WO2021148701A1 - Linear-focus solar collector with horseshoe-shaped open receiver - Google Patents

Linear-focus solar collector with horseshoe-shaped open receiver Download PDF

Info

Publication number
WO2021148701A1
WO2021148701A1 PCT/ES2021/070040 ES2021070040W WO2021148701A1 WO 2021148701 A1 WO2021148701 A1 WO 2021148701A1 ES 2021070040 W ES2021070040 W ES 2021070040W WO 2021148701 A1 WO2021148701 A1 WO 2021148701A1
Authority
WO
WIPO (PCT)
Prior art keywords
rad
receiver
glass
piece
absorber
Prior art date
Application number
PCT/ES2021/070040
Other languages
Spanish (es)
French (fr)
Inventor
Juan José SERRANO AGUILERA
Luis Parras Anguita
Original Assignee
Universidad De Málaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Málaga filed Critical Universidad De Málaga
Publication of WO2021148701A1 publication Critical patent/WO2021148701A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B1/00Shirts
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B1/00Shirts
    • A41B1/08Details
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B9/00Undergarments
    • A41B9/06Undershirts; Chemises
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/04Vests, jerseys, sweaters or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B3/00Collars
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B7/00Cuffs
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D27/00Details of garments or of their making
    • A41D27/10Sleeves; Armholes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention corresponds to the technical field of concentrating solar energy, specifically to the technology of solar thermal receivers with a linear focus, providing a new receiver design for parabolic trough collectors in a low operating temperature range.
  • parabolic trough technology is the one that arouses the most commercial interest due to its technological maturity and the reduced risk to be assumed by investors in its implementation.
  • the receiver is the most critical element, not only because of the technical complexity involved in its manufacture, but also because it is one of the most vulnerable and expensive elements. Since the introduction of the first SEGS plants in California in the 1980s, the concept of receiver tube used by the industry has not changed substantially.
  • Cavity receivers are an excellent alternative to solar thermal systems for process heat.
  • the concept of receiver currently used is formed by a metallic absorber tube, through which the heat transfer fluid circulates, generally thermal oil.
  • a glass cover surrounds the absorber so that air can be extracted from the space between them, forming a chamber or vacuum ring. Maintaining this level of vacuum is essential to limit thermal losses. Due to the geometry and the configuration of the parabolic mirrors, only part of the perimeter of the absorber tube receives concentrated solar radiation, which can be of the order of a few tens of kW / m 2 compared to the little radiation that the part receives. not exposed. Depending on the internal cooling of the absorber (characteristics of the thermal fluid and its flow rate), thermal stress may appear on its wall.
  • the conventional design with a vacuum ring, is designed to operate with temperatures greater than 300 ° C in the heat transfer fluid. This entails an increase in the complexity of the design, which entails a considerable increase in production costs, as well as a penalty in their durability due to some inherent aspects of their design. This means that they are still expensive and not very robust, since their optical and thermal properties tend to degrade over time.
  • the following technical drawbacks stand out:
  • the receiver concept described here proposes a suitable design for systems with moderate operating temperatures thanks to the optical system that fulfills a double function: reducing thermal losses through a protected stratification chamber and increasing the concentration factor on the slit of opening.
  • the present invention describes a new collector with a linear focus (figure 2) analogous to the CCPs currently existing in electricity generation plants.
  • a new geometry of the primary reflector and a new cavity receiver an alternative is provided for systems that operate in a moderate temperature range ( ⁇ 300 ° C), as is the case of solar thermal systems that provide process heat.
  • the present invention presents a reflector plus receiver assembly with a cavity, below which is a piece of glass that provides the following advantages:
  • the walls of this cavity can be used to (by means of glass walls of variable thickness) redirect the rays so that the width of the opening slit of the metal absorber can be reduced.
  • Figure 1 Graph with general representation of the radial pattern that follows both the inner r inner edge ( ⁇ ) and the outer r outer edge ( ⁇ ) of the wall of the glass piece.
  • Figure 2 Shows a cross section of the collector assembly including the primary reflector and the receiver.
  • Figure 3 Shows the cross section of the horseshoe receiver with a partially closed glass piece.
  • Figure 4. Shows the cross section of the horseshoe receiver with integral closure glass piece.
  • the solar collector of the invention comprises a primary reflector and a receiver.
  • the primary reflector comprises two regions represented in figure 2.
  • the central region of the reflector (1) has a parabolic section, characterized by a focal length f and half-width of the aperture plane.
  • the other region that makes up the ends of the reflector receptor (2) is a modified parabola, defined in the interval x ⁇ (w p , w).
  • the horseshoe-shaped open receiver that incorporates the solar collector (3), takes advantage of the upward action of buoyancy forces in natural convection processes.
  • the receiver is located on the focal point of the reflector (4) and comprises three main elements:
  • the metallic absorber (5) through which the heat transfer fluid (6) circulates.
  • the internal surface of the absorber covers most of the perimeter of the cavity (7).
  • the horseshoe shape of the absorber is defined, among other parameters, by the width of the opening slit (d).
  • the interior surface of the metal absorber that surrounds the cavity may be treated with a selective coating, although the absorbance and emittance values of this absorber surface are not as critical as in conventional absorber tube designs, since the slit is the only surface. where radiant losses can occur.
  • the thermal insulation (8) reduces to negligible levels any type of thermal loss through the outer perimeter of the metallic absorber (5).
  • This insulation is covered and protected from external agents by a protective casing (9).
  • a fraction of the lower contour of the insulation (8) is protected by a piece with selective coating (11) whose function, in addition to protecting the insulation (8), is to absorb the energy from the residual fraction of rays that do not cross. the slit of the metal absorber (5) of width d.
  • the piece of glass (10) has the double function of redirecting the solar rays concentrated by the primary reflector and favoring the stratification of the air in the cavity (7) even when the solar collector is tilted or there is an outside wind, reducing the thermal losses by convection.
  • This piece of glass can be partially closed (formed by two symmetrical pieces)
  • the glass piece (10) consists of a concave wall of several sections, of variable thickness, in the shape of an inverted arc facing the focal point of the reflector and the opening of the receiver. Both the internal and external contours of this wall follow a geometric pattern that can be defined in polar coordinates r ⁇ 6) with the origin of the coordinate system being the focal point of the primary reflector (4) and the angle Q defined as positive in clockwise with angular origin in the horizontal direction (see figures 3 and 4). Based on Figure 1, this pattern is determined by a continuous and differentiable piecewise function defined on the interval
  • Stroke 1 corresponding to Region I (see figures 1, 3 and 4) and defined in the interval passing through the end points of the interval
  • This piece of the function is defined by a polynomial with increasing trend (R a > R 0 ).
  • Piece 3 corresponding to region II (see figures 1, 3 and 4) and defined in the interval that passes through the extreme points of the interval:
  • This piece of the function is defined by a polynomial with decreasing trend (R a > R b ).
  • Piece 5 corresponding to region III (see figures 1 and 4) and defined in the interval that passes through the extreme points of the interval:
  • a convergent lens with a curved axis is configured whose function is to redirect the rays that fall more obliquely on the entrance slit to the cavity absorber (5).
  • the embodiment of the invention with a piece of glass with partial closure (figure 3) is only defined in regions I and II, that is, between pieces 1 and 3, while the embodiment with a piece of glass with an integral closure (figure 4 ) encompasses the three regions and the five pieces.
  • the proposed receiver concept has the following advantages:
  • the thermal insulation material eg rock wool
  • the thermal insulation material means that there is no heat flow through the upper contour of the metal absorber (5), and therefore contributes to reducing the temperature difference between the fluid and the upper wall thereof, limiting the thermal stress to which the absorber is subjected. This limits the thermal gradients in the metal wall.
  • the active heat exchange surface between the metallic absorber and the fluid (in relation to the passage section) can be greater, since the geometry of the absorber can be modified without affecting the width d of the opening slit.
  • Figure 2 shows the horseshoe-shaped open receiver and primary reflector assembly.
  • the aforementioned reflector geometry is compatible with the two open and closed receiver models described above and shown in Figures 3 and 4.
  • optical losses in the central rays that do not cross any air-glass border are reduced. If the operating temperature is low enough ( ⁇ 150 ° C), the thermal losses are less significant compared to the optics, so a design that prioritizes reducing losses is desirable. optical versus thermal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Details Of Garments (AREA)

Abstract

Disclosed is a linear-focus solar collector with a horseshoe-shaped open receiver, which is a new solar collector concept for linear-focus solar thermal systems that allows the design of a more robust receiver that is durable under operating conditions at moderate temperate (<300ºC). A concave metal absorber, the upper front side of which is covered by a thermal insulating material, encloses a cavity with air at atmospheric pressure. The opening of the cavity is limited with a piece of glass. This piece of glass can be partially or fully closed, allowing the existence of a stratification chamber that limits convective losses. In addition to thermal functionality, the glass piece is optically active, improving the interception index of a slit through which the rays access the metallic absorber.

Description

D E S C R I P C I Ó N DESCRIPTION
COLECTOR SOLAR DE FOCO LINEAL CON RECEPTOR ABIERTO EN FORMA DESOLAR COLLECTOR WITH LINEAR SPOTLIGHT WITH OPEN RECEIVER IN THE SHAPE OF
HERRADURA HORSESHOE
SECTOR DE LA TÉCNICA TECHNICAL SECTOR
La presente invención corresponde al campo técnico de la energía solar de concentración, en concreto a la tecnología de receptores solares térmicos de foco lineal, aportando un nuevo diseño de receptor para los captadores cilindroparabólicos en un rango bajo de temperatura de operación. The present invention corresponds to the technical field of concentrating solar energy, specifically to the technology of solar thermal receivers with a linear focus, providing a new receiver design for parabolic trough collectors in a low operating temperature range.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En el contexto de la industria termosolar, la tecnología de captadores cilindroparabólicos es la que más interés comercial despierta por su madurez tecnológica y el reducido riesgo a asumir por parte de los inversores en su implantación. De todos los elementos de los que consta cualquier captador, el receptor es el elemento más crítico, no sólo por la complejidad técnica que implica su fabricación, si no por ser uno de los elementos más vulnerables y costosos. Desde la implantación de las primeras plantas SEGS en California en la década de los 80, el concepto de tubo receptor empleado por la industria no ha cambiado sustancialmente. Las primeras patentes donde se describe este concepto aparecieron en la década de los 70 y 80, este es el caso, por ejemplo, del documento US4432343, en el que se describe un captador cilindroparabólico formado por un reflector con sección parabólica cuyo receptor está formado por un absorbedor metálico tubular (con un recubrimiento selectivo, p. ej. cromado negro) rodeado de una cubierta de vidrio concéntrica a la anterior. En esta invención también se detalla que deben existir condiciones de vacío entre el absorbedor y la cubierta de vidrio además de emplear fuelles de expansión para compensar los diferentes grados de dilatación térmica entre el metal y el vidrio. In the context of the solar thermal industry, parabolic trough technology is the one that arouses the most commercial interest due to its technological maturity and the reduced risk to be assumed by investors in its implementation. Of all the elements that any sensor consists of, the receiver is the most critical element, not only because of the technical complexity involved in its manufacture, but also because it is one of the most vulnerable and expensive elements. Since the introduction of the first SEGS plants in California in the 1980s, the concept of receiver tube used by the industry has not changed substantially. The first patents where this concept is described appeared in the 70s and 80s, this is the case, for example, of document US4432343, which describes a parabolic trough sensor formed by a reflector with a parabolic section whose receiver is formed by a tubular metal absorber (with a selective coating, eg black chrome) surrounded by a glass cover concentric to the previous one. This invention also details that vacuum conditions must exist between the absorber and the glass cover in addition to using expansion bellows to compensate for the different degrees of thermal expansion between the metal and the glass.
Desde entonces, la mayor parte de las patentes registradas han propuesto modificaciones parciales, pero todas ellas a partir del concepto de receptor tubular cilindrico. En el documento ES2125828 se propuso un tubo absorbedor con hendiduras en las paredes para favorecer el coeficiente de transferencia térmica entre la pared metálica y el fluido caloportador. Por su parte, la invención descrita en W02007076578 añade una cubierta aislante en la zona superior del absorbedor (mitad superior por donde no recibe radiación concentrada) para reducir las pérdidas térmicas. Se han propuesto también configuraciones como la referida en DE10033240 donde el tubo absorbedor y la cobertura de vidrio cilindrica no son concéntricos. La geometría de la cobertura de vidrio también puede ser modificada. Según el documento DE10305428, la modificación parcial de la geometría de sección cilindrica mediante hendiduras en la cubierta de vidrio mejora el índice de interceptación del receptor. Since then, most of the registered patents have proposed partial modifications, but all of them based on the concept of a cylindrical tubular receiver. In document ES2125828 an absorber tube with slits was proposed on the walls to favor the thermal transfer coefficient between the metal wall and the heat transfer fluid. For its part, the invention described in W02007076578 adds an insulating cover in the upper area of the absorber (upper half where it does not receive concentrated radiation) to reduce thermal losses. Configurations such as that referred to in DE10033240 have also been proposed where the absorber tube and the cylindrical glass cover are not concentric. The geometry of the glass cover can also be modified. According to DE10305428, the partial modification of the cylindrical section geometry by means of slits in the glass cover improves the interception rate of the receiver.
Por otra parte, en los documentos US2007034204 y US2008087277 se proponen soluciones alternativas a la unión clásica entre el tubo absorbedor y la cobertura de vidrio mediante fuelle metálico. On the other hand, documents US2007034204 and US2008087277 propose alternative solutions to the classical connection between the absorber tube and the glass cover by means of a metallic bellows.
Aunque en el estado de la técnica abundan las invenciones basadas en absorbedores tubulares de sección circular, existen algunas invenciones que ya han introducido el concepto de receptor de cavidad en el contexto de los captadores cilindroparabólicos. En los documentos US20130192226 y WO2015089273 se destacan las ventajas del uso de un receptor tubular, el cual queda recubierto en su parte superior con aislante térmico y comprendiendo en su parte inferior una cavidad. Esta cavidad puede estar cerrada en su parte inferior por un cierre de vidrio simple cuya finalidad es sellar la cavidad existente para favorecer la estratificación. Según sus autores, para reducir las pérdidas térmicas, es muy importante que la superficie emisora del absorbedor metálico sea la mínima posible, a pesar de encontrarse en una cavidad. Por esta razón, las superficies laterales de dicha cavidad no forman parte del cuerpo del absorbedor metálico. En un documento anterior, US20100043779, sí se propone un receptor con absorbedor de cavidad cóncavo, pero esta cavidad está circundada por tres elementos: tubo absorbedor cóncavo, aislante térmico y cierre de vidrio sencillo que es pasivo desde el punto de vista óptico (ver figuras 6 y 7 del citado documento). Por otra parte, en el documento US1661473 también se propone un receptor con un absorbedor metálico en forma de cavidad al cual se le puede adjuntar una lente convencional maciza en su apertura inferior. Although the state of the art abounds with inventions based on circular section tubular absorbers, there are some inventions that have already introduced the concept of cavity receiver in the context of parabolic trough collectors. Documents US20130192226 and WO2015089273 highlight the advantages of using a tubular receiver, which is covered in its upper part with thermal insulation and comprising a cavity in its lower part. This cavity can be closed in its lower part by a simple glass closure whose purpose is to seal the existing cavity to promote stratification. According to its authors, to reduce thermal losses, it is very important that the emitting surface of the metallic absorber is the minimum possible, despite being in a cavity. For this reason, the lateral surfaces of said cavity are not part of the body of the metallic absorber. In a previous document, US20100043779, a receiver with a concave cavity absorber is proposed, but this cavity is surrounded by three elements: concave absorber tube, thermal insulator and simple glass closure that is passive from the optical point of view (see figures 6 and 7 of the aforementioned document). On the other hand, document US1661473 also proposes a receiver with a cavity-shaped metal absorber to which a conventional solid lens can be attached at its lower aperture.
Los receptores de cavidad son una excelente alternativa para sistemas termosolares para calor de proceso. El concepto de receptor usado actualmente está formado por un tubo absorbedor metálico, por cuyo interior circula el fluido caloportador, generalmente aceite térmico. Una cobertura de vidrio envuelve al absorbedor de forma que se puede extraer el aire del espacio existente entre ellos formando una cámara o anillo de vacío. Mantener este nivel de vacío es esencial para limitar las pérdidas térmicas. Debido a la geometría y la propia configuración de los espejos parabólicos, sólo una parte del perímetro del tubo absorbedor recibe radiación solar concentrada, que puede llegar a ser del orden de unas decenas de kW/m2 frente a la escasa radiación que recibe la parte no expuesta. Dependiendo de la refrigeración interior del absorbedor (características del fluido térmico y su caudal) puede llegar a aparecer estrés térmico en la pared del mismo. Cavity receivers are an excellent alternative to solar thermal systems for process heat. The concept of receiver currently used is formed by a metallic absorber tube, through which the heat transfer fluid circulates, generally thermal oil. A glass cover surrounds the absorber so that air can be extracted from the space between them, forming a chamber or vacuum ring. Maintaining this level of vacuum is essential to limit thermal losses. Due to the geometry and the configuration of the parabolic mirrors, only part of the perimeter of the absorber tube receives concentrated solar radiation, which can be of the order of a few tens of kW / m 2 compared to the little radiation that the part receives. not exposed. Depending on the internal cooling of the absorber (characteristics of the thermal fluid and its flow rate), thermal stress may appear on its wall.
El diseño convencional, con anillo de vacío, está pensando para operar con temperaturas mayores de 300 °C en el fluido caloportador. Esto conlleva un aumento en la complejidad del diseño lo que acarrea un incremento considerable de los costes de producción, así como una penalización en la durabilidad de los mismos debido a algunos aspectos inherentes a su diseño. Esto hace que todavía sean caros y poco robustos, ya que sus propiedades ópticas y térmicas suelen degradarse con el tiempo. Destacan los siguientes inconvenientes técnicos: The conventional design, with a vacuum ring, is designed to operate with temperatures greater than 300 ° C in the heat transfer fluid. This entails an increase in the complexity of the design, which entails a considerable increase in production costs, as well as a penalty in their durability due to some inherent aspects of their design. This means that they are still expensive and not very robust, since their optical and thermal properties tend to degrade over time. The following technical drawbacks stand out:
(i) El anillo de vacío se sella con una soldadura entre el vidrio y el metal en los dos extremos del receptor (cuya longitud suele ser de 4.06 m). Esta soldadura une el extremo de la cobertura de vidrio con un fuelle metálico cuya misión es compensar los diferentes coeficientes de dilatación térmicos entre el metal del absorbedor y el vidrio de la cobertura. Cualquier fallo o fuga, tanto en esa soldadura como en el fuelle, provoca la pérdida de vacío en el receptor, lo que resulta en una reducción drástica de su rendimiento térmico. (i) The vacuum ring is sealed with a solder between the glass and the metal at the two ends of the receiver (the length of which is usually 4.06 m). This weld joins the end of the glass cover with a metal bellows whose mission is to compensate for the different coefficients of thermal expansion between the metal of the absorber and the cover glass. Any failure or leakage, both in that weld and in the bellows, causes the loss of vacuum in the receiver, which results in a drastic reduction in its thermal performance.
(ii) La radiación solar concentrada incide en la superficie exterior del absorbedor. Esta superficie es la que alcanza la mayor temperatura en todo el receptor y emite radiación térmica hacia el exterior. Esta es la razón por la que se necesita un recubrimiento selectivo que incremente la absorción de la radiación solar incidente y a su vez reduzca la emisión de radiación infrarroja desde dicha superficie. (ii) Concentrated solar radiation falls on the outer surface of the absorber. This surface is the one that reaches the highest temperature in the entire receiver and emits thermal radiation towards the outside. This is the reason why a selective coating is needed that increases the absorption of incident solar radiation and in turn reduces the emission of infrared radiation from said surface.
(iii) Cuando el fluido térmico es aceite sintético, debido a las temperaturas alcanzadas por dicho fluido se generan moléculas de H2. La difusión de estas moléculas a través de la pared del absorbedor hasta el anillo de vacío degrada los propios niveles de vacío. Es un proceso relativamente lento, pero con el transcurso de los primeros años de operación este fenómeno puede limitar de forma significativa la vida útil del receptor. (iii) When the thermal fluid is synthetic oil, H2 molecules are generated due to the temperatures reached by said fluid. Diffusion of these molecules through the absorber wall to the vacuum ring degrades the vacuum levels themselves. It is a relatively slow process, but over the first few years of operation this phenomenon can significantly limit the life of the receiver.
Por estas razones, la tasa de fallos en los receptores tiene efectos directos en los costes de operación y mantenimiento de las plantas de captadores cilindroparabólicos (CCPs). Cualquiera de estos problemas implica el reemplazo del todo el receptor, teniendo un impacto directo en el coste nivelado de la producción de electricidad de estas centrales. For these reasons, the failure rate in receivers has direct effects on the operation and maintenance costs of parabolic trough plants (CCPs). Any of these problems implies the replacement of the entire receiver, having a direct impact on the levelized cost of electricity production from these plants.
Son necesarios, por tanto, receptores más robustos, que sin requerir de los elementos más vulnerables y costosos existentes en los sistemas actuales, permitan garantizar niveles aceptables de pérdidas térmicas y ópticas. El concepto de receptor que aquí se describe, propone un diseño adecuado para sistemas con temperatura de operación moderadas gracias al sistema óptico que cumple una doble funcionalidad: reducir las pérdidas térmicas mediante una cámara de estratificación protegida y aumentar el factor de concentración sobre la rendija de apertura. Therefore, more robust receivers are necessary, which without requiring the most vulnerable and expensive elements existing in current systems, allow to guarantee acceptable levels of thermal and optical losses. The receiver concept described here proposes a suitable design for systems with moderate operating temperatures thanks to the optical system that fulfills a double function: reducing thermal losses through a protected stratification chamber and increasing the concentration factor on the slit of opening.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
La presente invención describe un nuevo colector de foco lineal (figura 2) análogo a los CCPs existentes actualmente en las centrales de generación de electricidad. Mediante una nueva geometría del reflector primario y un nuevo receptor de cavidad se aporta una alternativa para sistemas que operen en un rango de temperatura moderada (< 300°C), como es el caso de los sistemas termosolares que aportan calor de proceso. The present invention describes a new collector with a linear focus (figure 2) analogous to the CCPs currently existing in electricity generation plants. By means of a new geometry of the primary reflector and a new cavity receiver, an alternative is provided for systems that operate in a moderate temperature range (<300 ° C), as is the case of solar thermal systems that provide process heat.
A diferencia del estado de la técnica, la presente invención presenta un conjunto de reflector más receptor con una cavidad, por debajo de la cual se encuentra una pieza de vidrio que aporta las siguientes ventajas: Unlike the state of the art, the present invention presents a reflector plus receiver assembly with a cavity, below which is a piece of glass that provides the following advantages:
(i) Térmicas: Favorece la estratificación del aire en el interior de la cavidad y la protege frente a corrientes de aire externas o debidas a la inclinación del propio receptor. (i) Thermal: It favors the stratification of the air inside the cavity and protects it against external air currents or due to the inclination of the receiver itself.
(ii) Ópticas: Las paredes de esta cavidad pueden aprovecharse para (mediante paredes de vidrio de espesor variable) redireccionar los rayos de forma que se pueda reducir la anchura de la rendija de apertura del absorbedor metálico. BREVE DESCRIPCIÓN DE LAS FIGURAS (ii) Optics: The walls of this cavity can be used to (by means of glass walls of variable thickness) redirect the rays so that the width of the opening slit of the metal absorber can be reduced. BRIEF DESCRIPTION OF THE FIGURES
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, a set of drawings is attached as an integral part of said description, in which, with an illustrative and non-limiting nature, the following has been represented. following:
Figura 1. Gráfica con representación general del patrón radial que siguen tanto el borde interior rinterno (θ) como exterior rexterno (θ) de la pared de la pieza de vidrio. Figure 1. Graph with general representation of the radial pattern that follows both the inner r inner edge (θ) and the outer r outer edge (θ) of the wall of the glass piece.
Figura 2. Muestra una sección transversal del conjunto del colector incluyendo el reflector primario y el receptor. Figure 2. Shows a cross section of the collector assembly including the primary reflector and the receiver.
Figura 3. Muestra la sección transversal del receptor de herradura con pieza de vidrio de cierre parcial. Figure 3. Shows the cross section of the horseshoe receiver with a partially closed glass piece.
Figura 4. Muestra la sección transversal del receptor de herradura con pieza de vidrio de cierre integral. Figure 4. Shows the cross section of the horseshoe receiver with integral closure glass piece.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
El colector solar de la invención comprende un reflector primario y un receptor. El reflector primario comprende dos regiones representadas en la figura 2. La región central del reflector (1) es de sección parabólica, caracterizada por una distancia focal f y semi-anchura del plano de apertura . La otra región que conforma los extremos del receptor reflector (2) es una parábola modificada, definida en el intervalo x∈(wp,w). Esta es la solución a una ecuación diferencial ordinaria de primer orden, cuya solución (y ) depende de dos parámetros: a , del mismo orden que la apertura de la rendija del receptor y δ , del mismo orden que el semiángulo del cono solar (4.65-10 3 rad), donde el origen de coordenadas se encuentra en el punto focal de la parábola (4):
Figure imgf000007_0001
El punto inicial de la solución que describe la región externa del reflector primario queda determinado por el punto de transición entre las dos regiones, donde x = wp , de forma que y(wp) = -f + w2p/4 f . El reflector resultante es un espejo de foco lineal con un ancho de apertura total w.
The solar collector of the invention comprises a primary reflector and a receiver. The primary reflector comprises two regions represented in figure 2. The central region of the reflector (1) has a parabolic section, characterized by a focal length f and half-width of the aperture plane. The other region that makes up the ends of the reflector receptor (2) is a modified parabola, defined in the interval x∈ (w p , w). This is the solution to an ordinary first-order differential equation, whose solution (y) depends on two parameters: a, of the same order as the opening of the receiver slit and δ, of the same order as the half-angle of the solar cone (4.65 -10 3 rad), where the origin of coordinates is at the focal point of the parabola (4):
Figure imgf000007_0001
The initial point of the solution that describes the outer region of the primary reflector is determined by the transition point between the two regions, where x = w p , so that y (w p ) = -f + w2 p / 4 f. The resulting reflector is a linear focus mirror with a total aperture width w.
El receptor abierto en forma de herradura que incorpora el colector solar (3), aprovecha la ventaja de la acción ascendente de las fuerzas de flotabilidad en los procesos de convección natural. De acuerdo con las figuras 3 y 4, el receptor se localiza sobre el punto focal del reflector (4) y comprende tres elementos principales: The horseshoe-shaped open receiver that incorporates the solar collector (3), takes advantage of the upward action of buoyancy forces in natural convection processes. According to Figures 3 and 4, the receiver is located on the focal point of the reflector (4) and comprises three main elements:
(i) El absorbedor metálico (5), por dentro del cual circula el fluido caloportador (6). La superficie interna del absorbedor, de geometría cóncava, abarca la mayor parte del perímetro de la cavidad (7). La forma de herradura del absorbedor queda definida, entre otros parámetros, por el ancho de la rendija de apertura (d). La superficie interior del absorbedor metálico que circunda la cavidad puede estar tratada con un recubrimiento selectivo, aunque los valores de absortancia y emitancia de esta superficie absorbedora no son tan críticos como en los diseños de tubos absorbedores convencionales, ya que la rendija es la única superficie por donde se pueden producir pérdidas radiantes. (i) The metallic absorber (5), through which the heat transfer fluid (6) circulates. The internal surface of the absorber, with a concave geometry, covers most of the perimeter of the cavity (7). The horseshoe shape of the absorber is defined, among other parameters, by the width of the opening slit (d). The interior surface of the metal absorber that surrounds the cavity may be treated with a selective coating, although the absorbance and emittance values of this absorber surface are not as critical as in conventional absorber tube designs, since the slit is the only surface. where radiant losses can occur.
(ii) El aislamiento térmico (8) reduce hasta niveles despreciables cualquier tipo de pérdida térmica a través perímetro exterior del absorbedor metálico (5). Este aislamiento queda cubierto y protegido de los agentes externos por una carcasa protectora (9). Además, una fracción del contorno inferior del aislamiento (8), está protegido por una pieza con recubrimiento selectivo (11) cuya función, además de proteger el aislamiento (8), es absorber la energía procedente de la fracción residual de rayos que no cruzan la rendija del absorbedor metálico (5) de anchura d. (ii) The thermal insulation (8) reduces to negligible levels any type of thermal loss through the outer perimeter of the metallic absorber (5). This insulation is covered and protected from external agents by a protective casing (9). In addition, a fraction of the lower contour of the insulation (8) is protected by a piece with selective coating (11) whose function, in addition to protecting the insulation (8), is to absorb the energy from the residual fraction of rays that do not cross. the slit of the metal absorber (5) of width d.
(iii) La pieza de vidrio (10) posee la doble función de redireccionar los rayos solares concentrados por el reflector primario y favorecer la estratificación del aire en la cavidad (7) incluso cuando el captador solar se inclina o existe viento exterior, reduciendo las pérdidas térmicas por convección. Esta pieza de vidrio puede ser de cierre parcial (formada por dos piezas simétricas)(iii) The piece of glass (10) has the double function of redirecting the solar rays concentrated by the primary reflector and favoring the stratification of the air in the cavity (7) even when the solar collector is tilted or there is an outside wind, reducing the thermal losses by convection. This piece of glass can be partially closed (formed by two symmetrical pieces)
(figura 3) o de cierre integral (figura 4). En función de esta configuración, la cavidad está abierta al exterior (pieza de vidrio de cierre parcial) o cerrada al exterior (pieza de vidrio de cierre integral). En cualquiera de los casos, la presión del aire en la cavidad es la misma que la exterior. La descripción general de la geometría de esta pieza de vidrio implica la determinación de sus dos contornos en coordenadas polares: (figure 3) or integral closure (figure 4). Based on this configuration, the cavity is open to the outside (partially closing glass part) or closed to the outside (integral closing glass part). In either case, the air pressure in the cavity is the same as outside. The general description of the geometry of this piece of glass involves the determination of its two contours in polar coordinates:
La pieza de vidrio (10) consiste en una pared cóncava de varios tramos, de espesor variable, en forma de arco invertido enfrentado al punto focal del reflector y la apertura del receptor. Tanto el contorno interno como el externo de esta pared sigue un patrón geométrico que puede ser definido en coordenadas polares r{6) siendo el origen del sistema de coordenadas el propio punto focal del reflector primario (4) y el ángulo Q definido como positivo en sentido horario con origen angular en la dirección horizontal (ver figuras 3 y 4). Atendiendo a la figura 1 , este patrón queda determinado por una función a trozos continua y derivable definida en el intervalo
Figure imgf000009_0001
The glass piece (10) consists of a concave wall of several sections, of variable thickness, in the shape of an inverted arc facing the focal point of the reflector and the opening of the receiver. Both the internal and external contours of this wall follow a geometric pattern that can be defined in polar coordinates r {6) with the origin of the coordinate system being the focal point of the primary reflector (4) and the angle Q defined as positive in clockwise with angular origin in the horizontal direction (see figures 3 and 4). Based on Figure 1, this pattern is determined by a continuous and differentiable piecewise function defined on the interval
Figure imgf000009_0001
1. T rozo 1 , correspondiente a la Región I (ver figuras 1 , 3 y 4) y definido en el intervalo
Figure imgf000009_0002
que pasa por los puntos extremos del intervalo
1. Stroke 1, corresponding to Region I (see figures 1, 3 and 4) and defined in the interval
Figure imgf000009_0002
passing through the end points of the interval
(0,R0,),(θa1, Ra). Este trozo de la función queda definido por un polinomio con tendencia creciente (Ra > R0 ). (0, R 0 ,), (θ a1 , R a ). This piece of the function is defined by a polynomial with increasing trend (R a > R 0 ).
2. Trozo 2, correspondiente a la transición entre la región I y II (Ta en la figura 1). Se trata de un spline (polinomio cúbico) que debe pasar por los puntos inicial yfinal del intervalo : (θa1, R)a,(θa2, Ra) además de garantizar que la función sea derivable en θ = θa1 y θa2. 2. Piece 2, corresponding to the transition between region I and II (T a in figure 1). It is a spline (cubic polynomial) that must pass through the initial and final points of the interval: (θ a1 , R) a , (θ a2 , R a ) in addition to ensuring that the function is differentiable at θ = θ a1 and θ a2 .
3. Trozo 3, correspondiente a la región II (ver figuras 1, 3 y 4) y definido en el intervalo que pasa por los puntos extremos del intervalo:
Figure imgf000009_0003
3. Piece 3, corresponding to region II (see figures 1, 3 and 4) and defined in the interval that passes through the extreme points of the interval:
Figure imgf000009_0003
a2 , Ra) ,(θb1, Rb) . Este trozo de la función queda definido por un polinomio con tendencia decreciente (Ra >Rb). a2 , R a ), (θ b1 , R b ). This piece of the function is defined by a polynomial with decreasing trend (R a > R b ).
4. Trozo 4, correspondiente a la transición entre la región II y III (Tb en la figura 1). Se trata de un spline (polinomio cúbico) que debe pasar por los puntos inicial yfinal del intervalo además de garantizar
Figure imgf000010_0001
que la función sea derivadle en θ = θb1 y θb2.
4. Piece 4, corresponding to the transition between region II and III (T b in figure 1). It is a spline (cubic polynomial) that must pass through the starting and ending points of the interval in addition to ensuring
Figure imgf000010_0001
let the function be derivative at θ = θ b1 and θ b2 .
5. Trozo 5, correspondiente a la región III (ver figuras 1 y 4) y definido en el intervalo que pasa por los puntos extremos del intervalo:
Figure imgf000010_0002
Figure imgf000010_0003
5. Piece 5, corresponding to region III (see figures 1 and 4) and defined in the interval that passes through the extreme points of the interval:
Figure imgf000010_0002
Figure imgf000010_0003
Debido a la tendencia en las regiones I y II de los contornos interno y externo de la pieza de vidrio, se configura una lente convergente con eje curvo cuya función es redireccionar los rayos que inciden de forma más oblicua sobre la rendija de entrada a la cavidad del absorbedor (5). La realización de la invención con pieza de vidrio de cierre parcial (figura 3) sólo está definida en las regiones I y II, esto es, entre los trozos 1 y 3, mientras que la realización con pieza de vidrio de cierre integral (figura 4) abarca las tres regiones y los cinco trozos. El concepto de receptor propuesto presenta las siguientes ventajas: Due to the tendency in regions I and II of the internal and external contours of the glass piece, a convergent lens with a curved axis is configured whose function is to redirect the rays that fall more obliquely on the entrance slit to the cavity absorber (5). The embodiment of the invention with a piece of glass with partial closure (figure 3) is only defined in regions I and II, that is, between pieces 1 and 3, while the embodiment with a piece of glass with an integral closure (figure 4 ) encompasses the three regions and the five pieces. The proposed receiver concept has the following advantages:
(i) Es un diseño más robusto, ya que, al no contar con cámara de vacío, los niveles de pérdidas térmicas no se ven afectados con el transcurso de los años de operación al degradarse el nivel de vacío. Al operar en un rango de temperaturas inferior al de los receptores convencionales, puede prescindirse del anillo de vacío y todas las complejidades que acarrea.(i) It is a more robust design, since, as it does not have a vacuum chamber, the levels of thermal losses are not affected over the years of operation as the vacuum level degrades. By operating in a lower temperature range than conventional receivers, the vacuum ring and all its associated complexities can be dispensed with.
(ii) Puede evitarse la aplicación de un recubrimiento selectivo de alta eficiencia sobre la superficie interior del absorbedor metálico (5). Téngase en cuenta que la rendija de anchurad, es la única área crítica a través de la cual existen pérdidas por radiación infrarroja. El ancho de esta rendija de apertura es significativamente inferior al perímetro de un absorbedor convencional.(ii) The application of a high efficiency selective coating on the inner surface of the metallic absorber (5) can be avoided. Note that the slit of width d is the only critical area through which there are losses by infrared radiation. The width of this opening slit is significantly less than the perimeter of a conventional absorber.
(iii) En caso de rotura en alguno de los tres elementos del receptor, no es necesario reemplazar todo el receptor, si no sólo el elemento afectado. Esto también facilita cualquier reparación. (iii) In case of breakage in any of the three elements of the receiver, it is not necessary to replace the entire receiver, but only the affected element. This also makes any repairs easier.
(iv) El material de aislamiento térmico (p. ej. lana de roca) hace que no exista flujo de calor por el contorno superior del absorbedor metálico (5), y por tanto contribuye a reducir la diferencia de temperatura entre el fluido y la pared superior del mismo, limitando el estrés térmico al que el absorbedor se ve sometido. Esto limita los gradientes térmicos en la pared metálica.(iv) The thermal insulation material (eg rock wool) means that there is no heat flow through the upper contour of the metal absorber (5), and therefore contributes to reducing the temperature difference between the fluid and the upper wall thereof, limiting the thermal stress to which the absorber is subjected. This limits the thermal gradients in the metal wall.
(v) No se necesitaría tipo alguno de fuelle, ya que los elementos van encajados, lo que permite el deslizamiento entre la cara superior de la pieza de vidrio y el resto de los elementos para compensar los diferentes coeficientes de dilatación. (v) No type of bellows would be needed, since the elements are embedded, This allows the sliding between the upper face of the glass piece and the rest of the elements to compensate for the different coefficients of expansion.
(vi) La superficie activa de intercambio térmico entre el absorbedor metálico y el fluido (con relación a la sección de paso) puede ser mayor, ya que la geometría del absorbedor puede modificarse sin afectar a la anchura d de la rendija de apertura. (vi) The active heat exchange surface between the metallic absorber and the fluid (in relation to the passage section) can be greater, since the geometry of the absorber can be modified without affecting the width d of the opening slit.
(vii) Es mucho más sencilla la instalación de sensores para monitorizar la temperatura del absorbedor metálico en diferentes puntos a través del aislamiento térmico superior. (vii) It is much easier to install sensors to monitor the temperature of the metallic absorber at different points through the upper thermal insulation.
(viii) En el caso de la pieza de vidrio de cierre parcial (figura 3), las dos partes simétricas situadas en los laterales redireccionan o refractan los rayos procedentes de la región exterior del reflector Este conjunto de rayos, que inciden de forma más oblicua sobre la base del receptor con forma de herradura y proceden de una región del reflector más distante, son los que más probabilidad tienen de alejarse del punto focal. Por su parte, los rayos procedentes del centro del reflector poseen una distribución menos dispersa y no necesitan ser redireccionados. A estos últimos rayos centrales (portadores de una fracción mayoritaria de la energía) se añade la ventaja de que no sufren pérdidas ópticas al no tener que cruzar la doble frontera aire-vidrio. (viii) In the case of the partially closed piece of glass (figure 3), the two symmetrical parts located on the sides redirect or refract the rays coming from the outer region of the reflector This set of rays, which strike more obliquely based on the horseshoe-shaped receiver and come from a more distant reflector region, they are the most likely to move away from the focal point. On the other hand, the rays coming from the center of the reflector have a less dispersed distribution and do not need to be redirected. To these last central rays (carriers of a majority fraction of the energy) is added the advantage that they do not suffer optical losses as they do not have to cross the double air-glass border.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
A continuación, se muestran realizaciones concretas de la invención, sin que estas realizaciones supongan una limitación respecto a lo que un experto entenderá como alcance de la invención. Cada una de ellas pretende mostrar las dos variantes más representativas que se derivan a partir de la presente invención. Below, specific embodiments of the invention are shown, without these embodiments implying a limitation as to what an expert will understand as the scope of the invention. Each one of them aims to show the two most representative variants that are derived from the present invention.
La figura 2 muestra el conjunto del reflector primario y receptor abierto con forma de herradura. La región parabólica o central del reflector (1) posee una distancia focal ( f = 2.1 m) mayor que el modelo de reflector convencional LS-3 con una semi-anchura de wp = 2.40 m. La región externa del reflector (2) es la solución a la citada ecuación diferencial ordinaria de primer orden donde a = 0.03 m, y δ = 5.5-10 -3 rad, de forma que la semi-anchura total del plano de apertura del reflector es de w = 2.88 m, que equivale a la anchura total del colector LS-3. La citada geometría de reflector es compatible con los dos modelos de receptor abierto y cerrado descritos anteriormente y expuestos en las figuras 3 y 4. Figure 2 shows the horseshoe-shaped open receiver and primary reflector assembly. The parabolic or central region of the reflector (1) has a focal length (f = 2.1 m) greater than the conventional LS-3 reflector model with a half-width of w p = 2.40 m. The external region of the reflector (2) is the solution to the aforementioned equation first-order ordinary differential where a = 0.03 m, and δ = 5.5-10 -3 rad, so that the total half-width of the reflector aperture plane is w = 2.88 m, which is equivalent to the total width of the collector LS-3. The aforementioned reflector geometry is compatible with the two open and closed receiver models described above and shown in Figures 3 and 4.
A- Receptor con pieza de vidrio de cierre parcial (figura. 3): Tal como se ha descrito, la pieza de vidrio de cierre parcial se compone de dos piezas simétricas (figura 3), de forma que la geometría de sus contornos se expresa mediante una función continua y derivable formada por tres trozos (Regiones I y II). Según este criterio, se define el radio del contorno interno, rinterno :
Figure imgf000012_0001
donde θa1 = 0.2655 rad, θa2 = 0.3310 rad, θb1 =1.04 rad.
A- Receiver with partially closed glass piece (figure. 3): As described, the partially closed glass piece is made up of two symmetrical pieces (figure 3), so that the geometry of its contours is expressed by means of a continuous and differentiable function formed by three pieces (Regions I and II). By this criterion, the radius of the inner contour is defined, internal r:
Figure imgf000012_0001
where θ a1 = 0.2655 rad, θ a2 = 0.3310 rad, θ b1 = 1.04 rad.
El contorno externo, se define de forma análoga a través del mismo modelo de función expresada en coordenadas polares:
Figure imgf000012_0002
donde θa1 = 0.2961 rad, θa2 = 0.3004 rad, θb1 =1.04 rad.
The external contour is defined in an analogous way through the same function model expressed in polar coordinates:
Figure imgf000012_0002
where θ a1 = 0.2961 rad, θ a2 = 0.3004 rad, θ b1 = 1.04 rad.
Gracias a la pieza de vidrio de cierre parcial se reducen las pérdidas ópticas en los rayos centrales que no cruzan ninguna frontera aire-vidrio. Si la temperatura de operación es lo suficientemente baja (< 150°C), las pérdidas térmicas son menos significativas frente a las ópticas, por lo que es conveniente un diseño que priorice reducir las pérdidas ópticas frente a las térmicas. Thanks to the partially closing glass part, optical losses in the central rays that do not cross any air-glass border are reduced. If the operating temperature is low enough (<150 ° C), the thermal losses are less significant compared to the optics, so a design that prioritizes reducing losses is desirable. optical versus thermal.
B- Receptor con pieza de vidrio de cierre integral (figura. 4): Tal como se ha descrito y se representa en la figura 4, la geometría de la pieza de vidrio de cierre integral (10) se expresa mediante una función continua y derivable formada por 5 trozos. Según este criterio, se define el radio del contorno interno, rinterno :
Figure imgf000013_0001
donde θa1 = 0.2037 rad, θa2 = 0.3433 rad, θb1 = 0.9684 rad y θb2 = 1.108 rad.
B- Receiver with integral closure glass part (figure. 4): As described and represented in figure 4, the geometry of the integral closure glass part (10) is expressed by a continuous and differentiable function made up of 5 pieces. By this criterion, the radius of the inner contour is defined, internal r:
Figure imgf000013_0001
where θ a1 = 0.2037 rad, θ a2 = 0.3433 rad, θ b1 = 0.9684 rad and θ b2 = 1.108 rad.
El contorno externo se define de forma análoga a través del mismo modelo de función expresada en coordenadas polares:
Figure imgf000013_0002
donde θa1 = 0.2540 rad, θa2 = 0.3936 rad, θb1 = 0.9709 rad y θb2 =1.1105 rad. Gracias a la configuración de la pieza de vidrio de cierre integral se protege la estratificación del aire existente en la cavidad, estando, por tanto, este diseño indicado para un rango medio de temperaturas (150-300°C) donde el cierre de la cavidad tiene la finalidad de reducir las pérdidas térmicas, pero a expensas de mayores pérdidas ópticas, ya que todos los rayos deben cruzar la interfase aire-vidrio.
The external contour is defined in an analogous way through the same function model expressed in polar coordinates:
Figure imgf000013_0002
where θ a1 = 0.2540 rad, θ a2 = 0.3936 rad, θ b1 = 0.9709 rad and θ b2 = 1.1105 rad. Thanks to the configuration of the piece of glass with integral closure, the stratification of the air existing in the cavity is protected, therefore, this design is indicated for a medium range of temperatures (150-300 ° C) where the closure of the cavity it is intended to reduce thermal losses, but at the expense of higher optical losses, since all rays must cross the air-glass interface.

Claims

REIVINDICACIONES
1. Colector de foco lineal que comprende un reflector primario (1 , 2) y un receptor de cavidad con forma de herradura (3) caracterizado por que: el reflector posee una región central (1) de sección parabólica, con una distancia focal f y semi-anchura del plano de apertura wp y dos extremos (2) que tienen la forma de una parábola modificada, siendo su geometría y(x) la solución a una ecuación diferencial ordinaria de primer orden
Figure imgf000014_0001
que depende de los parámetros a , del mismo orden que la apertura de la rendija del receptor), y d , del mismo orden que el semiángulo del cono solar, donde el origen de coordenadas se encuentra en el punto focal de la parábola (4); y el receptor comprende un absorbedor metálico (5) rodeado por un aislante térmico (8) y está delimitado en su parte inferior por una pieza de vidrio (10) cóncava enfrentada al punto focal del reflector conformada por varios tramos en forma de arco invertido de espesor variable, cuyos contornos siguen un patrón definido mediante funciones polinómicas a trozos continuas y derivables.
1. Linear focus collector comprising a primary reflector (1, 2) and a horseshoe-shaped cavity receiver (3) characterized in that: the reflector has a central region (1) with a parabolic section, with a focal length fy half-width of the aperture plane w p and two ends (2) that have the shape of a modified parabola, with its geometry y (x) being the solution to an ordinary first-order differential equation
Figure imgf000014_0001
which depends on the parameters a, of the same order as the opening of the receiver slit), and d, of the same order as the semi-angle of the solar cone, where the origin of coordinates is at the focal point of the parabola (4); and the receiver comprises a metallic absorber (5) surrounded by a thermal insulator (8) and is delimited in its lower part by a concave piece of glass (10) facing the focal point of the reflector formed by several sections in the shape of an inverted arc of variable thickness, whose contours follow a pattern defined by continuous and differentiable piecewise polynomial functions.
2. Colector según la reivindicación 1 donde el radio del contorno interno de la pieza de vidrio (10) se define como:
Figure imgf000014_0002
donde θa1 = 0.2655 rad, θa2 = 0.3310 rad, θb1 =1.04 rad; y el contorno externo tiene un radio definido por:
Figure imgf000015_0001
donde θa1 =0.2961 rad, θa2 =0.3004 rad, θb1 =1.04 rad.
2. Collector according to claim 1 where the radius of the internal contour of the glass piece (10) is defined as:
Figure imgf000014_0002
where θ a1 = 0.2655 rad, θ a2 = 0.3310 rad, θ b1 = 1.04 rad; and the outer contour has a radius defined by:
Figure imgf000015_0001
where θ a1 = 0.2961 rad, θ a2 = 0.3004 rad, θ b1 = 1.04 rad.
3. Colector según la reivindicación 2 donde el radio del contorno interno de la pieza de vidrio (10) se define como:
Figure imgf000015_0002
donde θa1 =0.2037 rad, θa2 =0.3433 rad, θb1 =0.9684 rad y θb2 =1.108 rad; y el contorno externo tiene un radio definido por:
Figure imgf000015_0003
donde θa1 =0.2540 rad, θa2 =0.3936 rad, θb1 =0.9709 rad y θb2 =1.1105 rad.
3. Collector according to claim 2 where the radius of the internal contour of the glass piece (10) is defined as:
Figure imgf000015_0002
where θ a1 = 0.2037 rad, θ a2 = 0.3433 rad, θ b1 = 0.9684 rad and θ b2 = 1.108 rad; and the outer contour has a radius defined by:
Figure imgf000015_0003
where θ a1 = 0.2540 rad, θ a2 = 0.3936 rad, θ b1 = 0.9709 rad and θ b2 = 1.1105 rad.
4. Colector según cualquiera de las reivindicaciones anteriores donde el receptor está cubierto por un aislante térmico (8). 4. Collector according to any of the preceding claims wherein the receiver is covered by a thermal insulator (8).
5. Colector según la reivindicación 4 donde el aislante térmico (8) está cubierto por una carcasa protectora (9) y una fracción del contorno inferior del aislamiento (8) está protegido por una pieza con recubrimiento selectivo (11). 5. Collector according to claim 4 wherein the thermal insulator (8) is covered by a protective casing (9) and a fraction of the lower contour of the insulation (8) is protected by a piece with selective coating (11).
PCT/ES2021/070040 2020-01-22 2021-01-22 Linear-focus solar collector with horseshoe-shaped open receiver WO2021148701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030051A ES2844999B2 (en) 2020-01-22 2020-01-22 Linear focus solar collector with horseshoe-shaped open receiver
ESP202030051 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021148701A1 true WO2021148701A1 (en) 2021-07-29

Family

ID=76920414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070040 WO2021148701A1 (en) 2020-01-22 2021-01-22 Linear-focus solar collector with horseshoe-shaped open receiver

Country Status (3)

Country Link
ES (1) ES2844999B2 (en)
GB (1) GB2604529B (en)
WO (1) WO2021148701A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1661473A (en) * 1924-06-10 1928-03-06 Robert H Goddard Accumulator for radiant energy
DE2601413A1 (en) * 1976-01-15 1977-07-21 Valentin Rosel Solar energy collector with lens mounted on open top hollow component - has ray angle adjustable component heat lagged and lined in reflecting foil
US20100043779A1 (en) * 2008-08-20 2010-02-25 John Carroll Ingram Solar Trough and Receiver
CN101706161A (en) * 2009-11-25 2010-05-12 哈尔滨工业大学 Cavity type solar heat absorber provided with optical window
WO2014068755A1 (en) * 2012-11-01 2014-05-08 Jfeスチール株式会社 Solar light heat collecting tube and solar light heat collector using same
CN105841363A (en) * 2016-04-30 2016-08-10 华南理工大学 Semi-embedding type eight-shaped cavity type solar receiver and working method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222970A1 (en) * 2008-03-04 2009-09-10 Rhonda Hayes Coleman Versatile Tees with Extensions
JP5763259B1 (en) * 2014-12-22 2015-08-12 精巧株式会社 Cuff structure of elastic clothing
ITUA20163086A1 (en) * 2016-05-02 2017-11-02 Mirabella & Cremona S R L CLOTHING ITEM AND MULTILAYER FABRIC FOR CLOTHING ITEMS
CN207613224U (en) * 2017-11-16 2018-07-17 北京保罗盛世服装服饰有限公司 POLO shirts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1661473A (en) * 1924-06-10 1928-03-06 Robert H Goddard Accumulator for radiant energy
DE2601413A1 (en) * 1976-01-15 1977-07-21 Valentin Rosel Solar energy collector with lens mounted on open top hollow component - has ray angle adjustable component heat lagged and lined in reflecting foil
US20100043779A1 (en) * 2008-08-20 2010-02-25 John Carroll Ingram Solar Trough and Receiver
CN101706161A (en) * 2009-11-25 2010-05-12 哈尔滨工业大学 Cavity type solar heat absorber provided with optical window
WO2014068755A1 (en) * 2012-11-01 2014-05-08 Jfeスチール株式会社 Solar light heat collecting tube and solar light heat collector using same
CN105841363A (en) * 2016-04-30 2016-08-10 华南理工大学 Semi-embedding type eight-shaped cavity type solar receiver and working method thereof

Also Published As

Publication number Publication date
GB2604529A (en) 2022-09-07
ES2844999A1 (en) 2021-07-23
GB2604529B (en) 2023-12-06
ES2844999B2 (en) 2021-12-16
GB202207874D0 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
ES2281844T3 (en) SOLAR COLLECTOR.
ES2444720T3 (en) Solar collector
ES2375389B1 (en) FRESNEL TYPE SOLAR CONCENTRATION PLANT WITH OPTIMIZED SECONDARY RECONCENTRATOR.
ES2767779T3 (en) Supports for suspended concentrators and solar receivers for enhanced oil recovery, and associated systems and methods
ES2527320T3 (en) Central tube for a linear concentration solar thermal power plant with absorbent layer as well as a procedure for applying this absorbent layer
ES2786056T3 (en) Absorber tube
ES2359560B1 (en) NEW EXPANSION COMPENSATOR DEVICE AND MANUFACTURING PROCEDURE OF THE SAME.
US20120017887A1 (en) Receiver pipe
US20130220308A1 (en) Novel arrangement of non-evaporable getters for a tube solar collector
US20120012102A1 (en) Solar power concentrating system
US20110114082A1 (en) Heat exchanging structure of solar heat exchanger
ES2844999B2 (en) Linear focus solar collector with horseshoe-shaped open receiver
ES2364476T3 (en) RADIATION CONCENTRATOR DEVICE.
WO2015089273A1 (en) Advanced cavity receivers for parabolic solar troughs
WO2013190154A1 (en) Mixed heliostat field
ES2774176T3 (en) Intermediate housing for a gas turbine
WO2015101692A1 (en) Hybrid system comprising a thermosolar parametric cylinder and a photovoltaic receiver
ES2844976B2 (en) Double cavity receiver for linear focus solar collectors
WO2010146201A1 (en) Tower for solar concentration plant with natural draught cooling
ES2831649T3 (en) Low cost focusing system allowing high concentrations
ES2650287B1 (en) SOLAR ENERGY CONDENSING SYSTEM, WITH LIQUID LENS OF THE CYLINDRICAL TYPE AND ABSORBENT TYPE &#34;BLACK BODY&#34;
WO2016108156A1 (en) Solar pre-heating system for liquids, having a thermosyphon opening and concentrating nano-lenses and convective accelerators
ES2557735T3 (en) Receiver for solar power plant with extended life
ES2370731A1 (en) Concave receiver for stirling dish and manufacturing method therefor
ES2944338T3 (en) Finned absorber for absorbing incident radiation and solar sensor comprising the absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744178

Country of ref document: EP

Kind code of ref document: A1