WO2021149259A1 - 端末、無線通信方法及び基地局 - Google Patents
端末、無線通信方法及び基地局 Download PDFInfo
- Publication number
- WO2021149259A1 WO2021149259A1 PCT/JP2020/002625 JP2020002625W WO2021149259A1 WO 2021149259 A1 WO2021149259 A1 WO 2021149259A1 JP 2020002625 W JP2020002625 W JP 2020002625W WO 2021149259 A1 WO2021149259 A1 WO 2021149259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mpe
- transmission
- base station
- terminal
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/3827—Portable transceivers
- H04B1/3833—Hand-held transceivers
- H04B1/3838—Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/365—Power headroom reporting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/42—TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
Definitions
- This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
- a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
- 5G 5th generation mobile communication system
- 5G + plus
- NR New Radio
- 3GPP Rel.15 or later, etc. is also being considered.
- the user terminal (User Equipment (UE)) is a UL data channel (eg, Physical Uplink Shared Channel (PUSCH)) and a UL control channel (eg, Physical Uplink).
- PUSCH Physical Uplink Shared Channel
- UCI Uplink Control Information
- PUCCH Physical Uplink Control Channel
- MPE Maximum Permitted Exposure
- P-MPR power-management maximum power reduction
- one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can support MPE without losing UL coverage.
- the terminal is a control that selects a beam to be used from a transmitter that transmits information indicating a beam that meets the Maximum Permitted Exposure (MPE) requirement and a beam that meets the MPE requirement. It is characterized by having a part and.
- MPE Maximum Permitted Exposure
- MPE can be supported without loss of UL coverage.
- FIG. 1 is a diagram showing a first example of setting beam measurement / reporting in upper layer signaling.
- FIG. 2 is a diagram showing a second example of beam measurement / reporting settings in higher layer signaling.
- FIG. 3 is a diagram showing a timeline in the second embodiment.
- FIG. 4 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 5 is a diagram showing an example of the configuration of the base station according to the embodiment.
- FIG. 6 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- FIG. 7 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- NR measures to deal with the problem of maximum permitted exposure (MPE) (or electromagnetic power density exposure) are being considered.
- MPE maximum permitted exposure
- UEs are required to meet Federal Communications Commission (FCC) regulations regarding maximum radiation to the human body for health and safety.
- FCC Federal Communications Commission
- Rel. 15 the following two restriction methods are stipulated as regulations for limiting exposure.
- UE maximum output power P CMAX, f, c is the corresponding P UMAX, f, c (the measured maximum output power, setting the maximum UE output power measured) so as to satisfy the equation (1) below , Set.
- EIRP max is assumed to be the maximum value of the corresponding measured peak equivalent isotropic radiated power (EIRP). It is assumed that P-MPR f and c are values indicating a reduction in the maximum output power permitted for the carrier f of the serving cell c. P-MPR f, c is introduced into the equation of UE maximum output power P CMAX, f, c in which the carrier f of the serving cell c is set. This allows the UE to report the maximum output transmit power available to the base station (eg, gNB). This report can be used by the base station to make scheduling decisions.
- the base station eg, gNB
- P-MPR f, c to ensure compliance with available electromagnetic energy absorption requirements and address unwanted radiation / self-defense requirements in the case of simultaneous transmission over multiple RATs for scenarios outside the scope of 3GPP RAN use. It may be used, or it may be used to ensure compliance with available electromagnetic energy absorption requirements in cases where proximity detection is used to address requirements that require lower maximum output power.
- UE capability information is introduced to notify the uplink transmission rate that the UE can transmit without the need to apply P-MPR. rice field.
- the capability information may be referred to as the maximum uplink duty cycle (maxUplinkDutyCycle-FR2) in Frequency Range 2 (FR2).
- MaxUplinkDutyCycle-FR2 corresponds to the upper layer parameter.
- maxUplinkDutyCycle-FR2 may be the upper limit of the UL transmission ratio within a certain evaluation period (for example, 1 second). Rel. At 15 NR, this value is any of n15, n20, n25, n30, n40, n50, n60, n70, n80, n90, n100, and is 15%, 20%, 25%, 30%, 40%, respectively. , 50%, 60%, 70%, 80%, 90%, 100%.
- maxUplinkDutyCycle-FR2 may be applied to all UE power classes of FR2. Note that maxUplinkDutyCycle-FR2 does not have to specify a default value.
- the UE will perform P-MPR according to UL scheduling.
- the restrictions used may be applied. Otherwise, the UE may not apply the P-MPR.
- MPE requirement electromagnetic power density exposure requirement
- the present inventors have conceived a terminal that transmits information indicating a beam that meets the Maximum Permitted Exposure (MPE) requirement and selects a beam to be used from the beams that meet the MPE requirement. According to one aspect of the present disclosure, MPE can be addressed without loss of UL coverage.
- MPE Maximum Permitted Exposure
- a / B may be read as "at least one of A and B".
- beam index in the present disclosure may be interchangeably read.
- panel index in the present disclosure may be read interchangeably.
- panel index in the present disclosure may be read interchangeably.
- panel index may be read interchangeably.
- the beam index may include a panel index, or the beam index and the panel index may be shown separately.
- the beam index may be an SSB index, a CSI-RS, or an SRS index.
- the panel index may be an antenna group index / antenna set index, an RS group index / RS set index, or any other equivalent index. Beam reports transmitted by the UE may support both non-group and group-based reports.
- the report in this disclosure may be made by higher layer signaling.
- Higher layer signaling is, for example, Radio Resource Control (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), Medium Access Control (MAC). Signaling etc.
- RRC Radio Resource Control
- MIB master information block
- SIB system information block
- MAC Medium Access Control
- the UE may report (transmit) information indicating a beam (MPE safe beam) that meets the MPE requirement based on the beam measurement settings. Then, the UE may select a beam to be used from the beams satisfying the MPE requirement.
- the MPE requirement may satisfy at least one of UL transmission power limiting methods 1 and 2.
- the MPE safe beam may be referred to as an MPE compatible beam. Failure of the beam to meet MPE requirements may be referred to as the MPE problem.
- Measurements / reports relating to MPE safe beams may be referred to as MPE safe beam measurements / reports, new beam measurements / reports.
- the upper layer signaling is the conventional beam index and the layer 1-reference signal received power (L1-RSRP) / layer 1-signal to noise interference power ratio Layer1-Signal to Interference plus Noise Ratio (Layer1-Signal to Interference plus Noise Ratio).
- L1-RSRP layer 1-reference signal received power
- Layer1-Signal to Interference plus Noise Ratio Layer1-Signal to Interference plus Noise Ratio
- the UE may determine that beam as an MPE safe beam, i.e., its. It may be determined that the beam meets the MPE requirement.
- the UE may report the beam to the Network (NW) (eg, base station, gNodeB).
- NW Network
- the UE has the highest (or highest to Nth) L1-RSRP / L1-SINR, lowest (or lowest to Nth) P-MPR, and highest (or highest to Nth) estimated residual.
- Beam index of MPE safe beam with transmit power (estimated value of remaining power (margin, PH) up to transmit power that meets MPE requirements) or maximum (or Nth in descending order) PCMAX, f, c May be reported.
- the UE may perform the processing of option 1 for each antenna group.
- the UE may separately report the beam index and the L1-RSRP / L1-SINR corresponding to the beam index for each beam.
- the UE may report the beam index and the P-MPR value required for each beam indicated by the beam index.
- the UE may report the beam index and the estimated residual power considering the P-MPR for each beam indicated by the beam index.
- the estimated residual power for each beam may be a power margin value (PH value) based on an actual transmission or a reference format (virtual transmission) in consideration of MPE.
- the estimated residual power for each beam is a PH report (PHR) considering the MPE for each beam (for example, PH type, PH value, PCMAX, f, c similar to the contents of PHR MAC CE). May be good.
- the reported PH value includes Rel. Similar to 15, 6 bits may be assigned as the MAC CE field. Alternatively, a differentiated report may be used with fewer bits in the remaining PH values except the first PH value.
- the UE may report the beam index and PCMAX, f, c calculated in consideration of the MPE for each beam indicated by the beam index.
- the UE may measure / report information that combines at least two of option 1, option 2, option 3, option 4, and option 5.
- the UE has at least one of L1-RSRP, L1-SINR, P-MPR, estimated residual power, and maximum output power ( PCMAX, f, c ) as information indicating a beam satisfying the MPE requirement.
- Information indicating the beam determined based on one may be transmitted (reported) to the base station.
- FIG. 1 is a diagram showing a first example of setting beam measurement / reporting in upper layer signaling.
- the setting shown in FIG. 1 may be a CSI reporting setting (CSI-ReportConfig) for RRC signaling.
- the "ssb-Index-MPEsafe" and “cri-MPEsafe” shown in FIG. 1 may be, for example, the beam index setting of the MPE-safe beam of option 1.
- “Ssb-Index-MPEsafe” and “cri-MPEsafe” shown in FIG. 1 may be the beam index settings of options 2 to 5.
- FIG. 2 is a diagram showing a second example of setting beam measurement / reporting in upper layer signaling.
- the "ssb-Index-PH" and “cri-PH” shown in FIG. 2 may be the beam index in Option 4.
- MPE safe beam measurements (RS settings) and reports (report settings) are periodic, semi-persisitent, or aperiodic (periodic), semi-persisitent, or aperiodic (periodic) or semi-persisitent, based on at least one of the RRC settings, MAC CE, and DCI. It may be done in aperiodic) (similar to the CSI report of NR Rel.15).
- the MPE safe beam measurement and reporting event may be triggered by the UE if the RRC is configured to support the UE triggering a report of a good MPE safe beam index.
- the base station may select a beam to be used by the UE based on the information indicating the beam satisfying the MPE requirement reported by the UE, and instruct the UE to indicate the selected beam.
- the UE may receive an instruction indicating the beam to be used from the base station and select the beam as the beam to be used. It should be noted that the UE may select a beam that satisfies any of the MPE requirements based on the value based on the MPE requirement before receiving the instruction from the base station. That is, the UE may select a beam to be used from the beams satisfying the MPE requirement based on at least one of the value based on the MPE requirement and the instruction to be received.
- the UE can measure / report various information about MPE (measurement result for each beam, beam determined in consideration of MPE). This makes it possible to support MPE without losing UL coverage.
- the Network (eg, base station, gNodeB) can direct / schedule a more accurate UL transmit beam to avoid MPE transmission issues.
- the UE determines a beam that does not function for MPE (has MPE problem, does not meet MPE requirement), and the selected beam (eg, the beam indicated by the instruction from the base station) does not meet MPE requirement. If determined, the beam to be used may be reselected (redetermined) based on values based on MPE requirements.
- the UE may redetermine the UL beam from the latest reported MPE safe beam list (candidate beam list).
- the candidate beam list may be redetermined.
- the NW may attempt to receive these beams in the candidate beam list (blind detection).
- the candidate beam list may be a list of beam indexes reported in options 1 to 6 of the first embodiment.
- the UE determines a beam that meets the MPE requirements.
- the UE is based on the required P-MPR value for the beam, the UE maximum output power PCAX, f, c calculated with MPE in mind, or the PH value calculated with MPE in mind. You may decide if the beam meets the MPE requirements. Specifically, the UE has a PCMAX, f, c whose required P-MPR value is greater than the threshold (predefined / set) for the beam or calculated with MPE in mind. If the PH value (real PH or virtual PH) that is smaller than the threshold value or calculated in consideration of MPE is less than the threshold value, it may be determined that the beam does not satisfy the MPE requirement. That is, the MPE requirement is based on the required P-MPR value, the maximum output power calculated with MPE in mind, or the PH value calculated with MPE in mind.
- FIG. 3 is a diagram showing a timeline in the second embodiment.
- the UE performs various measurements used for beam determination, and reports the beam index and the like (candidate beam list) shown in options 1 to 6 of the first embodiment to the base station. Then, the base station selects a beam to be used from the candidate beam list and instructs the UE. The UE determines the beam to use.
- the UE may then reselect a different beam for UL transmission after Xms (or X OFDM symbols) of the UE's MPE safe beam / panel report.
- the NW may try to blindly decode the UL reception by the beam in the candidate beam list after Yms (or X OFDM symbols) of the reception of the UE's MPE safe beam report to receive the latest beam.
- the NW may randomly select a beam from the candidate beam list when reselecting the UL beam.
- the NW may select a satisfactory beam according to the order of the beams in the report from the UE. This order is the timing of reporting (earliest reported value), L1-RSRP size (maximum L1-RSRP), L1-SINR size (maximum L1-SINR), MPE size (minimum MPE).
- the order may be based on at least one of (values). As a result, the beam is uniquely determined, so that the complexity of blind decoding of the NW can be reduced.
- the UE can avoid the problem by reselecting the beam even when the problem of MPE occurs due to the change of the environment.
- the process of the present disclosure is when the UE reports the corresponding UE capability (information indicating a beam that meets the MPE requirement) (condition 1) and when the UE is configured to perform the process of the present disclosure (condition 2). ), Or it may be applicable when at least one of both condition 1 and condition 2 is satisfied. If the processing of this disclosure is not applicable, Rel. Fifteen operations (the above limiting method 1 or limiting method 2) may be applied. The processing of the present disclosure may be applied regardless of the reporting of UE capability, RRC settings.
- the processing of the present disclosure may be applied only to a specific UL channel (for example, PUSCH only), or may be applied to all UL channels.
- PRACH does not have to apply the processing of the present disclosure. This is because at the time of PRACH transmission, the NW is uncertain whether the UE supports the functions of the present disclosure.
- the processing of the present disclosure is not applied to the PRACH before the RRC connection, the processing of the present disclosure may be applied to the PRACH after the RRC connection.
- wireless communication system Wireless communication system
- communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
- FIG. 4 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
- the radio communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
- -UTRA Dual Connectivity (NE-DC) may be included.
- the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
- the base station (gNB) of NR is MN
- the base station (eNB) of LTE (E-UTRA) is SN.
- the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
- a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
- NR-NR Dual Connectivity NR-DC
- gNB NR base stations
- the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
- the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
- the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
- the user terminal 20 may be connected to at least one of the plurality of base stations 10.
- the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
- CA Carrier Aggregation
- DC dual connectivity
- CC Component Carrier
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
- FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
- the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
- the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
- wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
- IAB Integrated Access Backhaul
- relay station relay station
- the base station 10 may be connected to the core network 30 via another base station 10 or directly.
- the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- DL Downlink
- UL Uplink
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple. Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the wireless access method may be called a waveform.
- another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
- the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
- downlink shared channels Physical Downlink Shared Channel (PDSCH)
- broadcast channels Physical Broadcast Channel (PBCH)
- downlink control channels Physical Downlink Control
- Channel PDCCH
- the uplink shared channel Physical Uplink Shared Channel (PUSCH)
- the uplink control channel Physical Uplink Control Channel (PUCCH)
- the random access channel shared by each user terminal 20 are used.
- Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
- PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
- User data, upper layer control information, and the like may be transmitted by the PUSCH.
- MIB Master Information Block
- PBCH Master Information Block
- Lower layer control information may be transmitted by PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
- DCI Downlink Control Information
- the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
- the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
- the PDSCH may be read as DL data
- the PUSCH may be read as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH.
- CORESET corresponds to a resource that searches for DCI.
- the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
- One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
- One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set.
- the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
- channel state information (Channel State Information (CSI)
- delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
- scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
- the PRACH may transmit a random access preamble to establish a connection with the cell.
- downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
- a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
- the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
- CRS Cell-specific Reference Signal
- CSI-RS Channel State Information Reference Signal
- DeModulation Demodulation reference signal
- Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
- PRS Positioning Reference Signal
- PTRS Phase Tracking Reference Signal
- the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
- SS, SSB and the like may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS Uplink Reference Signal
- UE-specific Reference Signal UE-specific Reference Signal
- FIG. 5 is a diagram showing an example of the configuration of the base station according to the embodiment.
- the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
- the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
- the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
- the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
- the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
- the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
- the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
- the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
- IFFT inverse fast Fourier transform
- the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
- the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
- the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- the transmission / reception unit 120 may perform measurement on the received signal.
- the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
- the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal to Noise Ratio
- Signal strength for example, Received Signal Strength Indicator (RSSI)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 110.
- the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
- the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the transmission / reception unit 120 may receive information indicating a beam satisfying the MPE requirement from the terminal.
- the transmission / reception unit 120 may transmit an instruction indicating the beam selected by the control unit 110 to the terminal.
- the control unit 110 may select the beam to be used by the terminal based on the information indicating the beam that satisfies the MPE requirement received from the terminal by the transmission / reception unit 120.
- FIG. 6 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
- the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 210 may control signal generation, mapping, and the like.
- the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
- the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
- the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
- the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
- RLC layer processing for example, RLC retransmission control
- MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
- Whether or not to apply the DFT process may be based on the transform precoding setting.
- the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
- the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
- the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
- the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
- the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
- the transmission / reception unit 220 may perform measurement on the received signal.
- the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
- the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 210.
- the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
- the transmission / reception unit 220 may transmit information indicating a beam that satisfies the MPE requirement.
- the transmission / reception unit 220 may receive an instruction indicating a beam to be used, which is selected by the base station based on the transmitted information.
- the MPE requirement is, for example, the required power management maximum power reduction (P-MPR), the maximum output power calculated in consideration of MPE, or the MPE is calculated in consideration of MPE. Based on the power headroom value (PH value).
- the control unit 210 may select a beam to be used from the beams satisfying the MPE requirement.
- the control unit 210 may select a beam to be used from the beams satisfying the MPE requirement based on at least one of a value based on the MPE requirement and an instruction received from the base station, for example. If the beam based on the instruction does not meet the MPE requirement, the control unit 210 may select (reselect) the beam to be used based on the value based on the MPE requirement.
- each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
- the method of realizing each of them is not particularly limited.
- the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
- FIG. 7 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
- processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
- the processor 1001 may be mounted by one or more chips.
- the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
- CPU central processing unit
- control unit 110 210
- transmission / reception unit 120 220
- the like may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program code
- the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
- the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
- the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
- channels, symbols and signals may be read interchangeably.
- the signal may be a message.
- the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
- the component carrier Component Carrier (CC)
- CC Component Carrier
- the wireless frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
- the subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
- the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
- Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
- SCS subcarrier Spacing
- TTI Transmission Time Interval
- a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
- the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may be a time unit based on numerology.
- the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
- the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
- the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
- one subframe may be called TTI
- a plurality of consecutive subframes may be called TTI
- one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
- Physical RB Physical RB (PRB)
- SCG sub-carrier Group
- REG resource element group
- the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
- RE Resource Element
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
- the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
- the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
- Information, signals, etc. may be input / output via a plurality of network nodes.
- Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
- the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
- the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
- DCI downlink control information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB master information block
- SIB system information block
- MAC medium access control
- the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
- the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
- MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
- CE MAC Control Element
- the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
- the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
- Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
- Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- the terms “system” and “network” used in this disclosure may be used interchangeably.
- the “network” may mean a device (eg, a base station) included in the network.
- precoding "precoding weight”
- QCL Quality of Co-Location
- TCI state Transmission Configuration Indication state
- space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
- Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are compatible. Can be used as an antenna.
- Base station BS
- radio base station fixed station
- NodeB NodeB
- eNB eNodeB
- gNB gNodeB
- Access point "Transmission point (Transmission Point (TP))
- RP Reception point
- TRP Transmission / Reception Point
- Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- the base station can accommodate one or more (for example, three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
- Communication services can also be provided by Head (RRH))).
- RRH Head
- the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
- MS mobile station
- UE user equipment
- terminal terminal
- Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
- the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read by the user terminal.
- the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the user terminal 20 may have the function of the base station 10 described above.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- an uplink channel, a downlink channel, and the like may be read as a side channel.
- the user terminal in the present disclosure may be read as a base station.
- the base station 10 may have the functions of the user terminal 20 described above.
- the operation performed by the base station may be performed by its upper node (upper node) in some cases.
- various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
- Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
- each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- Future Radio Access FAA
- New-Radio Access Technology RAT
- NR New Radio
- NX New radio access
- Future generation radio access FX
- GSM Global System for Mobile communications
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- LTE 802.16 WiMAX (registered trademark)
- Ultra-WideBand (UWB), Bluetooth®, other systems utilizing suitable wireless communication methods, next-generation systems extended based on these, and the like may be applied.
- a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
- references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
- determining used in this disclosure may include a wide variety of actions.
- judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
- judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
- judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
- connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
- the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
- the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本開示の一態様に係る端末は、最大許容曝露(Maximum Permitted Exposure(MPE))要件を満たすビームを示す情報を送信する送信部と、前記MPE要件を満たすビームから、使用するビームを選択する制御部を有することを特徴とする。本開示の一態様によれば、ULカバレッジを損失させずにMPEに対応することができる。
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(User Equipment(UE))は、ULデータチャネル(例えば、Physical Uplink Shared Channel(PUSCH))及びUL制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))の少なくとも一方を用いて、上りリンク制御情報(Uplink Control Information(UCI))を送信する。
NRにおいては、最大許容曝露(Maximum Permitted Exposure(MPE))の問題についての対応が検討されている。UEは、健康と安全のために人体への最大放出に関するFederal Communication Commission(FCC)の規制を満たすことが要求される。
MPEの問題に対応するために、電力管理最大電力低減(Power-management Maximum Power Reduction(P-MPR))を用いた制限、UL送信割合の制限等も検討されているが、ULカバレッジの損失が問題となる。
そこで、本開示は、ULカバレッジを損失させずにMPEに対応することができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
本開示の一態様に係る端末は、最大許容曝露(Maximum Permitted Exposure(MPE))要件を満たすビームを示す情報を送信する送信部と、前記MPE要件を満たすビームから、使用するビームを選択する制御部と、を有することを特徴とする。
本開示の一態様によれば、ULカバレッジを損失させずにMPEに対応することができる。
NRにおいては、最大許容曝露(Maximum Permitted Exposure(MPE))(又は電磁的電力密度曝露(electromagnetic power density exposure))の問題についての対応が検討されている。UEは、健康と安全のために人体への最大放射に関するFederal Communication Commission(FCC)の規制を満たすことが要求される。例えば、Rel.15 NRにおいては、曝露(explosure)を制限するための規定として以下の2つの制限方法が規定されている。
<制限方法1>
制限方法1として、電力管理最大電力低減(Power-management Maximum Power Reduction(P-MPR)、最大許容UE出力電力低減)を用いた制限が規定されている。例えば、UE最大出力電力PCMAX,f,cは、対応するPUMAX,f,c(測定される最大出力電力、測定される設定最大UE出力電力)が以下の式(1)を満たすように、設定される。
PPowerclass-MAX(MAX(MPRf,c,A-MPRf,c)+ΔMBP,n,P-MPRf,c)-MAX{T(MAX(MPRf,c,A-MPRf,c,)),T(P-MPRf,c)}≦PUMAX,f,c≦EIRPmax (1)
制限方法1として、電力管理最大電力低減(Power-management Maximum Power Reduction(P-MPR)、最大許容UE出力電力低減)を用いた制限が規定されている。例えば、UE最大出力電力PCMAX,f,cは、対応するPUMAX,f,c(測定される最大出力電力、測定される設定最大UE出力電力)が以下の式(1)を満たすように、設定される。
PPowerclass-MAX(MAX(MPRf,c,A-MPRf,c)+ΔMBP,n,P-MPRf,c)-MAX{T(MAX(MPRf,c,A-MPRf,c,)),T(P-MPRf,c)}≦PUMAX,f,c≦EIRPmax (1)
EIRPmaxは、対応する測定ピーク等価等方放射電力(EIRP:Equivalent Isotopically Radiated Power)の最大値であるとする。P-MPRf,cは、サービングセルcのキャリアfに許可される最大出力電力の削減を示す値であるとする。P-MPRf,cは、サービングセルcのキャリアfの設定されたUE最大出力電力PCMAX,f,cの式に導入される。これにより、UEが利用可能な最大出力送信電力を基地局(例えば、gNB)に報告できるようになった。この報告は、基地局がスケジューリングの決定に使用できる。P-MPRf,cは、3GPP RAN使用の範囲にないシナリオに対する複数RAT上の同時送信のケースにおいて、利用可能な電磁エネルギー吸収要件の順守を保証し、不要放射/自衛要件に対処するために用いられてもよいし、近接検出が、より低い最大出力電力を必要とするような要件の対処に用いられるケースにおいて利用可能な電磁エネルギー吸収要件の順守を保証するために用いられてもよい。
<制限方法2>
Rel.15 NRにおいては、ミリ波人体防護指針を満たすために、UEがP-MPRの適用を必要としないで送信できる上りリンク送信比率(transmission rate)を通知するUE能力情報(capability information)が導入された。当該能力情報は、Frequency Range 2(FR2)における最大上りリンクデューティ比(maxUplinkDutyCycle-FR2)と呼ばれてもよい。
Rel.15 NRにおいては、ミリ波人体防護指針を満たすために、UEがP-MPRの適用を必要としないで送信できる上りリンク送信比率(transmission rate)を通知するUE能力情報(capability information)が導入された。当該能力情報は、Frequency Range 2(FR2)における最大上りリンクデューティ比(maxUplinkDutyCycle-FR2)と呼ばれてもよい。
maxUplinkDutyCycle-FR2は、上位レイヤパラメータに該当する。maxUplinkDutyCycle-FR2は、一定の評価期間(例えば、1秒)内のUL送信割合の上限であってもよい。Rel.15 NRにおいて、この値は、n15、n20、n25、n30、n40、n50、n60、n70、n80、n90、n100のいずれかであり、それぞれ15%、20%、25%、30%、40%、50%、60%、70%、80%、90%、100%に対応する。maxUplinkDutyCycle-FR2は、FR2の全てのUEパワークラスに適用されてもよい。なお、maxUplinkDutyCycle-FR2にはデフォルト値が規定されなくてもよい。
UE能力情報として、maxUplinkDutyCycle-FR2のフィールドが存在し、1秒の評価期間内に送信されるUL(Uplink)シンボルの割合がmaxUplinkDutyCycle-FR2より大きい場合、UEは、ULスケジューリングに従い、P-MPRを用いた制限(制限方法1)を適用してもよい。そうでない場合、当該UEは、P-MPRを適用しなくてもよい。
UE能力情報として、maxUplinkDutyCycle-FR2のフィールドが存在しない場合、電力密度の縮小または他の手段により、電磁電力密度曝露要件(MPE要件)への準拠が保証されてもよい。
しかしながら、制限方法1または制限方法2を適用した場合、ULカバレッジの損失が問題となる。
そこで、本発明者らは、最大許容曝露(Maximum Permitted Exposure(MPE))要件を満たすビームを示す情報を送信し、MPE要件を満たすビームから、使用するビームを選択する端末を着想した。本開示の一態様によれば、ULカバレッジを損失させずにMPEに対応することができる。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。なお、本開示において、「A/B」は、「A及びBの少なくとも一方」で読み替えられてもよい。
以下、本開示における「ビーム」、「パネル」、「UEパネル」、「アンテナパネル」、「ビームインデックス」は、相互に読み替えられてもよい。また、「ビームインデックス」、「パネルインデックス」、「ビームインデックス及びパネルインデックス」は、相互に読み替えられてもよい。ビームインデックスは、パネルインデックスを含んでいてもよいし、ビームインデックスとパネルインデックスとは別に示されてもよい。
ビームインデックスは、SSBインデックス、CSI-RS、又はSRSインデックスであってもよい。パネルインデックスは、アンテナグループインデックス/アンテナセットインデックス、RSグループインデックス/RSセットインデックス、または他の同等のインデックスであってもよい。UEが送信するビーム報告は、非グループとグループベースの両方の報告をサポートしてもよい。
本開示における報告は、上位レイヤシグナリングによって行われてもよい。上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング等である。本開示における「報告」、「送信」は互いに読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
第1の実施形態では、ビーム測定の設定及び報告について説明する。UEは、ビーム測定の設定に基づいて、MPE要件を満たすビーム(MPEセーフビーム)を示す情報を報告(送信)してもよい。そして、UEは、MPE要件を満たすビームから、使用するビームを選択してもよい。MPE要件は、UL送信電力の制限方法1、2の少なくとも一つを満たすことであってもよい。MPEセーフビームは、MPE適合ビームと呼ばれてもよい。ビームがMPE要件を満たさないことは、MPE問題と呼ばれてもよい。MPEセーフビームに関する測定/報告は、MPEセーフビーム測定/報告、新規ビーム測定/報告と呼ばれてもよい。
<第1の実施形態>
第1の実施形態では、ビーム測定の設定及び報告について説明する。UEは、ビーム測定の設定に基づいて、MPE要件を満たすビーム(MPEセーフビーム)を示す情報を報告(送信)してもよい。そして、UEは、MPE要件を満たすビームから、使用するビームを選択してもよい。MPE要件は、UL送信電力の制限方法1、2の少なくとも一つを満たすことであってもよい。MPEセーフビームは、MPE適合ビームと呼ばれてもよい。ビームがMPE要件を満たさないことは、MPE問題と呼ばれてもよい。MPEセーフビームに関する測定/報告は、MPEセーフビーム測定/報告、新規ビーム測定/報告と呼ばれてもよい。
上位レイヤシグナリングは、従来のビームインデックスと、レイヤ1-参照信号受信電力(Layer1-Reference Signal Received Power(L1-RSRP))/レイヤ1-信号対雑音干渉電力比Layer1-Signal to Interference plus Noise Ratio(L1-SINR)の測定/報告に加えて、良好なMPEセーフビーム(MPE要件を満たすビーム)の測定/報告に関する設定を含んでいてもよい。UEは、それらの設定に基づいて、ビーム測定および報告を行ってもよい。
ビームに関して、MPEを考慮して必要とされる(必要な)P-MPR値が、事前に定義/設定された閾値未満である場合、MPEを考慮して計算されたPCMAX、f、cが閾値より大きい場合、または、MPEを考慮して計算されたPH値(実PH(仮想PH)が、閾値より大きい場合、UEは、そのビームをMPEセーフビームとして決定してもよい。すなわち、そのビームがMPE要件を満たすと決定してもよい。UEは、そのビームを、Network(NW)(例えば基地局、gNodeB)に報告してもよい。
以下、UEが測定/報告するMPE要件を満たすビームを示す情報の例について説明する。以下の説明において、UEが報告するビームインデックス数は、最大N個であるとする。
[オプション1]
UEは、最高の(又は高い順にN番目までの)L1-RSRP/L1-SINR、最低の(又は低い順にN番目までの)P-MPR、最大の(又は大きい順にN番目までの)推定残存送信電力(MPE要件を満たす送信電力までの残りの電力(余裕、PH)の推定値)、または最大の(又は大きい順にN番目までの)PCMAX、f、cを有するMPEセーフビームのビームインデックスを報告してもよい。UEは、オプション1の処理をアンテナグループ毎に行ってもよい。
UEは、最高の(又は高い順にN番目までの)L1-RSRP/L1-SINR、最低の(又は低い順にN番目までの)P-MPR、最大の(又は大きい順にN番目までの)推定残存送信電力(MPE要件を満たす送信電力までの残りの電力(余裕、PH)の推定値)、または最大の(又は大きい順にN番目までの)PCMAX、f、cを有するMPEセーフビームのビームインデックスを報告してもよい。UEは、オプション1の処理をアンテナグループ毎に行ってもよい。
[オプション2]
UEは、ビームインデックスと、ビームインデックスに対応するL1-RSRP/L1-SINRを、ビームごとに区別して報告してもよい。
UEは、ビームインデックスと、ビームインデックスに対応するL1-RSRP/L1-SINRを、ビームごとに区別して報告してもよい。
[オプション3]
UEは、ビームインデックスと、そのビームインデックスが示すビーム毎に必要とされるP-MPR値とを報告してもよい。
UEは、ビームインデックスと、そのビームインデックスが示すビーム毎に必要とされるP-MPR値とを報告してもよい。
[オプション4]
UEは、ビームインデックスと、そのビームインデックスが示すビーム毎のP-MPRを考慮した推定残存電力を報告してもよい。ビーム毎の推定残存電力は、MPEを考慮した実際の送信または参照フォーマット(仮想送信)に基づく電力余裕(Power Headroom)値(PH値)であってもよい。又は、ビーム毎の推定残存電力は、ビーム毎のMPEを考慮したPH report(PHR)(例えば、PHR MAC CEのコンテンツと同様の、PHタイプ、PH値、PCMAX、f、c)であってもよい。
UEは、ビームインデックスと、そのビームインデックスが示すビーム毎のP-MPRを考慮した推定残存電力を報告してもよい。ビーム毎の推定残存電力は、MPEを考慮した実際の送信または参照フォーマット(仮想送信)に基づく電力余裕(Power Headroom)値(PH値)であってもよい。又は、ビーム毎の推定残存電力は、ビーム毎のMPEを考慮したPH report(PHR)(例えば、PHR MAC CEのコンテンツと同様の、PHタイプ、PH値、PCMAX、f、c)であってもよい。
報告されるPH値には、Rel.15と同様に、MAC CEフィールドとして6ビット割り当てられていてもよい。又は、最初のPH値を除く残りのPH値に少ないビットを用いて、差別化された報告が用いられてもよい。
[オプション5]
UEは、ビームインデックスと、そのビームインデックスが示すビーム毎のMPEを考慮して計算されたPCMAX、f、cを報告してもよい。
UEは、ビームインデックスと、そのビームインデックスが示すビーム毎のMPEを考慮して計算されたPCMAX、f、cを報告してもよい。
[オプション6]
UEは、オプション1、オプション2、オプション3、オプション4、オプション5の少なくとも二つを組み合わせた情報を測定/報告してもよい。
UEは、オプション1、オプション2、オプション3、オプション4、オプション5の少なくとも二つを組み合わせた情報を測定/報告してもよい。
以上のように、UEは、MPE要件を満たすビームを示す情報として、L1-RSRP、L1-SINR、P-MPR、推定残存電力、最大出力電力(PCMAX、f、c)、のうちの少なくとも一つに基づいて決定したビームを示す情報を基地局に送信(報告)してもよい。
図1は、上位レイヤシグナリングにおけるビーム測定/報告の設定の第1の例を示す図である。図1に示す設定は、RRCシグナリングのCSI報告設定(CSI-ReportConfig)であってもよい。図1に示す"ssb-Index-MPEsafe"、"cri-MPEsafe"は、例えば、オプション1のMPEセーフビームのビームインデックスの設定であってもよい。図1に示す"ssb-Index-MPEsafe"、"cri-MPEsafe"は、オプション2~5のビームインデックスの設定であってもよい。
図2は、上位レイヤシグナリングにおけるビーム測定/報告の設定の第2の例を示す図である。図2に示す"ssb-Index-PH"、"cri-PH"は、オプション4におけるビームインデックスであってもよい。
MPEセーフビーム測定(RS設定)および報告(報告設定)は、RRC設定、MAC CE、DCIの少なくとも一つに基づいて、定期的(periodic)または半永続的(semi-persisitent)または非周期的(aperiodic)に行われてもよい(NR Rel.15のCSIレポートと同様)。
良好なMPEセーフビームインデックスの報告をUEがトリガーすることをサポートすることをRRCによって設定されている場合、MPEセーフビーム測定および報告のイベントは、UEがトリガーとなって発生してもよい。
また、基地局は、UEから報告されたMPE要件を満たすビームを示す情報に基づいて、UEが使用するビームを選択し、選択したビームを示す指示をUEに指示してもよい。UEは、使用するビームを示す指示を基地局から受信し、そのビームを使用するビームとして選択してもよい。なお、UEは、基地局から指示を受信する前に、MPE要件に基づく値に基づいて、MPE要件を満たすビームのいずれかを使用するビームとして選択してもよい。すなわち、UEは、MPE要件に基づく値と、受信する指示と、の少なくとも一つに基づいて、MPE要件を満たすビームから、使用するビームを選択してもよい。
第1の実施形態によれば、UEが、MPEに関する各種情報(ビーム毎の測定結果、MPEを考慮して決定されたビーム)を測定/報告することができる。これにより、ULカバレッジを損失させずにMPEに対応することができる。
<第2の実施形態>
UEのMPEセーフビーム報告に基づいて、Network(NW)(例えば基地局、gNodeB)は、MPE送信の問題を回避するために、より正確なUL送信ビームを指示/スケジュールすることができる。しかし、高速/動的な環境の変化により、UEでMPE問題が発生する可能性がある。よって、UEは、MPEのために機能しない(MPE問題を有する、MPE要件を満たさない)ビームを決定し、選択したビーム(例えば、基地局からの指示が示すビーム)がMPE要件を満たさないと決定された場合、MPE要件に基づく値に基づいて、使用するビームを再選択(再決定)してもよい。
UEのMPEセーフビーム報告に基づいて、Network(NW)(例えば基地局、gNodeB)は、MPE送信の問題を回避するために、より正確なUL送信ビームを指示/スケジュールすることができる。しかし、高速/動的な環境の変化により、UEでMPE問題が発生する可能性がある。よって、UEは、MPEのために機能しない(MPE問題を有する、MPE要件を満たさない)ビームを決定し、選択したビーム(例えば、基地局からの指示が示すビーム)がMPE要件を満たさないと決定された場合、MPE要件に基づく値に基づいて、使用するビームを再選択(再決定)してもよい。
UL送信(例えば、PUSCHのみ、PUCCHのみ、または、PUCCHとPUSCHの両方)のために基地局から指示されたULビーム(例えば、PUSCHの空間関係情報(Spatial Relation Information(SRI))、PUCCH、PUSCH、SRS、PRACHの少なくとも一つのためのSRI/TCI)がMPE要件を満たさない場合、UEは、報告された最新のMPEセーフビームリスト(候補ビームリスト)からULビームを再決定してもよいし、候補ビームリストを再決定してもよい。NWは、候補ビームリスト内でこれらのビームの受信を試みてもよい(ブラインド検出)。候補ビームリストは、第1の実施形態のオプション1~オプション6で報告するビームインデックスのリストであってもよい。
UEは、MPE要件を満たすビームを決定する。UEは、ビームに関して、必要とされるP-MPR値、MPEを考慮して計算されたUE最大出力電力PCMAX、f、c、又はMPEを考慮して計算されたPH値に基づいて、そのビームがMPE要件を満たすかを判断してもよい。具体的には、UEは、ビームに関して、必要とされるP-MPR値が閾値(事前に定義/設定された)よりも大きい、又はMPEを考慮して計算されたPCMAX、f、cが閾値よりも小さい、又はMPEを考慮して計算されたPH値(実PHまたは仮想PH)が閾値未満である場合に、そのビームがMPE要件を満たさないと判断してもよい。すなわち、MPE要件は、必要とされるP-MPR値、MPEを考慮して計算された最大出力電力、又はMPEを考慮して計算されたPH値に基づく。
図3は、第2の実施形態におけるタイムラインを示す図である。UEは、ビーム決定に用いる各種測定を行い、第1の実施形態のオプション1~6に示したビームインデックス等(候補ビームリスト)を基地局に報告する。そして、基地局は、候補ビームリストから使用するビームを選択し、UEに指示する。UEは、使用するビームを決定する。
そして、UEは、UEのMPEセーフビーム/パネル報告のXms(またはX個のOFDMシンボル)後にUL送信のための異なるビームを再選択してもよい。NWは、UEのMPEセーフビーム報告の受信のYms(またはX個のOFDMシンボル)の後に候補ビームリスト内のビームによるUL受信のブラインド復号を試みて最新のビームを受信してもよい。X,Yについて、以下の式(2)が成立してもよい。
Y=X+伝播遅延(Y>=X) (2)
Y=X+伝播遅延(Y>=X) (2)
NWは、ULビームを再選択する際に、候補ビームリストからビームをランダムに選択してもよい。または、NWは、UEからの報告内のビームの順序に従って、満足できるビームを選択してもよい。この順序は、報告のタイミング(最も早い報告値)、L1-RSRPの大きさ(最大のL1-RSRP)、L1-SINRの大きさ(最大のL1-SINR)、MPEの大きさ(MPEの最小値)のうちの少なくとも一つに基づく順序であってもよい。これにより、ビームが一意に決まるため、NWのブラインド復号の複雑さを軽減することができる。
第2の実施形態の処理によれば、UEは、環境の変化によりMPEの問題が発生した場合であっても、ビームを再選択することにより、問題を回避することができる。
本開示の処理は、UEが対応するUE能力(MPE要件を満たすビームを示す情報)を報告する場合(条件1)、UEが本開示の処理を実行するように設定されている場合(条件2)、又は、条件1および条件2の両方の少なくとも一方を満たす場合に適用可能であってもよい。本開示の処理を適用可能でない場合、Rel.15の動作(上記制限方法1、又は制限方法2)を適用してもよい。本開示の処理は、UE能力、RRC設定の報告に関係なく適用されてもよい。
本開示の処理は、特定のULチャネル(例えば、PUSCHのみ)だけに適用されてもいいし、全ULチャネルに適用されてもよい。ただし、PRACHは、本開示の処理を適用しなくてもよい。PRACH送信時には、NWは、UEが本開示の機能をサポートしているか不明であるためである。ただし、RRC接続前のPRACHには、本開示の処理を適用しないが、RRC接続後のPRACHには、本開示の処理を適用してもよい。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
図5は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
図5は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
なお、送受信部120は、MPE要件を満たすビームを示す情報を端末から受信してもよい。送受信部120は、制御部110が選択したビームを示す指示をその端末に送信してもよい。
制御部110は、送受信部120が端末から受信したMPE要件を満たすビームを示す情報に基づいて、その端末が使用するビームを選択してもよい。
(ユーザ端末)
図6は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
図6は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
なお、送受信部220は、MPE要件を満たすビームを示す情報を送信してもよい。送受信部220は、送信した情報に基づいて基地局が選択した、使用するビームを示す指示を受信してもよい。MPE要件は、例えば、必要とされる電力管理最大電力低減(Power-management Maximum Power Reduction(P-MPR))、MPEを考慮して計算された最大出力電力、又はMPEを考慮して計算された電力余裕(Power Headroom)値(PH値)に基づく。
制御部210は、MPE要件を満たすビームから、使用するビームを選択してもよい。制御部210は、例えば、MPE要件に基づく値と、基地局から受信する指示と、の少なくとも一つに基づいて、MPE要件を満たすビームから、使用するビームを選択してもよい。指示に基づくビームがMPE要件を満たさない場合、制御部210は、MPE要件に基づく値に基づいて、使用するビームを選択(再選択)してもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Claims (6)
- 最大許容曝露(Maximum Permitted Exposure(MPE))要件を満たすビームを示す情報を送信する送信部と、
前記MPE要件を満たすビームから、使用するビームを選択する制御部と、
を有することを特徴とする端末。 - 前記制御部は、前記MPE要件に基づく値と、受信する指示と、の少なくとも一つに基づいて、前記MPE要件を満たすビームから、前記使用するビームを選択する
ことを特徴とする請求項1に記載の端末。 - 前記指示に基づくビームが前記MPE要件を満たさない場合、前記制御部は、前記値に基づいて、前記使用するビームを選択する
ことを特徴とする請求項2に記載の端末。 - 前記MPE要件は、必要とされる電力管理最大電力低減(Power-management Maximum Power Reduction(P-MPR))、MPEを考慮して計算された最大出力電力、又はMPEを考慮して計算された電力余裕(Power Headroom)値(PH値)に基づく
ことを特徴とする請求項1から請求項3のいずれかに記載の端末。 - 最大許容曝露(Maximum Permitted Exposure(MPE))要件を満たすビームを示す情報を送信する工程と、
前記MPE要件を満たすビームから、使用するビームを選択する工程と、
を有することを特徴とする端末の無線通信方法。 - 最大許容曝露(Maximum Permitted Exposure(MPE))要件を満たすビームを示す情報を端末から受信する受信部と、
前記情報に基づいて、前記端末が使用するビームを選択する制御部と、
選択した前記ビームを示す指示を前記端末に送信する送信部と、
を有することを特徴とする基地局。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20915190.1A EP4096267A4 (en) | 2020-01-24 | 2020-01-24 | USER TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION |
US17/759,160 US20230058930A1 (en) | 2020-01-24 | 2020-01-24 | Terminal, radio communication method, and base station |
PCT/JP2020/002625 WO2021149259A1 (ja) | 2020-01-24 | 2020-01-24 | 端末、無線通信方法及び基地局 |
JP2021572248A JPWO2021149259A5 (ja) | 2020-01-24 | 端末、無線通信方法、基地局及びシステム | |
CN202080094434.6A CN115023962A (zh) | 2020-01-24 | 2020-01-24 | 终端、无线通信方法以及基站 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/002625 WO2021149259A1 (ja) | 2020-01-24 | 2020-01-24 | 端末、無線通信方法及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021149259A1 true WO2021149259A1 (ja) | 2021-07-29 |
Family
ID=76991843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/002625 WO2021149259A1 (ja) | 2020-01-24 | 2020-01-24 | 端末、無線通信方法及び基地局 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230058930A1 (ja) |
EP (1) | EP4096267A4 (ja) |
CN (1) | CN115023962A (ja) |
WO (1) | WO2021149259A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023007736A1 (ja) * | 2021-07-30 | 2023-02-02 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
WO2023130306A1 (en) * | 2022-01-06 | 2023-07-13 | Qualcomm Incorporated | Beam indication for multiple component carriers following a maximum permissible exposure event |
WO2023162727A1 (ja) * | 2022-02-25 | 2023-08-31 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230019087A1 (en) * | 2020-02-11 | 2023-01-19 | Qualcomm Incorporated | Techniques for requesting uplink transmission resources for maximum permissible exposure reporting |
US11742916B2 (en) * | 2020-05-29 | 2023-08-29 | Qualcomm Incorporated | Channel state reporting for full duplex transmissions |
US20240014875A1 (en) * | 2021-01-14 | 2024-01-11 | Qualcomm Incorporated | Multi-part beam reporting for mpe |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018064009A1 (en) * | 2016-09-28 | 2018-04-05 | Idac Holding, Inc. | Uplink power control |
US10531397B2 (en) * | 2017-10-02 | 2020-01-07 | Lg Electronics Inc. | Method for determining transmission power for uplink signal and a user equipment performing the method |
EP3963750A4 (en) * | 2019-05-02 | 2022-12-21 | Nokia Technologies Oy | IMPROVING RACH OPERATION IN NEW RADIO AND RF EXPOSURE REQUIREMENTS |
CN115529657B (zh) * | 2019-08-13 | 2024-03-05 | 中兴通讯股份有限公司 | 一种信息发送方法、信息接收方法及装置 |
US11831381B2 (en) * | 2019-10-04 | 2023-11-28 | Intel Corporation | Beam failure recovery for uplink |
US11689235B2 (en) * | 2020-03-18 | 2023-06-27 | Comcast Cable Communications, Llc | Exposure detection and reporting for wireless communications |
CN115516779A (zh) * | 2020-04-08 | 2022-12-23 | Idac控股公司 | 针对与多个小区和/或多个发射/接收点结合的波束管理的方法、装置和系统 |
WO2021207567A1 (en) * | 2020-04-10 | 2021-10-14 | Ofinno, Llc | Uplink beam reporting |
US11672019B2 (en) * | 2020-05-01 | 2023-06-06 | Ofinno, Llc | Random access procedure |
WO2022009427A1 (ja) * | 2020-07-10 | 2022-01-13 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
CN113973363B (zh) * | 2020-07-22 | 2023-09-12 | 维沃移动通信有限公司 | P-mpr报告的发送、接收方法、装置及电子设备 |
WO2022075814A1 (ko) * | 2020-10-08 | 2022-04-14 | 엘지전자 주식회사 | 무선 통신 시스템에서 전력 헤드룸 보고를 위한 방법 및 그 장치 |
-
2020
- 2020-01-24 CN CN202080094434.6A patent/CN115023962A/zh active Pending
- 2020-01-24 US US17/759,160 patent/US20230058930A1/en active Pending
- 2020-01-24 WO PCT/JP2020/002625 patent/WO2021149259A1/ja unknown
- 2020-01-24 EP EP20915190.1A patent/EP4096267A4/en active Pending
Non-Patent Citations (4)
Title |
---|
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01) |
INTEL CORPORATION: "Beam management enhancements for MPE", 3GPP DRAFT; R1-1912185, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823262 * |
NOKIA, NOKIA SHANGHAI BELL: "UE FR2 MPE mitigation", 3GPP DRAFT; R1-1913109, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, NV, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051820306 * |
ZTE: "Enhancement on FR2 MPE mitigation", 3GPP DRAFT; R1-1911943, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, US; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823124 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023007736A1 (ja) * | 2021-07-30 | 2023-02-02 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
WO2023130306A1 (en) * | 2022-01-06 | 2023-07-13 | Qualcomm Incorporated | Beam indication for multiple component carriers following a maximum permissible exposure event |
WO2023162727A1 (ja) * | 2022-02-25 | 2023-08-31 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021149259A1 (ja) | 2021-07-29 |
CN115023962A (zh) | 2022-09-06 |
US20230058930A1 (en) | 2023-02-23 |
EP4096267A1 (en) | 2022-11-30 |
EP4096267A4 (en) | 2023-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020065870A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2021149259A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2020065724A1 (ja) | ユーザ端末及び無線通信方法 | |
JP7438138B2 (ja) | 端末、無線通信方法及び無線通信システム | |
WO2021149260A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2020255263A1 (ja) | 端末及び無線通信方法 | |
WO2020065733A1 (ja) | ユーザ端末及び無線通信方法 | |
JP7330601B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2021100099A1 (ja) | 端末及び無線通信方法 | |
WO2020202429A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020188644A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2022024301A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2020209339A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020255270A1 (ja) | 端末及び無線通信方法 | |
WO2023022142A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2020144782A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2022009427A1 (ja) | 端末、無線通信方法及び基地局 | |
JP7490756B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2022029948A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021229819A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021100100A1 (ja) | 端末及び無線通信方法 | |
WO2020070778A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2022123778A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022054224A1 (ja) | 端末、無線通信方法及び基地局 | |
US20240356617A1 (en) | Terminal, radio communication method, and base station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915190 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021572248 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020915190 Country of ref document: EP Effective date: 20220824 |