WO2021149109A1 - Refrigerator - Google Patents
Refrigerator Download PDFInfo
- Publication number
- WO2021149109A1 WO2021149109A1 PCT/JP2020/001708 JP2020001708W WO2021149109A1 WO 2021149109 A1 WO2021149109 A1 WO 2021149109A1 JP 2020001708 W JP2020001708 W JP 2020001708W WO 2021149109 A1 WO2021149109 A1 WO 2021149109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cold air
- wall surface
- air outlet
- wall
- refrigerator
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
- F25D17/08—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
Definitions
- This technology is related to refrigerators. In particular, it concerns the cooling of the entire storage room.
- a refrigerator that allows the cold air, which is the cooled air, to be distributed throughout even if the amount of objects to be cooled in the storage room inside the refrigerator is large.
- a wing member is arranged at a position close to a cold air outlet, and a rib is arranged on the lower surface of the shelf board (for example, Patent Document 1). reference).
- the object to be cooled on the shelf board can be efficiently cooled by guiding the cooled air to the lower surface of the shelf board.
- the refrigerator described in Patent Document 1 enables uniform cooling even when there are many objects to be cooled by arranging the wing members and ribs on the lower surface of the shelf plate.
- the refrigerator of Patent Document 1 since the wing member is arranged on the lower surface of the shelf board, when the cooled object is to be placed on the shelf board one step below the shelf board, the cooled object is winged. It gets caught in the member and cannot be placed in the back of the shelf board. Therefore, in the refrigerator of Patent Document 1, the practical storage volume is reduced.
- the refrigerator described in Patent Document 2 uniformly cools the inside of the storage container by inflowing cooled air from above the storage container.
- the refrigerator of Patent Document 2 not only has a complicated structure, but also secures a cold air passage by allocating an area that can be used as a storage area. Therefore, as for the refrigerator of Patent Document 2, the storage volume that can actually store the object to be cooled is reduced, and the convenience of the user is impaired.
- the refrigerator disclosed here has an upper wall which is an upper wall of the storage chamber where the object to be cooled is stored and a cold air outlet from which the cold air sent from the outside of the storage chamber is blown out.
- the cold air outlet is located at a position where the upper end coincides with the height of the wall surface on the upper wall or a position where cold air blows out along the wall surface in the height direction.
- the distance in the height direction between the right end and the left end of the cold air outlet when viewed from the cold air blowing direction, the rear end with respect to the blowing direction, and the wall surface is the distance with respect to the blowing direction.
- One or more horizontal guide plates are arranged so as to be equal to or greater than the distance between the front end portion and the wall surface in the height direction, and the cold air protruding downward and blown out along the upper wall is blown onto the upper wall.
- Wall ribs that guide and diffuse into the storage chamber are placed on the wall.
- the cold air emitted from the cold air outlet is made to follow the wall surface of the upper wall of the storage room, and the wall surface ribs arranged on the wall surface induce the cold air. Therefore, it is possible to efficiently supply cold air to the entire storage chamber while securing a practical storage volume without specially providing a member and a space for supplying cold air to the entire storage chamber.
- FIG. 5 is an enlarged view of a vertical cross section schematically showing an example of the shape of a wall surface rib provided in the refrigerator according to the first embodiment.
- FIG. 1 It is a perspective view which shows the main part of the upper cold air outlet 27a provided in the refrigerator 100 which concerns on Embodiment 1.
- FIG. 2 It is a figure which shows typically the state which the partition wall and the like in the refrigerator which concerns on Embodiment 2 are seen perspective from the upper surface side.
- FIG. 1 shows the main part of the upper cold air outlet 27a provided in the refrigerator 100 which concerns on Embodiment 1.
- FIG. 2 It is a figure which shows typically the state which the partition wall and the like in the refrigerator which concerns on Embodiment 2 are seen perspective from the upper surface side.
- It is a vertical sectional view of the freezing chamber in the refrigerator which concerns on Embodiment 3.
- directional terms eg, "right”, “left”, “front”, “rear”, etc.
- the up-down direction is the height direction
- the left-right direction is the width direction
- the front-back direction is the front-rear direction (depth direction).
- parallel does not necessarily mean only mathematical parallelism that planes do not intersect even if they are expanded infinitely, but they are substantially parallel. It shall also include meaning. Then, in the drawings, the relationship between the sizes of the constituent members may differ from the actual one.
- FIG. 1 is a front view schematically showing the appearance of the refrigerator according to the first embodiment.
- FIG. 2 is a diagram illustrating a configuration inside the refrigerator when the refrigerator according to the first embodiment is viewed from the side surface side.
- FIG. 3 is a vertical cross-sectional view schematically showing the internal configuration of the freezing chamber in the refrigerator according to the first embodiment.
- the refrigerator 100 of the first embodiment includes a refrigerating room 1 having a refrigerating room opening / closing door 11 at the uppermost stage. Further, the refrigerator 100 includes a vegetable compartment 2 provided with a vegetable compartment opening / closing door 12 at the lower part of the refrigerator compartment 1. Further, the refrigerator 100 includes a freezing room 3 provided with a freezing room opening / closing door 13 at the bottom. The refrigerator 100 includes a refrigerating room 1, a vegetable room 2, and a freezing room 3 as storage rooms. The refrigerating room 1 is controlled so that the room is in a refrigerating temperature range of + 3 ° C. to 10 ° C., and stores objects to be cooled such as food.
- the vegetable compartment 2 is controlled so that the interior is in a refrigerated temperature range of, for example, + 3 ° C. to 10 ° C., and stores objects to be cooled such as vegetables.
- the freezing chamber 3 is controlled so that, for example, the inside of the freezing chamber 3 has a freezing temperature range of ⁇ 17 ° C. or lower, and the object to be cooled can be stored for a long period of time.
- the freezing chamber 3 also includes an ice making chamber 4 as described later, and can produce and store ice.
- the refrigerator 100 of the first embodiment includes a box-shaped heat insulating box body 110.
- the refrigerator 100 is divided into a plurality of storage chambers by a heat insulating box body 110.
- a gasket component 14 for suppressing heat leakage is arranged between the heat insulating box 110 and the opening / closing door of each storage chamber. Since the gasket component 14 suppresses heat leakage, the storage chamber of the refrigerator 100 can maintain a low temperature state.
- the refrigerator 100 has a machine room 5 and a cooling room 6 in the lower part of the back surface of the refrigerator 100 separated by the heat insulating box 110.
- Various devices such as a compressor 20 are housed in the machine room 5.
- various devices such as an evaporator 21 and a blower 22 are housed in the cooling chamber 6.
- the refrigerator 100 has a refrigeration cycle device inside.
- the refrigeration cycle device cools the air in the storage chamber.
- the refrigeration cycle apparatus includes a compressor 20, a condenser (not shown), an expansion valve (not shown), and an evaporator 21 as a cooler as specific components. These components are connected by piping to form an annular refrigerant circuit in which the refrigerant circulates.
- the compressor 20 sucks in the refrigerant from the evaporator 21 to compress it, and discharges the high-temperature and high-pressure refrigerant to the condenser. Further, the evaporator 21 exchanges heat between the refrigerant and the air passing through the cooling chamber 6 to generate cold air which is cooled air.
- the blower 22 generates an air flow by cold air in the cold air passage 7 leading from the cooling chamber 6 to each storage chamber, and the cold air generated by the evaporator 21 is used as the storage chambers, the refrigerating chamber 1, the vegetable compartment 2, and the freezing chamber 3. Supply to.
- the cold air that has passed through each storage chamber returns to the cooling chamber 6 via the cold air return air passage 8, is cooled again by the evaporator 21 in the cooling chamber 6, and is sent to each storage chamber.
- a drawer-type freezing chamber opening / closing door 13 is provided on the front surface of the freezing chamber 3.
- the freezing chamber opening / closing door 13 includes a support 15 that supports the lower storage container 23.
- the upper storage container 24 is placed above the lower storage container 23 so that the side bottom portion slides on the upper side of the lower storage container 23.
- the partition wall 25 formed by the heat insulating body serves as a wall that separates the freezing chamber 3 and the vegetable compartment 2. Since the freezing room 3 is on the lower side of the vegetable room 2, the partition wall 25 is the upper wall of the freezing room 3. Here, it is assumed that the partition wall 25 is a part of the heat insulating box body 110, but the partition wall 25 is not limited to this. Further, in the refrigerator 100 of the first embodiment, the cooling chamber 6 described above is formed on the rear side of the freezing chamber 3 by the heat insulating box body 110 and the first air passage component 26. The above-mentioned evaporator 21 is arranged in the cooling chamber 6. The blower 22 described above is arranged above the evaporator 21.
- the cold air generated by the evaporator 21 of the cooling chamber 6 is sent to the distribution air passage 9 through the cold air air passage 7 by the air flow of the blower 22.
- the distribution air passage 9 is an air passage composed of the first air passage component 26 and the second air passage component 27.
- the second air passage component 27 is a component that serves as a wall on the rear side of the freezing chamber 3.
- the second air passage component 27 has an opening portion that communicates the distribution air passage 9 with the space of the freezing chamber 3.
- the upper cold air outlet 27a is an opening through which cold air passes from the rear upper portion of the upper storage container 24 toward the inside of the upper storage container 24.
- the lower cold air outlet 27b is an opening portion through which cold air passes from the rear upper portion of the lower storage container 23 toward the inside of the lower storage container 23.
- the blower 22 to the upper cold air outlet 27a communicate with each other through the cold air passage 7 and the distribution air passage 9. Further, even between the blower 22 and the lower cold air outlet 27b, the cold air passage 7 and the distribution air passage 9 communicate with each other.
- the second air passage component 27 of the refrigerator 100 of the first embodiment further has an ice-making cold air outlet 27c that supplies cold air to the ice-making chamber 4 in the freezing chamber 3, as will be described later.
- the upper end of the upper cold air outlet 27a is arranged at a position coincident with or close to the partition wall surface 25a on the lower surface side of the partition wall 25 in the height direction. Since the upper cold air outlet 27a is located at the same position as or close to the partition wall surface 25a, the cold air emitted from the upper cold air outlet 27a is blown out along the partition wall surface 25a. Here, the reason why the cold air flows along the partition wall surface 25a will be described. The cold air blown out from the upper cold air outlet 27a pulls the air between the partition wall surface 25a and the upper end of the upper cold air outlet 27a to the outer edge of the cold air blown out by viscosity. The pulled air is carried downstream.
- the pressure drops between the partition wall surface 25a and the upper end of the upper cold air outlet 27a. Since the cold air flows toward the lower pressure side, the cold air exiting the upper cold air outlet 27a exerts a force toward the partition wall surface 25a. As a result, the cold air emitted from the upper cold air outlet 27a collides with the partition wall surface 25a and flows along the partition wall surface 25a so as to adhere to the partition wall surface 25a.
- the upper cold air outlet 27a has a small cross-sectional area of the outlet in the direction perpendicular to the blowing direction. More preferably, the cross-sectional area of the upper cold air outlet 27a in the direction perpendicular to the blowing direction is perpendicular to the airflow direction in the cold air passage 7 and the distribution air passage 9 passing from the blower 22 to the upper cold air outlet 27a. It is configured to have the smallest cross-sectional area. With such a configuration, the cold air sent by the blower 22 has a higher flow velocity at the upper cold air outlet 27a and is blown out as a jet.
- the cold air blown out from the upper cold air outlet 27a increases the flow velocity as a jet, so that the force toward the partition wall surface 25a increases and collides with the partition wall surface 25a more reliably.
- a wall surface rib 28 projecting downward is arranged on the partition wall surface 25a.
- the wall surface rib 28 and the partition wall 25 may be integrally formed.
- FIG. 4 is a diagram schematically showing a state in which a partition wall or the like in the refrigerator according to the first embodiment is viewed perspectively from the upper surface side.
- the refrigerator 100 according to the first embodiment includes an ice making chamber 4 in the freezing chamber 3.
- the ice making chamber 4 is located above the freezing chamber 3, and the ice produced in the ice making chamber 4 can be stored by using a part of the upper storage container 24.
- an ice-making cold air outlet 27c for blowing cold air is arranged in the ice-making chamber 4.
- the ice-making cold air outlet 27c is formed by a distribution air passage 9.
- the wall surface rib 28 is arranged in the freezing chamber 3 to cool the inside of the upper storage container 24 excluding the ice making chamber 4.
- the wall surface rib 28 is a member that blows out from the upper cold air outlet 27a, regulates a part of the cold air along the partition wall surface 25a so as to adhere to the partition wall surface 25a, and guides the cold air in a predetermined direction. Then, the wall surface rib 28 supplies the cold air from above the upper storage container 24 into the upper storage container 24 while spreading the cold air guided along the wall surface rib 28 over the entire upper storage container 24. Therefore, it is not desirable that the wall surface rib 28 be configured at a height that completely regulates the flow along the partition wall surface 25a.
- the wall surface rib 28 needs to have a height that allows cold air to flow in and can be changed in the direction toward the inside of the upper storage container 24. Therefore, the wall surface rib 28 in the refrigerator 100 of the first embodiment is configured to have a height smaller than the distance between the partition wall surface 25a and the lower end of the upper cold air outlet 27a.
- the wall surface ribs 28 are arranged radially from the center to the outside of the upper cold air outlet 27a.
- the distance L1 between the rear end far from the center of the upper cold air outlet 27a of the wall surface rib 28 and the wall on the back side is the rear end and the back side closer to the center of the cold air outlet of the wall surface rib 28.
- the distance to the wall must be greater than L2. Therefore, as shown in FIG. There is a relationship of L1> L2.
- the wall surface ribs 28 By arranging the wall surface ribs 28 having the height specified as described above, as shown by the arrow shown in FIG. 4, some of the cold air adhering to the partition wall surface 25a by blowing out the upper cold air outlet 27a is partially wall surface ribs 28. Flows along. Then, the other cold air passes over the wall surface rib 28 and flows to the front side without being completely regulated. Then, the cold air is supplied into the upper storage container 24 while spreading on the surface of the partition wall surface 25a. Therefore, the inside of the upper storage container 24 can be uniformly cooled.
- a plurality of the above-mentioned wall surface ribs 28 are installed on the partition wall surface 25a of the freezing chamber 3.
- the plurality of wall surface ribs 28 are arranged radially from the upper cold air outlet 27a toward the freezing chamber opening / closing door 13 in order to efficiently spread the cold air adhering to the partition wall surface 25a.
- the wall surface rib 28 it is sufficient that the direction of the cold air can be changed so that the cold air is supplied into the upper storage container 24 while spreading the cold air to the entire freezing chamber 3 along the partition wall surface 25a.
- the wall surface rib 28 is not limited to the radial arrangement, and may be arranged in a direction perpendicular to the direction in which the cold air is blown out from the upper cold air outlet 27a. At this time, the distance between the rear end of the wall surface rib 28 arranged closer to the upper cold air outlet 27a and the front end of the upper cold air outlet 27a is the distance of the wall surface rib 28 arranged farther from the upper cold air outlet 27a. It is longer than the distance between the rear end and the front end of the upper cold air outlet 27a.
- FIG. 5 is an enlarged view of a vertical cross section schematically showing an example of the shape of the wall surface rib provided in the refrigerator according to the first embodiment.
- FIG. 5 is based on the cross section taken along line AA shown in FIG.
- the wall surface rib 28 has an inclined surface facing the wall on the back side of the freezing chamber 3, and has an oblique cross-sectional shape. Since each wall surface rib 28 has such a shape, when the user takes out food or the like from the upper storage container 24, it is possible to prevent the wall surface rib 28 arranged on the partition wall surface 25a from hindering the removal. ing.
- FIG. 6 is a perspective view showing a main part of the upper cold air outlet 27a included in the refrigerator 100 according to the first embodiment.
- the upper cold air outlet 27a of the first embodiment is configured such that the width direction distance between the right end and the left end is larger than the height direction distance between the upper end and the lower end. Therefore, the cold air outlet at the upper cold air outlet 27a has a horizontally long shape.
- the shape of the cold air emitted from the upper cold air outlet 27a in the direction perpendicular to the blowing direction becomes flat.
- the cold air blown out flatly from the upper cold air outlet 27a adheres to the partition wall surface 25a, it has a function of more reliably spreading the cold air on the partition wall surface 25a together with the effect on the wall surface rib 28.
- one or more horizontal guide plates 29 are arranged between the upper end and the lower end so as to be parallel to the partition wall surface 25a. Since the upper cold air outlet 27a has the horizontal guide plate 29, the cold air that has passed through the upper cold air outlet 27a from the cold air passage 7 or the distribution air passage 9 is blown out in the direction parallel to the partition wall surface 25a. Therefore, the horizontal guide plate 29 prevents the blown cold air from adhering in the direction along the partition wall surface 25a and preventing the cold air from being blown into the upper storage container 24 without being made uniform.
- the horizontal guide plate 29 is installed in order to prevent the cold air blown out from the upper cold air outlet 27a from flowing without adhering to the partition wall surface 25a. Therefore, in order for the cold air to be blown out to the partition wall surface 25a, the direction of the horizontal guide plate 29 may be parallel or upward rather than parallel so that the blown cold air hits the partition wall surface 25a. Based on the above, in the horizontal guide plate 29, the distance between the rear end portion of the horizontal guide plate 29 in the height direction and the partition wall surface 25a is the tip of the horizontal guide plate 29 in the height direction. It is required that the portion is arranged so as to be at least the distance between the portion and the partition wall surface 25a.
- the upper cold air outlet 27a of the first embodiment includes one or more vertical guide plates 30 perpendicular to the horizontal guide plate 29.
- the vertical guide plate 30 By installing the vertical guide plate 30 at the upper cold air outlet 27a, it is possible to control the flow of cold air in the left-right direction at the upper cold air outlet 27a. Then, the flat cold air further spreads in the left-right direction and flows, and promotes the action of spreading the cold air by the partition wall surface 25a and the wall surface rib 28.
- a cold air return air passage 8 is formed in the lower rear part of the freezing chamber 3 by the heat insulating box body 110 and the first air passage component 26.
- the cold air flowing into the upper storage container 24 circulates in the upper storage container 24 as shown by the arrow shown in FIG. Then, the cold air returns to the cooling chamber 6 from the rear of the upper storage container 24 through the cold air return air passage 8, and is cooled again by the evaporator 21.
- the upper cold air outlet 27a is arranged at a position where the upper end coincides with or is close to the partition wall surface 25a located on the upper side of the upper storage container 24.
- the upper cold air outlet 27a has a horizontal guide plate 29 in which the distance between the rear end and the partition wall surface 25a is equal to or greater than the distance between the front end and the partition wall surface 25a.
- the horizontal guide plate 29 is parallel to or more upward than parallel to the partition wall surface 25a. Therefore, the cold air passing through the upper cold air outlet 27a adheres to the partition wall surface 25a and can flow along the partition wall surface 25a.
- the partition wall 25 has a wall surface rib 28 protruding below the partition wall surface 25a. Therefore, the wall surface rib 28 can not only guide the cold air flowing along the partition wall surface 25a in the direction of spreading, but also guide the cold air into the upper storage container 24. Therefore, the cold air guided by the wall surface rib 28 can uniformly cool the inside of the upper storage container 24 while spreading along the partition wall surface 25a. Therefore, it is possible to prevent uneven cooling and prevent dew condensation, cold air leakage, and the like.
- an air passage is provided between the partition wall surface 25a and the food by the height of the wall surface rib 28. Can be secured.
- the tip of the upper cold air outlet 27a is arranged at a position rearward from the rear end of the bottom surface of the upper storage container 24 in the depth direction. Therefore, in the refrigerator 100 according to the first embodiment, there is a certain gap between the upper cold air outlet 27a and the food or the like, and the cold air is not blocked. Therefore, the cold air adhering to the partition wall surface 25a is efficiently sent into the upper storage container 24 through the air passage corresponding to the height of the wall surface rib 28.
- the distance between the lower end of the wall surface rib 28 closer to the upper cold air outlet 27a and the partition wall surface 25a is the wall surface rib farther from the upper cold air outlet 27a.
- the configuration is smaller than the distance between the lower end of 28 and the partition wall surface 25a. Therefore, when the user takes out the food or the like, the troublesomeness that the food or the like is caught on the wall surface rib 28 can be eliminated. Thereby, the convenience in using the refrigerator 100 can be enhanced. Further, by forming the wall surface rib 28 in such a shape, it is possible to reduce the pressure loss when the cold air along the partition wall surface 25a collides with the wall surface rib 28.
- the cold air of the upper cold air outlet 27a spreads along the partition wall surface 25a and flows toward the upper storage container 24. Therefore, the cold air diffuses by the time it reaches the vicinity of the freezing chamber opening / closing door 13 in contact with the outside air. Since the cold air flowing near the freezing chamber opening / closing door 13 can be suppressed, the effect of shielding cold air leakage can be enhanced.
- the cold air jet can be attached to the partition wall surface 25a by providing the positional relationship between the upper cold air outlet 27a and the partition wall surface 25a and the horizontal guide plate 29 to the upper cold air outlet 27a.
- FIG. 7 is a diagram schematically showing a state in which a partition wall or the like in the refrigerator according to the second embodiment is viewed perspectively from the upper surface side.
- FIG. 7 corresponds to FIG. 4 of the first embodiment.
- the refrigerator 100 of the second embodiment described here is different from the refrigerator 100 of the configuration of the first embodiment in that it does not have the ice making cold air outlet 27c. Further, in the refrigerator 100 of the first embodiment, the wall surface rib 28 was not installed on the upper side of the ice making chamber 4, but in the refrigerator 100 of the second embodiment, the wall surface rib 28 is installed over the entire surface of the partition wall surface 25a. It is different in that it is.
- the wall surface rib 28 is provided on the entire surface of the partition wall surface 25a from the upper cold air outlet 27a on the rear side of the refrigerator 100 to the freezing chamber opening / closing door 13 on the front side. They are arranged radially toward you.
- the wall surface rib 28 installed at the position closest to the upper cold air outlet 27a is arranged from the front of the outlet to the ice making chamber 4.
- the cold air having a low temperature immediately after being blown out from the upper cold air outlet 27a and adhering to the partition wall surface 25a is preferentially guided to the ice making chamber 4 and inside the ice making chamber 4. Can be cooled.
- the ice making cold air outlet 27c is removed and the cold air is blown out from the upper cold air outlet 27a, so that the flow rate of the cold air blown out from the upper cold air outlet 27a is increased. Also, the flow velocity can be increased. Therefore, the cold air can be promoted to adhere to the partition wall surface 25a, and the cold air can be effectively made uniform by the partition wall surface 25a and the wall surface rib 28.
- FIG. 8 is a vertical cross-sectional view of the freezing chamber in the refrigerator according to the third embodiment.
- the refrigerator 100 of the third embodiment described here is different from the refrigerator 100 having the configuration of the first embodiment or the second embodiment in that the wall surface rib 28 is installed on the bottom surface of the upper storage container 24. .. Further, the lower cold air outlet 27b described in the first embodiment is arranged at a position where the bottom surface and the upper end of the upper storage container 24 located above the lower storage container 23 coincide with or are close to each other.
- the bottom surface of the upper storage container 24 is a wall that separates the storage space of the upper storage container 24 and the storage space of the lower storage container 23. Therefore, similarly to the partition wall 25, by arranging the wall surface rib 28 on the bottom wall of the upper storage container 24 which is the upper wall of the lower storage container 23, the upper storage container 24 can be similarly made the lower storage container 23. The inside can be cooled uniformly.
- the refrigerator 100 of the third embodiment can more effectively cool the object to be cooled in the upper storage container 24.
- Embodiment 4 In the refrigerator 100 of the above-described first to third embodiments, the freezing chamber 3 has been described as an example of the storage chamber, but the storage chamber is not limited to this, and the storage chamber may be applied to other storage chambers as well. Can be done. Therefore, the wall surface rib 28 may be installed on the upper wall in another storage room in the refrigerator 100 other than the partition wall 25 formed by the heat insulating box body 110 or the like.
- the second air passage component 27 which is a side wall behind the freezing chamber 3 has an upper cold air outlet 27a and a lower cold air outlet 27b. Cold air was blown from the rear side to the front side of the freezing chamber 3.
- the cold air outlet may be installed on the side.
- Refrigerator room 1 Refrigerator room, 2 Vegetable room, 3 Freezer room, 4 Ice making room, 5 Machine room, 6 Cooling room, 7 Cold air passage, 8 Cold air return air passage, 9 Distribution air passage, 11 Refrigerator room opening / closing door, 12 Vegetable room opening / closing Door, 13 Refrigerator opening / closing door, 14 Gasket parts, 15 Support, 20 Compressor, 21 Evaporator, 22 Blower, 23 Lower storage container, 24 Upper storage container, 25 Partition wall, 25a Partition wall, 26 First air passage Parts, 27 second air passage parts, 27a upper cold air outlet, 27b lower cold air outlet, 27c ice-making cold air outlet, 28 wall ribs, 29 horizontal guide plates, 30 vertical guide plates, 100 refrigerators, 110 heat insulating boxes.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
A refrigerator according to the present disclosure is provided with: an upper wall that serves as a wall of an upper side of a storage chamber in which a to-be-cooled object is stored; and a side wall of the storage chamber, the side wall having a cold air blowout port through which is blown out cold air sent from outside the storage chamber. The cold air blowout port is arranged at a position at which an upper end matches a height of a wall surface of the upper wall in the height direction or at a position at which cold air is blown out along the wall surface, and one or more horizontal guide plates are arranged in the cold air blowout port between a right end and a left end of the cold air blowout port when viewed from the blowout direction of cold air, such that a distance in the height direction between the wall surface and a portion that becomes a rear end with respect to the blowout direction is equal to or greater than a distance in the height direction between the wall surface and a portion that becomes a front end with respect to the blowout direction. In the upper wall, a wall surface rib is arranged on the wall surface, and the wall surface rib projects downward, guides cold air blown out along the upper wall, and diffuses the cold air into the storage chamber.
Description
この技術は、冷蔵庫に関するものである。特に貯蔵室全体の冷却に関するものである。
This technology is related to refrigerators. In particular, it concerns the cooling of the entire storage room.
従来より、庫内の貯蔵室における被冷却物の量が多くても、冷却された空気である冷気を全体に行き渡らせるようにした冷蔵庫がある。たとえば、食品などの被冷却物を棚板上面に載置する冷蔵庫では、冷気吹出口に近接する箇所にウイング部材を配置し、棚板下面にリブを配置するものがある(たとえば、特許文献1参照)。この冷蔵庫では、冷却された空気を棚板下面に誘導することで、棚板上の被冷却物を効率的に冷却することができる。
Conventionally, there is a refrigerator that allows the cold air, which is the cooled air, to be distributed throughout even if the amount of objects to be cooled in the storage room inside the refrigerator is large. For example, in a refrigerator in which an object to be cooled such as food is placed on the upper surface of a shelf board, a wing member is arranged at a position close to a cold air outlet, and a rib is arranged on the lower surface of the shelf board (for example, Patent Document 1). reference). In this refrigerator, the object to be cooled on the shelf board can be efficiently cooled by guiding the cooled air to the lower surface of the shelf board.
また、引き出し式冷蔵庫において、冷気吹出口を貯蔵容器の上方に設けることで、貯蔵容器に多くの被冷却物が貯蔵された場合でも、貯蔵容器内に冷気を行き渡らせる方法が知られている(たとえば、特許文献2参照)。
Further, in a pull-out refrigerator, a method is known in which a cold air outlet is provided above a storage container so that cold air can be distributed in the storage container even when a large amount of objects to be cooled are stored in the storage container. For example, see Patent Document 2).
近年、共働き世帯および独り暮らし世帯の増加など、生活スタイルの変化に伴い、一度に多くの食材を買い込んで、冷蔵庫に貯蔵する傾向が強くなっている。また、同時に冷蔵庫の大容量化が進んでいる。このような状況において、被冷却物が貯蔵できない部分をできる限り少なくし、実用上の貯蔵容積を減らさなくても、貯蔵室内全体を効率よく、冷却することができる冷蔵庫が要求されている。
In recent years, with changes in lifestyle such as an increase in double-income households and single-person households, there is a growing tendency to buy many ingredients at once and store them in the refrigerator. At the same time, the capacity of refrigerators is increasing. Under such circumstances, there is a demand for a refrigerator capable of efficiently cooling the entire storage chamber without reducing the part where the object to be cooled cannot be stored and reducing the practical storage volume.
特許文献1に記載された冷蔵庫は、ウイング部材およびリブを棚板下面に配置することで、被冷却物が多い場合にも均一な冷却を可能にするものである。しかしながら、特許文献1の冷蔵庫では、ウイング部材が棚板下面に配置されていることで、当該棚板の一段下の棚板に被冷却物を載置しようとしたときに、被冷却物がウイング部材に引っ掛かって、棚板の奥に載置することができなくなる。したがって、特許文献1の冷蔵庫では、実用上の貯蔵容積は減少することになる。
The refrigerator described in Patent Document 1 enables uniform cooling even when there are many objects to be cooled by arranging the wing members and ribs on the lower surface of the shelf plate. However, in the refrigerator of Patent Document 1, since the wing member is arranged on the lower surface of the shelf board, when the cooled object is to be placed on the shelf board one step below the shelf board, the cooled object is winged. It gets caught in the member and cannot be placed in the back of the shelf board. Therefore, in the refrigerator of Patent Document 1, the practical storage volume is reduced.
また、特許文献2に記載された冷蔵庫は、貯蔵容器の上方から冷却された空気を流入させることで、貯蔵容器内を均一に冷却するものである。しかしながら、特許文献2の冷蔵庫は、構成が複雑になるだけでなく、貯蔵領域として利用できる領域を割いて冷気風路を確保している。このため、特許文献2の冷蔵庫に関しても、実際に被冷却物を貯蔵できる貯蔵容積が減少することとなり、使用者の利便性が損なわれる。
Further, the refrigerator described in Patent Document 2 uniformly cools the inside of the storage container by inflowing cooled air from above the storage container. However, the refrigerator of Patent Document 2 not only has a complicated structure, but also secures a cold air passage by allocating an area that can be used as a storage area. Therefore, as for the refrigerator of Patent Document 2, the storage volume that can actually store the object to be cooled is reduced, and the convenience of the user is impaired.
以上より、上記の冷蔵庫が持つ課題を解決するため、実用上の貯蔵容積を確保しながら、冷却された空気を供給することができる冷蔵庫を提供することを目的とする。
From the above, in order to solve the above-mentioned problems of the refrigerator, it is an object of the present invention to provide a refrigerator capable of supplying cooled air while securing a practical storage volume.
上記のような従来の課題を解決するために、ここで開示する冷蔵庫は、被冷却物が貯蔵される貯蔵室の上側の壁となる上壁と、貯蔵室外から送られる冷気が吹き出す冷気吹出口を有する貯蔵室の側壁とを備え、冷気吹出口は、高さ方向において、上端が上壁における壁面の高さと一致する位置または冷気が壁面に沿って吹き出す位置に配置され、冷気吹出口には、冷気の吹出方向から見たときの冷気吹出口の右端と左端との間に、吹出方向に対して後端となる部分と壁面との間の高さ方向における距離が、吹出方向に対して前端となる部分と壁面との間の高さ方向における距離以上となるように1つ以上の横ガイド板が配置され、上壁には、下方に突出して上壁に沿って吹き出された冷気を誘導して貯蔵室内に拡散する壁面リブが壁面に配置されるものである。
In order to solve the above-mentioned conventional problems, the refrigerator disclosed here has an upper wall which is an upper wall of the storage chamber where the object to be cooled is stored and a cold air outlet from which the cold air sent from the outside of the storage chamber is blown out. The cold air outlet is located at a position where the upper end coincides with the height of the wall surface on the upper wall or a position where cold air blows out along the wall surface in the height direction. , The distance in the height direction between the right end and the left end of the cold air outlet when viewed from the cold air blowing direction, the rear end with respect to the blowing direction, and the wall surface is the distance with respect to the blowing direction. One or more horizontal guide plates are arranged so as to be equal to or greater than the distance between the front end portion and the wall surface in the height direction, and the cold air protruding downward and blown out along the upper wall is blown onto the upper wall. Wall ribs that guide and diffuse into the storage chamber are placed on the wall.
この開示に係る冷蔵庫によれば、冷気吹出口から出た冷気を貯蔵室の上壁の壁面に沿わせ、壁面に配置された壁面リブが冷気を誘導する。このため、貯蔵室全体に冷気を供給する部材および空間を特別に設けなくても、実用上の貯蔵容積を確保しながら、貯蔵室全体に効率よく冷気を供給することができる。
According to the refrigerator according to this disclosure, the cold air emitted from the cold air outlet is made to follow the wall surface of the upper wall of the storage room, and the wall surface ribs arranged on the wall surface induce the cold air. Therefore, it is possible to efficiently supply cold air to the entire storage chamber while securing a practical storage volume without specially providing a member and a space for supplying cold air to the entire storage chamber.
以下、実施の形態に係る冷蔵庫について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、以下の説明において、図における上方を「上」とし、下方を「下」として説明する。さらに、理解を容易にするために、方向を表す用語(たとえば「右」、「左」、「前」、「後」など)などを適宜用いるが、説明のためのものであって、これらの用語は開示内容を限定するものではない。また、冷蔵庫を、開閉扉に相対する正面(前面)側から見て上下となる方向を高さ方向、左右となる方向を幅方向、前後となる方向を前後方向(奥行き方向)とする。また、以下の説明における構成要素の位置関係の表現などについて、「平行」とは、必ずしも平面同士を無限に拡大しても交わらないという数学的な平行だけを意味するものではなく、略平行の意味も含むものとする。そして、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, the refrigerator according to the embodiment will be described with reference to drawings and the like. In the following drawings, those having the same reference numerals are the same or equivalent thereto, and are common to the whole texts of the embodiments described below. The form of the component represented in the entire specification is merely an example, and is not limited to the form described in the specification. In particular, the combination of components is not limited to the combination in each embodiment, and the components described in other embodiments can be applied to another embodiment. Further, in the following description, the upper part in the figure will be referred to as "upper" and the lower part will be referred to as "lower". Further, for ease of understanding, directional terms (eg, "right", "left", "front", "rear", etc.) are used as appropriate, but they are for illustration purposes only. The terms do not limit the content of the disclosure. Further, when the refrigerator is viewed from the front (front) side facing the opening / closing door, the up-down direction is the height direction, the left-right direction is the width direction, and the front-back direction is the front-rear direction (depth direction). Also, regarding the expression of the positional relationship of the components in the following explanation, "parallel" does not necessarily mean only mathematical parallelism that planes do not intersect even if they are expanded infinitely, but they are substantially parallel. It shall also include meaning. Then, in the drawings, the relationship between the sizes of the constituent members may differ from the actual one.
実施の形態1.
図1は、実施の形態1に係る冷蔵庫の外観を模式的に示す正面図である。また、図2は、実施の形態1に係る冷蔵庫を側面側から見たときの冷蔵庫内部の構成を説明する図である。さらに、図3は、実施の形態1に係る冷蔵庫における冷凍室の内部構成を模式的に示す縦断面図である。Embodiment 1.
FIG. 1 is a front view schematically showing the appearance of the refrigerator according to the first embodiment. Further, FIG. 2 is a diagram illustrating a configuration inside the refrigerator when the refrigerator according to the first embodiment is viewed from the side surface side. Further, FIG. 3 is a vertical cross-sectional view schematically showing the internal configuration of the freezing chamber in the refrigerator according to the first embodiment.
図1は、実施の形態1に係る冷蔵庫の外観を模式的に示す正面図である。また、図2は、実施の形態1に係る冷蔵庫を側面側から見たときの冷蔵庫内部の構成を説明する図である。さらに、図3は、実施の形態1に係る冷蔵庫における冷凍室の内部構成を模式的に示す縦断面図である。
FIG. 1 is a front view schematically showing the appearance of the refrigerator according to the first embodiment. Further, FIG. 2 is a diagram illustrating a configuration inside the refrigerator when the refrigerator according to the first embodiment is viewed from the side surface side. Further, FIG. 3 is a vertical cross-sectional view schematically showing the internal configuration of the freezing chamber in the refrigerator according to the first embodiment.
図1および図2に示すように、実施の形態1の冷蔵庫100は、冷蔵室開閉扉11を備えた冷蔵室1を最上段に備えている。また、冷蔵庫100は、野菜室開閉扉12を備えた野菜室2を冷蔵室1の下部に備えている。また、冷蔵庫100は、冷凍室開閉扉13を備えた冷凍室3を最下段に備えている。冷蔵庫100は、冷蔵室1、野菜室2および冷凍室3を、貯蔵室として備えている。冷蔵室1は、室内が+3℃~10℃の冷蔵温度帯となるように室内が制御されており、食品などの被冷却物を貯蔵する。また、野菜室2は、たとえば、室内が+3℃~10℃の冷蔵温度帯となるように室内が制御されており、野菜などの被冷却物を貯蔵する。冷凍室3は、たとえば、室内が-17℃以下の冷凍温度帯となるように室内が制御されており、被冷却物を長期間貯蔵することができる。また、冷凍室3は、後述するように、製氷室4も備えており、氷を製造し、貯蔵することができる。
As shown in FIGS. 1 and 2, the refrigerator 100 of the first embodiment includes a refrigerating room 1 having a refrigerating room opening / closing door 11 at the uppermost stage. Further, the refrigerator 100 includes a vegetable compartment 2 provided with a vegetable compartment opening / closing door 12 at the lower part of the refrigerator compartment 1. Further, the refrigerator 100 includes a freezing room 3 provided with a freezing room opening / closing door 13 at the bottom. The refrigerator 100 includes a refrigerating room 1, a vegetable room 2, and a freezing room 3 as storage rooms. The refrigerating room 1 is controlled so that the room is in a refrigerating temperature range of + 3 ° C. to 10 ° C., and stores objects to be cooled such as food. Further, the vegetable compartment 2 is controlled so that the interior is in a refrigerated temperature range of, for example, + 3 ° C. to 10 ° C., and stores objects to be cooled such as vegetables. The freezing chamber 3 is controlled so that, for example, the inside of the freezing chamber 3 has a freezing temperature range of −17 ° C. or lower, and the object to be cooled can be stored for a long period of time. Further, the freezing chamber 3 also includes an ice making chamber 4 as described later, and can produce and store ice.
また、図2に示すように、実施の形態1の冷蔵庫100は、箱状の断熱箱体110を備えている。冷蔵庫100は、断熱箱体110によって、複数の貯蔵室に区切られている。断熱箱体110と各貯蔵室が有する開閉扉との間には、熱の漏れを抑制するためのガスケット部品14が配置される。ガスケット部品14が熱漏れを抑制することで、冷蔵庫100の貯蔵室内は、低温状態を維持することができる。冷蔵庫100は、断熱箱体110によって区切られた冷蔵庫100の背面下部には、機械室5および冷却室6を有する。機械室5には、圧縮機20などの各種装置が収容される。また、冷却室6には、蒸発器21および送風機22などの各種装置が収容される。
Further, as shown in FIG. 2, the refrigerator 100 of the first embodiment includes a box-shaped heat insulating box body 110. The refrigerator 100 is divided into a plurality of storage chambers by a heat insulating box body 110. A gasket component 14 for suppressing heat leakage is arranged between the heat insulating box 110 and the opening / closing door of each storage chamber. Since the gasket component 14 suppresses heat leakage, the storage chamber of the refrigerator 100 can maintain a low temperature state. The refrigerator 100 has a machine room 5 and a cooling room 6 in the lower part of the back surface of the refrigerator 100 separated by the heat insulating box 110. Various devices such as a compressor 20 are housed in the machine room 5. Further, various devices such as an evaporator 21 and a blower 22 are housed in the cooling chamber 6.
また、冷蔵庫100は、冷凍サイクル装置を内部に有する。冷凍サイクル装置は、貯蔵室内の空気を冷却する。冷凍サイクル装置は、具体的な構成要素として、圧縮機20、凝縮器(図示せず)、膨張弁(図示せず)および冷却器となる蒸発器21を備えている。これらの構成要素が配管で接続され、冷媒が循環する環状の冷媒回路となる。
Further, the refrigerator 100 has a refrigeration cycle device inside. The refrigeration cycle device cools the air in the storage chamber. The refrigeration cycle apparatus includes a compressor 20, a condenser (not shown), an expansion valve (not shown), and an evaporator 21 as a cooler as specific components. These components are connected by piping to form an annular refrigerant circuit in which the refrigerant circulates.
圧縮機20は、蒸発器21からの冷媒を吸入して圧縮し、高温高圧の冷媒を凝縮器に吐出する。また、蒸発器21は、冷媒と冷却室6を通過する空気とを熱交換させて、冷却された空気である冷気を生成する。送風機22は、冷却室6から各貯蔵室に通じる冷気風路7に、冷気による気流を発生させ、蒸発器21が生成した冷気を、貯蔵室である冷蔵室1、野菜室2および冷凍室3に供給する。各貯蔵室を通過した冷気は、冷気戻り風路8を介して冷却室6に戻り、再度、冷却室6において蒸発器21に冷却されて各貯蔵室に送られる。
The compressor 20 sucks in the refrigerant from the evaporator 21 to compress it, and discharges the high-temperature and high-pressure refrigerant to the condenser. Further, the evaporator 21 exchanges heat between the refrigerant and the air passing through the cooling chamber 6 to generate cold air which is cooled air. The blower 22 generates an air flow by cold air in the cold air passage 7 leading from the cooling chamber 6 to each storage chamber, and the cold air generated by the evaporator 21 is used as the storage chambers, the refrigerating chamber 1, the vegetable compartment 2, and the freezing chamber 3. Supply to. The cold air that has passed through each storage chamber returns to the cooling chamber 6 via the cold air return air passage 8, is cooled again by the evaporator 21 in the cooling chamber 6, and is sent to each storage chamber.
次に、図3に基づいて、冷蔵庫100内の貯蔵室のうち、最下段の冷凍室3における構成および冷気の流れについて説明する。ただし、冷蔵室1および野菜室2など、他の貯蔵室においても適用することができる。図3に示すように、冷凍室3の前面には、引き出し式の冷凍室開閉扉13が備えられている。冷凍室開閉扉13は、下部貯蔵容器23を支持する支持具15を備えている。また、上部貯蔵容器24は、側底部が下部貯蔵容器23の上辺を摺動するように下部貯蔵容器23の上方に載置されている。冷凍室開閉扉13を引っ張ることで、支持具15に支持された下部貯蔵容器23と下部貯蔵容器23に載置された上部貯蔵容器24とが引き出される。そして、上部貯蔵容器24を押し込むことによって、下部貯蔵容器23の上部が開口し、下部貯蔵容器23に貯蔵された食品などを出し入れすることができる。
Next, based on FIG. 3, the configuration and the flow of cold air in the lowermost freezing chamber 3 among the storage chambers in the refrigerator 100 will be described. However, it can also be applied to other storage rooms such as the refrigerating room 1 and the vegetable room 2. As shown in FIG. 3, a drawer-type freezing chamber opening / closing door 13 is provided on the front surface of the freezing chamber 3. The freezing chamber opening / closing door 13 includes a support 15 that supports the lower storage container 23. Further, the upper storage container 24 is placed above the lower storage container 23 so that the side bottom portion slides on the upper side of the lower storage container 23. By pulling the freezing chamber opening / closing door 13, the lower storage container 23 supported by the support 15 and the upper storage container 24 placed on the lower storage container 23 are pulled out. Then, by pushing in the upper storage container 24, the upper part of the lower storage container 23 is opened, and food and the like stored in the lower storage container 23 can be taken in and out.
断熱体によって形成された仕切壁25は、冷凍室3と野菜室2とを仕切る壁となる。冷凍室3は野菜室2の下側にあるため、仕切壁25は、冷凍室3の上壁となる。ここで、仕切壁25は、断熱箱体110の一部であるとするが、これに限定するものではない。また、実施の形態1の冷蔵庫100においては、冷凍室3の後方側には、断熱箱体110および第一風路部品26によって、前述した冷却室6が形成されている。冷却室6には、前述した蒸発器21が配置されている。そして、蒸発器21の上方には、前述した送風機22が配置されている。
The partition wall 25 formed by the heat insulating body serves as a wall that separates the freezing chamber 3 and the vegetable compartment 2. Since the freezing room 3 is on the lower side of the vegetable room 2, the partition wall 25 is the upper wall of the freezing room 3. Here, it is assumed that the partition wall 25 is a part of the heat insulating box body 110, but the partition wall 25 is not limited to this. Further, in the refrigerator 100 of the first embodiment, the cooling chamber 6 described above is formed on the rear side of the freezing chamber 3 by the heat insulating box body 110 and the first air passage component 26. The above-mentioned evaporator 21 is arranged in the cooling chamber 6. The blower 22 described above is arranged above the evaporator 21.
冷却室6の蒸発器21が生成した冷気は、送風機22の気流によって冷気風路7を通り、分配風路9に送られる。分配風路9は、第一風路部品26および第二風路部品27によって構成される風路である。第二風路部品27は、冷凍室3の後方側の壁となる部品である。第二風路部品27は、分配風路9と冷凍室3の空間とを連通させた開口部分を有する。上部冷気吹出口27aは、上部貯蔵容器24の後方上部から上部貯蔵容器24内に向けて、冷気が通過する開口部分である。また、下部冷気吹出口27bは、下部貯蔵容器23の後方上部から下部貯蔵容器23内に向けて冷気が通過する開口部分である。このため、送風機22から上部冷気吹出口27aまでは、冷気風路7および分配風路9で連通している。また、送風機22から下部冷気吹出口27bまでの間においても、冷気風路7および分配風路9で連通している。ここで、実施の形態1の冷蔵庫100の第二風路部品27は、後述するように、冷凍室3内の製氷室4に冷気を供給する製氷冷気吹出口27cをさらに有する。
The cold air generated by the evaporator 21 of the cooling chamber 6 is sent to the distribution air passage 9 through the cold air air passage 7 by the air flow of the blower 22. The distribution air passage 9 is an air passage composed of the first air passage component 26 and the second air passage component 27. The second air passage component 27 is a component that serves as a wall on the rear side of the freezing chamber 3. The second air passage component 27 has an opening portion that communicates the distribution air passage 9 with the space of the freezing chamber 3. The upper cold air outlet 27a is an opening through which cold air passes from the rear upper portion of the upper storage container 24 toward the inside of the upper storage container 24. Further, the lower cold air outlet 27b is an opening portion through which cold air passes from the rear upper portion of the lower storage container 23 toward the inside of the lower storage container 23. Therefore, the blower 22 to the upper cold air outlet 27a communicate with each other through the cold air passage 7 and the distribution air passage 9. Further, even between the blower 22 and the lower cold air outlet 27b, the cold air passage 7 and the distribution air passage 9 communicate with each other. Here, the second air passage component 27 of the refrigerator 100 of the first embodiment further has an ice-making cold air outlet 27c that supplies cold air to the ice-making chamber 4 in the freezing chamber 3, as will be described later.
実施の形態1の冷蔵庫100では、上部冷気吹出口27aの上端は、高さ方向において、仕切壁25の下面側となる仕切壁面25aと一致する位置または近接した位置に配置されている。上部冷気吹出口27aが仕切壁面25aと一致または近接した位置にあることで、上部冷気吹出口27aから出た冷気は、仕切壁面25aに沿って吹き出す。ここで、冷気が仕切壁面25aに沿って流れる理由について説明する。上部冷気吹出口27aから吹き出した冷気によって、仕切壁面25aと上部冷気吹出口27aの上端との間にある空気は、粘性によって吹き出した冷気外縁に引っ張られる。引っ張られた空気は、下流へと運ばれてしまう。このため、仕切壁面25aと上部冷気吹出口27aの上端との間は圧力が下がる。冷気は、圧力が低い方へと流れるため、上部冷気吹出口27aを出た冷気は、仕切壁面25aに向かう力が働く。その結果、上部冷気吹出口27aから出た冷気は、仕切壁面25aに衝突し、仕切壁面25aに付着するように、仕切壁面25aに沿って流れる。
In the refrigerator 100 of the first embodiment, the upper end of the upper cold air outlet 27a is arranged at a position coincident with or close to the partition wall surface 25a on the lower surface side of the partition wall 25 in the height direction. Since the upper cold air outlet 27a is located at the same position as or close to the partition wall surface 25a, the cold air emitted from the upper cold air outlet 27a is blown out along the partition wall surface 25a. Here, the reason why the cold air flows along the partition wall surface 25a will be described. The cold air blown out from the upper cold air outlet 27a pulls the air between the partition wall surface 25a and the upper end of the upper cold air outlet 27a to the outer edge of the cold air blown out by viscosity. The pulled air is carried downstream. Therefore, the pressure drops between the partition wall surface 25a and the upper end of the upper cold air outlet 27a. Since the cold air flows toward the lower pressure side, the cold air exiting the upper cold air outlet 27a exerts a force toward the partition wall surface 25a. As a result, the cold air emitted from the upper cold air outlet 27a collides with the partition wall surface 25a and flows along the partition wall surface 25a so as to adhere to the partition wall surface 25a.
ここで、上部冷気吹出口27aから吹き出す冷気の流速と庫内を流れる空気の流速との速度差が大きいほど、ニュートンの粘性法則に基づき、粘性は強く働き、冷気を仕切壁面25aに引っ張る力も強く作用する。また、高さ方向における上部冷気吹出口27aが仕切壁面25aに近いほど、吹き出した冷気は、仕切壁面25aに衝突しやすくなる。以上のことを踏まえると、上部冷気吹出口27aの上端は、高さ方向において、仕切壁面25aに一致する位置または近接した位置にあって、冷気が壁面に沿って吹き出すように配置されていることが要請される。
Here, the larger the velocity difference between the flow velocity of the cold air blown out from the upper cold air outlet 27a and the flow velocity of the air flowing in the refrigerator, the stronger the viscosity works and the stronger the force pulling the cold air to the partition wall surface 25a based on Newton's viscosity law. It works. Further, the closer the upper cold air outlet 27a in the height direction is to the partition wall surface 25a, the more easily the blown cold air collides with the partition wall surface 25a. Based on the above, the upper end of the upper cold air outlet 27a is located at a position corresponding to or close to the partition wall surface 25a in the height direction, and is arranged so that cold air is blown out along the wall surface. Is requested.
そして、上部冷気吹出口27aから出る冷気の流速を確保するため、上部冷気吹出口27aは、吹出方向に対して垂直な方向における吹出口の断面積が小さくなるようにする。より好ましくは、上部冷気吹出口27aの吹出方向に垂直方向における断面積が、送風機22から上部冷気吹出口27aに至るまでに通る冷気風路7および分配風路9における気流方向と垂直な方向において最も小さい断面積となるように構成する。このような構成にすることで、送風機22によって送られた冷気は、上部冷気吹出口27aにおいてより流速を増し、噴流となって吹き出す。上部冷気吹出口27aから吹き出した冷気は、噴流として流速を増したことによって、仕切壁面25aに向かう力が高まり、より確実に仕切壁面25aに衝突する。ここで、仕切壁面25aには、下方に突出した壁面リブ28が配置されている。ここで、壁面リブ28と仕切壁25とが一体形成されるなどしてもよい。
Then, in order to secure the flow velocity of the cold air coming out of the upper cold air outlet 27a, the upper cold air outlet 27a has a small cross-sectional area of the outlet in the direction perpendicular to the blowing direction. More preferably, the cross-sectional area of the upper cold air outlet 27a in the direction perpendicular to the blowing direction is perpendicular to the airflow direction in the cold air passage 7 and the distribution air passage 9 passing from the blower 22 to the upper cold air outlet 27a. It is configured to have the smallest cross-sectional area. With such a configuration, the cold air sent by the blower 22 has a higher flow velocity at the upper cold air outlet 27a and is blown out as a jet. The cold air blown out from the upper cold air outlet 27a increases the flow velocity as a jet, so that the force toward the partition wall surface 25a increases and collides with the partition wall surface 25a more reliably. Here, a wall surface rib 28 projecting downward is arranged on the partition wall surface 25a. Here, the wall surface rib 28 and the partition wall 25 may be integrally formed.
図4は、実施の形態1に係る冷蔵庫における仕切壁などを、上面側から透視的に見た状態を模式的に示す図である。ここで、図4に示すように、実施の形態1に係る冷蔵庫100は、冷凍室3に製氷室4を備えている。製氷室4は、冷凍室3の上部に位置し、製氷室4において製成された氷を、上部貯蔵容器24の一部を利用して保存することができる。また、実施の形態1の冷蔵庫100においては、製氷室4に冷気を吹き出す製氷冷気吹出口27cが配置されている。製氷冷気吹出口27cは、分配風路9によって形成されている。
FIG. 4 is a diagram schematically showing a state in which a partition wall or the like in the refrigerator according to the first embodiment is viewed perspectively from the upper surface side. Here, as shown in FIG. 4, the refrigerator 100 according to the first embodiment includes an ice making chamber 4 in the freezing chamber 3. The ice making chamber 4 is located above the freezing chamber 3, and the ice produced in the ice making chamber 4 can be stored by using a part of the upper storage container 24. Further, in the refrigerator 100 of the first embodiment, an ice-making cold air outlet 27c for blowing cold air is arranged in the ice-making chamber 4. The ice-making cold air outlet 27c is formed by a distribution air passage 9.
また、図4に示すように、実施の形態1に係る壁面リブ28は、冷凍室3において、製氷室4を除いた上部貯蔵容器24内を冷却するために配置されている。壁面リブ28は、上部冷気吹出口27aから吹き出して、仕切壁面25aに付着するようにして仕切壁面25aに沿った冷気の一部を規制し、定めた方向に誘導する部材である。そして、壁面リブ28は、壁面リブ28に沿って誘導した冷気を上部貯蔵容器24全体に広げながら、上部貯蔵容器24の上方から上部貯蔵容器24内へ冷気を供給する。したがって、壁面リブ28が、仕切壁面25aに沿った流れを完全に規制するほどの高さで構成することは望ましくない。一方で、壁面リブ28は、冷気を沿わせ、さらに、上部貯蔵容器24内に向かう方向に変えることができる程度の高さが必要である。そこで、実施の形態1の冷蔵庫100における壁面リブ28は、仕切壁面25aと上部冷気吹出口27aの下端との距離よりも小さい高さで構成する。
Further, as shown in FIG. 4, the wall surface rib 28 according to the first embodiment is arranged in the freezing chamber 3 to cool the inside of the upper storage container 24 excluding the ice making chamber 4. The wall surface rib 28 is a member that blows out from the upper cold air outlet 27a, regulates a part of the cold air along the partition wall surface 25a so as to adhere to the partition wall surface 25a, and guides the cold air in a predetermined direction. Then, the wall surface rib 28 supplies the cold air from above the upper storage container 24 into the upper storage container 24 while spreading the cold air guided along the wall surface rib 28 over the entire upper storage container 24. Therefore, it is not desirable that the wall surface rib 28 be configured at a height that completely regulates the flow along the partition wall surface 25a. On the other hand, the wall surface rib 28 needs to have a height that allows cold air to flow in and can be changed in the direction toward the inside of the upper storage container 24. Therefore, the wall surface rib 28 in the refrigerator 100 of the first embodiment is configured to have a height smaller than the distance between the partition wall surface 25a and the lower end of the upper cold air outlet 27a.
また、図4に示すように、壁面リブ28は、上部冷気吹出口27aの中央から外側に向かって放射状に配置されている。この配置により、仕切壁面25aにおいて、壁面リブ28による冷気を広げる効果と冷気を容器内に案内する効果が得られる。したがって、壁面リブ28の上部冷気吹出口27aの中央から遠い方の後端と奥側の壁との間の距離L1は、壁面リブ28の冷気吹出口の中央から近い方の後端と奥側の壁との間の距離L2より大きい必要がある。したがって、図4に示すように。L1>L2の関係にある。
Further, as shown in FIG. 4, the wall surface ribs 28 are arranged radially from the center to the outside of the upper cold air outlet 27a. With this arrangement, on the partition wall surface 25a, the effect of spreading the cold air by the wall surface rib 28 and the effect of guiding the cold air into the container can be obtained. Therefore, the distance L1 between the rear end far from the center of the upper cold air outlet 27a of the wall surface rib 28 and the wall on the back side is the rear end and the back side closer to the center of the cold air outlet of the wall surface rib 28. The distance to the wall must be greater than L2. Therefore, as shown in FIG. There is a relationship of L1> L2.
以上のように規定した高さの壁面リブ28を配置することで、図4に示す矢印のように、上部冷気吹出口27aを吹き出して仕切壁面25aに付着した冷気は、一部は壁面リブ28に沿って流れる。そして、他の冷気は、完全に規制されることなく壁面リブ28を乗り越えて前面側に流れていく。そして、冷気は、仕切壁面25aの表面を広がりながら上部貯蔵容器24内に供給される。このため、上部貯蔵容器24内部を均一に冷却することができる。
By arranging the wall surface ribs 28 having the height specified as described above, as shown by the arrow shown in FIG. 4, some of the cold air adhering to the partition wall surface 25a by blowing out the upper cold air outlet 27a is partially wall surface ribs 28. Flows along. Then, the other cold air passes over the wall surface rib 28 and flows to the front side without being completely regulated. Then, the cold air is supplied into the upper storage container 24 while spreading on the surface of the partition wall surface 25a. Therefore, the inside of the upper storage container 24 can be uniformly cooled.
ここで、図4に示すように、実施の形態1に係る冷蔵庫100において、冷凍室3の仕切壁面25aには、前述した壁面リブ28が複数設置されている。図4では、複数の壁面リブ28は、仕切壁面25aに付着した冷気を効率良く広げるために、上部冷気吹出口27aから冷凍室開閉扉13に向かって放射状に配置されている。ただし、壁面リブ28については、仕切壁面25aに沿って冷凍室3全体に冷気を広げながら上部貯蔵容器24内に供給するように、冷気の方向を変更できればよい。このため、壁面リブ28は放射状の配置に限定するものではなく、上部冷気吹出口27aから冷気が吹き出す方向に対して、垂直な方向に向けて配置するようにしてもよい。このとき、上部冷気吹出口27aに近い方に配置された壁面リブ28の後端と上部冷気吹出口27aの前端との距離は、上部冷気吹出口27aから遠い方に配置された壁面リブ28の後端と上部冷気吹出口27aの前端との距離以上となっている。
Here, as shown in FIG. 4, in the refrigerator 100 according to the first embodiment, a plurality of the above-mentioned wall surface ribs 28 are installed on the partition wall surface 25a of the freezing chamber 3. In FIG. 4, the plurality of wall surface ribs 28 are arranged radially from the upper cold air outlet 27a toward the freezing chamber opening / closing door 13 in order to efficiently spread the cold air adhering to the partition wall surface 25a. However, regarding the wall surface rib 28, it is sufficient that the direction of the cold air can be changed so that the cold air is supplied into the upper storage container 24 while spreading the cold air to the entire freezing chamber 3 along the partition wall surface 25a. Therefore, the wall surface rib 28 is not limited to the radial arrangement, and may be arranged in a direction perpendicular to the direction in which the cold air is blown out from the upper cold air outlet 27a. At this time, the distance between the rear end of the wall surface rib 28 arranged closer to the upper cold air outlet 27a and the front end of the upper cold air outlet 27a is the distance of the wall surface rib 28 arranged farther from the upper cold air outlet 27a. It is longer than the distance between the rear end and the front end of the upper cold air outlet 27a.
図5は、実施の形態1に係る冷蔵庫が備える壁面リブの形状の一例を模式的に示す縦断面の拡大図である。図5は、図4に示すA-A線での断面に基づいている。図5に示すように、壁面リブ28は、冷凍室3の奥側の壁に対向する面が斜面であり、断面形状は斜めになっている。各壁面リブ28がこのような形状となっているため、使用者が上部貯蔵容器24から食品などを取り出す際に、仕切壁面25aに配置された壁面リブ28によって取り出しを阻害されることを抑制している。
FIG. 5 is an enlarged view of a vertical cross section schematically showing an example of the shape of the wall surface rib provided in the refrigerator according to the first embodiment. FIG. 5 is based on the cross section taken along line AA shown in FIG. As shown in FIG. 5, the wall surface rib 28 has an inclined surface facing the wall on the back side of the freezing chamber 3, and has an oblique cross-sectional shape. Since each wall surface rib 28 has such a shape, when the user takes out food or the like from the upper storage container 24, it is possible to prevent the wall surface rib 28 arranged on the partition wall surface 25a from hindering the removal. ing.
図6は、実施の形態1に係る冷蔵庫100が備える上部冷気吹出口27aの要部を示す斜視図である。実施の形態1の上部冷気吹出口27aは、右端と左端との間である幅方向の距離が、上端と下端との間である高さ方向の距離より大きくなるように構成されている。したがって、上部冷気吹出口27aにおける冷気出口は横長の形状となる。上部冷気吹出口27aを横長で構成することで、上部冷気吹出口27aから出た冷気の、吹出方向に垂直な方向における形状は扁平になる。上部冷気吹出口27aから扁平状に吹き出された冷気は、仕切壁面25aに付着した際に、壁面リブ28における効果と合わせて、仕切壁面25aにおいて、冷気をより確実に広げる働きがある。
FIG. 6 is a perspective view showing a main part of the upper cold air outlet 27a included in the refrigerator 100 according to the first embodiment. The upper cold air outlet 27a of the first embodiment is configured such that the width direction distance between the right end and the left end is larger than the height direction distance between the upper end and the lower end. Therefore, the cold air outlet at the upper cold air outlet 27a has a horizontally long shape. By configuring the upper cold air outlet 27a in a horizontally long shape, the shape of the cold air emitted from the upper cold air outlet 27a in the direction perpendicular to the blowing direction becomes flat. When the cold air blown out flatly from the upper cold air outlet 27a adheres to the partition wall surface 25a, it has a function of more reliably spreading the cold air on the partition wall surface 25a together with the effect on the wall surface rib 28.
また、図6に示すように、上部冷気吹出口27aには、上端と下端との間に、一つ以上の横ガイド板29が仕切壁面25aと平行となるように配置されている。上部冷気吹出口27aが横ガイド板29を有することで、冷気風路7または分配風路9から上部冷気吹出口27aを通過した冷気が、仕切壁面25aと平行な方向に吹き出される。このため、横ガイド板29は、吹き出した冷気が仕切壁面25aに沿う方向に付着せず、冷気が均一化されずに上部貯蔵容器24に吹き込むことを防いでいる。
Further, as shown in FIG. 6, at the upper cold air outlet 27a, one or more horizontal guide plates 29 are arranged between the upper end and the lower end so as to be parallel to the partition wall surface 25a. Since the upper cold air outlet 27a has the horizontal guide plate 29, the cold air that has passed through the upper cold air outlet 27a from the cold air passage 7 or the distribution air passage 9 is blown out in the direction parallel to the partition wall surface 25a. Therefore, the horizontal guide plate 29 prevents the blown cold air from adhering in the direction along the partition wall surface 25a and preventing the cold air from being blown into the upper storage container 24 without being made uniform.
ここで、横ガイド板29は、上部冷気吹出口27aから吹き出された冷気が仕切壁面25aに付着せずに流れることを避けるために設置される。このため、冷気が仕切壁面25aに吹き出されるには、横ガイド板29の向きは、平行または平行よりも上向きとして、吹き出された冷気が仕切壁面25aに当たるようにすればよい。以上のことを踏まえると、横ガイド板29は、高さ方向における横ガイド板29の後端となる部分と仕切壁面25aとの間の距離が、高さ方向における横ガイド板29の先端となる部分と仕切壁面25aとの距離以上となるように配置されていることが要請される。
Here, the horizontal guide plate 29 is installed in order to prevent the cold air blown out from the upper cold air outlet 27a from flowing without adhering to the partition wall surface 25a. Therefore, in order for the cold air to be blown out to the partition wall surface 25a, the direction of the horizontal guide plate 29 may be parallel or upward rather than parallel so that the blown cold air hits the partition wall surface 25a. Based on the above, in the horizontal guide plate 29, the distance between the rear end portion of the horizontal guide plate 29 in the height direction and the partition wall surface 25a is the tip of the horizontal guide plate 29 in the height direction. It is required that the portion is arranged so as to be at least the distance between the portion and the partition wall surface 25a.
さらに、実施の形態1の上部冷気吹出口27aは、横ガイド板29に対して垂直な縦ガイド板30を一つ以上備えている。上部冷気吹出口27aに縦ガイド板30が設置されることで、上部冷気吹出口27aにおいて左右方向への冷気の流れを制御することができる。そして、扁平な冷気は、さらに左右方向に広がって流れ、仕切壁面25aおよび壁面リブ28による冷気を広げる作用を促進させる。ここで、冷凍室3の後方下部には断熱箱体110および第一風路部品26によって冷気戻り風路8が形成されている。上部貯蔵容器24内に流れた冷気は、図3に示す矢印のように、上部貯蔵容器24内を循環する。そして、冷気は、さらに上部貯蔵容器24の後方から冷気戻り風路8を通って冷却室6に戻り、蒸発器21によって再び冷却される。
Further, the upper cold air outlet 27a of the first embodiment includes one or more vertical guide plates 30 perpendicular to the horizontal guide plate 29. By installing the vertical guide plate 30 at the upper cold air outlet 27a, it is possible to control the flow of cold air in the left-right direction at the upper cold air outlet 27a. Then, the flat cold air further spreads in the left-right direction and flows, and promotes the action of spreading the cold air by the partition wall surface 25a and the wall surface rib 28. Here, a cold air return air passage 8 is formed in the lower rear part of the freezing chamber 3 by the heat insulating box body 110 and the first air passage component 26. The cold air flowing into the upper storage container 24 circulates in the upper storage container 24 as shown by the arrow shown in FIG. Then, the cold air returns to the cooling chamber 6 from the rear of the upper storage container 24 through the cold air return air passage 8, and is cooled again by the evaporator 21.
以上のように、実施の形態1の冷蔵庫100は、上部貯蔵容器24の上側に位置する仕切壁面25aと上端が一致または近接した位置に上部冷気吹出口27aを配置する。そして、上部冷気吹出口27aは、後端と仕切壁面25aとの距離が先端と仕切壁面25aとの距離以上である横ガイド板29を有する。このとき、横ガイド板29は、仕切壁面25aと平行または平行よりも上向きになる。このため、上部冷気吹出口27aを通る冷気は仕切壁面25aに付着し、仕切壁面25aに沿うように流すことができる。
As described above, in the refrigerator 100 of the first embodiment, the upper cold air outlet 27a is arranged at a position where the upper end coincides with or is close to the partition wall surface 25a located on the upper side of the upper storage container 24. The upper cold air outlet 27a has a horizontal guide plate 29 in which the distance between the rear end and the partition wall surface 25a is equal to or greater than the distance between the front end and the partition wall surface 25a. At this time, the horizontal guide plate 29 is parallel to or more upward than parallel to the partition wall surface 25a. Therefore, the cold air passing through the upper cold air outlet 27a adheres to the partition wall surface 25a and can flow along the partition wall surface 25a.
また、実施の形態1の冷蔵庫100において、仕切壁25は、仕切壁面25aの下方に突出した壁面リブ28を有する。このため、壁面リブ28は、仕切壁面25aに沿うように流れた冷気を広げる方向に導くだけでなく、上部貯蔵容器24内に冷気を案内することができる。したがって、壁面リブ28によって案内された冷気は、仕切壁面25aに沿って広がりながら上部貯蔵容器24内を均一に冷却することができる。このため、冷却の偏りを防ぎ、結露、冷気漏れなどを防止することができる。
Further, in the refrigerator 100 of the first embodiment, the partition wall 25 has a wall surface rib 28 protruding below the partition wall surface 25a. Therefore, the wall surface rib 28 can not only guide the cold air flowing along the partition wall surface 25a in the direction of spreading, but also guide the cold air into the upper storage container 24. Therefore, the cold air guided by the wall surface rib 28 can uniformly cool the inside of the upper storage container 24 while spreading along the partition wall surface 25a. Therefore, it is possible to prevent uneven cooling and prevent dew condensation, cold air leakage, and the like.
また、壁面リブ28を配置したことによって、上部貯蔵容器24に多くの食品などが貯蔵された場合においても、仕切壁面25aと食品との間には、壁面リブ28の高さ分だけ風路を確保することができる。上部冷気吹出口27aの先端は、奥行き方向において、上部貯蔵容器24の底面後端よりも後方の位置に配置されている。このため、実施の形態1に係る冷蔵庫100では、上部冷気吹出口27aと食品などとの間に、一定の隙間を有することになり、冷気が閉塞されることはない。したがって、仕切壁面25aに付着した冷気は、壁面リブ28の高さ分の風路を通って、上部貯蔵容器24内に効率的に送られる。
Further, by arranging the wall surface rib 28, even when a large amount of food or the like is stored in the upper storage container 24, an air passage is provided between the partition wall surface 25a and the food by the height of the wall surface rib 28. Can be secured. The tip of the upper cold air outlet 27a is arranged at a position rearward from the rear end of the bottom surface of the upper storage container 24 in the depth direction. Therefore, in the refrigerator 100 according to the first embodiment, there is a certain gap between the upper cold air outlet 27a and the food or the like, and the cold air is not blocked. Therefore, the cold air adhering to the partition wall surface 25a is efficiently sent into the upper storage container 24 through the air passage corresponding to the height of the wall surface rib 28.
また、実施の形態1の冷蔵庫100において、壁面リブ28は、上部冷気吹出口27aに近い方の壁面リブ28の下端と仕切壁面25aとの距離が、上部冷気吹出口27aと遠い方の壁面リブ28の下端と仕切壁面25aとの距離よりも小さい構成である。このため、使用者が食品などを取り出す際、食品などが壁面リブ28に引っ掛かるわずらわしさを解消することができる。これにより、冷蔵庫100の使用における利便性を高めることができる。さらに、壁面リブ28をこのような形状とすることで、仕切壁面25aに沿った冷気が壁面リブ28に衝突する際の圧力損失を少なくすることができる。また、壁面リブ28によって、上部冷気吹出口27aの冷気は、仕切壁面25aに沿って広がるとともに、上部貯蔵容器24に向かって流れる。このため、冷気は、外気に接する冷凍室開閉扉13付近に到達するまでに拡散する。冷凍室開閉扉13扉付近に流れる冷気を抑えることができるため、冷気漏れの遮蔽効果を高めることができる。
Further, in the refrigerator 100 of the first embodiment, in the wall surface rib 28, the distance between the lower end of the wall surface rib 28 closer to the upper cold air outlet 27a and the partition wall surface 25a is the wall surface rib farther from the upper cold air outlet 27a. The configuration is smaller than the distance between the lower end of 28 and the partition wall surface 25a. Therefore, when the user takes out the food or the like, the troublesomeness that the food or the like is caught on the wall surface rib 28 can be eliminated. Thereby, the convenience in using the refrigerator 100 can be enhanced. Further, by forming the wall surface rib 28 in such a shape, it is possible to reduce the pressure loss when the cold air along the partition wall surface 25a collides with the wall surface rib 28. Further, due to the wall surface rib 28, the cold air of the upper cold air outlet 27a spreads along the partition wall surface 25a and flows toward the upper storage container 24. Therefore, the cold air diffuses by the time it reaches the vicinity of the freezing chamber opening / closing door 13 in contact with the outside air. Since the cold air flowing near the freezing chamber opening / closing door 13 can be suppressed, the effect of shielding cold air leakage can be enhanced.
また、上部冷気吹出口27aと仕切壁面25aとの位置関係と上部冷気吹出口27aへの横ガイド板29を設けることとによって冷気噴流を仕切壁面25aに付着させることができる。以上より、貯蔵を阻害する部材を設けなくても実用上の貯蔵容積を減らすことなく冷凍室3全体に冷気を行き渡らせて均一に冷却することができる。したがって、食品などの被冷却物が多く貯蔵された場合でも、効率的な冷却を行うことができる。
Further, the cold air jet can be attached to the partition wall surface 25a by providing the positional relationship between the upper cold air outlet 27a and the partition wall surface 25a and the horizontal guide plate 29 to the upper cold air outlet 27a. From the above, it is possible to uniformly cool the entire freezing chamber 3 by distributing cold air without reducing the practical storage volume without providing a member that inhibits storage. Therefore, even when a large amount of objects to be cooled such as food are stored, efficient cooling can be performed.
実施の形態2.
図7は、実施の形態2に係る冷蔵庫における仕切壁などを、上面側から透視的に見た状態を模式的に示す図である。図7は、実施の形態1の図4に対応している。ここで説明する実施の形態2の冷蔵庫100は、製氷冷気吹出口27cを有していない点で実施の形態1の構成の冷蔵庫100と異なる。また、実施の形態1の冷蔵庫100は、製氷室4の上側には壁面リブ28を設置していなかったが、実施の形態2の冷蔵庫100では、壁面リブ28を仕切壁面25aの全面にわたって設置している点で異なる。Embodiment 2.
FIG. 7 is a diagram schematically showing a state in which a partition wall or the like in the refrigerator according to the second embodiment is viewed perspectively from the upper surface side. FIG. 7 corresponds to FIG. 4 of the first embodiment. Therefrigerator 100 of the second embodiment described here is different from the refrigerator 100 of the configuration of the first embodiment in that it does not have the ice making cold air outlet 27c. Further, in the refrigerator 100 of the first embodiment, the wall surface rib 28 was not installed on the upper side of the ice making chamber 4, but in the refrigerator 100 of the second embodiment, the wall surface rib 28 is installed over the entire surface of the partition wall surface 25a. It is different in that it is.
図7は、実施の形態2に係る冷蔵庫における仕切壁などを、上面側から透視的に見た状態を模式的に示す図である。図7は、実施の形態1の図4に対応している。ここで説明する実施の形態2の冷蔵庫100は、製氷冷気吹出口27cを有していない点で実施の形態1の構成の冷蔵庫100と異なる。また、実施の形態1の冷蔵庫100は、製氷室4の上側には壁面リブ28を設置していなかったが、実施の形態2の冷蔵庫100では、壁面リブ28を仕切壁面25aの全面にわたって設置している点で異なる。
FIG. 7 is a diagram schematically showing a state in which a partition wall or the like in the refrigerator according to the second embodiment is viewed perspectively from the upper surface side. FIG. 7 corresponds to FIG. 4 of the first embodiment. The
次に、図7を参照しながら、実施の形態2における冷蔵庫100の構成の一例について説明する。図7に示すように、実施の形態2の冷蔵庫100では、壁面リブ28は、仕切壁面25aの全面において、冷蔵庫100の後側にある上部冷気吹出口27aから前側にある冷凍室開閉扉13に向かって放射状に配置されている。ここで、上部冷気吹出口27aに最も近い位置に設置された壁面リブ28は、吹出口正面から製氷室4に渡って配置されている。このような壁面リブ28の配置をすることで、上部冷気吹出口27aから吹き出し、仕切壁面25aに付着した直後の温度の低い冷気が、優先的に製氷室4に導かれ、製氷室4内を冷却することができる。
Next, an example of the configuration of the refrigerator 100 according to the second embodiment will be described with reference to FIG. 7. As shown in FIG. 7, in the refrigerator 100 of the second embodiment, the wall surface rib 28 is provided on the entire surface of the partition wall surface 25a from the upper cold air outlet 27a on the rear side of the refrigerator 100 to the freezing chamber opening / closing door 13 on the front side. They are arranged radially toward you. Here, the wall surface rib 28 installed at the position closest to the upper cold air outlet 27a is arranged from the front of the outlet to the ice making chamber 4. By arranging the wall surface ribs 28 in this way, the cold air having a low temperature immediately after being blown out from the upper cold air outlet 27a and adhering to the partition wall surface 25a is preferentially guided to the ice making chamber 4 and inside the ice making chamber 4. Can be cooled.
以上のように実施の形態2の冷蔵庫100においては、製氷冷気吹出口27cを取り除き、上部冷気吹出口27aから冷気を吹き出すようにしたことで、上部冷気吹出口27aから吹き出す冷気の流量を増加させ、また、流速を高めることができる。このため、冷気が仕切壁面25aへの付着を促進するとともに、仕切壁面25aおよび壁面リブ28による冷気の均一化を効果的に行うことができる。
As described above, in the refrigerator 100 of the second embodiment, the ice making cold air outlet 27c is removed and the cold air is blown out from the upper cold air outlet 27a, so that the flow rate of the cold air blown out from the upper cold air outlet 27a is increased. Also, the flow velocity can be increased. Therefore, the cold air can be promoted to adhere to the partition wall surface 25a, and the cold air can be effectively made uniform by the partition wall surface 25a and the wall surface rib 28.
実施の形態3.
図8は、実施の形態3に係る冷蔵庫における冷凍室の縦断面図である。ここで説明する実施の形態3の冷蔵庫100は、実施の形態1または実施の形態2の構成の冷蔵庫100と比較して、上部貯蔵容器24の底面に壁面リブ28が設置されている点で異なる。また、実施の形態1において説明した下部冷気吹出口27bについて、下部貯蔵容器23の上側に位置する上部貯蔵容器24の底面と上端が一致または近接した位置に配置する。Embodiment 3.
FIG. 8 is a vertical cross-sectional view of the freezing chamber in the refrigerator according to the third embodiment. Therefrigerator 100 of the third embodiment described here is different from the refrigerator 100 having the configuration of the first embodiment or the second embodiment in that the wall surface rib 28 is installed on the bottom surface of the upper storage container 24. .. Further, the lower cold air outlet 27b described in the first embodiment is arranged at a position where the bottom surface and the upper end of the upper storage container 24 located above the lower storage container 23 coincide with or are close to each other.
図8は、実施の形態3に係る冷蔵庫における冷凍室の縦断面図である。ここで説明する実施の形態3の冷蔵庫100は、実施の形態1または実施の形態2の構成の冷蔵庫100と比較して、上部貯蔵容器24の底面に壁面リブ28が設置されている点で異なる。また、実施の形態1において説明した下部冷気吹出口27bについて、下部貯蔵容器23の上側に位置する上部貯蔵容器24の底面と上端が一致または近接した位置に配置する。
FIG. 8 is a vertical cross-sectional view of the freezing chamber in the refrigerator according to the third embodiment. The
次に、図8を参照しながら、実施の形態3における冷蔵庫100の構成の一例について説明する。図8において、上部貯蔵容器24の底面は、上部貯蔵容器24の貯蔵空間と下部貯蔵容器23の貯蔵空間とを仕切る壁となっている。このため、仕切壁25と同様に、下部貯蔵容器23の上壁となる上部貯蔵容器24の底面の壁に、壁面リブ28を配置することで、上部貯蔵容器24を同様に、下部貯蔵容器23内を均一に冷却することができる。
Next, an example of the configuration of the refrigerator 100 according to the third embodiment will be described with reference to FIG. In FIG. 8, the bottom surface of the upper storage container 24 is a wall that separates the storage space of the upper storage container 24 and the storage space of the lower storage container 23. Therefore, similarly to the partition wall 25, by arranging the wall surface rib 28 on the bottom wall of the upper storage container 24 which is the upper wall of the lower storage container 23, the upper storage container 24 can be similarly made the lower storage container 23. The inside can be cooled uniformly.
また、上部貯蔵容器24の底面に沿って冷気が流れるため、壁面リブ28によって下部貯蔵容器23に冷気を拡散するだけでなく、上部貯蔵容器24を底面側から冷却することができる。特に、上部貯蔵容器24に多くの食品などが収容されている場合には、上部貯蔵容器24の上方から効率的に冷却できることに加えて、上部貯蔵容器24の底面からの冷却も行うことができる。このため、実施の形態3の冷蔵庫100は、上部貯蔵容器24内の被冷却物をより効果的に冷却することができる。
Further, since the cold air flows along the bottom surface of the upper storage container 24, not only the cold air is diffused to the lower storage container 23 by the wall surface rib 28, but also the upper storage container 24 can be cooled from the bottom surface side. In particular, when a large amount of food or the like is stored in the upper storage container 24, in addition to being able to efficiently cool from above the upper storage container 24, it is also possible to cool from the bottom surface of the upper storage container 24. .. Therefore, the refrigerator 100 of the third embodiment can more effectively cool the object to be cooled in the upper storage container 24.
実施の形態4.
前述した実施の形態1~実施の形態3の冷蔵庫100においては、貯蔵室の一例として冷凍室3について説明したが、貯蔵室はこれに限定するものではなく、他の貯蔵室においても適用することができる。このため、断熱箱体110などにより形成された仕切壁25以外の、冷蔵庫100内の他の貯蔵室における上壁においても壁面リブ28を設置してもよい。Embodiment 4.
In therefrigerator 100 of the above-described first to third embodiments, the freezing chamber 3 has been described as an example of the storage chamber, but the storage chamber is not limited to this, and the storage chamber may be applied to other storage chambers as well. Can be done. Therefore, the wall surface rib 28 may be installed on the upper wall in another storage room in the refrigerator 100 other than the partition wall 25 formed by the heat insulating box body 110 or the like.
前述した実施の形態1~実施の形態3の冷蔵庫100においては、貯蔵室の一例として冷凍室3について説明したが、貯蔵室はこれに限定するものではなく、他の貯蔵室においても適用することができる。このため、断熱箱体110などにより形成された仕切壁25以外の、冷蔵庫100内の他の貯蔵室における上壁においても壁面リブ28を設置してもよい。
In the
また、前述した実施の形態1~実施の形態3の冷蔵庫100においては、冷凍室3の後方の側壁となる第二風路部品27に上部冷気吹出口27aおよび下部冷気吹出口27bを有し、冷凍室3の後方側から前方側に向けて冷気を吹き出すようにした。しかしながら、これに限定するものではない。冷気吹出口を側方側に設置してもよい。
Further, in the refrigerator 100 of the above-described first to third embodiments, the second air passage component 27 which is a side wall behind the freezing chamber 3 has an upper cold air outlet 27a and a lower cold air outlet 27b. Cold air was blown from the rear side to the front side of the freezing chamber 3. However, the present invention is not limited to this. The cold air outlet may be installed on the side.
1 冷蔵室、2 野菜室、3 冷凍室、4 製氷室、5 機械室、6 冷却室、7 冷気風路、8 冷気戻り風路、9 分配風路、11 冷蔵室開閉扉、12 野菜室開閉扉、13 冷凍室開閉扉、14 ガスケット部品、15 支持具、20 圧縮機、21 蒸発器、22 送風機、23 下部貯蔵容器、24 上部貯蔵容器、25 仕切壁、25a 仕切壁面、26 第一風路部品、27 第二風路部品、27a 上部冷気吹出口、27b 下部冷気吹出口、27c 製氷冷気吹出口、28 壁面リブ、29 横ガイド板、30 縦ガイド板、100 冷蔵庫、110 断熱箱体。
1 Refrigerator room, 2 Vegetable room, 3 Freezer room, 4 Ice making room, 5 Machine room, 6 Cooling room, 7 Cold air passage, 8 Cold air return air passage, 9 Distribution air passage, 11 Refrigerator room opening / closing door, 12 Vegetable room opening / closing Door, 13 Refrigerator opening / closing door, 14 Gasket parts, 15 Support, 20 Compressor, 21 Evaporator, 22 Blower, 23 Lower storage container, 24 Upper storage container, 25 Partition wall, 25a Partition wall, 26 First air passage Parts, 27 second air passage parts, 27a upper cold air outlet, 27b lower cold air outlet, 27c ice-making cold air outlet, 28 wall ribs, 29 horizontal guide plates, 30 vertical guide plates, 100 refrigerators, 110 heat insulating boxes.
Claims (10)
- 被冷却物が貯蔵される貯蔵室の上側の壁となる上壁と、
前記貯蔵室外から送られる冷気が吹き出す冷気吹出口を有する前記貯蔵室の側壁とを備え、
前記冷気吹出口は、高さ方向において、上端が前記上壁における壁面の高さと一致する位置または前記冷気が前記壁面に沿って吹き出す位置に配置され、
前記冷気吹出口には、前記冷気の吹出方向から見たときの前記冷気吹出口の右端と左端との間に、前記吹出方向に対して後端となる部分と前記壁面との間の前記高さ方向における距離が、前記吹出方向に対して前端となる部分と前記壁面との間の前記高さ方向における距離以上となるように1つ以上の横ガイド板が配置され、
前記上壁には、下方に突出して前記上壁に沿って吹き出された前記冷気を誘導して前記貯蔵室内に拡散する壁面リブが前記壁面に配置される冷蔵庫。 The upper wall, which is the upper wall of the storage room where the object to be cooled is stored,
It is provided with a side wall of the storage chamber having a cold air outlet from which cold air sent from outside the storage chamber is blown out.
The cold air outlet is arranged at a position where the upper end coincides with the height of the wall surface on the upper wall or at a position where the cold air blows out along the wall surface in the height direction.
The cold air outlet has the height between the right end and the left end of the cold air outlet when viewed from the cold air outlet direction, and the rear end portion with respect to the outlet direction and the wall surface. One or more horizontal guide plates are arranged so that the distance in the vertical direction is equal to or greater than the distance in the height direction between the portion at the front end with respect to the blowing direction and the wall surface.
A refrigerator in which a wall surface rib that projects downward and induces the cold air blown out along the upper wall and diffuses into the storage chamber is arranged on the upper wall. - 前記冷気吹出口は、前記吹出方向に対して垂直な方向における断面積が、前記冷気を送る送風機から前記冷気吹出口に到る風路の断面積に対して小さい面積である請求項1に記載の冷蔵庫。 The first aspect of the present invention is the cold air outlet, wherein the cross-sectional area in the direction perpendicular to the blowing direction is smaller than the cross-sectional area of the air passage from the blower that sends the cold air to the cold air outlet. Refrigerator.
- 前記冷気吹出口は、前記右端と前記左端との間の距離が、前記上端と下端との間の距離より長い形状である請求項1または請求項2に記載の冷蔵庫。 The refrigerator according to claim 1 or 2, wherein the cold air outlet has a shape in which the distance between the right end and the left end is longer than the distance between the upper end and the lower end.
- 前記冷気吹出口は、前記冷気吹出口の前記上端と下端との間に、前記横ガイド板に対して垂直な縦ガイド板を1つ以上有する請求項1~請求項3のいずれか一項に記載の冷蔵庫。 The cold air outlet has one or more vertical guide plates perpendicular to the horizontal guide plate between the upper end and the lower end of the cold air outlet, according to any one of claims 1 to 3. The listed refrigerator.
- 前記壁面リブは、前記上壁の前記壁面に複数設置され、前記壁面リブの前記冷気吹出口の中央から遠い方の後端と奥側の壁との間の距離は、前記壁面リブの前記冷気吹出口の中央から近い方の後端と奥側の壁との間の距離より大きい関係を有する請求項1~請求項4のいずれか一項に記載の冷蔵庫。 A plurality of the wall surface ribs are installed on the wall surface of the upper wall, and the distance between the rear end of the wall surface ribs far from the center of the cold air outlet and the wall on the back side is the cold air of the wall surface ribs. The refrigerator according to any one of claims 1 to 4, which has a relationship larger than the distance between the rear end closer to the center of the air outlet and the wall on the back side.
- 前記壁面リブは、突出した部分の高さが前記上壁と前記冷気吹出口の下端との間の距離よりも低い請求項1~請求項5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the wall surface rib has a height of a protruding portion lower than the distance between the upper wall and the lower end of the cold air outlet.
- 前記壁面リブは、前記上壁の前記壁面に複数設置され、前記壁面リブにおける奥側の壁に対抗する面が斜面であり、断面形状が斜めになっている請求項1~請求項6のいずれか一項に記載の冷蔵庫。 Any of claims 1 to 6, wherein a plurality of the wall surface ribs are installed on the wall surface of the upper wall, the surface of the wall surface ribs facing the inner wall is a slope, and the cross-sectional shape is slanted. The refrigerator described in item 1.
- 前記冷気吹出口は、前記吹出方向に対して前端となる部分が、前記貯蔵室内に収容される貯蔵容器の底面の後端となる部分よりも前記吹出方向に対して後方に位置する請求項1~請求項7のいずれか一項に記載の冷蔵庫。 Claim 1 in which the portion of the cold air outlet that is the front end with respect to the outlet direction is located rearward of the portion that is the rear end of the bottom surface of the storage container housed in the storage chamber with respect to the outlet direction. The refrigerator according to any one of claims 7.
- 前記貯蔵室内の上部に収容される貯蔵容器を有し、前記貯蔵容器の底面の壁が、前記壁面リブを有する請求項1~請求項8のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 8, which has a storage container housed in the upper part of the storage chamber, and the bottom wall of the storage container has the wall rib.
- 空気を冷却して前記冷気を生成する冷却器と、
前記冷却器が生成した前記冷気を前記冷気吹出口に送る送風機と
を備える請求項1~請求項9のいずれか一項に記載の冷蔵庫。 A cooler that cools the air to generate the cold air,
The refrigerator according to any one of claims 1 to 9, further comprising a blower that sends the cold air generated by the cooler to the cold air outlet.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/001708 WO2021149109A1 (en) | 2020-01-20 | 2020-01-20 | Refrigerator |
JP2021572131A JP7224502B2 (en) | 2020-01-20 | 2020-01-20 | refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/001708 WO2021149109A1 (en) | 2020-01-20 | 2020-01-20 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021149109A1 true WO2021149109A1 (en) | 2021-07-29 |
Family
ID=76992110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001708 WO2021149109A1 (en) | 2020-01-20 | 2020-01-20 | Refrigerator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7224502B2 (en) |
WO (1) | WO2021149109A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56173980U (en) * | 1980-05-27 | 1981-12-22 | ||
JP2001280795A (en) * | 2000-03-30 | 2001-10-10 | Sanyo Electric Co Ltd | Refrigerator |
JP2012032069A (en) * | 2010-07-30 | 2012-02-16 | Hitachi Appliances Inc | Refrigerator |
JP2014159894A (en) * | 2013-02-19 | 2014-09-04 | Mitsubishi Electric Corp | Refrigerator |
-
2020
- 2020-01-20 JP JP2021572131A patent/JP7224502B2/en active Active
- 2020-01-20 WO PCT/JP2020/001708 patent/WO2021149109A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56173980U (en) * | 1980-05-27 | 1981-12-22 | ||
JP2001280795A (en) * | 2000-03-30 | 2001-10-10 | Sanyo Electric Co Ltd | Refrigerator |
JP2012032069A (en) * | 2010-07-30 | 2012-02-16 | Hitachi Appliances Inc | Refrigerator |
JP2014159894A (en) * | 2013-02-19 | 2014-09-04 | Mitsubishi Electric Corp | Refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021149109A1 (en) | 2021-07-29 |
JP7224502B2 (en) | 2023-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9581377B2 (en) | Refrigerator | |
KR102412189B1 (en) | Refrigerator | |
US11466924B2 (en) | Refrigerator | |
KR20180132317A (en) | Refrigerator | |
US11698217B2 (en) | Refrigerator | |
JP2017101838A (en) | refrigerator | |
JP2010223509A (en) | Refrigerator | |
KR20160100548A (en) | Refrigerator | |
KR101740333B1 (en) | Refrigerator | |
WO2021149109A1 (en) | Refrigerator | |
KR20070031721A (en) | Refrigerator | |
KR101637353B1 (en) | Refrigerator | |
JP6389075B2 (en) | refrigerator | |
KR101640599B1 (en) | Refrigerator of french door type | |
US8534091B2 (en) | Refrigerator related technology | |
JP7270955B2 (en) | refrigerator | |
KR20100092277A (en) | A refrigerator | |
KR100506603B1 (en) | Refrigerator | |
JP7185736B2 (en) | refrigerator | |
JP7032022B2 (en) | Cool storage | |
WO2023109797A1 (en) | Ice maker | |
US20240210091A1 (en) | Refrigerator | |
JP2018159500A (en) | refrigerator | |
KR100428509B1 (en) | A refrigerator | |
KR101869354B1 (en) | Supercooled freezerpe variable type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915437 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021572131 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915437 Country of ref document: EP Kind code of ref document: A1 |