a personal computer, a television receiver, a mobile phone, a PDA (personal digital assistant), a monitor device incorporated in a game device, or a projector. It can be used as a display device built into the computer. Alternatively, it can be applied to an electronic viewfinder (Electronic ViewFinder, EVF) or a head-mounted display (Head Mounted Display, HMD), for VR (Virtual Reality), for MR (Mixed Reality), or. It can be applied to a display device for AR (Augmented Reality).
  • EVF Electronic ViewFinder
  • HMD head-mounted display
  • VR Virtual Reality
  • MR Magnetic Reliable Reality
  • AR Augmented Reality
  • a display device can be configured.
  • various lighting devices including a backlight device for a liquid crystal display device and a planar light source device can be configured.
  • Head-mounted displays are, for example, (B) The frame attached to the observer's head and (B) Image display device attached to the frame, Is equipped with The image display device is (A) An image forming apparatus provided with the display device of the present disclosure, and (B) An optical device in which light emitted from an image forming apparatus is incident and emitted. Is equipped with The optical device is (B-1) A light guide plate, in which light incident from an image forming apparatus (specifically, the display device of the present disclosure) propagates inside by total reflection and then is emitted toward an observer.
  • (B-2) It is composed of a first deflection means (for example, a volume hologram diffraction grating) that deflects the light incident on the light guide plate so that the light incident on the light guide plate is totally reflected inside the light guide plate. ), And (B-3) A second deflecting means (for example,) for deflecting the light propagated inside the light guide plate by total internal reflection over a plurality of times in order to emit the light propagated inside the light guide plate by total reflection from the light guide plate. Consists of a volume hologram diffraction grating), It has.
  • the head-mounted display is, for example, a retinal projection type display based on Maxwell vision, which displays an image by directly projecting an image (light beam) onto the observer's retina, specifically, a retinal projection type display. It can also be a head-mounted display.
  • the light emitting unit provided in the light emitting element includes an organic electroluminescence layer
  • a form in which the display device of the present disclosure is composed of an organic electroluminescence display device (organic EL display device) will be described. ..
  • the display device is The first substrate, the second substrate, and A plurality of light emitting elements arranged in a two-dimensional manner located between the first substrate and the second substrate.
  • the light emitting element includes a light emitting part
  • the light emitting portion provided on the substrate formed on the first substrate is 1st electrode, 2nd electrode and An organic layer sandwiched between a first electrode and a second electrode (including a light emitting layer including an organic electroluminescence layer), At least have The light from the organic layer is emitted to the outside through the second substrate, or is emitted to the outside through the first substrate.
  • the second electrode is provided on the second substrate side, and the first electrode is provided on the first substrate side.
  • the display device of the present disclosure can be a top emission type (top emission type) display device (top emission type display device) that emits light from the second substrate via the second electrode, or the first display device. It is also possible to use a bottom emission type (bottom emission type) display device (bottom emission type display device) that emits light from the first substrate via electrodes.
  • top emission type top emission type
  • bottom emission type bottom emission type display device
  • the light emitting unit is composed of a first electrode, an organic layer, and a second electrode.
  • the center of the light emitting portion refers to the area center of gravity point of the region (light emitting region) where the first electrode and the organic layer are in contact with each other.
  • the first electrode may be in contact with a part of the organic layer, or the organic layer may be in contact with a part of the first electrode.
  • the size of the first electrode can be smaller than that of the organic layer, or the size of the first electrode is the same as that of the organic layer, but the first electrode and the organic layer are organic.
  • An insulating layer may be formed in a part between the layers, or the size of the first electrode may be larger than that of the organic layer.
  • the organic layer can be in the form of emitting white light, and in this case, the organic layer can be in the form of being composed of at least two light emitting layers that emit different colors.
  • the organic layer includes a red light emitting layer that emits red (wavelength: 620 nm to 750 nm), a green light emitting layer that emits green (wavelength: 495 nm to 570 nm), and blue (wavelength: 450 nm to 495 nm). It can have a laminated structure in which three layers of a blue light emitting layer that emits light are laminated, and emits white light as a whole.
  • the organic layer can have a structure in which two layers, a blue light emitting layer that emits blue light and a yellow light emitting layer that emits yellow light, are laminated, and emits white light as a whole.
  • the organic layer can have a structure in which two layers, a blue light emitting layer that emits blue light and an orange light emitting layer that emits orange light, are laminated, and emits white light as a whole.
  • the organic layer may be shared by a plurality of light emitting elements, or may be individually provided in each light emitting element.
  • a red light emitting element is configured, and the organic layer that emits white light and a green color are formed.
  • a green light emitting element is configured by combining with a filter layer (or a flattening layer that functions as a green color filter layer), and an organic layer that emits white light and a flattening layer that functions as a blue color filter layer (or a blue color filter layer). ) Is combined to form a blue light emitting element.
  • the flattening layer will be described later.
  • one pixel is composed of a combination of sub-pixels such as a red light emitting element, a green light emitting element, and a blue light emitting element.
  • one pixel may be composed of a red light emitting element, a green light emitting element, a blue light emitting element, and a light emitting element that emits white (or a fourth color) (or a light emitting element that emits complementary color light).
  • white or a fourth color
  • a light emitting element that emits complementary color light or a light emitting element that emits complementary color light.
  • the organic layer can be in the form of one light emitting layer.
  • the light emitting element is, for example, from a red light emitting element having an organic layer including a red light emitting layer, a green light emitting element having an organic layer including a green light emitting layer, or a blue light emitting element having an organic layer including a blue light emitting layer.
  • a red light emitting element having an organic layer including a red light emitting layer a green light emitting element having an organic layer including a green light emitting layer, or a blue light emitting element having an organic layer including a blue light emitting layer.
  • a blue light emitting element having an organic layer including a blue light emitting layer.
  • one pixel is composed of these three types of light emitting elements (sub-pixels).
  • a color filter layer may be provided to improve the color purity.
  • the substrate is formed on or above the first substrate.
  • an insulating material such as SiO 2 , SiN, and SiON can be exemplified.
  • the substrate is formed by a forming method suitable for the material constituting the substrate, specifically, various printing methods such as various CVD methods, various coating methods, various PVD methods including sputtering method and vacuum deposition method, screen printing method, and plating. It can be formed based on known methods such as a method, an electrodeposition method, a dipping method, and a sol-gel method.
  • a light emitting element drive unit is provided below or below the substrate, but not limited to.
  • the light emitting element driving unit includes, for example, a transistor (specifically, for example, MOSFET) formed on a silicon semiconductor substrate constituting the first substrate, or a thin film transistor (TFT) provided on various substrates constituting the first substrate. It is composed of.
  • the transistor or TFT constituting the light emitting element driving unit and the first electrode can be connected to each other via a contact hole (contact plug) formed in a substrate or the like.
  • the light emitting element drive unit may have a well-known circuit configuration.
  • the second electrode is connected to the light emitting element driving unit via a contact hole (contact plug) formed in a substrate or the like on the outer peripheral portion of the display panel.
  • the first electrode is provided for each light emitting element.
  • the organic layer is provided for each light emitting element, or is provided in common for the light emitting elements.
  • the second electrode may be a common electrode in a plurality of light emitting elements. That is, the second electrode may be a so-called solid electrode.
  • the first substrate is arranged below or below the substrate, and the second substrate is arranged above the second electrode.
  • a light emitting element is formed on the first substrate side, and the light emitting portion is provided on the substrate.
  • the first substrate or the second substrate is a silicon semiconductor substrate, a high-distortion point glass substrate, a soda glass (Na 2 O / CaO / SiO 2 ) substrate, a borosilicate glass (Na 2 O / B 2 O 3 / SiO 2 ) substrate.
  • the materials constituting the first substrate and the second substrate may be the same or different.
  • the second substrate is required to be transparent to the light from the light emitting element, and in the case of the bottom light emitting type display device, the first substrate is exposed to the light from the light emitting element. On the other hand, it is required to be transparent.
  • the first electrode functions as an anode electrode as a material constituting the first electrode
  • platinum Pt
  • gold Au
  • silver Ag
  • chromium Cr
  • tungsten W
  • nickel Ni
  • Copper Cu
  • Iron Fe
  • Cobalt Co
  • Tantal Ta
  • other metals or alloys with high work functions for example, silver as the main component and 0.3% by mass to 1% by mass of palladium (for example).
  • Ag—Pd—Cu alloy containing Pd) and 0.3% by mass to 1% by mass of copper (Cu), Al—Nd alloy, Al—Cu alloy, Al—Cu—Ni alloy) can be mentioned. ..
  • a conductive material having a small work function value such as aluminum (Al) and an alloy containing aluminum and having a high light reflectance is used, hole injection is performed by providing an appropriate hole injection layer. By improving the characteristics, it can be used as an anode electrode.
  • As the thickness of the first electrode 0.1 ⁇ m to 1 ⁇ m can be exemplified.
  • indium oxide, indium-tin oxide (ITO, Indium Tin Oxide, Sn) can be used as the material constituting the first electrode.
  • Dope In 2 O 3 including crystalline ITO and amorphous ITO), Indium-Zinc Oxide (IZO, Indium Zinc Oxide), Indium-Gallium Oxide (IGO), Indium Dope Gallium-Zinc Oxide (IGZO) , In-GaZnO 4 ), IFO (F-doped In 2 O 3 ), ITOO (Ti-doped In 2 O 3 ), InSn, InSnZNO, zinc oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (ZnO), aluminum oxide-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), B-doped ZnO, AlMgZnO (aluminum oxide and magnesium oxide-doped) Zinc oxide), antimony oxide, titanium oxide, NiO, spinel-type oxide, oxide having a YbFe 2 O 4 structure, gallium
  • transparent conductive materials such as sex materials can be mentioned.
  • an oxide of indium and tin (ITO) or an oxide of indium and zinc (ITO) on a highly light-reflecting reflective film such as a dielectric multilayer film or aluminum (Al) or an alloy thereof (for example, Al—Cu—Ni alloy).
  • a transparent conductive material having excellent hole injection characteristics such as an oxide (IZO) of the above is laminated.
  • the first electrode when the first electrode functions as a cathode electrode, it is desirable that the first electrode is made of a conductive material having a small work function value and a high light reflectance, but a conductive material having a high light reflectance used as an anode electrode is used. It can also be used as a cathode electrode by improving the electron injection characteristics by providing an appropriate electron injection layer.
  • the second electrode functions as a material (semi-light transmitting material or a light transmitting material) constituting the second electrode, and the second electrode functions as a cathode electrode.
  • the thickness of the second electrode 4 nm to 50 nm, preferably 4 nm to 20 nm, and more preferably 6 nm to 12 nm can be exemplified.
  • at least one material selected from the group consisting of Ag-Nd-Cu, Ag-Cu, Au and Al-Cu can be mentioned.
  • the second electrode is laminated from the organic layer side with the above-mentioned material layer and a so-called transparent electrode made of, for example, ITO or IZO (for example, a thickness of 3 ⁇ 10 -8 m to 1 ⁇ 10 -6 m).
  • a bus electrode (auxiliary electrode) made of a low resistance material such as aluminum, aluminum alloy, silver, silver alloy, copper, copper alloy, gold, or gold alloy is provided for the second electrode to reduce the resistance of the second electrode as a whole. May be planned.
  • the average light transmittance of the second electrode is preferably 50% to 90%, preferably 60% to 90%.
  • the second electrode when the second electrode functions as an anode electrode, it is desirable that the second electrode is made of a conductive material that transmits emitted light as needed and has a large work function value.
  • Examples of the method for forming the first electrode and the second electrode include an electron beam deposition method, a hot filament deposition method, a vapor deposition method including a vacuum vapor deposition method, a sputtering method, a chemical vapor deposition method (CVD method), a MOCVD method, and an ion.
  • Combination of plating method and etching method; various printing methods such as screen printing method, inkjet printing method, metal mask printing method; plating method (electroplating method and electroless plating method); lift-off method; laser ablation method; sol gel The law etc. can be mentioned. According to various printing methods and plating methods, it is possible to directly form the first electrode and the second electrode having a desired shape (pattern).
  • the second electrode When the second electrode is formed after the organic layer is formed, it may be formed based on a film forming method such as a vacuum vapor deposition method in which the energy of the formed particles is small, or a film forming method such as a MOCVD method. , It is preferable from the viewpoint of preventing the occurrence of damage to the organic layer.
  • a film forming method such as a vacuum vapor deposition method in which the energy of the formed particles is small
  • a film forming method such as a MOCVD method.
  • the organic layer includes a light emitting layer containing an organic light emitting material.
  • the organic layer also serves as a laminated structure of a hole transport layer, a light emitting layer, and an electron transport layer, and also serves as a hole transport layer and an electron transport layer. It can be composed of a laminated structure with a light emitting layer, a laminated structure of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a physical vapor deposition method such as a vacuum vapor deposition method
  • a printing method such as a screen printing method or an inkjet printing method
  • a lamination of a laser absorbing layer and an organic layer formed on a transfer substrate
  • a laser transfer method in which the organic layer on the laser absorbing layer is separated by irradiating the structure with a laser and the organic layer is transferred, and various coating methods can be exemplified.
  • an organic layer can be obtained by depositing a material that has passed through an opening provided in the metal mask using a so-called metal mask.
  • a light-shielding portion may be provided between the light-emitting element and the light-emitting element.
  • the light-shielding material constituting the light-shielding portion light such as titanium (Ti), chromium (Cr), tungsten (W), tantalum (Ta), aluminum (Al), and MoSi 2 can be shielded. Materials can be mentioned.
  • the light-shielding portion can be formed by an electron beam vapor deposition method, a hot filament vapor deposition method, a vapor deposition method including a vacuum vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like.
  • a protective layer is formed so as to cover the second electrode.
  • a light emission direction control member is formed on or above the protective layer, or a color filter layer is formed on or above the protective layer, and a light emission direction control member is formed on or above the color filter layer.
  • the light emission direction control member may be formed on or above the protective layer, and the color filter layer may be formed on or above the light emission direction control member. Then, it is possible to form a form in which a flattening layer is further formed on these. As described above, a flattening layer that functions as a color filter layer may be provided.
  • an acrylic resin can be exemplified, and SiO 2 , SiN, SiON, SiC, amorphous silicon ( ⁇ -Si), Al 2 O 3 , and TiO 2 can be exemplified. You can also do it.
  • the protective layer and the flattening layer may have a single-layer structure or may be composed of a plurality of layers.
  • As a method for forming the protective layer and the flattening layer it can be formed based on known methods such as various CVD methods, various coating methods, various PVD methods including a sputtering method and a vacuum deposition method, and various printing methods such as a screen printing method. ..
  • an ALD (Atomic Layer Deposition) method can also be adopted.
  • the protective layer and the flattening layer may be shared by a plurality of light emitting elements, or may be individually provided in each light emitting element.
  • the flattening layer may form a first region, a third region, or a first region and a third region.
  • the flattening layer and the second substrate are joined via, for example, a resin layer (sealing resin layer).
  • a resin layer As a material constituting the resin layer (sealing resin layer), heat-curable adhesives such as acrylic adhesives, epoxy adhesives, urethane adhesives, silicone adhesives, and cyanoacrylate adhesives, and ultraviolet curable adhesives. Adhesives can be mentioned.
  • the resin layer (sealing resin layer) may also serve as a flattening layer.
  • the flattening layer may have a function as a color filter layer.
  • a flattening layer may be made of a well-known color resist material.
  • a transparent filter may be provided for the light emitting element that emits white color.
  • the flattening layer also function as a color filter layer in this way, the organic layer and the flattening layer (color filter layer) are close to each other, so that even if the light emitted from the light emitting element is widened, color mixing can be prevented. It can be effectively measured and the viewing angle characteristics are improved.
  • the color filter layer may be provided below or below the flattening layer and above or above the flattening layer independently of the flattening layer.
  • An ultraviolet absorbing layer, a contamination prevention layer, a hard coat layer, and an antistatic layer may be formed or protected on the outermost surface (specifically, for example, the outer surface of the second substrate) that emits light from the display panel.
  • Members eg, cover glass
  • an insulating layer and an interlayer insulating layer are formed, and as insulating materials constituting these, SiO 2 , NSG (non-doped silicate glass), BPSG (boron phosphorus silicate glass), PSG, etc.
  • SiO X- based materials materials constituting silicon-based oxide films
  • SiN-based materials including SiON-based materials; SiOC; SiOF; SiCN can be mentioned.
  • Inorganic insulating materials such as (Nb 2 O 5 ), tin oxide (SnO 2 ), and vanadium oxide (VO x) can be mentioned.
  • fluorocarbon cycloperfluorocarbon polymer
  • benzocyclobutene cyclic fluororesin
  • polytetrafluoroethylene amorphous tetrafluoroethylene
  • polyaryl ether aryl fluoride ether
  • foot Polyimide chemicals, amorphous carbon, parylene (polyparaxylylene), fullerene fluoride), Silk (a trademark of The Dow Chemical Co., a coating type low dielectric constant interlayer insulating film material), Flare ( It is a trademark of Honeywell Electronic Materials Co., and a polyallyl ether (PAE) -based material) can also be exemplified.
  • PAE polyallyl ether
  • the substrate may be composed of the materials described above.
  • various printing methods such as various CVD methods, various coating methods, various PVD methods including sputtering method and vacuum vapor deposition method, screen printing method, plating method, electrodeposition method, immersion method, sol- It can be formed based on a known method such as a gel method.
  • the organic EL display device preferably has a resonator structure in order to further improve the light extraction efficiency. Specifically, the interface between the first interface formed by the interface between the first electrode and the organic layer (or the interface between the light reflecting layer provided below the first electrode and the interlayer insulating layer located above the light reflecting layer). The light emitted from the light emitting layer is resonated between the first interface formed by the above and the second interface formed by the interface between the second electrode and the organic layer, and a part of the light emitted from the light emitting layer is resonated from the second electrode. Make it emit.
  • the optical distance from the maximum light emitting position of the light emitting layer to the first interface is OL 1
  • the optical distance from the maximum light emitting position of the light emitting layer to the second interface is OL 2
  • m 1 and m 2 are integers.
  • the configuration can satisfy the following equations (1-1) and (1-2).
  • Maximum peak wavelength of the spectrum of light generated in the light emitting layer (or desired wavelength in the light generated in the light emitting layer)
  • ⁇ 1 Phase shift amount of light reflected at the first interface (unit: radians).
  • -2 ⁇ ⁇ 1 ⁇ 0 ⁇ 2 Phase shift amount of light reflected at the second interface (unit: radians).
  • the value of m 1 is larger than or equal to zero
  • the value of m 2 is independently a value of m 1, is a value of 0 or more
  • (m 1, m 2) (0,0 )
  • (M 1 , m 2 ) (0, 1)
  • (m 1 , m 2 ) (1, 0)
  • the distance L 1 from the maximum light emitting position of the light emitting layer to the first interface refers to the actual distance (physical distance) from the maximum light emitting position of the light emitting layer to the first interface, and is the second from the maximum light emitting position of the light emitting layer.
  • the distance L 2 to the interface refers to the actual distance (physical distance) from the maximum light emitting position of the light emitting layer to the second interface.
  • the optical distance is also called an optical path length, and generally refers to n ⁇ L when a light ray passes through a medium having a refractive index n by a distance L. The same applies to the following.
  • the average refractive index nave is the sum of the products of the refractive index and the thickness of each layer constituting the organic layer (or the organic layer and the interlayer insulating layer), and the organic layer (or the organic layer and the interlayer insulating layer). ) Is divided by the thickness.
  • the desired wavelength ⁇ (specifically, for example, the red wavelength, the green wavelength, and the blue wavelength) of the light generated in the light emitting layer is determined, and the equations (1-1) and (1-2) are determined.
  • the light emitting element may be designed by obtaining various parameters such as OL 1 and OL 2 in the light emitting element based on the above.
  • the first electrode or the light reflecting layer and the second electrode absorb a part of the incident light and reflect the rest. Therefore, a phase shift occurs in the reflected light.
  • the phase shift amounts ⁇ 1 and ⁇ 2 the values of the real and imaginary parts of the complex refractive index of the material constituting the first electrode or the light reflecting layer and the second electrode are measured by using, for example, an ellipsometer, and these are measured. It can be calculated by performing calculations based on values (see, for example, "Principles of Optic", Max Born and Emil Wolf, 1974 (PERGAMON PRESS)).
  • aluminum As a material constituting the light reflecting layer, aluminum, aluminum alloy (for example, Al—Nd or Al—Cu), Al / Ti laminated structure, Al—Cu / Ti laminated structure, chromium (Cr), silver (Ag), silver.
  • alloys for example, Ag-Cu, Ag-Pd-Cu, Ag-Sm-Cu.
  • Ablation method It can be formed by a sol-gel method or the like.
  • a base layer made of, for example, TiN in order to control the crystal state of the light-reflecting layer to be formed.
  • an organic layer that emits white light and a red color filter layer (or a flattening layer that functions as a red color filter layer) are actually combined.
  • the red light emitting element composed of the above resonates the red light emitted in the light emitting layer, and emits reddish light (light having a peak in the optical spectrum in the red region) from the second electrode.
  • the green light emitting element formed by combining an organic layer that emits white light and a green color filter layer (or a flattening layer that functions as a green color filter layer) resonates the green light emitted by the light emitting layer.
  • Greenish light (light having a peak in the optical spectrum in the green region) is emitted from the second electrode.
  • the blue light emitting element configured by combining an organic layer that emits white light and a blue color filter layer (or a flattening layer that functions as a blue color filter layer) resonates the blue light emitted by the light emitting layer. Then, bluish light (light having a peak in the optical spectrum in the blue region) is emitted from the second electrode. That is, the desired wavelength ⁇ (specifically, the red wavelength, the green wavelength, and the blue wavelength) of the light generated in the light emitting layer is determined, and the equations (1-1) and (1-2) are determined.
  • each light emitting element may be designed by obtaining various parameters such as OL 1 and OL 2 in each of the red light emitting element, the green light emitting element, and the blue light emitting element.
  • paragraph number [0041] of Japanese Patent Application Laid-Open No. 2012-216495 discloses an organic EL element having a resonator structure having an organic layer as a resonance portion, and appropriately adjusts the distance from the light emitting point to the reflecting surface. It is described that the thickness of the organic layer is preferably 80 nm or more and 500 nm or less, and more preferably 150 nm or more and 350 nm or less.
  • the thickness of the hole transport layer (hole supply layer) and the thickness of the electron transport layer (electron supply layer) are approximately equal.
  • the electron transport layer (electron supply layer) may be thicker than the hole transport layer (hole supply layer), which is necessary for high efficiency at a low drive voltage and sufficient for the light emitting layer.
  • Electronic supply is possible. That is, the hole supply can be increased by arranging the hole transport layer between the first electrode corresponding to the anode electrode and the light emitting layer and forming the hole transport layer with a film thickness thinner than that of the electron transport layer. It will be possible.
  • Example 1 relates to the display device of the present disclosure of the present disclosure.
  • a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the display device of the first embodiment is shown in FIG. 1, and a schematic diagram of a light emitting element (provided that it is located away from the reference point) is shown in FIG.
  • a partial cross-sectional view is shown in FIG.
  • FIG. 3A schematically shows the positional relationship between the light emitting element provided in the display panel of the display device of the first embodiment and the reference point, and the light emitting unit, the light emission direction control member, and the light emitting direction control member in the display device of the first embodiment are shown.
  • the arrangement relationship of the third region is schematically shown in FIGS.
  • 8A is a diagram schematically showing the arrangement relationship of the light emitting portion and the light emission direction control member in the part of the display device showing a schematic partial cross-sectional view in FIG. 1
  • FIG. 8B is a diagram schematically showing the arrangement relationship of the light emitting portion and the light emitting direction control member.
  • FIG. 9 is a diagram schematically showing the arrangement relationship of the light emitting portion and the light emission direction control member in the part of the display device showing a schematic partial cross-sectional view
  • FIG. 9 is a diagram schematically showing the arrangement relationship of a plurality of light emitting parts and the like. It is a figure shown as a target.
  • the display device of the first embodiment is specifically composed of an organic EL display device, and the light emitting element of the first embodiment is specifically composed of an organic EL element. Further, the display device of the first embodiment is a top emission type (top light emitting type) display device (top light emitting type display device) that emits light from the second substrate.
  • top emission type top light emitting type
  • the display devices of the first embodiment or the second to fifth embodiments described later are Light emitting unit 30 and Light emission direction control member 50 through which the light emitted from the light emitting unit 30 passes.
  • the light emission direction control member 50 is composed of a first region 51 and a second region 52 surrounding the first region 51.
  • the refractive index value n 1 of the material constituting the first region 51 is different from the refractive index value n 2 of the material constituting the second region 52.
  • the light emitting element 10 of Example 1 or Examples 2 to 5 described later is Light emitting unit 30 and Light emission direction control member 50 through which the light emitted from the light emitting unit 30 passes.
  • the light emission direction control member 50 is composed of a first region 51 and a second region 52 surrounding the first region 51.
  • the refractive index value n 1 of the material constituting the first region 51 is different from the refractive index value n 2 of the material constituting the second region 52.
  • the light emission direction control member 50 has a flat plate shape, and the region (third region 53) located outside the outer edge portion 54 in contact with the outer edge portion 54 of the light emission direction control member 50 is It is occupied by a material having a refractive index value n 3 smaller than the refractive index value n 2 of the material constituting the second region 52. Also, n 1 ⁇ n 2 is satisfied.
  • the light emitting element 10 of the first embodiment is the light emitting element of the first configuration, and is emitted from the center of the light emitting unit 30 and passes through the light emitting direction control member 50 depending on the position of the light emitting element 10 on the display panel.
  • the emission direction of the emitted light from the light emission direction control member 50 is different.
  • the distance between the normal LN passing through the center of the light emitting unit 30 and the normal LN'passing through the center of gravity of the first region 51 of the light emitting direction control member 50 is set to D 0 , FIG. As shown, the value of the distance D 0 is not 0 in at least a part of the light emitting element 10 provided in the display panel.
  • the light emitting element 10 of the first embodiment is a light emitting element having a second configuration, and as shown in FIG. 3A,
  • the reference point P is set, At least a part of the light emitting element 10 provided on the display panel is emitted from the center of the light emitting unit 30 and emitted light depending on the distance D 1 from the reference point P to the normal LN passing through the center of the light emitting unit 30.
  • the emission direction of the light that has passed through the direction control member 50 from the light emission direction control member 50 is set.
  • the value of the distance D 0 depends on the value of the distance D 1.
  • the distance D 1 depending on the value of the distance D 1 , not only the position of the first region 51 (that is, the value of the distance D 0 ) but also the shape, the relationship between n 1 and n 2 , the size, the height, and the number. At least one term of may be changed.
  • the light emission direction control member 50 may be designed based on this specification.
  • the position of the space where the image emitted from the display device is formed may or may not be on the normal line of the reference point P.
  • an optical system through which the image emitted from the display device passes may be arranged. What kind of optical system is arranged also depends on the specifications required for the display device, but for example, an imaging lens system can be exemplified.
  • the reference point P is assumed in the display panel. However, the reference point P is not located in the central region of the display panel.
  • the central region of the display panel is indicated by a black triangle mark
  • the light emitting element 10 is indicated by a square mark
  • the center of the light emitting unit 30 is indicated by a black square mark.
  • one reference point P is assumed, and the reference point P is indicated by a black circle.
  • the value of the distance D 0 is 0 at some of the light emitting elements 10 (specifically, one or more light emitting elements 10 included in the reference point P). , The value of the distance D 0 is not 0 in the remaining light emitting elements 10.
  • the light emitted from each light emitting element 10 and passing through the light emission direction control member 50 converges (condenses) on a certain region of the space outside the display device.
  • the light emitted from each light emitting element 10 and passing through the light emission direction control member 50 is diverged in the space outside the display device.
  • the light emitted from each light emitting element 10 and passing through the light emission direction control member 50 is parallel light.
  • Example 1 The reference point P is set, The plurality of light emitting elements 10 are arranged in a first direction (specifically, the X direction) and a second direction (specifically, the Y direction) different from the first direction.
  • the distance between the normal LN passing through the center of the light emitting unit 30 and the normal LN'passing through the center of gravity of the first region 51 of the light emitting direction control member 50 is D 0 , and the distance from the reference point P passes through the center of the light emitting unit 30.
  • D 1 be the distance to the normal LN Distance first direction (X direction) of the D 0 and the second direction each value of (Y-direction) and D 0-X, D 0- Y, the first direction (X direction) of the distance D 1 and
  • D 0-X with respect to changes in the [A] D 1-X is changed linearly
  • D 0-Y with respect to the change in D 1-Y is may be designed to vary linearly
  • D 0-X is changed linearly relative to changes in the [B] D 1-X
  • D 0-Y with respect to the change in D 1-Y is may be designed to vary nonlinearly
  • D 0-X to changes in [C] D 1-X is changed to a non-linear
  • D 0-Y with respect to the change in D 1-Y is may be designed to vary linearly
  • [D] D 0-X with respect to the change in D 1-X is changed to a non-linear
  • D 0-Y with respect to the change in D 1-Y may be designed to vary linearly
  • the reference point P is set,
  • the distance between the normal LN passing through the center of the light emitting unit 30 and the normal LN'passing through the center of gravity of the first region 51 of the light emitting direction control member 50 is D 0 , and the distance passes from the reference point P to the center of the light emitting unit 30.
  • the distance to the normal line LN was D 1
  • the value of the distance D 1 is increased
  • the value of the distance D 0 may be designed to increase.
  • the changes in D 0-X and D 0-Y that depend on the changes in D 1-X and D 1-Y may be determined based on the specifications required for the display device.
  • the normal projection image of the light emission direction control member 50 is included in the normal projection image of the light emitting unit 30.
  • the outer shape of the light emitting portion 30 and the light emitting direction control member 50 is a regular hexagon (honeycomb shape), and the outer edge portion of the third region 53 (the boundary with the adjacent third region 53) is a regular hexagon. It is not limited to the shape. Further, although the horizontal cross-sectional shape of the first region 51 is circular, the shape is not limited to such a shape.
  • the outer edge portion of the light emitting portion 30 is indicated by a alternate long and short dash line
  • the outer edge portion 54 of the light emission direction control member 50 is indicated by a solid line
  • the first region 51 is indicated by a solid line
  • the outer edge portion of the third region 53 is shown by a dotted line.
  • the shape of the entire light emission direction control member 50 is columnar (regular hexagonal columnar).
  • the number of the flat plate-shaped light emission direction control members 50 with respect to one light emitting unit 30 is essentially arbitrary and may be 1 or more, but is set to 1 in the first embodiment. Further, although the number of the first regions 51 provided in each light emission direction control member 50 is set to 1, it may be 2 or more.
  • the material constituting the first region 51, the material constituting the second region 52, and the material constituting the third region 53 are made of, for example, an acrylic resin. That is, the material forming the first region 51, the material forming the second region 52, and the material forming the third region 53 are made of the same material (however, the refractive index is different).
  • the top surface of the flat plate-shaped light emission direction control member 50 may be flat as shown, may have an upward convex shape, or may have a concave shape. ..
  • the outer edge portion 54 of the flat plate-shaped light emission direction control member 50 is vertical or substantially vertical. Specifically, 80 degrees to 100 degrees can be exemplified as the inclination angle of the outer edge portion 54 of the flat plate-shaped light emission direction control member 50.
  • the light emitting unit 30 includes an organic electroluminescence layer (organic EL layer). That is, the display devices of Examples 1 to 5 are composed of an organic electroluminescence display device (organic EL display device), and the light emitting element 10 is composed of an organic electroluminescence element (organic EL element).
  • the display devices of Example 1 or Examples 2 to 5 described later are The first substrate 11, the second substrate 41, and A plurality of light emitting elements 10 (10R, 10G, 10B) located between the first substrate 11 and the second substrate 41 and arranged in a two-dimensional manner.
  • the light emitting element 10 (10R, 10G, 10B) includes a light emitting unit 30 and includes a light emitting unit 30.
  • the light emitting unit 30 provided on the substrate 26 formed on the first substrate 11 is 1st electrode 31, Second electrode 32 and An organic layer (having a light emitting layer including an organic electroluminescence layer) 33 sandwiched between the first electrode 31 and the second electrode 32, At least have In the first embodiment, the light from the organic layer 33 is emitted to the outside via the second substrate 41.
  • the color filter layer CF R, CF G and CF B (hereinafter, may be collectively referred to as color filter layer CF) are provided.
  • a protective layer 34 made of an acrylic resin is formed on the second electrode 32 so as to cover the second electrode 32.
  • a color filter layer CF made of a well-known material is formed by a well-known method.
  • a light emission direction control member 50 is provided on the color filter layer CF.
  • a flattening layer 35 is formed on the color filter layer CF and the light emission direction control member 50.
  • the normal projection image of the light emission direction control member 50 is included in the normal projection image of the color filter layer CF.
  • the color filter layer CF (CF R, CF G, CF B) and the planarizing layer 35 formed on the light emitting direction control member 50 is bonded to the second substrate 41 through the sealing resin layer 36 .
  • Thermosetting adhesives such as acrylic adhesives, epoxy adhesives, urethane adhesives, silicone adhesives, and cyanoacrylate adhesives, and ultraviolet curable adhesives are used as materials constituting the sealing resin layer 36.
  • the color filter layer CF is an OCCF (on-chip color filter layer) formed on the first substrate side.
  • the organic layer 33 has a laminated structure of a red light emitting layer, a green light emitting layer, and a blue light emitting layer.
  • One pixel is composed of three light emitting elements, a red light emitting element 10R, a green light emitting element 10G, and a blue light emitting element 10B.
  • the organic layer 33 constituting the light emitting element 10 emits white light, the light-emitting elements 10R, 10G, 10B, the organic layer 33 and the color filter layer for emitting white light CF R, CF G, a combination of a CF B It is configured.
  • the red light emitting element 10R should display red is provided with a red color filter layer CF R, the green light emitting element 10G to be displayed green is provided with a green color filter layer CF G, to display blue
  • the power blue light emitting element 10B is provided with a blue color filter layer CF B.
  • the red light emitting element 10R, the green light emitting element 10G, and the blue light emitting element 10B have substantially the same configuration and structure except for the parameters of the light emission direction control member 50, the color filter layer, and the position of the light emitting layer.
  • the number of pixels is, for example, 1920 ⁇ 1080, one light emitting element (display element) constitutes one sub-pixel, and the light emitting element (specifically, an organic EL element) is three times the number of pixels.
  • one pixel may be composed of a red light emitting element 10R, a green light emitting element 10G, a blue light emitting element 10B, and a light emitting element that emits white light (or a light emitting element that emits complementary color light).
  • FIGS. 30A and 30B shows the first electrode 31R, 31G, 31B and the color filter layer CF R, CF G, the arrangement of CF B schematically.
  • FIG. 30B and FIG. 30D shows the color filter layer CF R, CF G, a CF B by dotted lines.
  • the first electrode 31R constituting the red light emitting element is used. It is preferable to cut out the facing portion of the first electrode 31G constituting the green light emitting element, and further, in order to maintain the viewing angle symmetry of the azimuth angle, the facing portion of the first electrode 31R of the red light emitting element is opposed to the cutout portion. It is more preferable to cut out the portion of the first electrode 31R to be formed and cut out the portion of the first electrode 31G facing the notched portion of the first electrode 31G of the green light emitting element.
  • a light emitting element driving unit is provided below the substrate (interlayer insulating layer) 26 made of SiO 2 formed by the CVD method.
  • the light emitting element drive unit may have a well-known circuit configuration.
  • the light emitting element driving unit is composed of a transistor (specifically, a MOSFET) formed on a silicon semiconductor substrate corresponding to the first substrate 11.
  • the transistor 20 composed of the MOSFET includes a gate insulating layer 22 formed on the first substrate 11, a gate electrode 21 formed on the gate insulating layer 22, and a source / drain region 24 formed on the first substrate 11. It is composed of a channel forming region 23 formed between the source / drain region 24, and an element separation region 25 surrounding the channel forming region 23 and the source / drain region 24.
  • the transistor 20 and the first electrode 31 are electrically connected to each other via a contact plug 27 provided on the substrate 26.
  • one transistor 20 is shown for each light emitting element drive unit.
  • the second electrode 32 is connected to the light emitting element driving unit via a contact hole (contact plug) (not shown) formed in the substrate (interlayer insulating layer) 26 on the outer peripheral portion of the display panel.
  • An auxiliary electrode connected to the second electrode 32 may be provided below the second electrode 32 on the outer peripheral portion of the display panel, and the auxiliary electrode may be connected to the light emitting element driving unit.
  • the first electrode 31 functions as an anode electrode
  • the second electrode 32 functions as a cathode electrode.
  • the first electrode 31 is composed of a light reflecting material layer, specifically, for example, an Al—Nd alloy layer, an Al—Cu alloy layer, an Al—Ti alloy layer and an ITO layer
  • the second electrode 32 is composed of a laminated structure. It is made of a transparent conductive material such as ITO.
  • the first electrode 31 is formed on the substrate (interlayer insulating layer) 26 based on the combination of the vacuum vapor deposition method and the etching method.
  • the second electrode 32 is formed by a film forming method such as a vacuum vapor deposition method in which the energy of the formed particles is small, and is not patterned.
  • the organic layer 33 is also not patterned. However, the present invention is not limited to this, and the organic layer 33 may be patterned. That is, the organic layer 33 is painted separately for each sub-pixel, the organic layer 33 of the red light emitting element is composed of an organic layer that emits red light, the organic layer 33 of the green light emitting element is composed of an organic layer that emits green light, and is blue. The organic layer 33 of the light emitting element may be composed of an organic layer that emits blue light.
  • the organic layer 33 includes a hole injection layer (HIL: Hole Injection Layer), a hole transport layer (HTL: Hole Transport Layer), a light emitting layer, an electron transport layer (ETL: Electron Transport Layer), and It has a laminated structure of electron injection layers (EIL).
  • the light emitting layer is composed of at least two light emitting layers that emit light of different colors, and as described above, the light emitted from the organic layer 33 is white.
  • the organic layer has a structure in which three layers of a red light emitting layer that emits red light, a green light emitting layer that emits green light, and a blue light emitting layer that emits blue light are laminated.
  • the organic layer may have a structure in which two layers, a blue light emitting layer that emits blue light and a yellow light emitting layer that emits yellow light, are laminated, or a blue light emitting layer that emits blue light and an orange light emitting layer.
  • the structure may be such that two layers of orange light emitting layers are laminated.
  • the hole injection layer is a layer that enhances the hole injection efficiency and also functions as a buffer layer that prevents leaks, and has a thickness of, for example, about 2 nm to 10 nm.
  • the hole injection layer is composed of, for example, a hexaazatriphenylene derivative represented by the following formula (A) or formula (B).
  • R 1 to R 6 are independently hydrogen, halogen, hydroxy group, amino group, allulamino group, substituted or unsubstituted carbonyl group having 20 or less carbon atoms, and substituted or non-substituted group having 20 or less carbon atoms, respectively.
  • Substituent carbonyl ester group substituted or unsubstituted alkyl group having 20 or less carbon atoms, substituted or unsubstituted alkenyl group having 20 or less carbon atoms, substituted or unsubstituted alkoxy group having 20 or less carbon atoms, 30 or less carbon atoms
  • X 1 to X 6 are independently carbon or nitrogen atoms, respectively.
  • the hole transport layer is a layer that enhances the hole transport efficiency to the light emitting layer.
  • the electron transport layer is a layer that enhances the electron transport efficiency to the light emitting layer
  • the electron injection layer is a layer that enhances the electron injection efficiency into the light emitting layer.
  • the hole transport layer is composed of, for example, 4,4', 4 "-tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA) or ⁇ -naphthylphenyldiamine ( ⁇ NPD) having a thickness of about 40 nm. ..
  • the light emitting layer is a light emitting layer that produces white light by mixing colors. For example, as described above, a red light emitting layer, a green light emitting layer, and a blue light emitting layer are laminated.
  • red light emitting layer when an electric field is applied, a part of the holes injected from the first electrode 31 and a part of the electrons injected from the second electrode 32 are recombinated to generate red light. do.
  • a red light emitting layer contains, for example, at least one of a red light emitting material, a hole transporting material, an electron transporting material, and an amphoteric charge transporting material.
  • the red light emitting material may be a fluorescent material or a phosphorescent material.
  • the red light emitting layer having a thickness of about 5 nm is, for example, 4,4-bis (2,2-diphenylvinyl) biphenyl (DPVBi) and 2,6-bis [(4'-methoxydiphenylamino) styryl] -1. , 5-Dicyanonaphthalene (BSN) mixed in an amount of 30% by mass.
  • DPVBi 4,4-bis (2,2-diphenylvinyl) biphenyl
  • BSN 5-Dicyanonaphthalene
  • Such a green light emitting layer contains, for example, at least one of a green light emitting material, a hole transporting material, an electron transporting material, and an amphoteric charge transporting material.
  • the green light emitting material may be a fluorescent material or a phosphorescent material.
  • the green light emitting layer having a thickness of about 10 nm is composed of, for example, DPVBi mixed with 5% by mass of coumarin 6.
  • Such a blue light emitting layer when an electric field is applied, a part of the holes injected from the first electrode 31 and a part of the electrons injected from the second electrode 32 are recombinated to generate blue light. do.
  • a blue light emitting layer contains, for example, at least one of a blue light emitting material, a hole transporting material, an electron transporting material, and an amphoteric charge transporting material.
  • the blue light emitting material may be a fluorescent material or a phosphorescent material.
  • the blue light emitting layer having a thickness of about 30 nm contains, for example, 2.5% by mass of 4,4'-bis [2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl] biphenyl (DPAVBi) in DPVBi. Consists of a mixture.
  • the electron transport layer having a thickness of about 20 nm is made of, for example, 8-hydroxyquinoline aluminum (Alq3).
  • the materials that make up each layer are examples, and are not limited to these materials.
  • the light emitting layer may be composed of a blue light emitting layer and a yellow light emitting layer, or may be composed of a blue light emitting layer and an orange light emitting layer.
  • the light emitting element 10 has a resonator structure in which the organic layer 33 is a resonance portion.
  • the thickness of the organic layer 33 is 8 ⁇ 10 ⁇ . It is preferably 8 m or more and 5 ⁇ 10 -7 m or less, and more preferably 1.5 ⁇ 10 -7 m or more and 3.5 ⁇ 10 -7 m or less.
  • the red light emitting element 10R actually resonates the red light emitted in the light emitting layer to cause reddish light (the peak of the optical spectrum in the red region).
  • the green light emitting element 10G resonates the green light emitted in the light emitting layer, and emits greenish light (light having a peak in the optical spectrum in the green region) from the second electrode 32.
  • the blue light emitting element 10B resonates the blue light emitted in the light emitting layer, and emits bluish light (light having a peak in the optical spectrum in the blue region) from the second electrode 32.
  • a light emitting element driving unit is formed on a silicon semiconductor substrate (first substrate 11) based on a known MOSFET manufacturing process.
  • a substrate (interlayer insulating layer) 26 is formed on the entire surface based on the CVD method.
  • a connection hole is formed in a portion of the substrate 26 located above one source / drain region 24 of the transistor 20 based on a photolithography technique and an etching technique, and a metal layer is formed on the substrate 26 including the connection hole.
  • the first electrode 31 can be formed on a part of the substrate 26 by forming the metal layer based on the sputtering method and then patterning the metal layer based on the photolithography technique and the etching technique. The first electrode 31 is separated for each light emitting element.
  • a contact hole (contact plug) 27 for electrically connecting the first electrode 31 and the transistor 20 can be formed in the connection hole.
  • the insulating layer 28 is placed on the substrate 26 between the first electrode 31 and the first electrode 31 based on the photolithography technique and the etching technique. Leave.
  • the organic layer 33 is formed on the first electrode 31 and the insulating layer 28 by, for example, a PVD method such as a vacuum deposition method or a sputtering method, a coating method such as a spin coating method or a die coating method, or the like. In some cases, the organic layer 33 may be patterned into a desired shape.
  • a PVD method such as a vacuum deposition method or a sputtering method
  • a coating method such as a spin coating method or a die coating method, or the like.
  • the organic layer 33 may be patterned into a desired shape.
  • the second electrode 32 is formed on the entire surface based on, for example, a vacuum vapor deposition method. In some cases, the second electrode 32 may be patterned into a desired shape. In this way, the organic layer 33 and the second electrode 32 can be formed on the first electrode 31.
  • the protective layer 34 is formed on the entire surface, and then the top surface of the protective layer 34 is flattened. Since the protective layer 34 can be formed based on the coating method, there are few restrictions on the processing process, the material selection range is wide, and a high refractive index material can be used. Thereafter, in a known manner, the color filter layer CF (CF R, CF G, CF B) was formed on the protective layer 34, further, to form a light emitting direction control member 50 on the color filter layer CF.
  • the color filter layer CF CF R, CF G, CF B
  • a light emission direction control member forming layer for forming the light emission direction control member 50 is formed on the color filter layer CF, and a resist material layer is formed on the light emission direction control member forming layer. Then, by patterning the resist material layer, it is possible to obtain a light emission direction control member 50 composed of a space (hole) in which the first region 51 is to be formed and a second region 52.
  • the flattening layer 35 is formed on the color filter layer CF and the light emission direction control member 50.
  • a part of the flattening layer 35 (extending portion of the flattening layer 35) invades the vacant space where the first region 51 should be formed, and the first region 51 is formed.
  • a third region 53 surrounding the second region 52 is formed by a part of the flattening layer 35 (extending portion of the flattening layer 35).
  • the flattening layer 35 and the second substrate 41 are bonded together by a sealing resin layer 36 made of an acrylic adhesive. In this way, the display device of the light emitting element (organic EL element) 10 and the first embodiment shown in FIGS. 1 and 2 can be obtained.
  • the light emission direction control member is composed of the first region and the second region made of materials having different refractive indexes, the light is emitted from the light emission direction control member.
  • the direction of the light can be controlled reliably and accurately. Specifically, by optimizing the position and shape of the first region, the relationship between n 1 and n 2 , the size, and the number, the direction of the light emitted from the light emission direction control member can be controlled, that is, , The light distribution control of the light emitting element can be performed reliably and accurately.
  • the flat plate-shaped light emission direction control member has a function as a kind of lens. Moreover, the light-collecting effect in the vicinity of the outer edge of the flat plate-shaped light emission direction control member can be effectively enhanced. Further, since the light emission direction control member has a flat plate shape, it is easy to form, and the manufacturing process can be simplified.
  • the vicinity of the outer edge portion of the flat plate-shaped light emission direction control member 50 is shown by reference numeral 54A in FIG.
  • the distance between the normal LN passing through the center of the light emitting portion and the normal LN'passing through the center of gravity of the first region of the light emitting direction control member is set to D 0 .
  • the distance D 0 is not 0 in at least a part of the light emitting elements constituting the display device, the light is emitted from the light emitting layer and passed through the light emitting direction control member depending on the position of the light emitting element on the display panel.
  • the direction of light travel can be controlled reliably and accurately. That is, it is possible to reliably and accurately control to which region of the external space the image from the display device is emitted in what state.
  • the light emission direction control member it is possible not only to increase the brightness (luminance) of the image emitted from the display device and prevent color mixing between adjacent pixels, but also to meet the required viewing angle.
  • the light can be appropriately dissipated, and the life of the light emitting element and the display device can be extended and the brightness can be increased. Therefore, it is possible to reduce the size, weight, and quality of the display device.
  • the applications for eyewear, AR (Augmented Reality) glasses, and EVR will be greatly expanded.
  • Example 1 assuming a light emitting element 10 having the following parameters, the behavior of light emitted from the light emitting unit 30 and passing through the light emitting direction control member 50, specifically, the brightness in the front direction was simulated. That is, in the light emitting element of Example 1, the relationship between the light beam angle ⁇ (unit: degree) and the light amount (luminance) when the distance D 0 was changed was simulated. The result is shown in the graph of FIG. Here, in the simulation, a wave analysis simulation was performed based on the FDTD method (Finite-difference Time-Domain method). Further, the refractive index of each layer was set as shown in Table 1 below, and the parameters of the light emission direction control member 50 and the like were set as shown in Table 2 below.
  • FDTD method Finite-difference Time-Domain method
  • Second substrate 41 Refractive index 1.50 Flattening layer 35: Refractive index 1.38 First region 51: Refractive index 1.38 Second region 52: Refractive index 1.50 Third region 53: Refractive index 1.38 Protective layer 34: Upper layer with a refractive index of 1.50 Lower layer with a refractive index of 1.80 Second electrode 32: Refractive index (real part) 0.96 Organic layer 33: Refractive index 1.80
  • the light ray angle refers to an angle formed by a light ray emitted from the light emitting direction control member 50 and a vertical line (normal line) with respect to the light emitting surface of the display panel.
  • the main light ray angle is a light ray angle when the light beam emitted from the light emission direction control member 50 has the maximum light amount (maximum brightness).
  • the main ray angle can be controlled by changing the distance D 0, and that the flat plate-shaped light emission direction control member 50 has a condensing effect.
  • the incident angle and the reflection angle become equal, so that the light extraction efficiency in the front direction is not improved.
  • the light extraction efficiency in the vicinity of the outer edge portion of the light emission direction control member 50 is improved, and the light extraction efficiency in the front direction is improved.
  • the relative value of the maximum light amount (maximum brightness) changes depending on the main ray angle
  • the relative value of the maximum light amount (maximum brightness) is made constant (uniform) by controlling the light emission amount in the light emitting portion. ) Can be planned.
  • the horizontal cross-sectional shape of the first region 51 is essentially arbitrary and is not limited to the circles shown in FIGS. 8A and 8B: quadrangles (see FIG. 10A), triangles (see FIG. 10B), hexagons and eights. Polygons including quadrangles (including regular polygons), ellipses (see Fig. 10C), oval shapes (see Fig. 11A), and shapes corresponding to the carryt symbol (shape of "he") (see Fig. 11B). ), Fan-shaped (see FIG. 11C) and Rambolt ring (see FIG. 12A).
  • the long axis of the ellipse or oval is parallel to the vertical direction of the display panel, and the short axis of the ellipse or oval is parallel to the horizontal direction of the display panel.
  • the direction control member 50 By arranging the direction control member 50, it is possible to improve the viewing angle characteristic of the display panel in the horizontal direction. Further, by making it circular, elliptical, or oval, it is possible to improve the filling property of the material having the refractive index n 1 in the first region 51.
  • the reference point P is set, In at least a part of the light emitting element 10 provided on the display panel, the value of (n 2- n 1 ) is set depending on the distance D 1 from the reference point P to the normal LN passing through the center of the light emitting unit 30.
  • the configuration to be made can be mentioned.
  • the reference point P is set, In at least a part of the light emitting element 10 provided on the display panel, the horizontal cross-sectional shape of the first region 51 is set depending on the distance D 1 from the reference point P to the normal LN passing through the center of the light emitting unit 30.
  • the configuration to be made can be mentioned. In such a light emitting device having the fourth configuration, the horizontal cross-sectional shape of the first region 51 is essentially arbitrary.
  • FIG. 12B shows an example in which the number of the first region 51 is 2.
  • the horizontal cross-sectional shape of the first region 51 is such that the light emitting direction control member 50 is formed in at least a part of the light emitting element 10 provided on the display panel. It is also possible to mention a form that is constant or changes along the thickness direction. In this case, in at least a part of the light emitting element provided in the display panel, the horizontal cross-sectional shape of the first region 51 increases from the light incident surface to the light emitting surface of the light emitting direction control member 50 (See a schematic partial cross-sectional view of the light emission direction control member 50 or the like in FIG.
  • the first light emission direction control member 50 At least a part of the light emitting element provided in the display panel, the first light emission direction control member 50
  • the normal line LN'(indicated by the dotted line) passing through the center of gravity of the region 51 and the axis AX (indicated by the alternate long and short dash line) of the first region 51 passing through the center of gravity of the first region 51 (indicated by the black circle) of the light emission direction control member 50 ) Can be in the form of intersecting at an angle exceeding 0 degrees. That is, the first region 51 extends diagonally with respect to the normal LN passing through the center of the light emitting portion 30 when viewed as a whole. It can be in the form of
  • the depth of the first region 51 is H 1 and the thickness of the light emission direction control member 50 is H 0
  • 0.5 ⁇ H 1 / H 0 ⁇ 1.0 Can be mentioned as a form that satisfies.
  • the upper part of the first region 51 is occupied by the material constituting the second region 52 (see a schematic partial cross-sectional view of the light emission direction control member 50 in FIG. 14A), or the first
  • the lower part of the 1 region 51 can be in a form occupied by the material constituting the second region 52 (see a schematic partial cross-sectional view of the light emission direction control member 50 in FIG. 14B).
  • the above-mentioned value of H 1 / H 0 can be in a form depending on the value of the distance D 1.
  • the horizontal cross-sectional shape of the first region 51 becomes larger toward the substantially central portion in the thickness direction of the first region 51 as shown in FIG. 14C.
  • a drum-shaped shape when the first region 51 is viewed as a whole or as shown in FIG. 15A, a shape that becomes smaller toward the substantially central portion in the thickness direction of the first region 51.
  • the portion of the ridge where the side surface (outer edge portion 54) of the second region 52 and the top surface intersect may be rounded or may be cut out (see FIG. 15B).
  • the portion of the top surface of the second region 52 that intersects the top surface of the first region 51 may be rounded or notched (see FIG. 15C).
  • a plurality of reference points P may be assumed in the display panel.
  • the positional relationship between the light emitting element 10 and the reference points P 1 and P 2 is schematically shown in FIG. 3B, but in the illustrated example, two reference points P 1 and P 2 are assumed.
  • the two reference points P 1, P 2 are arranged in two-rotation symmetric.
  • at least one reference point P is not included in the central region of the display panel.
  • the two reference points P 1, P 2 is not included in the central region of the display panel.
  • the light emission direction control member 50 may be composed of only the second region 52.
  • the first region 51 in each of the first light emitting element (red light emitting element 10R), the second light emitting element (green light emitting element 10G), and the third light emitting element (blue light emitting element 10B), the first region 51 And it is preferable that the second region 52 is optimized. Specifically, for example, in each of the first light emitting element, the second light emitting element, and the third light emitting element, the position and shape of the first region, the relationship between n 1 and n 2 , the size, the height, and the optimum number are optimized.
  • FIG. 16 shows the first region of each of the first light emitting element (red light emitting element 10R), the second light emitting element (green light emitting element 10G), and the third light emitting element (blue light emitting element 10B) in the display device of the first embodiment.
  • the horizontal cross-sectional shape of the first region of the first light emitting element (red light emitting element 10R) is circular, and the horizontal cross-sectional shape of the first region of the second light emitting element (green light emitting element 10G) is an equilateral triangle.
  • the horizontal cross-sectional shape of the first region of the three light emitting elements (blue light emitting element 10B) is square, but the present invention is not limited to these.
  • the second embodiment is a modification of the first embodiment.
  • the reference point P is assumed to be outside the display panel.
  • the positional relationship between the light emitting element 10 and the reference points P, P 1 , and P 2 is schematically shown in FIGS. 18A and 18B, but one reference point P can be assumed (FIG. 18A). see), or alternatively, may be a structure in which a plurality of reference points P (showing two reference points P 1, P 2 in FIG. 18B) is assumed.
  • the two reference points P 1, P 2 are arranged in two-rotation symmetric.
  • the value of the distance D 0 is not 0 in all light emitting elements.
  • the configuration and structure of the display device of the second embodiment can be the same as the configuration and structure of the display device described in the first embodiment, and thus detailed description thereof will be omitted.
  • Example 3 is a modification of Examples 1 and 2.
  • a color filter layer is provided on the light incident side of the light emission direction control member 50.
  • the light emitting side of the light emitting direction control member 50, the color filter layer CF R, CF G, is CF B are provided.
  • FIG. 19 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the display device of the third embodiment, and the light emitting element (however, away from the reference point)
  • a protective layer 34 made of an acrylic resin is formed on the second electrode 32.
  • a light emission direction control member 50 is provided on the top surface or above the protective layer 34 (specifically, on the protection layer 34), and is flat on the light emission direction control member 50.
  • layer 35 is provided with a color filter layer CF R, CF G, it is CF B is provided between the sealing resin layer 36 made of an acrylic adhesive and the second substrate 41.
  • the color filter layer CF R, CF G, are bonded by the sealing resin layer 36 and the CF B and the second substrate 41.
  • the configuration and structure of the display device of the third embodiment can be the same as the configuration and structure of the display device described in the first or second embodiment, and thus detailed description thereof will be omitted.
  • Example 4 is also a modification of Examples 1 and 2.
  • FIG. 21 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the display device of the fourth embodiment, and is a schematic of the light emitting element (however, it is located away from the reference point).
  • the color filter layer CF R, CF G, is CF B are omitted. That is, a light emission direction control member 50 is provided on the top surface or above the protective layer 34 (specifically, on the protection layer 34), and is flat on the light emission direction control member 50.
  • a chemical layer 35 is provided, and the flattening layer 35 and the second substrate 41 are bonded to each other by a sealing resin layer 36 made of an acrylic adhesive.
  • the light emitting element is composed of a red light emitting element 10R in which the organic layer produces red, a green light emitting element 10G in which the organic layer produces green, and a blue light emitting element 10B in which the organic layer produces blue.
  • One pixel is configured by combining light emitting elements (sub-pixels). In this case, a color filter layer may be provided to improve the color purity.
  • the configuration and structure of the display device of the fourth embodiment can be the same as the configuration and structure of the display device described in the first or second embodiment, and thus detailed description thereof will be omitted.
  • Example 5 the display devices described in Examples 1 to 4 were applied to a head-mounted display (HMD).
  • a conceptual diagram of an image display device constituting the head-mounted display of the fifth embodiment is shown in FIG. 31, and a schematic view of the head-mounted display of the fifth embodiment viewed from above is shown in FIG. 32 and viewed from the front.
  • a schematic view is shown in FIG. 33, and a schematic view viewed from the side is shown in FIG. 34A.
  • FIG. 34B shows a schematic cross-sectional view showing a part of the reflective volume hologram diffraction grating in the display device of Example 5 in an enlarged manner.
  • the image display device 100 of the fifth embodiment is The image forming apparatus 110, which comprises the display apparatus 111 described in Examples 1 to 4.
  • the system composed of the light guide plate 121 and the second deflection means 132 is a semi-transmissive type (see-through type).
  • the head-mounted display of Example 5 is (A) A frame 140 (for example, a spectacle-shaped frame 140) mounted on the head of the observer 150, and (B) An image display device 100 attached to the frame 140, It has.
  • the head-mounted display of Example 5 is specifically a binocular type provided with two image display devices, but may be a single-eyed type provided with one.
  • the image display device 100 may be fixedly attached to the frame 140, or may be detachably attached to the frame 140.
  • the head-mounted display is, for example, a direct-drawing type head-mounted display that draws an image directly on the pupil 151 of the observer 150.
  • the light guide plate 121 has a first surface 122 on which light from the image forming apparatus 110 is incident, and a second surface 123 facing the first surface 122. That is, the light guide plate 121 made of optical glass or a plastic material has two parallel surfaces (first surface 122 and second surface 123) extending parallel to the light propagation direction (X direction) due to total internal reflection of the light guide plate 121. is doing.
  • the first surface 122 and the second surface 123 face each other.
  • the first deflection means 131 is arranged on the second surface 123 of the light guide plate 121 (specifically, they are bonded together), and the second deflection means 132 is the second surface 123 of the light guide plate 121. It is placed on top (specifically, it is pasted together).
  • the first deflection means (first diffraction grating member) 131 is composed of a hologram diffraction grating, specifically, a reflective volume hologram diffraction grating
  • the second deflection means (second diffraction grating member) 132 is also a hologram diffraction grating, Specifically, it consists of a reflective volume hologram diffraction grating.
  • a first interference fringe is formed inside the hologram diffraction grating that constitutes the first deflection means 131, and a second interference fringe is formed inside the hologram diffraction grating that constitutes the second deflection means 132.
  • the first deflection means 131 is diffracted and reflected so that the parallel light incident on the light guide plate 121 from the second surface 123 is totally reflected inside the light guide plate 121.
  • the second deflection means 132 diffracts and reflects the light propagating inside the light guide plate 121 by total internal reflection, and guides the light to the pupil 151 of the observer 150.
  • the second deflection means 132 constitutes a virtual image forming region in the light guide plate 121.
  • the axes of the first deflection means 131 and the second deflection means 132 are parallel to the X direction, and the normals are parallel to the Z direction.
  • Each reflective volume hologram diffraction grating made of a photopolymer material has interference fringes corresponding to one type of wavelength band (or wavelength), and is manufactured by a conventional method.
  • the pitch of the interference fringes formed on the reflective volume hologram diffraction grating is constant, and the interference fringes are linear and parallel to the Y direction.
  • FIG. 34B shows an enlarged schematic partial cross-sectional view of the reflective volume hologram diffraction grating.
  • Interference fringes having an inclination angle (slant angle) ⁇ are formed on the reflection type volume hologram diffraction grating.
  • the inclination angle ⁇ refers to the angle formed by the interference fringes with the surface of the reflective volume hologram diffraction grating.
  • the interference fringes are formed from the inside of the reflective volume hologram diffraction grating to the surface.
  • the interference fringes satisfy the Bragg condition.
  • the Bragg condition refers to a condition that satisfies the following equation (A).
  • m is a positive integer
  • is the wavelength
  • d is the pitch of the lattice plane (the interval in the normal direction of the virtual plane including the interference fringes)
  • is the margin of the angle incident on the interference fringes. do.
  • the relationship between ⁇ , the inclination angle ⁇ , and the incident angle ⁇ when light enters the diffraction grating member at the incident angle ⁇ is as shown in the equation (B).
  • the display device 111 constituting the image forming apparatus 110 is composed of the display devices of the first to fifth embodiments.
  • the entire image forming apparatus 110 is housed in the housing 112.
  • An optical system through which the image emitted from the display device 111 passes may be arranged in order to control the display dimension, the display position, and the like of the image emitted from the display device 111. What kind of optical system is arranged depends on the specifications required for the head-mounted display and the image forming apparatus 110.
  • the frame 140 includes a front portion 141 arranged in front of the observer 150, two temple portions 143 rotatably attached to both ends of the front portion 141 via hinges 142, and a tip portion of each temple portion 143. It consists of 144 modern parts (also known as hinges, earmuffs, and earpads) attached to. In addition, a nose pad 140'is attached. That is, the assembly of the frame 140 and the nose pad 140'has basically the same structure as ordinary eyeglasses. Further, each housing 112 is attached to the temple portion 143 by the attachment member 149.
  • the frame 140 is made of metal or plastic. Each housing 112 may be detachably attached to the temple portion 143 by the attachment member 149.
  • each housing 112 may be detachably attached to the temple portion 143 of the frame 140 of the spectacles owned by the observer by the attachment member 149.
  • Each housing 112 may be attached to the outside of the temple portion 143 or may be attached to the inside of the temple portion 143.
  • the light guide plate 121 may be fitted into the rim provided on the front portion 141.
  • each image forming apparatus 110 includes a headphone portion 146, and the headphone portion wiring 146'extending from each image forming apparatus 110 passes through the temple portion 143 and the inside of the modern portion 144, and the modern portion 144. It extends from the tip of the headphone to the headphone unit 146.
  • the headphone portion wiring 146' extends from the tip portion of the modern portion 144 to the headphone portion 146 so as to wrap around the back side of the pinna (auricle). With such a configuration, it is possible to obtain a neat head-mounted display without giving the impression that the headphone portion 146 and the wiring for the headphone portion 146'are arranged randomly.
  • the wiring (signal line, power supply line, etc.) 145 is connected to the control device (control circuit) 148, and the control device 148 performs processing for displaying an image.
  • the control device 148 can be composed of a well-known circuit.
  • a camera 147 composed of a solid-state image sensor consisting of a CCD or CMOS sensor and a lens (these are not shown), if necessary, is provided with an appropriate mounting member (not shown). ) Is attached.
  • the signal from the camera 147 is sent to the control device (control circuit) 148 via a wiring (not shown) extending from the camera 147.
  • the light emitted from the display device 111 at a certain moment is regarded as parallel light. Then, this light reaches the pupil 151 (specifically, the crystalline lens) of the observer 150, and the light that has passed through the crystalline lens is finally imaged in the retina of the pupil 151 of the observer 150.
  • the present disclosure has been described above based on preferred examples, the present disclosure is not limited to these examples.
  • the configuration and structure of the display device (organic EL display device) and the light emitting element (organic EL element) described in the examples are examples, which can be changed as appropriate, and the manufacturing method of the display device is also an example. , Can be changed as appropriate.
  • the first region and the third region are composed of a part of the flattening layer (extending part of the flattening layer), but the material is not limited to this, and the material constituting the first region is used.
  • the material constituting the third region is "Material B”
  • the material constituting the flattening layer is "Material C”
  • the flattening layer can also have a function as a color filter layer. That is, the flattening layer having such a function may be made of a well-known color resist material. By making the flattening layer also function as a color filter layer in this way, the organic layer and the flattening layer can be arranged close to each other, and even if the light emitted from the light emitting element is widened, color mixing is prevented. Can be effectively achieved, and the viewing angle characteristics are improved.
  • each light emitting element 10 and passing through the light emitting direction control member 50 may be configured to be parallel light.
  • FIG. 23 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the modification-1 of the display device, and the light emitting element (however, the position away from the reference point) is shown in FIG.
  • the light emission direction control member 50' can be in the form of a lens.
  • the second region 52'of the light emission direction control member 50 may be in the form of a hemisphere or a part of the sphere.
  • the light emission direction control member 50' is a plano-convex lens, but the present invention is not limited to this, and a biconvex lens may be used.
  • the first region 51'and the third region 53' are composed of extending portions of the flattening layer 35.
  • FIG. 25 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the modified example-2 of the display device of the first embodiment, showing the light emitting element (however, away from the reference point).
  • a schematic partial cross-sectional view of (located) is formed so that a light absorption layer (black matrix layer) BM is formed between the color filter layer CFs of adjacent light emitting elements.
  • the black matrix layer BM is made of, for example, a black resin film (specifically, for example, a black polyimide resin) having an optical density of 1 or more mixed with a black colorant.
  • FIG. 27 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the modification 3 of the display device of the first embodiment, showing the light emitting element (however, from the reference point).
  • a schematic partial cross-sectional view of (located apart) is light between the light emitting direction control members 50 of the adjacent light emitting elements (that is, in a part of the third region 53).
  • an absorption layer (black matrix layer) BM' is formed.
  • these Modifications 2 and 3 can be combined. It should be noted that the modified example-1, the modified example-2, and the modified example-3 can be applied to other examples.
  • one pixel is composed of three sub-pixels exclusively from the combination of the white light emitting element and the color filter layer.
  • one pixel is formed from four sub-pixels including the light emitting element that emits white. It may be configured.
  • a transparent filter may be provided for the light emitting element that emits white light.
  • the light emitting element drive unit is composed of MOSFET, but it can also be composed of TFT.
  • the first electrode and the second electrode may have a single-layer structure or a multi-layer structure.
  • a light-shielding portion is provided between the light-emitting element and the light-emitting element in order to prevent light emitted from the light-emitting element from entering the light-emitting element adjacent to the light-emitting element and causing optical crosstalk.
  • You may. That is, a groove may be formed between the light emitting element and the light emitting element, and the groove may be embedded with a light shielding material to form a light shielding portion.
  • the color filter layer is arranged for each pixel in order to improve color purity, depending on the configuration of the light emitting element, the color filter layer can be thinned or the color filter layer can be omitted, and the color filter can be omitted. It becomes possible to take out the light absorbed by the layer, and as a result, the light emission efficiency is improved.
  • the light absorption layer black matrix layer
  • the display device of the present disclosure can be applied to an interchangeable lens type single-lens reflex type digital still camera.
  • a front view of the digital still camera is shown in FIG. 35A, and a rear view is shown in FIG. 35B.
  • This interchangeable lens single-lens reflex type digital still camera has, for example, an interchangeable photographing lens unit (interchangeable lens) 212 on the front right side of the camera body (camera body) 211, and is gripped by the photographer on the front left side. It has a grip portion 213 for using the lens.
  • a monitor 214 is provided substantially in the center of the back surface of the camera body 211.
  • An electronic viewfinder (eyepiece window) 215 is provided above the monitor 214.
  • the photographer can visually recognize the light image of the subject guided by the photographing lens unit 212 and determine the composition.
  • the display device of the present disclosure can be used as the electronic viewfinder 215.
  • the present disclosure may also have the following configuration.
  • ⁇ Display device >> Light emitting part and Light emission direction control member through which the light emitted from the light emitting unit passes
  • a display device having a display panel provided with a plurality of light emitting elements including the above. In each light emitting element
  • the light emission direction control member is composed of a first region and a second region surrounding the first region.
  • the light emission direction control member has a flat plate shape.
  • the region located outside the outer edge portion in contact with the outer edge portion of the light emission direction control member is occupied by a material having a refractive index value n 3 smaller than the refractive index value n 2 of the material constituting the second region.
  • [A03] The display device according to [A01], wherein the light emission direction control member has a lens shape.
  • [A04] The display device according to any one of [A01] to [A03], which satisfies n 1 ⁇ n 2.
  • the emission direction of the light emitted from the center of the light emitting unit and passed through the light emission direction control member is different from the light emission direction control member [A01] to [A05]. ]
  • the display device according to any one of the items. [A07] When the distance between the normal passing through the center of the light emitting unit and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , at least one of the light emitting elements provided in the display panel.
  • a reference point is set, At least a part of the light emitting element provided in the display panel is emitted from the center of the light emitting portion and passes through the light emitting direction control member depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion.
  • the display device according to any one of [A01] to [A07], wherein the emission direction of the light emitted from the light emission direction control member is set. [A09] The display device according to [A08], wherein the value of the distance D 0 depends on the value of the distance D 1.
  • a reference point is set, In at least a part of the light emitting elements provided in the display panel, the value of (n 2- n 1 ) is set depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion [A01]. ] To [A09].
  • the display device according to any one of the items.
  • a reference point is set, In at least a part of the light emitting elements provided in the display panel, a virtual plane perpendicular to the thickness direction of the light emitting direction control member depends on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion.
  • the display device according to any one of [A01] to [A10], wherein the cross-sectional shape (horizontal cross-sectional shape) of the first region when the light emission direction control member is cut in the virtual horizontal plane) is set.
  • the horizontal cross-sectional shape of the first region is a polygon including a triangle, a quadrangle, a hexagon and an octagon (including a regular polygon), and a shape corresponding to a circle, an ellipse, an oval, and a carryt symbol.
  • the display device according to any one of [A01] to [A11], which has a shape corresponding to a fan shape or a quadrangular ring.
  • [A13] The display device according to any one of [A08] to [A12] assumed in the display panel as the reference point. [A14] (A) The reference point is not located in the central region of the display panel (B) One reference point is assumed (C) Multiple reference points are assumed (D) If one reference point is assumed, the reference point is not included in the central area of the display panel, and if multiple reference points are assumed, at least one reference point is not included in the central area of the display panel. The display device according to [A13], which is one of the configurations.
  • [A16] The display device according to any one of [A08] to [A12], wherein the reference point is assumed to be outside the display panel. [A17] (E) Configuration in which one reference point is assumed (F) The display device according to [A16], which is one of the configurations in which a plurality of reference points are assumed.
  • [A18] The light emitted from each light emitting element and passing through the light emission direction control member is converged (concentrated) in a certain region of the space outside the display device according to [A16] or [A17].
  • Display device. [A19] The display device according to any one of [A16] to [A18], wherein the light emitted from each light emitting element and passing through the light emission direction control member is emitted in the space outside the display device.
  • [A20] The display device according to any one of [A16] to [A19], wherein the value of the distance D 0 is not 0 in all the light emitting elements.
  • the display device according to any one of [A01] to [A05], wherein the light emitted from each light emitting element and passing through the light emission direction control member is parallel light.
  • the cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane perpendicular to the thickness direction of the light emission direction control member is determined in at least a part of the light emitting element provided in the display panel.
  • the display device according to any one of [A01] to [A21], which is constant or changes along the thickness direction of the light emission direction control member.
  • the horizontal cross-sectional shape of the first region becomes larger or smaller from the light incident surface to the light emitting surface of the light emitting direction control member.
  • [A24] In at least a part of the light emitting element provided in the display panel, a normal line passing through the center of gravity of the first region of the light emission direction control member and a first region passing through the center of gravity of the first region of the light emission direction control member.
  • the display device according to any one of [A01] to [A23], which intersects the axis of No. 1 at an angle exceeding 0 degrees.
  • [A25] When the depth of the first region is H 1 and the thickness of the light emission direction control member is H 0 , 0.5 ⁇ H 1 / H 0 ⁇ 1.0 The display device according to any one of [A01] to [A24], which satisfies the above. [A26] The display device according to [A25], wherein the lower part of the first region is occupied by the material constituting the second region. [A27] The display device according to [A25], wherein the upper part of the first region is occupied by the material constituting the second region. [A28] The display device according to any one of [A25] to [A27], wherein the value of H 1 / H 0 depends on the value of the distance D 1.
  • a reference point is set, The plurality of light emitting elements are arranged in a first direction and a second direction different from the first direction.
  • the distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0
  • the distance from the reference point to the normal passing through the center of the light emitting part is D 1 year
  • the values of the first direction and the second direction of the distance D 0 are D 0-X and D 0-Y
  • the values of the first direction and the second direction of the distance D 1 are D 1-.
  • D 0-X with respect to the change in D 1-X is changed linearly
  • D 0-Y with respect to the change in D 1-Y changes linearly
  • D 0-Y with respect to the change in D 1-Y changes nonlinearly
  • D 0-X with respect to the change in D 1-X is changed to a non-linear
  • D 0-Y with respect to the change in D 1-Y changes linearly
  • D 0-X with respect to the change in D 1-X is changed to a non-linear
  • D 0-Y with respect to the change in D 1-Y changes linearly
  • D 0-X with respect to the change in D 1-X is changed to a non-linear
  • D 0-Y with respect to the change in D 1-Y in any one of varies nonlinearly [A01] to [A28]
  • a reference point is set,
  • the distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0
  • the distance from the reference point to the normal passing through the center of the light emitting part is D 1
  • the display device according to any one of [A01] to [A29], wherein the value of the distance D 0 increases as the value of the distance D 1 increases.
  • the light emitting unit provided in the light emitting element includes an organic electroluminescence layer.
  • the display device according to any one of [A01] to [A30], wherein the light emitting unit includes a light emitting diode (LED).
  • the light emitting unit includes a light emitting diode (LED).
  • ⁇ Light emitting element >> Light emitting part and Light emission direction control member through which the light emitted from the light emitting unit passes Including
  • the light emission direction control member is composed of a first region and a second region surrounding the first region.
  • the light emission direction control member has a flat plate shape and has a flat plate shape.
  • the region located outside the outer edge portion in contact with the outer edge portion of the light emission direction control member is occupied by a material having a refractive index value n 3 smaller than the refractive index value n 2 of the material constituting the second region.
  • [B03] The light emitting element according to [B01], wherein the light emission direction control member has a lens shape.
  • the cross-sectional shape (horizontal cross-sectional shape) of the first region is a triangle, a quadrangle, or a polygon. It is one of polygons including hexagons and octagons (including regular polygons), and shapes corresponding to circles, ellipses, oval, carryt symbols, fan shapes and Rambolt rings [B01].
  • the light emitting element according to any one of [B05].
  • 10, 10R, 10G, 10B ... light emitting element, 11 ... first substrate, 20 ... transistor, 21 ... gate electrode, 22 ... gate insulating layer, 23 ... channel forming region, 24 ... Source / drain region, 25 ... Element separation region, 26 ... Base (interlayer insulation layer), 27 ... Contact plug, 28 ... Insulation layer, 30 ... Light emitting part, 31 ... 1st electrode, 32 ... 2nd electrode, 33 ... organic layer, 34 ... protective layer, 35 ... flattening layer, 36 ... sealing resin layer, 41 ... 2nd substrate, 50, 50'... light emission direction control member, 51, 51'... 1st region, 52, 52' ... 2nd region, 53, 53'... 3rd region, 54 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The display device of the present disclosure has a display panel provided with a plurality of light emitting elements 10 each including a light emitting part 30 and a light emitting direction control member 50 through which light emitted from the light emitting part 30 passes. The light emitting direction control member 50 in each light emitting element 10 is formed from a first region 51 and a second region 52 surrounding the first region 51. The refractive index value n1 of the material forming the first region 51 is different from the refractive index value n2 of the material forming the second region 52.

Description

発光素子及び表示装置Light emitting element and display device
 本開示は、発光素子、及び、係る発光素子を組み込んだ表示装置に関する。 The present disclosure relates to a light emitting element and a display device incorporating such a light emitting element.
 複数の有機電界発光素子(OLED:Electroluminescence Diode)や発光ダイオード(LED,Light Emitting Diode)が2次元マトリクス状に配列された表示装置では、高輝度化及び低消費電力化のために、発光した光の利用効率を向上させ、高効率化することが求められている。そして、そのために、例えば特開2011-060552号公報には、有機EL素子が光取り出し用構造体を備えている技術が開示されている。 In a display device in which a plurality of organic electroluminescence diodes (OLEDs) and light emitting diodes (LEDs, Light Emitting Diodes) are arranged in a two-dimensional matrix, the light emitted for higher brightness and lower power consumption. It is required to improve the utilization efficiency of the diode and improve the efficiency. For that purpose, for example, Japanese Patent Application Laid-Open No. 2011-060552 discloses a technique in which an organic EL element includes a light extraction structure.
特開2011-060552号公報Japanese Unexamined Patent Publication No. 2011-060552
 しかしながら、上記の特許公開公報には、表示装置における有機EL素子の位置に依存して光取り出し用構造体を経由した光の進む方向を制御する技術に関して、何ら言及されていない。即ち、外部の空間のどの領域に向けて表示装置からの画像を、どのような状態で出射するかに関して、何ら言及されていない。 However, the above-mentioned Patent Publication does not mention any technique for controlling the traveling direction of light passing through the light extraction structure depending on the position of the organic EL element in the display device. That is, there is no mention of in what state the image from the display device is emitted to which region of the external space.
 従って、本開示の目的は、外部の空間のどの領域に向けて表示装置からの画像をどのような状態で出射するかを、確実に、且つ、的確に、制御し得る構成、構造の表示装置、係る表示装置での使用に適した発光素子を提供することにある。 Therefore, an object of the present disclosure is a display device having a configuration and structure capable of reliably and accurately controlling which area of the external space the image from the display device is emitted in what state. It is an object of the present invention to provide a light emitting element suitable for use in such a display device.
 上記の目的を達成するための本開示の表示装置は、
 発光部、及び、
 発光部から出射された光が通過する光出射方向制御部材、
を含む発光素子を、複数、備えた表示パネルを有する表示装置であって、
 各発光素子において、
 光出射方向制御部材は、第1領域、及び、第1領域を取り囲む第2領域から構成されており、
 第1領域を構成する材料の屈折率の値n1は、第2領域を構成する材料の屈折率の値n2と異なる。
The display device of the present disclosure for achieving the above object is
Light emitting part and
Light emission direction control member through which the light emitted from the light emitting unit passes
A display device having a display panel provided with a plurality of light emitting elements including the above.
In each light emitting element
The light emission direction control member is composed of a first region and a second region surrounding the first region.
The refractive index value n 1 of the material constituting the first region is different from the refractive index value n 2 of the material constituting the second region.
 上記の目的を達成するための本開示の発光素子は、
 発光部、及び、
 発光部から出射された光が通過する光出射方向制御部材、
を含み、
 光出射方向制御部材は、第1領域、及び、第1領域を取り囲む第2領域から構成されており、
 第1領域を構成する材料の屈折率の値n1は、第2領域を構成する材料の屈折率の値n2と異なる。
The light emitting device of the present disclosure for achieving the above object is
Light emitting part and
Light emission direction control member through which the light emitted from the light emitting unit passes
Including
The light emission direction control member is composed of a first region and a second region surrounding the first region.
The refractive index value n 1 of the material constituting the first region is different from the refractive index value n 2 of the material constituting the second region.
図1は、実施例1の表示装置を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図である。FIG. 1 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the display device of the first embodiment. 図2は、実施例1の表示装置を構成する発光素子(但し、基準点から離れて位置する)の模式的な一部断面図である。FIG. 2 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the display device of the first embodiment. 図3A及び図3Bは、実施例1の表示装置における発光素子と基準点との位置関係を示す模式図である。3A and 3B are schematic views showing the positional relationship between the light emitting element and the reference point in the display device of the first embodiment. 図4A、図4B、図4C及び図4Dは、D1-Xの変化に対するD0-Xの変化、D1-Yの変化に対するD0-Yの変化を模式的に示す図である。4A, 4B, 4C and 4D, the change in D 0-X with respect to a change in D 1-X, is a diagram schematically showing changes in D 0-Y to changes in D 1-Y. 図5A、図5B、図5C及び図5Dは、D1-Xの変化に対するD0-Xの変化、D1-Yの変化に対するD0-Yの変化を模式的に示す図である。5A, 5B, 5C and 5D, a change in D 0-X with respect to a change in D 1-X, is a diagram schematically showing changes in D 0-Y to changes in D 1-Y. 図6A、図6B、図6C及び図6Dは、D1-Xの変化に対するD0-Xの変化、D1-Yの変化に対するD0-Yの変化を模式的に示す図である。6A, 6B, 6C and 6D, the change in D 0-X with respect to a change in D 1-X, is a diagram schematically showing changes in D 0-Y to changes in D 1-Y. 図7A、図7B、図7C及び図7Dは、D1-Xの変化に対するD0-Xの変化、D1-Yの変化に対するD0-Yの変化を模式的に示す図である。7A, 7B, 7C and 7D, the change in D 0-X with respect to a change in D 1-X, is a diagram schematically showing changes in D 0-Y to changes in D 1-Y. 図8A及び図8Bは、実施例1の表示装置における発光部、光出射方向制御部材及び第3領域の配置関係の一例を模式的に示す図である。8A and 8B are diagrams schematically showing an example of the arrangement relationship of the light emitting unit, the light emission direction control member, and the third region in the display device of the first embodiment. 図9は、実施例1の表示装置における発光部、光出射方向制御部材及び第3領域の配置関係の一例を模式的に示す図である。FIG. 9 is a diagram schematically showing an example of the arrangement relationship of the light emitting unit, the light emission direction control member, and the third region in the display device of the first embodiment. 図10A、図10B及び図10Cは、光出射方向制御部材の厚さ方向に垂直な仮想平面(仮想水平面)で光出射方向制御部材を切断したときの第1領域の断面形状を示すための、光出射方向制御部材を上方から眺めた模式図である。10A, 10B and 10C show the cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member. It is a schematic diagram which looked at the light emission direction control member from above. 図11A、図11B及び図11Cは、光出射方向制御部材の厚さ方向に垂直な仮想平面(仮想水平面)で光出射方向制御部材を切断したときの第1領域の断面形状を示すための、光出射方向制御部材を上方から眺めた模式図である。11A, 11B and 11C show the cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member. It is a schematic diagram which looked at the light emission direction control member from above. 図12A及び図12Bは、光出射方向制御部材の厚さ方向に垂直な仮想平面(仮想水平面)で光出射方向制御部材を切断したときの第1領域の断面形状を示すための、光出射方向制御部材を上方から眺めた模式図である。12A and 12B are light emission directions for showing the cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member. It is a schematic diagram which looked at the control member from above. 図13A、図13B及び図13Cは、実施例1の発光素子における光出射方向制御部材等の模式的な一部断面図である。13A, 13B and 13C are schematic partial cross-sectional views of a light emitting direction control member and the like in the light emitting element of the first embodiment. 図14A、図14B及び図14Cは、実施例1の発光素子における光出射方向制御部材等の模式的な一部断面図である。14A, 14B and 14C are schematic partial cross-sectional views of a light emitting direction control member and the like in the light emitting element of the first embodiment. 図15A、図15B及び図15Cは、実施例1の発光素子における光出射方向制御部材等の模式的な一部断面図である。15A, 15B and 15C are schematic partial cross-sectional views of a light emitting direction control member and the like in the light emitting element of the first embodiment. 図16は、実施例1の表示装置において、第1発光素子(赤色発光素子)、第2発光素子(緑色発光素子)及び第3発光素子(青色発光素子)のそれぞれの第1領域及び第2領域の最適化が図られている例を示す、光出射方向制御部材を上方から眺めた模式図である。FIG. 16 shows the first region and the second light emitting element (red light emitting element), the second light emitting element (green light emitting element), and the third light emitting element (blue light emitting element), respectively, in the display device of the first embodiment. It is a schematic view which looked at the light emission direction control member from above which shows the example which the area is optimized. 図17は、実施例1の発光素子において、距離D0を変えたときの光線角度θ(単位:度)と光量(輝度)との関係をシミュレーションした結果を示すグラフである。FIG. 17 is a graph showing the result of simulating the relationship between the light beam angle θ (unit: degree) and the light amount (luminance) when the distance D 0 is changed in the light emitting element of the first embodiment. 図18A及び図18Bは、実施例2の表示装置における発光素子と基準点との位置関係を模式的に示す図である。18A and 18B are diagrams schematically showing the positional relationship between the light emitting element and the reference point in the display device of the second embodiment. 図19は、実施例3の表示装置を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図である。FIG. 19 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the display device of the third embodiment. 図20は、実施例3の表示装置を構成する発光素子(但し、基準点から離れて位置する)の模式的な一部断面図である。FIG. 20 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the display device of the third embodiment. 図21は、実施例4の表示装置を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図である。FIG. 21 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the display device of the fourth embodiment. 図22は、実施例4の表示装置を構成する発光素子(但し、基準点から離れて位置する)の模式的な一部断面図である。FIG. 22 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the display device of the fourth embodiment. 図23は、実施例1の表示装置の変形例-1を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図である。FIG. 23 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the modified example-1 of the display device of the first embodiment. 図24は、実施例1の表示装置の変形例-1を構成する発光素子(但し、基準点から離れて位置する)の模式的な一部断面図である。FIG. 24 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the modified example-1 of the display device of the first embodiment. 図25は、実施例1の表示装置の変形例-2を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図である。FIG. 25 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the modification 2 of the display device of the first embodiment. 図26は、実施例1の表示装置の変形例-2を構成する発光素子(但し、基準点から離れて位置する)の模式的な一部断面図である。FIG. 26 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the modification 2 of the display device of the first embodiment. 図27は、実施例1の表示装置の変形例-3を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図である。FIG. 27 is a schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the modification 3 of the display device of the first embodiment. 図28は、実施例1の表示装置の変形例-3を構成する発光素子(但し、基準点から離れて位置する)の模式的な一部断面図である。FIG. 28 is a schematic partial cross-sectional view of a light emitting element (provided that it is located away from a reference point) constituting the modification 3 of the display device of the first embodiment. 図29A、図29B、図29C及び図29Dは、実施例1の表示装置における発光素子の配列を模式的に示す図である。29A, 29B, 29C and 29D are diagrams schematically showing an arrangement of light emitting elements in the display device of the first embodiment. 図30A及び図30B、並びに、図30C及び図30Dは、実施例1の表示装置における第2電極とカラーフィルタ層の配置関係を模式的に示す図である。30A and 30B, and FIGS. 30C and 30D are diagrams schematically showing the arrangement relationship between the second electrode and the color filter layer in the display device of the first embodiment. 図31は、実施例5の頭部装着型ディスプレイを構成する画像表示装置の概念図である。FIG. 31 is a conceptual diagram of an image display device constituting the head-mounted display of the fifth embodiment. 図32は、実施例5の頭部装着型ディスプレイを上方から眺めた模式図である。FIG. 32 is a schematic view of the head-mounted display of the fifth embodiment as viewed from above. 図33は、実施例5の頭部装着型ディスプレイを正面から眺めた模式図である。FIG. 33 is a schematic view of the head-mounted display of the fifth embodiment as viewed from the front. 図34A及び図34Bは、それぞれ、実施例5の頭部装着型ディスプレイを側方から眺めた模式図、及び、実施例5の頭部装着型ディスプレイにおける反射型体積ホログラム回折格子の一部を拡大して示す模式的な断面図である。34A and 34B are a schematic view of the head-mounted display of Example 5 viewed from the side, and a part of the reflective volume hologram diffraction grating in the head-mounted display of Example 5, respectively. It is a schematic cross-sectional view shown by. 図35A及び図35Bは、本開示の表示装置をレンズ交換式一眼レフレックスタイプのデジタルスチルカメラに適用した例を示し、デジタルスチルカメラの正面図を図35Aに、背面図を図35Bに示す。35A and 35B show an example in which the display device of the present disclosure is applied to an interchangeable lens type single-lens reflex type digital still camera, and a front view of the digital still camera is shown in FIG. 35A and a rear view is shown in FIG. 35B.
 以下、図面を参考して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の発光素子及び本開示の表示装置、全般に関する説明
2.実施例1(本開示の発光素子及び本開示の表示装置)
3.実施例2(実施例1の変形)
4.実施例3(実施例1~実施例2の変形)
5.実施例4(実施例1~実施例2の別の変形)
6.実施例5(実施例1~実施例4の表示装置を頭部装着型ディスプレイに適用した例)
7.その他
Hereinafter, the present disclosure will be described based on examples with reference to the drawings, but the present disclosure is not limited to the examples, and various numerical values and materials in the examples are examples. The description will be given in the following order.
1. 1. Description of the light emitting element of the present disclosure and the display device of the present disclosure in general 2. Example 1 (light emitting element of the present disclosure and display device of the present disclosure)
3. 3. Example 2 (Modification of Example 1)
4. Example 3 (Modification of Example 1 to Example 2)
5. Example 4 (Another variant of Example 1 to Example 2)
6. Example 5 (Example in which the display devices of Examples 1 to 4 are applied to a head-mounted display)
7. others
〈本開示の発光素子及び本開示の表示装置、全般に関する説明〉
 本開示の発光素子あるいは本開示の表示装置を構成する表示パネルに備えられた発光素子において、n1とn2との関係は、n1≠n2を満足すればよく、n1>n2であってもよいし、n1<n2であってもよく、表示装置に要求される仕様に応じて決定すればよいが、後述するように、n1<n2であることが好ましい。第1領域の数は1以上であればよい。即ち、第1領域の数は、1であってもよいし、2以上であってもよい。
<Explanation of the light emitting element of the present disclosure and the display device of the present disclosure, in general>
In the light-emitting element provided in the display panel constituting the display device of the light-emitting element or the disclosure of the present disclosure, the relationship between n 1 and n 2 may be satisfied n 1 ≠ n 2, n 1> n 2 It may be n 1 <n 2 , and it may be determined according to the specifications required for the display device, but as will be described later, n 1 <n 2 is preferable. The number of the first regions may be 1 or more. That is, the number of the first regions may be 1, or may be 2 or more.
 本開示の発光素子あるいは本開示の表示装置を構成する表示パネルに備えられた発光素子において、光出射方向制御部材は平板状であり、光出射方向制御部材の外縁部に接して、外縁部より外側に位置する領域(便宜上、『第3領域』と呼ぶ場合がある)は、第2領域を構成する材料の屈折率の値n2よりも小さい屈折率の値n3を有する材料で占められている形態とすることができる。あるいは又、本開示の発光素子あるいは本開示の表示装置を構成する表示パネルに備えられた発光素子において、光出射方向制御部材はレンズ状である形態とすることができ、具体的には、光出射方向制御部材は、半球状、あるいは、球の一部から構成されている形態とすることができるし、広くは、レンズとして機能するのに適した形状から構成されている形態とすることができる。更には、以上に説明した各種の好ましい形態を含む本開示の発光素子あるいは本開示の表示装置を構成する表示パネルに備えられた発光素子にあっては、n1<n2を満足する形態とすることができる。 In the light emitting element of the present disclosure or the light emitting element provided in the display panel constituting the display device of the present disclosure, the light emission direction control member has a flat plate shape and is in contact with the outer edge portion of the light emission direction control member from the outer edge portion. The outer region (sometimes referred to as the "third region" for convenience) is occupied by a material having a refractive index value n 3 that is smaller than the refractive index value n 2 of the material constituting the second region. It can be in the form of Alternatively, in the light emitting element of the present disclosure or the light emitting element provided in the display panel constituting the display device of the present disclosure, the light emission direction control member may be in the form of a lens, specifically, light. The emission direction control member may be in the form of a hemisphere or a part of the sphere, and broadly, may be in the form of a shape suitable for functioning as a lens. can. Further, in the light emitting element of the present disclosure including the various preferable forms described above or the light emitting element provided in the display panel constituting the display device of the present disclosure, the form satisfying n 1 <n 2. can do.
 尚、以上に説明した各種の好ましい形態を含む本開示の発光素子あるいは本開示の表示装置を構成する表示パネルに備えられた発光素子を、以下、総称して、『本開示の発光素子等』と呼ぶ場合がある。 The light emitting elements of the present disclosure including the various preferable forms described above or the light emitting elements provided in the display panel constituting the display device of the present disclosure are collectively referred to as "the light emitting elements of the present disclosure". May be called.
 本開示の発光素子等にあっては、発光素子の表示パネルにおける位置に依存して、発光部の中心から出射され、光出射方向制御部材を通過した光の光出射方向制御部材からの出射方向が異なる構成とすることができる。尚、このような構成の発光素子を『第1構成の発光素子』と呼ぶ場合がある。そして、この場合、発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0としたとき、表示パネルに備えられた発光素子の少なくとも一部において、距離D0の値は0でない構成とすることができる。 In the light emitting element and the like of the present disclosure, depending on the position of the light emitting element on the display panel, the emission direction of the light emitted from the center of the light emitting unit and passed through the light emission direction control member from the light emission direction control member. Can have different configurations. A light emitting element having such a configuration may be referred to as a "light emitting element having the first configuration". In this case, when the distance between the normal passing through the center of the light emitting unit and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , the light emitting element provided in the display panel At least in part, the value of the distance D 0 can be non-zero.
 ここで、各種の法線は、表示パネルの光出射面に対する垂直線である。また、後述する各種の正射影像は、表示パネルの光出射面に対する正射影像である。 Here, the various normals are vertical lines with respect to the light emitting surface of the display panel. Further, various normal projection images described later are normal projection images with respect to the light emitting surface of the display panel.
 更には、以上に説明した各種の好ましい構成(第1構成の発光素子を含む)を含む本開示の発光素子等において、
 基準点が設定されており、
 表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、発光部の中心から出射され、光出射方向制御部材を通過した光の光出射方向制御部材からの出射方向が設定される構成とすることができる。尚、このような構成の発光素子を『第2構成の発光素子』と呼ぶ場合がある。基準点は或る程度の広がりを含み得る。即ち、以下の説明において、「基準点」には『基準領域』が含まれる。以下においても同様である。そして、上記の距離D0の値は距離D1の値に依存する構成とすることができる。
Further, in the light emitting element and the like of the present disclosure including various preferable configurations (including the light emitting element of the first configuration) described above,
A reference point is set,
At least a part of the light emitting element provided in the display panel is emitted from the center of the light emitting portion and passes through the light emitting direction control member depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion. The emission direction of the light emitted from the light emission direction control member can be set. A light emitting element having such a configuration may be referred to as a “second configuration light emitting element”. The reference point may include some extent. That is, in the following description, the "reference point" includes the "reference area". The same applies to the following. Then, the value of the distance D 0 can be configured to depend on the value of the distance D 1.
 更には、以上に説明した各種の好ましい構成(第1構成~第2構成の発光素子を含む)を含む本開示の発光素子等において、
 基準点が設定されており、
 表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、(n2-n1)の値が設定される構成とすることができる。尚、このような構成の発光素子を『第3構成の発光素子』と呼ぶ場合がある。
Furthermore, in the light emitting elements and the like of the present disclosure including various preferable configurations (including the light emitting elements of the first configuration to the second configuration) described above,
A reference point is set,
In at least a part of the light emitting elements provided in the display panel, the value of (n 2 − n 1 ) is set depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion. can do. A light emitting element having such a configuration may be referred to as a "light emitting element having a third configuration".
 更には、以上に説明した各種の好ましい構成(第1構成~第3構成の発光素子を含む)を含む本開示の発光素子等において、
 基準点が設定されており、
 表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、光出射方向制御部材の厚さ方向に垂直な仮想平面(仮想水平面)で光出射方向制御部材を切断したときの第1領域の断面形状(便宜上、以下、『水平方向断面形状』と呼ぶ場合がある)が設定される構成とすることができる。尚、このような構成の発光素子を『第4構成の発光素子』と呼ぶ場合がある。第4構成の発光素子において、第1領域の水平方向断面形状は、本質的に任意であるが、三角形、四角形、六角形及び八角形を含む多角形(正多角形を含む)、並びに、円形、楕円形、長円形、キャレット記号に相当する形状、扇形及びランボルト環に相当する形状のいずれかである構成とすることができる。
Further, in the light emitting elements and the like of the present disclosure including various preferable configurations (including the light emitting elements of the first to third configurations) described above, the light emitting elements and the like of the present disclosure include.
A reference point is set,
In at least a part of the light emitting elements provided in the display panel, a virtual plane perpendicular to the thickness direction of the light emitting direction control member depends on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion. The cross-sectional shape of the first region (hereinafter, may be referred to as “horizontal cross-sectional shape” for convenience) when the light emission direction control member is cut in the virtual horizontal plane) can be set. A light emitting element having such a configuration may be referred to as a “fourth light emitting element”. In the light emitting element of the fourth configuration, the horizontal cross-sectional shape of the first region is essentially arbitrary, but polygons including triangles, quadrangles, hexagons and octagons (including regular polygons), and circles. , Oval, oval, a shape corresponding to a carryt symbol, a fan shape, and a shape corresponding to a rambolt ring.
 尚、表示パネルに備えられた発光素子の全てが、同じ第1領域あるいは第2領域の或るパラメータを有していてもよいし、異なる第1領域あるいは第2領域の或るパラメータを有していてもよい。一例として、例えば、第1領域が形成された位置や大きさが異なっていても、表示パネルに備えられた発光素子の全てが、同じ第1領域の水平方向断面形状を有していてもよいし、異なる第1領域の水平方向断面形状を有していてもよい。以下においても同様である。 It should be noted that all the light emitting elements provided in the display panel may have certain parameters in the same first region or second region, or may have certain parameters in different first regions or second regions. May be. As an example, for example, even if the positions and sizes in which the first region is formed are different, all the light emitting elements provided in the display panel may have the same horizontal cross-sectional shape of the first region. However, they may have different horizontal cross-sectional shapes of the first region. The same applies to the following.
 そして、上記の第2構成~第4構成の発光素子において、基準点は表示パネル内に想定されている構成とすることができ、この場合、
(A)基準点は、表示パネルの中心領域に位置していない構成
(B)基準点が1つ想定されている構成
(C)複数の基準点が想定されている構成
(D)基準点が1つ想定されている場合、基準点は表示パネルの中心領域には含まれず、基準点が複数想定されている場合、少なくとも1つの基準点は表示パネルの中心領域には含まれない構成
とすることができる。そして、これらの場合、一部の発光素子において距離D0の値は0であり、残りの発光素子において距離D0の値は0でない構成とすることができる。尚、表示パネル内に想定された基準点(基準領域)に含まれる発光素子において、場合によっては、光出射方向制御部材は第2領域だけから構成されていてもよい。
Then, in the light emitting elements of the second to fourth configurations described above, the reference point can be configured as assumed in the display panel, and in this case,
(A) The reference point is not located in the central area of the display panel (B) One reference point is assumed (C) Multiple reference points are assumed (D) The reference point is If one is assumed, the reference point is not included in the central area of the display panel, and if multiple reference points are assumed, at least one reference point is not included in the central area of the display panel. be able to. In these cases, the value of the distance D 0 in a part of the light-emitting element is 0, the value of the distance D 0 in the remaining light-emitting element can have a structure not zero. In the light emitting element included in the reference point (reference region) assumed in the display panel, the light emission direction control member may be composed of only the second region in some cases.
 あるいは又、上記の第2構成~第4構成の発光素子において、基準点は表示パネルの外側(外部)に想定されている構成とすることができ、この場合、
(E)基準点が1つ想定されている構成
(F)複数の基準点が想定されている構成
とすることができる。そして、これらの場合、各発光素子から出射され、光出射方向制御部材を通過した光は、表示装置の外部の空間の或る領域に収束する(集光される)構成とすることもできるし、あるいは又、各発光素子から出射され、光出射方向制御部材を通過した光は、表示装置の外部の空間において発散する構成とすることもできる。これらの場合、全ての発光素子において距離D0の値は0でない構成とすることができる。
Alternatively, in the light emitting elements of the second to fourth configurations described above, the reference point can be configured to be outside (outside) of the display panel. In this case,
(E) A configuration in which one reference point is assumed (F) A configuration in which a plurality of reference points are assumed can be used. In these cases, the light emitted from each light emitting element and passing through the light emission direction control member may be configured to converge (concentrate) on a certain region of the space outside the display device. Alternatively, the light emitted from each light emitting element and passing through the light emission direction control member may be diverged in the space outside the display device. In these cases, the value of the distance D 0 can be non-zero in all the light emitting elements.
 あるいは又、本開示の発光素子等において、各発光素子から出射され、光出射方向制御部材を通過した光は、平行光である構成とすることができる。 Alternatively, in the light emitting elements and the like of the present disclosure, the light emitted from each light emitting element and passing through the light emitting direction control member can be configured to be parallel light.
 更には、以上に説明した各種の好ましい構成を含む本開示の発光素子等において、光出射方向制御部材の厚さ方向に垂直な仮想平面(仮想水平面)で光出射方向制御部材を切断したときの第1領域の断面形状(第1領域の水平方向断面形状)は、表示パネルに備えられた発光素子の少なくとも一部において、光出射方向制御部材の厚さ方向に沿って、一定であり、又は、変化する形態とすることができる。そして、この場合、表示パネルに備えられた発光素子の少なくとも一部において、第1領域の水平方向断面形状は、光出射方向制御部材の光入射面から光出射面に向かって大きくなり、又は、小さくなる形態とすることができる。あるいは又、表示パネルに備えられた発光素子の少なくとも一部において、光出射方向制御部材の第1領域の重心を通る法線と、光出射方向制御部材の第1領域の重心を通る第1領域の軸線とは、0度を超える角度で交わっている形態とすることができる。即ち、第1領域は、全体として見たとき、発光部の中心を通る法線に対して斜めに延びている形態とすることができる。 Further, in the light emitting element and the like of the present disclosure including various preferable configurations described above, when the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member. The cross-sectional shape of the first region (horizontal cross-sectional shape of the first region) is constant or constant along the thickness direction of the light emission direction control member in at least a part of the light emitting element provided in the display panel. , Can be in a changing form. Then, in this case, in at least a part of the light emitting element provided in the display panel, the horizontal cross-sectional shape of the first region becomes larger from the light incident surface to the light emitting surface of the light emitting direction control member, or It can be in a smaller form. Alternatively, in at least a part of the light emitting element provided on the display panel, a normal line passing through the center of gravity of the first region of the light emitting direction control member and a first region passing through the center of gravity of the first region of the light emitting direction control member. The axes of the above can be in the form of intersecting at an angle exceeding 0 degrees. That is, the first region can be in a form extending diagonally with respect to the normal passing through the center of the light emitting portion when viewed as a whole.
 更には、以上に説明した各種の好ましい構成、形態を含む本開示の発光素子等において、第1領域の深さをH1、光出射方向制御部材の厚さをH0としたとき、
0.5≦H1/H0≦1.0
を満足する形態とすることができる。そして、この場合、第1領域の下方は第2領域を構成する材料で占められており、又は、第1領域の上方は第2領域を構成する材料で占められている形態とすることができる。そして、上記のH1/H0の値は距離D1の値に依存する形態とすることができる。
Further, in the light emitting element and the like of the present disclosure including various preferable configurations and forms described above, when the depth of the first region is H 1 and the thickness of the light emission direction control member is H 0 .
0.5 ≤ H 1 / H 0 ≤ 1.0
Can be made into a satisfying form. In this case, the lower part of the first region may be occupied by the material constituting the second region, or the upper part of the first region may be occupied by the material constituting the second region. .. Then, the above-mentioned value of H 1 / H 0 can be in a form depending on the value of the distance D 1.
 更には、以上に説明した各種の好ましい構成、形態を含む本開示の発光素子等において、
 基準点が設定されており、
 複数の発光素子は、第1の方向及び第1の方向とは異なる第2の方向に配列されており、
 発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0、基準点から発光部の中心を通る法線までの距離をD1とし、
 距離D0の第1の方向及び第2の方向のそれぞれの値をD0-X,D0-Yとし、距離D1の第1の方向及び第2の方向のそれぞれの値をD1-X,D1-Yとしたとき、
 D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは線形に変化し、又は、
 D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは非線形に変化し、又は、
 D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは線形に変化し、又は、
 D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは非線形に変化する形態とすることができる。
Furthermore, in the light emitting elements and the like of the present disclosure including various preferable configurations and forms described above,
A reference point is set,
The plurality of light emitting elements are arranged in a first direction and a second direction different from the first direction.
The distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , and the distance from the reference point to the normal passing through the center of the light emitting part is D 1 year,
The values of the first direction and the second direction of the distance D 0 are D 0-X and D 0-Y, and the values of the first direction and the second direction of the distance D 1 are D 1-. When X and D 1-Y are used
D 0-X with respect to the change in D 1-X is changed linearly, D 0-Y with respect to the change in D 1-Y changes linearly, or,
D 0-X with respect to the change in D 1-X is changed linearly, D 0-Y with respect to the change in D 1-Y changes nonlinearly, or,
D 0-X with respect to the change in D 1-X is changed to a non-linear, D 0-Y with respect to the change in D 1-Y changes linearly, or,
D 0-X with respect to the change in D 1-X is changed to a non-linear, D 0-Y with respect to the change in D 1-Y can be in the form of changes nonlinearly.
 ここで、D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは線形に変化するとは、
0-X=kX・D1-X
0-Y=kY・D1-Y
が成立することを意味する。但し、kX,kYは定数である。即ち、D0-X,D0-Yは、1次関数に基づき変化する。一方、D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは線形に変化するとは、
0-X=fX(D1-X
0-Y=fY(D1-Y
が成立することを意味する。ここで、fX,fYは、1次関数ではない関数(例えば、2次関数)である。
Here, the D 0-X with respect to the change in D 1-X changes linearly, D 0-Y with respect to the change in D 1-Y varies linearly, the
D 0-X = k X · D 1-X
D 0-Y = k Y · D 1-Y
Means that holds true. However, k X and k Y are constants. That is, D 0-X and D 0-Y change based on the linear function. On the other hand, the D 0-X with respect to the change in D 1-X changes nonlinearly, D 0-Y with respect to the change in D 1-Y varies linearly, the
D 0-X = f X (D 1-X )
D 0-Y = f Y (D 1-Y )
Means that holds true. Here, f X and f Y are functions that are not linear functions (for example, quadratic functions).
 あるいは又、D1-Xの変化に対するD0-Xの変化、D1-Yの変化に対するD0-Yの変化を、階段状の変化とすることもできる。更には、表示パネルをM×Nの領域に区分したとき、1つの領域内では、D1-Xの変化に対するD0-Xの変化、D1-Yの変化に対するD0-Yの変化を、不変としてもよいし、一定の変化としてもよい。 Alternatively, changes in the D 0-X with respect to a change in D 1-X, a change in the D 0-Y to changes in D 1-Y, may be a step change. Furthermore, when dividing the display panel in the region of M × N, in the one area, the change in D 0-X with respect to a change in D 1-X, a change in the D 0-Y to changes in D 1-Y , It may be invariant or it may be a constant change.
 更には、以上に説明した各種の好ましい構成、形態を含む本開示の発光素子等において、
 基準点が設定されており、
 発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0、基準点から発光部の中心を通る法線までの距離をD1としたとき、距離D1の値が増加するに従い、距離D0の値が増加する形態とすることができる。
Furthermore, in the light emitting elements and the like of the present disclosure including various preferable configurations and forms described above,
A reference point is set,
The distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , and the distance from the reference point to the normal passing through the center of the light emitting part is D 1 Then, as the value of the distance D 1 increases, the value of the distance D 0 can be increased.
 また、基準点から発光部の中心を通る法線までの距離をD1としたとき、距離D1の値の依存して、即ち、距離D1の値が変われば、第1領域の位置(即ち、距離D0の値)、形状、n1とn2の関係、大きさ、高さ及び数の内の少なくとも1項を変化させてもよい。 Further, when the distance from the reference point to a normal line passing through the center of the light-emitting portion and the D 1, the distance depending of the value of D 1, i.e., if Kaware the value of the distance D 1, the position of the first region ( That is, at least one term of the value of the distance D 0 ), the shape, the relationship between n 1 and n 2 , the size, the height, and the number may be changed.
 更には、以上に説明した各種の好ましい構成、形態を含む本開示の発光素子等において、発光素子に備えられた発光部は、有機エレクトロルミネッセンス層を含む形態とすることができる。即ち、以上に説明した各種の好ましい形態、構成を含む本開示の表示装置は有機エレクトロルミネッセンス表示装置(有機EL表示装置)から構成されている形態とすることができるし、発光素子は有機エレクトロルミネッセンス素子(有機EL素子)から構成されている形態とすることができる。あるいは又、発光部は発光ダイオード(LED)を含む形態とすることができる。 Further, in the light emitting element of the present disclosure including various preferable configurations and forms described above, the light emitting unit provided in the light emitting element can be in a form including an organic electroluminescence layer. That is, the display device of the present disclosure including various preferable forms and configurations described above can be in a form composed of an organic electroluminescence display device (organic EL display device), and the light emitting element can be an organic electroluminescence display device. It can be in the form of an element (organic EL element). Alternatively, the light emitting unit may have a form including a light emitting diode (LED).
 更には、以上に説明した好ましい構成、形態を含む本開示の発光素子等において、光出射方向制御部材の光入射側又は光出射側にはカラーフィルタ層が設けられている形態とすることができ、この場合、光出射方向制御部材の正射影像は、カラーフィルタ層の正射影像と一致し、又は、カラーフィルタ層の正射影像に含まれ、又は、カラーフィルタ層の正射影像を含む形態とすることができる。更には、これらの場合、距離D0の値が0でない発光素子において、
(a)発光部の中心を通る法線と、光出射方向制御部材の第1領域の重心を通る法線と、カラーフィルタ層の中心を通る法線とは一致している形態
(b)発光部の中心を通る法線と、光出射方向制御部材の第1領域の重心を通る法線とは一致しているが、カラーフィルタ層の中心を通る法線とは一致していない形態
(c)光出射方向制御部材の第1領域の重心を通る法線と、カラーフィルタ層の中心を通る法線とは一致しているが、発光部の中心を通る法線とは一致していない形態
(d)発光部の中心を通る法線と、光出射方向制御部材の第1領域の重心を通る法線と、カラーフィルタ層の中心を通る法線とは一致していない形態
を挙げることができる。尚、カラーフィルタ層の中心とは、カラーフィルタ層が占める領域の面積重心点を指す。更には、これらの場合、隣接する発光素子のカラーフィルタ層の間に光吸収層(ブラックマトリクス層)が形成されている形態とすることができ、これによって、隣接した発光素子間における混色の発生を確実に抑制することができる。一般に、カラーフィルタ層は、所望の顔料や染料から成る着色剤を添加した樹脂によって構成されており、顔料や染料を選択することにより、目的とする赤色、緑色、青色等の波長域における光透過率が高く、他の波長域における光透過率が低くなるように調整されている。
Further, in the light emitting element and the like of the present disclosure including the preferable configurations and forms described above, a color filter layer may be provided on the light incident side or the light emitting side of the light emitting direction control member. In this case, the normal projection image of the light emission direction control member matches the normal projection image of the color filter layer, is included in the normal projection image of the color filter layer, or includes the normal projection image of the color filter layer. It can be in the form. Furthermore, in these cases, in the light-emitting element value of the distance D 0 is not zero,
(A) A form (b) in which the normal passing through the center of the light emitting portion, the normal passing through the center of gravity of the first region of the light emitting direction control member, and the normal passing through the center of the color filter layer coincide with each other. The normal that passes through the center of the unit and the normal that passes through the center of gravity of the first region of the light emission direction control member do not match the normal that passes through the center of the color filter layer (c). ) A form in which the normal passing through the center of gravity of the first region of the light emitting direction control member and the normal passing through the center of the color filter layer match, but do not match the normal passing through the center of the light emitting portion. (D) A form in which the normal passing through the center of the light emitting portion, the normal passing through the center of gravity of the first region of the light emitting direction control member, and the normal passing through the center of the color filter layer do not match can be mentioned. can. The center of the color filter layer refers to the area center of gravity point of the area occupied by the color filter layer. Further, in these cases, a light absorption layer (black matrix layer) can be formed between the color filter layers of the adjacent light emitting elements, whereby color mixing occurs between the adjacent light emitting elements. Can be reliably suppressed. Generally, the color filter layer is composed of a resin to which a colorant composed of a desired pigment or dye is added, and by selecting the pigment or dye, light transmission in a target wavelength range such as red, green, or blue is transmitted. It is adjusted so that the rate is high and the light transmittance in other wavelength ranges is low.
 更には、以上に説明した好ましい構成、形態を含む本開示の発光素子等において、隣接する光出射方向制御部材の外縁部の間に位置する第3領域の一部には、あるいは、場合によっては隣接する発光素子の間には、光吸収層(ブラックマトリクス層)が形成されている形態とすることができ、これによっても、隣接した発光素子間における混色の発生を確実に抑制することができる。 Further, in the light emitting element and the like of the present disclosure including the preferable configurations and forms described above, a part of the third region located between the outer edges of the adjacent light emission direction control members, or in some cases, may be. A light absorption layer (black matrix layer) can be formed between the adjacent light emitting elements, and this also ensures that the occurrence of color mixing between the adjacent light emitting elements can be suppressed. ..
 これらの光吸収層(ブラックマトリクス層)は、例えば、黒色の着色剤を混入した光学濃度が1以上の黒色の樹脂膜(具体的には、例えば、黒色のポリイミド系樹脂)から成り、あるいは又、薄膜の干渉を利用した薄膜フィルタから構成されている。薄膜フィルタは、例えば、金属、金属窒化物あるいは金属酸化物から成る薄膜を2層以上積層して成り、薄膜の干渉を利用して光を減衰させる。薄膜フィルタとして、具体的には、Crと酸化クロム(III)(Cr23)とを交互に積層したものを挙げることができる。 These light absorption layers (black matrix layers) are made of, for example, a black resin film (specifically, for example, a black polyimide resin) having an optical density of 1 or more mixed with a black colorant, or also. , It is composed of a thin film filter that utilizes the interference of thin films. The thin film filter is formed by stacking two or more thin films made of, for example, a metal, a metal nitride or a metal oxide, and attenuates light by utilizing the interference of the thin films. Specific examples of the thin film filter include those in which Cr and chromium (III) oxide (Cr 2 O 3 ) are alternately laminated.
 第1領域を構成する材料、第2領域を構成する材料及び第3領域を構成する材料として、例えば、アクリル系樹脂やエポキシ系樹脂、ポリカーボネート樹脂、ポリイミド系樹脂等の透明樹脂材料や、透明無機材料を挙げることができる。具体的には、平板状あるいはレンズ状の光出射方向制御部材を構成する材料として、アクリル系樹脂やエポキシ系樹脂、ポリカーボネート樹脂、ポリイミド系樹脂等の透明樹脂材料、SiO2等の透明無機材料を挙げることができる。尚、透明樹脂材料として、広くは、紫外線硬化型樹脂材料を含む感光性樹脂材料、熱硬化性樹脂材料、熱可塑性樹脂材料を挙げることができる。 Examples of the material constituting the first region, the material constituting the second region, and the material constituting the third region include transparent resin materials such as acrylic resin, epoxy resin, polycarbonate resin, and polyimide resin, and transparent inorganic material. Materials can be mentioned. Specifically, as a material constituting a flat plate-shaped or lens-shaped light emission direction control member, a transparent resin material such as an acrylic resin, an epoxy resin, a polycarbonate resin, a polyimide resin, or a transparent inorganic material such as SiO 2 is used. Can be mentioned. In addition, as a transparent resin material, a photosensitive resin material including an ultraviolet curable resin material, a thermosetting resin material, and a thermoplastic resin material can be broadly mentioned.
 第1領域を構成する材料、第2領域を構成する材料及び第3領域を構成する材料を、同じ材料(但し、屈折率は異なる)から構成してもよいし、屈折率が異なる材料から構成してもよい。場合によっては、第1領域は、空気で充填された状態、又は、真空状態とすることもできる。また、場合によっては、第3領域は、空気で充填された状態、又は、真空状態とすることもできる。 The material constituting the first region, the material constituting the second region, and the material constituting the third region may be composed of the same material (however, the refractive index is different), or may be composed of materials having different refractive indexes. You may. In some cases, the first region may be in an air-filled state or in a vacuum state. In some cases, the third region may be filled with air or in a vacuum state.
 平板状の光出射方向制御部材の頂面は、平坦であってもよいし、上に凸の形状を有していてもよいし、凹の形状を有していてもよいが、表示パネルの正面方向の輝度向上といった観点からは、平板状の光出射方向制御部材の頂面は平坦であることが好ましい。平板状の光出射方向制御部材は、フォトリソグラフィ技術とエッチング法の組合せで得ることができるし、ナノプリント法に基づき形成することもできる。レンズ状の光出射方向制御部材は、透明樹脂材料を、メルトフローさせることで得ることができるし、あるいは又、エッチバックすることで得ることができるし、あるいは又、グレートーンマスクを用いたフォトリソグラフィ技術とエッチング法の組合せで得ることができるし、ナノプリント法に基づき透明樹脂材料をレンズ状に形成するといった方法によって得ることもできる。第1領域の形成は、光出射方向制御部材の形成と同時に、あるいは又、光出射方向制御部材の形成とは別に、フォトリソグラフィ技術とエッチング法の組合せで得ることができるし、ナノプリント法に基づき形成することもできる。 The top surface of the flat plate-shaped light emission direction control member may be flat, may have an upward convex shape, or may have a concave shape, but the display panel may have a concave shape. From the viewpoint of improving the brightness in the front direction, it is preferable that the top surface of the flat plate-shaped light emission direction control member is flat. The flat plate-shaped light emission direction control member can be obtained by a combination of a photolithography technique and an etching method, or can be formed based on a nanoprint method. The lens-shaped light emission direction control member can be obtained by melt-flowing a transparent resin material, or by etching back, or a photo using a gray tone mask. It can be obtained by a combination of a lithography technique and an etching method, or it can be obtained by a method such as forming a transparent resin material into a lens shape based on a nanoprint method. The formation of the first region can be obtained at the same time as the formation of the light emission direction control member, or separately from the formation of the light emission direction control member, by a combination of the photolithography technique and the etching method, and can be applied to the nanoprint method. It can also be formed based on.
 平板状の光出射方向制御部材の平面形状は、後述する発光領域と相似形であることが好ましく、あるいは又、発光領域は平板状の光出射方向制御部材の正射影像に含まれることが好ましく、具体的には、円形、楕円形及び長円形、並びに、三角形、四角形、六角形及び八角形を含む多角形(正六角形(ハニカム状)等の正多角形を含む)を挙げることができる。また、光出射方向制御部材全体の形状として、柱状や、切頭錐状(頂面が切頭部に相当し、あるいは又、底面が切頭部に相当する)を挙げることができる。柱状や切頭錐状の光出射方向制御部材における第2領域の側面と側面とが交わる稜の部分は丸みを帯びていてもよいし、柱状や切頭錐状の光出射方向制御部材における第2領域の側面と頂面とが交わる稜の部分は、丸みを帯びていてもよいし、切り欠かれていてもよい。また、光出射方向制御部材における第1領域の頂面と交わる第2領域の頂面が部分は、丸みを帯びていてもよいし、切り欠かれていてもよい。 The planar shape of the flat plate-shaped light emitting direction control member is preferably similar to the light emitting region described later, or the light emitting region is preferably included in the normal projection image of the flat plate-shaped light emitting direction control member. Specifically, a circle, an ellipse and an oval, and a polygon including a triangle, a quadrangle, a hexagon and an octagon (including a regular polygon such as a regular hexagon (honeycomb)) can be mentioned. Further, as the shape of the entire light emission direction control member, a columnar shape or a truncated cone shape (the top surface corresponds to the cut head, or the bottom surface corresponds to the cut head) can be mentioned. The portion of the ridge where the side surface of the second region intersects the side surface of the columnar or truncated cone-shaped light emitting direction control member may be rounded, or the portion of the columnar or truncated cone-shaped light emitting direction control member may be rounded. The portion of the ridge where the side surface and the top surface of the two regions intersect may be rounded or may be cut out. Further, the portion of the top surface of the second region intersecting with the top surface of the first region of the light emission direction control member may be rounded or may be cut out.
 平板状の光出射方向制御部材の外縁部は、垂直、あるいは、概ね垂直であることが好ましい。具体的には、平板状の光出射方向制御部材の外縁部の傾斜角度として、80度乃至100度、好ましくは81.8度以上、98.2度以下、より好ましくは84.0度以上、96.0度以下、一層好ましくは86.0度以上、94.0度以下、特に好ましくは88.0度以上、92.0度以下、最も好ましくは90度を例示することができる。また、平板状の光出射方向制御部材の平均高さとして1.5μm以上、2.5μm以下を例示することができ、これによって、平板状の光出射方向制御部材の外縁部近傍における集光効果を効果的に高めることができる。隣接する光出射方向制御部材の外縁部間の最短距離として、0.4μm以上、1.2μm以下、好ましくは0.6μm以上、1.2μm以下、より好ましくは0.8μm以上、1.2μm以下、一層好ましくは0.8μm以上、1.0μm以下を挙げることができる。隣接する光出射方向制御部材の外縁部間の最短距離の最低値を0.4μmと規定することで、隣接する光出射方向制御部材の間の最短距離を可視光の波長帯域の下限値と同程度とすることができるので、第3領域の機能低下を抑制することができる結果、光出射方向制御部材の外縁部近傍における集光効果を効果的に高めることができる。一方、隣接する光出射方向制御部材の外縁部間の最短距離の最大値を1.2μmと規定することで、光出射方向制御部材のサイズを小さくすることができる結果、光出射方向制御部材の外縁部近傍における集光効果を効果的に高めることができる。発光部から光出射方向制御部材の底面までの最大距離(高さ方向の最大距離)は、0.35μmを超え、7μm以下、好ましくは1.3μm以上、7μm以下、より好ましくは2.8μm以上、7μm以下、一層好ましくは3.8μm以上、7μm以下であることが望ましい。発光部から光出射方向制御部材までの最大距離が0.35μmを超えると規定することで、光出射方向制御部材の外縁部近傍における集光効果を効果的に高めることができる。一方、発光部から光出射方向制御部材までの最大距離が7μm以下であると規定することで、視野角特性の低下を抑制することができる。隣接する光出射方向制御部材の中心の間の距離は、1μm以上、10μm以下であることが好ましく、10μm以下に設定することによって、光の波動性が顕著に表れるため、光出射方向制御部材に高い集光効果を付与することができる。 The outer edge of the flat plate-shaped light emission direction control member is preferably vertical or substantially vertical. Specifically, the inclination angle of the outer edge portion of the flat plate-shaped light emission direction control member is 80 degrees to 100 degrees, preferably 81.8 degrees or more, 98.2 degrees or less, more preferably 84.0 degrees or more. 96.0 degrees or less, more preferably 86.0 degrees or more, 94.0 degrees or less, particularly preferably 88.0 degrees or more, 92.0 degrees or less, most preferably 90 degrees can be exemplified. Further, the average height of the flat plate-shaped light emitting direction control member can be exemplified as 1.5 μm or more and 2.5 μm or less, whereby the light condensing effect in the vicinity of the outer edge portion of the flat plate-shaped light emitting direction control member can be exemplified. Can be effectively enhanced. The shortest distance between the outer edges of adjacent light emission direction control members is 0.4 μm or more and 1.2 μm or less, preferably 0.6 μm or more and 1.2 μm or less, more preferably 0.8 μm or more and 1.2 μm or less. More preferably, 0.8 μm or more and 1.0 μm or less can be mentioned. By defining the minimum value of the shortest distance between the outer edges of the adjacent light emission direction control members as 0.4 μm, the shortest distance between the adjacent light emission direction control members is the same as the lower limit value of the visible light wavelength band. As a result, the functional deterioration of the third region can be suppressed, and as a result, the light collecting effect in the vicinity of the outer edge portion of the light emission direction control member can be effectively enhanced. On the other hand, by defining the maximum value of the shortest distance between the outer edges of the adjacent light emission direction control members as 1.2 μm, the size of the light emission direction control member can be reduced, and as a result, the light emission direction control member The light collection effect in the vicinity of the outer edge can be effectively enhanced. The maximum distance (maximum distance in the height direction) from the light emitting unit to the bottom surface of the light emitting direction control member is more than 0.35 μm and 7 μm or less, preferably 1.3 μm or more, 7 μm or less, more preferably 2.8 μm or more. , 7 μm or less, more preferably 3.8 μm or more, and 7 μm or less. By defining that the maximum distance from the light emitting portion to the light emitting direction control member exceeds 0.35 μm, the light collecting effect in the vicinity of the outer edge portion of the light emitting direction controlling member can be effectively enhanced. On the other hand, by defining that the maximum distance from the light emitting unit to the light emitting direction control member is 7 μm or less, deterioration of the viewing angle characteristic can be suppressed. The distance between the centers of the adjacent light emission direction control members is preferably 1 μm or more and 10 μm or less, and by setting it to 10 μm or less, the wave nature of light appears remarkably. A high light-collecting effect can be imparted.
 1つの画素(後述する)に対する平板状の光出射方向制御部材の数は、本質的に任意であり、1以上であればよい。例えば、1つの画素が3つの副画素から構成されている場合、平板状の光出射方向制御部材の数を3とすればよいし、1つの画素が4つの副画素から構成されている場合、平板状の光出射方向制御部材の数を4とすればよい。発光素子の発光部の中心と、この発光素子に隣接する発光素子の発光部の中心との間の距離として、1μm乃至10μmを例示することができる。 The number of flat plate-shaped light emission direction control members for one pixel (described later) is essentially arbitrary, and may be 1 or more. For example, when one pixel is composed of three sub-pixels, the number of flat plate-shaped light emission direction control members may be three, and when one pixel is composed of four sub-pixels. The number of flat plate-shaped light emission direction control members may be four. The distance between the center of the light emitting portion of the light emitting element and the center of the light emitting portion of the light emitting element adjacent to the light emitting element can be exemplified by 1 μm to 10 μm.
 本開示の表示装置において、表示パネルは、少なくとも、第1の色(例えば、赤色)を出射する第1発光素子(例えば、赤色発光素子)、第2の色(例えば、緑色)を出射する第2発光素子(例えば、緑色発光素子)、及び、第3の色(例えば、青色)を出射する第3発光素子(例えば、青色発光素子)から構成された発光素子ユニットを、複数、有しており、
 第1発光素子、第2発光素子及び第3発光素子のそれぞれにおいて、第1領域及び第2領域の最適化が図られている形態とすることができる。
In the display device of the present disclosure, the display panel emits at least a first light emitting element (for example, a red light emitting element) that emits a first color (for example, red) and a second color (for example, green). It has a plurality of light emitting element units composed of two light emitting elements (for example, a green light emitting element) and a third light emitting element (for example, a blue light emitting element) that emits a third color (for example, blue). Ori,
Each of the first light emitting element, the second light emitting element, and the third light emitting element can be in a form in which the first region and the second region are optimized.
 即ち、第1発光素子、第2発光素子及び第3発光素子のそれぞれにおいて、第1領域の位置、形状、n1とn2の関係、大きさ、高さ、数の最適化を図ることで、第1発光素子、第2発光素子及び第3発光素子のそれぞれから光出射方向制御部材を通過して出射される光の方向の制御(配光の制御)を、確実に、且つ、的確に行うことができる。 That is, in each of the first light emitting element, the second light emitting element, and the third light emitting element, the position and shape of the first region, the relationship between n 1 and n 2 , the size, the height, and the number are optimized. , Reliably and accurately control the direction of light emitted from each of the first light emitting element, the second light emitting element, and the third light emitting element through the light emitting direction control member (light distribution control). It can be carried out.
 表示装置にあっては、白色を発光する発光部と赤色カラーフィルタ層とが組み合わされた赤色発光素子、白色を発光する発光部と緑色カラーフィルタ層とが組み合わされた緑色発光素子、及び、白色を発光する発光部と青色カラーフィルタ層とが組み合わされた青色発光素子のそれぞれが副画素として設けられ、これらの副画素から1画素が構成される。あるいは又、赤色を発光する発光部から構成された赤色発光素子、緑色を発光する発光部から構成された緑色発光素子、及び、青色を発光する発光部から構成された青色発光素子のそれぞれが副画素として設けられ、これらの副画素から1画素が構成される。あるいは又、赤色、緑色、青色以外の第4番目の色(光)を発光する発光部から構成された発光素子が、更に副画素として組み合わされていてもよいし、単色の画像を生成する表示装置とすることもできる。 In the display device, a red light emitting element in which a light emitting unit that emits white light and a red color filter layer are combined, a green light emitting element in which a light emitting unit that emits white light and a green color filter layer are combined, and white Each of the blue light emitting elements in which the light emitting unit for emitting light and the blue color filter layer are combined is provided as sub-pixels, and one pixel is composed of these sub-pixels. Alternatively, each of a red light emitting element composed of a light emitting unit that emits red light, a green light emitting element composed of a light emitting unit that emits green light, and a blue light emitting element composed of a light emitting unit that emits blue light is subordinate. It is provided as a pixel, and one pixel is composed of these sub-pixels. Alternatively, a light emitting element composed of a light emitting unit that emits a fourth color (light) other than red, green, and blue may be further combined as a sub-pixel, or a display that generates a monochromatic image. It can also be a device.
 本開示の表示装置において、画素(あるいは副画素)の配列として、デルタ配列を挙げることができるし、あるいは又、ストライプ配列、ダイアゴナル配列、レクタングル配列、ペンタイル配列を挙げることができる。 In the display device of the present disclosure, as the arrangement of pixels (or sub-pixels), a delta arrangement can be mentioned, or a stripe arrangement, a diagonal arrangement, a rectangle arrangement, and a pentile arrangement can be mentioned.
 表示装置は、例えば、パーソナルコンピュータを構成するモニタ装置として使用することができるし、テレビジョン受像機や携帯電話、PDA(携帯情報端末,Personal Digital Assistant)、ゲーム機器に組み込まれたモニタ装置、プロジェクタに組み込まれた表示装置として使用することができる。あるいは又、電子ビューファインダ(Electronic View Finder,EVF)や頭部装着型ディスプレイ(Head Mounted Display,HMD)に適用することができるし、VR(Virtual Reality)用、MR(Mixed Reality)用、あるいは、AR(Augmented Reality)用の表示装置に適用することができる。あるいは又、電子ブック、電子新聞等の電子ペーパー、看板、ポスター、黒板等の掲示板、プリンター用紙代替のリライタブルペーパー、家電製品の表示部、ポイントカード等のカード表示部、電子広告、電子POPにおける画像表示装置を構成することができる。本開示の表示装置を発光装置として使用し、液晶表示装置用のバックライト装置や面状光源装置を含む各種照明装置を構成することができる。 The display device can be used, for example, as a monitor device constituting a personal computer, a television receiver, a mobile phone, a PDA (personal digital assistant), a monitor device incorporated in a game device, or a projector. It can be used as a display device built into the computer. Alternatively, it can be applied to an electronic viewfinder (Electronic ViewFinder, EVF) or a head-mounted display (Head Mounted Display, HMD), for VR (Virtual Reality), for MR (Mixed Reality), or. It can be applied to a display device for AR (Augmented Reality). Alternatively, electronic books, electronic newspapers and other electronic papers, signboards, posters, blackboards and other bulletin boards, rewritable paper as a substitute for printer paper, home appliance displays, point cards and other card displays, electronic advertisements, and images in electronic POPs. A display device can be configured. By using the display device of the present disclosure as a light emitting device, various lighting devices including a backlight device for a liquid crystal display device and a planar light source device can be configured.
 頭部装着型ディスプレイは、例えば、
 (イ)観察者の頭部に装着されるフレーム、及び、
 (ロ)フレームに取り付けられた画像表示装置、
を備えており、
 画像表示装置は、
 (A)本開示の表示装置を備えた画像形成装置、及び、
 (B)画像形成装置から出射された光が入射され、出射される光学装置、
を備えており、
 光学装置は、
 (B-1)画像形成装置(具体的には、本開示の表示装置)から入射された光が内部を全反射により伝播した後、観察者に向けて出射される導光板、
 (B-2)導光板に入射された光が導光板の内部で全反射されるように、導光板に入射された光を偏向させる第1偏向手段(例えば、体積ホログラム回折格子から構成されている)、及び、
 (B-3)導光板の内部を全反射により伝播した光を導光板から出射させるために、導光板の内部を全反射により伝播した光を複数回に亙り偏向させる第2偏向手段(例えば、体積ホログラム回折格子から構成されている)、
を備えている。
Head-mounted displays are, for example,
(B) The frame attached to the observer's head and
(B) Image display device attached to the frame,
Is equipped with
The image display device is
(A) An image forming apparatus provided with the display device of the present disclosure, and
(B) An optical device in which light emitted from an image forming apparatus is incident and emitted.
Is equipped with
The optical device is
(B-1) A light guide plate, in which light incident from an image forming apparatus (specifically, the display device of the present disclosure) propagates inside by total reflection and then is emitted toward an observer.
(B-2) It is composed of a first deflection means (for example, a volume hologram diffraction grating) that deflects the light incident on the light guide plate so that the light incident on the light guide plate is totally reflected inside the light guide plate. ), And
(B-3) A second deflecting means (for example,) for deflecting the light propagated inside the light guide plate by total internal reflection over a plurality of times in order to emit the light propagated inside the light guide plate by total reflection from the light guide plate. Consists of a volume hologram diffraction grating),
It has.
 あるいは又、頭部装着型ディスプレイは、例えば、直接、画像(光束)を観察者の網膜に投影することにより画像を表示する、マクスウェル視に基づく網膜投影型ディスプレイ、具体的には、網膜投影型ヘッドマウントディスプレイとすることもできる。 Alternatively, the head-mounted display is, for example, a retinal projection type display based on Maxwell vision, which displays an image by directly projecting an image (light beam) onto the observer's retina, specifically, a retinal projection type display. It can also be a head-mounted display.
 以下、発光素子に備えられた発光部が有機エレクトロルミネッセンス層を含む形態に関して、即ち、本開示の表示装置が有機エレクトロルミネッセンス表示装置(有機EL表示装置)から構成されている形態に関して、説明を行う。 Hereinafter, a form in which the light emitting unit provided in the light emitting element includes an organic electroluminescence layer, that is, a form in which the display device of the present disclosure is composed of an organic electroluminescence display device (organic EL display device) will be described. ..
 表示装置は、
 第1基板、及び、第2基板、並びに、
 第1基板と第2基板との間に位置し、2次元状に配列された複数の発光素子、
を備えており、
 発光素子は発光部を含み、
 第1基板の上に形成された基体上に設けられた発光部は、
 第1電極、
 第2電極、及び、
 第1電極と第2電極とによって挟まれた有機層(有機エレクトロルミネッセンス層を含む発光層を含む)、
を少なくとも備えており、
 有機層からの光が、第2基板を介して外部に出射され、あるいは又、第1基板を介して外部に出射される。尚、第2電極が第2基板側に設けられており、第1電極が第1基板側に設けられている。
The display device is
The first substrate, the second substrate, and
A plurality of light emitting elements arranged in a two-dimensional manner located between the first substrate and the second substrate.
Is equipped with
The light emitting element includes a light emitting part
The light emitting portion provided on the substrate formed on the first substrate is
1st electrode,
2nd electrode and
An organic layer sandwiched between a first electrode and a second electrode (including a light emitting layer including an organic electroluminescence layer),
At least have
The light from the organic layer is emitted to the outside through the second substrate, or is emitted to the outside through the first substrate. The second electrode is provided on the second substrate side, and the first electrode is provided on the first substrate side.
 即ち、本開示の表示装置を、第2電極を介して第2基板から光を出射するトップエミッション方式(上面発光方式)の表示装置(上面発光型表示装置)とすることもできるし、第1電極を介して第1基板から光を出射するボトムエミッション方式(下面発光方式)の表示装置(下面発光型表示装置)とすることもできる。 That is, the display device of the present disclosure can be a top emission type (top emission type) display device (top emission type display device) that emits light from the second substrate via the second electrode, or the first display device. It is also possible to use a bottom emission type (bottom emission type) display device (bottom emission type display device) that emits light from the first substrate via electrodes.
 発光部は、上述したとおり、第1電極、有機層及び第2電極から構成される。発光部の中心とは、第1電極と有機層とが接する領域(発光領域)の面積重心点を指す。第1電極が有機層の一部と接している構成とすることができるし、有機層が第1電極の一部と接している構成とすることができる。具体的には、第1電極の大きさは有機層よりも小さい構成とすることができるし、あるいは又、第1電極の大きさは有機層と同じ大きさであるが、第1電極と有機層との間の一部分に絶縁層が形成されている構成とすることもできるし、あるいは又、第1電極の大きさは有機層より大きい構成とすることもできる。 As described above, the light emitting unit is composed of a first electrode, an organic layer, and a second electrode. The center of the light emitting portion refers to the area center of gravity point of the region (light emitting region) where the first electrode and the organic layer are in contact with each other. The first electrode may be in contact with a part of the organic layer, or the organic layer may be in contact with a part of the first electrode. Specifically, the size of the first electrode can be smaller than that of the organic layer, or the size of the first electrode is the same as that of the organic layer, but the first electrode and the organic layer are organic. An insulating layer may be formed in a part between the layers, or the size of the first electrode may be larger than that of the organic layer.
 そして、有機層は白色光を出射する形態とすることができ、この場合、有機層は、異なる色を発光する少なくとも2層の発光層から構成されている形態とすることができる。具体的には、有機層は、赤色(波長:620nm乃至750nm)を発光する赤色発光層、緑色(波長:495nm乃至570nm)を発光する緑色発光層、及び、青色(波長:450nm乃至495nm)を発光する青色発光層の3層が積層された積層構造を有する形態とすることができ、全体として白色を発光する。あるいは又、有機層は、青色を発光する青色発光層、及び、黄色を発光する黄色発光層の2層が積層された構造とすることができ、全体として白色を発光する。あるいは又、有機層は、青色を発光する青色発光層、及び、橙色を発光する橙色発光層の2層が積層された構造とすることができ、全体として白色を発光する。有機層は、複数の発光素子において共通化されていてもよいし、各発光素子において個別に設けられていてもよい。そして、このような白色を発光する有機層と赤色カラーフィルタ層(あるいは赤色カラーフィルタ層として機能する平坦化層)とを組み合わせることで赤色発光素子が構成され、白色を発光する有機層と緑色カラーフィルタ層(あるいは緑色カラーフィルタ層として機能する平坦化層)とを組み合わせることで緑色発光素子が構成され、白色を発光する有機層と青色カラーフィルタ層(あるいは青色カラーフィルタ層として機能する平坦化層)とを組み合わせることで青色発光素子が構成される。平坦化層については、後述する。上述したとおり、赤色発光素子、緑色発光素子及び青色発光素子といった副画素の組合せによって1画素が構成される。場合によっては、赤色発光素子、緑色発光素子、青色発光素子及び白色(あるいは第4の色)を出射する発光素子(あるいは補色光を出射する発光素子)によって1画素を構成してもよい。異なる色を発光する少なくとも2層の発光層から構成されている形態にあっては、実際には、異なる色を発光する発光層が混合し、明確に各層に分離されていない場合がある。 Then, the organic layer can be in the form of emitting white light, and in this case, the organic layer can be in the form of being composed of at least two light emitting layers that emit different colors. Specifically, the organic layer includes a red light emitting layer that emits red (wavelength: 620 nm to 750 nm), a green light emitting layer that emits green (wavelength: 495 nm to 570 nm), and blue (wavelength: 450 nm to 495 nm). It can have a laminated structure in which three layers of a blue light emitting layer that emits light are laminated, and emits white light as a whole. Alternatively, the organic layer can have a structure in which two layers, a blue light emitting layer that emits blue light and a yellow light emitting layer that emits yellow light, are laminated, and emits white light as a whole. Alternatively, the organic layer can have a structure in which two layers, a blue light emitting layer that emits blue light and an orange light emitting layer that emits orange light, are laminated, and emits white light as a whole. The organic layer may be shared by a plurality of light emitting elements, or may be individually provided in each light emitting element. Then, by combining such an organic layer that emits white light and a red color filter layer (or a flattening layer that functions as a red color filter layer), a red light emitting element is configured, and the organic layer that emits white light and a green color are formed. A green light emitting element is configured by combining with a filter layer (or a flattening layer that functions as a green color filter layer), and an organic layer that emits white light and a flattening layer that functions as a blue color filter layer (or a blue color filter layer). ) Is combined to form a blue light emitting element. The flattening layer will be described later. As described above, one pixel is composed of a combination of sub-pixels such as a red light emitting element, a green light emitting element, and a blue light emitting element. In some cases, one pixel may be composed of a red light emitting element, a green light emitting element, a blue light emitting element, and a light emitting element that emits white (or a fourth color) (or a light emitting element that emits complementary color light). In a form composed of at least two light emitting layers that emit different colors, in reality, the light emitting layers that emit different colors may be mixed and not clearly separated into each layer.
 あるいは又、有機層は、1層の発光層から構成されている形態とすることができる。この場合、発光素子を、例えば、赤色発光層を含む有機層を有する赤色発光素子、緑色発光層を含む有機層を有する緑色発光素子、あるいは、青色発光層を含む有機層を有する青色発光素子から構成することができる。カラー表示の表示装置の場合、これらの3種類の発光素子(副画素)から1画素が構成される。あるいは又、赤色発光層を含む有機層を有する赤色発光素子、緑色発光層を含む有機層を有する緑色発光素子、及び、青色発光層を含む有機層を有する青色発光素子の積層構造から構成することもできる。尚、カラーフィルタ層の形成は、原則、不要であるが、色純度向上のためにカラーフィルタ層を設けてもよい。 Alternatively, the organic layer can be in the form of one light emitting layer. In this case, the light emitting element is, for example, from a red light emitting element having an organic layer including a red light emitting layer, a green light emitting element having an organic layer including a green light emitting layer, or a blue light emitting element having an organic layer including a blue light emitting layer. Can be configured. In the case of a color display display device, one pixel is composed of these three types of light emitting elements (sub-pixels). Alternatively, it is composed of a laminated structure of a red light emitting element having an organic layer including a red light emitting layer, a green light emitting element having an organic layer including a green light emitting layer, and a blue light emitting element having an organic layer including a blue light emitting layer. You can also. Although it is not necessary to form the color filter layer in principle, a color filter layer may be provided to improve the color purity.
 基体は第1基板の上あるいは上方に形成されている。基体を構成する材料として、絶縁材料、例えば、SiO2、SiN、SiONを例示することができる。基体は、基体を構成する材料に適した形成方法、具体的には、例えば、各種CVD法、各種塗布法、スパッタリング法や真空蒸着法を含む各種PVD法、スクリーン印刷法といった各種印刷法、メッキ法、電着法、浸漬法、ゾル-ゲル法等の公知の方法に基づき形成することができる。 The substrate is formed on or above the first substrate. As the material constituting the substrate, an insulating material such as SiO 2 , SiN, and SiON can be exemplified. The substrate is formed by a forming method suitable for the material constituting the substrate, specifically, various printing methods such as various CVD methods, various coating methods, various PVD methods including sputtering method and vacuum deposition method, screen printing method, and plating. It can be formed based on known methods such as a method, an electrodeposition method, a dipping method, and a sol-gel method.
 基体の下あるいは下方には、限定するものではないが、発光素子駆動部が設けられている。発光素子駆動部は、例えば、第1基板を構成するシリコン半導体基板に形成されたトランジスタ(具体的には、例えば、MOSFET)や、第1基板を構成する各種基板に設けられた薄膜トランジスタ(TFT)から構成されている。発光素子駆動部を構成するトランジスタやTFTと第1電極とは、基体等に形成されたコンタクトホール(コンタクトプラグ)を介して接続されている形態とすることができる。発光素子駆動部は、周知の回路構成とすることができる。第2電極は、表示パネルの外周部において、基体等に形成されたコンタクトホール(コンタクトプラグ)を介して発光素子駆動部と接続される。 A light emitting element drive unit is provided below or below the substrate, but not limited to. The light emitting element driving unit includes, for example, a transistor (specifically, for example, MOSFET) formed on a silicon semiconductor substrate constituting the first substrate, or a thin film transistor (TFT) provided on various substrates constituting the first substrate. It is composed of. The transistor or TFT constituting the light emitting element driving unit and the first electrode can be connected to each other via a contact hole (contact plug) formed in a substrate or the like. The light emitting element drive unit may have a well-known circuit configuration. The second electrode is connected to the light emitting element driving unit via a contact hole (contact plug) formed in a substrate or the like on the outer peripheral portion of the display panel.
 第1電極は、各発光素子毎に設けられている。有機層は、各発光素子毎に設けられており、あるいは又、発光素子に共通して設けられている。第2電極は、複数の発光素子において共通電極とされていてもよい。即ち、第2電極は、所謂ベタ電極とされていてもよい。基体の下方あるいは下には第1基板が配置されており、第2電極の上方に第2基板が配置されている。第1基板側に発光素子が形成されており、発光部は基体上に設けられている。 The first electrode is provided for each light emitting element. The organic layer is provided for each light emitting element, or is provided in common for the light emitting elements. The second electrode may be a common electrode in a plurality of light emitting elements. That is, the second electrode may be a so-called solid electrode. The first substrate is arranged below or below the substrate, and the second substrate is arranged above the second electrode. A light emitting element is formed on the first substrate side, and the light emitting portion is provided on the substrate.
 第1基板あるいは第2基板を、シリコン半導体基板、高歪点ガラス基板、ソーダガラス(Na2O・CaO・SiO2)基板、硼珪酸ガラス(Na2O・B23・SiO2)基板、フォルステライト(2MgO・SiO2)基板、鉛ガラス(Na2O・PbO・SiO2)基板、表面に絶縁材料層が形成された各種ガラス基板、石英基板、表面に絶縁材料層が形成された石英基板、ポリメチルメタクリレート(ポリメタクリル酸メチル,PMMA)やポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリエーテルスルホン(PES)、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)に例示される有機ポリマー(高分子材料から構成された可撓性を有するプラスチックフィルムやプラスチックシート、プラスチック基板といった高分子材料の形態を有する)から構成することができる。第1基板と第2基板を構成する材料は、同じであっても、異なっていてもよい。但し、上面発光型表示装置の場合、第2基板は発光素子からの光に対して透明であることが要求されるし、下面発光型表示装置の場合、第1基板は発光素子からの光に対して透明であることが要求される。 The first substrate or the second substrate is a silicon semiconductor substrate, a high-distortion point glass substrate, a soda glass (Na 2 O / CaO / SiO 2 ) substrate, a borosilicate glass (Na 2 O / B 2 O 3 / SiO 2 ) substrate. , forsterite (2MgO · SiO 2) substrate, lead glass (Na 2 O · PbO · SiO 2) substrate, various glass substrates of an insulating material layer is formed on the surface, a quartz substrate, an insulating material layer formed on its surface Quartz substrate, polymethylmethacrylate (polymethylmethacrylate, PMMA), polyvinyl alcohol (PVA), polyvinylphenol (PVP), polyethersulfone (PES), polyimide, polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) It can be composed of an organic polymer exemplified in (having a form of a polymer material such as a flexible plastic film composed of a polymer material, a plastic sheet, or a plastic substrate). The materials constituting the first substrate and the second substrate may be the same or different. However, in the case of the top light emitting type display device, the second substrate is required to be transparent to the light from the light emitting element, and in the case of the bottom light emitting type display device, the first substrate is exposed to the light from the light emitting element. On the other hand, it is required to be transparent.
 第1電極を構成する材料として、第1電極をアノード電極として機能させる場合、例えば、白金(Pt)、金(Au)、銀(Ag)、クロム(Cr)、タングステン(W)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、タンタル(Ta)といった仕事関数の高い金属あるいは合金(例えば、銀を主成分とし、0.3質量%乃至1質量%のパラジウム(Pd)と0.3質量%乃至1質量%の銅(Cu)とを含むAg-Pd-Cu合金や、Al-Nd合金、Al-Cu合金、Al-Cu-Ni合金)を挙げることができる。更には、アルミニウム(Al)及びアルミニウムを含む合金等の仕事関数の値が小さく、且つ、光反射率の高い導電材料を用いる場合には、適切な正孔注入層を設けるなどして正孔注入特性を向上させることで、アノード電極として用いることができる。第1電極の厚さとして、0.1μm乃至1μmを例示することができる。あるいは又、発光素子からの光に対して透明であることが第1電極に要求される場合、第1電極を構成する材料として、酸化インジウム、インジウム-錫酸化物(ITO,Indium Tin Oxide,SnドープのIn23、結晶性ITO及びアモルファスITOを含む)、インジウム-亜鉛酸化物(IZO,Indium Zinc Oxide)、インジウム-ガリウム酸化物(IGO)、インジウム・ドープのガリウム-亜鉛酸化物(IGZO,In-GaZnO4)、IFO(FドープのIn23)、ITiO(TiドープのIn23)、InSn、InSnZnO、酸化錫(SnO2)、ATO(SbドープのSnO2)、FTO(FドープのSnO2)、酸化亜鉛(ZnO)、酸化アルミニウム・ドープの酸化亜鉛(AZO)、ガリウム・ドープの酸化亜鉛(GZO)、BドープのZnO、AlMgZnO(酸化アルミニウム及び酸化マグネシウム・ドープの酸化亜鉛)、酸化アンチモン、酸化チタン、NiO、スピネル型酸化物、YbFe24構造を有する酸化物、ガリウム酸化物、チタン酸化物、ニオブ酸化物、ニッケル酸化物等を母層とする透明導電性材料といった各種透明導電材料を挙げることができる。あるいは又、誘電体多層膜やアルミニウム(Al)あるいはその合金(例えば、Al-Cu-Ni合金)といった光反射性の高い反射膜上に、インジウムとスズの酸化物(ITO)や、インジウムと亜鉛の酸化物(IZO)等の正孔注入特性に優れた透明導電材料を積層した構造とすることもできる。一方、第1電極をカソード電極として機能させる場合、仕事関数の値が小さく、且つ、光反射率の高い導電材料から構成することが望ましいが、アノード電極として用いられる光反射率の高い導電材料に適切な電子注入層を設けるなどして電子注入特性を向上させることで、カソード電極として用いることもできる。 When the first electrode functions as an anode electrode as a material constituting the first electrode, for example, platinum (Pt), gold (Au), silver (Ag), chromium (Cr), tungsten (W), nickel (Ni). ), Copper (Cu), Iron (Fe), Cobalt (Co), Tantal (Ta) and other metals or alloys with high work functions (for example, silver as the main component and 0.3% by mass to 1% by mass of palladium (for example). Ag—Pd—Cu alloy containing Pd) and 0.3% by mass to 1% by mass of copper (Cu), Al—Nd alloy, Al—Cu alloy, Al—Cu—Ni alloy) can be mentioned. .. Furthermore, when a conductive material having a small work function value such as aluminum (Al) and an alloy containing aluminum and having a high light reflectance is used, hole injection is performed by providing an appropriate hole injection layer. By improving the characteristics, it can be used as an anode electrode. As the thickness of the first electrode, 0.1 μm to 1 μm can be exemplified. Alternatively, when the first electrode is required to be transparent to the light from the light emitting element, indium oxide, indium-tin oxide (ITO, Indium Tin Oxide, Sn) can be used as the material constituting the first electrode. Dope In 2 O 3 , including crystalline ITO and amorphous ITO), Indium-Zinc Oxide (IZO, Indium Zinc Oxide), Indium-Gallium Oxide (IGO), Indium Dope Gallium-Zinc Oxide (IGZO) , In-GaZnO 4 ), IFO (F-doped In 2 O 3 ), ITOO (Ti-doped In 2 O 3 ), InSn, InSnZNO, zinc oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (ZnO), aluminum oxide-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), B-doped ZnO, AlMgZnO (aluminum oxide and magnesium oxide-doped) Zinc oxide), antimony oxide, titanium oxide, NiO, spinel-type oxide, oxide having a YbFe 2 O 4 structure, gallium oxide, titanium oxide, niobium oxide, nickel oxide, etc. Various transparent conductive materials such as sex materials can be mentioned. Alternatively, an oxide of indium and tin (ITO) or an oxide of indium and zinc (ITO) on a highly light-reflecting reflective film such as a dielectric multilayer film or aluminum (Al) or an alloy thereof (for example, Al—Cu—Ni alloy). It is also possible to have a structure in which a transparent conductive material having excellent hole injection characteristics such as an oxide (IZO) of the above is laminated. On the other hand, when the first electrode functions as a cathode electrode, it is desirable that the first electrode is made of a conductive material having a small work function value and a high light reflectance, but a conductive material having a high light reflectance used as an anode electrode is used. It can also be used as a cathode electrode by improving the electron injection characteristics by providing an appropriate electron injection layer.
 トップエミッション方式(上面発光方式)の表示装置(上面発光型表示装置)にあっては、第2電極を構成する材料(半光透過材料あるいは光透過材料)として、第2電極をカソード電極として機能させる場合、発光光を透過し、しかも、有機層(発光層)に対して電子を効率的に注入できるように仕事関数の値の小さな導電材料から構成することが望ましく、例えば、アルミニウム(Al)、銀(Ag)、マグネシウム(Mg)、カルシウム(Ca)、ナトリウム(Na)、ストロンチウム(Sr)、アルカリ金属又はアルカリ土類金属と銀(Ag)[例えば、マグネシウム(Mg)と銀(Ag)との合金(Mg-Ag合金)]、マグネシウム-カルシウムとの合金(Mg-Ca合金)、アルミニウム(Al)とリチウム(Li)の合金(Al-Li合金)等の仕事関数の小さい金属あるいは合金を挙げることができ、中でも、Mg-Ag合金が好ましく、マグネシウムと銀との体積比として、Mg:Ag=5:1~30:1を例示することができる。あるいは又、マグネシウムとカルシウムとの体積比として、Mg:Ca=2:1~10:1を例示することができる。第2電極の厚さとして、4nm乃至50nm、好ましくは、4nm乃至20nm、より好ましくは6nm乃至12nmを例示することができる。あるいは又、Ag-Nd-Cu、Ag-Cu、Au及びAl-Cuから成る群から選択された少なくとも1種類の材料を挙げることができる。あるいは又、第2電極を、有機層側から、上述した材料層と、例えばITOやIZOから成る所謂透明電極(例えば、厚さ3×10-8m乃至1×10-6m)との積層構造とすることもできる。第2電極に対して、アルミニウム、アルミニウム合金、銀、銀合金、銅、銅合金、金、金合金等の低抵抗材料から成るバス電極(補助電極)を設け、第2電極全体として低抵抗化を図ってもよい。第2電極の平均光透過率は50%乃至90%、好ましくは60%乃至90%であることが望ましい。一方、第2電極をアノード電極として機能させる場合、必要に応じて発光光を透過し、しかも、仕事関数の値の大きな導電材料から構成することが望ましい。 In the top emission type (top emission type) display device (top emission type display device), the second electrode functions as a material (semi-light transmitting material or a light transmitting material) constituting the second electrode, and the second electrode functions as a cathode electrode. In the case of making it, it is desirable that it is composed of a conductive material having a small work function value so that emitted light can be transmitted and electrons can be efficiently injected into the organic layer (light emitting layer). For example, aluminum (Al) , Silver (Ag), Magnesium (Mg), Calcium (Ca), Sodium (Na), Strontium (Sr), Alkali Metal or Alkaline Earth Metal and Silver (Ag) [For example, Magnesium (Mg) and Silver (Ag) (Mg-Ag alloy)], magnesium-calcium alloy (Mg-Ca alloy), aluminum (Al) and lithium (Li) alloy (Al-Li alloy), and other metals or alloys with a small work function. Among them, Mg—Ag alloy is preferable, and Mg: Ag = 5: 1 to 30: 1 can be exemplified as the volume ratio of magnesium and silver. Alternatively, as the volume ratio of magnesium to calcium, Mg: Ca = 2: 1 to 10: 1 can be exemplified. As the thickness of the second electrode, 4 nm to 50 nm, preferably 4 nm to 20 nm, and more preferably 6 nm to 12 nm can be exemplified. Alternatively, at least one material selected from the group consisting of Ag-Nd-Cu, Ag-Cu, Au and Al-Cu can be mentioned. Alternatively, the second electrode is laminated from the organic layer side with the above-mentioned material layer and a so-called transparent electrode made of, for example, ITO or IZO (for example, a thickness of 3 × 10 -8 m to 1 × 10 -6 m). It can also be a structure. A bus electrode (auxiliary electrode) made of a low resistance material such as aluminum, aluminum alloy, silver, silver alloy, copper, copper alloy, gold, or gold alloy is provided for the second electrode to reduce the resistance of the second electrode as a whole. May be planned. The average light transmittance of the second electrode is preferably 50% to 90%, preferably 60% to 90%. On the other hand, when the second electrode functions as an anode electrode, it is desirable that the second electrode is made of a conductive material that transmits emitted light as needed and has a large work function value.
 第1電極や第2電極の形成方法として、例えば、電子ビーム蒸着法や熱フィラメント蒸着法、真空蒸着法を含む蒸着法、スパッタリング法、化学的気相成長法(CVD法)やMOCVD法、イオンプレーティング法とエッチング法との組合せ;スクリーン印刷法やインクジェット印刷法、メタルマスク印刷法といった各種印刷法;メッキ法(電気メッキ法や無電解メッキ法);リフトオフ法;レーザアブレーション法;ゾル・ゲル法等を挙げることができる。各種印刷法やメッキ法によれば、直接、所望の形状(パターン)を有する第1電極や第2電極を形成することが可能である。尚、有機層を形成した後、第2電極を形成する場合、特に真空蒸着法のような成膜粒子のエネルギーが小さな成膜方法、あるいは又、MOCVD法といった成膜方法に基づき形成することが、有機層のダメージ発生を防止するといった観点から好ましい。有機層にダメージが発生すると、リーク電流の発生による「滅点」と呼ばれる非発光画素(あるいは非発光副画素)が生じる虞がある。 Examples of the method for forming the first electrode and the second electrode include an electron beam deposition method, a hot filament deposition method, a vapor deposition method including a vacuum vapor deposition method, a sputtering method, a chemical vapor deposition method (CVD method), a MOCVD method, and an ion. Combination of plating method and etching method; various printing methods such as screen printing method, inkjet printing method, metal mask printing method; plating method (electroplating method and electroless plating method); lift-off method; laser ablation method; sol gel The law etc. can be mentioned. According to various printing methods and plating methods, it is possible to directly form the first electrode and the second electrode having a desired shape (pattern). When the second electrode is formed after the organic layer is formed, it may be formed based on a film forming method such as a vacuum vapor deposition method in which the energy of the formed particles is small, or a film forming method such as a MOCVD method. , It is preferable from the viewpoint of preventing the occurrence of damage to the organic layer. When the organic layer is damaged, non-emission pixels (or non-emission sub-pixels) called "dead points" may be generated due to the generation of leakage current.
 有機層は有機発光材料を含む発光層を備えているが、具体的には、例えば、正孔輸送層と発光層と電子輸送層との積層構造、正孔輸送層と電子輸送層を兼ねた発光層との積層構造、正孔注入層と正孔輸送層と発光層と電子輸送層と電子注入層との積層構造等から構成することができる。有機層の形成方法として、真空蒸着法等の物理的気相成長法(PVD法);スクリーン印刷法やインクジェット印刷法といった印刷法;転写用基板上に形成されたレーザ吸収層と有機層の積層構造に対してレーザを照射することでレーザ吸収層上の有機層を分離して、有機層を転写するといったレーザ転写法、各種の塗布法を例示することができる。有機層を真空蒸着法に基づき形成する場合、例えば、所謂メタルマスクを用い、係るメタルマスクに設けられた開口を通過した材料を堆積させることで有機層を得ることができる。 The organic layer includes a light emitting layer containing an organic light emitting material. Specifically, for example, the organic layer also serves as a laminated structure of a hole transport layer, a light emitting layer, and an electron transport layer, and also serves as a hole transport layer and an electron transport layer. It can be composed of a laminated structure with a light emitting layer, a laminated structure of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. As a method for forming the organic layer, a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method; a printing method such as a screen printing method or an inkjet printing method; a lamination of a laser absorbing layer and an organic layer formed on a transfer substrate. A laser transfer method in which the organic layer on the laser absorbing layer is separated by irradiating the structure with a laser and the organic layer is transferred, and various coating methods can be exemplified. When the organic layer is formed based on the vacuum vapor deposition method, for example, an organic layer can be obtained by depositing a material that has passed through an opening provided in the metal mask using a so-called metal mask.
 発光素子と発光素子との間に遮光部を設けてもよい。遮光部を構成する遮光材料として、具体的には、チタン(Ti)やクロム(Cr)、タングステン(W)、タンタル(Ta)、アルミニウム(Al)、MoSi2等の光を遮光することができる材料を挙げることができる。遮光部は、電子ビーム蒸着法や熱フィラメント蒸着法、真空蒸着法を含む蒸着法、スパッタリング法、CVD法やイオンプレーティング法等によって形成することができる。 A light-shielding portion may be provided between the light-emitting element and the light-emitting element. Specifically, as the light-shielding material constituting the light-shielding portion, light such as titanium (Ti), chromium (Cr), tungsten (W), tantalum (Ta), aluminum (Al), and MoSi 2 can be shielded. Materials can be mentioned. The light-shielding portion can be formed by an electron beam vapor deposition method, a hot filament vapor deposition method, a vapor deposition method including a vacuum vapor deposition method, a sputtering method, a CVD method, an ion plating method, or the like.
 第2電極を覆うように保護層が形成されていることが好ましい。また、保護層上あるいは上方に光出射方向制御部材が形成されている形態、あるいは又、保護層上あるいは上方にカラーフィルタ層が形成され、カラーフィルタ層上あるいは上方に光出射方向制御部材が形成されている形態、あるいは又、保護層上あるいは上方に光出射方向制御部材が形成され、光出射方向制御部材上あるいは上方にカラーフィルタ層が形成されている形態とすることができる。そして、これらの上に更に平坦化層が形成されている形態とすることができる。前述したとおり、カラーフィルタ層として機能する平坦化層を設けてもよい。 It is preferable that a protective layer is formed so as to cover the second electrode. Further, a light emission direction control member is formed on or above the protective layer, or a color filter layer is formed on or above the protective layer, and a light emission direction control member is formed on or above the color filter layer. In addition, the light emission direction control member may be formed on or above the protective layer, and the color filter layer may be formed on or above the light emission direction control member. Then, it is possible to form a form in which a flattening layer is further formed on these. As described above, a flattening layer that functions as a color filter layer may be provided.
 保護層や平坦化層を構成する材料として、アクリル系樹脂を例示することができるし、SiO2、SiN、SiON、SiC、アモルファスシリコン(α-Si)、Al23、TiO2を例示することもできる。保護層や平坦化層は、単層構成とすることもできるし、複数層から構成することもできる。保護層や平坦化層の形成方法として、各種CVD法、各種塗布法、スパッタリング法や真空蒸着法を含む各種PVD法、スクリーン印刷法といった各種印刷法等の公知の方法に基づき形成することができる。また、保護層や平坦化層の形成方法として、更には、ALD(Atomic Layer Deposition)法を採用することもできる。保護層や平坦化層は、複数の発光素子において共通化されていてもよいし、各発光素子において個別に設けられていてもよい。 As a material constituting the protective layer and the flattening layer, an acrylic resin can be exemplified, and SiO 2 , SiN, SiON, SiC, amorphous silicon (α-Si), Al 2 O 3 , and TiO 2 can be exemplified. You can also do it. The protective layer and the flattening layer may have a single-layer structure or may be composed of a plurality of layers. As a method for forming the protective layer and the flattening layer, it can be formed based on known methods such as various CVD methods, various coating methods, various PVD methods including a sputtering method and a vacuum deposition method, and various printing methods such as a screen printing method. .. Further, as a method for forming the protective layer and the flattening layer, an ALD (Atomic Layer Deposition) method can also be adopted. The protective layer and the flattening layer may be shared by a plurality of light emitting elements, or may be individually provided in each light emitting element.
 場合によっては、平坦化層によって、第1領域が構成されていてもよいし、第3領域が構成されていてもよいし、第1領域及び第3領域が構成されていてもよい。 In some cases, the flattening layer may form a first region, a third region, or a first region and a third region.
 平坦化層と第2基板とは、例えば、樹脂層(封止樹脂層)を介して接合される。樹脂層(封止樹脂層)を構成する材料として、アクリル系接着剤、エポキシ系接着剤、ウレタン系接着剤、シリコーン系接着剤、シアノアクリレート系接着剤といった熱硬化型接着剤や、紫外線硬化型接着剤を挙げることができる。樹脂層(封止樹脂層)が平坦化層を兼用していてもよい。 The flattening layer and the second substrate are joined via, for example, a resin layer (sealing resin layer). As a material constituting the resin layer (sealing resin layer), heat-curable adhesives such as acrylic adhesives, epoxy adhesives, urethane adhesives, silicone adhesives, and cyanoacrylate adhesives, and ultraviolet curable adhesives. Adhesives can be mentioned. The resin layer (sealing resin layer) may also serve as a flattening layer.
 場合によっては、上述したように、平坦化層がカラーフィルタ層としての機能を有する形態とすることもできる。このような平坦化層は、周知のカラーレジスト材料から構成すればよい。白色を出射する発光素子にあっては透明なフィルタを配設すればよい。このように平坦化層をカラーフィルタ層としても機能させることで、有機層と平坦化層(カラーフィルタ層)とが近接するので、発光素子から出射する光を広角化させても混色の防止を効果的に図ることができ、視野角特性が向上する。但し、カラーフィルタ層を、平坦化層とは別に、独立して、平坦化層の下あるいは下方、平坦化層の上あるいは上方に設けてもよい。 In some cases, as described above, the flattening layer may have a function as a color filter layer. Such a flattening layer may be made of a well-known color resist material. A transparent filter may be provided for the light emitting element that emits white color. By making the flattening layer also function as a color filter layer in this way, the organic layer and the flattening layer (color filter layer) are close to each other, so that even if the light emitted from the light emitting element is widened, color mixing can be prevented. It can be effectively measured and the viewing angle characteristics are improved. However, the color filter layer may be provided below or below the flattening layer and above or above the flattening layer independently of the flattening layer.
 表示パネルの光を出射する最外面(具体的には、例えば、第2基板の外面)には、紫外線吸収層、汚染防止層、ハードコート層、帯電防止層を形成してもよいし、保護部材(例えば、カバーガラス)を配してもよい。 An ultraviolet absorbing layer, a contamination prevention layer, a hard coat layer, and an antistatic layer may be formed or protected on the outermost surface (specifically, for example, the outer surface of the second substrate) that emits light from the display panel. Members (eg, cover glass) may be arranged.
 表示パネルにおいては、絶縁層や層間絶縁層が形成されるが、これらを構成する絶縁材料として、SiO2、NSG(ノンドープ・シリケート・ガラス)、BPSG(ホウ素・リン・シリケート・ガラス)、PSG、BSG、AsSG、SbSG、PbSG、SOG(スピンオングラス)、LTO(Low Temperature Oxide、低温CVD-SiO2)、低融点ガラス、ガラスペースト等のSiOX系材料(シリコン系酸化膜を構成する材料);SiON系材料を含むSiN系材料;SiOC;SiOF;SiCNを挙げることができる。あるいは又、酸化チタン(TiO2)、酸化タンタル(Ta25)、酸化アルミニウム(Al23)、酸化マグネシウム(MgO)、酸化クロム(CrOx)、酸化ジルコニウム(ZrO2)、酸化ニオブ(Nb25)、酸化スズ(SnO2)、酸化バナジウム(VOx)といった無機絶縁材料を挙げることができる。あるいは又、ポリイミド系樹脂、エポキシ系樹脂、アクリル系樹脂といった各種樹脂や、SiOCH、有機SOG、フッ素系樹脂といった低誘電率絶縁材料(例えば、誘電率k(=ε/ε0)が例えば3.5以下の材料であり、具体的には、例えば、フルオロカーボン、シクロパーフルオロカーボンポリマー、ベンゾシクロブテン、環状フッ素系樹脂、ポリテトラフルオロエチレン、アモルファステトラフルオロエチレン、ポリアリールエーテル、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン、パリレン(ポリパラキシリレン)、フッ化フラーレン)を挙げることができるし、Silk(The Dow Chemical Co. の商標であり、塗布型低誘電率層間絶縁膜材料)、Flare(Honeywell Electronic Materials Co. の商標であり、ポリアリルエーテル(PAE)系材料)を例示することもできる。そして、これらを、単独あるいは適宜組み合わせて使用することができる。場合によっては、基体を、以上に説明した材料から構成してもよい。絶縁層や層間絶縁層、基体は、各種CVD法、各種塗布法、スパッタリング法や真空蒸着法を含む各種PVD法、スクリーン印刷法といった各種印刷法、メッキ法、電着法、浸漬法、ゾル-ゲル法等の公知の方法に基づき形成することができる。 In the display panel, an insulating layer and an interlayer insulating layer are formed, and as insulating materials constituting these, SiO 2 , NSG (non-doped silicate glass), BPSG (boron phosphorus silicate glass), PSG, etc. SiO X- based materials (materials constituting silicon-based oxide films) such as BSG, AsSG, SbSG, PbSG, SOG (spin-on glass), LTO (Low Temperature Oxide, low temperature CVD-SiO 2 ), low melting point glass, and glass paste; SiN-based materials including SiON-based materials; SiOC; SiOF; SiCN can be mentioned. Alternatively, titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), chromium oxide (CrO x ), zirconium oxide (ZrO 2 ), niobium oxide. Inorganic insulating materials such as (Nb 2 O 5 ), tin oxide (SnO 2 ), and vanadium oxide (VO x) can be mentioned. Alternatively, various resins such as polyimide resins, epoxy resins, and acrylic resins, and low dielectric constant insulating materials such as SiOCH, organic SOG, and fluororesins (for example, dielectric constant k (= ε / ε 0 )) are used, for example. 5 or less materials, specifically, for example, fluorocarbon, cycloperfluorocarbon polymer, benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, amorphous tetrafluoroethylene, polyaryl ether, aryl fluoride ether, foot. Polyimide chemicals, amorphous carbon, parylene (polyparaxylylene), fullerene fluoride), Silk (a trademark of The Dow Chemical Co., a coating type low dielectric constant interlayer insulating film material), Flare ( It is a trademark of Honeywell Electronic Materials Co., and a polyallyl ether (PAE) -based material) can also be exemplified. Then, these can be used alone or in combination as appropriate. In some cases, the substrate may be composed of the materials described above. For the insulating layer, interlayer insulating layer, and substrate, various printing methods such as various CVD methods, various coating methods, various PVD methods including sputtering method and vacuum vapor deposition method, screen printing method, plating method, electrodeposition method, immersion method, sol- It can be formed based on a known method such as a gel method.
 有機EL表示装置は、更に一層の光取出し効率の向上を図るために、共振器構造を有することが好ましい。具体的には、第1電極と有機層との界面によって構成された第1界面(あるいは、第1電極の下方に設けられた光反射層とその上に位置する層間絶縁層の部分との界面によって構成された第1界面)と、第2電極と有機層との界面によって構成された第2界面との間で、発光層で発光した光を共振させて、その一部を第2電極から出射させる。そして、発光層の最大発光位置から第1界面までの光学距離をOL1、発光層の最大発光位置から第2界面までの光学距離をOL2とし、m1及びm2を整数としたとき、以下の式(1-1)及び式(1-2)を満たす構成とすることができる。 The organic EL display device preferably has a resonator structure in order to further improve the light extraction efficiency. Specifically, the interface between the first interface formed by the interface between the first electrode and the organic layer (or the interface between the light reflecting layer provided below the first electrode and the interlayer insulating layer located above the light reflecting layer). The light emitted from the light emitting layer is resonated between the first interface formed by the above and the second interface formed by the interface between the second electrode and the organic layer, and a part of the light emitted from the light emitting layer is resonated from the second electrode. Make it emit. Then, when the optical distance from the maximum light emitting position of the light emitting layer to the first interface is OL 1 , the optical distance from the maximum light emitting position of the light emitting layer to the second interface is OL 2, and m 1 and m 2 are integers. The configuration can satisfy the following equations (1-1) and (1-2).
0.7{-Φ1/(2π)+m1}≦2×OL1/λ≦1.2{-Φ1/(2π)+m1}       (1-1)
0.7{-Φ2/(2π)+m2}≦2×OL2/λ≦1.2{-Φ2/(2π)+m2}       (1-2)
ここで、
λ :発光層で発生した光のスペクトルの最大ピーク波長(あるいは又、発光層で発生した光の内の所望の波長)
Φ1:第1界面で反射される光の位相シフト量(単位:ラジアン)。但し、-2π<Φ1≦0
Φ2:第2界面で反射される光の位相シフト量(単位:ラジアン)。但し、-2π<Φ2≦0
である。
0.7 {-Φ 1 / (2π) + m 1} ≦ 2 × OL 1 /λ≦1.2{-Φ 1 / (2π) + m 1} (1-1)
0.7 {-Φ 2 / (2π) + m 2} ≦ 2 × OL 2 /λ≦1.2{-Φ 2 / (2π) + m 2} (1-2)
here,
λ: Maximum peak wavelength of the spectrum of light generated in the light emitting layer (or desired wavelength in the light generated in the light emitting layer)
Φ 1 : Phase shift amount of light reflected at the first interface (unit: radians). However, -2π <Φ 1 ≤ 0
Φ 2 : Phase shift amount of light reflected at the second interface (unit: radians). However, -2π <Φ 2 ≤ 0
Is.
 ここで、m1の値は0以上の値であり、m2の値は、m1の値と独立して、0以上の値であるが、(m1,m2)=(0,0)である形態、(m1,m2)=(0,1)である形態、(m1,m2)=(1,0)である形態、(m1,m2)=(1,1)である形態を例示することができる。 Here, the value of m 1 is larger than or equal to zero, the value of m 2 is independently a value of m 1, is a value of 0 or more, (m 1, m 2) = (0,0 ), (M 1 , m 2 ) = (0, 1), (m 1 , m 2 ) = (1, 0), (m 1 , m 2 ) = (1, The form of 1) can be exemplified.
 発光層の最大発光位置から第1界面までの距離L1とは、発光層の最大発光位置から第1界面までの実際の距離(物理的距離)を指し、発光層の最大発光位置から第2界面までの距離L2とは、発光層の最大発光位置から第2界面までの実際の距離(物理的距離)を指す。また、光学距離とは、光路長とも呼ばれ、一般に、屈折率nの媒質中を距離Lだけ光線が通過したときのn×Lを指す。以下においても、同様である。従って、平均屈折率をnaveとしたとき、
OL1=L1×nave
OL2=L2×nave
の関係がある。ここで、平均屈折率naveとは、有機層(あるいは、有機層及び層間絶縁層)を構成する各層の屈折率と厚さの積を合計し、有機層(あるいは、有機層及び層間絶縁層)の厚さで除したものである。
The distance L 1 from the maximum light emitting position of the light emitting layer to the first interface refers to the actual distance (physical distance) from the maximum light emitting position of the light emitting layer to the first interface, and is the second from the maximum light emitting position of the light emitting layer. The distance L 2 to the interface refers to the actual distance (physical distance) from the maximum light emitting position of the light emitting layer to the second interface. The optical distance is also called an optical path length, and generally refers to n × L when a light ray passes through a medium having a refractive index n by a distance L. The same applies to the following. Therefore, when the average refractive index is n ave ,
OL 1 = L 1 x n ave
OL 2 = L 2 x n ave
There is a relationship. Here, the average refractive index nave is the sum of the products of the refractive index and the thickness of each layer constituting the organic layer (or the organic layer and the interlayer insulating layer), and the organic layer (or the organic layer and the interlayer insulating layer). ) Is divided by the thickness.
 発光層で発生した光の内の所望の波長λ(具体的には、例えば、赤色の波長、緑色の波長、青色の波長)を決定し、式(1-1)及び式(1-2)に基づき発光素子におけるOL1,OL2等の各種パラメータを求めて、発光素子を設計すればよい。 The desired wavelength λ (specifically, for example, the red wavelength, the green wavelength, and the blue wavelength) of the light generated in the light emitting layer is determined, and the equations (1-1) and (1-2) are determined. The light emitting element may be designed by obtaining various parameters such as OL 1 and OL 2 in the light emitting element based on the above.
 第1電極又は光反射層及び第2電極は入射した光の一部を吸収し、残りを反射する。従って、反射される光に位相シフトが生じる。この位相シフト量Φ1,Φ2は、第1電極又は光反射層及び第2電極を構成する材料の複素屈折率の実数部分と虚数部分の値を、例えばエリプソメータを用いて測定し、これらの値に基づく計算を行うことで求めることができる(例えば、"Principles of Optic", Max Born and Emil Wolf, 1974 (PERGAMON PRESS) 参照)。有機層や層間絶縁層等の屈折率も、あるいは又、第1電極が入射した光の一部を吸収し、残りを反射する場合、第1電極の屈折率も、エリプソメータを用いて測定することで求めることができる。 The first electrode or the light reflecting layer and the second electrode absorb a part of the incident light and reflect the rest. Therefore, a phase shift occurs in the reflected light. For the phase shift amounts Φ 1 and Φ 2 , the values of the real and imaginary parts of the complex refractive index of the material constituting the first electrode or the light reflecting layer and the second electrode are measured by using, for example, an ellipsometer, and these are measured. It can be calculated by performing calculations based on values (see, for example, "Principles of Optic", Max Born and Emil Wolf, 1974 (PERGAMON PRESS)). The refractive index of the organic layer, interlayer insulating layer, etc., or when the first electrode absorbs a part of the incident light and reflects the rest, the refractive index of the first electrode should also be measured using an ellipsometer. Can be found at.
 光反射層を構成する材料として、アルミニウム、アルミニウム合金(例えば、Al-NdやAl-Cu)、Al/Ti積層構造、Al-Cu/Ti積層構造、クロム(Cr)、銀(Ag)、銀合金(例えば、Ag-Cu、Ag-Pd-Cu、Ag-Sm-Cu)を挙げることができる。そして、例えば、電子ビーム蒸着法や熱フィラメント蒸着法、真空蒸着法を含む蒸着法、スパッタリング法、CVD法やイオンプレーティング法;メッキ法(電気メッキ法や無電解メッキ法);リフトオフ法;レーザアブレーション法;ゾル・ゲル法等によって形成することができる。光反射層を構成する材料に依っては、成膜される光反射層の結晶状態の制御のために、例えば、TiNから成る下地層を形成しておくことが好ましい。 As a material constituting the light reflecting layer, aluminum, aluminum alloy (for example, Al—Nd or Al—Cu), Al / Ti laminated structure, Al—Cu / Ti laminated structure, chromium (Cr), silver (Ag), silver. Examples thereof include alloys (for example, Ag-Cu, Ag-Pd-Cu, Ag-Sm-Cu). Then, for example, an electron beam vapor deposition method, a hot filament vapor deposition method, a vapor deposition method including a vacuum vapor deposition method, a sputtering method, a CVD method or an ion plating method; a plating method (electroplating method or electroless plating method); a lift-off method; a laser. Ablation method; It can be formed by a sol-gel method or the like. Depending on the material constituting the light-reflecting layer, it is preferable to form a base layer made of, for example, TiN in order to control the crystal state of the light-reflecting layer to be formed.
 このように、共振器構造を有する有機EL表示装置にあっては、実際には、白色を発光する有機層と赤色カラーフィルタ層(あるいは赤色カラーフィルタ層として機能する平坦化層)とを組み合わせることで構成された赤色発光素子は、発光層で発光した赤色光を共振させて、赤味がかった光(赤色の領域に光スペクトルのピークを有する光)を第2電極から出射する。また、白色を発光する有機層と緑色カラーフィルタ層(あるいは緑色カラーフィルタ層として機能する平坦化層)とを組み合わせることで構成された緑色発光素子は、発光層で発光した緑色光を共振させて、緑味がかった光(緑色の領域に光スペクトルのピークを有する光)を第2電極から出射する。更には、白色を発光する有機層と青色カラーフィルタ層(あるいは青色カラーフィルタ層として機能する平坦化層)とを組み合わせることで構成された青色発光素子は、発光層で発光した青色光を共振させて、青味がかった光(青色の領域に光スペクトルのピークを有する光)を第2電極から出射する。即ち、発光層で発生した光の内の所望の波長λ(具体的には、赤色の波長、緑色の波長、青色の波長)を決定し、式(1-1)及び式(1-2)に基づき、赤色発光素子、緑色発光素子、青色発光素子のそれぞれにおけるOL1,OL2等の各種パラメータを求めて、各発光素子を設計すればよい。例えば、特開2012-216495の段落番号[0041]には、有機層を共振部とした共振器構造を有する有機EL素子が開示されており、発光点から反射面までの距離を適切に調整することが可能となるため、有機層の膜厚は、80nm以上500nm以下であることが好ましく、150nm以上350nm以下であることがより好ましいと記載されている。 As described above, in an organic EL display device having a resonator structure, an organic layer that emits white light and a red color filter layer (or a flattening layer that functions as a red color filter layer) are actually combined. The red light emitting element composed of the above resonates the red light emitted in the light emitting layer, and emits reddish light (light having a peak in the optical spectrum in the red region) from the second electrode. Further, the green light emitting element formed by combining an organic layer that emits white light and a green color filter layer (or a flattening layer that functions as a green color filter layer) resonates the green light emitted by the light emitting layer. , Greenish light (light having a peak in the optical spectrum in the green region) is emitted from the second electrode. Furthermore, the blue light emitting element configured by combining an organic layer that emits white light and a blue color filter layer (or a flattening layer that functions as a blue color filter layer) resonates the blue light emitted by the light emitting layer. Then, bluish light (light having a peak in the optical spectrum in the blue region) is emitted from the second electrode. That is, the desired wavelength λ (specifically, the red wavelength, the green wavelength, and the blue wavelength) of the light generated in the light emitting layer is determined, and the equations (1-1) and (1-2) are determined. Based on the above, each light emitting element may be designed by obtaining various parameters such as OL 1 and OL 2 in each of the red light emitting element, the green light emitting element, and the blue light emitting element. For example, paragraph number [0041] of Japanese Patent Application Laid-Open No. 2012-216495 discloses an organic EL element having a resonator structure having an organic layer as a resonance portion, and appropriately adjusts the distance from the light emitting point to the reflecting surface. It is described that the thickness of the organic layer is preferably 80 nm or more and 500 nm or less, and more preferably 150 nm or more and 350 nm or less.
 有機EL表示装置にあっては、正孔輸送層(正孔供給層)の厚さと電子輸送層(電子供給層)の厚さは、概ね等しいことが望ましい。あるいは又、正孔輸送層(正孔供給層)よりも電子輸送層(電子供給層)を厚くしてもよく、これによって、低い駆動電圧で高効率化に必要、且つ、発光層への十分な電子供給が可能となる。即ち、アノード電極に相当する第1電極と発光層との間に正孔輸送層を配置し、しかも、電子輸送層よりも薄い膜厚で形成することで、正孔の供給を増大させることが可能となる。そして、これにより、正孔と電子の過不足がなく、且つ、キャリア供給量も十分多いキャリアバランスを得ることができるため、高い発光効率を得ることができる。また、正孔と電子の過不足がないことで、キャリアバランスが崩れ難く、駆動劣化が抑制され、発光寿命を長くすることができる。 In an organic EL display device, it is desirable that the thickness of the hole transport layer (hole supply layer) and the thickness of the electron transport layer (electron supply layer) are approximately equal. Alternatively, the electron transport layer (electron supply layer) may be thicker than the hole transport layer (hole supply layer), which is necessary for high efficiency at a low drive voltage and sufficient for the light emitting layer. Electronic supply is possible. That is, the hole supply can be increased by arranging the hole transport layer between the first electrode corresponding to the anode electrode and the light emitting layer and forming the hole transport layer with a film thickness thinner than that of the electron transport layer. It will be possible. As a result, it is possible to obtain a carrier balance in which there is no excess or deficiency of holes and electrons and the amount of carrier supply is sufficiently large, so that high luminous efficiency can be obtained. Further, since there is no excess or deficiency of holes and electrons, the carrier balance is not easily lost, drive deterioration is suppressed, and the light emission life can be extended.
 実施例1は、本開示の本開示の表示装置に関する。実施例1の表示装置を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図を図1に示し、発光素子(但し、基準点から離れて位置する)の模式的な一部断面図を図2に示す。また、実施例1の表示装置が有する表示パネルに備えられた発光素子と基準点との位置関係を図3Aに模式的に示し、実施例1の表示装置における発光部、光出射方向制御部材及び第3領域の配置関係を模式的に図8A及び図8B並びに図9に示す。尚、図8Aは、図1に模式的な一部断面図を示す表示装置の部分における発光部及び光出射方向制御部材の配置関係を模式的に示した図であり、図8Bは、図2に模式的な一部断面図を示す表示装置の部分における発光部及び光出射方向制御部材の配置関係を模式的に示した図であり、図9は、複数の発光部等の配置関係を模式的に示した図である。実施例1の表示装置は、具体的には、有機EL表示装置から構成されており、実施例1の発光素子は、具体的には、有機EL素子から構成されている。また、実施例1の表示装置は、第2基板から光を出射するトップエミッション方式(上面発光方式)の表示装置(上面発光型表示装置)である。 Example 1 relates to the display device of the present disclosure of the present disclosure. A schematic partial cross-sectional view of a light emitting element (provided that it is located within a reference point) constituting the display device of the first embodiment is shown in FIG. 1, and a schematic diagram of a light emitting element (provided that it is located away from the reference point) is shown in FIG. A partial cross-sectional view is shown in FIG. Further, FIG. 3A schematically shows the positional relationship between the light emitting element provided in the display panel of the display device of the first embodiment and the reference point, and the light emitting unit, the light emission direction control member, and the light emitting direction control member in the display device of the first embodiment are shown. The arrangement relationship of the third region is schematically shown in FIGS. 8A, 8B, and 9. 8A is a diagram schematically showing the arrangement relationship of the light emitting portion and the light emission direction control member in the part of the display device showing a schematic partial cross-sectional view in FIG. 1, and FIG. 8B is a diagram schematically showing the arrangement relationship of the light emitting portion and the light emitting direction control member. FIG. 9 is a diagram schematically showing the arrangement relationship of the light emitting portion and the light emission direction control member in the part of the display device showing a schematic partial cross-sectional view, and FIG. 9 is a diagram schematically showing the arrangement relationship of a plurality of light emitting parts and the like. It is a figure shown as a target. The display device of the first embodiment is specifically composed of an organic EL display device, and the light emitting element of the first embodiment is specifically composed of an organic EL element. Further, the display device of the first embodiment is a top emission type (top light emitting type) display device (top light emitting type display device) that emits light from the second substrate.
 実施例1あるいは後述する実施例2~実施例5の表示装置は、
 発光部30、及び、
 発光部30から出射された光が通過する光出射方向制御部材50、
を含む発光素子10を、複数、備えた表示パネルを有する表示装置であって、
 各発光素子10において、
 光出射方向制御部材50は、第1領域51、及び、第1領域51を取り囲む第2領域52から構成されており、
 第1領域51を構成する材料の屈折率の値n1は、第2領域52を構成する材料の屈折率の値n2と異なる。
The display devices of the first embodiment or the second to fifth embodiments described later are
Light emitting unit 30 and
Light emission direction control member 50 through which the light emitted from the light emitting unit 30 passes.
A display device having a display panel provided with a plurality of light emitting elements 10 including the above.
In each light emitting element 10,
The light emission direction control member 50 is composed of a first region 51 and a second region 52 surrounding the first region 51.
The refractive index value n 1 of the material constituting the first region 51 is different from the refractive index value n 2 of the material constituting the second region 52.
 また、実施例1あるいは後述する実施例2~実施例5の発光素子10は、
 発光部30、及び、
 発光部30から出射された光が通過する光出射方向制御部材50、
を含み、
 光出射方向制御部材50は、第1領域51、及び、第1領域51を取り囲む第2領域52から構成されており、
 第1領域51を構成する材料の屈折率の値n1は、第2領域52を構成する材料の屈折率の値n2と異なる。
Further, the light emitting element 10 of Example 1 or Examples 2 to 5 described later is
Light emitting unit 30 and
Light emission direction control member 50 through which the light emitted from the light emitting unit 30 passes.
Including
The light emission direction control member 50 is composed of a first region 51 and a second region 52 surrounding the first region 51.
The refractive index value n 1 of the material constituting the first region 51 is different from the refractive index value n 2 of the material constituting the second region 52.
 そして、発光素子10において、光出射方向制御部材50は平板状であり、光出射方向制御部材50の外縁部54に接して、外縁部54より外側に位置する領域(第3領域53)は、第2領域52を構成する材料の屈折率の値n2よりも小さい屈折率の値n3を有する材料で占められている。また、n1<n2を満足する。 Then, in the light emitting element 10, the light emission direction control member 50 has a flat plate shape, and the region (third region 53) located outside the outer edge portion 54 in contact with the outer edge portion 54 of the light emission direction control member 50 is It is occupied by a material having a refractive index value n 3 smaller than the refractive index value n 2 of the material constituting the second region 52. Also, n 1 <n 2 is satisfied.
 更には、実施例1の発光素子10は第1構成の発光素子であり、発光素子10の表示パネルにおける位置に依存して、発光部30の中心から出射され、光出射方向制御部材50を通過した光の光出射方向制御部材50からの出射方向が異なる。そして、この場合、発光部30の中心を通る法線LNと光出射方向制御部材50の第1領域51の重心を通る法線LN’との間の距離をD0としたとき、図2に示すように、表示パネルに備えられた発光素子10の少なくとも一部において、距離D0の値は0でない。 Further, the light emitting element 10 of the first embodiment is the light emitting element of the first configuration, and is emitted from the center of the light emitting unit 30 and passes through the light emitting direction control member 50 depending on the position of the light emitting element 10 on the display panel. The emission direction of the emitted light from the light emission direction control member 50 is different. In this case, when the distance between the normal LN passing through the center of the light emitting unit 30 and the normal LN'passing through the center of gravity of the first region 51 of the light emitting direction control member 50 is set to D 0 , FIG. As shown, the value of the distance D 0 is not 0 in at least a part of the light emitting element 10 provided in the display panel.
 更には、実施例1の発光素子10は、第2構成の発光素子であり、図3Aに示すように、
 基準点Pが設定されており、
 表示パネルに備えられた発光素子10の少なくとも一部において、基準点Pから発光部30の中心を通る法線LNまでの距離D1に依存して、発光部30の中心から出射され、光出射方向制御部材50を通過した光の光出射方向制御部材50からの出射方向が設定される。ここで、距離D0の値は距離D1の値に依存する。また、距離D1の値の依存して、第1領域51の位置(即ち、距離D0の値)だけでなく、形状、n1とn2の関係、大きさ、高さ及び数の内の少なくとも1項を変化させてもよい。
Further, the light emitting element 10 of the first embodiment is a light emitting element having a second configuration, and as shown in FIG. 3A,
The reference point P is set,
At least a part of the light emitting element 10 provided on the display panel is emitted from the center of the light emitting unit 30 and emitted light depending on the distance D 1 from the reference point P to the normal LN passing through the center of the light emitting unit 30. The emission direction of the light that has passed through the direction control member 50 from the light emission direction control member 50 is set. Here, the value of the distance D 0 depends on the value of the distance D 1. Further, depending on the value of the distance D 1 , not only the position of the first region 51 (that is, the value of the distance D 0 ) but also the shape, the relationship between n 1 and n 2 , the size, the height, and the number. At least one term of may be changed.
 尚、光出射方向制御部材50を通過した光を、収束光とするか、発散光とするか、平行光とするかは、表示装置に要求される仕様に基づく。そして、この仕様に基づき、光出射方向制御部材50を設計すればよい。光出射方向制御部材50を通過した光が収束光である場合、表示装置から出射された画像が形成される空間の位置は、基準点Pの法線上にある場合もあるし、無い場合もあり、表示装置に要求される仕様に依存する。表示装置から出射された画像の表示寸法や表示位置等を制御するために、表示装置から出射された画像が通過する光学系を配置してもよい。如何なる光学系を配置するかも表示装置に要求される仕様に依存するが、例えば、結像レンズ系を例示することができる。 Whether the light that has passed through the light emission direction control member 50 is convergent light, divergent light, or parallel light is based on the specifications required for the display device. Then, the light emission direction control member 50 may be designed based on this specification. When the light that has passed through the light emission direction control member 50 is convergent light, the position of the space where the image emitted from the display device is formed may or may not be on the normal line of the reference point P. , Depends on the specifications required for the display device. In order to control the display dimensions, display position, and the like of the image emitted from the display device, an optical system through which the image emitted from the display device passes may be arranged. What kind of optical system is arranged also depends on the specifications required for the display device, but for example, an imaging lens system can be exemplified.
 発光素子10と基準点Pとの位置関係を模式的に図3Aに示すように、実施例1において、基準点Pは表示パネル内に想定されている。但し、基準点Pは表示パネルの中心領域に位置していない。図3A、図3B、図18A、図18Bにおいては、表示パネルの中心領域を黒三角印で示し、発光素子10を四角印で示し、発光部30の中心を黒四角印で示す。そして、1つの基準点Pが想定されているが、基準点Pを黒丸で示す。基準点Pは或る程度の広がりを含み得るので、一部の発光素子10(具体的には、基準点Pに含まれる1又は複数の発光素子10)において距離D0の値は0であり、残りの発光素子10において距離D0の値は0でない。 As the positional relationship between the light emitting element 10 and the reference point P is schematically shown in FIG. 3A, in the first embodiment, the reference point P is assumed in the display panel. However, the reference point P is not located in the central region of the display panel. In FIGS. 3A, 3B, 18A, and 18B, the central region of the display panel is indicated by a black triangle mark, the light emitting element 10 is indicated by a square mark, and the center of the light emitting unit 30 is indicated by a black square mark. Then, one reference point P is assumed, and the reference point P is indicated by a black circle. Since the reference point P may include some extent, the value of the distance D 0 is 0 at some of the light emitting elements 10 (specifically, one or more light emitting elements 10 included in the reference point P). , The value of the distance D 0 is not 0 in the remaining light emitting elements 10.
 実施例の表示装置において、各発光素子10から出射され、光出射方向制御部材50を通過した光は、表示装置の外部の空間の或る領域に収束する(集光される)。あるいは又、各発光素子10から出射され、光出射方向制御部材50を通過した光は、表示装置の外部の空間において発散する。あるいは又、各発光素子10から出射され、光出射方向制御部材50を通過した光は、平行光である。 In the display device of the embodiment, the light emitted from each light emitting element 10 and passing through the light emission direction control member 50 converges (condenses) on a certain region of the space outside the display device. Alternatively, the light emitted from each light emitting element 10 and passing through the light emission direction control member 50 is diverged in the space outside the display device. Alternatively, the light emitted from each light emitting element 10 and passing through the light emission direction control member 50 is parallel light.
 また、実施例1において、
 基準点Pが設定されており、
 複数の発光素子10は、第1の方向(具体的には、X方向)及び第1の方向とは異なる第2の方向(具体的には、Y方向)に配列されており、
 発光部30の中心を通る法線LNと光出射方向制御部材50の第1領域51の重心を通る法線LN’との間の距離をD0、基準点Pから発光部30の中心を通る法線LNまでの距離をD1とし、
 距離D0の第1の方向(X方向)及び第2の方向(Y方向)のそれぞれの値をD0-X,D0-Yとし、距離D1の第1の方向(X方向)及び第2の方向(Y方向)のそれぞれの値をD1-X,D1-Yとしたとき、
[A]D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは線形に変化するように設計してもよいし、
[B]D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは非線形に変化するように設計してもよいし、
[C]D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは線形に変化するように設計してもよいし、
[D]D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは非線形に変化するように設計してもよい。
Further, in Example 1,
The reference point P is set,
The plurality of light emitting elements 10 are arranged in a first direction (specifically, the X direction) and a second direction (specifically, the Y direction) different from the first direction.
The distance between the normal LN passing through the center of the light emitting unit 30 and the normal LN'passing through the center of gravity of the first region 51 of the light emitting direction control member 50 is D 0 , and the distance from the reference point P passes through the center of the light emitting unit 30. Let D 1 be the distance to the normal LN
Distance first direction (X direction) of the D 0 and the second direction each value of (Y-direction) and D 0-X, D 0- Y, the first direction (X direction) of the distance D 1 and When the values in the second direction (Y direction) are D 1-X and D 1-Y ,
D 0-X with respect to changes in the [A] D 1-X is changed linearly, D 0-Y with respect to the change in D 1-Y is may be designed to vary linearly,
D 0-X is changed linearly relative to changes in the [B] D 1-X, D 0-Y with respect to the change in D 1-Y is may be designed to vary nonlinearly,
D 0-X to changes in [C] D 1-X is changed to a non-linear, D 0-Y with respect to the change in D 1-Y is may be designed to vary linearly,
[D] D 0-X with respect to the change in D 1-X is changed to a non-linear, D 0-Y with respect to the change in D 1-Y may be designed to vary nonlinearly.
 図4A、図4B、図4C、図4D、図5A、図5B、図5C、図5D、図6A、図6B、図6C、図6D、図7A、図7B、図7C及び図7Dに、D1-Xの変化に対するD0-Xの変化、D1-Yの変化に対するD0-Yの変化を模式的に示す。これらの図において、白抜きの矢印は線形の変化を示し、黒矢印は非線形の変化を示す。また、矢印が表示パネルの外側に向かっている場合、光出射方向制御部材50を通過した光が発散光であることを示し、矢印が表示パネルの内部に向かっている場合、光出射方向制御部材50を通過した光が収束光あるいは平行光であることを示す。 4A, 4B, 4C, 4D, 5A, 5B, 5C, 5D, 6A, 6B, 6C, 6D, 7A, 7B, 7C and 7D, D. The change of D 0-X with respect to the change of 1-X and the change of D 0-Y with respect to the change of D 1-Y are schematically shown. In these figures, white arrows indicate linear changes and black arrows indicate non-linear changes. Further, when the arrow points to the outside of the display panel, it indicates that the light passing through the light emission direction control member 50 is divergent light, and when the arrow points to the inside of the display panel, it indicates that the light emission direction control member 50. It indicates that the light that has passed through 50 is convergent light or parallel light.
 更には、実施例1の発光素子10において、
 基準点Pが設定されており、
 発光部30の中心を通る法線LNと光出射方向制御部材50の第1領域51の重心を通る法線LN’との間の距離をD0、基準点Pから発光部30の中心を通る法線LNまでの距離をD1としたとき、距離D1の値が増加するに従い、距離D0の値が増加するように設計してもよい。D1-X,D1-Yの変化に依存したD0-X,D0-Yの変化は、表示装置に要求される仕様に基づき決定すればよい。
Further, in the light emitting element 10 of the first embodiment,
The reference point P is set,
The distance between the normal LN passing through the center of the light emitting unit 30 and the normal LN'passing through the center of gravity of the first region 51 of the light emitting direction control member 50 is D 0 , and the distance passes from the reference point P to the center of the light emitting unit 30. when the distance to the normal line LN was D 1, as the value of the distance D 1 is increased, the value of the distance D 0 may be designed to increase. The changes in D 0-X and D 0-Y that depend on the changes in D 1-X and D 1-Y may be determined based on the specifications required for the display device.
 図8A及び図8B並びに図9に示すように、光出射方向制御部材50の正射影像には発光部30の正射影像に含まれる。発光部30及び光出射方向制御部材50の外形形状を正六角形(ハニカム状)とし、第3領域53の外縁部(隣接する第3領域53との境界)を正六角形としたが、このような形状に限定されるものではない。また、第1領域51の水平方向断面形状を円形としたが、このような形状に限定されるものでもない。ここで、発光部30の外縁部を一点鎖線で示し、光出射方向制御部材50の外縁部54を実線で示し、第1領域51を実線で示し、第3領域53の外縁部(隣接する第3領域53との境界)を点線で示す。図10A、図10B、図10C、図11A、図11B、図11C、図12A及び図12Bにおいても同様である。光出射方向制御部材50全体の形状は柱状(正六角柱状)である。また、1つの発光部30に対する平板状の光出射方向制御部材50の数は、本質的に任意であり、1以上であればよいが、実施例1にあっては1とした。更には、各光出射方向制御部材50に設けられた第1領域51の数を1としたが、2以上であってもよい。 As shown in FIGS. 8A, 8B, and 9, the normal projection image of the light emission direction control member 50 is included in the normal projection image of the light emitting unit 30. The outer shape of the light emitting portion 30 and the light emitting direction control member 50 is a regular hexagon (honeycomb shape), and the outer edge portion of the third region 53 (the boundary with the adjacent third region 53) is a regular hexagon. It is not limited to the shape. Further, although the horizontal cross-sectional shape of the first region 51 is circular, the shape is not limited to such a shape. Here, the outer edge portion of the light emitting portion 30 is indicated by a alternate long and short dash line, the outer edge portion 54 of the light emission direction control member 50 is indicated by a solid line, the first region 51 is indicated by a solid line, and the outer edge portion of the third region 53 (adjacent third region 53). The boundary with the three regions 53) is shown by a dotted line. The same applies to FIGS. 10A, 10B, 10C, 11A, 11B, 11C, 12A and 12B. The shape of the entire light emission direction control member 50 is columnar (regular hexagonal columnar). Further, the number of the flat plate-shaped light emission direction control members 50 with respect to one light emitting unit 30 is essentially arbitrary and may be 1 or more, but is set to 1 in the first embodiment. Further, although the number of the first regions 51 provided in each light emission direction control member 50 is set to 1, it may be 2 or more.
 第1領域51を構成する材料、第2領域52を構成する材料及び第3領域53を構成する材料は、例えば、アクリル系樹脂から成る。即ち、第1領域51を構成する材料、第2領域52を構成する材料及び第3領域53を構成する材料は、同じ材料(但し、屈折率は異なる)から構成されている。平板状の光出射方向制御部材50の頂面は、図示したように平坦であってもよいし、上に凸の形状を有していてもよいし、凹の形状を有していてもよい。n1,n2及びn3の値は以下のとおりである。
1=n3=1.38
2   =1.50
The material constituting the first region 51, the material constituting the second region 52, and the material constituting the third region 53 are made of, for example, an acrylic resin. That is, the material forming the first region 51, the material forming the second region 52, and the material forming the third region 53 are made of the same material (however, the refractive index is different). The top surface of the flat plate-shaped light emission direction control member 50 may be flat as shown, may have an upward convex shape, or may have a concave shape. .. The values of n 1 , n 2 and n 3 are as follows.
n 1 = n 3 = 1.38
n 2 = 1.50
 平板状の光出射方向制御部材50の外縁部54は、垂直、あるいは、概ね垂直である。具体的には、平板状の光出射方向制御部材50の外縁部54の傾斜角度として、80度乃至100度を例示することができる。 The outer edge portion 54 of the flat plate-shaped light emission direction control member 50 is vertical or substantially vertical. Specifically, 80 degrees to 100 degrees can be exemplified as the inclination angle of the outer edge portion 54 of the flat plate-shaped light emission direction control member 50.
 上述したとおり、実施例1あるいは後述する実施例2~実施例5の表示装置において、発光部30は、有機エレクトロルミネッセンス層(有機EL層)を含む。即ち、実施例1~実施例5の表示装置は有機エレクトロルミネッセンス表示装置(有機EL表示装置)から構成されており、発光素子10は有機エレクトロルミネッセンス素子(有機EL素子)から構成されている。 As described above, in the display device of Example 1 or Examples 2 to 5 described later, the light emitting unit 30 includes an organic electroluminescence layer (organic EL layer). That is, the display devices of Examples 1 to 5 are composed of an organic electroluminescence display device (organic EL display device), and the light emitting element 10 is composed of an organic electroluminescence element (organic EL element).
 具体的には、実施例1あるいは後述する実施例2~実施例5の表示装置は、
 第1基板11、及び、第2基板41、並びに、
 第1基板11と第2基板41との間に位置し、2次元状に配列された複数の発光素子10(10R,10G,10B)、
を備えており、
 発光素子10(10R,10G,10B)は発光部30を含み、
 第1基板11の上に形成された基体26上に設けられた発光部30は、
 第1電極31、
 第2電極32、及び、
 第1電極31と第2電極32とによって挟まれた有機層(有機エレクトロルミネッセンス層を含む発光層を有する)33、
を少なくとも備えており、
 実施例1にあっては、有機層33からの光が、第2基板41を介して外部に出射される。
Specifically, the display devices of Example 1 or Examples 2 to 5 described later are
The first substrate 11, the second substrate 41, and
A plurality of light emitting elements 10 (10R, 10G, 10B) located between the first substrate 11 and the second substrate 41 and arranged in a two-dimensional manner.
Is equipped with
The light emitting element 10 (10R, 10G, 10B) includes a light emitting unit 30 and includes a light emitting unit 30.
The light emitting unit 30 provided on the substrate 26 formed on the first substrate 11 is
1st electrode 31,
Second electrode 32 and
An organic layer (having a light emitting layer including an organic electroluminescence layer) 33 sandwiched between the first electrode 31 and the second electrode 32,
At least have
In the first embodiment, the light from the organic layer 33 is emitted to the outside via the second substrate 41.
 そして、光出射方向制御部材50の光入射側又は光出射側には(実施例1の表示装置にあっては、光出射方向制御部材50の光入射側に)、カラーフィルタ層CFR,CFG,CFB(以下、カラーフィルタ層CFと総称する場合がある)が設けられている。具体的には、第2電極32の上には、第2電極32を覆うようにアクリル系樹脂から成る保護層34が形成されている。保護層34の頂面又は上方には(実施例1にあっては、具体的には、保護層34の上には)、周知の方法で、周知の材料から成るカラーフィルタ層CFが形成されており、カラーフィルタ層CFの上には、光出射方向制御部材50が設けられている。カラーフィルタ層CF及び光出射方向制御部材50の上には、平坦化層35が形成されている。光出射方向制御部材50の正射影像は、カラーフィルタ層CFの正射影像に含まれる。 Then, on the light incident side or light emission side of the light emission direction control member 50 (in the display device of Example 1, the light incident side of the light emitting direction control member 50), the color filter layer CF R, CF G and CF B (hereinafter, may be collectively referred to as color filter layer CF) are provided. Specifically, a protective layer 34 made of an acrylic resin is formed on the second electrode 32 so as to cover the second electrode 32. On the top surface or above the protective layer 34 (specifically, on the protective layer 34 in Example 1), a color filter layer CF made of a well-known material is formed by a well-known method. A light emission direction control member 50 is provided on the color filter layer CF. A flattening layer 35 is formed on the color filter layer CF and the light emission direction control member 50. The normal projection image of the light emission direction control member 50 is included in the normal projection image of the color filter layer CF.
 カラーフィルタ層CF(CFR,CFG,CFB)及び光出射方向制御部材50の上に形成された平坦化層35は、封止樹脂層36を介して第2基板41に貼り合わされている。封止樹脂層36を構成する材料として、アクリル系接着剤、エポキシ系接着剤、ウレタン系接着剤、シリコーン系接着剤、シアノアクリレート系接着剤といった熱硬化型接着剤や、紫外線硬化型接着剤を挙げることができる。カラーフィルタ層CFは、第1基板側に形成されたOCCF(オンチップカラーフィルタ層)である。そして、これによって、有機層33とカラーフィルタ層CFとの間の距離を短くすることができ、有機層33から出射した光が隣接する他色のカラーフィルタ層CFに入射して混色が生じることを抑制することができるし、光出射方向制御部材50の幅広いレンズ設計が可能となる。 The color filter layer CF (CF R, CF G, CF B) and the planarizing layer 35 formed on the light emitting direction control member 50 is bonded to the second substrate 41 through the sealing resin layer 36 .. Thermosetting adhesives such as acrylic adhesives, epoxy adhesives, urethane adhesives, silicone adhesives, and cyanoacrylate adhesives, and ultraviolet curable adhesives are used as materials constituting the sealing resin layer 36. Can be mentioned. The color filter layer CF is an OCCF (on-chip color filter layer) formed on the first substrate side. As a result, the distance between the organic layer 33 and the color filter layer CF can be shortened, and the light emitted from the organic layer 33 is incident on the adjacent color filter layer CF of another color to cause color mixing. It is possible to design a wide range of lenses for the light emission direction control member 50.
 有機EL素子から構成された実施例1~実施例5の発光素子10において、有機層33は、赤色発光層、緑色発光層及び青色発光層の積層構造を有する。1つの画素は、赤色発光素子10R、緑色発光素子10G及び青色発光素子10Bの3つの発光素子から構成されている。発光素子10を構成する有機層33は白色光を発光し、各発光素子10R,10G,10Bは、白色光を発光する有機層33とカラーフィルタ層CFR,CFG,CFBとの組合せから構成されている。赤色を表示すべき赤色発光素子10Rには赤色カラーフィルタ層CFRが備えられており、緑色を表示すべき緑色発光素子10Gには緑色カラーフィルタ層CFGが備えられており、青色を表示すべき青色発光素子10Bには青色カラーフィルタ層CFBが備えられている。赤色発光素子10R、緑色発光素子10G及び青色発光素子10Bは、光出射方向制御部材50のパラメータ、カラーフィルタ層、発光層の位置を除き、実質的に同じ構成、構造を有する。画素数は、例えば1920×1080であり、1つの発光素子(表示素子)は1つの副画素を構成し、発光素子(具体的には有機EL素子)は画素数の3倍である。実施例1の表示装置にあっては、副画素の配列として、図29Aに示すデルタ配列を挙げることができる。但し、図29B、図29C、図29Dに示すようなストライプ配列等とすることもできる。場合によっては、赤色発光素子10R、緑色発光素子10G、青色発光素子10B及び白色を出射する発光素子(あるいは補色光を出射する発光素子)によって1画素を構成してもよい。 In the light emitting element 10 of Examples 1 to 5 composed of an organic EL element, the organic layer 33 has a laminated structure of a red light emitting layer, a green light emitting layer, and a blue light emitting layer. One pixel is composed of three light emitting elements, a red light emitting element 10R, a green light emitting element 10G, and a blue light emitting element 10B. The organic layer 33 constituting the light emitting element 10 emits white light, the light-emitting elements 10R, 10G, 10B, the organic layer 33 and the color filter layer for emitting white light CF R, CF G, a combination of a CF B It is configured. The red light emitting element 10R should display red is provided with a red color filter layer CF R, the green light emitting element 10G to be displayed green is provided with a green color filter layer CF G, to display blue The power blue light emitting element 10B is provided with a blue color filter layer CF B. The red light emitting element 10R, the green light emitting element 10G, and the blue light emitting element 10B have substantially the same configuration and structure except for the parameters of the light emission direction control member 50, the color filter layer, and the position of the light emitting layer. The number of pixels is, for example, 1920 × 1080, one light emitting element (display element) constitutes one sub-pixel, and the light emitting element (specifically, an organic EL element) is three times the number of pixels. In the display device of the first embodiment, as the arrangement of the sub-pixels, the delta arrangement shown in FIG. 29A can be mentioned. However, the stripe arrangement as shown in FIGS. 29B, 29C, and 29D may be used. In some cases, one pixel may be composed of a red light emitting element 10R, a green light emitting element 10G, a blue light emitting element 10B, and a light emitting element that emits white light (or a light emitting element that emits complementary color light).
 図30A及び図30B、並びに、図30C及び図30Dに、第1電極31R,31G,31Bとカラーフィルタ層CFR,CFG,CFBの配置関係を模式的に示す。尚、図30B及び図30Dにおいては、カラーフィルタ層CFR,CFG,CFBを点線で示す。特に、電子ビューファインダのような目を振る(即ち、視野角色付きが気になる)用途においては、赤色発光素子10R、緑色発光素子10G、青色発光素子10Bにおけるカラーフィルタ層CFR,CFG,CFBの大きさ、及び、第1電極31R,31G,31Bの大きさを調整することで、具体的には、図30A及び図30Bに示すように、
(赤色発光素子の第1電極の幅)=(緑色発光素子の第1電極の幅)>(青色発光素子の第1電極の幅)
とすることで、白色光を発光する有機層33を備えた発光素子から構成された赤色発光素子、緑色発光素子、青色発光素子の視野角をパラメータとした色強度が同程度となり、視野角に起因した色付き(視野角色付き)の発生を回避することができる。また、図30C及び図30Dに示すように、2つの青色発光素子を対角に配置し、赤色発光素子及び緑色発光素子を対角に配置する場合、赤色発光素子を構成する第1電極31Rと緑色発光素子を構成する第1電極31Gの対向部分を切り欠くことが好ましく、更には、方位角の視野角対称性を保つため、赤色発光素子の第1電極31Rの切り欠かれた部分と対向する第1電極31Rの部分を切り欠き、緑色発光素子の第1電極31Gの切り欠かれた部分と対向する第1電極31Gの部分を切り欠くことが一層好ましい。
FIGS. 30A and 30B, as well as in FIGS. 30C and FIG. 30D, shows the first electrode 31R, 31G, 31B and the color filter layer CF R, CF G, the arrangement of CF B schematically. Incidentally, in FIG. 30B and FIG. 30D shows the color filter layer CF R, CF G, a CF B by dotted lines. In particular, shake the eye such as an electronic viewfinder (i.e., viewing angle coloring anxious) In applications, the red light emitting device 10R, green light emitting element 10G, the color filters of blue light emitting element 10B layer CF R, CF G, By adjusting the size of the CF B and the sizes of the first electrodes 31R, 31G, 31B, specifically, as shown in FIGS. 30A and 30B,
(Width of the first electrode of the red light emitting element) = (Width of the first electrode of the green light emitting element)> (Width of the first electrode of the blue light emitting element)
By doing so, the color intensities of the red light emitting element, the green light emitting element, and the blue light emitting element, which are composed of the light emitting element including the organic layer 33 that emits white light, with the viewing angles as parameters become the same, and the viewing angle becomes equal. It is possible to avoid the occurrence of coloring (viewing angle coloring) caused by the occurrence. Further, as shown in FIGS. 30C and 30D, when the two blue light emitting elements are arranged diagonally and the red light emitting element and the green light emitting element are arranged diagonally, the first electrode 31R constituting the red light emitting element is used. It is preferable to cut out the facing portion of the first electrode 31G constituting the green light emitting element, and further, in order to maintain the viewing angle symmetry of the azimuth angle, the facing portion of the first electrode 31R of the red light emitting element is opposed to the cutout portion. It is more preferable to cut out the portion of the first electrode 31R to be formed and cut out the portion of the first electrode 31G facing the notched portion of the first electrode 31G of the green light emitting element.
 CVD法に基づき形成されたSiO2から成る基体(層間絶縁層)26の下方には、発光素子駆動部が設けられている。発光素子駆動部は周知の回路構成とすることができる。発光素子駆動部は、第1基板11に相当するシリコン半導体基板に形成されたトランジスタ(具体的には、MOSFET)から構成されている。MOSFETから構成されたトランジスタ20は、第1基板11上に形成されたゲート絶縁層22、ゲート絶縁層22上に形成されたゲート電極21、第1基板11に形成されたソース/ドレイン領域24、ソース/ドレイン領域24の間に形成されたチャネル形成領域23、並びに、チャネル形成領域23及びソース/ドレイン領域24を取り囲む素子分離領域25から構成されている。トランジスタ20と第1電極31とは、基体26に設けられたコンタクトプラグ27を介して電気的に接続されている。尚、図面においては、1つの発光素子駆動部につき、1つのトランジスタ20を図示した。 A light emitting element driving unit is provided below the substrate (interlayer insulating layer) 26 made of SiO 2 formed by the CVD method. The light emitting element drive unit may have a well-known circuit configuration. The light emitting element driving unit is composed of a transistor (specifically, a MOSFET) formed on a silicon semiconductor substrate corresponding to the first substrate 11. The transistor 20 composed of the MOSFET includes a gate insulating layer 22 formed on the first substrate 11, a gate electrode 21 formed on the gate insulating layer 22, and a source / drain region 24 formed on the first substrate 11. It is composed of a channel forming region 23 formed between the source / drain region 24, and an element separation region 25 surrounding the channel forming region 23 and the source / drain region 24. The transistor 20 and the first electrode 31 are electrically connected to each other via a contact plug 27 provided on the substrate 26. In the drawings, one transistor 20 is shown for each light emitting element drive unit.
 第2電極32は、表示パネルの外周部において、基体(層間絶縁層)26に形成された図示しないコンタクトホール(コンタクトプラグ)を介して発光素子駆動部と接続されている。表示パネルの外周部において、第2電極32の下方に第2電極32に接続された補助電極を設け、補助電極を発光素子駆動部と接続してもよい。 The second electrode 32 is connected to the light emitting element driving unit via a contact hole (contact plug) (not shown) formed in the substrate (interlayer insulating layer) 26 on the outer peripheral portion of the display panel. An auxiliary electrode connected to the second electrode 32 may be provided below the second electrode 32 on the outer peripheral portion of the display panel, and the auxiliary electrode may be connected to the light emitting element driving unit.
 第1電極31はアノード電極として機能し、第2電極32はカソード電極として機能する。第1電極31は、光反射材料層、具体的には、例えば、Al-Nd合金層、Al-Cu合金層、Al-Ti合金層とITO層の積層構造から成り、第2電極32は、ITO等の透明導電材料から成る。第1電極31は、真空蒸着法とエッチング法との組合せに基づき、基体(層間絶縁層)26の上に形成されている。また、第2電極32は、特に真空蒸着法のような成膜粒子のエネルギーが小さい成膜方法によって成膜されており、パターニングされていない。有機層33もパターニングされていない。但し、これに限定するものではなく、有機層33をパターニングしてもよい。即ち、有機層33を副画素毎に塗り分け、赤色発光素子の有機層33を赤色を発光する有機層から構成し、緑色発光素子の有機層33を緑色を発光する有機層から構成し、青色発光素子の有機層33を青色を発光する有機層から構成してもよい。 The first electrode 31 functions as an anode electrode, and the second electrode 32 functions as a cathode electrode. The first electrode 31 is composed of a light reflecting material layer, specifically, for example, an Al—Nd alloy layer, an Al—Cu alloy layer, an Al—Ti alloy layer and an ITO layer, and the second electrode 32 is composed of a laminated structure. It is made of a transparent conductive material such as ITO. The first electrode 31 is formed on the substrate (interlayer insulating layer) 26 based on the combination of the vacuum vapor deposition method and the etching method. Further, the second electrode 32 is formed by a film forming method such as a vacuum vapor deposition method in which the energy of the formed particles is small, and is not patterned. The organic layer 33 is also not patterned. However, the present invention is not limited to this, and the organic layer 33 may be patterned. That is, the organic layer 33 is painted separately for each sub-pixel, the organic layer 33 of the red light emitting element is composed of an organic layer that emits red light, the organic layer 33 of the green light emitting element is composed of an organic layer that emits green light, and is blue. The organic layer 33 of the light emitting element may be composed of an organic layer that emits blue light.
 実施例1において、有機層33は、正孔注入層(HIL:Hole Injection Layer)、正孔輸送層(HTL:Hole Transport Layer)、発光層、電子輸送層(ETL:Electron Transport Layer)、及び、電子注入層(EIL:Electron InjectionLayer)の積層構造を有する。発光層は、異なる色を発光する少なくとも2層の発光層から構成されており、前述したとおり、有機層33から出射される光は白色である。具体的には、有機層は、上述したとおり、赤色を発光する赤色発光層、緑色を発光する緑色発光層、及び、青色を発光する青色発光層の3層が積層された構造を有する。有機層を、青色を発光する青色発光層、及び、黄色を発光する黄色発光層の2層が積層された構造とすることもできるし、青色を発光する青色発光層、及び、橙色を発光する橙色発光層の2層が積層された構造とすることができる。 In Example 1, the organic layer 33 includes a hole injection layer (HIL: Hole Injection Layer), a hole transport layer (HTL: Hole Transport Layer), a light emitting layer, an electron transport layer (ETL: Electron Transport Layer), and It has a laminated structure of electron injection layers (EIL). The light emitting layer is composed of at least two light emitting layers that emit light of different colors, and as described above, the light emitted from the organic layer 33 is white. Specifically, as described above, the organic layer has a structure in which three layers of a red light emitting layer that emits red light, a green light emitting layer that emits green light, and a blue light emitting layer that emits blue light are laminated. The organic layer may have a structure in which two layers, a blue light emitting layer that emits blue light and a yellow light emitting layer that emits yellow light, are laminated, or a blue light emitting layer that emits blue light and an orange light emitting layer. The structure may be such that two layers of orange light emitting layers are laminated.
 正孔注入層は、正孔注入効率を高める層であると共に、リークを防止するバッファ層として機能し、厚さは、例えば2nm乃至10nm程度である。正孔注入層は、例えば、以下の式(A)又は式(B)で表されるヘキサアザトリフェニレン誘導体から成る。尚、正孔注入層の端面が第2電極と接した状態になると、画素間の輝度バラツキ発生の主たる原因となり、表示画質の低下につながる。 The hole injection layer is a layer that enhances the hole injection efficiency and also functions as a buffer layer that prevents leaks, and has a thickness of, for example, about 2 nm to 10 nm. The hole injection layer is composed of, for example, a hexaazatriphenylene derivative represented by the following formula (A) or formula (B). When the end face of the hole injection layer is in contact with the second electrode, it becomes a main cause of brightness variation between pixels and leads to deterioration of display image quality.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 ここで、R1~R6は、それぞれ、独立に、水素、ハロゲン、ヒドロキシ基、アミノ基、アルールアミノ基、炭素数20以下の置換あるいは無置換のカルボニル基、炭素数20以下の置換あるいは無置換のカルボニルエステル基、炭素数20以下の置換あるいは無置換のアルキル基、炭素数20以下の置換あるいは無置換のアルケニル基、炭素数20以下の置換あるいは無置換のアルコキシ基、炭素数30以下の置換あるいは無置換のアリール基、炭素数30以下の置換あるいは無置換の複素環基、ニトリル基、シアノ基、ニトロ基、又は、シリル基から選ばれる置換基であり、隣接するRm(m=1~6)は環状構造を介して互いに結合してもよい。また、X1~X6は、それぞれ、独立に、炭素又は窒素原子である。 Here, R 1 to R 6 are independently hydrogen, halogen, hydroxy group, amino group, allulamino group, substituted or unsubstituted carbonyl group having 20 or less carbon atoms, and substituted or non-substituted group having 20 or less carbon atoms, respectively. Substituent carbonyl ester group, substituted or unsubstituted alkyl group having 20 or less carbon atoms, substituted or unsubstituted alkenyl group having 20 or less carbon atoms, substituted or unsubstituted alkoxy group having 20 or less carbon atoms, 30 or less carbon atoms A substituent selected from a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group having 30 or less carbon atoms, a nitrile group, a cyano group, a nitro group, or a silyl group, and adjacent R m (m = m = 1 to 6) may be bonded to each other via a cyclic structure. Further, X 1 to X 6 are independently carbon or nitrogen atoms, respectively.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 正孔輸送層は発光層への正孔輸送効率を高める層である。発光層では、電界が加わると電子と正孔との再結合が起こり、光を発生する。電子輸送層は発光層への電子輸送効率を高める層であり、電子注入層は発光層への電子注入効率を高める層である。 The hole transport layer is a layer that enhances the hole transport efficiency to the light emitting layer. In the light emitting layer, when an electric field is applied, recombination of electrons and holes occurs to generate light. The electron transport layer is a layer that enhances the electron transport efficiency to the light emitting layer, and the electron injection layer is a layer that enhances the electron injection efficiency into the light emitting layer.
 正孔輸送層は、例えば、厚さが40nm程度の4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン(m-MTDATA)又はα-ナフチルフェニルジアミン(αNPD)から成る。 The hole transport layer is composed of, for example, 4,4', 4 "-tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA) or α-naphthylphenyldiamine (αNPD) having a thickness of about 40 nm. ..
 発光層は、混色により白色光を生じる発光層であり、例えば、上述したとおり、赤色発光層、緑色発光層及び青色発光層が積層されて成る。 The light emitting layer is a light emitting layer that produces white light by mixing colors. For example, as described above, a red light emitting layer, a green light emitting layer, and a blue light emitting layer are laminated.
 赤色発光層では、電界が加わることにより、第1電極31から注入された正孔の一部と、第2電極32から注入された電子の一部とが再結合して、赤色の光が発生する。このような赤色発光層は、例えば、赤色発光材料、正孔輸送性材料、電子輸送性材料及び両電荷輸送性材料の内、少なくとも1種の材料を含んでいる。赤色発光材料は、蛍光性の材料であってもよいし、燐光性の材料であってもよい。厚さが5nm程度の赤色発光層は、例えば、4,4-ビス(2,2-ジフェニルビニル)ビフェニル(DPVBi)に、2,6-ビス[(4’-メトキシジフェニルアミノ)スチリル]-1,5-ジシアノナフタレン(BSN)を30質量%混合したものから成る。 In the red light emitting layer, when an electric field is applied, a part of the holes injected from the first electrode 31 and a part of the electrons injected from the second electrode 32 are recombinated to generate red light. do. Such a red light emitting layer contains, for example, at least one of a red light emitting material, a hole transporting material, an electron transporting material, and an amphoteric charge transporting material. The red light emitting material may be a fluorescent material or a phosphorescent material. The red light emitting layer having a thickness of about 5 nm is, for example, 4,4-bis (2,2-diphenylvinyl) biphenyl (DPVBi) and 2,6-bis [(4'-methoxydiphenylamino) styryl] -1. , 5-Dicyanonaphthalene (BSN) mixed in an amount of 30% by mass.
 緑色発光層では、電界が加わることにより、第1電極31から注入された正孔の一部と、第2電極32から注入された電子の一部とが再結合して、緑色の光が発生する。このような緑色発光層は、例えば、緑色発光材料、正孔輸送性材料、電子輸送性材料及び両電荷輸送性材料の内、少なくとも1種の材料を含んでいる。緑色発光材料は、蛍光性の材料であってもよいし、燐光性の材料であってもよい。厚さが10nm程度の緑色発光層は、例えば、DPVBiに、クマリン6を5質量%混合したものから成る。 In the green light emitting layer, when an electric field is applied, a part of the holes injected from the first electrode 31 and a part of the electrons injected from the second electrode 32 are recombinated to generate green light. do. Such a green light emitting layer contains, for example, at least one of a green light emitting material, a hole transporting material, an electron transporting material, and an amphoteric charge transporting material. The green light emitting material may be a fluorescent material or a phosphorescent material. The green light emitting layer having a thickness of about 10 nm is composed of, for example, DPVBi mixed with 5% by mass of coumarin 6.
 青色発光層では、電界が加わることにより、第1電極31から注入された正孔の一部と、第2電極32から注入された電子の一部とが再結合して、青色の光が発生する。このような青色発光層は、例えば、青色発光材料、正孔輸送性材料、電子輸送性材料及び両電荷輸送性材料の内、少なくとも1種の材料を含んでいる。青色発光材料は、蛍光性の材料であってもよいし、燐光性の材料であってもよい。厚さが30nm程度の青色発光層は、例えば、DPVBiに、4,4’-ビス[2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)を2.5質量%混合したものから成る。 In the blue light emitting layer, when an electric field is applied, a part of the holes injected from the first electrode 31 and a part of the electrons injected from the second electrode 32 are recombinated to generate blue light. do. Such a blue light emitting layer contains, for example, at least one of a blue light emitting material, a hole transporting material, an electron transporting material, and an amphoteric charge transporting material. The blue light emitting material may be a fluorescent material or a phosphorescent material. The blue light emitting layer having a thickness of about 30 nm contains, for example, 2.5% by mass of 4,4'-bis [2- {4- (N, N-diphenylamino) phenyl} vinyl] biphenyl (DPAVBi) in DPVBi. Consists of a mixture.
 厚さが20nm程度の電子輸送層は、例えば、8-ヒドロキシキノリンアルミニウム(Alq3)から成る。厚さが0.3nm程度の電子注入層は、例えば、LiFあるいはLi2O等から成る。 The electron transport layer having a thickness of about 20 nm is made of, for example, 8-hydroxyquinoline aluminum (Alq3). Electron injection layer having a thickness of about 0.3nm, for example, made of LiF or Li 2 O or the like.
 但し、各層を構成する材料は例示であり、これらの材料に限定するものではない。また、例えば、発光層は、青色発光層と黄色発光層から構成されていてもよいし、青色発光層と橙色発光層から構成されていてもよい。 However, the materials that make up each layer are examples, and are not limited to these materials. Further, for example, the light emitting layer may be composed of a blue light emitting layer and a yellow light emitting layer, or may be composed of a blue light emitting layer and an orange light emitting layer.
 発光素子10は、有機層33を共振部とした共振器構造を有している。発光面から反射面までの距離(具体的には、発光面から第1電極31及び第2電極32までの距離)を適切に調整するために、有機層33の厚さは、8×10-8m以上、5×10-7m以下であることが好ましく、1.5×10-7m以上、3.5×10-7m以下であることがより好ましい。共振器構造を有する有機EL表示装置にあっては、実際には、赤色発光素子10Rは、発光層で発光した赤色光を共振させて、赤味がかった光(赤色の領域に光スペクトルのピークを有する光)を第2電極32から出射する。また、緑色発光素子10Gは、発光層で発光した緑色光を共振させて、緑味がかった光(緑色の領域に光スペクトルのピークを有する光)を第2電極32から出射する。更には、青色発光素子10Bは、発光層で発光した青色光を共振させて、青味がかった光(青色の領域に光スペクトルのピークを有する光)を第2電極32から出射する。 The light emitting element 10 has a resonator structure in which the organic layer 33 is a resonance portion. In order to appropriately adjust the distance from the light emitting surface to the reflecting surface (specifically, the distance from the light emitting surface to the first electrode 31 and the second electrode 32), the thickness of the organic layer 33 is 8 × 10 −. It is preferably 8 m or more and 5 × 10 -7 m or less, and more preferably 1.5 × 10 -7 m or more and 3.5 × 10 -7 m or less. In an organic EL display device having a resonator structure, the red light emitting element 10R actually resonates the red light emitted in the light emitting layer to cause reddish light (the peak of the optical spectrum in the red region). Light) is emitted from the second electrode 32. Further, the green light emitting element 10G resonates the green light emitted in the light emitting layer, and emits greenish light (light having a peak in the optical spectrum in the green region) from the second electrode 32. Further, the blue light emitting element 10B resonates the blue light emitted in the light emitting layer, and emits bluish light (light having a peak in the optical spectrum in the blue region) from the second electrode 32.
 以下、図1及び図2に示した実施例1の発光素子10の製造方法の概要を説明する。 Hereinafter, the outline of the manufacturing method of the light emitting element 10 of the first embodiment shown in FIGS. 1 and 2 will be described.
  [工程-100]
 先ず、シリコン半導体基板(第1基板11)に発光素子駆動部を公知のMOSFET製造プロセスに基づき形成する。
[Step-100]
First, a light emitting element driving unit is formed on a silicon semiconductor substrate (first substrate 11) based on a known MOSFET manufacturing process.
  [工程-110]
 次いで、CVD法に基づき全面に基体(層間絶縁層)26を形成する。
[Process-110]
Next, a substrate (interlayer insulating layer) 26 is formed on the entire surface based on the CVD method.
  [工程-120]
 そして、トランジスタ20の一方のソース/ドレイン領域24の上方に位置する基体26の部分に、フォトリソグラフィ技術及びエッチング技術に基づき接続孔を形成し、接続孔を含む基体26の上に金属層を、例えば、スパッタリング法に基づき形成し、次いで、フォトリソグラフィ技術及びエッチング技術に基づき金属層をパターニングすることで、基体26の一部分の上に第1電極31を形成することができる。第1電極31は、各発光素子毎に分離されている。併せて、接続孔内に第1電極31とトランジスタ20とを電気的に接続するコンタクトホール(コンタクトプラグ)27を形成することができる。
[Step-120]
Then, a connection hole is formed in a portion of the substrate 26 located above one source / drain region 24 of the transistor 20 based on a photolithography technique and an etching technique, and a metal layer is formed on the substrate 26 including the connection hole. For example, the first electrode 31 can be formed on a part of the substrate 26 by forming the metal layer based on the sputtering method and then patterning the metal layer based on the photolithography technique and the etching technique. The first electrode 31 is separated for each light emitting element. At the same time, a contact hole (contact plug) 27 for electrically connecting the first electrode 31 and the transistor 20 can be formed in the connection hole.
  [工程-130]
 次に、例えば、CVD法に基づき、全面に絶縁層28を形成した後、フォトリソグラフィ技術及びエッチング技術に基づき、第1電極31と第1電極31との間の基体26の上に絶縁層28を残す。
[Process-130]
Next, for example, after forming the insulating layer 28 on the entire surface based on the CVD method, the insulating layer 28 is placed on the substrate 26 between the first electrode 31 and the first electrode 31 based on the photolithography technique and the etching technique. Leave.
  [工程-140]
 その後、第1電極31及び絶縁層28の上に、有機層33を、例えば、真空蒸着法やスパッタリング法といったPVD法、スピンコート法やダイコート法等のコーティング法等によって成膜する。場合によっては、有機層33を所望の形状にパターニングしてもよい。
[Process-140]
Then, the organic layer 33 is formed on the first electrode 31 and the insulating layer 28 by, for example, a PVD method such as a vacuum deposition method or a sputtering method, a coating method such as a spin coating method or a die coating method, or the like. In some cases, the organic layer 33 may be patterned into a desired shape.
  [工程-150]
 次いで、例えば真空蒸着法等に基づき、全面に第2電極32を形成する。場合によっては、第2電極32を所望の形状にパターニングしてもよい。このようにして、第1電極31上に、有機層33及び第2電極32を形成することができる。
[Process-150]
Next, the second electrode 32 is formed on the entire surface based on, for example, a vacuum vapor deposition method. In some cases, the second electrode 32 may be patterned into a desired shape. In this way, the organic layer 33 and the second electrode 32 can be formed on the first electrode 31.
  [工程-160]
 その後、塗布法に基づき、全面に保護層34を形成した後、保護層34の頂面を平坦化処理する。塗布法に基づき保護層34を形成することができるので、加工プロセスの制約が少なく、材料選択幅が広く、高屈折率材料の使用が可能となる。その後、周知の方法で、保護層34の上にカラーフィルタ層CF(CFR,CFG,CFB)を形成し、更に、カラーフィルタ層CFの上に光出射方向制御部材50を形成する。具体的には、カラーフィルタ層CFの上に、光出射方向制御部材50を形成するための光出射方向制御部材形成層を形成し、その上にレジスト材料層を形成する。そして、レジスト材料層をパターニングすることで、第1領域51を形成すべき空所(孔部)及び第2領域52から構成された光出射方向制御部材50を得ることができる。
[Process-160]
Then, based on the coating method, the protective layer 34 is formed on the entire surface, and then the top surface of the protective layer 34 is flattened. Since the protective layer 34 can be formed based on the coating method, there are few restrictions on the processing process, the material selection range is wide, and a high refractive index material can be used. Thereafter, in a known manner, the color filter layer CF (CF R, CF G, CF B) was formed on the protective layer 34, further, to form a light emitting direction control member 50 on the color filter layer CF. Specifically, a light emission direction control member forming layer for forming the light emission direction control member 50 is formed on the color filter layer CF, and a resist material layer is formed on the light emission direction control member forming layer. Then, by patterning the resist material layer, it is possible to obtain a light emission direction control member 50 composed of a space (hole) in which the first region 51 is to be formed and a second region 52.
  [工程-170]
 そして、カラーフィルタ層CF及び光出射方向制御部材50の上に平坦化層35を形成する。平坦化層35の一部(平坦化層35の延在部)が第1領域51を形成すべき空所に侵入し、第1領域51が形成される。また、第2領域52を取り囲む第3領域53が、平坦化層35の一部(平坦化層35の延在部)によって形成される。その後、平坦化層35と第2基板41とをアクリル系接着剤から成る封止樹脂層36によって貼り合わせる。こうして、図1、図2に示した発光素子(有機EL素子)10、実施例1の表示装置を得ることができる。このように、第2基板側にカラーフィルタ層CFを設けるのではなく、第1基板側にカラーフィルタ層CFを設ける、所謂OCCF型とすることで、有機層33とカラーフィルタ層CFとの間の距離を短くすることができるし、有機層33との間の位置合わせに問題が生じる可能性が少ない。
[Process-170]
Then, the flattening layer 35 is formed on the color filter layer CF and the light emission direction control member 50. A part of the flattening layer 35 (extending portion of the flattening layer 35) invades the vacant space where the first region 51 should be formed, and the first region 51 is formed. Further, a third region 53 surrounding the second region 52 is formed by a part of the flattening layer 35 (extending portion of the flattening layer 35). After that, the flattening layer 35 and the second substrate 41 are bonded together by a sealing resin layer 36 made of an acrylic adhesive. In this way, the display device of the light emitting element (organic EL element) 10 and the first embodiment shown in FIGS. 1 and 2 can be obtained. In this way, by providing the so-called OCCF type in which the color filter layer CF is provided on the first substrate side instead of providing the color filter layer CF on the second substrate side, between the organic layer 33 and the color filter layer CF. The distance between the two can be shortened, and there is little possibility that a problem will occur in the alignment with the organic layer 33.
 実施例1の発光素子あるいは表示装置にあっては、光出射方向制御部材が、屈折率の異なる材料から成る第1領域及び第2領域から構成されているので、光出射方向制御部材から出射される光の方向を、確実に、且つ、的確に、制御することができる。具体的には、第1領域の位置、形状、n1とn2の関係、大きさ、数の最適化を図ることで、光出射方向制御部材から出射される光の方向の制御を、即ち、発光素子の配光制御を、確実に、且つ、的確に行うことができる。しかも、第2領域(屈折率:n2)が第3領域(屈折率:n3<n2)によって囲まれているので、平板状の光出射方向制御部材は一種のレンズとしての機能を有し、しかも、平板状の光出射方向制御部材の外縁部近傍における集光効果を効果的に高めることができる。また、光出射方向制御部材は平板状であるが故に、形成も容易であり、作製プロセスの簡素化を図ることができる。尚、平板状の光出射方向制御部材50の外縁部近傍を、図1において、参照番号54Aで示す。 In the light emitting element or display device of the first embodiment, since the light emission direction control member is composed of the first region and the second region made of materials having different refractive indexes, the light is emitted from the light emission direction control member. The direction of the light can be controlled reliably and accurately. Specifically, by optimizing the position and shape of the first region, the relationship between n 1 and n 2 , the size, and the number, the direction of the light emitted from the light emission direction control member can be controlled, that is, , The light distribution control of the light emitting element can be performed reliably and accurately. Moreover, since the second region (refractive index: n 2 ) is surrounded by the third region (refractive index: n 3 <n 2 ), the flat plate-shaped light emission direction control member has a function as a kind of lens. Moreover, the light-collecting effect in the vicinity of the outer edge of the flat plate-shaped light emission direction control member can be effectively enhanced. Further, since the light emission direction control member has a flat plate shape, it is easy to form, and the manufacturing process can be simplified. The vicinity of the outer edge portion of the flat plate-shaped light emission direction control member 50 is shown by reference numeral 54A in FIG.
 また、実施例1の表示装置にあっては、発光部の中心を通る法線LNと光出射方向制御部材の第1領域の重心を通る法線LN’との間の距離をD0としたとき、表示装置を構成する発光素子の少なくとも一部において距離D0の値は0でないので、発光素子の表示パネルにおける位置に依存して、発光層から出射され、光出射方向制御部材を経由した光の進む方向を、確実に、且つ、的確に制御することができる。即ち、外部の空間のどの領域に向けて表示装置からの画像をどのような状態で出射するかを、確実に、且つ、的確に制御することができる。また、光出射方向制御部材を設けることで、表示装置から出射される画像の明るさ(輝度)の増加、隣接画素間の混色防止を図ることができるだけでなく、必要とされる視野角に応じて光を、適宜、発散させることができるし、発光素子、表示装置の長寿命化、高輝度化が実現可能である。従って、表示装置の小型、軽量化、高品位化を図ることが可能である。また、アイウエア、AR(拡張現実,Augmented Reality)グラス、EVRへの用途が格段に広がる。 Further, in the display device of the first embodiment, the distance between the normal LN passing through the center of the light emitting portion and the normal LN'passing through the center of gravity of the first region of the light emitting direction control member is set to D 0 . When, since the value of the distance D 0 is not 0 in at least a part of the light emitting elements constituting the display device, the light is emitted from the light emitting layer and passed through the light emitting direction control member depending on the position of the light emitting element on the display panel. The direction of light travel can be controlled reliably and accurately. That is, it is possible to reliably and accurately control to which region of the external space the image from the display device is emitted in what state. Further, by providing the light emission direction control member, it is possible not only to increase the brightness (luminance) of the image emitted from the display device and prevent color mixing between adjacent pixels, but also to meet the required viewing angle. The light can be appropriately dissipated, and the life of the light emitting element and the display device can be extended and the brightness can be increased. Therefore, it is possible to reduce the size, weight, and quality of the display device. In addition, the applications for eyewear, AR (Augmented Reality) glasses, and EVR will be greatly expanded.
 実施例1において、以下のパラメータを有する発光素子10を想定し、発光部30から出射され、光出射方向制御部材50を通過した光の挙動、具体的には、正面方向の輝度をシミュレーションした。即ち、実施例1の発光素子において、距離D0を変えたときの光線角度θ(単位:度)と光量(輝度)との関係をシミュレーションした。その結果を図17のグラフに示す。ここで、シミュレーションにあっては、FDTD法(Finite-difference Time-Domain method)に基づき波動解析シミュレーションを行った。また、各層の屈折率を以下の表1のとおりに設定し、光出射方向制御部材50等のパラメータを以下の表2のとおりに設定した。 In Example 1, assuming a light emitting element 10 having the following parameters, the behavior of light emitted from the light emitting unit 30 and passing through the light emitting direction control member 50, specifically, the brightness in the front direction was simulated. That is, in the light emitting element of Example 1, the relationship between the light beam angle θ (unit: degree) and the light amount (luminance) when the distance D 0 was changed was simulated. The result is shown in the graph of FIG. Here, in the simulation, a wave analysis simulation was performed based on the FDTD method (Finite-difference Time-Domain method). Further, the refractive index of each layer was set as shown in Table 1 below, and the parameters of the light emission direction control member 50 and the like were set as shown in Table 2 below.
〈表1〉
第2基板41:屈折率1.50
平坦化層35:屈折率1.38
第1領域51:屈折率1.38
第2領域52:屈折率1.50
第3領域53:屈折率1.38
保護層34 :屈折率1.50の上層
       屈折率1.80の下層の2層構成
第2電極32:屈折率(実数部)0.96
有機層33 :屈折率1.80
<Table 1>
Second substrate 41: Refractive index 1.50
Flattening layer 35: Refractive index 1.38
First region 51: Refractive index 1.38
Second region 52: Refractive index 1.50
Third region 53: Refractive index 1.38
Protective layer 34: Upper layer with a refractive index of 1.50 Lower layer with a refractive index of 1.80 Second electrode 32: Refractive index (real part) 0.96
Organic layer 33: Refractive index 1.80
〈表2〉
第2領域52の外縁部の平面形状:直径5.8μmの円形
第1領域51の水平方向断面形状:直径0.3μmの円形
光出射方向制御部材50の高さ :2.0μm
発光部30から光出射方向制御部材50の底面までの最大距離:5.5μm
発光部30の平面形状     :直径2.6μmの円形
<Table 2>
Planar shape of the outer edge of the second region 52: Circular with a diameter of 5.8 μm Horizontal cross-sectional shape of the first region 51: Circular light emission direction control member 50 with a diameter of 0.3 μm Height: 2.0 μm
Maximum distance from the light emitting unit 30 to the bottom surface of the light emitting direction control member 50: 5.5 μm
Planar shape of light emitting part 30: Circular with a diameter of 2.6 μm
 尚、図17中、「A」は距離D0=0.0μmにおけるシミュレーション結果を示し、「B」は距離D0=0.3μmにおけるシミュレーション結果を示し、「C」は距離D0=0.6μmにおけるシミュレーション結果を示す。ここで、光線角度とは、光出射方向制御部材50から出射された光線と表示パネルの光出射面に対する垂直線(法線)との成す角度を指す。また、主光線角度とは、光出射方向制御部材50から出射された光線が最高光量(最高輝度)となるときの光線角度である。 In FIG. 17, “A” indicates the simulation result at the distance D 0 = 0.0 μm, “B” indicates the simulation result at the distance D 0 = 0.3 μm, and “C” indicates the simulation result at the distance D 0 = 0. The simulation result at 6 μm is shown. Here, the light ray angle refers to an angle formed by a light ray emitted from the light emitting direction control member 50 and a vertical line (normal line) with respect to the light emitting surface of the display panel. The main light ray angle is a light ray angle when the light beam emitted from the light emission direction control member 50 has the maximum light amount (maximum brightness).
〈表3〉
   距離D0    主光線角度  最高光量(輝度)の相対値
A  0.0μm   0度     1.00
B  0.3μm   2度     0.93
C  0.6μm   4度     0.84
<Table 3>
Distance D 0 Principal ray angle Relative value of maximum light intensity (luminance) A 0.0 μm 0 degree 1.00
B 0.3 μm 2 degrees 0.93
C 0.6 μm 4 degrees 0.84
 図17から、距離D0を変えることで主光線角度を制御することができるし、平板状の光出射方向制御部材50は集光効果を有することが判る。幾何光学で考えた場合、光線が第2領域52の垂直な外縁部54と衝突した場合、入射角と反射角が等しくなるため、正面方向の光取出し効率は向上しない。しかしながら、波動光学、波動解析(FDTD)で考えると、光出射方向制御部材50の外縁部付近の光取出し効率が向上し、正面方向の光取出し効率が向上する。尚、主光線角度に依存して、最高光量(最高輝度)の相対値が変化する場合、発光部における発光量を制御することで、最高光量(最高輝度)の相対値の一定化(均一化)を図ることができる。 From FIG. 17, it can be seen that the main ray angle can be controlled by changing the distance D 0, and that the flat plate-shaped light emission direction control member 50 has a condensing effect. In terms of geometrical optics, when a light ray collides with the vertical outer edge portion 54 of the second region 52, the incident angle and the reflection angle become equal, so that the light extraction efficiency in the front direction is not improved. However, considering wave optics and wave analysis (FDTD), the light extraction efficiency in the vicinity of the outer edge portion of the light emission direction control member 50 is improved, and the light extraction efficiency in the front direction is improved. When the relative value of the maximum light amount (maximum brightness) changes depending on the main ray angle, the relative value of the maximum light amount (maximum brightness) is made constant (uniform) by controlling the light emission amount in the light emitting portion. ) Can be planned.
 第1領域51の水平方向断面形状は、本質的に任意であり、図8A及び図8Bに示した円形に限定されず、四角形(図10A参照)、三角形(図10B参照)、六角形及び八角形を含む多角形(正多角形を含む)、並びに、楕円形(図10C参照)、長円形(図11A参照)、キャレット記号に相当する形状(「へ」の字の形状)(図11B参照)、扇形(図11C参照)及びランボルト環(図12A参照)に相当する形状のいずれかとすることができる。表示パネルを垂直に配置したとき、楕円形あるいは長円形の長軸が表示パネルの垂直方向と平行であり、楕円形あるいは長円形の短軸が表示パネルの水平方向と平行となるように光出射方向制御部材50を配置することで、表示パネルの水平方向の視野角特性の向上を図ることができる。また、円形、楕円形、長円形とすることで、第1領域51への屈折率n1を有する材料の充填性の向上を図ることができる。 The horizontal cross-sectional shape of the first region 51 is essentially arbitrary and is not limited to the circles shown in FIGS. 8A and 8B: quadrangles (see FIG. 10A), triangles (see FIG. 10B), hexagons and eights. Polygons including quadrangles (including regular polygons), ellipses (see Fig. 10C), oval shapes (see Fig. 11A), and shapes corresponding to the carryt symbol (shape of "he") (see Fig. 11B). ), Fan-shaped (see FIG. 11C) and Rambolt ring (see FIG. 12A). When the display panel is placed vertically, the long axis of the ellipse or oval is parallel to the vertical direction of the display panel, and the short axis of the ellipse or oval is parallel to the horizontal direction of the display panel. By arranging the direction control member 50, it is possible to improve the viewing angle characteristic of the display panel in the horizontal direction. Further, by making it circular, elliptical, or oval, it is possible to improve the filling property of the material having the refractive index n 1 in the first region 51.
 実施例1の表示装置、発光素子の変形例(第3構成の発光素子)として、
 基準点Pが設定されており、
 表示パネルに備えられた発光素子10の少なくとも一部において、基準点Pから発光部30の中心を通る法線LNまでの距離D1に依存して、(n2-n1)の値が設定される構成を挙げることができる。
As a modification of the display device and the light emitting element of the first embodiment (light emitting element of the third configuration),
The reference point P is set,
In at least a part of the light emitting element 10 provided on the display panel, the value of (n 2- n 1 ) is set depending on the distance D 1 from the reference point P to the normal LN passing through the center of the light emitting unit 30. The configuration to be made can be mentioned.
 あるいは又、実施例1の表示装置、発光素子の変形例(第4構成の発光素子)として、
 基準点Pが設定されており、
 表示パネルに備えられた発光素子10の少なくとも一部において、基準点Pから発光部30の中心を通る法線LNまでの距離D1に依存して、第1領域51の水平方向断面形状が設定される構成を挙げることができる。このような第4構成の発光素子において、第1領域51の水平方向断面形状は、本質的に任意である。
Alternatively, as a modified example of the display device and the light emitting element of the first embodiment (light emitting element of the fourth configuration),
The reference point P is set,
In at least a part of the light emitting element 10 provided on the display panel, the horizontal cross-sectional shape of the first region 51 is set depending on the distance D 1 from the reference point P to the normal LN passing through the center of the light emitting unit 30. The configuration to be made can be mentioned. In such a light emitting device having the fourth configuration, the horizontal cross-sectional shape of the first region 51 is essentially arbitrary.
 あるいは又、実施例1の表示装置、発光素子の変形例として、第1領域51の数は2以上とする形態を挙げることもできる。図12Bに、第1領域51の数を2とした例を示す。 Alternatively, as a modification of the display device and the light emitting element of the first embodiment, a form in which the number of the first regions 51 is 2 or more can be mentioned. FIG. 12B shows an example in which the number of the first region 51 is 2.
 あるいは又、実施例1の表示装置、発光素子の変形例として、第1領域51の水平方向断面形状は、表示パネルに備えられた発光素子10の少なくとも一部において、光出射方向制御部材50の厚さ方向に沿って、一定であり、又は、変化する形態を挙げることもできる。そして、この場合、表示パネルに備えられた発光素子の少なくとも一部において、第1領域51の水平方向断面形状は、光出射方向制御部材50の光入射面から光出射面に向かって大きくなり(図13Aの光出射方向制御部材50等の模式的な一部断面図を参照)、又は、小さくなる形態(図13Bの光出射方向制御部材50等の模式的な一部断面図を参照)とすることができる。あるいは又、(図13Cの光出射方向制御部材50等の模式的な一部断面図に示すように、表示パネルに備えられた発光素子の少なくとも一部において、光出射方向制御部材50の第1領域51の重心を通る法線LN’(点線で示す)と、光出射方向制御部材50の第1領域51の重心(黒丸印で示す)を通る第1領域51の軸線AX(一点鎖線で示す)とは、0度を超える角度で交わっている形態とすることができる。即ち、第1領域51は、全体として見たとき、発光部30の中心を通る法線LNに対して斜めに延びている形態とすることができる。 Alternatively, as a modification of the display device and the light emitting element of the first embodiment, the horizontal cross-sectional shape of the first region 51 is such that the light emitting direction control member 50 is formed in at least a part of the light emitting element 10 provided on the display panel. It is also possible to mention a form that is constant or changes along the thickness direction. In this case, in at least a part of the light emitting element provided in the display panel, the horizontal cross-sectional shape of the first region 51 increases from the light incident surface to the light emitting surface of the light emitting direction control member 50 ( (See a schematic partial cross-sectional view of the light emission direction control member 50 or the like in FIG. 13A) or a smaller form (see a schematic partial cross-sectional view of the light emission direction control member 50 or the like in FIG. 13B). can do. Alternatively, (as shown in a schematic partial cross-sectional view of the light emission direction control member 50 and the like in FIG. 13C, at least a part of the light emitting element provided in the display panel, the first light emission direction control member 50 The normal line LN'(indicated by the dotted line) passing through the center of gravity of the region 51 and the axis AX (indicated by the alternate long and short dash line) of the first region 51 passing through the center of gravity of the first region 51 (indicated by the black circle) of the light emission direction control member 50 ) Can be in the form of intersecting at an angle exceeding 0 degrees. That is, the first region 51 extends diagonally with respect to the normal LN passing through the center of the light emitting portion 30 when viewed as a whole. It can be in the form of
 あるいは又、実施例1の表示装置、発光素子の変形例として、第1領域51の深さをH1、光出射方向制御部材50の厚さをH0としたとき、
0.5≦H1/H0≦1.0
を満足する形態を挙げることができる。そして、この場合、第1領域51の上方は第2領域52を構成する材料で占められており(図14Aの光出射方向制御部材50の模式的な一部断面図を参照)、又は、第1領域51の下方は第2領域52を構成する材料で占められている形態(図14Bの光出射方向制御部材50の模式的な一部断面図を参照)とすることができる。そして、上記のH1/H0の値は距離D1の値に依存する形態とすることができる。
Alternatively, as a modification of the display device and the light emitting element of the first embodiment, when the depth of the first region 51 is H 1 and the thickness of the light emission direction control member 50 is H 0 ,
0.5 ≤ H 1 / H 0 ≤ 1.0
Can be mentioned as a form that satisfies. In this case, the upper part of the first region 51 is occupied by the material constituting the second region 52 (see a schematic partial cross-sectional view of the light emission direction control member 50 in FIG. 14A), or the first The lower part of the 1 region 51 can be in a form occupied by the material constituting the second region 52 (see a schematic partial cross-sectional view of the light emission direction control member 50 in FIG. 14B). Then, the above-mentioned value of H 1 / H 0 can be in a form depending on the value of the distance D 1.
 あるいは又、実施例1の表示装置、発光素子の変形例として、第1領域51の水平方向断面形状が、図14Cに示すように、第1領域51の厚さ方向略中央部に向かって大きくなる形状(第1領域51を全体として眺めた場合、太鼓型の形状)とすることもできるし、図15Aに示すように、第1領域51の厚さ方向略中央部に向かって小さくなる形状(第1領域51を全体として眺めた場合、鼓型の形状)とすることもできる。あるいは又、第2領域52の側面(外縁部54)と頂面とが交わる稜の部分は、丸みを帯びていてもよいし、切り欠かれていてもよい(図15B参照)。あるいは又、第1領域51の頂面と交わる第2領域52の頂面が部分は、丸みを帯びていてもよいし、切り欠かれていてもよい(図15C参照)。 Alternatively, as a modification of the display device and the light emitting element of the first embodiment, the horizontal cross-sectional shape of the first region 51 becomes larger toward the substantially central portion in the thickness direction of the first region 51 as shown in FIG. 14C. (A drum-shaped shape when the first region 51 is viewed as a whole), or as shown in FIG. 15A, a shape that becomes smaller toward the substantially central portion in the thickness direction of the first region 51. (When the first region 51 is viewed as a whole, it has a drum-shaped shape). Alternatively, the portion of the ridge where the side surface (outer edge portion 54) of the second region 52 and the top surface intersect may be rounded or may be cut out (see FIG. 15B). Alternatively, the portion of the top surface of the second region 52 that intersects the top surface of the first region 51 may be rounded or notched (see FIG. 15C).
 実施例1の表示装置において、複数の基準点Pが表示パネル内に想定されている構成とすることもできる。発光素子10と基準点P1,P2との位置関係を模式的に図3Bに示すが、図示した例では、2つの基準点P1,P2が想定されている。具体的には、表示装置の表示パネルの中心を対称点として、2つの基準点P1,P2は2回・回転対称に配置されている。ここで、少なくとも1つの基準点Pは表示パネルの中心領域には含まれない。図示した例では、2つの基準点P1,P2は、表示パネルの中心領域には含まれない。一部の発光素子(具体的には、基準点Pに含まれる1又は複数の発光素子)において距離D0の値は0であり、残りの発光素子において距離D0の値は0でない。基準点から発光部30の中心を通る法線LNまでの距離D1に関しては、或る発光部30の中心を通る法線LNからより近い基準点との間の距離を距離D1とする。尚、場合によっては、基準点Pに含まれる発光素子10にあっては、光出射方向制御部材50は第2領域52だけから構成されていてもよい。 In the display device of the first embodiment, a plurality of reference points P may be assumed in the display panel. The positional relationship between the light emitting element 10 and the reference points P 1 and P 2 is schematically shown in FIG. 3B, but in the illustrated example, two reference points P 1 and P 2 are assumed. Specifically, as a symmetrical point the center of the display panel of the display device, the two reference points P 1, P 2 are arranged in two-rotation symmetric. Here, at least one reference point P is not included in the central region of the display panel. In the illustrated example, the two reference points P 1, P 2 is not included in the central region of the display panel. (Specifically, one or more light emitting elements included in the reference point P) portion of the light emitting element value of the distance D 0 in is 0, the value of the distance D 0 in the remaining light-emitting element not zero. With respect to the distance D 1 of the from the reference point to the normal line LN passing through the center of the light emitting portion 30, the distance between the reference point closer to the normal LN passing through the center of a certain light emitting unit 30 and the distance D 1. In some cases, in the light emitting element 10 included in the reference point P, the light emission direction control member 50 may be composed of only the second region 52.
 また、実施例1の表示装置において、第1発光素子(赤色発光素子10R)、第2発光素子(緑色発光素子10G)及び第3発光素子(青色発光素子10B)のそれぞれにおいて、第1領域51及び第2領域52の最適化が図られていることが好ましい。具体的には、例えば、第1発光素子、第2発光素子及び第3発光素子のそれぞれにおいて、第1領域の位置、形状、n1とn2の関係、大きさ、高さ、数の最適化を図ることで、第1発光素子、第2発光素子及び第3発光素子のそれぞれから光出射方向制御部材50を通過して出射される光の方向の制御(配光の制御)を、確実に、且つ、的確に行うことができる。図16に、実施例1の表示装置において、第1発光素子(赤色発光素子10R)、第2発光素子(緑色発光素子10G)及び第3発光素子(青色発光素子10B)のそれぞれの第1領域51及び第2領域52の最適化が図られている一例を示す、光出射方向制御部材50を上方から眺めた模式図を示す。尚、第1発光素子(赤色発光素子10R)における第1領域の水平方向断面形状を円形とし、第2発光素子(緑色発光素子10G)における第1領域の水平方向断面形状を正三角形とし、第3発光素子(青色発光素子10B)における第1領域の水平方向断面形状を正方形としたが、これらに限定するものではない。 Further, in the display device of the first embodiment, in each of the first light emitting element (red light emitting element 10R), the second light emitting element (green light emitting element 10G), and the third light emitting element (blue light emitting element 10B), the first region 51 And it is preferable that the second region 52 is optimized. Specifically, for example, in each of the first light emitting element, the second light emitting element, and the third light emitting element, the position and shape of the first region, the relationship between n 1 and n 2 , the size, the height, and the optimum number are optimized. By achieving this, control of the direction of light emitted from each of the first light emitting element, the second light emitting element, and the third light emitting element through the light emission direction control member 50 (light distribution control) can be ensured. And, it can be done accurately. FIG. 16 shows the first region of each of the first light emitting element (red light emitting element 10R), the second light emitting element (green light emitting element 10G), and the third light emitting element (blue light emitting element 10B) in the display device of the first embodiment. A schematic view of the light emission direction control member 50 viewed from above showing an example in which the 51 and the second region 52 are optimized is shown. The horizontal cross-sectional shape of the first region of the first light emitting element (red light emitting element 10R) is circular, and the horizontal cross-sectional shape of the first region of the second light emitting element (green light emitting element 10G) is an equilateral triangle. The horizontal cross-sectional shape of the first region of the three light emitting elements (blue light emitting element 10B) is square, but the present invention is not limited to these.
 実施例2は、実施例1の変形である。実施例2の表示装置において、基準点Pは表示パネルの外側に想定されている。発光素子10と基準点P,P1,P2との位置関係を模式的に図18A及び図18Bに示すが、1つの基準点Pが想定されている構成とすることができるし(図18A参照)、あるいは又、複数の基準点P(図18Bには2つの基準点P1,P2を示す)が想定されている構成とすることもできる。表示パネルの中心を対称点として、2つの基準点P1,P2は2回・回転対称に配置されている。全ての発光素子において距離D0の値は0でない。基準点から発光部30の中心を通る法線LNまでの距離D1に関しては、或る発光部30の中心を通る法線LNからより近い基準点との間の距離を距離D1とする。そして、これらの場合、各発光素子10から出射され、光出射方向制御部材50を通過した光は、表示装置の外部の空間の或る領域に収束する(集光される)。あるいは又、各発光素子10から出射され、光出射方向制御部材50を通過した光は、表示装置の外部の空間において発散する。 The second embodiment is a modification of the first embodiment. In the display device of the second embodiment, the reference point P is assumed to be outside the display panel. The positional relationship between the light emitting element 10 and the reference points P, P 1 , and P 2 is schematically shown in FIGS. 18A and 18B, but one reference point P can be assumed (FIG. 18A). see), or alternatively, may be a structure in which a plurality of reference points P (showing two reference points P 1, P 2 in FIG. 18B) is assumed. As a symmetrical point the center of the display panel, the two reference points P 1, P 2 are arranged in two-rotation symmetric. The value of the distance D 0 is not 0 in all light emitting elements. With respect to the distance D 1 of the from the reference point to the normal line LN passing through the center of the light emitting portion 30, the distance between the reference point closer to the normal LN passing through the center of a certain light emitting unit 30 and the distance D 1. Then, in these cases, the light emitted from each light emitting element 10 and passing through the light emission direction control member 50 converges (condenses) on a certain region of the space outside the display device. Alternatively, the light emitted from each light emitting element 10 and passing through the light emission direction control member 50 is diverged in the space outside the display device.
 以上の点を除き、実施例2の表示装置の構成、構造は、実施例1において説明した表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the display device of the second embodiment can be the same as the configuration and structure of the display device described in the first embodiment, and thus detailed description thereof will be omitted.
 実施例3は、実施例1~実施例2の変形である。実施例1~実施例2の表示装置にあっては、光出射方向制御部材50の光入射側に、カラーフィルタ層が設けられている構成とした。一方、実施例3にあっては、光出射方向制御部材50の光出射側に、カラーフィルタ層CFR,CFG,CFBが設けられている。具体的には、実施例3の表示装置を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図を図19に示し、発光素子(但し、基準点から離れて位置する)の模式的な一部断面図を図20に示すように、第2電極32の上には、アクリル系樹脂から成る保護層34が形成されている。そして、保護層34の頂面又は上方には(具体的には、保護層34の上には)、光出射方向制御部材50が設けられており、光出射方向制御部材50の上には平坦化層35が設けられており、アクリル系接着剤から成る封止樹脂層36と第2基板41との間にカラーフィルタ層CFR,CFG,CFBが設けられている。カラーフィルタ層CFR,CFG,CFBと第2基板41とは封止樹脂層36によって貼り合わされている。 Example 3 is a modification of Examples 1 and 2. In the display devices of Examples 1 to 2, a color filter layer is provided on the light incident side of the light emission direction control member 50. On the other hand, in Example 3, the light emitting side of the light emitting direction control member 50, the color filter layer CF R, CF G, is CF B are provided. Specifically, FIG. 19 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the display device of the third embodiment, and the light emitting element (however, away from the reference point) As shown in FIG. 20 for a schematic partial cross-sectional view of (located), a protective layer 34 made of an acrylic resin is formed on the second electrode 32. A light emission direction control member 50 is provided on the top surface or above the protective layer 34 (specifically, on the protection layer 34), and is flat on the light emission direction control member 50. layer 35 is provided with a color filter layer CF R, CF G, it is CF B is provided between the sealing resin layer 36 made of an acrylic adhesive and the second substrate 41. The color filter layer CF R, CF G, are bonded by the sealing resin layer 36 and the CF B and the second substrate 41.
 以上の点を除き、実施例3の表示装置の構成、構造は、実施例1あるいは実施例2において説明した表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the display device of the third embodiment can be the same as the configuration and structure of the display device described in the first or second embodiment, and thus detailed description thereof will be omitted.
 実施例4も、実施例1~実施例2の変形である。実施例4の表示装置を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図を図21に示し、発光素子(但し、基準点から離れて位置する)の模式的な一部断面図を図22に示すように、実施例4にあっては、カラーフィルタ層CFR,CFG,CFBが省略されている。即ち、保護層34の頂面又は上方には(具体的には、保護層34の上には)、光出射方向制御部材50が設けられており、光出射方向制御部材50の上には平坦化層35が設けられており、平坦化層35と第2基板41とはアクリル系接着剤から成る封止樹脂層36によって貼り合わされている。発光素子は、有機層が赤色を生じさせる赤色発光素子10R、有機層が緑色を生じさせる緑色発光素子10G、有機層が青色を生じさせる青色発光素子10Bから構成されており、これらの3種類の発光素子(副画素)を組み合わせることで、1つの画素が構成される。尚、この場合、色純度向上のためにカラーフィルタ層を設けてもよい。 Example 4 is also a modification of Examples 1 and 2. FIG. 21 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the display device of the fourth embodiment, and is a schematic of the light emitting element (however, it is located away from the reference point). as shown specific part sectional view in FIG. 22, in example 4, the color filter layer CF R, CF G, is CF B are omitted. That is, a light emission direction control member 50 is provided on the top surface or above the protective layer 34 (specifically, on the protection layer 34), and is flat on the light emission direction control member 50. A chemical layer 35 is provided, and the flattening layer 35 and the second substrate 41 are bonded to each other by a sealing resin layer 36 made of an acrylic adhesive. The light emitting element is composed of a red light emitting element 10R in which the organic layer produces red, a green light emitting element 10G in which the organic layer produces green, and a blue light emitting element 10B in which the organic layer produces blue. One pixel is configured by combining light emitting elements (sub-pixels). In this case, a color filter layer may be provided to improve the color purity.
 以上の点を除き、実施例4の表示装置の構成、構造は、実施例1あるいは実施例2において説明した表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 Except for the above points, the configuration and structure of the display device of the fourth embodiment can be the same as the configuration and structure of the display device described in the first or second embodiment, and thus detailed description thereof will be omitted.
 実施例5においては、実施例1~実施例4において説明した表示装置を、頭部装着型ディスプレイ(HMD)に適用した。実施例5の頭部装着型ディスプレイを構成する画像表示装置の概念図を図31に示し、実施例5の頭部装着型ディスプレイを上方から眺めた模式図を図32に示し、正面から眺めた模式図を図33に示し、側方から眺めた模式図を図34Aに示す。また、実施例5の表示装置における反射型体積ホログラム回折格子の一部を拡大して示す模式的な断面図を図34Bに示す。 In Example 5, the display devices described in Examples 1 to 4 were applied to a head-mounted display (HMD). A conceptual diagram of an image display device constituting the head-mounted display of the fifth embodiment is shown in FIG. 31, and a schematic view of the head-mounted display of the fifth embodiment viewed from above is shown in FIG. 32 and viewed from the front. A schematic view is shown in FIG. 33, and a schematic view viewed from the side is shown in FIG. 34A. Further, FIG. 34B shows a schematic cross-sectional view showing a part of the reflective volume hologram diffraction grating in the display device of Example 5 in an enlarged manner.
 実施例5の画像表示装置100は、
 実施例1~実施例4において説明した表示装置111から成る画像形成装置110、
 導光板121、
 導光板121に取り付けられた第1偏向手段131、及び、
 導光板121に取り付けられた第2偏向手段132、
を備えている。そして、
 画像形成装置110からの光は、第1偏向手段131において偏向され(あるいは反射され)、導光板121の内部を全反射により伝播し、第2偏向手段132において偏向され、観察者150の瞳151に向けて出射される。
The image display device 100 of the fifth embodiment is
The image forming apparatus 110, which comprises the display apparatus 111 described in Examples 1 to 4.
Light guide plate 121,
The first deflection means 131 attached to the light guide plate 121, and
Second deflection means 132 attached to the light guide plate 121,
It has. and,
The light from the image forming apparatus 110 is deflected (or reflected) by the first deflection means 131, propagates through the inside of the light guide plate 121 by total reflection, and is deflected by the second deflection means 132, and the pupil 151 of the observer 150. It is emitted toward.
 導光板121及び第2偏向手段132から構成された系は、半透過型(シースルー型)である。 The system composed of the light guide plate 121 and the second deflection means 132 is a semi-transmissive type (see-through type).
 実施例5の頭部装着型ディスプレイは、
 (A)観察者150の頭部に装着されるフレーム140(例えば、眼鏡型のフレーム140)、並びに、
 (B)フレーム140に取り付けられた画像表示装置100、
を備えている。尚、実施例5の頭部装着型ディスプレイを、具体的には、2つの画像表示装置を備えた両眼型としたが、1つ備えた片眼型としてもよい。画像表示装置100は、フレーム140に、固定して取り付けられていてもよいし、着脱自在に取り付けられていてもよい。頭部装着型ディスプレイは、例えば、観察者150の瞳151に、直接、画像を描画する直描タイプの頭部装着型ディスプレイである。
The head-mounted display of Example 5 is
(A) A frame 140 (for example, a spectacle-shaped frame 140) mounted on the head of the observer 150, and
(B) An image display device 100 attached to the frame 140,
It has. The head-mounted display of Example 5 is specifically a binocular type provided with two image display devices, but may be a single-eyed type provided with one. The image display device 100 may be fixedly attached to the frame 140, or may be detachably attached to the frame 140. The head-mounted display is, for example, a direct-drawing type head-mounted display that draws an image directly on the pupil 151 of the observer 150.
 導光板121は、画像形成装置110からの光が入射する第1面122、及び、第1面122と対向する第2面123を有している。即ち、光学ガラスやプラスチック材料から成る導光板121は、導光板121の内部全反射による光伝播方向(X方向)と平行に延びる2つの平行面(第1面122及び第2面123)を有している。第1面122と第2面123とは対向している。そして、第1偏向手段131は、導光板121の第2面123上に配置されており(具体的には、貼り合わされており)、第2偏向手段132は、導光板121の第2面123上に配置されている(具体的には、貼り合わされている)。 The light guide plate 121 has a first surface 122 on which light from the image forming apparatus 110 is incident, and a second surface 123 facing the first surface 122. That is, the light guide plate 121 made of optical glass or a plastic material has two parallel surfaces (first surface 122 and second surface 123) extending parallel to the light propagation direction (X direction) due to total internal reflection of the light guide plate 121. is doing. The first surface 122 and the second surface 123 face each other. The first deflection means 131 is arranged on the second surface 123 of the light guide plate 121 (specifically, they are bonded together), and the second deflection means 132 is the second surface 123 of the light guide plate 121. It is placed on top (specifically, it is pasted together).
 第1偏向手段(第1回折格子部材)131は、ホログラム回折格子、具体的には、反射型体積ホログラム回折格子から成り、第2偏向手段(第2回折格子部材)132も、ホログラム回折格子、具体的には、反射型体積ホログラム回折格子から成る。第1偏向手段131を構成するホログラム回折格子の内部には第1の干渉縞が形成されており、第2偏向手段132を構成するホログラム回折格子の内部には第2の干渉縞が形成されている。 The first deflection means (first diffraction grating member) 131 is composed of a hologram diffraction grating, specifically, a reflective volume hologram diffraction grating, and the second deflection means (second diffraction grating member) 132 is also a hologram diffraction grating, Specifically, it consists of a reflective volume hologram diffraction grating. A first interference fringe is formed inside the hologram diffraction grating that constitutes the first deflection means 131, and a second interference fringe is formed inside the hologram diffraction grating that constitutes the second deflection means 132. There is.
 第1偏向手段131は、第2面123から導光板121に入射された平行光が導光板121の内部で全反射されるように、回折反射する。第2偏向手段132は、導光板121の内部を全反射により伝播した光を回折反射し、観察者150の瞳151へと導く。第2偏向手段132によって導光板121における虚像形成領域が構成される。第1偏向手段131及び第2偏向手段132の軸線はX方向と平行であり、法線はZ方向と平行である。フォトポリマー材料から成る各反射型体積ホログラム回折格子には、1種類の波長帯域(あるいは、波長)に対応する干渉縞が形成されており、従来の方法で作製されている。反射型体積ホログラム回折格子に形成された干渉縞のピッチは一定であり、干渉縞は直線状であり、Y方向に平行である。 The first deflection means 131 is diffracted and reflected so that the parallel light incident on the light guide plate 121 from the second surface 123 is totally reflected inside the light guide plate 121. The second deflection means 132 diffracts and reflects the light propagating inside the light guide plate 121 by total internal reflection, and guides the light to the pupil 151 of the observer 150. The second deflection means 132 constitutes a virtual image forming region in the light guide plate 121. The axes of the first deflection means 131 and the second deflection means 132 are parallel to the X direction, and the normals are parallel to the Z direction. Each reflective volume hologram diffraction grating made of a photopolymer material has interference fringes corresponding to one type of wavelength band (or wavelength), and is manufactured by a conventional method. The pitch of the interference fringes formed on the reflective volume hologram diffraction grating is constant, and the interference fringes are linear and parallel to the Y direction.
 図34Bに反射型体積ホログラム回折格子の拡大した模式的な一部断面図を示す。反射型体積ホログラム回折格子には、傾斜角(スラント角)φを有する干渉縞が形成されている。ここで、傾斜角φとは、反射型体積ホログラム回折格子の表面と干渉縞の成す角度を指す。干渉縞は、反射型体積ホログラム回折格子の内部から表面に亙り、形成されている。干渉縞は、ブラッグ条件を満たしている。ここで、ブラッグ条件とは、以下の式(A)を満足する条件を指す。式(A)中、mは正の整数、λは波長、dは格子面のピッチ(干渉縞を含む仮想平面の法線方向の間隔)、Θは干渉縞へ入射する角度の余角を意味する。また、入射角ψにて回折格子部材に光が侵入した場合の、Θ、傾斜角φ、入射角ψの関係は、式(B)のとおりである。 FIG. 34B shows an enlarged schematic partial cross-sectional view of the reflective volume hologram diffraction grating. Interference fringes having an inclination angle (slant angle) φ are formed on the reflection type volume hologram diffraction grating. Here, the inclination angle φ refers to the angle formed by the interference fringes with the surface of the reflective volume hologram diffraction grating. The interference fringes are formed from the inside of the reflective volume hologram diffraction grating to the surface. The interference fringes satisfy the Bragg condition. Here, the Bragg condition refers to a condition that satisfies the following equation (A). In the formula (A), m is a positive integer, λ is the wavelength, d is the pitch of the lattice plane (the interval in the normal direction of the virtual plane including the interference fringes), and Θ is the margin of the angle incident on the interference fringes. do. Further, the relationship between Θ, the inclination angle φ, and the incident angle ψ when light enters the diffraction grating member at the incident angle ψ is as shown in the equation (B).
m・λ=2・d・sin(Θ)  (A)
Θ=90°-(φ+ψ)     (B)
m ・ λ = 2 ・ d ・ sin (Θ) (A)
Θ = 90 °-(φ + ψ) (B)
 実施例5において、画像形成装置110を構成する表示装置111は、実施例1~実施例5の表示装置から構成される。画像形成装置110の全体は筐体112内に納められている。尚、表示装置111から出射された画像の表示寸法、表示位置等を制御するために表示装置111から出射された画像が通過する光学系を配置してもよい。如何なる光学系を配置するかは、頭部装着型ディスプレイや画像形成装置110に要求される仕様に依存する。1つの表示装置111から両眼に画像を送出する形式の頭部装着型ディスプレイや画像形成装置にあっては、図3Bや図18A、図18Bに示した実施例1あるいは実施例2の表示装置を採用すればよい。 In the fifth embodiment, the display device 111 constituting the image forming apparatus 110 is composed of the display devices of the first to fifth embodiments. The entire image forming apparatus 110 is housed in the housing 112. An optical system through which the image emitted from the display device 111 passes may be arranged in order to control the display dimension, the display position, and the like of the image emitted from the display device 111. What kind of optical system is arranged depends on the specifications required for the head-mounted display and the image forming apparatus 110. In a head-mounted display or an image forming device in which an image is transmitted from one display device 111 to both eyes, the display device according to the first or second embodiment shown in FIGS. 3B, 18A, and 18B. Should be adopted.
 フレーム140は、観察者150の正面に配置されるフロント部141と、フロント部141の両端に蝶番142を介して回動自在に取り付けられた2つのテンプル部143と、各テンプル部143の先端部に取り付けられたモダン部(先セル、耳あて、イヤーパッドとも呼ばれる)144から成る。また、ノーズパッド140’が取り付けられている。即ち、フレーム140及びノーズパッド140’の組立体は、基本的には、通常の眼鏡と略同じ構造を有する。更には、各筐体112が、取付け部材149によってテンプル部143に取り付けられている。フレーム140は、金属又はプラスチックから作製されている。尚、各筐体112は、取付け部材149によってテンプル部143に着脱自在に取り付けられていてもよい。また、眼鏡を所有し、装着している観察者に対しては、観察者の所有する眼鏡のフレーム140のテンプル部143に、各筐体112を取付け部材149によって着脱自在に取り付けてもよい。各筐体112を、テンプル部143の外側に取り付けてもよいし、テンプル部143の内側に取り付けてもよい。あるいは又、フロント部141に備えられたリムに、導光板121を嵌め込んでもよい。 The frame 140 includes a front portion 141 arranged in front of the observer 150, two temple portions 143 rotatably attached to both ends of the front portion 141 via hinges 142, and a tip portion of each temple portion 143. It consists of 144 modern parts (also known as hinges, earmuffs, and earpads) attached to. In addition, a nose pad 140'is attached. That is, the assembly of the frame 140 and the nose pad 140'has basically the same structure as ordinary eyeglasses. Further, each housing 112 is attached to the temple portion 143 by the attachment member 149. The frame 140 is made of metal or plastic. Each housing 112 may be detachably attached to the temple portion 143 by the attachment member 149. Further, for the observer who owns and wears the spectacles, each housing 112 may be detachably attached to the temple portion 143 of the frame 140 of the spectacles owned by the observer by the attachment member 149. Each housing 112 may be attached to the outside of the temple portion 143 or may be attached to the inside of the temple portion 143. Alternatively, the light guide plate 121 may be fitted into the rim provided on the front portion 141.
 更には、一方の画像形成装置110から延びる配線(信号線や電源線等)145が、テンプル部143、及び、モダン部144の内部を介して、モダン部144の先端部から外部に延び、制御装置(制御回路、制御手段)148に接続されている。更には、各画像形成装置110はヘッドホン部146を備えており、各画像形成装置110から延びるヘッドホン部用配線146’が、テンプル部143、及び、モダン部144の内部を介して、モダン部144の先端部からヘッドホン部146へと延びている。ヘッドホン部用配線146’は、より具体的には、モダン部144の先端部から、耳介(耳殻)の後ろ側を回り込むようにしてヘッドホン部146へと延びている。このような構成にすることで、ヘッドホン部146やヘッドホン部用配線146’が乱雑に配置されているといった印象を与えることがなく、すっきりとした頭部装着型ディスプレイとすることができる。 Further, the wiring (signal line, power supply line, etc.) 145 extending from one of the image forming apparatus 110 extends to the outside from the tip portion of the modern portion 144 via the temple portion 143 and the inside of the modern portion 144 to control. It is connected to a device (control circuit, control means) 148. Further, each image forming apparatus 110 includes a headphone portion 146, and the headphone portion wiring 146'extending from each image forming apparatus 110 passes through the temple portion 143 and the inside of the modern portion 144, and the modern portion 144. It extends from the tip of the headphone to the headphone unit 146. More specifically, the headphone portion wiring 146'extends from the tip portion of the modern portion 144 to the headphone portion 146 so as to wrap around the back side of the pinna (auricle). With such a configuration, it is possible to obtain a neat head-mounted display without giving the impression that the headphone portion 146 and the wiring for the headphone portion 146'are arranged randomly.
 配線(信号線や電源線等)145は、上述したとおり、制御装置(制御回路)148に接続されており、制御装置148において画像表示のための処理がなされる。制御装置148は周知の回路から構成することができる。 As described above, the wiring (signal line, power supply line, etc.) 145 is connected to the control device (control circuit) 148, and the control device 148 performs processing for displaying an image. The control device 148 can be composed of a well-known circuit.
 フロント部141の中央部分141’に、必要に応じて、CCDあるいはCMOSセンサから成る固体撮像素子とレンズ(これらは図示せず)とから構成されたカメラ147が、適切な取付部材(図示せず)によって取り付けられている。カメラ147からの信号は、カメラ147から延びる配線(図示せず)を介して制御装置(制御回路)148に送出される。 At the central portion 141'of the front portion 141, a camera 147 composed of a solid-state image sensor consisting of a CCD or CMOS sensor and a lens (these are not shown), if necessary, is provided with an appropriate mounting member (not shown). ) Is attached. The signal from the camera 147 is sent to the control device (control circuit) 148 via a wiring (not shown) extending from the camera 147.
 実施例5の画像表示装置にあっては、或る瞬間に表示装置111から出射された光(例えば、1画素分あるいは1副画素分の大きさに相当する)は、平行光とされる。そして、この光は、観察者150の瞳151(具体的には、水晶体)に到達し、水晶体を通過した光は、最終的に、観察者150の瞳151の網膜において結像する。 In the image display device of the fifth embodiment, the light emitted from the display device 111 at a certain moment (for example, corresponding to the size of one pixel or one sub-pixel) is regarded as parallel light. Then, this light reaches the pupil 151 (specifically, the crystalline lens) of the observer 150, and the light that has passed through the crystalline lens is finally imaged in the retina of the pupil 151 of the observer 150.
 以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定するものではない。実施例において説明した表示装置(有機EL表示装置)、発光素子(有機EL素子)の構成、構造の構成は例示であり、適宜、変更することができるし、表示装置の製造方法も例示であり、適宜、変更することができる。 Although the present disclosure has been described above based on preferred examples, the present disclosure is not limited to these examples. The configuration and structure of the display device (organic EL display device) and the light emitting element (organic EL element) described in the examples are examples, which can be changed as appropriate, and the manufacturing method of the display device is also an example. , Can be changed as appropriate.
 実施例においては、第1領域及び第3領域を平坦化層の一部(平坦化層の延在部)から構成したが、これに限定されるものではなく、第1領域を構成する材料を「材料A」、第3領域を構成する材料を「材料B」、平坦化層を構成する材料を「材料C」としたとき、
[1]材料A=材料B=材料C
[2]材料A≠材料B 及び 材料A=材料C 及び 材料B=材料C
[3]材料A=材料B 及び 材料A≠材料C 及び 材料B=材料C
[4]材料A=材料B 及び 材料A=材料C 及び 材料B≠材料C
[5]材料A≠材料B 及び 材料A=材料C 及び 材料B≠材料C
[6]材料A=材料B 及び 材料A≠材料C 及び 材料B≠材料C
[7]材料A≠材料B 及び 材料A≠材料C 及び 材料B=材料C
[8]材料A≠材料B 及び 材料A≠材料C 及び 材料B≠材料C
の組合せを挙げることができる。ここで、「=」は屈折率が等しい材料を意味し、「≠」は屈折率が異なる材料を意味する。
In the embodiment, the first region and the third region are composed of a part of the flattening layer (extending part of the flattening layer), but the material is not limited to this, and the material constituting the first region is used. When "Material A", the material constituting the third region is "Material B", and the material constituting the flattening layer is "Material C",
[1] Material A = Material B = Material C
[2] Material A ≠ Material B and Material A = Material C and Material B = Material C
[3] Material A = Material B and Material A ≠ Material C and Material B = Material C
[4] Material A = Material B and Material A = Material C and Material B ≠ Material C
[5] Material A ≠ Material B and Material A = Material C and Material B ≠ Material C
[6] Material A = Material B and Material A ≠ Material C and Material B ≠ Material C
[7] Material A ≠ Material B and Material A ≠ Material C and Material B = Material C
[8] Material A ≠ Material B and Material A ≠ Material C and Material B ≠ Material C
Combinations can be mentioned. Here, "=" means materials having the same refractive index, and "≠" means materials having different refractive indexes.
 平坦化層がカラーフィルタ層としての機能を有する形態とすることもできる。即ち、このような機能を有する平坦化層を、周知のカラーレジスト材料から構成すればよい。このように平坦化層をカラーフィルタ層としても機能させることで、有機層と平坦化層とを近接して配置することが可能となり、発光素子から出射する光を広角化させても混色の防止を効果的に図ることができ、視野角特性が向上する。 The flattening layer can also have a function as a color filter layer. That is, the flattening layer having such a function may be made of a well-known color resist material. By making the flattening layer also function as a color filter layer in this way, the organic layer and the flattening layer can be arranged close to each other, and even if the light emitted from the light emitting element is widened, color mixing is prevented. Can be effectively achieved, and the viewing angle characteristics are improved.
 また、各発光素子10から出射され、光出射方向制御部材50を通過した光は、平行光である構成とすることもできる。 Further, the light emitted from each light emitting element 10 and passing through the light emitting direction control member 50 may be configured to be parallel light.
 あるいは又、表示装置の変形例-1を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図を図23に示し、発光素子(但し、基準点から離れて位置する)の模式的な一部断面図を図24に示すように、光出射方向制御部材50’はレンズ状である形態とすることができる。具体的には、光出射方向制御部材50の第2領域52’は、半球状、あるいは、球の一部から構成されている形態とすることができる。尚、図示した例では、光出射方向制御部材50’を、平凸レンズとしたが、これに限定するものではなく、両凸レンズとすることもできる。第1領域51’及び第3領域53’は、平坦化層35の延在部によって構成されている。 Alternatively, FIG. 23 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the modification-1 of the display device, and the light emitting element (however, the position away from the reference point) is shown in FIG. As shown in FIG. 24, the light emission direction control member 50'can be in the form of a lens. Specifically, the second region 52'of the light emission direction control member 50 may be in the form of a hemisphere or a part of the sphere. In the illustrated example, the light emission direction control member 50'is a plano-convex lens, but the present invention is not limited to this, and a biconvex lens may be used. The first region 51'and the third region 53'are composed of extending portions of the flattening layer 35.
 実施例1の表示装置の変形例-2を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図を図25に示し、発光素子(但し、基準点から離れて位置する)の模式的な一部断面図を図26に示すように、隣接する発光素子のカラーフィルタ層CFの間には光吸収層(ブラックマトリクス層)BMが形成されている形態とすることができる。ブラックマトリクス層BMは、例えば、黒色の着色剤を混入した光学濃度が1以上の黒色の樹脂膜(具体的には、例えば、黒色のポリイミド系樹脂)から成る。また、実施例1の表示装置の変形例-3を構成する発光素子(但し、基準点内に位置する)の模式的な一部断面図を図27に示し、発光素子(但し、基準点から離れて位置する)の模式的な一部断面図を図28に示すように、隣接する発光素子の光出射方向制御部材50の間には(即ち、第3領域53の一部には)光吸収層(ブラックマトリクス層)BM’が形成されている形態とすることもできる。また、これらの変形例-2及び変形例-3を組み合わせることもできる。尚、変形例-1、変形例-2、変形例-3を、他の実施例に適用することもできる。 FIG. 25 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the modified example-2 of the display device of the first embodiment, showing the light emitting element (however, away from the reference point). As shown in FIG. 26, a schematic partial cross-sectional view of (located) is formed so that a light absorption layer (black matrix layer) BM is formed between the color filter layer CFs of adjacent light emitting elements. Can be done. The black matrix layer BM is made of, for example, a black resin film (specifically, for example, a black polyimide resin) having an optical density of 1 or more mixed with a black colorant. Further, FIG. 27 shows a schematic partial cross-sectional view of the light emitting element (provided that it is located within the reference point) constituting the modification 3 of the display device of the first embodiment, showing the light emitting element (however, from the reference point). As shown in FIG. 28, a schematic partial cross-sectional view of (located apart) is light between the light emitting direction control members 50 of the adjacent light emitting elements (that is, in a part of the third region 53). It is also possible to form a form in which an absorption layer (black matrix layer) BM'is formed. Further, these Modifications 2 and 3 can be combined. It should be noted that the modified example-1, the modified example-2, and the modified example-3 can be applied to other examples.
 実施例においては、専ら、白色発光素子とカラーフィルタ層の組合せから3つの副画素から1つの画素を構成したが、例えば、白色を出射する発光素子を加えた4つの副画素から1つの画素を構成してもよい。この場合、白色を出射する発光素子にあっては透明なフィルタを配設すればよい。実施例においては、発光素子駆動部をMOSFETから構成したが、TFTから構成することもできる。第1電極や第2電極を、単層構造としてもよいし、多層構造としてもよい。 In the embodiment, one pixel is composed of three sub-pixels exclusively from the combination of the white light emitting element and the color filter layer. For example, one pixel is formed from four sub-pixels including the light emitting element that emits white. It may be configured. In this case, a transparent filter may be provided for the light emitting element that emits white light. In the embodiment, the light emitting element drive unit is composed of MOSFET, but it can also be composed of TFT. The first electrode and the second electrode may have a single-layer structure or a multi-layer structure.
 或る発光素子に隣接した発光素子に、或る発光素子から出射した光が侵入し、光学的クロストークが発生することを防止するために、発光素子と発光素子との間に遮光部を設けてもよい。即ち、発光素子と発光素子との間に溝部を形成し、この溝部を遮光材料で埋め込んで遮光部を形成してもよい。このように遮光部を設ければ、或る発光素子から出射した光が隣接発光素子に侵入する割合を低減させることができ、混色が発生し、画素全体の色度が所望の色度からずれてしまうといった現象の発生を抑制することができる。そして、混色を防止することができるので、画素を単色発光させたときの色純度が増加し、色度点が深くなる。それ故、色域が広くなり、表示装置の色表現の幅が広がる。また、色純度を向上させるため各画素に対してカラーフィルタ層を配置しているが、発光素子の構成に依っては、カラーフィルタ層の薄膜化若しくはカラーフィルタ層の省略が可能となり、カラーフィルタ層で吸収されていた光を取り出すことが可能となり、結果として発光効率の向上につながる。あるいは又、光吸収層(ブラックマトリクス層)に遮光性を付与してもよい。 A light-shielding portion is provided between the light-emitting element and the light-emitting element in order to prevent light emitted from the light-emitting element from entering the light-emitting element adjacent to the light-emitting element and causing optical crosstalk. You may. That is, a groove may be formed between the light emitting element and the light emitting element, and the groove may be embedded with a light shielding material to form a light shielding portion. By providing the light-shielding portion in this way, the rate at which the light emitted from a certain light-emitting element penetrates into the adjacent light-emitting element can be reduced, color mixing occurs, and the chromaticity of the entire pixel deviates from the desired chromaticity. It is possible to suppress the occurrence of such a phenomenon. Then, since color mixing can be prevented, the color purity when the pixels are made to emit a single color is increased, and the chromaticity point is deepened. Therefore, the color gamut is widened, and the range of color expression of the display device is widened. Further, although a color filter layer is arranged for each pixel in order to improve color purity, depending on the configuration of the light emitting element, the color filter layer can be thinned or the color filter layer can be omitted, and the color filter can be omitted. It becomes possible to take out the light absorbed by the layer, and as a result, the light emission efficiency is improved. Alternatively, the light absorption layer (black matrix layer) may be provided with a light-shielding property.
 本開示の表示装置をレンズ交換式一眼レフレックスタイプのデジタルスチルカメラに適用することができる。デジタルスチルカメラの正面図を図35Aに示し、背面図を図35Bに示す。このレンズ交換式一眼レフレックスタイプのデジタルスチルカメラは、例えば、カメラ本体部(カメラボディ)211の正面右側に交換式の撮影レンズユニット(交換レンズ)212を有し、正面左側に撮影者が把持するためのグリップ部213を有している。そして、カメラ本体部211の背面略中央にはモニタ214が設けられている。モニタ214の上部には、電子ビューファインダ(接眼窓)215が設けられている。撮影者は、電子ビューファインダ215を覗くことによって、撮影レンズユニット212から導かれた被写体の光像を視認して構図決定を行うことが可能である。このような構成のレンズ交換式一眼レフレックスタイプのデジタルスチルカメラにおいて、電子ビューファインダ215として本開示の表示装置を用いることができる。 The display device of the present disclosure can be applied to an interchangeable lens type single-lens reflex type digital still camera. A front view of the digital still camera is shown in FIG. 35A, and a rear view is shown in FIG. 35B. This interchangeable lens single-lens reflex type digital still camera has, for example, an interchangeable photographing lens unit (interchangeable lens) 212 on the front right side of the camera body (camera body) 211, and is gripped by the photographer on the front left side. It has a grip portion 213 for using the lens. A monitor 214 is provided substantially in the center of the back surface of the camera body 211. An electronic viewfinder (eyepiece window) 215 is provided above the monitor 214. By looking into the electronic viewfinder 215, the photographer can visually recognize the light image of the subject guided by the photographing lens unit 212 and determine the composition. In an interchangeable lens single-lens reflex type digital still camera having such a configuration, the display device of the present disclosure can be used as the electronic viewfinder 215.
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《表示装置》
 発光部、及び、
 発光部から出射された光が通過する光出射方向制御部材、
を含む発光素子を、複数、備えた表示パネルを有する表示装置であって、
 各発光素子において、
 光出射方向制御部材は、第1領域、及び、第1領域を取り囲む第2領域から構成されており、
 第1領域を構成する材料の屈折率の値n1は、第2領域を構成する材料の屈折率の値n2と異なる表示装置。
[A02]光出射方向制御部材は平板状であり、
 光出射方向制御部材の外縁部に接して、外縁部より外側に位置する領域は、第2領域を構成する材料の屈折率の値n2よりも小さい屈折率の値n3を有する材料で占められている[A01]に記載の表示装置。
[A03]光出射方向制御部材はレンズ状である[A01]に記載の表示装置。
[A04]n1<n2を満足する[A01]乃至[A03]のいずれか1項に記載の表示装置。
[A05]n1>n2を満足する[A01]乃至[A03]のいずれか1項に記載の表示装置。
[A06]発光素子の表示パネルにおける位置に依存して、発光部の中心から出射され、光出射方向制御部材を通過した光の光出射方向制御部材からの出射方向が異なる[A01]乃至[A05]のいずれか1項に記載の表示装置。
[A07]発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0としたとき、表示パネルに備えられた発光素子の少なくとも一部において、距離D0の値は0でない[A06]に記載の表示装置。
[A08]基準点が設定されており、
 表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、発光部の中心から出射され、光出射方向制御部材を通過した光の光出射方向制御部材からの出射方向が設定される[A01]乃至[A07]のいずれか1項に記載の表示装置。
[A09]距離D0の値は距離D1の値に依存する[A08]に記載の表示装置。
[A10]基準点が設定されており、
 表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、(n2-n1)の値が設定される[A01]乃至[A09]のいずれか1項に記載の表示装置。
[A11]基準点が設定されており、
 表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、光出射方向制御部材の厚さ方向に垂直な仮想平面(仮想水平面)で光出射方向制御部材を切断したときの第1領域の断面形状(水平方向断面形状)が設定される[A01]乃至[A10]のいずれか1項に記載の表示装置。
[A12]第1領域の水平方向断面形状は、三角形、四角形、六角形及び八角形を含む多角形(正多角形を含む)、並びに、円形、楕円形、長円形、キャレット記号に相当する形状、扇形及びランボルト環に相当する形状のいずれかである[A01]乃至[A11]のいずれか1項に記載の表示装置。
[A13]基準点は表示パネル内に想定されている[A08]乃至[A12]のいずれか1項に記載の表示装置。
[A14](A)基準点は、表示パネルの中心領域に位置していない構成
(B)基準点が1つ想定されている構成
(C)複数の基準点が想定されている構成
(D)基準点が1つ想定されている場合、基準点は表示パネルの中心領域には含まれず、基準点が複数想定されている場合、少なくとも1つの基準点は表示パネルの中心領域には含まれない構成
のいずれかである[A13]に記載の表示装置。
[A15]一部の発光素子において距離D0の値は0であり、残りの発光素子において距離D0の値は0でない[A13]又は[A14]に記載の表示装置。
[A16]基準点は表示パネルの外側に想定されている[A08]乃至[A12]のいずれか1項に記載の表示装置。
[A17](E)基準点が1つ想定されている構成
(F)複数の基準点が想定されている構成
のいずれかである[A16]に記載の表示装置。
[A18]各発光素子から出射され、光出射方向制御部材を通過した光は、表示装置の外部の空間の或る領域に収束する(集光される)[A16]又は[A17]に記載の表示装置。
[A19]各発光素子から出射され、光出射方向制御部材を通過した光は、表示装置の外部の空間において発散する[A16]乃至[A18]のいずれか1項に記載の表示装置。
[A20]全ての発光素子において距離D0の値は0でない[A16]乃至[A19]のいずれか1項に記載の表示装置。
[A21]各発光素子から出射され、光出射方向制御部材を通過した光は、平行光である[A01]乃至[A05]のいずれか1項に記載の表示装置。
[A22]光出射方向制御部材の厚さ方向に垂直な仮想平面で光出射方向制御部材を切断したときの第1領域の断面形状は、表示パネルに備えられた発光素子の少なくとも一部において、光出射方向制御部材の厚さ方向に沿って、一定であり、又は、変化する[A01]乃至[A21]のいずれか1項に記載の表示装置。
[A23]表示パネルに備えられた発光素子の少なくとも一部において、第1領域の水平方向断面形状は、光出射方向制御部材の光入射面から光出射面に向かって大きくなり、又は、小さくなる[A22]に記載の表示装置。
[A24]表示パネルに備えられた発光素子の少なくとも一部において、光出射方向制御部材の第1領域の重心を通る法線と、光出射方向制御部材の第1領域の重心を通る第1領域の軸線とは、0度を超える角度で交わっている[A01]乃至[A23]のいずれか1項に記載の表示装置。
[A25]第1領域の深さをH1、光出射方向制御部材の厚さをH0としたとき、
0.5≦H1/H0≦1.0
を満足する[A01]乃至[A24]のいずれか1項に記載の表示装置。
[A26]第1領域の下方は第2領域を構成する材料で占められている[A25]に記載の表示装置。
[A27]第1領域の上方は第2領域を構成する材料で占められている[A25]に記載の表示装置。
[A28]H1/H0の値は距離D1の値に依存する[A25]乃至[A27]のいずれか1項に記載の表示装置。
[A29]基準点が設定されており、
 複数の発光素子は、第1の方向及び第1の方向とは異なる第2の方向に配列されており、
 発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0、基準点から発光部の中心を通る法線までの距離をD1とし、
 距離D0の第1の方向及び第2の方向のそれぞれの値をD0-X,D0-Yとし、距離D1の第1の方向及び第2の方向のそれぞれの値をD1-X,D1-Yとしたとき、
 D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは線形に変化し、又は、
 D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは非線形に変化し、又は、
 D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは線形に変化し、又は、
 D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは非線形に変化する[A01]乃至[A28]のいずれか1項に記載の表示装置。
[A30]基準点が設定されており、
 発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0、基準点から発光部の中心を通る法線までの距離をD1としたとき、距離D1の値が増加するに従い、距離D0の値が増加する[A01]乃至[A29]のいずれか1項に記載の表示装置。
[A31]発光素子に備えられた発光部は、有機エレクトロルミネッセンス層を含む[A01]乃至[A30]のいずれか1項に記載の表示装置。
[A32]発光部は発光ダイオード(LED)を含む[A01]乃至[A30]のいずれか1項に記載の表示装置。
[B01]《発光素子》
 発光部、及び、
 発光部から出射された光が通過する光出射方向制御部材、
を含み、
 光出射方向制御部材は、第1領域、及び、第1領域を取り囲む第2領域から構成されており、
 第1領域を構成する材料の屈折率の値n1は、第2領域を構成する材料の屈折率の値n2と異なる発光素子。
[B02]光出射方向制御部材は平板状であり、
 光出射方向制御部材の外縁部に接して、外縁部より外側に位置する領域は、第2領域を構成する材料の屈折率の値n2よりも小さい屈折率の値n3を有する材料で占められている[B01]に記載の発光素子。
[B03]光出射方向制御部材はレンズ状である[B01]に記載の発光素子。
[B04]n1<n2を満足する[B01]乃至[B03]のいずれか1項に記載の発光素子。
[B05]n1>n2を満足する[B01]乃至[B03]のいずれか1項に記載の発光素子。
[B06]光出射方向制御部材の厚さ方向に垂直な仮想平面(仮想水平面)で光出射方向制御部材を切断したときの第1領域の断面形状(水平方向断面形状)は、三角形、四角形、六角形及び八角形を含む多角形(正多角形を含む)、並びに、円形、楕円形、長円形、キャレット記号に相当する形状、扇形及びランボルト環に相当する形状のいずれかである[B01]乃至[B05]のいずれか1項に記載の発光素子。
[B07]第1領域の水平方向断面形状は、光出射方向制御部材の厚さ方向に沿って、一定であり、又は、変化する[B01]乃至[B06]のいずれか1項に記載の発光素子。
[B08]第1領域の水平方向断面形状は、光出射方向制御部材の光入射面から光出射面に向かって大きくなり、又は、小さくなる[B07]に記載の発光素子。
[B09]光出射方向制御部材の第1領域の重心を通る法線と、光出射方向制御部材の第1領域の重心を通る第1領域の軸線とは、0度を超える角度で交わっている[B01]乃至[B08]のいずれか1項に記載の発光素子。
[B10]第1領域の深さをH1、光出射方向制御部材の厚さをH0としたとき、
0.5≦H1/H0≦1.0
を満足する[B01]乃至[B09]のいずれか1項に記載の発光素子。
[B11]第1領域の下方は第2領域を構成する材料で占められている[B10]に記載の発光素子。
[B12]第1領域の上方は第2領域を構成する材料で占められている[B10]に記載の発光素子。
[B13]発光素子に備えられた発光部は、有機エレクトロルミネッセンス層を含む[B01]乃至[B12]のいずれか1項に記載の発光素子。
[B14]発光部は発光ダイオード(LED)を含む[B01]乃至[B12]のいずれか1項に記載の発光素子。
The present disclosure may also have the following configuration.
[A01] << Display device >>
Light emitting part and
Light emission direction control member through which the light emitted from the light emitting unit passes
A display device having a display panel provided with a plurality of light emitting elements including the above.
In each light emitting element
The light emission direction control member is composed of a first region and a second region surrounding the first region.
A display device in which the refractive index value n 1 of the material constituting the first region is different from the refractive index value n 2 of the material constituting the second region.
[A02] The light emission direction control member has a flat plate shape.
The region located outside the outer edge portion in contact with the outer edge portion of the light emission direction control member is occupied by a material having a refractive index value n 3 smaller than the refractive index value n 2 of the material constituting the second region. The display device according to [A01].
[A03] The display device according to [A01], wherein the light emission direction control member has a lens shape.
[A04] The display device according to any one of [A01] to [A03], which satisfies n 1 <n 2.
The display device according to any one of [A01] to [A03], which satisfies [A05] n 1 > n 2.
[A06] Depending on the position of the light emitting element on the display panel, the emission direction of the light emitted from the center of the light emitting unit and passed through the light emission direction control member is different from the light emission direction control member [A01] to [A05]. ] The display device according to any one of the items.
[A07] When the distance between the normal passing through the center of the light emitting unit and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , at least one of the light emitting elements provided in the display panel. The display device according to [A06], wherein the value of the distance D 0 is not 0.
[A08] A reference point is set,
At least a part of the light emitting element provided in the display panel is emitted from the center of the light emitting portion and passes through the light emitting direction control member depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion. The display device according to any one of [A01] to [A07], wherein the emission direction of the light emitted from the light emission direction control member is set.
[A09] The display device according to [A08], wherein the value of the distance D 0 depends on the value of the distance D 1.
[A10] A reference point is set,
In at least a part of the light emitting elements provided in the display panel, the value of (n 2- n 1 ) is set depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion [A01]. ] To [A09]. The display device according to any one of the items.
[A11] A reference point is set,
In at least a part of the light emitting elements provided in the display panel, a virtual plane perpendicular to the thickness direction of the light emitting direction control member depends on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion. The display device according to any one of [A01] to [A10], wherein the cross-sectional shape (horizontal cross-sectional shape) of the first region when the light emission direction control member is cut in the virtual horizontal plane) is set.
[A12] The horizontal cross-sectional shape of the first region is a polygon including a triangle, a quadrangle, a hexagon and an octagon (including a regular polygon), and a shape corresponding to a circle, an ellipse, an oval, and a carryt symbol. The display device according to any one of [A01] to [A11], which has a shape corresponding to a fan shape or a quadrangular ring.
[A13] The display device according to any one of [A08] to [A12] assumed in the display panel as the reference point.
[A14] (A) The reference point is not located in the central region of the display panel (B) One reference point is assumed (C) Multiple reference points are assumed (D) If one reference point is assumed, the reference point is not included in the central area of the display panel, and if multiple reference points are assumed, at least one reference point is not included in the central area of the display panel. The display device according to [A13], which is one of the configurations.
[A15] value of the distance D 0 in a part of the light-emitting element is 0, the display device according to the value of the distance D 0 in the remaining light-emitting element is not 0 [A13] or [A14].
[A16] The display device according to any one of [A08] to [A12], wherein the reference point is assumed to be outside the display panel.
[A17] (E) Configuration in which one reference point is assumed (F) The display device according to [A16], which is one of the configurations in which a plurality of reference points are assumed.
[A18] The light emitted from each light emitting element and passing through the light emission direction control member is converged (concentrated) in a certain region of the space outside the display device according to [A16] or [A17]. Display device.
[A19] The display device according to any one of [A16] to [A18], wherein the light emitted from each light emitting element and passing through the light emission direction control member is emitted in the space outside the display device.
[A20] The display device according to any one of [A16] to [A19], wherein the value of the distance D 0 is not 0 in all the light emitting elements.
[A21] The display device according to any one of [A01] to [A05], wherein the light emitted from each light emitting element and passing through the light emission direction control member is parallel light.
[A22] The cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane perpendicular to the thickness direction of the light emission direction control member is determined in at least a part of the light emitting element provided in the display panel. The display device according to any one of [A01] to [A21], which is constant or changes along the thickness direction of the light emission direction control member.
[A23] In at least a part of the light emitting element provided in the display panel, the horizontal cross-sectional shape of the first region becomes larger or smaller from the light incident surface to the light emitting surface of the light emitting direction control member. The display device according to [A22].
[A24] In at least a part of the light emitting element provided in the display panel, a normal line passing through the center of gravity of the first region of the light emission direction control member and a first region passing through the center of gravity of the first region of the light emission direction control member. The display device according to any one of [A01] to [A23], which intersects the axis of No. 1 at an angle exceeding 0 degrees.
[A25] When the depth of the first region is H 1 and the thickness of the light emission direction control member is H 0 ,
0.5 ≤ H 1 / H 0 ≤ 1.0
The display device according to any one of [A01] to [A24], which satisfies the above.
[A26] The display device according to [A25], wherein the lower part of the first region is occupied by the material constituting the second region.
[A27] The display device according to [A25], wherein the upper part of the first region is occupied by the material constituting the second region.
[A28] The display device according to any one of [A25] to [A27], wherein the value of H 1 / H 0 depends on the value of the distance D 1.
[A29] A reference point is set,
The plurality of light emitting elements are arranged in a first direction and a second direction different from the first direction.
The distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , and the distance from the reference point to the normal passing through the center of the light emitting part is D 1 year,
The values of the first direction and the second direction of the distance D 0 are D 0-X and D 0-Y, and the values of the first direction and the second direction of the distance D 1 are D 1-. When X and D 1-Y are used
D 0-X with respect to the change in D 1-X is changed linearly, D 0-Y with respect to the change in D 1-Y changes linearly, or,
D 0-X with respect to the change in D 1-X is changed linearly, D 0-Y with respect to the change in D 1-Y changes nonlinearly, or,
D 0-X with respect to the change in D 1-X is changed to a non-linear, D 0-Y with respect to the change in D 1-Y changes linearly, or,
D 0-X with respect to the change in D 1-X is changed to a non-linear, D 0-Y with respect to the change in D 1-Y in any one of varies nonlinearly [A01] to [A28] The display device described.
[A30] A reference point is set,
The distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , and the distance from the reference point to the normal passing through the center of the light emitting part is D 1 The display device according to any one of [A01] to [A29], wherein the value of the distance D 0 increases as the value of the distance D 1 increases.
[A31] The display device according to any one of [A01] to [A30], wherein the light emitting unit provided in the light emitting element includes an organic electroluminescence layer.
[A32] The display device according to any one of [A01] to [A30], wherein the light emitting unit includes a light emitting diode (LED).
[B01] << Light emitting element >>
Light emitting part and
Light emission direction control member through which the light emitted from the light emitting unit passes
Including
The light emission direction control member is composed of a first region and a second region surrounding the first region.
A light emitting element in which the refractive index value n 1 of the material constituting the first region is different from the refractive index value n 2 of the material constituting the second region.
[B02] The light emission direction control member has a flat plate shape and has a flat plate shape.
The region located outside the outer edge portion in contact with the outer edge portion of the light emission direction control member is occupied by a material having a refractive index value n 3 smaller than the refractive index value n 2 of the material constituting the second region. The light emitting element according to [B01].
[B03] The light emitting element according to [B01], wherein the light emission direction control member has a lens shape.
[B04] The light emitting device according to any one of [B01] to [B03], which satisfies n 1 <n 2.
The light emitting device according to any one of [B01] to [B03], which satisfies [B05] n 1 > n 2.
[B06] When the light emission direction control member is cut in a virtual plane (virtual horizontal plane) perpendicular to the thickness direction of the light emission direction control member, the cross-sectional shape (horizontal cross-sectional shape) of the first region is a triangle, a quadrangle, or a polygon. It is one of polygons including hexagons and octagons (including regular polygons), and shapes corresponding to circles, ellipses, oval, carryt symbols, fan shapes and Rambolt rings [B01]. The light emitting element according to any one of [B05].
[B07] The light emission according to any one of [B01] to [B06], wherein the horizontal cross-sectional shape of the first region is constant or changes along the thickness direction of the light emission direction control member. element.
[B08] The light emitting element according to [B07], wherein the horizontal cross-sectional shape of the first region becomes larger or smaller from the light incident surface to the light emitting surface of the light emitting direction control member.
[B09] The normal line passing through the center of gravity of the first region of the light emission direction control member and the axis line of the first region passing through the center of gravity of the first region of the light emission direction control member intersect at an angle exceeding 0 degrees. The light emitting element according to any one of [B01] to [B08].
[B10] When the depth of the first region is H 1 and the thickness of the light emission direction control member is H 0 ,
0.5 ≤ H 1 / H 0 ≤ 1.0
The light emitting device according to any one of [B01] to [B09], which satisfies the above.
[B11] The light emitting element according to [B10], wherein the lower part of the first region is occupied by the material constituting the second region.
[B12] The light emitting element according to [B10], wherein the upper part of the first region is occupied by the material constituting the second region.
[B13] The light emitting element according to any one of [B01] to [B12], wherein the light emitting unit provided in the light emitting element includes an organic electroluminescence layer.
[B14] The light emitting element according to any one of [B01] to [B12], wherein the light emitting unit includes a light emitting diode (LED).
10,10R,10G,10B・・・発光素子、11・・・第1基板、20・・・トランジスタ、21・・・ゲート電極、22・・・ゲート絶縁層、23・・・チャネル形成領域、24・・・ソース/ドレイン領域、25・・・素子分離領域、26・・・基体(層間絶縁層)、27・・・コンタクトプラグ、28・・・絶縁層、30・・・発光部、31・・・第1電極、32・・・第2電極、33・・・有機層、34・・・保護層、35・・・平坦化層、36・・・封止樹脂層、41・・・第2基板、50,50’・・・光出射方向制御部材、51,51’・・・第1領域、52,52’・・・第2領域、53,53’・・・第3領域、54・・・光出射方向制御部材の外縁部、100・・・画像表示装置、110・・・画像形成装置、111・・・表示装置、112・・・筐体、121・・・導光板、122・・・導光板の第1面、123・・・導光板の第2面、131・・・第1偏向手段、132・・・第2偏向手段、140・・・フレーム、140’・・・ノーズパッド、141・・・フロント部、141’・・・フロント部の中央部分、142・・・蝶番、143・・・テンプル部、144・・・モダン部、145・・・配線、146・・・ヘッドホン部、146’・・・ヘッドホン部用配線、147・・・カメラ、148・・・制御装置(制御回路、制御手段)、149・・・取付け部材、150・・・観察者、151・・・瞳、211・・・カメラ本体部(カメラボディ)、212・・・撮影レンズユニット(交換レンズ)、213・・・グリップ部、214・・・モニタ、215・・・電子ビューファインダ(接眼窓)、CF,CFR,CFG,CFB・・・カラーフィルタ層、BM,BM’・・・ブラックマトリクス層 10, 10R, 10G, 10B ... light emitting element, 11 ... first substrate, 20 ... transistor, 21 ... gate electrode, 22 ... gate insulating layer, 23 ... channel forming region, 24 ... Source / drain region, 25 ... Element separation region, 26 ... Base (interlayer insulation layer), 27 ... Contact plug, 28 ... Insulation layer, 30 ... Light emitting part, 31 ... 1st electrode, 32 ... 2nd electrode, 33 ... organic layer, 34 ... protective layer, 35 ... flattening layer, 36 ... sealing resin layer, 41 ... 2nd substrate, 50, 50'... light emission direction control member, 51, 51'... 1st region, 52, 52' ... 2nd region, 53, 53'... 3rd region, 54 ... Outer edge of light emission direction control member, 100 ... Image display device, 110 ... Image forming device, 111 ... Display device, 112 ... Housing, 121 ... Light guide plate, 122 ... 1st surface of the light guide plate, 123 ... 2nd surface of the light guide plate, 131 ... 1st deflection means, 132 ... 2nd deflection means, 140 ... frame, 140'...・ Nose pad, 141 ・ ・ ・ Front part, 141'・ ・ ・ Central part of front part, 142 ・ ・ ・ Butterfly, 143 ・ ・ ・ Temple part, 144 ・ ・ ・ Modern part, 145 ・ ・ ・ Wiring 146 ・・ ・ Headphones 146'・ ・ ・ Headphones wiring 147 ・ ・ ・ Camera 148 ・ ・ ・ Control device (control circuit, control means) 149 ・ ・ ・ Mounting member, 150 ・ ・ ・ Observer, 151 ... pupil, 211 ... camera body (camera body), 212 ... shooting lens unit (interchangeable lens), 213 ... grip, 214 ... monitor, 215 ... electronic viewfinder ( eyepiece window), CF, CF R, CF G, CF B ··· color filter layer, BM, BM '··· black matrix layer

Claims (20)

  1.  発光部、及び、
     発光部から出射された光が通過する光出射方向制御部材、
    を含む発光素子を、複数、備えた表示パネルを有する表示装置であって、
     各発光素子において、
     光出射方向制御部材は、第1領域、及び、第1領域を取り囲む第2領域から構成されており、
     第1領域を構成する材料の屈折率の値n1は、第2領域を構成する材料の屈折率の値n2と異なる表示装置。
    Light emitting part and
    Light emission direction control member through which the light emitted from the light emitting unit passes
    A display device having a display panel provided with a plurality of light emitting elements including the above.
    In each light emitting element
    The light emission direction control member is composed of a first region and a second region surrounding the first region.
    A display device in which the refractive index value n 1 of the material constituting the first region is different from the refractive index value n 2 of the material constituting the second region.
  2.  光出射方向制御部材は平板状であり、
     光出射方向制御部材の外縁部に接して、外縁部より外側に位置する領域は、第2領域を構成する材料の屈折率の値n2よりも小さい屈折率の値n3を有する材料で占められている請求項1に記載の表示装置。
    The light emission direction control member is flat and has a flat plate shape.
    The region located outside the outer edge portion in contact with the outer edge portion of the light emission direction control member is occupied by a material having a refractive index value n 3 smaller than the refractive index value n 2 of the material constituting the second region. The display device according to claim 1.
  3.  光出射方向制御部材はレンズ状である請求項1に記載の表示装置。 The display device according to claim 1, wherein the light emission direction control member is in the shape of a lens.
  4.  n1<n2を満足する請求項1に記載の表示装置。 The display device according to claim 1, which satisfies n 1 <n 2.
  5.  発光素子の表示パネルにおける位置に依存して、発光部の中心から出射され、光出射方向制御部材を通過した光の光出射方向制御部材からの出射方向が異なる請求項1に記載の表示装置。 The display device according to claim 1, wherein the emission direction of light emitted from the center of the light emitting unit and passing through the light emission direction control member differs depending on the position of the light emitting element on the display panel.
  6.  発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0としたとき、表示パネルに備えられた発光素子の少なくとも一部において、距離D0の値は0でない請求項5に記載の表示装置。 When the distance between the normal passing through the center of the light emitting unit and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , at least a part of the light emitting elements provided in the display panel The display device according to claim 5, wherein the value of the distance D 0 is not 0.
  7.  基準点が設定されており、
     表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、発光部の中心から出射され、光出射方向制御部材を通過した光の光出射方向制御部材からの出射方向が設定される請求項1に記載の表示装置。
    A reference point is set,
    At least a part of the light emitting element provided in the display panel is emitted from the center of the light emitting portion and passes through the light emitting direction control member depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion. The display device according to claim 1, wherein the emission direction of the light emitted from the light emission direction control member is set.
  8.  基準点が設定されており、
     表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、(n2-n1)の値が設定される請求項1に記載の表示装置。
    A reference point is set,
    Claim that the value of (n 2- n 1 ) is set depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion in at least a part of the light emitting element provided in the display panel. The display device according to 1.
  9.  基準点が設定されており、
     表示パネルに備えられた発光素子の少なくとも一部において、基準点から発光部の中心を通る法線までの距離D1に依存して、光出射方向制御部材の厚さ方向に垂直な仮想平面で光出射方向制御部材を切断したときの第1領域の断面形状が設定される請求項1に記載の表示装置。
    A reference point is set,
    In at least a part of the light emitting elements provided in the display panel, in a virtual plane perpendicular to the thickness direction of the light emitting direction control member, depending on the distance D 1 from the reference point to the normal passing through the center of the light emitting portion. The display device according to claim 1, wherein the cross-sectional shape of the first region when the light emission direction control member is cut is set.
  10.  基準点は表示パネル内に想定されている請求項5に記載の表示装置。 The reference point is the display device according to claim 5, which is assumed in the display panel.
  11.  基準点は表示パネルの外側に想定されている請求項5に記載の表示装置。 The display device according to claim 5, wherein the reference point is assumed to be outside the display panel.
  12.  各発光素子から出射され、光出射方向制御部材を通過した光は、表示装置の外部の空間の或る領域に収束する請求項11に記載の表示装置。 The display device according to claim 11, wherein the light emitted from each light emitting element and passing through the light emission direction control member converges on a certain region of the space outside the display device.
  13.  各発光素子から出射され、光出射方向制御部材を通過した光は、表示装置の外部の空間において発散する請求項11に記載の表示装置。 The display device according to claim 11, wherein the light emitted from each light emitting element and passing through the light emission direction control member is emitted in a space outside the display device.
  14.  各発光素子から出射され、光出射方向制御部材を通過した光は、平行光である請求項1に記載の表示装置。 The display device according to claim 1, wherein the light emitted from each light emitting element and passing through the light emission direction control member is parallel light.
  15.  光出射方向制御部材の厚さ方向に垂直な仮想平面で光出射方向制御部材を切断したときの第1領域の断面形状は、表示パネルに備えられた発光素子の少なくとも一部において、光出射方向制御部材の厚さ方向に沿って、一定であり、又は、変化する請求項1に記載の表示装置。 The cross-sectional shape of the first region when the light emission direction control member is cut in a virtual plane perpendicular to the thickness direction of the light emission direction control member is the light emission direction in at least a part of the light emitting element provided in the display panel. The display device according to claim 1, which is constant or changes along the thickness direction of the control member.
  16.  第1領域の深さをH1、光出射方向制御部材の厚さをH0としたとき、
    0.5≦H1/H0≦1.0
    を満足する請求項1に記載の表示装置。
    When the depth of the first region is H 1 and the thickness of the light emission direction control member is H 0 ,
    0.5 ≤ H 1 / H 0 ≤ 1.0
    The display device according to claim 1.
  17.  基準点が設定されており、
     複数の発光素子は、第1の方向及び第1の方向とは異なる第2の方向に配列されており、
     発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0、基準点から発光部の中心を通る法線までの距離をD1とし、
     距離D0の第1の方向及び第2の方向のそれぞれの値をD0-X,D0-Yとし、距離D1の第1の方向及び第2の方向のそれぞれの値をD1-X,D1-Yとしたとき、
     D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは線形に変化し、又は、
     D1-Xの変化に対してD0-Xは線形に変化し、D1-Yの変化に対してD0-Yは非線形に変化し、又は、
     D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは線形に変化し、又は、
     D1-Xの変化に対してD0-Xは非線形に変化し、D1-Yの変化に対してD0-Yは非線形に変化する請求項1に記載の表示装置。
    A reference point is set,
    The plurality of light emitting elements are arranged in a first direction and a second direction different from the first direction.
    The distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , and the distance from the reference point to the normal passing through the center of the light emitting part is D 1 year,
    The values of the first direction and the second direction of the distance D 0 are D 0-X and D 0-Y, and the values of the first direction and the second direction of the distance D 1 are D 1-. When X and D 1-Y are used
    D 0-X with respect to the change in D 1-X is changed linearly, D 0-Y with respect to the change in D 1-Y changes linearly, or,
    D 0-X with respect to the change in D 1-X is changed linearly, D 0-Y with respect to the change in D 1-Y changes nonlinearly, or,
    D 0-X with respect to the change in D 1-X is changed to a non-linear, D 0-Y with respect to the change in D 1-Y changes linearly, or,
    D 0-X with respect to the change in D 1-X is changed to a non-linear, D 0-Y with respect to the change in D 1-Y A display device according to claim 1 which changes nonlinearly.
  18.  基準点が設定されており、
     発光部の中心を通る法線と光出射方向制御部材の第1領域の重心を通る法線との間の距離をD0、基準点から発光部の中心を通る法線までの距離をD1としたとき、距離D1の値が増加するに従い、距離D0の値が増加する請求項1に記載の表示装置。
    A reference point is set,
    The distance between the normal passing through the center of the light emitting part and the normal passing through the center of gravity of the first region of the light emitting direction control member is D 0 , and the distance from the reference point to the normal passing through the center of the light emitting part is D 1 The display device according to claim 1, wherein the value of the distance D 0 increases as the value of the distance D 1 increases.
  19.  発光素子に備えられた発光部は、有機エレクトロルミネッセンス層を含む請求項1に記載の表示装置。 The display device according to claim 1, wherein the light emitting unit provided in the light emitting element includes an organic electroluminescence layer.
  20.  発光部、及び、
     発光部から出射された光が通過する光出射方向制御部材、
    を含み、
     光出射方向制御部材は、第1領域、及び、第1領域を取り囲む第2領域から構成されており、
     第1領域を構成する材料の屈折率の値n1は、第2領域を構成する材料の屈折率の値n2と異なる発光素子。
    Light emitting part and
    Light emission direction control member through which the light emitted from the light emitting unit passes
    Including
    The light emission direction control member is composed of a first region and a second region surrounding the first region.
    A light emitting element in which the refractive index value n 1 of the material constituting the first region is different from the refractive index value n 2 of the material constituting the second region.
PCT/JP2020/049243 2020-01-24 2020-12-28 Light emitting element and display device WO2021149470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021573043A JPWO2021149470A1 (en) 2020-01-24 2020-12-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009920 2020-01-24
JP2020-009920 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149470A1 true WO2021149470A1 (en) 2021-07-29

Family

ID=76993343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049243 WO2021149470A1 (en) 2020-01-24 2020-12-28 Light emitting element and display device

Country Status (2)

Country Link
JP (1) JPWO2021149470A1 (en)
WO (1) WO2021149470A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737688A (en) * 1993-07-20 1995-02-07 Sharp Corp El element
JPH10172756A (en) * 1996-12-13 1998-06-26 Idemitsu Kosan Co Ltd Organic el light emitting device
JP2000284726A (en) * 1999-03-31 2000-10-13 Seiko Epson Corp Display device
JP2002365632A (en) * 2001-06-07 2002-12-18 Seiko Epson Corp Liquid crystal display device and electronic instrument
US20040217702A1 (en) * 2003-05-02 2004-11-04 Garner Sean M. Light extraction designs for organic light emitting diodes
US20070182319A1 (en) * 2003-09-09 2007-08-09 An-Chi Wei Light emitting device with optical enhancement structure
JP2014096346A (en) * 2012-11-07 2014-05-22 Samsung Display Co Ltd Organic light-emitting display device
JP2019519814A (en) * 2016-06-03 2019-07-11 コーニング インコーポレイテッド Light extraction device and method for OLED display and OLED display using them

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737688A (en) * 1993-07-20 1995-02-07 Sharp Corp El element
JPH10172756A (en) * 1996-12-13 1998-06-26 Idemitsu Kosan Co Ltd Organic el light emitting device
JP2000284726A (en) * 1999-03-31 2000-10-13 Seiko Epson Corp Display device
JP2002365632A (en) * 2001-06-07 2002-12-18 Seiko Epson Corp Liquid crystal display device and electronic instrument
US20040217702A1 (en) * 2003-05-02 2004-11-04 Garner Sean M. Light extraction designs for organic light emitting diodes
US20070182319A1 (en) * 2003-09-09 2007-08-09 An-Chi Wei Light emitting device with optical enhancement structure
JP2014096346A (en) * 2012-11-07 2014-05-22 Samsung Display Co Ltd Organic light-emitting display device
JP2019519814A (en) * 2016-06-03 2019-07-11 コーニング インコーポレイテッド Light extraction device and method for OLED display and OLED display using them

Also Published As

Publication number Publication date
JPWO2021149470A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP7444070B2 (en) display device
JP7057147B2 (en) Light emitting element and display device
WO2017018041A1 (en) Display device
WO2020162355A1 (en) Light emitting element and display device
WO2021171857A1 (en) Light-emitting element and display device, and method for manufacutring display device
JP7380588B2 (en) Light emitting elements, projection display devices and surface emitting devices
WO2021261262A1 (en) Display device
JP7356545B2 (en) display device
WO2022080205A1 (en) Light-emitting element and display device
JPWO2020145148A1 (en) Display device
US20240029654A1 (en) Display device
WO2021100406A1 (en) Light-emitting element, display device, and planar light-emitting device
WO2021149470A1 (en) Light emitting element and display device
WO2022044980A1 (en) Light-emitting element and display device
WO2022113816A1 (en) Display device
WO2022102434A1 (en) Display device
WO2022030332A1 (en) Light-emitting element and display device
WO2021261310A1 (en) Light-emitting element and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915473

Country of ref document: EP

Kind code of ref document: A1