WO2021148949A1 - Electrical board and cooling apparatus in which said electrical board has been installed - Google Patents

Electrical board and cooling apparatus in which said electrical board has been installed Download PDF

Info

Publication number
WO2021148949A1
WO2021148949A1 PCT/IB2021/050401 IB2021050401W WO2021148949A1 WO 2021148949 A1 WO2021148949 A1 WO 2021148949A1 IB 2021050401 W IB2021050401 W IB 2021050401W WO 2021148949 A1 WO2021148949 A1 WO 2021148949A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
relay
power
circuit
electric
Prior art date
Application number
PCT/IB2021/050401
Other languages
French (fr)
Japanese (ja)
Inventor
中下裕子
Original Assignee
ダイキン インダストリーズ (タイランド) リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン インダストリーズ (タイランド) リミテッド filed Critical ダイキン インダストリーズ (タイランド) リミテッド
Priority to AU2021209426A priority Critical patent/AU2021209426A1/en
Publication of WO2021148949A1 publication Critical patent/WO2021148949A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the indoor unit whose power supply is cut off controls the opening degree of the electric expansion valve to a predetermined opening degree by the electric power supplied from the outdoor unit via the transmission line.
  • the communication line connected to the outdoor unit is used as an emergency power supply line only for a certain period of time to shut off the power supply.
  • the opening degree of the electric expansion valve of the indoor unit is controlled to a predetermined opening degree.
  • a signal indicating that the power cutoff has occurred is transmitted to the outdoor unit side controller between the time when the power supply cutoff of the indoor unit occurs and the inoperable voltage of the indoor unit side controller is reached.
  • the outdoor unit side controller needs to transmit a signal to the other indoor units during normal operation to suspend communication only for the above-mentioned fixed time.
  • the indoor unit disclosed in Patent Document 1 when a power cutoff occurs in one indoor unit, the indoor unit in which the power supply cutoff does not occur is also affected. Therefore, even if the power to the indoor unit is cut off, there is a problem that it is not necessary to suspend the communication with the indoor unit during normal operation for a certain period of time.
  • the electric board according to the first aspect is an electric board electrically connected to a control board of an indoor unit of a refrigerating apparatus connected to a first power source via a communication line.
  • the electrical board is further connected to the second power source.
  • the electrical board comprises a relay. The relay switches to power supply from the second power supply when power is not supplied from the first power supply to the control board. With this electric board, electric power can be appropriately supplied to the control board of the indoor unit.
  • “The electric board is further connected to the second power source” also includes that the second power source is mounted on the electric board.
  • the electric board according to the second aspect is an electric board according to the first aspect.
  • the refrigerating device includes an indoor unit and an outdoor unit that is electrically connected to the indoor unit.
  • the electric power of the second power source is the electric power supplied from the outdoor unit.
  • the electric board according to the third aspect is the electric board according to the first aspect or the second aspect, and further includes a switching circuit. The switching circuit is switched between a first state that is electrically connected to the second power source and a second state that is not electrically connected. When power is not supplied from the first power supply to the control board, the switching circuit is switched to the first state by the relay.
  • the electric board according to the fourth aspect is the electric board according to the third aspect, and further includes a switch. When the power is not supplied from the first power supply to the control board, the switch turns on or off the energization of the relay to switch the switching circuit to the first state.
  • the electric board according to the fifth aspect is the electric board according to the fourth aspect.
  • the switch is turned on while power is being supplied from the first power source to energize the relay. Further, the switch is turned off when power is not supplied from the first power source to cut off the energization of the relay.
  • a circuit that is simple and has a small number of parts can be realized by a configuration in which a switch is turned on to energize a relay when power is supplied from the first power supply.
  • the electric board according to the sixth viewpoint is an electric board according to any one of the third to fifth viewpoints.
  • the relay has a relay coil and a relay switch.
  • the relay switch switches the switching circuit to the first state when the relay coil is energized on or off. Since this electric board does not require a logic circuit and a general-purpose mechanical relay including a coil and a switch can be used, it is possible to suppress an increase in cost.
  • the electric board according to the seventh aspect is an electric board according to any one of the first to sixth aspects.
  • the electrical board is separated from the control board. In this electric board, since the electric board is separated and independent from the control board, the electric board can be retrofitted. Therefore, it can be mounted on an indoor unit on which the electric board is not mounted.
  • the refrigerating apparatus according to the eighth aspect is a refrigerating apparatus equipped with an electric substrate according to any one of the first to seventh aspects.
  • the refrigerating apparatus is a refrigerating apparatus equipped with an electric substrate according to the eighth aspect.
  • the refrigerating device includes an outdoor unit and a plurality of indoor units connected to the outdoor unit. When the power from the first power supply is not supplied to the control board of any one of the plurality of indoor units, the power supply from the second power supply is switched by the relay.
  • the block diagram of the air conditioner which is the refrigerating apparatus on which the electric board which concerns on one Embodiment of this disclosure is mounted.
  • Circuit diagram of the switching circuit. which shows the transmission path of a positive electrode signal and a negative electrode signal by an arrow when a positive electrode signal is input to a 1st input line and a negative electrode signal is input to a 2nd input line.
  • the polarity correction circuit diagram which shows the transmission path of a positive electrode signal and a negative electrode signal by an arrow when the positive electrode signal is input to the 2nd input line, and the negative electrode signal is input to the 1st input line.
  • the explanatory view which shows the state of the switching circuit when the power supply from a 1st power source is not cut off.
  • the explanatory view which shows the state of the switching circuit when the power supply from a 1st power source is cut off.
  • FIG. 1 is a configuration diagram of an air conditioner 100 which is a refrigerating device on which an electric substrate according to an embodiment of the present disclosure is mounted. Further, FIG. 2 is a block diagram of an electric circuit of the air conditioner 100.
  • the air conditioner 100 is composed of an indoor unit 1 which is a user side unit and an outdoor unit 2 which is a heat source side unit.
  • the indoor unit 1 is installed in each room of the tenant, for example, and each indoor unit 1 is connected to the outdoor unit 2 by a refrigerant connecting pipe.
  • a compressor 15, a four-way switching valve 16, an outdoor heat exchanger 17, an outdoor expansion valve 18 as a pressure reducing mechanism, an indoor expansion valve 20, and an indoor heat exchanger 13 are cyclically connected by a refrigerant pipe. It has a refrigerant circuit 10.
  • the indoor unit 1 includes an indoor control power supply 25, an indoor communication circuit 35, a polarity correction circuit 37, an indoor microprocessor 45, a switching circuit 75, and a second power supply 102.
  • Both the indoor control power supply 25 and the indoor communication circuit 35 are connected to the indoor microcomputer 45.
  • the indoor control power supply 25 receives power from the first power supply 101, which is an AC power supply, via the power supply lines 801, 802, generates a control voltage from the first power supply 101, and supplies the control voltage to the indoor microcomputer 45. There is.
  • the first power supply 101 is a commercial power supply of AC220V.
  • the indoor communication circuit 35 is used when the indoor unit 1 communicates with the outdoor unit 2. In the polarity correction circuit 37, even if the positive electrode signal line and the negative electrode signal line that transmit the signal from the outdoor unit 2 are connected with the wrong polarity, the positive electrode signal is output to the positive electrode output line and the negative electrode signal is output to the negative electrode output line. Can be switched as follows.
  • the indoor microcomputer 45 controls the opening degree of the indoor expansion valve 20, the operating frequency of the indoor fan 14, and the like.
  • a breaker 71 is interposed between the indoor control power supply 25 and the first power supply 101. For example, when the indoor unit 1 of the air conditioner 100 is installed in each of the plurality of tenants, the breaker 71 cuts off the power supply from the first power supply 101 to the indoor unit 1 when the arbitrary tenant is not used. Further, when the power from the first power supply 101 is cut off, the indoor unit 1 detects that the power supply from the first power supply 101 is cut off, and is a power supply different from the first power supply 101.
  • a switching circuit 75 for switching to power supply from the second power supply 102 is mounted.
  • the indoor unit 1 has a first control board 81 and a first electric board 91 different from the first control board 81.
  • the indoor control power supply 25, the indoor communication circuit 35, and the indoor microcomputer 45 are mounted on the first control board 81. Further, the polarity correction circuit 37, the switching circuit 75, and the second power supply 102 are mounted on the first electric board 91.
  • the outdoor unit 2 is equipped with an outdoor control power supply 26, an outdoor communication circuit 36, a polarity correction circuit 38, an outdoor microcomputer 46, and a DC power supply circuit 72. Both the outdoor control power supply 26 and the outdoor communication circuit 36 are connected to the outdoor microcomputer 46.
  • the outdoor control power supply 26 receives power from the three-phase AC power supply 111 via the power supply lines 811, 812, and 813, generates a control voltage from the power supply, and supplies the control voltage to the outdoor microcomputer 46. ..
  • the AC power supply 111 is a commercial power supply of AC380V. Line 814 is a ground wire.
  • the outdoor communication circuit 36 is used when the outdoor unit 2 communicates with the indoor unit 1.
  • the polarity correction circuit 38 outputs the positive electrode signal to the positive electrode output line and the negative electrode signal to the negative electrode output line even if the positive electrode signal line and the negative electrode signal line that transmit the signal from the outdoor communication circuit 36 are connected with the wrong polarity. Can be switched so that
  • the outdoor microcomputer 46 controls the operating frequency of the compressor 15, the switching operation of the four-way switching valve 16, the opening degree of the outdoor expansion valve 18, the operating frequency of the outdoor fan 19, and the like.
  • the outdoor unit 2 has a second control board 82 and a second electric board 92 different from the second control board 82.
  • the outdoor control power supply 26, the outdoor communication circuit 36, and the outdoor microcomputer 46 are mounted on the second control board 82.
  • FIG. 3 is a circuit diagram of the polarity correction circuit 37.
  • the first terminal N1a of the first connector CN1 is connected to the first input line 11.
  • the second terminal N1b of the first connector CN1 is connected to the second input line 12.
  • the communication line of the positive electrode signal F1 is connected to the first terminal N1a, and the communication line of the negative electrode signal F2 is connected to the second terminal N2b.
  • the polarity correction circuit 37 includes a switching relay 30, a first circuit 41, a second circuit 42, a first voltage dividing circuit 51, a second voltage dividing circuit 52, a relay drive circuit 53, and a comparator 55.
  • the function of the polarity correction circuit 37 is to use a switching relay 30 to connect the first input line 11 and the first output line 21 when the first input line 11 is a positive electrode, and to connect the second input line 12 and the second output line.
  • the switching relay 30 has a relay coil 31 and a contact switching mechanism 32.
  • the contact switching mechanism 32 can close the first contact C1a and the second contact C2a while the relay coil 31 is energized, and at the same time open the third contact C1b and the fourth contact C2b.
  • the contact switching mechanism 32 can open the first contact C1a and the second contact C2a while the relay coil 31 is not energized, and at the same time close the third contact C1b and the fourth contact C2b.
  • the first circuit 41 connects the first input line 11 and the first output line 21, and connects the second input line 12 and the second output line 22.
  • the first contact C1a of the switching relay 30 is provided in the middle of the wiring connecting the first input line 11 and the first output line 21.
  • the first input line 11 and the first output line 21 are connected when the first contact C1a is closed, and the connection between the first input line 11 and the first output line 21 is released when the first contact C1a is open. Will be done.
  • a second contact C2a of the switching relay 30 is provided in the middle of the wiring connecting the second input line 12 and the second output line 22.
  • the second input line 12 and the second output line 22 are connected when the second contact C2a is closed, and the connection between the second input line 12 and the second output line 22 is released when the second contact C2a is open. Will be done. (2-1-3) Second circuit 42
  • the second circuit 42 connects the first input line 11 and the second output line 22, and connects the second input line 12 and the first output line 21.
  • the second circuit 42 is provided with a third contact C1b of the switching relay 30 in the middle of the wiring connecting the first input line 11 and the second output line 22.
  • the first input line 11 and the second output line 22 are connected when the third contact C1b is closed, and the connection between the first input line 11 and the second output line 22 is released when the third contact C1b is open. Will be done.
  • a fourth contact C2b of the switching relay 30 is provided in the middle of the wiring connecting the second input line 12 and the first output line 21.
  • the second input line 12 and the first output line 21 are connected when the fourth contact C2b is closed, and the connection between the second input line 12 and the first output line 21 is released when the fourth contact C2b is open. Will be done.
  • (2-1-4) First voltage divider circuit 51
  • the first diode D11, the first resistor R11, and the second resistor R12 are connected in series from the connection point S11 with the first input line 11 to the connection point S12 with the second input line 12. It is connected. Since the anode of the first diode D11 is connected to the connection point S11 and the cathode is connected to one end of the first resistor R11, the direction from the connection point S11 to the connection point S12 is the forward direction of the first diode D11.
  • Second voltage divider circuit 52 In the second voltage dividing circuit 52, the second diode D21, the third resistor R21, and the fourth resistor R22 are connected in series from the connection point S21 with the second input line 12 to the connection point S22 with the first input line 11. It is connected.
  • the direction from the connection point S21 to the connection point S22 is the forward direction of the second diode D21. Therefore, when the second input line 12 is the positive electrode and the first input line 11 is the negative electrode, the third resistor R21 is placed at both ends of the third resistor R21 and the fourth resistor R22 from the connection point S21 toward the connection point S22. And a voltage drop occurs according to the resistance value ratio of the fourth resistor R22.
  • the connection point Q22 between the third resistor R21 and the fourth resistor R22 is connected to the non-inverting input terminal of the comparator 55, which will be described later.
  • the relay drive circuit 53 includes a transistor Tra. In the transistor Tra, while a predetermined positive voltage is applied to the base, the collector and the emitter conduct with each other, and the drive voltage E1 is applied to the relay coil 31. While the drive voltage E1 is applied to the relay coil 31, the relay coil 31 is energized, so that the first contact C1a and the second contact C2a provided in the first circuit 41 are closed, and at the same time, the second circuit 42 The third contact C1b and the fourth contact C2b provided in the above are open.
  • Comparator 55 compares the voltage input to the inverting input terminal (hereinafter referred to as the first voltage V1) with the voltage input to the non-inverting input terminal (hereinafter referred to as the second voltage V2) to obtain a second voltage.
  • the drive voltage E1 is applied to the relay coil 31.
  • the connection point Q12 between the first resistor R11 and the second resistor R12 is connected to the inverting input terminal of the comparator 55, and the inverting input terminal is connected to the ground GND via the fifth resistor R15.
  • the first voltage V1 is the potential difference between the connection point Q12 between the first resistor R11 and the second resistor R12 and the ground GND. Further, since the connection point Q22 between the third resistor R21 and the fourth resistor R22 is connected to the non-inverting input terminal of the comparator 55, the non-inverting input terminal is connected to the ground GND via the sixth resistor R26.
  • the second voltage V2 is the potential difference between the connection point Q22 between the third resistor R21 and the fourth resistor R22 and the ground GND.
  • the switching circuit 75 includes an on / off relay 76, a first switching circuit 77a, a second switching circuit 77b, a third switching circuit 77c, a photocoupler 78, and a relay drive circuit 79.
  • the function of the switching circuit 75 is to detect the presence or absence of power supply from the first power supply 101 using the photocoupler 78, and to use the on / off relay 76 when there is no power supply from the first power supply 101. It is to supply electric power to the first control board 81 from the second electric power source 102 which is another electric power source.
  • On / off relay 76 In this embodiment, the switching circuit 75 has two on / off relays 76. The number of on / off relays 76 can be set arbitrarily.
  • the on / off relay 76 has a relay coil 76a and a relay switch 76b.
  • the relay switch 76b can close the first contact S1a and the second contact S2a while the relay coil 76a is energized, and at the same time open the third contact S1b and the fourth contact S2b. Further, the relay switch 76b can open the first contact S1a and the second contact S2a and at the same time close the third contact S1b and the fourth contact S2b while the relay coil 76a is not energized.
  • (2-2-2) First switching circuit 77a The first switching circuit 77a conducts conduction between the first DC power supply Ea and the first terminal N3a of the third connector CN3 only when the third contact S1b of the on / off relay 76 is closed, and connects to the first control board 81. Power is supplied from the first DC power source Ea.
  • Second switching circuit 77b The second switching circuit 77b conducts the second DC power supply Eb and the second terminal N3b of the third connector CN3 only when the fourth contact S2b of the on / off relay 76 is closed, and connects to the first control board 81. The power of the second DC power source Eb is supplied.
  • the third switching circuit 77c conducts conduction between the third DC power supply Ec and the third terminal N3c of the third connector CN3 only when the third contact S1b of the on / off relay 76 is closed, and connects to the first control board 81.
  • the power of the third DC power source Ec is supplied.
  • Photocoupler 78 As shown in FIG. 4, the photocoupler 78 is an insulating switch including a photodiode 78a and a phototransistor 78b.
  • the first terminal N5a of the connector CN5 is connected to the anode of the photodiode 78a of the photocoupler 78.
  • the second terminal N5b of the connector CN5 is connected to the cathode of the photodiode 78a of the photocoupler 78.
  • the branch wire of the power supply line 801 is connected to the first terminal N5a, and the branch wire of the power supply line 802 is connected to the second terminal N5b.
  • a rectifier circuit 73 is connected in parallel to both ends of the photodiode 78a. The rectifier circuit 73 rectifies the AC voltage of the first power supply 101 with the diode Da and the smoothing capacitor Ca, and generates a DC voltage suitable for causing the photodiode 78a to emit light by the voltage dividing resistors Ra and Rb. (2-2-6) Relay drive circuit 79 As shown in FIG.
  • the relay drive circuit 79 includes a transistor Trb.
  • the transistor Trb While a predetermined positive voltage is applied to the base, the collector and the emitter conduct with each other, and the voltage of the drive power supply Ed is applied to the relay coil 76a. While the voltage of the drive power supply Ed is applied to the relay coil 76a, the relay coil 76a is energized, so that the third contact S1b provided in the first switching circuit 77a and the third switching circuit 77c and the second switching The fourth contact S2b provided in the circuit 77b is opened. Therefore, the power of the first DC power supply Ea, the second DC power supply Eb, and the third DC power supply Ec is not supplied to the first control board 81.
  • Second power supply 102 As shown in FIG. 2, the second power supply 102 introduces the DC voltage generated by the DC power supply circuit 72 of the outdoor unit 2 via the communication lines L1 and L2, and introduces the first DC power supply Ea of the first control board 81.
  • the voltage required for each of the second DC power supply Eb and the third DC power supply Ec is provided.
  • the second power supply 102 and the first control board 81 are cut off by the switching circuit 75 while the power is supplied to the first control board 81 from the first power supply 101, and the power is supplied from the first power supply 101.
  • the switching circuit 75 connects the two.
  • the advantage of this is that in the indoor unit 1, after the power supply from the first power supply 101 is cut off, the opening degree of the indoor expansion valve 20 which is an electric expansion valve is based on the operation mode before the power supply is cut off. To be adjusted. For example, in the case of cooling operation, the opening degree of the indoor expansion valve is closed, and in the case of heating operation, it is slightly opened.
  • Second electric board 92 As shown in FIG. 2, the polarity correction circuit 38 and the DC power supply circuit 72 are mounted on the second electric board 92.
  • the second electric board 92 of the outdoor unit 2 is a board separate from the second control board 82, but may be integrated into one board.
  • (3-1) Polarity correction circuit 38 The polarity correction circuit 38 outputs the positive electrode signal to the positive electrode output line and the negative electrode signal to the negative electrode output line even if the positive electrode signal line and the negative electrode signal line that transmit the signal from the outdoor communication circuit 36 are connected with the wrong polarity. It is a circuit that switches so as to be performed.
  • the DC power supply circuit 72 is a circuit that generates a DC voltage to be supplied to the second power supply 102 mounted on the first electric board 91 of the indoor unit 1.
  • the DC power supply circuit 72 introduces an AC voltage from one of the power supply lines 811, 812, and 813 of the three-phase AC power supply 111, and generates a DC voltage via the filter circuit 72a, the rectifying circuit 72b, and the smoothing capacitor 72c. As shown in FIG.
  • the DC voltage generated by the DC power supply circuit 72 is transmitted from the outdoor communication circuit 36 in a state of being superimposed on the positive electrode signal F1 and the negative electrode signal F2.
  • the positive electrode signal F1 is transmitted to the indoor unit 1 via the communication line L1
  • the negative electrode signal F2 is transmitted to the indoor unit 1 via the communication line L2.
  • FIG. 5 shows the polarities of the transmission paths of the positive electrode signal F1 and the negative electrode signal F2 when the positive electrode signal F1 is input to the first input line 11 and the negative electrode signal F2 is input to the second input line 12. It is a correction circuit diagram.
  • the first resistor R11 and the second resistor R12 are first located at both ends of the first resistor R11 and the second resistor R12 from the connection point S11 toward the connection point S12. A voltage drop occurs according to the resistance value ratio of the resistor R11 and the second resistor R12. Further, a positive voltage is also applied to the connection point S22 of the second voltage dividing circuit 52, but since the direction is opposite to the forward direction of the second diode D21, no voltage drop occurs in the third resistor R21 and the fourth resistor.
  • a voltage drop occurs at both ends of each of the R22 and the sixth resistor R26 according to the resistance value ratio of the fourth resistor R22 and the sixth resistor R26.
  • the potential difference (V2) between the connection point Q22 of the second voltage dividing circuit 52 and the ground GND becomes larger than the potential difference (V1) between the connection point Q12 of the first voltage dividing circuit 51 and the ground GND in advance.
  • the resistance values of the first resistor R11, the second resistor R12, the third resistor R21, the fourth resistor R22, and the sixth resistor R26 are set.
  • V2 (V2> V1) is input to the non-inverting input terminal of the comparator 55 and V1 is input to the inverting input terminal
  • a predetermined output voltage Vout E2 is output from the output terminal of the comparator 55.
  • This output voltage Vout is applied to the base of the transistor Tra of the relay drive circuit 53, and the collector and the emitter conduct with each other to energize the relay coil 31, so that the first contact C1a and the first contact C1a provided in the first circuit 41 are energized.
  • the two contacts C2a are closed, and at the same time, the third contact C1b and the fourth contact C2b provided in the second circuit 42 are opened.
  • FIG. 6 shows the polarities of the transmission paths of the positive electrode signal F1 and the negative electrode signal F2 when the positive electrode signal F1 is input to the second input line 12 and the negative electrode signal F2 is input to the first input line 11. It is a correction circuit diagram.
  • a third resistor R21 and a third resistor R22 are placed at both ends of the third resistor R21 and the fourth resistor R22 from the connection point S21 toward the connection point S22.
  • a voltage drop occurs according to the resistance value ratio of the resistor R21 and the fourth resistor R22.
  • a positive voltage is also applied to the connection point S12 of the first voltage dividing circuit 51, but since the direction is opposite to the forward direction of the first diode D11, no voltage drop occurs in the first resistor R11 and the second resistor.
  • a voltage drop occurs at both ends of each of the R12 and the fifth resistor R15 according to the resistance value ratio of the second resistor R12 and the fifth resistor R15.
  • the potential difference (V1) between the connection point Q12 of the first voltage dividing circuit 51 and the ground GND becomes larger than the potential difference (V2) between the connection point Q22 of the second voltage dividing circuit 52 and the ground GND in advance.
  • the first contact C1a and the second contact C2a provided in the first circuit 41 are opened, and at the same time, the third contact C1b and the fourth contact C2b provided in the second circuit 42 are closed.
  • the first input line 11 is the negative electrode
  • the first input line 11 and the second output line 22 are connected, and the second input line 12 and the first output line 21 are connected.
  • the polarity correction circuit 37 always outputs the positive electrode signal F1 from the first output line 21, and the negative electrode signal F2 is always output from the second output line 22.
  • FIG. 7 is an explanatory diagram showing a state of the switching circuit 75 when the power supply from the first power supply 101 is not cut off. .. In FIG.
  • the current flow is indicated by an arrow.
  • a DC voltage obtained by rectifying the AC voltage of the first power supply 101 is applied in the forward direction to both ends of the photodiode 78a of the photocoupler 78, and the photodiode 78a emits light when the current If flows.
  • the phototransistor 78b receives light from the photodiode 78a and conducts between the collector and the emitter, and a current Iout flows through the phototransistor 78b.
  • a potential difference between the emitter and the ground GND is generated by the resistor Rc between the emitter and the ground GND, which is applied as the base voltage of the transistor Trb of the relay drive circuit 79, and the base current Ib flows.
  • FIG. 8 is an explanatory diagram showing a state of the switching circuit 75 when the power supply from the first power supply 101 is cut off.
  • the current flow is indicated by an arrow.
  • the phototransistor 78b since no DC voltage is applied to both ends of the photodiode 78a of the photocoupler 78, no light is emitted. Therefore, since the phototransistor 78b does not receive the light emission of the photodiode 78a, the collector and the emitter do not conduct with each other. As a result, there is no potential difference between the emitter and the ground GND. Since the base voltage is not applied to the transistor Trb, the collector and the emitter do not conduct with each other, and the relay coil 76a is not energized.
  • the first electric board 91 is an electric board that is electrically connected to the first control board 81 via a communication line.
  • the first control board 81 is a control board of the indoor unit 1 of the air conditioner 100 connected to the first power supply 101.
  • the first electric board 91 is further connected to the second power supply 102.
  • the first electric board 91 includes an on / off relay 76.
  • the on / off relay 76 switches to power supply from the second power supply 102 when power is not supplied from the first power supply 101 to the first control board 81.
  • the first electric board 91 can appropriately supply electric power to the first control board 81 of the indoor unit 1.
  • the first electric board 91 is further connected to the second power supply 102” includes that the second power supply 102 is mounted on the first electric board 91.
  • the air conditioner 100 includes an indoor unit 1 and an outdoor unit 2 electrically connected to the indoor unit 1.
  • the electric power of the second power source 102 is the electric power supplied from the outdoor unit 2.
  • the first electric board 91 further includes a switching circuit 75.
  • the switching circuit 75 is switched to either a first state that is electrically connected to the second power supply 102 or a second state that is not electrically connected.
  • the on / off relay 76 switches the switching circuit 75 to the first state.
  • the first electric board 91 further includes a photocoupler 78 as a switch. When power is not supplied from the first power supply 101 to the first control board 81, the photocoupler 78 turns on or off the energization of the on / off relay 76 to switch the switching circuit 75 to the first state.
  • the photocoupler 78 Since the photocoupler 78 energizes and de-energizes the on / off relay 76 according to the presence or absence of power supply from the first power supply 101, the configuration can be simplified and the cost can be reduced. (6-5) The photocoupler 78 is turned on while power is being supplied from the first power supply 101 to energize the on / off relay 76. Further, the photocoupler 78 is turned off when power is not supplied from the first power supply 101 to cut off the energization of the on / off relay 76. A simple circuit with a small number of parts can be realized by a configuration in which the photocoupler 78 is turned on to energize the relay when power is supplied from the first power supply 101.
  • the on / off relay 76 has a relay coil 76a and a relay switch 76b.
  • the relay switch 76b switches the switching circuit 75 to the first state when the energization of the relay coil 76a is on or off. Since this electric board does not require a logic circuit and a general-purpose mechanical relay including a relay coil and a relay switch can be used, it is possible to suppress an increase in cost. (6-7)
  • the first electric board 91 since the first electric board 91 is separated from the first control board 81, the first electric board 91 can be retrofitted. Therefore, it can be mounted on the indoor unit 1 on which the first electric board 91 is not mounted.
  • the air conditioner 100 equipped with the first electric board 91 includes an outdoor unit 2 and a plurality of indoor units 1 connected to the outdoor unit 2.
  • the power supply is switched from the second power supply 102 by the on / off relay 76. Be done.

Abstract

The present invention addresses the problem of eliminating the need to suspend communication to a normally operating indoor unit for a certain length of time, even if power to the indoor unit is interrupted. A first electrical board (91) is electrically connected to a first control board (81) via a communication line. The first control board (81) is a control board for an indoor unit (1) of an air conditioner (100) connected to a first power source (101). The first electrical board (91) is further connected to a second power source (102). The first electrical board (91) comprises an on-off relay (76). The on-off relay (76) switches to power supplied by the second power source (102) when power is not supplied from the first power source (101) to the first control board (81). As a result, the first electrical board (91) can properly supply power to the first control board (81) of the indoor unit (1).

Description

電気基板、およびその電気基板を搭載した冷凍装置An electric board and a refrigerating device equipped with the electric board
 冷凍装置の制御基板に通信線を介して接続される電気基板、およびその電気基板を搭載した冷凍装置に関する。 Regarding an electric board connected to the control board of the refrigerating device via a communication line, and a refrigerating device equipped with the electric board.
 従来、マルチ型空気調和機においては、電源が遮断された室内ユニットは、室外ユニットから伝送線を介して供給される電力によって、電動膨張弁の開度を所定の開度へ制御している。例えば、特許文献1(特開2013−40698号公報)に開示されているマルチ型空気調和機では、室外ユニットと接続された通信線を一定時間のみ非常用電源の供給線として利用し、電源遮断された室内ユニットの電動膨張弁の開度を所定の開度へ制御している。 Conventionally, in a multi-type air conditioner, the indoor unit whose power supply is cut off controls the opening degree of the electric expansion valve to a predetermined opening degree by the electric power supplied from the outdoor unit via the transmission line. For example, in the multi-type air conditioner disclosed in Patent Document 1 (Japanese Unexamined Patent Publication No. 2013-40698), the communication line connected to the outdoor unit is used as an emergency power supply line only for a certain period of time to shut off the power supply. The opening degree of the electric expansion valve of the indoor unit is controlled to a predetermined opening degree.
特開2013−40698号公報Japanese Unexamined Patent Publication No. 2013-40698
 それゆえ、当該室内ユニットの電源遮断が発生してからその室内ユニット側コントローラの動作不能電圧に至るまでの間に、室外ユニット側コントローラに対して電源遮断が発生したことを示す信号を送信し、それを受信した室外ユニット側コントローラは、他の通常運転中の室内ユニットに対して上記一定時間のみ通信を休止させる旨の信号を送信する必要がある。
 このように、特許文献1に開示されている室内ユニットでは、一つの室内ユニットに電源遮断が発生した際に電源遮断が発生していない室内ユニットへも影響がある。それゆえ、室内ユニットへの電源遮断が発生した場合でも、通常運転中の室内ユニットに対して一定時間通信を休止させる必要のないようにする、という課題が存在する。
Therefore, a signal indicating that the power cutoff has occurred is transmitted to the outdoor unit side controller between the time when the power supply cutoff of the indoor unit occurs and the inoperable voltage of the indoor unit side controller is reached. Upon receiving this, the outdoor unit side controller needs to transmit a signal to the other indoor units during normal operation to suspend communication only for the above-mentioned fixed time.
As described above, in the indoor unit disclosed in Patent Document 1, when a power cutoff occurs in one indoor unit, the indoor unit in which the power supply cutoff does not occur is also affected. Therefore, even if the power to the indoor unit is cut off, there is a problem that it is not necessary to suspend the communication with the indoor unit during normal operation for a certain period of time.
 第1観点に係る電気基板は、第1電源と接続された冷凍装置の室内ユニットの制御基板と、通信線を介して電気的に接続された電気基板である。電気基板は、第2電源とさらに接続されている。電気基板は、リレーを備える。リレーは、第1電源から制御基板に電力が供給されないときに、第2電源からの電力供給に切り換える。
 この電気基板では、室内ユニットの制御基板に適切に電力を供給することができる。「電気基板は、第2電源とさらに接続されている。」には、電気基板に第2電源が搭載されていることも含まれる。
 第2観点に係る電気基板は、第1観点に係る電気基板である。冷凍装置は、室内ユニットと、室内ユニットと電気的に接続された室外ユニットとを含む。第2電源の電力は、室外ユニットからの供給電力である。
 第3観点に係る電気基板は、第1観点又は第2観点に係る電気基板であって、切換回路をさらに備える。切換回路は、第2電源と電気的に接続される第1状態および電気的に接続されない第2状態のいずれかに切り換えられる。第1電源から制御基板に電力が供給されないときに、リレーによって切換回路が第1状態に切り換えられる。
 第4観点に係る電気基板は、第3観点に係る電気基板であって、スイッチをさらに備える。スイッチは、第1電源から制御基板に電力が供給されていないとき、リレーへの通電をオンまたはオフして、切換回路を第1状態へ切り換えさせる。
 この電気基板では、スイッチが、第1電源からの電力供給の有無に応じてリレーへの通電・非通電を行うので、構成が簡素化し、低コスト化を図ることができる。
 第5観点に係る電気基板は、第4観点に係る電気基板である。スイッチは、第1電源から電力が供給されている間はオンしてリレーに通電する。また、スイッチは、第1電源から電力が供給されないときはオフしてリレーへの通電を遮断する。
 この電気基板では、第1電源から電力供給されているときにスイッチがオンしてリレーへの通電を行うという構成によって、簡単で且つ部品点数が少ない回路を実現することができる。
 第6観点に係る電気基板は、第3観点から第5観点のいずれか1つに係る電気基板である。リレーは、リレーコイルと、リレースイッチとを有する。リレースイッチは、リレーコイルへの通電がオンまたはオフのときに切換回路を第1状態へ切り換える。
 この電気基板では、論理回路を必要とせず、コイルとスイッチからなる汎用の機械式リレーを用いることができるので、コスト増を抑制することができる。
 第7観点に係る電気基板は、第1観点から第6観点のいずれか1つに係る電気基板である。電気基板は、制御基板と分離されている。
 この電気基板では、電気基板を制御基板から分離独立させたことにより、電気基板の後付けが可能となる。それゆえ、当該電気基板を搭載していない室内ユニットにも搭載可能となる。
 第8観点に係る冷凍装置は、第1観点から第7観点のいずれか1つに係る電気基板を搭載した冷凍装置である。
 第9観点に係る冷凍装置は、第8観点に係る電気基板を搭載した冷凍装置である。冷凍装置は、室外ユニットおよび室外ユニットに接続される複数の室内ユニットを含む。複数の室内ユニットのうち、いずれか1つの室内ユニットの制御基板に第1電源からの電力が供給されないときに、リレーによって第2電源からの電力供給に切り換えられる。
The electric board according to the first aspect is an electric board electrically connected to a control board of an indoor unit of a refrigerating apparatus connected to a first power source via a communication line. The electrical board is further connected to the second power source. The electrical board comprises a relay. The relay switches to power supply from the second power supply when power is not supplied from the first power supply to the control board.
With this electric board, electric power can be appropriately supplied to the control board of the indoor unit. “The electric board is further connected to the second power source” also includes that the second power source is mounted on the electric board.
The electric board according to the second aspect is an electric board according to the first aspect. The refrigerating device includes an indoor unit and an outdoor unit that is electrically connected to the indoor unit. The electric power of the second power source is the electric power supplied from the outdoor unit.
The electric board according to the third aspect is the electric board according to the first aspect or the second aspect, and further includes a switching circuit. The switching circuit is switched between a first state that is electrically connected to the second power source and a second state that is not electrically connected. When power is not supplied from the first power supply to the control board, the switching circuit is switched to the first state by the relay.
The electric board according to the fourth aspect is the electric board according to the third aspect, and further includes a switch. When the power is not supplied from the first power supply to the control board, the switch turns on or off the energization of the relay to switch the switching circuit to the first state.
In this electric board, the switch energizes and de-energizes the relay according to the presence or absence of power supply from the first power source, so that the configuration can be simplified and the cost can be reduced.
The electric board according to the fifth aspect is the electric board according to the fourth aspect. The switch is turned on while power is being supplied from the first power source to energize the relay. Further, the switch is turned off when power is not supplied from the first power source to cut off the energization of the relay.
In this electric board, a circuit that is simple and has a small number of parts can be realized by a configuration in which a switch is turned on to energize a relay when power is supplied from the first power supply.
The electric board according to the sixth viewpoint is an electric board according to any one of the third to fifth viewpoints. The relay has a relay coil and a relay switch. The relay switch switches the switching circuit to the first state when the relay coil is energized on or off.
Since this electric board does not require a logic circuit and a general-purpose mechanical relay including a coil and a switch can be used, it is possible to suppress an increase in cost.
The electric board according to the seventh aspect is an electric board according to any one of the first to sixth aspects. The electrical board is separated from the control board.
In this electric board, since the electric board is separated and independent from the control board, the electric board can be retrofitted. Therefore, it can be mounted on an indoor unit on which the electric board is not mounted.
The refrigerating apparatus according to the eighth aspect is a refrigerating apparatus equipped with an electric substrate according to any one of the first to seventh aspects.
The refrigerating apparatus according to the ninth aspect is a refrigerating apparatus equipped with an electric substrate according to the eighth aspect. The refrigerating device includes an outdoor unit and a plurality of indoor units connected to the outdoor unit. When the power from the first power supply is not supplied to the control board of any one of the plurality of indoor units, the power supply from the second power supply is switched by the relay.
本開示の一実施形態に係る電気基板が搭載されている冷凍装置である空調機の構成図。The block diagram of the air conditioner which is the refrigerating apparatus on which the electric board which concerns on one Embodiment of this disclosure is mounted. 空調機の電気回路のブロック図。Block diagram of the electric circuit of the air conditioner. 極性補正回路の回路図。Circuit diagram of the polarity correction circuit. 切換回路の回路図。Circuit diagram of the switching circuit. 正極信号が第1入力線に入力され、負極信号が第2入力線に入力されているときの、正極信号および負極信号の伝送経路を矢印で示した極性補正回路図。The polarity correction circuit diagram which shows the transmission path of a positive electrode signal and a negative electrode signal by an arrow when a positive electrode signal is input to a 1st input line and a negative electrode signal is input to a 2nd input line. 正極信号が第2入力線に入力され、負極信号が第1入力線に入力されているときの、正極信号および負極信号の伝送経路を矢印で示した極性補正回路図。The polarity correction circuit diagram which shows the transmission path of a positive electrode signal and a negative electrode signal by an arrow when the positive electrode signal is input to the 2nd input line, and the negative electrode signal is input to the 1st input line. 第1電源からの電力供給が遮断されていないときの、切換回路の状態を示す説明図。The explanatory view which shows the state of the switching circuit when the power supply from a 1st power source is not cut off. 第1電源からの電力供給が遮断されているときの、切換回路の状態を示す説明図。The explanatory view which shows the state of the switching circuit when the power supply from a 1st power source is cut off.
 (1)空調機100の概要
 図1は、本開示の一実施形態に係る電気基板が搭載されている冷凍装置である空調機100の構成図である。また、図2は、空調機100の電気回路のブロック図である。
 先ず、図1において、空調機100は、利用側ユニットである室内ユニット1と熱源側ユニットである室外ユニット2とによって構成されている。
 室内ユニット1が、例えば、テナントの各部屋に据え付けられ、各室内ユニット1は冷媒連絡配管によって室外ユニット2と接続されている。
 空調機100は、圧縮機15、四路切換弁16,室外熱交換器17、減圧機構としての室外膨張弁18、室内膨張弁20及び室内熱交換器13が、冷媒配管によって環状に接続された冷媒回路10を有している。
 (1−1)室内ユニット1
 冷媒回路10のうち、室内膨張弁20および室内熱交換器13が室内ユニット1に属している。また、室内ユニット1には、室内ファン14が搭載されている。室内ファン14は、室内熱交換器13への空気の流れを生成する。
 図2において、室内ユニット1には、室内制御用電源25、室内通信回路35、極性補正回路37、室内マイクロコンピュータ45、切換回路75および第2電源102が搭載されている。室内制御用電源25および室内通信回路35はともに室内マイクロコンピュータ45に接続されている。
 室内制御用電源25は、交流電源である第1電源101から電源ライン801,802を介して電力を受け、そこから制御用電圧を生成し、その制御用電圧を室内マイクロコンピュータ45に供給している。第1電源101は、AC220Vの商用電源である。
 室内通信回路35は、室内ユニット1が室外ユニット2と通信を行う際に使用される。
 極性補正回路37は、室外ユニット2からの信号を伝送する正極信号線と負極信号線とが極性を間違えて結線されても、正極信号は正極出力線へ、負極信号は負極出力線へ出力されるように切り換えることができる。
 室内マイクロコンピュータ45は、室内膨張弁20の開度、室内ファン14の運転周波数などの制御を行う。
 室内制御用電源25と第1電源101との間にはブレーカ71が介在している。例えば、複数のテナントそれぞれに空調機100の室内ユニット1が据え付けられている場合において、任意のテナントを使用しないときにはブレーカ71によって、第1電源101から室内ユニット1への電力供給が遮断される。
 また、室内ユニット1には、第1電源101からの電力が遮断されたときに、第1電源101からの電力供給が遮断されたことを検知し、第1電源101とは別の電源である第2電源102からの電力供給に切り換える切換回路75とが搭載されている。
 室内ユニット1は、第1制御基板81と、第1制御基板81とは異なる第1電気基板91とを有している。
 室内制御用電源25、室内通信回路35および室内マイクロコンピュータ45は、第1制御基板81に実装されている。また、極性補正回路37、切換回路75および第2電源102は、第1電気基板91に実装されている。
 (1−2)室外ユニット2
 冷媒回路10のうちの圧縮機15、四路切換弁16,室外熱交換器17、及び室外膨張弁18が室外ユニット2に属している。また、室外ユニット2には、室外ファン19が搭載されている。室外ファン19は、室外熱交換器17への空気の流れを生成する。
 また、図2に示すように、室外ユニット2には、室外制御用電源26、室外通信回路36、極性補正回路38、室外マイクロコンピュータ46および直流電源回路72が搭載されている。室外制御用電源26および室外通信回路36はともに室外マイクロコンピュータ46に接続されている。
 室外制御用電源26は、3相交流電源111から電源ライン811、812、813を介して電力を受け、そこから制御用電圧を生成し、その制御用電圧を室外マイクロコンピュータ46に供給している。交流電源111は、AC380Vの商用電源である。ライン814は、アース線である。
 室外通信回路36は、室外ユニット2が室内ユニット1と通信を行う際に使用される。
 極性補正回路38は、室外通信回路36からの信号を伝送する正極信号線と負極信号線とが極性を間違えて結線されても、正極信号は正極出力線へ、負極信号は負極出力線へ出力されるように切り換えることができる。
 室外マイクロコンピュータ46は、圧縮機15の運転周波数、四路切換弁16の切換動作、室外膨張弁18の開度、室外ファン19の運転周波数などの制御を行う。
 室外ユニット2は、第2制御基板82と、第2制御基板82とは異なる第2電気基板92とを有している。
 室外制御用電源26、室外通信回路36および室外マイクロコンピュータ46は、第2制御基板82に実装されている。また、極性補正回路38および直流電源回路72は第2電気基板92に実装されている。
 (2)第1電気基板91
 第1電気基板91には、極性補正回路37、および切換回路75が実装されている。
 本実施形態では、室内ユニット1の第1電気基板91は、第1制御基板81と別個の基板としているが、統合して1つの基板としてもよい。
 (2−1)極性補正回路37
 図3は、極性補正回路37の回路図である。図3において、第1コネクタCN1の第1端子N1aは第1入力線11と繋がっている。また、第1コネクタCN1の第2端子N1bは第2入力線12と繋がっている。第1端子N1aには正極信号F1の通信線が接続され、第2端子N2bには負極信号F2の通信線が接続される。
 極性補正回路37は、切換リレー30、第1回路41、第2回路42、第1分圧回路51、第2分圧回路52、リレー駆動回路53およびコンパレータ55を含んでいる。
 極性補正回路37の機能は、切換リレー30を用いて、第1入力線11が正極のときには第1入力線11と第1出力線21とを接続し且つ第2入力線12と第2出力線22とを接続し、第1入力線11が負極のときには第1入力線11と第2出力線22とを接続し且つ第2入力線12と第1出力線21とを接続することである。
 極性補正回路37を搭載する目的は、室内ユニット1と室外ユニット2との間を通信線で繋ぐ際に、サービスパーソンが通信線の配線を間違う可能性があるので、通信線の配線間違いが生じても正しく通信が行われることである。
 (2−1−1)切換リレー30
 切換リレー30は、リレーコイル31と接点切換機構32とを有している。接点切換機構32は、リレーコイル31に通電されている間、第1接点C1aおよび第2接点C2aを閉にし、同時に第3接点C1bおよび第4接点C2bを開にすることができる。
 また、接点切換機構32は、リレーコイル31に通電されていない間、第1接点C1aおよび第2接点C2aを開にし、同時に第3接点C1bおよび第4接点C2bを閉にすることができる。
 (2−1−2)第1回路41
 第1回路41は、第1入力線11と第1出力線21とを接続し、第2入力線12と第2出力線22とを接続する。
 第1回路41には、第1入力線11と第1出力線21とを接続する配線の途中に、切換リレー30の第1接点C1aが設けられている。第1接点C1aが閉のときに第1入力線11と第1出力線21とが接続され、第1接点C1aが開のときに第1入力線11と第1出力線21との接続が解除される。
 また、第1回路41には、第2入力線12と第2出力線22とを接続する配線の途中に、切換リレー30の第2接点C2aが設けられている。第2接点C2aが閉のときに第2入力線12と第2出力線22とが接続され、第2接点C2aが開のときに第2入力線12と第2出力線22との接続が解除される。
 (2−1−3)第2回路42
 第2回路42は、第1入力線11と第2出力線22とを接続し、第2入力線12と第1出力線21とを接続する。
 第2回路42には、第1入力線11と第2出力線22とを接続する配線の途中に、切換リレー30の第3接点C1bが設けられている。第3接点C1bが閉のときに第1入力線11と第2出力線22とが接続され、第3接点C1bが開のときに第1入力線11と第2出力線22との接続が解除される。
 また、第2回路42には、第2入力線12と第1出力線21とを接続する配線の途中に、切換リレー30の第4接点C2bが設けられている。第4接点C2bが閉のときに第2入力線12と第1出力線21とが接続され、第4接点C2bが開のときに第2入力線12と第1出力線21との接続が解除される。
 (2−1−4)第1分圧回路51
 第1分圧回路51は、第1入力線11との接続点S11から第2入力線12との接続点S12に向かって、第1ダイオードD11、第1抵抗R11および第2抵抗R12が直列に接続されている。
 第1ダイオードD11のアノードが接続点S11に接続され、カソードが第1抵抗R11の一端に接続されているので、接続点S11から接続点S12に向かう方向が第1ダイオードD11の順方向である。
 したがって、第1入力線11が正極で且つ第2入力線12が負極のとき、接続点S11から接続点S12に向かって、第1抵抗R11および第2抵抗R12それぞれの両端に、第1抵抗R11および第2抵抗R12の抵抗値比に応じた電圧降下が生じる。
 第1抵抗R11と第2抵抗R12との接続点Q12は、後に説明するコンパレータ55の反転入力端子に接続されている。
 (2−1−5)第2分圧回路52
 第2分圧回路52は、第2入力線12との接続点S21から第1入力線11との接続点S22に向かって、第2ダイオードD21、第3抵抗R21および第4抵抗R22が直列に接続されている。
 第2ダイオードD21のアノードが接続点S21に接続され、カソードが第3抵抗R21の一端に接続されているので、接続点S21から接続点S22に向かう方向が第2ダイオードD21の順方向である。
 したがって、第2入力線12が正極で且つ第1入力線11が負極のとき、接続点S21から接続点S22に向かって、第3抵抗R21および第4抵抗R22それぞれの両端に、第3抵抗R21および第4抵抗R22の抵抗値比に応じた電圧降下が生じる。
 第3抵抗R21と第4抵抗R22との接続点Q22は、後に説明するコンパレータ55の非反転入力端子に接続されている。
 (2−1−6)リレー駆動回路53
 リレー駆動回路53は、トランジスタTra含んでいる。トランジスタTraは、ベースに所定の正電圧が印加されている間、コレクタとエミッタ間が導通して、リレーコイル31に駆動電圧E1が印加される。
 リレーコイル31に駆動電圧E1が印加されている間は、リレーコイル31に通電されるので、第1回路41に設けられた第1接点C1aおよび第2接点C2aは閉となり、同時に第2回路42に設けられた第3接点C1bおよび第4接点C2bは開となる。
 リレーコイル31に駆動電圧E1が印加されていないときは、リレーコイル31に通電されないので、第1回路41に設けられた第1接点C1aおよび第2接点C2aは開となり、同時に第2回路42に設けられた第3接点C1bおよび第4接点C2bは閉となる。
 (2−1−7)コンパレータ55
 コンパレータ55は、反転入力端子に入力される電圧(以後、第1電圧V1という。)と、非反転入力端子に入力される電圧(以後、第2電圧V2という。)を比較して、第2電圧V2>第1電圧V1のとき、出力端子から所定の出力電圧Vout=E2を出力する。一方、第2電圧V2<第1電圧V1のとき、出力端子から出力電圧Vout=0Vを出力する。
 したがって、第2電圧V2>第1電圧V1のとき、出力端子から所定の出力電圧Vout=E2を出力され、それがトランジスタTraのベースに印加されている間、コレクタとエミッタ間が導通して、リレーコイル31に駆動電圧E1が印加される。E1=E2であってもよい。
 本実施形態では、第1抵抗R11と第2抵抗R12との接続点Q12がコンパレータ55の反転入力端子に接続されており、反転入力端子は第5抵抗R15を介してグランドGNDに接続されているので、第1電圧V1は第1抵抗R11と第2抵抗R12との接続点Q12とグランドGNDとの電位差である。
 また、第3抵抗R21と第4抵抗R22との接続点Q22がコンパレータ55の非反転入力端子に接続されており、非反転入力端子は第6抵抗R26を介してグランドGNDに接続されているので、第2電圧V2は第3抵抗R21と第4抵抗R22との接続点Q22とグランドGNDとの電位差である。
 (2−2)切換回路75
 図4は、切換回路75の回路図である。図4において、切換回路75は、オン・オフリレー76、第1切換回路77a、第2切換回路77b、第3切換回路77c、フォトカプラ78およびリレー駆動回路79を含んでいる。切換回路75の機能は、フォトカプラ78を用いて第1電源101からの電力供給の有無を検出し、第1電源101からの電力供給がないときにオン・オフリレー76を用いて第1電源101とは別の電源である第2電源102から第1制御基板81に電力を供給することである。
 (2−2−1)オン・オフリレー76
 本実施形態では、切換回路75は2つのオン・オフリレー76を有している。オン・オフリレー76の個数は、任意に設定することができる。オン・オフリレー76は、リレーコイル76aとリレースイッチ76bとを有している。
 リレースイッチ76bは、リレーコイル76aに通電されている間、第1接点S1aおよび第2接点S2aを閉にし、同時に第3接点S1bおよび第4接点S2bを開にすることができる。
 また、リレースイッチ76bは、リレーコイル76aに通電されていない間、第1接点S1aおよび第2接点S2aを開にし、同時に第3接点S1bおよび第4接点S2bを閉にすることができる。
 (2−2−2)第1切換回路77a
 第1切換回路77aは、オン・オフリレー76の第3接点S1bが閉のときだけ、第1直流電源Eaと第3コネクタCN3の第1端子N3aとの間を導通させ、第1制御基板81に第1直流電源Eaからの電力を供給する。
 (2−2−3)第2切換回路77b
 第2切換回路77bは、オン・オフリレー76の第4接点S2bが閉のときだけ、第2直流電源Ebと第3コネクタCN3の第2端子N3bとの間を導通させ、第1制御基板81に第2直流電源Ebの電力を供給する。
 (2−2−4)第3切換回路77c
 第3切換回路77cは、オン・オフリレー76の第3接点S1bが閉のときだけ、第3直流電源Ecと第3コネクタCN3の第3端子N3cとの間を導通させ、第1制御基板81に第3直流電源Ecの電力を供給する。
 (2−2−5)フォトカプラ78
 図4に示すように、フォトカプラ78は、フォトダイオード78aとフォトトランジスタ78bとからなる絶縁スイッチである。コネクタCN5の第1端子N5aはフォトカプラ78のフォトダイオード78aのアノードと繋がっている。また、コネクタCN5の第2端子N5bはフォトカプラ78のフォトダイオード78aのカソードと繋がっている。
 第1端子N5aには電源ライン801の分岐電線が接続され、第2端子N5bには電源ライン802の分岐電線が接続される。
 フォトダイオード78aの両端には、並列に整流回路73が接続されている。整流回路73は、第1電源101の交流電圧を、ダイオードDaおよび平滑コンデンサCaで整流し、分圧抵抗Ra,Rbによって、フォトダイオード78aを発光させために適した直流電圧を生成する。
 (2−2−6)リレー駆動回路79
 図4に示すように、リレー駆動回路79はトランジスタTrb含んでいる。トランジスタTrbは、ベースに所定の正電圧が印加されている間、コレクタとエミッタ間が導通して、リレーコイル76aに駆動電源Edの電圧が印加される。
 リレーコイル76aに駆動電源Edの電圧が印加されている間は、リレーコイル76aに通電されるので、第1切換回路77aおよび第3切換回路77cに設けられた第3接点S1bと、第2切換回路77bに設けられた第4接点S2bとが開となる。それゆえ、第1直流電源Ea、第2直流電源Ebおよび第3直流電源Ecの電力は第1制御基板81に供給されない。
 一方、リレーコイル76aに駆動電源Edの電圧が印加されていないときは、リレーコイル76aに通電されないので、第1切換回路77aおよび第3切換回路77cに設けられた第3接点S1bと、第2切換回路77bに設けられた第4接点S2bとが閉となる。それゆえ、第1直流電源Ea、第2直流電源Ebおよび第3直流電源Ecの電力が第1制御基板81に供給される。
 (2−2−7)第2電源102
 図2に示すように、第2電源102は、室外ユニット2の直流電源回路72で生成された直流電圧を通信線L1,L2を介して導入し、第1制御基板81の第1直流電源Ea、第2直流電源Ebおよび第3直流電源Ecそれぞれに必要な電圧を提供する。
 第2電源102と第1制御基板81とは、第1制御基板81に第1電源101から電力が供給されている間は、切換回路75によって遮断されており、第1電源101から電力が供給されなくなったとき、切換回路75によって両者は接続される。
 これによる利点は、室内ユニット1において、第1電源101からの電力供給が遮断された後、電動膨張弁である室内膨張弁20の開度は電力供給が遮断される前の運転モードに基づいて調整されることである。例えば、冷房運転であった場合は室内膨張弁の開度は閉にし、暖房運転であった場合には僅かに開にする。室内マイクロコンピュータ45が起動することによってこれらの制御が適正に実行される。
 (3)第2電気基板92
 図2に示すように、第2電気基板92には、極性補正回路38および直流電源回路72が実装されている。
 本実施形態では、室外ユニット2の第2電気基板92は、第2制御基板82と別個の基板としているが、統合して1つの基板としてもよい。
 (3−1)極性補正回路38
 極性補正回路38は、室外通信回路36からの信号を伝送する正極信号線と負極信号線とが極性を間違えて結線されても、正極信号は正極出力線へ、負極信号は負極出力線へ出力されるように切り換える回路である。
 極性補正回路38の回路構成は、図3で示した極性補正回路37の回路構成と同じであるので、ここでは説明を省略する。
 (3−2)直流電源回路72
 直流電源回路72は、室内ユニット1の第1電気基板91に実装された第2電源102に供給する直流電圧を生成する回路である。
 直流電源回路72は、3相交流電源111の電源ライン811、812、813のうち1つから交流電圧を導入し、フィルタ回路72a、整流回路72bおよび平滑コンデンサ72cを介して直流電圧を生成する。
 図2に示すように、直流電源回路72で生成された直流電圧は、室外通信回路36から正極信号F1と負極信号F2と重畳された状態で送信される。正極信号F1は通信線L1を介して、負極信号F2は通信線L2を介して室内ユニット1へ伝送される。
 (4)極性補正回路37、38の動作
 ここでは、極性補正回路37,38の動作を、室内ユニット1の極性補正回路37を例に説明する。
 (4−1)第1入力線11が正極、第2入力線12が負極のとき
 正極信号F1が伝送される信号線および負極信号F2が伝送される通信線が正しく接続されている場合、正極信号F1は、通信線L1および第1コネクタCN1の第1端子N1aを介して第1入力線11に入力される。また、負極信号F2は、通信線L2および第1コネクタCN1の第2端子N1bを介して第2入力線12に入力される。
 図5は、正極信号F1が第1入力線11に入力され、負極信号F2が第2入力線12に入力されているときの、正極信号F1および負極信号F2の伝送経路を矢印で示した極性補正回路図である。
 図5において、第1分圧回路51の接続点S11に正電圧が印加されるので、接続点S11から接続点S12に向かって、第1抵抗R11および第2抵抗R12それぞれの両端に、第1抵抗R11および第2抵抗R12の抵抗値比に応じた電圧降下が生じる。
 また、第2分圧回路52の接続点S22にも正電圧が印加されるが、第2ダイオードD21の順方向と逆方向となるため、第3抵抗R21では電圧降下は生じず、第4抵抗R22および第6抵抗R26それぞれの両端に、第4抵抗R22および第6抵抗R26の抵抗値比に応じた電圧降下が生じる。
 この場合において、予め、第2分圧回路52の接続点Q22とグランドGNDからの電位差(V2)が、第1分圧回路51の接続点Q12とグランドGNDとの電位差(V1)よりも大きくなるように、第1抵抗R11、第2抵抗R12、第3抵抗R21、第4抵抗R22および第6抵抗R26の抵抗値が設定されている。
 コンパレータ55の非反転入力端子にV2(V2>V1)が入力され、反転入力端子にV1が入力されるので、コンパレータ55の出力端子から所定の出力電圧Vout=E2が出力される。
 この出力電圧Voutが、リレー駆動回路53のトランジスタTraのベースに印加され、コレクタとエミッタ間が導通してリレーコイル31に通電されるので、第1回路41に設けられた第1接点C1aおよび第2接点C2aは閉となり、同時に第2回路42に設けられた第3接点C1bおよび第4接点C2bは開となる。
 その結果、第1入力線11が正極のときには第1入力線11と第1出力線21とを接続し且つ第2入力線12と第2出力線22とを接続される。
 (4−2)第1入力線11が負極、第2入力線12が正極のとき
 正極信号F1が伝送される信号線および負極信号F2が伝送される通信線が誤って接続されている場合、例えば、正極信号F1が通信線L1および第1コネクタCN1の第2端子N1bを介して第2入力線12に入力された場合である。このとき、負極信号F2は、通信線L2および第1コネクタCN1の第1端子N1aを介して第1入力線11に入力される。
 図6は、正極信号F1が第2入力線12に入力され、負極信号F2が第1入力線11に入力されているときの、正極信号F1および負極信号F2の伝送経路を矢印で示した極性補正回路図である。
 図6において、第2分圧回路52の接続点S21に正電圧が印加されるので、接続点S21から接続点S22に向かって、第3抵抗R21および第4抵抗R22それぞれの両端に、第3抵抗R21および第4抵抗R22の抵抗値比に応じた電圧降下が生じる。
 また、第1分圧回路51の接続点S12にも正電圧が印加されるが、第1ダイオードD11の順方向と逆方向となるため、第1抵抗R11では電圧降下は生じず、第2抵抗R12および第5抵抗R15それぞれの両端に、第2抵抗R12および第5抵抗R15の抵抗値比に応じた電圧降下が生じる。
 この場合において、予め、第1分圧回路51の接続点Q12とグランドGNDからの電位差(V1)が、第2分圧回路52の接続点Q22とグランドGNDとの電位差(V2)よりも大きくなるように、第1抵抗R11、第2抵抗R12、第3抵抗R21、第4抵抗R22および第5抵抗R15の抵抗値が設定されている。
 コンパレータ55の非反転入力端子にV2(V2<V1)が入力され、反転入力端子にV1が入力されるので、コンパレータ55の出力端子から出力電圧Vout=0が出力される。
 この出力電圧Vout=0が、リレー駆動回路53のトランジスタTraのベース電圧になるので、コレクタとエミッタ間が導通せず、リレーコイル31には通電されない。そのため、第1回路41に設けられた第1接点C1aおよび第2接点C2aは開となり、同時に第2回路42に設けられた第3接点C1bおよび第4接点C2bは閉となる。
 その結果、第1入力線11が負極のときには第1入力線11と第2出力線22とを接続し且つ第2入力線12と第1出力線21とを接続される。
 以上のように、極性補正回路37によって、正極信号F1は常に第1出力線21から出力され、負極信号F2は常に第2出力線22から出力される。
 (5)切換回路75の動作
 切換回路75の機能は、第1電源101からの電力が遮断されたときに第1電源101からの電力供給が遮断されたことを検知し、第1電源101とは別の電源である第2電源102からの電力に切り換えることである。
 以下、切換回路75の動作を、第1電源101からの電力供給が遮断されていない場合と、第1電源101からの電力が遮断された場合とに分けて説明する。
 (5−1)第1電源101からの電力供給が遮断されていない場合
 図7は、第1電源101からの電力供給が遮断されていないときの、切換回路75の状態を示す説明図である。図7では、電流の流れを矢印で表示している。
 図7において、フォトカプラ78のフォトダイオード78aの両端には、第1電源101の交流電圧を整流した直流電圧が順方向に印加され、電流Ifが流れることによってフォトダイオード78aが発光する。
 フォトトランジスタ78bは、フォトダイオード78aの発光を受けてコレクタとエミッタ間が導通し、電流Ioutが流れる。
 その結果、エミッタとグランドGNDとの間にある抵抗Rcによって、エミッタとグランドGNDとの電位差が生じ、それがリレー駆動回路79のトランジスタTrbのベース電圧となって印加され、ベース電流Ibが流れる。
 トランジスタTrbは、ベース電圧が印加されているとき、コレクタとエミッタ間が導通して、リレーコイル76aに駆動電源Edの電圧が印加され、リレーコイル76aに電流Icoilが通電される。
 リレーコイル76aに通電されている間は、第1切換回路77aおよび第3切換回路77cに設けられた第3接点S1bと、第2切換回路77bに設けられた第4接点S2bとが開となるので、第1直流電源Ea、第2直流電源Ebおよび第3直流電源Ecの電力は第1制御基板81に供給されない。
 (5−2)第1電源101からの電力供給が遮断された場合
 図8は、第1電源101からの電力供給が遮断されているときの、切換回路75の状態を示す説明図である。図8では、電流の流れを矢印で表示している。
 図8において、フォトカプラ78のフォトダイオード78aの両端には、直流電圧が印加されないので、発光しない。それゆえ、フォトトランジスタ78bは、フォトダイオード78aの発光を受けないので、コレクタとエミッタ間が導通しない。その結果、エミッタとグランドGNDとの電位差は生じない。
 トランジスタTrbは、ベース電圧が印加されないので、コレクタとエミッタ間が導通せず、リレーコイル76aに通電されない。
 リレーコイル76aに通電されないので、第1切換回路77aおよび第3切換回路77cに設けられた第3接点S1bと、第2切換回路77bに設けられた第4接点S2bとが閉となり、第1直流電源Ea、第2直流電源Ebおよび第3直流電源Ecの電力は第1制御基板81に供給される。
 (6)特徴
 (6−1)
 第1電気基板91は、第1制御基板81と通信線を介して電気的に接続された電気基板である。第1制御基板81は、第1電源101と接続された空調機100の室内ユニット1の制御基板である。第1電気基板91は、第2電源102とさらに接続されている。第1電気基板91は、オン・オフリレー76を備える。オン・オフリレー76は、第1電源101から第1制御基板81に電力が供給されないときに、第2電源102からの電力供給に切り換える。その結果、第1電気基板91が、室内ユニット1の第1制御基板81に適切に電力を供給することができる。
 「第1電気基板91は、第2電源102とさらに接続されている。」には、第1電気基板91に第2電源102が搭載されていることも含まれる。
 (6−2)
 空調機100は、室内ユニット1と、室内ユニット1と電気的に接続された室外ユニット2とを含む。第2電源102の電力は、室外ユニット2からの供給電力である。
 (6−3)
 第1電気基板91は、切換回路75をさらに備える。切換回路75は、第2電源102と電気的に接続される第1状態および電気的に接続されない第2状態のいずれかに切り換えられる。第1電源101から第1制御基板81に電力が供給されないときに、オン・オフリレー76によって切換回路75が第1状態に切り換えられる。
 (6−4)
 第1電気基板91は、スイッチとしてのフォトカプラ78をさらに備える。フォトカプラ78は、第1電源101から第1制御基板81に電力が供給されていないとき、オン・オフリレー76への通電をオンまたはオフして、切換回路75を第1状態へ切り換えさせる。フォトカプラ78が、第1電源101からの電力供給の有無に応じてオン・オフリレー76への通電・非通電を行うので、構成が簡素化し、低コスト化を図ることができる。
 (6−5)
 フォトカプラ78は、第1電源101から電力が供給されている間はオンしてオン・オフリレー76に通電する。また、フォトカプラ78は、第1電源101から電力が供給されないときはオフしてオン・オフリレー76への通電を遮断する。第1電源101から電力供給されているときにフォトカプラ78がオンしてリレーへの通電を行うという構成によって、簡単で且つ部品点数が少ない回路を実現することができる。
 (6−6)
 この第1電気基板91では、オン・オフリレー76は、リレーコイル76aと、リレースイッチ76bとを有する。リレースイッチ76bは、リレーコイル76aへの通電がオンまたはオフのときに切換回路75を第1状態へ切り換える。この電気基板では、論理回路を必要とせず、リレーコイルとリレースイッチからなる汎用の機械式リレーを用いることができるので、コスト増を抑制することができる。
 (6−7)
 この第1電気基板91では、第1電気基板91を第1制御基板81から分離独立させたことにより、第1電気基板91の後付けが可能となる。それゆえ、当該第1電気基板91を搭載していない室内ユニット1にも搭載可能となる。
 (6−8)
 第1電気基板91を搭載した空調機100では、室外ユニット2および室外ユニット2に接続される複数の室内ユニット1を含む。複数の室内ユニット1のうち、いずれか1つの室内ユニット1の第1制御基板81に第1電源101からの電力が供給されないときに、オン・オフリレー76によって第2電源102からの電力供給に切り換えられる。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
(1) Outline of Air Conditioner 100 FIG. 1 is a configuration diagram of an air conditioner 100 which is a refrigerating device on which an electric substrate according to an embodiment of the present disclosure is mounted. Further, FIG. 2 is a block diagram of an electric circuit of the air conditioner 100.
First, in FIG. 1, the air conditioner 100 is composed of an indoor unit 1 which is a user side unit and an outdoor unit 2 which is a heat source side unit.
The indoor unit 1 is installed in each room of the tenant, for example, and each indoor unit 1 is connected to the outdoor unit 2 by a refrigerant connecting pipe.
In the air conditioner 100, a compressor 15, a four-way switching valve 16, an outdoor heat exchanger 17, an outdoor expansion valve 18 as a pressure reducing mechanism, an indoor expansion valve 20, and an indoor heat exchanger 13 are cyclically connected by a refrigerant pipe. It has a refrigerant circuit 10.
(1-1) Indoor unit 1
Of the refrigerant circuits 10, the indoor expansion valve 20 and the indoor heat exchanger 13 belong to the indoor unit 1. Further, the indoor unit 1 is equipped with an indoor fan 14. The indoor fan 14 creates a flow of air to the indoor heat exchanger 13.
In FIG. 2, the indoor unit 1 includes an indoor control power supply 25, an indoor communication circuit 35, a polarity correction circuit 37, an indoor microprocessor 45, a switching circuit 75, and a second power supply 102. Both the indoor control power supply 25 and the indoor communication circuit 35 are connected to the indoor microcomputer 45.
The indoor control power supply 25 receives power from the first power supply 101, which is an AC power supply, via the power supply lines 801, 802, generates a control voltage from the first power supply 101, and supplies the control voltage to the indoor microcomputer 45. There is. The first power supply 101 is a commercial power supply of AC220V.
The indoor communication circuit 35 is used when the indoor unit 1 communicates with the outdoor unit 2.
In the polarity correction circuit 37, even if the positive electrode signal line and the negative electrode signal line that transmit the signal from the outdoor unit 2 are connected with the wrong polarity, the positive electrode signal is output to the positive electrode output line and the negative electrode signal is output to the negative electrode output line. Can be switched as follows.
The indoor microcomputer 45 controls the opening degree of the indoor expansion valve 20, the operating frequency of the indoor fan 14, and the like.
A breaker 71 is interposed between the indoor control power supply 25 and the first power supply 101. For example, when the indoor unit 1 of the air conditioner 100 is installed in each of the plurality of tenants, the breaker 71 cuts off the power supply from the first power supply 101 to the indoor unit 1 when the arbitrary tenant is not used.
Further, when the power from the first power supply 101 is cut off, the indoor unit 1 detects that the power supply from the first power supply 101 is cut off, and is a power supply different from the first power supply 101. A switching circuit 75 for switching to power supply from the second power supply 102 is mounted.
The indoor unit 1 has a first control board 81 and a first electric board 91 different from the first control board 81.
The indoor control power supply 25, the indoor communication circuit 35, and the indoor microcomputer 45 are mounted on the first control board 81. Further, the polarity correction circuit 37, the switching circuit 75, and the second power supply 102 are mounted on the first electric board 91.
(1-2) Outdoor unit 2
Of the refrigerant circuits 10, the compressor 15, the four-way switching valve 16, the outdoor heat exchanger 17, and the outdoor expansion valve 18 belong to the outdoor unit 2. Further, the outdoor unit 2 is equipped with an outdoor fan 19. The outdoor fan 19 creates a flow of air to the outdoor heat exchanger 17.
Further, as shown in FIG. 2, the outdoor unit 2 is equipped with an outdoor control power supply 26, an outdoor communication circuit 36, a polarity correction circuit 38, an outdoor microcomputer 46, and a DC power supply circuit 72. Both the outdoor control power supply 26 and the outdoor communication circuit 36 are connected to the outdoor microcomputer 46.
The outdoor control power supply 26 receives power from the three-phase AC power supply 111 via the power supply lines 811, 812, and 813, generates a control voltage from the power supply, and supplies the control voltage to the outdoor microcomputer 46. .. The AC power supply 111 is a commercial power supply of AC380V. Line 814 is a ground wire.
The outdoor communication circuit 36 is used when the outdoor unit 2 communicates with the indoor unit 1.
The polarity correction circuit 38 outputs the positive electrode signal to the positive electrode output line and the negative electrode signal to the negative electrode output line even if the positive electrode signal line and the negative electrode signal line that transmit the signal from the outdoor communication circuit 36 are connected with the wrong polarity. Can be switched so that
The outdoor microcomputer 46 controls the operating frequency of the compressor 15, the switching operation of the four-way switching valve 16, the opening degree of the outdoor expansion valve 18, the operating frequency of the outdoor fan 19, and the like.
The outdoor unit 2 has a second control board 82 and a second electric board 92 different from the second control board 82.
The outdoor control power supply 26, the outdoor communication circuit 36, and the outdoor microcomputer 46 are mounted on the second control board 82. Further, the polarity correction circuit 38 and the DC power supply circuit 72 are mounted on the second electric board 92.
(2) First electric board 91
A polarity correction circuit 37 and a switching circuit 75 are mounted on the first electric board 91.
In the present embodiment, the first electric board 91 of the indoor unit 1 is a board separate from the first control board 81, but it may be integrated into one board.
(2-1) Polarity correction circuit 37
FIG. 3 is a circuit diagram of the polarity correction circuit 37. In FIG. 3, the first terminal N1a of the first connector CN1 is connected to the first input line 11. Further, the second terminal N1b of the first connector CN1 is connected to the second input line 12. The communication line of the positive electrode signal F1 is connected to the first terminal N1a, and the communication line of the negative electrode signal F2 is connected to the second terminal N2b.
The polarity correction circuit 37 includes a switching relay 30, a first circuit 41, a second circuit 42, a first voltage dividing circuit 51, a second voltage dividing circuit 52, a relay drive circuit 53, and a comparator 55.
The function of the polarity correction circuit 37 is to use a switching relay 30 to connect the first input line 11 and the first output line 21 when the first input line 11 is a positive electrode, and to connect the second input line 12 and the second output line. 22 is connected, and when the first input line 11 is the negative electrode, the first input line 11 and the second output line 22 are connected, and the second input line 12 and the first output line 21 are connected.
The purpose of mounting the polarity correction circuit 37 is that when connecting the indoor unit 1 and the outdoor unit 2 with a communication line, the service person may make a mistake in the wiring of the communication line, so that a wiring error of the communication line occurs. However, communication is performed correctly.
(2-1-1) Switching relay 30
The switching relay 30 has a relay coil 31 and a contact switching mechanism 32. The contact switching mechanism 32 can close the first contact C1a and the second contact C2a while the relay coil 31 is energized, and at the same time open the third contact C1b and the fourth contact C2b.
Further, the contact switching mechanism 32 can open the first contact C1a and the second contact C2a while the relay coil 31 is not energized, and at the same time close the third contact C1b and the fourth contact C2b.
(2-1-2) First circuit 41
The first circuit 41 connects the first input line 11 and the first output line 21, and connects the second input line 12 and the second output line 22.
In the first circuit 41, the first contact C1a of the switching relay 30 is provided in the middle of the wiring connecting the first input line 11 and the first output line 21. The first input line 11 and the first output line 21 are connected when the first contact C1a is closed, and the connection between the first input line 11 and the first output line 21 is released when the first contact C1a is open. Will be done.
Further, in the first circuit 41, a second contact C2a of the switching relay 30 is provided in the middle of the wiring connecting the second input line 12 and the second output line 22. The second input line 12 and the second output line 22 are connected when the second contact C2a is closed, and the connection between the second input line 12 and the second output line 22 is released when the second contact C2a is open. Will be done.
(2-1-3) Second circuit 42
The second circuit 42 connects the first input line 11 and the second output line 22, and connects the second input line 12 and the first output line 21.
The second circuit 42 is provided with a third contact C1b of the switching relay 30 in the middle of the wiring connecting the first input line 11 and the second output line 22. The first input line 11 and the second output line 22 are connected when the third contact C1b is closed, and the connection between the first input line 11 and the second output line 22 is released when the third contact C1b is open. Will be done.
Further, in the second circuit 42, a fourth contact C2b of the switching relay 30 is provided in the middle of the wiring connecting the second input line 12 and the first output line 21. The second input line 12 and the first output line 21 are connected when the fourth contact C2b is closed, and the connection between the second input line 12 and the first output line 21 is released when the fourth contact C2b is open. Will be done.
(2-1-4) First voltage divider circuit 51
In the first voltage divider circuit 51, the first diode D11, the first resistor R11, and the second resistor R12 are connected in series from the connection point S11 with the first input line 11 to the connection point S12 with the second input line 12. It is connected.
Since the anode of the first diode D11 is connected to the connection point S11 and the cathode is connected to one end of the first resistor R11, the direction from the connection point S11 to the connection point S12 is the forward direction of the first diode D11.
Therefore, when the first input line 11 is the positive electrode and the second input line 12 is the negative electrode, the first resistor R11 is placed at both ends of the first resistor R11 and the second resistor R12 from the connection point S11 toward the connection point S12. And a voltage drop occurs according to the resistance value ratio of the second resistor R12.
The connection point Q12 between the first resistor R11 and the second resistor R12 is connected to the inverting input terminal of the comparator 55, which will be described later.
(2-1-5) Second voltage divider circuit 52
In the second voltage dividing circuit 52, the second diode D21, the third resistor R21, and the fourth resistor R22 are connected in series from the connection point S21 with the second input line 12 to the connection point S22 with the first input line 11. It is connected.
Since the anode of the second diode D21 is connected to the connection point S21 and the cathode is connected to one end of the third resistor R21, the direction from the connection point S21 to the connection point S22 is the forward direction of the second diode D21.
Therefore, when the second input line 12 is the positive electrode and the first input line 11 is the negative electrode, the third resistor R21 is placed at both ends of the third resistor R21 and the fourth resistor R22 from the connection point S21 toward the connection point S22. And a voltage drop occurs according to the resistance value ratio of the fourth resistor R22.
The connection point Q22 between the third resistor R21 and the fourth resistor R22 is connected to the non-inverting input terminal of the comparator 55, which will be described later.
(2-1-6) Relay drive circuit 53
The relay drive circuit 53 includes a transistor Tra. In the transistor Tra, while a predetermined positive voltage is applied to the base, the collector and the emitter conduct with each other, and the drive voltage E1 is applied to the relay coil 31.
While the drive voltage E1 is applied to the relay coil 31, the relay coil 31 is energized, so that the first contact C1a and the second contact C2a provided in the first circuit 41 are closed, and at the same time, the second circuit 42 The third contact C1b and the fourth contact C2b provided in the above are open.
When the drive voltage E1 is not applied to the relay coil 31, the relay coil 31 is not energized, so that the first contact C1a and the second contact C2a provided in the first circuit 41 are opened, and at the same time, the second circuit 42 is connected. The provided third contact C1b and fourth contact C2b are closed.
(2-1-7) Comparator 55
The comparator 55 compares the voltage input to the inverting input terminal (hereinafter referred to as the first voltage V1) with the voltage input to the non-inverting input terminal (hereinafter referred to as the second voltage V2) to obtain a second voltage. When the voltage V2> the first voltage V1, a predetermined output voltage Vout = E2 is output from the output terminal. On the other hand, when the second voltage V2 <the first voltage V1, the output voltage Vout = 0V is output from the output terminal.
Therefore, when the second voltage V2> the first voltage V1, a predetermined output voltage Vout = E2 is output from the output terminal, and while it is applied to the base of the transistor Tra, the collector and the emitter are electrically connected. The drive voltage E1 is applied to the relay coil 31. E1 = E2 may be set.
In the present embodiment, the connection point Q12 between the first resistor R11 and the second resistor R12 is connected to the inverting input terminal of the comparator 55, and the inverting input terminal is connected to the ground GND via the fifth resistor R15. Therefore, the first voltage V1 is the potential difference between the connection point Q12 between the first resistor R11 and the second resistor R12 and the ground GND.
Further, since the connection point Q22 between the third resistor R21 and the fourth resistor R22 is connected to the non-inverting input terminal of the comparator 55, the non-inverting input terminal is connected to the ground GND via the sixth resistor R26. The second voltage V2 is the potential difference between the connection point Q22 between the third resistor R21 and the fourth resistor R22 and the ground GND.
(2-2) Switching circuit 75
FIG. 4 is a circuit diagram of the switching circuit 75. In FIG. 4, the switching circuit 75 includes an on / off relay 76, a first switching circuit 77a, a second switching circuit 77b, a third switching circuit 77c, a photocoupler 78, and a relay drive circuit 79. The function of the switching circuit 75 is to detect the presence or absence of power supply from the first power supply 101 using the photocoupler 78, and to use the on / off relay 76 when there is no power supply from the first power supply 101. It is to supply electric power to the first control board 81 from the second electric power source 102 which is another electric power source.
(2-2-1) On / off relay 76
In this embodiment, the switching circuit 75 has two on / off relays 76. The number of on / off relays 76 can be set arbitrarily. The on / off relay 76 has a relay coil 76a and a relay switch 76b.
The relay switch 76b can close the first contact S1a and the second contact S2a while the relay coil 76a is energized, and at the same time open the third contact S1b and the fourth contact S2b.
Further, the relay switch 76b can open the first contact S1a and the second contact S2a and at the same time close the third contact S1b and the fourth contact S2b while the relay coil 76a is not energized.
(2-2-2) First switching circuit 77a
The first switching circuit 77a conducts conduction between the first DC power supply Ea and the first terminal N3a of the third connector CN3 only when the third contact S1b of the on / off relay 76 is closed, and connects to the first control board 81. Power is supplied from the first DC power source Ea.
(2-2-3) Second switching circuit 77b
The second switching circuit 77b conducts the second DC power supply Eb and the second terminal N3b of the third connector CN3 only when the fourth contact S2b of the on / off relay 76 is closed, and connects to the first control board 81. The power of the second DC power source Eb is supplied.
(2-2-4) Third switching circuit 77c
The third switching circuit 77c conducts conduction between the third DC power supply Ec and the third terminal N3c of the third connector CN3 only when the third contact S1b of the on / off relay 76 is closed, and connects to the first control board 81. The power of the third DC power source Ec is supplied.
(2-2-5) Photocoupler 78
As shown in FIG. 4, the photocoupler 78 is an insulating switch including a photodiode 78a and a phototransistor 78b. The first terminal N5a of the connector CN5 is connected to the anode of the photodiode 78a of the photocoupler 78. Further, the second terminal N5b of the connector CN5 is connected to the cathode of the photodiode 78a of the photocoupler 78.
The branch wire of the power supply line 801 is connected to the first terminal N5a, and the branch wire of the power supply line 802 is connected to the second terminal N5b.
A rectifier circuit 73 is connected in parallel to both ends of the photodiode 78a. The rectifier circuit 73 rectifies the AC voltage of the first power supply 101 with the diode Da and the smoothing capacitor Ca, and generates a DC voltage suitable for causing the photodiode 78a to emit light by the voltage dividing resistors Ra and Rb.
(2-2-6) Relay drive circuit 79
As shown in FIG. 4, the relay drive circuit 79 includes a transistor Trb. In the transistor Trb, while a predetermined positive voltage is applied to the base, the collector and the emitter conduct with each other, and the voltage of the drive power supply Ed is applied to the relay coil 76a.
While the voltage of the drive power supply Ed is applied to the relay coil 76a, the relay coil 76a is energized, so that the third contact S1b provided in the first switching circuit 77a and the third switching circuit 77c and the second switching The fourth contact S2b provided in the circuit 77b is opened. Therefore, the power of the first DC power supply Ea, the second DC power supply Eb, and the third DC power supply Ec is not supplied to the first control board 81.
On the other hand, when the voltage of the drive power supply Ed is not applied to the relay coil 76a, the relay coil 76a is not energized, so that the third contact S1b provided in the first switching circuit 77a and the third switching circuit 77c and the second contact S1b The fourth contact S2b provided in the switching circuit 77b is closed. Therefore, the power of the first DC power supply Ea, the second DC power supply Eb, and the third DC power supply Ec is supplied to the first control board 81.
(2-2-7) Second power supply 102
As shown in FIG. 2, the second power supply 102 introduces the DC voltage generated by the DC power supply circuit 72 of the outdoor unit 2 via the communication lines L1 and L2, and introduces the first DC power supply Ea of the first control board 81. , The voltage required for each of the second DC power supply Eb and the third DC power supply Ec is provided.
The second power supply 102 and the first control board 81 are cut off by the switching circuit 75 while the power is supplied to the first control board 81 from the first power supply 101, and the power is supplied from the first power supply 101. When it is no longer possible, the switching circuit 75 connects the two.
The advantage of this is that in the indoor unit 1, after the power supply from the first power supply 101 is cut off, the opening degree of the indoor expansion valve 20 which is an electric expansion valve is based on the operation mode before the power supply is cut off. To be adjusted. For example, in the case of cooling operation, the opening degree of the indoor expansion valve is closed, and in the case of heating operation, it is slightly opened. These controls are properly executed by activating the indoor microcomputer 45.
(3) Second electric board 92
As shown in FIG. 2, the polarity correction circuit 38 and the DC power supply circuit 72 are mounted on the second electric board 92.
In the present embodiment, the second electric board 92 of the outdoor unit 2 is a board separate from the second control board 82, but may be integrated into one board.
(3-1) Polarity correction circuit 38
The polarity correction circuit 38 outputs the positive electrode signal to the positive electrode output line and the negative electrode signal to the negative electrode output line even if the positive electrode signal line and the negative electrode signal line that transmit the signal from the outdoor communication circuit 36 are connected with the wrong polarity. It is a circuit that switches so as to be performed.
Since the circuit configuration of the polarity correction circuit 38 is the same as the circuit configuration of the polarity correction circuit 37 shown in FIG. 3, description thereof will be omitted here.
(3-2) DC power supply circuit 72
The DC power supply circuit 72 is a circuit that generates a DC voltage to be supplied to the second power supply 102 mounted on the first electric board 91 of the indoor unit 1.
The DC power supply circuit 72 introduces an AC voltage from one of the power supply lines 811, 812, and 813 of the three-phase AC power supply 111, and generates a DC voltage via the filter circuit 72a, the rectifying circuit 72b, and the smoothing capacitor 72c.
As shown in FIG. 2, the DC voltage generated by the DC power supply circuit 72 is transmitted from the outdoor communication circuit 36 in a state of being superimposed on the positive electrode signal F1 and the negative electrode signal F2. The positive electrode signal F1 is transmitted to the indoor unit 1 via the communication line L1, and the negative electrode signal F2 is transmitted to the indoor unit 1 via the communication line L2.
(4) Operation of Polarity Correction Circuits 37 and 38 Here, the operation of the polarity correction circuits 37 and 38 will be described by taking the polarity correction circuit 37 of the indoor unit 1 as an example.
(4-1) When the first input line 11 is the positive side and the second input line 12 is the negative side When the signal line through which the positive side signal F1 is transmitted and the communication line through which the negative side signal F2 is transmitted are correctly connected, the positive side The signal F1 is input to the first input line 11 via the communication line L1 and the first terminal N1a of the first connector CN1. Further, the negative electrode signal F2 is input to the second input line 12 via the communication line L2 and the second terminal N1b of the first connector CN1.
FIG. 5 shows the polarities of the transmission paths of the positive electrode signal F1 and the negative electrode signal F2 when the positive electrode signal F1 is input to the first input line 11 and the negative electrode signal F2 is input to the second input line 12. It is a correction circuit diagram.
In FIG. 5, since a positive voltage is applied to the connection point S11 of the first voltage dividing circuit 51, the first resistor R11 and the second resistor R12 are first located at both ends of the first resistor R11 and the second resistor R12 from the connection point S11 toward the connection point S12. A voltage drop occurs according to the resistance value ratio of the resistor R11 and the second resistor R12.
Further, a positive voltage is also applied to the connection point S22 of the second voltage dividing circuit 52, but since the direction is opposite to the forward direction of the second diode D21, no voltage drop occurs in the third resistor R21 and the fourth resistor. A voltage drop occurs at both ends of each of the R22 and the sixth resistor R26 according to the resistance value ratio of the fourth resistor R22 and the sixth resistor R26.
In this case, the potential difference (V2) between the connection point Q22 of the second voltage dividing circuit 52 and the ground GND becomes larger than the potential difference (V1) between the connection point Q12 of the first voltage dividing circuit 51 and the ground GND in advance. As described above, the resistance values of the first resistor R11, the second resistor R12, the third resistor R21, the fourth resistor R22, and the sixth resistor R26 are set.
Since V2 (V2> V1) is input to the non-inverting input terminal of the comparator 55 and V1 is input to the inverting input terminal, a predetermined output voltage Vout = E2 is output from the output terminal of the comparator 55.
This output voltage Vout is applied to the base of the transistor Tra of the relay drive circuit 53, and the collector and the emitter conduct with each other to energize the relay coil 31, so that the first contact C1a and the first contact C1a provided in the first circuit 41 are energized. The two contacts C2a are closed, and at the same time, the third contact C1b and the fourth contact C2b provided in the second circuit 42 are opened.
As a result, when the first input line 11 is the positive electrode, the first input line 11 and the first output line 21 are connected, and the second input line 12 and the second output line 22 are connected.
(4-2) When the first input line 11 is the negative electrode and the second input line 12 is the positive electrode When the signal line through which the positive electrode signal F1 is transmitted and the communication line through which the negative electrode signal F2 is transmitted are erroneously connected. For example, the positive signal F1 is input to the second input line 12 via the communication line L1 and the second terminal N1b of the first connector CN1. At this time, the negative electrode signal F2 is input to the first input line 11 via the communication line L2 and the first terminal N1a of the first connector CN1.
FIG. 6 shows the polarities of the transmission paths of the positive electrode signal F1 and the negative electrode signal F2 when the positive electrode signal F1 is input to the second input line 12 and the negative electrode signal F2 is input to the first input line 11. It is a correction circuit diagram.
In FIG. 6, since a positive voltage is applied to the connection point S21 of the second voltage dividing circuit 52, a third resistor R21 and a third resistor R22 are placed at both ends of the third resistor R21 and the fourth resistor R22 from the connection point S21 toward the connection point S22. A voltage drop occurs according to the resistance value ratio of the resistor R21 and the fourth resistor R22.
Further, a positive voltage is also applied to the connection point S12 of the first voltage dividing circuit 51, but since the direction is opposite to the forward direction of the first diode D11, no voltage drop occurs in the first resistor R11 and the second resistor. A voltage drop occurs at both ends of each of the R12 and the fifth resistor R15 according to the resistance value ratio of the second resistor R12 and the fifth resistor R15.
In this case, the potential difference (V1) between the connection point Q12 of the first voltage dividing circuit 51 and the ground GND becomes larger than the potential difference (V2) between the connection point Q22 of the second voltage dividing circuit 52 and the ground GND in advance. As described above, the resistance values of the first resistor R11, the second resistor R12, the third resistor R21, the fourth resistor R22, and the fifth resistor R15 are set.
Since V2 (V2 <V1) is input to the non-inverting input terminal of the comparator 55 and V1 is input to the inverting input terminal, the output voltage Vout = 0 is output from the output terminal of the comparator 55.
Since this output voltage Vout = 0 becomes the base voltage of the transistor Tra of the relay drive circuit 53, the collector and the emitter do not conduct with each other, and the relay coil 31 is not energized. Therefore, the first contact C1a and the second contact C2a provided in the first circuit 41 are opened, and at the same time, the third contact C1b and the fourth contact C2b provided in the second circuit 42 are closed.
As a result, when the first input line 11 is the negative electrode, the first input line 11 and the second output line 22 are connected, and the second input line 12 and the first output line 21 are connected.
As described above, the polarity correction circuit 37 always outputs the positive electrode signal F1 from the first output line 21, and the negative electrode signal F2 is always output from the second output line 22.
(5) Operation of the switching circuit 75 The function of the switching circuit 75 detects that the power supply from the first power supply 101 is cut off when the power from the first power supply 101 is cut off, and causes the power supply from the first power supply 101 to be cut off. Is to switch to the power from the second power source 102, which is another power source.
Hereinafter, the operation of the switching circuit 75 will be described separately for the case where the power supply from the first power supply 101 is not cut off and the case where the power supply from the first power supply 101 is cut off.
(5-1) When the power supply from the first power supply 101 is not cut off FIG. 7 is an explanatory diagram showing a state of the switching circuit 75 when the power supply from the first power supply 101 is not cut off. .. In FIG. 7, the current flow is indicated by an arrow.
In FIG. 7, a DC voltage obtained by rectifying the AC voltage of the first power supply 101 is applied in the forward direction to both ends of the photodiode 78a of the photocoupler 78, and the photodiode 78a emits light when the current If flows.
The phototransistor 78b receives light from the photodiode 78a and conducts between the collector and the emitter, and a current Iout flows through the phototransistor 78b.
As a result, a potential difference between the emitter and the ground GND is generated by the resistor Rc between the emitter and the ground GND, which is applied as the base voltage of the transistor Trb of the relay drive circuit 79, and the base current Ib flows.
When the base voltage is applied to the transistor Trb, the collector and the emitter conduct with each other, the voltage of the drive power supply Ed is applied to the relay coil 76a, and the current Icon is applied to the relay coil 76a.
While the relay coil 76a is energized, the third contact S1b provided in the first switching circuit 77a and the third switching circuit 77c and the fourth contact S2b provided in the second switching circuit 77b are open. Therefore, the power of the first DC power supply Ea, the second DC power supply Eb, and the third DC power supply Ec is not supplied to the first control board 81.
(5-2) When the power supply from the first power supply 101 is cut off FIG. 8 is an explanatory diagram showing a state of the switching circuit 75 when the power supply from the first power supply 101 is cut off. In FIG. 8, the current flow is indicated by an arrow.
In FIG. 8, since no DC voltage is applied to both ends of the photodiode 78a of the photocoupler 78, no light is emitted. Therefore, since the phototransistor 78b does not receive the light emission of the photodiode 78a, the collector and the emitter do not conduct with each other. As a result, there is no potential difference between the emitter and the ground GND.
Since the base voltage is not applied to the transistor Trb, the collector and the emitter do not conduct with each other, and the relay coil 76a is not energized.
Since the relay coil 76a is not energized, the third contact S1b provided in the first switching circuit 77a and the third switching circuit 77c and the fourth contact S2b provided in the second switching circuit 77b are closed, and the first direct current is connected. The power of the power source Ea, the second DC power source Eb, and the third DC power source Ec is supplied to the first control board 81.
(6) Features (6-1)
The first electric board 91 is an electric board that is electrically connected to the first control board 81 via a communication line. The first control board 81 is a control board of the indoor unit 1 of the air conditioner 100 connected to the first power supply 101. The first electric board 91 is further connected to the second power supply 102. The first electric board 91 includes an on / off relay 76. The on / off relay 76 switches to power supply from the second power supply 102 when power is not supplied from the first power supply 101 to the first control board 81. As a result, the first electric board 91 can appropriately supply electric power to the first control board 81 of the indoor unit 1.
"The first electric board 91 is further connected to the second power supply 102" includes that the second power supply 102 is mounted on the first electric board 91.
(6-2)
The air conditioner 100 includes an indoor unit 1 and an outdoor unit 2 electrically connected to the indoor unit 1. The electric power of the second power source 102 is the electric power supplied from the outdoor unit 2.
(6-3)
The first electric board 91 further includes a switching circuit 75. The switching circuit 75 is switched to either a first state that is electrically connected to the second power supply 102 or a second state that is not electrically connected. When power is not supplied from the first power supply 101 to the first control board 81, the on / off relay 76 switches the switching circuit 75 to the first state.
(6-4)
The first electric board 91 further includes a photocoupler 78 as a switch. When power is not supplied from the first power supply 101 to the first control board 81, the photocoupler 78 turns on or off the energization of the on / off relay 76 to switch the switching circuit 75 to the first state. Since the photocoupler 78 energizes and de-energizes the on / off relay 76 according to the presence or absence of power supply from the first power supply 101, the configuration can be simplified and the cost can be reduced.
(6-5)
The photocoupler 78 is turned on while power is being supplied from the first power supply 101 to energize the on / off relay 76. Further, the photocoupler 78 is turned off when power is not supplied from the first power supply 101 to cut off the energization of the on / off relay 76. A simple circuit with a small number of parts can be realized by a configuration in which the photocoupler 78 is turned on to energize the relay when power is supplied from the first power supply 101.
(6-6)
In the first electric board 91, the on / off relay 76 has a relay coil 76a and a relay switch 76b. The relay switch 76b switches the switching circuit 75 to the first state when the energization of the relay coil 76a is on or off. Since this electric board does not require a logic circuit and a general-purpose mechanical relay including a relay coil and a relay switch can be used, it is possible to suppress an increase in cost.
(6-7)
In the first electric board 91, since the first electric board 91 is separated from the first control board 81, the first electric board 91 can be retrofitted. Therefore, it can be mounted on the indoor unit 1 on which the first electric board 91 is not mounted.
(6-8)
The air conditioner 100 equipped with the first electric board 91 includes an outdoor unit 2 and a plurality of indoor units 1 connected to the outdoor unit 2. When the power from the first power supply 101 is not supplied to the first control board 81 of any one of the plurality of indoor units 1, the power supply is switched from the second power supply 102 by the on / off relay 76. Be done.
Although the embodiments of the present disclosure have been described above, it will be understood that various modifications of the forms and details are possible without departing from the purpose and scope of the present disclosure described in the claims. ..
1          室内ユニット
2          室外ユニット
75         切換回路
76         オン・オフリレー(リレー)
76a        リレーコイル
76b        リレースイッチ
81         第1制御基板(制御基板)
91         第1電気基板(電気基板)
100        空調機(冷凍装置)
101        第1電源
102        第2電源
1 Indoor unit 2 Outdoor unit 75 Switching circuit 76 On / off relay (relay)
76a Relay coil 76b Relay switch 81 1st control board (control board)
91 First electric board (electric board)
100 Air conditioner (refrigerator)
101 1st power supply 102 2nd power supply

Claims (9)

  1.  第1電源と接続された冷凍装置の室内ユニットの制御基板(81)と、通信線を介して電気的に接続された電気基板であって、
     前記電気基板は、第2電源とさらに接続されており、
     前記第1電源から前記制御基板(81)に電力が供給されないときに、前記第2電源からの電力供給に切り換えるリレー(76)、を備える、
    電気基板。
    An electric board electrically connected to a control board (81) of an indoor unit of a refrigerating device connected to a first power source via a communication line.
    The electric board is further connected to a second power source.
    A relay (76) that switches to power supply from the second power supply when power is not supplied from the first power supply to the control board (81) is provided.
    Electric board.
  2.  前記冷凍装置は、前記室内ユニットと、前記室内ユニットと電気的に接続された室外ユニットとを含み、
     前記第2電源の電力は、前記室外ユニットからの供給電力である、
    請求項1に記載の電気基板。
    The refrigerating device includes the indoor unit and an outdoor unit electrically connected to the indoor unit.
    The electric power of the second power source is the electric power supplied from the outdoor unit.
    The electric board according to claim 1.
  3.  前記電気基板は、前記第2電源と電気的に接続される第1状態および電気的に接続されない第2状態のいずれかに切り換えられる切換回路(75)をさらに備え、
     前記第1電源から前記制御基板(81)に電力が供給されないときに、前記リレー(76)によって前記切換回路(75)が前記第1状態に切り換えられる、
    請求項1又は請求項2に記載の電気基板。
    The electrical board further comprises a switching circuit (75) that switches between a first state that is electrically connected to the second power source and a second state that is not electrically connected.
    When power is not supplied from the first power source to the control board (81), the relay (76) switches the switching circuit (75) to the first state.
    The electric board according to claim 1 or 2.
  4.  前記電気基板は、スイッチ(78)をさらに備え、
     前記スイッチ(78)は、前記第1電源から前記制御基板(81)に電力が供給されていないとき、前記リレー(76)への通電をオンまたはオフして、前記切換回路(75)を前記第1状態へ切り換えさせる、
    請求項3に記載の電気基板。
    The electrical board further comprises a switch (78).
    When the power is not supplied from the first power source to the control board (81), the switch (78) turns on or off the energization of the relay (76) to switch the switching circuit (75). Switch to the first state,
    The electric board according to claim 3.
  5.  前記スイッチ(78)は、
    前記第1電源から電力が供給されている間はオンして前記リレー(76)に通電し、
    前記第1電源から電力が供給されないときはオフして前記リレー(76)への通電を遮断する、
    請求項4に記載の電気基板。
    The switch (78)
    While the power is being supplied from the first power source, the relay (76) is energized by turning on the power.
    When power is not supplied from the first power source, it is turned off to cut off the energization of the relay (76).
    The electric board according to claim 4.
  6.  前記リレー(76)は、リレーコイル(76a)と、リレースイッチ(76b)とを有し、
     前記リレースイッチ(76)は、前記リレーコイル(76a)への通電がオンまたはオフのときに前記切換回路(75)を前記第1状態へ切り換える、
    請求項3から請求項5のいずれか1項に記載の電気基板。
    The relay (76) has a relay coil (76a) and a relay switch (76b).
    The relay switch (76) switches the switching circuit (75) to the first state when the energization of the relay coil (76a) is on or off.
    The electric board according to any one of claims 3 to 5.
  7.  前記電気基板は、前記制御基板(81)と分離されている、
    請求項1から請求項6のいずれか1項に記載の電気基板。
    The electric board is separated from the control board (81).
    The electric board according to any one of claims 1 to 6.
  8.  請求項1から請求項7のいずれか1項に記載の電気基板を搭載した、
    冷凍装置。
    The electric board according to any one of claims 1 to 7 is mounted.
    Refrigerator.
  9.  請求項8に記載の電気基板を搭載した冷凍装置であって、
     室外ユニットおよび前記室外ユニットに接続される複数の前記室内ユニットを含み、
     複数の前記室内ユニットのうち、いずれか1つの室内ユニットの前記制御基板に前記第1電源からの電力が供給されないときに、前記リレー(76)によって前記第2電源からの電力供給に切り換えられる、
    冷凍装置。
    A refrigerating apparatus equipped with the electric substrate according to claim 8.
    Including the outdoor unit and a plurality of the indoor units connected to the outdoor unit.
    When the power from the first power supply is not supplied to the control board of any one of the indoor units, the relay (76) switches the power supply from the second power supply.
    Refrigerator.
PCT/IB2021/050401 2020-01-20 2021-01-20 Electrical board and cooling apparatus in which said electrical board has been installed WO2021148949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021209426A AU2021209426A1 (en) 2020-01-20 2021-01-20 Electrical board and cooling apparatus in which said electrical board has been installed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-006745 2020-01-20
JP2020006745A JP2021113643A (en) 2020-01-20 2020-01-20 Electric substrate, and freezer in which electric substrate is mounted

Publications (1)

Publication Number Publication Date
WO2021148949A1 true WO2021148949A1 (en) 2021-07-29

Family

ID=76993298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/050401 WO2021148949A1 (en) 2020-01-20 2021-01-20 Electrical board and cooling apparatus in which said electrical board has been installed

Country Status (3)

Country Link
JP (1) JP2021113643A (en)
AU (1) AU2021209426A1 (en)
WO (1) WO2021148949A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286238A (en) * 2003-03-19 2004-10-14 Daikin Ind Ltd Control circuit of cooling device, and control method of cooling device
JP2008057868A (en) * 2006-08-31 2008-03-13 Daikin Ind Ltd Air conditioner
JP2014196885A (en) * 2013-03-29 2014-10-16 パナソニック株式会社 Air conditioning system
JP2016220398A (en) * 2015-05-20 2016-12-22 シャープ株式会社 Electrical equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286238A (en) * 2003-03-19 2004-10-14 Daikin Ind Ltd Control circuit of cooling device, and control method of cooling device
JP2008057868A (en) * 2006-08-31 2008-03-13 Daikin Ind Ltd Air conditioner
JP2014196885A (en) * 2013-03-29 2014-10-16 パナソニック株式会社 Air conditioning system
JP2016220398A (en) * 2015-05-20 2016-12-22 シャープ株式会社 Electrical equipment

Also Published As

Publication number Publication date
AU2021209426A1 (en) 2022-06-09
JP2021113643A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
KR0156058B1 (en) Airconditioner
US20160363338A1 (en) Air conditioning system
JP4874202B2 (en) Air conditioning system and outdoor unit
US10852044B1 (en) Simple low-cost retrofit device and method to replace a variable air flow electronically commutated motor with a permanent split capacitor motor capable of operating at multiple speed settings
AU2017424871B2 (en) Air conditioner
WO2021148949A1 (en) Electrical board and cooling apparatus in which said electrical board has been installed
JP2012107779A (en) Air conditioner
JP2019100655A (en) Air conditioner, indoor unit and outdoor unit
WO2021148948A1 (en) Electronic circuit board and refrigeration apparatus equipped with electronic circuit board
KR102167330B1 (en) air conditioner
JP5436881B2 (en) Air conditioner
JP3152560B2 (en) Air conditioner
KR102478858B1 (en) AIR CONDITIONER
JP3815463B2 (en) Separate air conditioner
JPWO2022239113A5 (en)
JP2019075939A (en) Air conditioner
KR20070072259A (en) Detecting apparatus of line-connecting default for air-conditioner
JP3157381B2 (en) Air conditioner
JP6567930B2 (en) Air conditioner
JP2015145746A (en) Overvoltage measure circuit and electrical equipment equipped with the same
EP0742636A2 (en) Improved interface circuit for use in multi-split air conditioning systems
WO2023209838A1 (en) Air conditioner
KR102295972B1 (en) Air conditioner
JP2859066B2 (en) Air conditioner
JP3884646B2 (en) Air conditioner communication control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021209426

Country of ref document: AU

Date of ref document: 20210120

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744211

Country of ref document: EP

Kind code of ref document: A1