WO2021149159A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2021149159A1
WO2021149159A1 PCT/JP2020/001972 JP2020001972W WO2021149159A1 WO 2021149159 A1 WO2021149159 A1 WO 2021149159A1 JP 2020001972 W JP2020001972 W JP 2020001972W WO 2021149159 A1 WO2021149159 A1 WO 2021149159A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
uplink transmission
transmission
pusch
Prior art date
Application number
PCT/JP2020/001972
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 熊谷
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/001972 priority Critical patent/WO2021149159A1/en
Publication of WO2021149159A1 publication Critical patent/WO2021149159A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to terminals, base stations and communication methods in wireless communication systems.
  • NR New Radio
  • LTE Long Term Evolution
  • the frequency band licensed by the telecommunications carrier (operator) (the frequency band different from the licensed band (unlicensed band), unlicensed”.
  • the use of carriers (also called unlicensed carriers) and unlicensed CCs (also called unlicensed CCs) is supported.
  • unlicensed bands for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark) can be used2. .4 GHz band, 5 GHz band, 6 GHz band, etc. are assumed.
  • Rel-13 supports carrier aggregation (CA) that integrates licensed band carriers (CC) and unlicensed band carriers (CC). Communication performed using the unlicensed band together with the license band in this way is referred to as License-Assisted Access (LAA).
  • CA carrier aggregation
  • LAA License-Assisted Access
  • a base station device downlink
  • a user terminal uplink
  • another device for example, a base
  • Channel sensing carrier sense
  • LBT Listen Before Talk
  • a plurality of PUSCH Physical Uplink Shared Channel
  • the terminal may transmit the PUSCH at any set transmission opportunity.
  • the base station that has received the PUSCH transmitted using the plurality of PUSCH transmission opportunities and the PUSCH scheduled by the uplink link grant has DFI (Downlink feedback information) including a HARQ (Hybrid automatic repeat request) response corresponding to each PUSCH. ) Needs to be sent to the terminal.
  • DFI Downlink feedback information
  • HARQ Hybrid automatic repeat request
  • the present invention has been made in view of the above points, and an object of the present invention is to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels) in a wireless communication system. ..
  • HARQ Hybrid automatic repeat request
  • PUSCHs Physical Uplink Shared Channels
  • At least one of the receiving unit that receives the upper layer signaling that sets a plurality of uplink transmission opportunities from the base station and the plurality of uplink transmission opportunities based on the upper layer signaling.
  • Receives downlink feedback information from the base station including a transmitter that transmits the uplink transmission to the base station and information related to retransmission control corresponding to the uplink transmission that was not transmitted at the plurality of uplink transmission opportunities.
  • a terminal having a control unit that executes the retransmission control related to the uplink transmission that was not transmitted based on the information related to the retransmission control is provided.
  • HARQ Hybrid automatic repeat request
  • PUSCHs Physical Uplink Shared Channels
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and later methods (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH and the like. However, even if it is a signal used for NR, it is not always specified as "NR-".
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Method may be used.
  • "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal 20 may be set.
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system according to the embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG.
  • FIG. 1 shows one base station 10 and one terminal 20, this is an example, and there may be a plurality of each.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain is defined by the number of subcarriers or the number of resource blocks. May be good.
  • the base station 10 transmits a synchronization signal and system information to the terminal 20. Synchronous signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH, and is also referred to as broadcast information. As shown in FIG.
  • the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell: Secondary Cell) and a primary cell (PCell: Primary Cell) by CA (Carrier Aggregation). Further, the terminal 20 may perform communication via the primary cell of the base station 10 by DC (Dual Connectivity) and the primary secondary cell (PSCell: Primary Secondary Cell) of another base station 10.
  • SCell Secondary Cell
  • PCell Primary Cell
  • CA Carrier Aggregation
  • the terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby providing various types provided by the wireless communication system. Use communication services.
  • M2M Machine-to-Machine
  • FIG. 2 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 shows a configuration example of a wireless communication system when NR-DC (NR-Dual connectivity) is executed.
  • a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
  • the base station 10A and the base station 10B are each connected to the core network 30.
  • the terminal 20 communicates with both the base station 10A and the base station 10B.
  • the cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the above-mentioned LBT is executed.
  • the base station 10 or the terminal 20 acquires COT (Channel Occupancy Time) when the LBT result is idle (when the LBT is successful), performs transmission, and when the LBT result is busy (LBT-busy). , Do not send.
  • COT Channel Occupancy Time
  • the wireless communication system in the present embodiment may perform a carrier aggregation (CA) operation using an unlicensed CC and a licensed CC, or perform a dual connectivity (DC) operation using the unlicensed CC and the licensed CC.
  • CA carrier aggregation
  • DC dual connectivity
  • SA stand-alone
  • CA, DC, or SA may be performed by any one system of NR and LTE.
  • DC may be performed by at least two of NR, LTE, and other systems.
  • the terminal 20 uses a signal (for example, a Reference Signal (RS) such as Demodulation Reference Signal (DMRS)) in the PDCCH or the group common PDCCH (group common (GC) -PDCCH) for detecting the transmission burst from the base station 10. ) May exist.
  • RS Reference Signal
  • DMRS Demodulation Reference Signal
  • group common PDCCH group common (GC) -PDCCH)
  • the base station 10 may transmit a specific PDCCH (PDCCH or GC-PDCCH) including a specific DMRS notifying the start of the COT at the start of the COT triggered by the base station apparatus.
  • a specific PDCCH (PDCCH or GC-PDCCH) including a specific DMRS notifying the start of the COT at the start of the COT triggered by the base station apparatus.
  • At least one of the specific PDCCH and the specific DMRS may be referred to as a COT start notification signal.
  • the base station 10 transmits a COT start notification signal to one or more terminals 20, and the terminal 20 can recognize the COT when the specific DMRS is detected.
  • CG Configured
  • DCI Downlink Control Information
  • CG sets multiple PUSCH transmission opportunities to transmit different or the same TB (Transport block).
  • One TB is mapped to one slot or one minislot and transmitted at one PUSCH transmission opportunity.
  • One HARQ (Hybrid automatic repeat request) process is assigned to one PUSCH that transmits the one TB.
  • the terminal 20 assigns one of unused HARQ process IDs to the TB transmitted by each PUSCH in the case of the first transmission, and NDI (New data indicator) and RV.
  • the base station 10 is notified by the CG uplink control information (CG-UCI) transmitted by the CG-PUSCH together with the (Redundancy version).
  • CG-UCI CG uplink control information
  • the HARQ process ID assigned to the TB at the time of the first transmission is notified to the base station 10 by the CG-UCI transmitted by the CG-PUSCH together with the NDI and RV.
  • the LBT category may be notified as part of a slot format indicator (SFI).
  • SFI slot format indicator
  • Category 1 corresponds to a channel access method that performs immediate transmission after a switching gap. It is used in the case of immediate transmission after the switching gap in the COT acquired by the base station 10.
  • the switching gap from reception to transmission is a gap required for switching between the transceiver and does not exceed 16 ⁇ s.
  • Category 2 corresponds to a channel access method that performs LBT without random backoff. The period for sensing whether the channel is idle before performing transmission is fixed. For example, in category 2, 25 ⁇ s LBT may be executed or 16 ⁇ s LBT may be executed.
  • the "channel access method” may be referred to as "LBT type”.
  • Category 3 corresponds to the channel access method of performing LBT using a fixed size contention window with random backoff.
  • the transmitter determines a random number N in the contention window.
  • the size of the contention window is specified by a minimum value and a maximum value N.
  • the size of the category 3 contention window is fixed. Random number N is used in the LBT procedure to determine how long to sense if a channel is idle before performing a transmission.
  • Category 4" corresponds to the channel access method of performing LBT using a variable size contention window with random backoff.
  • the transmitter determines a random number N in the contention window.
  • the size of the contention window is specified by a minimum value and a maximum value N.
  • the size of the category 4 contention window is variable. Random number N is used in the LBT procedure to determine how long to sense if a channel is idle before performing a transmission.
  • category 3 may be included in category 4 as one case of category 4.
  • FIG. 3 is a sequence diagram for explaining an example of signaling in the embodiment of the present invention.
  • the base station 10 may set a plurality of PUSCH transmission opportunities for the terminal 20.
  • step S1 the base station 10 notifies the terminal 20 of the settings related to the set grant type 1 or type 2 via higher layer signaling.
  • the configured grant type 1 the time and / or time resource in which the PUSCH can be transmitted is set.
  • the configured grant type 2 the configured grant set via higher layer signaling is activated by DCI.
  • the configured grant may be described as CG (Configured grant).
  • step S2 the base station 10 transmits a DCI that activates CG type 2 to the terminal 20 via the PDCCH. Subsequently, the terminal 20 transmits data to the base station 10 via one or a plurality of CG-PUSCHs determined based on the received CG settings (S3). Subsequently, the base station 10 transmits CG-DFI (Downlink feedback information) including a HARQ response corresponding to the received CG-PUSCH to the terminal 20 (S4).
  • CG-DFI Downlink feedback information
  • CG-DFI may at least support the matters shown in 1) -4) below.
  • the maximum number of HARQ processes may be the same as in Release 15. 3)
  • the RRC may set a minimum period "D" from the end symbol of the PUSCH to the start symbol of the DFI carrying the HARQ-ACK corresponding to the PUSCH.
  • the terminal 20 assumes that HARQ-ACK is valid only for the PUSCH transmission that ended before "n-D". “N” corresponds to the start symbol of DFI.
  • the shortest period during slot aggregation may be defined. 4)
  • the complexity of terminal-side blind decoding does not increase with DFI size.
  • DFI may be transmitted using PDCCH scrambled by CS-RNTI (Configured Scheduling-Radio Network Temporary Identifier).
  • the DFI size may be similar to the DCI that grants the UL, or may be matched to the size of the DCI format 0-1 that grants the UL.
  • CG-PUSCH type 1 and / or type 2 When CG-PUSCH type 1 and / or type 2 is set, a 1-bit flag may be used to distinguish between DCI and DFI that enable or disable CG transmission.
  • DFI may include the information shown in 1) -5) below.
  • CG type 1 it is assumed that the terminal 20 has DFI only when CG is set.
  • CG type 2 the terminal 20 assumes that DFI exists only when CG is set and the terminal 20 is in the enabled state for CG transmission.
  • DCI format 0_1 is used for scheduling one or more PUSCHs in one cell or notifying the terminal 20 of CG-DFI.
  • the information shown in 1) -5) below is C-RNTI (Cell-RNTI), CS-RNTI, SP-CSI-RNTI (Semi-Persistent Channel State Information-RNTI) or MCS-C-RNTI (Modulation and). It may be transmitted in DCI format 0-1 with CRC scrambled by Coding Scheme C-RNTI).
  • DCI format identifier In the case of the 1-bit UL-DCI format, the value is always set to "0". 2) CIF This is valid when 0-bit or 3-bit cross-carrier scheduling is set. 3) DFI flag When configured to monitor DCI format 0_1 with CRC scrambled with 0-bit or 1-bit CS-RNTI and when performing channel access sharing a spectrum in the cell (ie NR-U) 1 bit is set. In the case of DCI format 0_1 with CRC scrambled from CS-RNTI, the 1-bit value "0" indicates the activation of CG type 2 transmission, and the 1-bit value "1" indicates CG-DFI. If DCI format 0_1 is accompanied by a CRC scrambled with C-RNTI, SP-CSI-RNTI or MCS-C-RNTI, the 1 bit is reserved. In cases other than the above, the field is set to 0 bits.
  • HARQ-ACK Bitmap The 16-bit HARQ process index is mapped to the bitmap in ascending order from MSB (Most significant bit) to LSB (Least significant bit). For each bit in the bitmap, a value "1" indicates ACK (positive response) and a value "0" indicates NACK (negative response).
  • the terminal 20 executes the retransmission control related to the transmitted CG-PUSCH based on the HARQ-ACK bitmap included in the received CG-DFI. 5) TPC command for scheduled PUSCH 2 bits All the remaining bits in the DCI format are set to "0".
  • the base station 10 since the base station 10 allocates the HARQ process in the UL grant, whether or not the HARQ process is used is grasped by the base station 10. Therefore, when the terminal 20 fails to detect the UL grant and transmits DTX, the base station 10 feeds back NACK and executes rescheduling for the HARQ process. Further, when the base station 10 fails to detect or decode the PUSCH transmitted by the terminal 20 based on the UL grant, the base station 10 feeds back NACK and executes rescheduling for the HARQ process.
  • FIG. 4 is a diagram for explaining an example (1) of transmission / reception of PUSCH in the embodiment of the present invention.
  • the terminal 20 transmits the CG-PUSCH and the base station 10 corresponds to the HPN (HARQ process number) # 0 CG-.
  • HPN HARQ process number
  • the base station 10 cannot determine whether the terminal 20 did not transmit the CG-PUSCH due to the buffer emptyness, or the terminal 20 transmitted the CG-PUSCH but the base station 10 could not be detected.
  • ACK is set for the HARQ-ACK feedback corresponding to HPN # 1
  • the terminal 20 determines that the CG-PUSCH corresponding to HPN # 1 has been successfully transmitted, which causes a problem in operation. ..
  • the HARQ-ACK value corresponding to the HARQ process that may not be identified from the viewpoint of the base station 10 side or the unused HARQ process is referred to as a) below.
  • -C) may be set as follows.
  • FIG. 5 is a diagram for explaining an example (2) of transmission / reception of PUSCH according to the embodiment of the present invention.
  • a fixed value NACK is set as the bit of the corresponding HARQ-ACK bitmap included in the CG-DFI. It may be set.
  • the CG-PUSCH corresponding to HPN # 1 may or may not be transmitted to the terminal 20. If the terminal 20 does not transmit the CG-PUSCH corresponding to HPN # 1, it is determined that the base station 10 has not detected the CG-PUSCH, NACK is fed back, and the corresponding HARQ process is rescheduled. Even if it is executed, since the terminal 20 recognizes that the CG-PUSCH is not transmitted, the operation is not hindered by transmitting new data at the retransmission opportunity.
  • the terminal 20 does not transmit the CG-PUSCH and the terminal 20 transmits the CG-PUSCH.
  • the operation related to HARQ can be executed without any trouble.
  • the base station 10 determines without defining a fixed value. By setting the value determined by the base station 10 to the bits of the HARQ-ACK bitmap corresponding to the HPN that the base station 10 could not detect, highly flexible HARQ operation becomes possible.
  • the terminal 20 receives the CG-DFI including HARQ-ACK corresponding to the transmission of the CG-PUSCH, and efficiently controls the retransmission operation of the CG-PUSCH based on the CG-DFI. can.
  • HARQ Hybrid automatic repeat request
  • the base station 10 and the terminal 20 include a function of carrying out the above-described embodiment.
  • the base station 10 and the terminal 20 may each have only a part of the functions in the embodiment.
  • FIG. 6 is a diagram showing an example of the functional configuration of the base station 10 according to the embodiment of the present invention.
  • the base station 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 6 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. Further, the transmission unit 110 transmits a message between network nodes to another network node.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signals and the like to the terminal 20. In addition, the receiving unit 120 receives a message between network nodes from another network node.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20.
  • the content of the setting information is, for example, a setting related to NR-U communication.
  • the control unit 140 controls the UL grant or CG as described in the embodiment. Further, the control unit 140 controls the transmission of the CG-DFI including the HARQ response corresponding to the received PUSCH.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • FIG. 7 is a diagram showing an example of the functional configuration of the terminal 20 according to the embodiment of the present invention.
  • the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 7 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals and the like transmitted from the base station 10. Further, for example, the transmission unit 210 connects the other terminal 20 to PSCCH (Physical Sidelink Control Channel), PSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) as D2D communication. Etc., and the receiving unit 220 receives the PSCCH, PSCH, PSDCH, PSBCH, etc. from the other terminal 20.
  • PSCCH Physical Sidelink Control Channel
  • PSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220.
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, a setting related to NR-U communication.
  • control unit 240 controls to execute the transmission accompanied by the LBT based on the CG. Further, the control unit 240 executes PUSCH transmission together with HARQ control based on CG.
  • the function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
  • a functional block that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function of the base station 10 and the terminal 20, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 6 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 7 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory) and the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray® disc), a smart card, a flash memory (eg, a card, a stick, a key drive), a floppy® disc, a magnetic strip, and the like.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the receiving unit that receives the upper layer signaling that sets a plurality of uplink transmission opportunities from the base station, and the plurality of upper layer signalings based on the upper layer signaling.
  • a transmitter that transmits uplink transmission to the base station at at least one of the uplink transmission opportunities, and downlink that includes information related to retransmission control corresponding to uplink transmission that was not transmitted at the plurality of uplink transmission opportunities.
  • a terminal having a control unit that receives link feedback information from the base station and executes retransmission control related to uplink transmission that was not transmitted based on the information related to retransmission control is provided.
  • the terminal 20 can receive the CG-DFI including HARQ-ACK corresponding to the transmission of the CG-PUSCH, and can efficiently control the retransmission operation of the CG-PUSCH based on the CG-DFI. .. That is, in a wireless communication system, it is possible to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels).
  • HARQ Hybrid automatic repeat request
  • the control unit may transmit new data as retransmission control when the information related to the retransmission control is a negative response.
  • a negative response is given as a fixed value to all of the information related to the retransmission control corresponding to the uplink transmission not detected by the plurality of uplink transmission opportunities, and the receiver that receives the uplink transmission from the terminal at least one.
  • a base station is provided that has a control unit that is set and transmits downlink feedback information including information related to the retransmission control to the terminal.
  • the terminal 20 can receive the CG-DFI including HARQ-ACK corresponding to the transmission of the CG-PUSCH, and can efficiently control the retransmission operation of the CG-PUSCH based on the CG-DFI. .. That is, in a wireless communication system, it is possible to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels).
  • HARQ Hybrid automatic repeat request
  • the reception procedure for receiving the upper layer signaling for setting a plurality of uplink transmission opportunities from the base station and the plurality of uplink transmission opportunities based on the upper layer signaling is described above.
  • a communication method is provided in which the terminal executes a control procedure for executing the retransmission control related to the uplink transmission that was not transmitted, based on the information received from the base station and related to the retransmission control.
  • the terminal 20 can receive the CG-DFI including HARQ-ACK corresponding to the transmission of the CG-PUSCH, and can efficiently control the retransmission operation of the CG-PUSCH based on the CG-DFI. .. That is, in a wireless communication system, it is possible to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels).
  • HARQ Hybrid automatic repeat request
  • the boundary of the functional unit or the processing unit in the functional block diagram does not always correspond to the boundary of the physical component.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node.
  • various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 (for example, it is clear that it can be done by at least one of (but not limited to, MME, S-GW, etc.).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example,). , Comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • radio base station base station
  • base station device fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • GNB gNodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”
  • Terms such as “cell group,” “carrier,” and “component carrier” can be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the user terminal described above.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, and transceiver.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • transceiver At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.). Slots may be in time units based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as the PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • CG-PUSCH is an example of a plurality of uplink transmissions.
  • DCI is an example of downlink control information.
  • the HARQ bitmap included in the CG-DFI is an example of information related to retransmission control corresponding to a plurality of uplink transmissions.
  • CG-DFI is an example of downlink feedback information.
  • Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 30 Core network 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Abstract

This terminal has: a reception unit for receiving, from a base station, upper layer signaling by which a plurality of uplink transmission opportunities are set; a transmission unit for transmitting, to the base station, uplink transmission using at least one of the plurality of uplink transmission opportunities, on the basis of the upper layer signaling; and a control unit for receiving, from the base station, downlink feedback information including information about retransmission control corresponding to the uplink transmission that is not transmitted using the plurality of uplink transmission opportunities and for executing retransmission control relating to the non-transmitted uplink transmission on the basis of the information about the retransmission control.

Description

端末、基地局及び通信方法Terminals, base stations and communication methods
 本発明は、無線通信システムにおける端末、基地局及び通信方法に関する。 The present invention relates to terminals, base stations and communication methods in wireless communication systems.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている。 In NR (New Radio) (also called "5G"), which is the successor system to LTE (Long Term Evolution), the requirements are a large-capacity system, high-speed data transmission speed, low delay, and simultaneous operation of many terminals. Technologies that satisfy connection, low cost, power saving, etc. are being studied.
 また、既存のLTEシステムでは、周波数帯域を拡張するため、通信事業者(オペレータ)に免許された周波数帯域(ライセンスバンド(licensed band)とは異なる周波数帯域(アンライセンスバンド(unlicensed band)、アンライセンスキャリア(unlicensed carrier)、アンライセンスCC(unlicensed CC)ともいう)の利用がサポートされている。アンライセンスバンドとしては、例えば、Wi-Fi(登録商標)あるいはBluetooth(登録商標)を使用可能な2.4GHz帯又は5GHz帯、6GHz帯などが想定される。 Further, in the existing LTE system, in order to expand the frequency band, the frequency band licensed by the telecommunications carrier (operator) (the frequency band different from the licensed band (unlicensed band), unlicensed". The use of carriers (also called unlicensed carriers) and unlicensed CCs (also called unlicensed CCs) is supported. As unlicensed bands, for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark) can be used2. .4 GHz band, 5 GHz band, 6 GHz band, etc. are assumed.
 具体的には、Rel-13では、ライセンスバンドのキャリア(CC)とアンライセンスバンドのキャリア(CC)とを統合するキャリアアグリゲーション(Carrier Aggregation:CA)がサポートされる。このように、ライセンスバンドとともにアンライセンスバンドを用いて行う通信をLicense-Assisted Access(LAA)と称する。 Specifically, Rel-13 supports carrier aggregation (CA) that integrates licensed band carriers (CC) and unlicensed band carriers (CC). Communication performed using the unlicensed band together with the license band in this way is referred to as License-Assisted Access (LAA).
 ライセンスバンドとともにアンライセンスバンドを用いて通信を行う無線通信システムでは、基地局装置(下りリンク)及びユーザ端末(上りリンク)は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、基地局装置、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するためにチャネルのセンシング(キャリアセンス)を行う。センシングの結果、他の装置の送信がないことを確認すると、送信機会を獲得し、送信を行うことができる。この動作はLBT(Listen Before Talk)と呼ばれる。また、NRにおいて、アンライセンスバンドをサポートするシステムはNR-Uシステムと呼ばれる。 In a wireless communication system that communicates with a licensed band using an unlicensed band, a base station device (downlink) and a user terminal (uplink) are placed on another device (for example, a base) before transmitting data in the unlicensed band. Channel sensing (carrier sense) is performed to confirm the presence / absence of transmission of a station device, a user terminal, a Wi-Fi device, etc.). As a result of sensing, if it is confirmed that there is no transmission of other devices, a transmission opportunity can be obtained and transmission can be performed. This operation is called LBT (Listen Before Talk). Further, in NR, a system that supports an unlicensed band is called an NR-U system.
 NR-Uでは、例えば、CG(Configured grant、設定済グラント)によって、それぞれ異なる又は同一のトランスポートブロックを運ぶ複数のPUSCH(Physical Uplink Shared Channel)送信機会が端末に設定されることがある。端末は設定された任意の送信機会でPUSCHを送信してよい。それら複数のPUSCH送信機会を用いて送信されたPUSCH及び上りリンクリンクグラントでスケジューリングされたPUSCHを受信した基地局は、各PUSCHに対応するHARQ(Hybrid automatic repeat request)応答を含むDFI(Downlink feedback information)を端末に送信する必要がある。しかしながら、DFIに含まれるHARQ応答のビットマップの詳細が定義されていなかった。 In NR-U, for example, depending on CG (Configured grant), a plurality of PUSCH (Physical Uplink Shared Channel) transmission opportunities that carry different or the same transport blocks may be set in the terminal. The terminal may transmit the PUSCH at any set transmission opportunity. The base station that has received the PUSCH transmitted using the plurality of PUSCH transmission opportunities and the PUSCH scheduled by the uplink link grant has DFI (Downlink feedback information) including a HARQ (Hybrid automatic repeat request) response corresponding to each PUSCH. ) Needs to be sent to the terminal. However, the details of the bitmap of the HARQ response included in DFI have not been defined.
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、複数のPUSCH(Physical Uplink Shared Channel)に対応する複数のHARQ(Hybrid automatic repeat request)応答をシグナリングすることを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels) in a wireless communication system. ..
 開示の技術によれば、複数の上りリンク送信機会を設定する上位レイヤシグナリングを基地局から受信する受信部と、前記上位レイヤシグナリングに基づいて、前記複数の上りリンク送信機会のうち少なくとも一つで上りリンク送信を前記基地局に送信する送信部と、前記複数の上りリンク送信機会で送信しなかった上りリンク送信に対応する再送制御に係る情報を含む下りリンクフィードバック情報を前記基地局から受信し、前記再送制御に係る情報に基づいて、前記送信しなかった上りリンク送信に係る再送制御を実行する制御部とを有する端末が提供される。 According to the disclosed technique, at least one of the receiving unit that receives the upper layer signaling that sets a plurality of uplink transmission opportunities from the base station and the plurality of uplink transmission opportunities based on the upper layer signaling. Receives downlink feedback information from the base station, including a transmitter that transmits the uplink transmission to the base station and information related to retransmission control corresponding to the uplink transmission that was not transmitted at the plurality of uplink transmission opportunities. , A terminal having a control unit that executes the retransmission control related to the uplink transmission that was not transmitted based on the information related to the retransmission control is provided.
 開示の技術によれば、無線通信システムにおいて、複数のPUSCH(Physical Uplink Shared Channel)に対応する複数のHARQ(Hybrid automatic repeat request)応答をシグナリングすることができる。 According to the disclosed technology, it is possible to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels) in a wireless communication system.
本発明の実施の形態における無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the wireless communication system in embodiment of this invention. 本発明の実施の形態における無線通信システムを説明するための図である。It is a figure for demonstrating the wireless communication system in embodiment of this invention. 本発明の実施の形態におけるシグナリングの例を説明するためのシーケンス図である。It is a sequence diagram for demonstrating an example of signaling in Embodiment of this invention. 本発明の実施の形態におけるPUSCHの送受信の例(1)を説明するための図である。It is a figure for demonstrating the example (1) of transmission / reception of PUSCH in embodiment of this invention. 本発明の実施の形態におけるPUSCHの送受信の例(2)を説明するための図である。It is a figure for demonstrating the example (2) of transmission / reception of PUSCH in embodiment of this invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the base station 10 in embodiment of this invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the terminal 20 in embodiment of this invention. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the base station 10 or the terminal 20 in embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 Existing technology is appropriately used in the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, an existing LTE, but is not limited to the existing LTE. Further, the term "LTE" used in the present specification shall have a broad meaning including LTE-Advanced and LTE-Advanced and later methods (eg, NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 Further, in the embodiment of the present invention described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical) used in the existing LTE. Terms such as random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), and PUSCH (Physical Uplink Shared Channel) are used. This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Further, the above-mentioned terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH and the like. However, even if it is a signal used for NR, it is not always specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 Further, in the embodiment of the present invention, "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal 20 may be set.
 図1は、本発明の実施の形態における無線通信システムの構成例を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。 FIG. 1 is a diagram showing a configuration example of a wireless communication system according to the embodiment of the present invention. The wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG. Although FIG. 1 shows one base station 10 and one terminal 20, this is an example, and there may be a plurality of each.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセル(PSCell:Primary Secondary Cell)を介して通信を行ってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain is defined by the number of subcarriers or the number of resource blocks. May be good. The base station 10 transmits a synchronization signal and system information to the terminal 20. Synchronous signals are, for example, NR-PSS and NR-SSS. The system information is transmitted by, for example, NR-PBCH, and is also referred to as broadcast information. As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell: Secondary Cell) and a primary cell (PCell: Primary Cell) by CA (Carrier Aggregation). Further, the terminal 20 may perform communication via the primary cell of the base station 10 by DC (Dual Connectivity) and the primary secondary cell (PSCell: Primary Secondary Cell) of another base station 10.
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。 The terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby providing various types provided by the wireless communication system. Use communication services.
 図2は、本発明の実施の形態における無線通信システムを説明するための図である。図2は、NR-DC(NR-Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるように、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワーク30に接続される。端末20は基地局10Aと基地局10Bの両方と通信を行う。 FIG. 2 is a diagram for explaining a wireless communication system according to an embodiment of the present invention. FIG. 2 shows a configuration example of a wireless communication system when NR-DC (NR-Dual connectivity) is executed. As shown in FIG. 2, a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided. The base station 10A and the base station 10B are each connected to the core network 30. The terminal 20 communicates with both the base station 10A and the base station 10B.
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。後述する動作は、図1と図2のいずれの構成で行ってもよい。 The cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group). The operation described later may be performed in any of the configurations shown in FIGS. 1 and 2.
 本実施の形態における無線通信システムでは、前述したLBTが実行される。基地局10あるいは端末20は、LBT結果がアイドルである場合(LBTに成功した場合)にCOT(Channel Occupancy Time)を獲得し、送信を行い、LBT結果がビジーである場合(LBT-busy)に、送信を行わない。 In the wireless communication system according to the present embodiment, the above-mentioned LBT is executed. The base station 10 or the terminal 20 acquires COT (Channel Occupancy Time) when the LBT result is idle (when the LBT is successful), performs transmission, and when the LBT result is busy (LBT-busy). , Do not send.
 本実施の形態における無線通信システムは、アンライセンスCC及びライセンスCCを用いるキャリアアグリゲーション(CA)の動作を行ってもよいし、アンライセンスCC及びライセンスCCを用いるデュアルコネクティビティ(DC)の動作を行ってもよいし、アンライセンスCCのみを用いるスタンドアローン(SA)の動作を行ってもよい。CA、DC、又はSAは、NR及びLTEのいずれか1つのシステムによって行われてもよい。DCは、NR、LTE、及び他のシステムの少なくとも2つによって行われてもよい。 The wireless communication system in the present embodiment may perform a carrier aggregation (CA) operation using an unlicensed CC and a licensed CC, or perform a dual connectivity (DC) operation using the unlicensed CC and the licensed CC. Alternatively, a stand-alone (SA) operation using only an unlicensed CC may be performed. CA, DC, or SA may be performed by any one system of NR and LTE. DC may be performed by at least two of NR, LTE, and other systems.
 端末20は、基地局10からの送信バーストを検出するための、PDCCH又はグループ共通PDCCH(group common(GC)-PDCCH)内の信号(例えば、Demodulation Reference Signal(DMRS)などのReference Signal(RS))の存在を想定してもよい。 The terminal 20 uses a signal (for example, a Reference Signal (RS) such as Demodulation Reference Signal (DMRS)) in the PDCCH or the group common PDCCH (group common (GC) -PDCCH) for detecting the transmission burst from the base station 10. ) May exist.
 基地局10は、基地局装置契機のCOT開始時に、COT開始を通知する特定DMRSを含む特定PDCCH(PDCCH又はGC-PDCCH)を送信してもよい。特定PDCCH及び特定DMRSの少なくとも1つは、COT開始通知信号と呼ばれてもよい。基地局10は、例えば、COT開始通知信号を1以上の端末20へ送信し、端末20は、特定DMRSを検出した場合、COTを認識することができる。 The base station 10 may transmit a specific PDCCH (PDCCH or GC-PDCCH) including a specific DMRS notifying the start of the COT at the start of the COT triggered by the base station apparatus. At least one of the specific PDCCH and the specific DMRS may be referred to as a COT start notification signal. For example, the base station 10 transmits a COT start notification signal to one or more terminals 20, and the terminal 20 can recognize the COT when the specific DMRS is detected.
 リリース16NR-Uでは、上位レイヤシグナリング及びDCI(Downlink Control Information)で複数スロット/複数ミニスロットに渡って複数の異なるPUSCH又は同一のPUSCHの送信機会を設定及び有効化(アクティベーション)するCG(Configured grant)を使用することが想定されている。なお、「送信機会」を「時間及び/又は周波数リソース」に言い換えてもよい。 In release 16NR-U, CG (Configured) that sets and activates transmission opportunities of a plurality of different PUSCHs or the same PUSCH over a plurality of slots / multiple mini-slots by upper layer signaling and DCI (Downlink Control Information). It is supposed to use grant). In addition, "transmission opportunity" may be paraphrased as "time and / or frequency resource".
 CGにより、別々又は同一のTB(Transport block、トランスポートブロック)を送信する複数のPUSCH送信機会が設定される。1つのTBは、1つのスロット又は1つのミニスロットにマッピングされ、1つのPUSCH送信機会で送信される。当該1つのTBを送信する1つのPUSCHには1つのHARQ(Hybrid automatic repeat request)プロセスが割り当てられる。 CG sets multiple PUSCH transmission opportunities to transmit different or the same TB (Transport block). One TB is mapped to one slot or one minislot and transmitted at one PUSCH transmission opportunity. One HARQ (Hybrid automatic repeat request) process is assigned to one PUSCH that transmits the one TB.
 CGで送信される複数PUSCHについて、端末20は、各PUSCHで送信されるTBについて、初回送信の場合には未使用のHARQプロセスIDの中から1つを割り当て、NDI(New data indicator)とRV(Redundancy version)とともに当該CG-PUSCHで送信されるCG上り制御情報(CG-UCI)で基地局10に通知する。各PUSCHで送信されるTBが再送の場合には、初回送信時に当該TBに割り当てられたHARQプロセスIDをNDIとRVとともに当該CG-PUSCHで送信されるCG-UCIで基地局10に通知する。 For multiple PUSCHs transmitted by CG, the terminal 20 assigns one of unused HARQ process IDs to the TB transmitted by each PUSCH in the case of the first transmission, and NDI (New data indicator) and RV. The base station 10 is notified by the CG uplink control information (CG-UCI) transmitted by the CG-PUSCH together with the (Redundancy version). When the TB transmitted by each PUSCH is retransmitted, the HARQ process ID assigned to the TB at the time of the first transmission is notified to the base station 10 by the CG-UCI transmitted by the CG-PUSCH together with the NDI and RV.
 また、NR-Uでは、基地局10が獲得したCOT内のLBTカテゴリの通知方法が検討されている。例えば、LBTカテゴリは、スロットフォーマットインジケータ(SFI:slot format indicator)の一部として通知されてもよい。LBTカテゴリとは、例えば、以下のように定義されてもよい。 Further, in NR-U, a notification method of the LBT category in the COT acquired by the base station 10 is being studied. For example, the LBT category may be notified as part of a slot format indicator (SFI). The LBT category may be defined as follows, for example.
 「カテゴリ1」は、スイッチングギャップの後、即時送信を行うチャネルアクセス方法に対応する。基地局10が獲得したCOT内において、スイッチングギャップの後、即時送信をする場合に使用される。受信から送信へのスイッチングギャップは、送受信機の切り替えに要するギャップであり、16μsを超えない。 "Category 1" corresponds to a channel access method that performs immediate transmission after a switching gap. It is used in the case of immediate transmission after the switching gap in the COT acquired by the base station 10. The switching gap from reception to transmission is a gap required for switching between the transceiver and does not exceed 16 μs.
 「カテゴリ2」は、ランダムバックオフを伴わないLBTを行うチャネルアクセス方法に対応する。送信を実行する前にチャネルがアイドルであるかをセンシングする期間は、確定している。例えば、カテゴリ2では、25μsのLBTが実行されてもよいし、16μsのLBTが実行されてもよい。なお、「チャネルアクセス方法」は、「LBTタイプ」と呼ばれてもよい。 "Category 2" corresponds to a channel access method that performs LBT without random backoff. The period for sensing whether the channel is idle before performing transmission is fixed. For example, in category 2, 25 μs LBT may be executed or 16 μs LBT may be executed. The "channel access method" may be referred to as "LBT type".
 「カテゴリ3」は、ランダムバックオフを伴い、固定サイズのコンテンションウィンドウを使用するLBTを行うチャネルアクセス方法に対応する。カテゴリ3のLBT手順において、送信機はコンテンションウィンドウ内でランダムナンバNを決定する。コンテンションウィンドウのサイズは、最小値と、最大値Nとで特定される。カテゴリ3のコンテンションウィンドウのサイズは固定である。ランダムナンバNは、LBT手順において、送信を実行する前にチャネルがアイドルであるかをセンシングする期間の決定に使用される。 "Category 3" corresponds to the channel access method of performing LBT using a fixed size contention window with random backoff. In the category 3 LBT procedure, the transmitter determines a random number N in the contention window. The size of the contention window is specified by a minimum value and a maximum value N. The size of the category 3 contention window is fixed. Random number N is used in the LBT procedure to determine how long to sense if a channel is idle before performing a transmission.
 「カテゴリ4」は、ランダムバックオフを伴い、可変サイズのコンテンションウィンドウを使用するLBTを行うチャネルアクセス方法に対応する。カテゴリ4のLBT手順において、送信機はコンテンションウィンドウ内でランダムナンバNを決定する。コンテンションウィンドウのサイズは、最小値と、最大値Nとで特定される。カテゴリ4のコンテンションウィンドウのサイズは可変である。ランダムナンバNは、LBT手順において、送信を実行する前にチャネルがアイドルであるかをセンシングする期間の決定に使用される。なお、カテゴリ3は、カテゴリ4の一つのケースとしてカテゴリ4に包含されてもよい。 "Category 4" corresponds to the channel access method of performing LBT using a variable size contention window with random backoff. In the category 4 LBT procedure, the transmitter determines a random number N in the contention window. The size of the contention window is specified by a minimum value and a maximum value N. The size of the category 4 contention window is variable. Random number N is used in the LBT procedure to determine how long to sense if a channel is idle before performing a transmission. In addition, category 3 may be included in category 4 as one case of category 4.
 図3は、本発明の実施の形態におけるシグナリングの例を説明するためのシーケンス図である。基地局10は、端末20に対して、複数のPUSCHの送信機会を設定してもよい。 FIG. 3 is a sequence diagram for explaining an example of signaling in the embodiment of the present invention. The base station 10 may set a plurality of PUSCH transmission opportunities for the terminal 20.
 ステップS1において、基地局10は、上位レイヤシグナリングを介して、設定済グラントタイプ1又はタイプ2に係る設定を端末20に通知する。例えば、設定済グラントタイプ1では、PUSCHを送信可能な時間及び/又は時間リソースが設定される。例えば、設定済グラントタイプ2では、上位レイヤシグナリングを介して設定された設定済グラントがDCIで有効化(アクティベーション)される。設定済グラントは、CG(Configured grant)と記載されてもよい。 In step S1, the base station 10 notifies the terminal 20 of the settings related to the set grant type 1 or type 2 via higher layer signaling. For example, in the configured grant type 1, the time and / or time resource in which the PUSCH can be transmitted is set. For example, in the configured grant type 2, the configured grant set via higher layer signaling is activated by DCI. The configured grant may be described as CG (Configured grant).
 ステップS2において、基地局10は、PDCCHを介して、CGタイプ2を有効化(アクティベーション)するDCIを端末20に送信する。続いて、端末20は、受信したCGの設定に基づいて決定した1又は複数のCG-PUSCHを介して基地局10にデータを送信する(S3)。続いて、基地局10は、受信したCG-PUSCHに対応するHARQ応答を含むCG-DFI(Downlink feedback information)を端末20に送信する(S4)。 In step S2, the base station 10 transmits a DCI that activates CG type 2 to the terminal 20 via the PDCCH. Subsequently, the terminal 20 transmits data to the base station 10 via one or a plurality of CG-PUSCHs determined based on the received CG settings (S3). Subsequently, the base station 10 transmits CG-DFI (Downlink feedback information) including a HARQ response corresponding to the received CG-PUSCH to the terminal 20 (S4).
 ここで、NR-Uにおいて、CG-DFIは、以下1)-4)に示される事項を少なくともサポートしてもよい。
1)CG-DFIは、すべてのUL-HARQプロセスに対するトランスポートレベルのHARQ-ACKビットマップを少なくとも含む。
2)HARQプロセスの最大数は、リリース15と同様でよい。
3)PUSCHの終了シンボルから、当該PUSCHに対応するHARQ-ACKを運ぶDFIの開始シンボルまでの最小期間「D」を、RRCは設定してもよい。端末20は、「n-D」以前に終了したPUSCH送信に対してのみHARQ-ACKが有効であると想定する。「n」はDFIの開始シンボルに対応する。スロットアグリゲーション時における最短期間が定義されてもよい。
4)端末側ブラインドデコーディングの複雑性は、DFIサイズによって増大しない。
Here, in NR-U, CG-DFI may at least support the matters shown in 1) -4) below.
1) CG-DFI includes at least a transport-level HARQ-ACK bitmap for all UL-HARQ processes.
2) The maximum number of HARQ processes may be the same as in Release 15.
3) The RRC may set a minimum period "D" from the end symbol of the PUSCH to the start symbol of the DFI carrying the HARQ-ACK corresponding to the PUSCH. The terminal 20 assumes that HARQ-ACK is valid only for the PUSCH transmission that ended before "n-D". “N” corresponds to the start symbol of DFI. The shortest period during slot aggregation may be defined.
4) The complexity of terminal-side blind decoding does not increase with DFI size.
 また、DFIはCS-RNTI(Configured Scheduling - Radio Network Temporary Identifier)によってスクランブルされたPDCCHを使用して送信されてもよい。DFIサイズは、ULをグラントするDCIと同様であってもよいし、ULをグラントするDCIフォーマット0_1のサイズと合わせられてもよい。CG-PUSCHタイプ1及び/又はタイプ2が設定されるとき、CG送信を有効又は無効化するDCIとDFIとを区別するため、1ビットのフラグが使用されてもよい。 Further, DFI may be transmitted using PDCCH scrambled by CS-RNTI (Configured Scheduling-Radio Network Temporary Identifier). The DFI size may be similar to the DCI that grants the UL, or may be matched to the size of the DCI format 0-1 that grants the UL. When CG-PUSCH type 1 and / or type 2 is set, a 1-bit flag may be used to distinguish between DCI and DFI that enable or disable CG transmission.
 なお、DFIは、以下の1)-5)に示される情報を含んでもよい。
1)UL/DLフラグ
2)クロスキャリアスケジューリングが設定されている場合CIF(Carrier indicator field)
3)上述した1ビットのフラグ
4)HARQビットマップ
5)TPCコマンド(例えば、2ビット長)
In addition, DFI may include the information shown in 1) -5) below.
1) UL / DL flag 2) When cross-carrier scheduling is set CIF (Carrier indicator field)
3) 1-bit flag described above 4) HARQ bitmap 5) TPC command (for example, 2 bit length)
 また、CGタイプ1において、端末20はCGが設定された場合のみDFIが存在すると想定する。CGタイプ2において、端末20はCGが設定された場合かつ端末20がCG送信のため有効化された状態にある場合のみDFIが存在すると想定する。 Further, in CG type 1, it is assumed that the terminal 20 has DFI only when CG is set. In CG type 2, the terminal 20 assumes that DFI exists only when CG is set and the terminal 20 is in the enabled state for CG transmission.
 また、NR-Uにおいて、DCIフォーマット0_1は、1セルでの1又は複数のPUSCHのスケジューリング又は端末20へのCG-DFIの通知に使用される。以下の1)-5)に示される情報は、C-RNTI(Cell-RNTI)、CS-RNTI、SP-CSI-RNTI(Semi-Persistent Channel State Information-RNTI)又はMCS-C-RNTI(Modulation and Coding Scheme C-RNTI)によってスクランブルされたCRCを伴ったDCIフォーマット0_1によって送信されてもよい。 Further, in NR-U, DCI format 0_1 is used for scheduling one or more PUSCHs in one cell or notifying the terminal 20 of CG-DFI. The information shown in 1) -5) below is C-RNTI (Cell-RNTI), CS-RNTI, SP-CSI-RNTI (Semi-Persistent Channel State Information-RNTI) or MCS-C-RNTI (Modulation and). It may be transmitted in DCI format 0-1 with CRC scrambled by Coding Scheme C-RNTI).
1)DCIフォーマットの識別子 1ビット
UL-DCIフォーマットの場合、値は常に「0」が設定される。
2)CIF 0ビット又は3ビット
クロスキャリアスケジューリングが設定されている場合に有効となる。
3)DFIフラグ 0ビット又は1ビット
CS-RNTIでスクランブルされたCRCを伴うDCIフォーマット0_1をモニタリングするよう設定された場合かつセルにおいてスペクトラムを共有するチャネルアクセスを行う場合(すなわちNR-Uの場合)、1ビットが設定される。CS-RNTIよりスクランブルされたCRCを伴うDCIフォーマット0_1の場合、当該1ビットの値「0」はCGタイプ2送信の有効化を示し、当該1ビットの値「1」はCG-DFIを示す。DCIフォーマット0_1がC-RNTI、SP-CSI-RNTI又はMCS-C-RNTIでスクランブルされたCRCを伴う場合、当該1ビットは予約される。上記以外の場合、フィールドは0ビットとする。
1) DCI format identifier In the case of the 1-bit UL-DCI format, the value is always set to "0".
2) CIF This is valid when 0-bit or 3-bit cross-carrier scheduling is set.
3) DFI flag When configured to monitor DCI format 0_1 with CRC scrambled with 0-bit or 1-bit CS-RNTI and when performing channel access sharing a spectrum in the cell (ie NR-U) 1 bit is set. In the case of DCI format 0_1 with CRC scrambled from CS-RNTI, the 1-bit value "0" indicates the activation of CG type 2 transmission, and the 1-bit value "1" indicates CG-DFI. If DCI format 0_1 is accompanied by a CRC scrambled with C-RNTI, SP-CSI-RNTI or MCS-C-RNTI, the 1 bit is reserved. In cases other than the above, the field is set to 0 bits.
 CG-DFIを通知するDCIフォーマット0_1が使用される場合、残るフィールドは以下のように設定される。
4)HARQ-ACKビットマップ 16ビット
HARQプロセスインデックスがMSB(Most significant bit)からLSB(Least significant bit)へと昇順でビットマップにマッピングされる。ビットマップの各ビットは、値「1」がACK(肯定的応答)を示し、値「0」がNACK(否定的応答)を示す。端末20は、受信したCG-DFIに含まれるHARQ-ACKビットマップに基づいて、送信したCG-PUSCHに係る再送制御を実行する。
5)スケジュールされたPUSCHに対するTPCコマンド 2ビット
なお、DCIフォーマット残りのすべてのビットは「0」に設定される。
When DCI format 0_1 notifying CG-DFI is used, the remaining fields are set as follows.
4) HARQ-ACK Bitmap The 16-bit HARQ process index is mapped to the bitmap in ascending order from MSB (Most significant bit) to LSB (Least significant bit). For each bit in the bitmap, a value "1" indicates ACK (positive response) and a value "0" indicates NACK (negative response). The terminal 20 executes the retransmission control related to the transmitted CG-PUSCH based on the HARQ-ACK bitmap included in the received CG-DFI.
5) TPC command for scheduled PUSCH 2 bits All the remaining bits in the DCI format are set to "0".
 ここで、CG-DFIにより通知されるHARQ-ACKビットマップにおいて、基地局10側の観点で識別されない可能性があるHARQプロセスに対応するHARQ-ACK値をどのように設定するかを決定する必要がある。 Here, it is necessary to determine how to set the HARQ-ACK value corresponding to the HARQ process that may not be identified from the viewpoint of the base station 10 in the HARQ-ACK bitmap notified by CG-DFI. There is.
 動的に割り当てるPUSCHでは、基地局10はULグラントにおいてHARQプロセスを割り当てるため、HARQプロセスが使用されているか否か基地局10により把握されている。したがって、端末20がULグラントの検出に失敗しDTX送信となる場合、基地局10は、NACKをフィードバックして再スケジューリングを当該HARQプロセスに対して実行する。また、ULグラントに基づいて端末20が送信したPUSCHを基地局10が検出又は復号に失敗した場合、基地局10は、NACKをフィードバックして再スケジューリングを当該HARQプロセスに対して実行する。 In the dynamically assigned PUSCH, since the base station 10 allocates the HARQ process in the UL grant, whether or not the HARQ process is used is grasped by the base station 10. Therefore, when the terminal 20 fails to detect the UL grant and transmits DTX, the base station 10 feeds back NACK and executes rescheduling for the HARQ process. Further, when the base station 10 fails to detect or decode the PUSCH transmitted by the terminal 20 based on the UL grant, the base station 10 feeds back NACK and executes rescheduling for the HARQ process.
 図4は、本発明の実施の形態におけるPUSCHの送受信の例(1)を説明するための図である。関連付けられるDCI又はULグラントを伴わないCG-PUSCHにおいて、図4に示されるように、端末20がCG-PUSCHを送信して、基地局10がHPN(HARQ process number)#0に対応するCG-PUSCHの検出に成功し、HPN#1に対応するCG-PUSCHの検出に失敗したとする。端末20がバッファエンプティのためCG-PUSCHを送信しなかったのか、端末20がCG-PUSCHを送信したものの基地局10が検出できなかったのかいずれであるか基地局10は判別できない。ここで、例えば、HPN#1に対応するHARQ-ACKフィードバックにACKが設定される場合、端末20はHPN#1に対応するCG-PUSCHの送信に成功したと判定するため、動作に支障が生じる。 FIG. 4 is a diagram for explaining an example (1) of transmission / reception of PUSCH in the embodiment of the present invention. In a CG-PUSCH without an associated DCI or UL grant, as shown in FIG. 4, the terminal 20 transmits the CG-PUSCH and the base station 10 corresponds to the HPN (HARQ process number) # 0 CG-. It is assumed that the detection of PUSCH is successful and the detection of CG-PUSCH corresponding to HPN # 1 fails. The base station 10 cannot determine whether the terminal 20 did not transmit the CG-PUSCH due to the buffer emptyness, or the terminal 20 transmitted the CG-PUSCH but the base station 10 could not be detected. Here, for example, when ACK is set for the HARQ-ACK feedback corresponding to HPN # 1, the terminal 20 determines that the CG-PUSCH corresponding to HPN # 1 has been successfully transmitted, which causes a problem in operation. ..
 そこで、CG-DFIにより通知されるHARQ-ACKビットマップにおいて、基地局10側の観点で識別されない可能性があるHARQプロセス又は使用されていないHARQプロセスに対応するHARQ-ACK値を、以下a)-c)のように設定してもよい。 Therefore, in the HARQ-ACK bitmap notified by CG-DFI, the HARQ-ACK value corresponding to the HARQ process that may not be identified from the viewpoint of the base station 10 side or the unused HARQ process is referred to as a) below. -C) may be set as follows.
a)固定値NACKを設定する。図5は、本発明の実施の形態におけるPUSCHの送受信の例(2)を説明するための図である。図5に示されるように、HPN#1に対応するCG-PUSCHを基地局10が検出できなかった場合、CG-DFIに含まれる対応するHARQ-ACKビットマップのビットには、固定値NACKを設定してもよい。HPN#1に対応するCG-PUSCHは、端末20に送信されていてもよいし、端末20に送信されていなくてもよい。なお、端末20がHPN#1に対応するCG-PUSCHを送信しなかった場合、基地局10が当該CG-PUSCHを検出しなかったと判定してNACKをフィードバックして対応するHARQプロセスに再スケジューリングを実行しても、端末20側ではCG-PUSCHを送信していないことを認識しているため、新たなデータを再送機会に送信することで、動作に支障は生じない。 a) Set a fixed value NACK. FIG. 5 is a diagram for explaining an example (2) of transmission / reception of PUSCH according to the embodiment of the present invention. As shown in FIG. 5, when the base station 10 cannot detect the CG-PUSCH corresponding to HPN # 1, a fixed value NACK is set as the bit of the corresponding HARQ-ACK bitmap included in the CG-DFI. It may be set. The CG-PUSCH corresponding to HPN # 1 may or may not be transmitted to the terminal 20. If the terminal 20 does not transmit the CG-PUSCH corresponding to HPN # 1, it is determined that the base station 10 has not detected the CG-PUSCH, NACK is fed back, and the corresponding HARQ process is rescheduled. Even if it is executed, since the terminal 20 recognizes that the CG-PUSCH is not transmitted, the operation is not hindered by transmitting new data at the retransmission opportunity.
 基地局10が検出できなかったHPNに対応するHARQ-ACKビットマップに、固定値NACKを設定することで、端末20がCG-PUSCHを送信しなかった場合と、端末20がCG-PUSCHを送信し、かつ基地局10が当該CG-PUSCHを検出できなかった場合との双方で、支障なくHARQに係る動作を実行することができる。 By setting a fixed value NACK in the HARQ-ACK bitmap corresponding to the HPN that the base station 10 could not detect, the terminal 20 does not transmit the CG-PUSCH and the terminal 20 transmits the CG-PUSCH. However, both when the base station 10 cannot detect the CG-PUSCH, the operation related to HARQ can be executed without any trouble.
b)固定値ACKを設定する。基地局10が検出できなかったHPNに対応するHARQ-ACKビットマップのビットに、固定値ACKを設定することで、PHYレイヤ及びMACレイヤ等の下位レイヤの動作を単純化することができる。 b) Set a fixed value ACK. By setting a fixed value ACK to the bits of the HARQ-ACK bitmap corresponding to the HPN that the base station 10 could not detect, the operation of lower layers such as the PHY layer and the MAC layer can be simplified.
c)固定値を定義せず、基地局10が決定する。基地局10が検出できなかったHPNに対応するHARQ-ACKビットマップのビットに、基地局10が決定した値を設定することで、柔軟性の高いHARQ運用が可能となる。 c) The base station 10 determines without defining a fixed value. By setting the value determined by the base station 10 to the bits of the HARQ-ACK bitmap corresponding to the HPN that the base station 10 could not detect, highly flexible HARQ operation becomes possible.
 上述の実施例により、端末20は、CG-PUSCHの送信に対応するHARQ-ACKを含むCG-DFIを受信し、当該CG-DFIに基づいてCG-PUSCHの再送動作を効率良く制御することができる。 According to the above embodiment, the terminal 20 receives the CG-DFI including HARQ-ACK corresponding to the transmission of the CG-PUSCH, and efficiently controls the retransmission operation of the CG-PUSCH based on the CG-DFI. can.
 すなわち、無線通信システムにおいて、複数のPUSCH(Physical Uplink Shared Channel)に対応する複数のHARQ(Hybrid automatic repeat request)応答をシグナリングすることができる。 That is, in a wireless communication system, it is possible to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels).
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, a functional configuration example of the base station 10 and the terminal 20 that execute the processes and operations described so far will be described. The base station 10 and the terminal 20 include a function of carrying out the above-described embodiment. However, the base station 10 and the terminal 20 may each have only a part of the functions in the embodiment.
 <基地局10>
 図6は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図6に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図6に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Base station 10>
FIG. 6 is a diagram showing an example of the functional configuration of the base station 10 according to the embodiment of the present invention. As shown in FIG. 6, the base station 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in FIG. 6 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。 The transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. Further, the transmission unit 110 transmits a message between network nodes to another network node. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signals and the like to the terminal 20. In addition, the receiving unit 120 receives a message between network nodes from another network node.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を格納する。設定情報の内容は、例えば、NR-Uの通信に係る設定等である。 The setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20. The content of the setting information is, for example, a setting related to NR-U communication.
 制御部140は、実施例において説明したように、ULグラント又はCGに係る制御を行う。また、制御部140は、受信したPUSCHに対応するHARQ応答を含むCG-DFIの送信に係る制御を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。 The control unit 140 controls the UL grant or CG as described in the embodiment. Further, the control unit 140 controls the transmission of the CG-DFI including the HARQ response corresponding to the received PUSCH. The function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
 <端末20>
 図7は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図7に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図7に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Terminal 20>
FIG. 7 is a diagram showing an example of the functional configuration of the terminal 20 according to the embodiment of the present invention. As shown in FIG. 7, the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240. The functional configuration shown in FIG. 7 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。 The transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals and the like transmitted from the base station 10. Further, for example, the transmission unit 210 connects the other terminal 20 to PSCCH (Physical Sidelink Control Channel), PSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) as D2D communication. Etc., and the receiving unit 220 receives the PSCCH, PSCH, PSDCH, PSBCH, etc. from the other terminal 20.
 設定部230は、受信部220により基地局10から受信した各種の設定情報を格納する。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、NR-Uの通信に係る設定等である。 The setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220. The setting unit 230 also stores preset setting information. The content of the setting information is, for example, a setting related to NR-U communication.
 制御部240は、実施例において説明したように、CGに基づいてLBTを伴う送信を実行する制御を行う。また、制御部240は、CGに基づいてPUSCH送信をHARQ制御と共に実行する。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。 As described in the embodiment, the control unit 240 controls to execute the transmission accompanied by the LBT based on the CG. Further, the control unit 240 executes PUSCH transmission together with HARQ control based on CG. The function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図6及び図7)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 6 and 7) used in the description of the above embodiment show blocks of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 8 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure. The above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the terminal 20, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like. For example, the above-mentioned control unit 140, control unit 240, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図6に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図7に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 140 of the base station 10 shown in FIG. 6 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 7 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Although the above-mentioned various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory) and the like. It may be configured. The storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu). -It may be composed of at least one of a ray® disc), a smart card, a flash memory (eg, a card, a stick, a key drive), a floppy® disc, a magnetic strip, and the like. The storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of. For example, the transmission / reception antenna, the amplifier unit, the transmission / reception unit, the transmission line interface, and the like may be realized by the communication device 1004. The transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、複数の上りリンク送信機会を設定する上位レイヤシグナリングを基地局から受信する受信部と、前記上位レイヤシグナリングに基づいて、前記複数の上りリンク送信機会のうち少なくとも一つで上りリンク送信を前記基地局に送信する送信部と、前記複数の上りリンク送信機会で送信しなかった上りリンク送信に対応する再送制御に係る情報を含む下りリンクフィードバック情報を前記基地局から受信し、前記再送制御に係る情報に基づいて、前記送信しなかった上りリンク送信に係る再送制御を実行する制御部とを有する端末が提供される。
(Summary of embodiments)
As described above, according to the embodiment of the present invention, the receiving unit that receives the upper layer signaling that sets a plurality of uplink transmission opportunities from the base station, and the plurality of upper layer signalings based on the upper layer signaling. A transmitter that transmits uplink transmission to the base station at at least one of the uplink transmission opportunities, and downlink that includes information related to retransmission control corresponding to uplink transmission that was not transmitted at the plurality of uplink transmission opportunities. A terminal having a control unit that receives link feedback information from the base station and executes retransmission control related to uplink transmission that was not transmitted based on the information related to retransmission control is provided.
 上記の構成により、端末20は、CG-PUSCHの送信に対応するHARQ-ACKを含むCG-DFIを受信し、当該CG-DFIに基づいてCG-PUSCHの再送動作を効率良く制御することができる。すなわち、無線通信システムにおいて、複数のPUSCH(Physical Uplink Shared Channel)に対応する複数のHARQ(Hybrid automatic repeat request)応答をシグナリングすることができる。 With the above configuration, the terminal 20 can receive the CG-DFI including HARQ-ACK corresponding to the transmission of the CG-PUSCH, and can efficiently control the retransmission operation of the CG-PUSCH based on the CG-DFI. .. That is, in a wireless communication system, it is possible to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels).
 前記制御部は、前記再送制御に係る情報が否定的応答である場合、再送制御として新たなデータを送信してもよい。当該構成により、端末20がCG-PUSCHを送信しなかった場合に支障なくHARQに係る動作を実行することができる。 The control unit may transmit new data as retransmission control when the information related to the retransmission control is a negative response. With this configuration, when the terminal 20 does not transmit the CG-PUSCH, the operation related to HARQ can be executed without any trouble.
 また、本発明の実施の形態によれば、複数の上りリンク送信機会を設定する上位レイヤシグナリングを端末に送信する送信部と、前記上位レイヤシグナリングに基づいて、前記複数の上りリンク送信機会のうち少なくとも一つで上りリンク送信を前記端末から受信する受信部と、前記複数の上りリンク送信機会で検出しなかった上りリンク送信に対応する再送制御に係る情報のすべてに固定値として否定的応答を設定し、前記再送制御に係る情報を含む下りリンクフィードバック情報を前記端末に送信する制御部とを有する基地局が提供される。 Further, according to the embodiment of the present invention, among the transmission unit that transmits the upper layer signaling that sets a plurality of uplink transmission opportunities to the terminal and the plurality of uplink transmission opportunities based on the upper layer signaling. A negative response is given as a fixed value to all of the information related to the retransmission control corresponding to the uplink transmission not detected by the plurality of uplink transmission opportunities, and the receiver that receives the uplink transmission from the terminal at least one. A base station is provided that has a control unit that is set and transmits downlink feedback information including information related to the retransmission control to the terminal.
 上記の構成により、端末20は、CG-PUSCHの送信に対応するHARQ-ACKを含むCG-DFIを受信し、当該CG-DFIに基づいてCG-PUSCHの再送動作を効率良く制御することができる。すなわち、無線通信システムにおいて、複数のPUSCH(Physical Uplink Shared Channel)に対応する複数のHARQ(Hybrid automatic repeat request)応答をシグナリングすることができる。 With the above configuration, the terminal 20 can receive the CG-DFI including HARQ-ACK corresponding to the transmission of the CG-PUSCH, and can efficiently control the retransmission operation of the CG-PUSCH based on the CG-DFI. .. That is, in a wireless communication system, it is possible to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels).
 また、本発明の実施の形態によれば、複数の上りリンク送信機会を設定する上位レイヤシグナリングを基地局から受信する受信手順と、前記上位レイヤシグナリングに基づいて、前記複数の上りリンク送信機会のうち少なくとも一つで上りリンク送信を前記基地局に送信する送信手順と、前記複数の上りリンク送信機会で送信しなかった上りリンク送信に対応する再送制御に係る情報を含む下りリンクフィードバック情報を前記基地局から受信し、前記再送制御に係る情報に基づいて、前記送信しなかった上りリンク送信に係る再送制御を実行する制御手順とを端末が実行する通信方法が提供される。 Further, according to the embodiment of the present invention, the reception procedure for receiving the upper layer signaling for setting a plurality of uplink transmission opportunities from the base station and the plurality of uplink transmission opportunities based on the upper layer signaling. The downlink feedback information including the transmission procedure for transmitting the uplink transmission to the base station at least one of them and the information related to the retransmission control corresponding to the uplink transmission that was not transmitted at the plurality of uplink transmission opportunities is described above. A communication method is provided in which the terminal executes a control procedure for executing the retransmission control related to the uplink transmission that was not transmitted, based on the information received from the base station and related to the retransmission control.
 上記の構成により、端末20は、CG-PUSCHの送信に対応するHARQ-ACKを含むCG-DFIを受信し、当該CG-DFIに基づいてCG-PUSCHの再送動作を効率良く制御することができる。すなわち、無線通信システムにおいて、複数のPUSCH(Physical Uplink Shared Channel)に対応する複数のHARQ(Hybrid automatic repeat request)応答をシグナリングすることができる。 With the above configuration, the terminal 20 can receive the CG-DFI including HARQ-ACK corresponding to the transmission of the CG-PUSCH, and can efficiently control the retransmission operation of the CG-PUSCH based on the CG-DFI. .. That is, in a wireless communication system, it is possible to signal a plurality of HARQ (Hybrid automatic repeat request) responses corresponding to a plurality of PUSCHs (Physical Uplink Shared Channels).
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed inventions are not limited to such embodiments, and those skilled in the art can understand various modifications, modifications, alternatives, substitutions, and the like. There will be. Although explanations have been given using specific numerical examples in order to promote understanding of the invention, these numerical values are merely examples and any appropriate value may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in combination with another item. It may be applied (as long as there is no contradiction) to the matters described in. The boundary of the functional unit or the processing unit in the functional block diagram does not always correspond to the boundary of the physical component. The operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components. Regarding the processing procedure described in the embodiment, the processing order may be changed as long as there is no contradiction. For convenience of processing description, the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used. RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication). system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present specification may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station 10 in the present specification may be performed by its upper node. In a network consisting of one or more network nodes having a base station 10, various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 ( For example, it is clear that it can be done by at least one of (but not limited to, MME, S-GW, etc.). Although the case where there is one network node other than the base station 10 is illustrated above, the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example,). , Comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC: Component Carrier) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS: Base Station)", "radio base station", "base station device", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB" (GNB) ”,“ access point ”,“ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”, Terms such as "cell group," "carrier," and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS: Mobile Station)", "user terminal", "user device (UE: User Equipment)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, an uplink channel, a downlink channel, and the like may be read as a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station may have the functions of the user terminal described above.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, and transceiver. At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.). Slots may be in time units based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as the PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (RE: Resource Element). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth part (BWP: Bandwidth Part) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 なお、本開示において、CG-PUSCHは、複数の上りリンク送信の一例である。DCIは、下りリンク制御情報の一例である。CG-DFIに含まれるHARQビットマップは、複数の上りリンク送信に対応する再送制御に係る情報の一例である。CG-DFIは、下りリンクフィードバック情報の一例である。 In this disclosure, CG-PUSCH is an example of a plurality of uplink transmissions. DCI is an example of downlink control information. The HARQ bitmap included in the CG-DFI is an example of information related to retransmission control corresponding to a plurality of uplink transmissions. CG-DFI is an example of downlink feedback information.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    コアネットワーク
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
10 Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 30 Core network 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Claims (4)

  1.  複数の上りリンク送信機会を設定する上位レイヤシグナリングを基地局から受信する受信部と、
     前記上位レイヤシグナリングに基づいて、前記複数の上りリンク送信機会のうち少なくとも一つで上りリンク送信を前記基地局に送信する送信部と、
     前記複数の上りリンク送信機会で送信しなかった上りリンク送信に対応する再送制御に係る情報を含む下りリンクフィードバック情報を前記基地局から受信し、前記再送制御に係る情報に基づいて、前記送信しなかった上りリンク送信に係る再送制御を実行する制御部とを有する端末。
    A receiver that receives upper layer signaling from a base station that sets multiple uplink transmission opportunities, and
    A transmission unit that transmits uplink transmission to the base station at at least one of the plurality of uplink transmission opportunities based on the upper layer signaling.
    The downlink feedback information including the information related to the retransmission control corresponding to the uplink transmission that was not transmitted at the plurality of uplink transmission opportunities is received from the base station, and the transmission is performed based on the information related to the retransmission control. A terminal having a control unit that executes retransmission control related to uplink transmission that has not been performed.
  2.  前記制御部は、前記再送制御に係る情報が否定的応答である場合、再送制御として新たなデータを送信する請求項1記載の端末。 The terminal according to claim 1, wherein the control unit transmits new data as retransmission control when the information related to the retransmission control is a negative response.
  3.  複数の上りリンク送信機会を設定する上位レイヤシグナリングを端末に送信する送信部と、
     前記上位レイヤシグナリングに基づいて、前記複数の上りリンク送信機会のうち少なくとも一つで上りリンク送信を前記端末から受信する受信部と、
     前記複数の上りリンク送信機会で検出しなかった上りリンク送信に対応する再送制御に係る情報のすべてに固定値として否定的応答を設定し、前記再送制御に係る情報を含む下りリンクフィードバック情報を前記端末に送信する制御部とを有する基地局。
    A transmitter that sends upper layer signaling to the terminal that sets multiple uplink transmission opportunities,
    A receiving unit that receives uplink transmission from the terminal at at least one of the plurality of uplink transmission opportunities based on the upper layer signaling.
    A negative response is set as a fixed value for all the information related to the retransmission control corresponding to the uplink transmission not detected by the plurality of uplink transmission opportunities, and the downlink feedback information including the information related to the retransmission control is described above. A base station having a control unit that transmits to a terminal.
  4.  複数の上りリンク送信機会を設定する上位レイヤシグナリングを基地局から受信する受信手順と、
     前記上位レイヤシグナリングに基づいて、前記複数の上りリンク送信機会のうち少なくとも一つで上りリンク送信を前記基地局に送信する送信手順と、
     前記複数の上りリンク送信機会で送信しなかった上りリンク送信に対応する再送制御に係る情報を含む下りリンクフィードバック情報を前記基地局から受信し、前記再送制御に係る情報に基づいて、前記送信しなかった上りリンク送信に係る再送制御を実行する制御手順とを端末が実行する通信方法。
    A reception procedure for receiving upper layer signaling from a base station that sets multiple uplink transmission opportunities, and
    A transmission procedure for transmitting an uplink transmission to the base station at at least one of the plurality of uplink transmission opportunities based on the upper layer signaling.
    The downlink feedback information including the information related to the retransmission control corresponding to the uplink transmission that was not transmitted at the plurality of uplink transmission opportunities is received from the base station, and the transmission is performed based on the information related to the retransmission control. A communication method in which the terminal executes a control procedure for executing retransmission control related to uplink transmission that has not been performed.
PCT/JP2020/001972 2020-01-21 2020-01-21 Terminal, base station, and communication method WO2021149159A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001972 WO2021149159A1 (en) 2020-01-21 2020-01-21 Terminal, base station, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001972 WO2021149159A1 (en) 2020-01-21 2020-01-21 Terminal, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2021149159A1 true WO2021149159A1 (en) 2021-07-29

Family

ID=76992121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001972 WO2021149159A1 (en) 2020-01-21 2020-01-21 Terminal, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2021149159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175718A1 (en) * 2022-03-15 2023-09-21 富士通株式会社 First radio communication device and second radio communication device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190222356A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Timing considerations for aul-dfi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190222356A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Timing considerations for aul-dfi

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Transmission with configured grant in NR unlicensed band", 3GPP DRAFT; R1-1911869, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823051 *
NTT DOCOMO, INC.: "Configured grant enhancement for NR-U", 3GPP DRAFT; R1-1912877, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051820225 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175718A1 (en) * 2022-03-15 2023-09-21 富士通株式会社 First radio communication device and second radio communication device

Similar Documents

Publication Publication Date Title
WO2020222281A1 (en) User equipment
WO2021024440A1 (en) Terminal
WO2021172337A1 (en) Terminal and communication method
WO2020222283A1 (en) Base station device and user equipment
WO2021172228A1 (en) Terminal and communication method
WO2021149231A1 (en) Terminal and communication method
WO2021149110A1 (en) Terminal and communication method
WO2021140674A1 (en) Terminal and communication method
WO2021149159A1 (en) Terminal, base station, and communication method
WO2021171995A1 (en) Terminal, communication method, and base station
WO2022130645A1 (en) Terminal, base station, and communication method
WO2022149286A1 (en) Terminal, base station and communication method
WO2022085202A1 (en) Terminal and base station
WO2022149223A1 (en) Terminal, base station, and communication method
WO2021149163A1 (en) Terminal and transmission power control method
WO2021090440A1 (en) Terminal and transmission method
JP7378487B2 (en) Terminals, base stations, communication methods, and communication systems
JP7301957B2 (en) Terminal, communication system and communication method
WO2021065016A1 (en) Terminal and communication method
WO2021009927A1 (en) Terminal
WO2021065011A1 (en) Terminal and communication method
WO2022137472A1 (en) Terminal and communication method
WO2021095246A1 (en) Terminal, and communication method
WO2022102632A1 (en) Terminal and communication method
WO2021157040A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20914795

Country of ref document: EP

Kind code of ref document: A1