WO2021148226A1 - Brennstoffzellensystemverbund - Google Patents

Brennstoffzellensystemverbund Download PDF

Info

Publication number
WO2021148226A1
WO2021148226A1 PCT/EP2020/087906 EP2020087906W WO2021148226A1 WO 2021148226 A1 WO2021148226 A1 WO 2021148226A1 EP 2020087906 W EP2020087906 W EP 2020087906W WO 2021148226 A1 WO2021148226 A1 WO 2021148226A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
coolant
line
system assembly
Prior art date
Application number
PCT/EP2020/087906
Other languages
English (en)
French (fr)
Inventor
Bernhard ZICKGRAF
Sebastian NUBER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP20841943.2A priority Critical patent/EP4094317A1/de
Priority to CN202080094218.1A priority patent/CN115004424A/zh
Priority to US17/794,247 priority patent/US20230073323A1/en
Publication of WO2021148226A1 publication Critical patent/WO2021148226A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a fuel cell system assembly with the features of the preamble of claim 1.
  • a fuel cell system assembly comprises several coupled fuel cell systems that can be operated at different load points.
  • a fuel cell system oxidizes a fuel, for example hydrogen, by combining it with oxygen. During this process, electrons are released and an electrical voltage builds up, which can be used to perform electrical work by applying it to a suitable resistor. With a continuous supply of fuel and oxygen, this process can run for almost any length of time.
  • the electrochemical process taking place in a fuel cell system is lossy, as part of the energy contained in the fuel is converted into heat. This must be removed with the help of a suitable cooling device in order to maintain the efficiency and service life of the system.
  • the amount of heat to be dissipated depends, among other things, on the operating parameters of the system.
  • a frequently used cooling method is the connection of the fuel cell system to a cooling circuit.
  • the coolant of the cooling circuit is pumped through suitable channels of the fuel cell system, so that it absorbs heat on its way through the system and transports it away.
  • the absorbed heat is then removed from the coolant again by means of a suitable cooling device, for example a heat exchanger, so that it can be used again to cool the fuel cell system.
  • a suitable cooling device for example a heat exchanger
  • ancillary units that use the waste heat of the fuel cell system, for example to heat a passenger compartment, and / or heat up the fuel cell system when starting at low outside temperatures.
  • the present invention is therefore based on the object of facilitating the integration of at least one auxiliary unit in an assembly comprising several fuel cell systems. Furthermore, the efficiency of the auxiliary unit is to be increased.
  • a fuel cell system network which comprises at least two coupled fuel cell systems that can be operated at different load points.
  • Each fuel cell system is connected to a cooling circuit with a circulating coolant via a coolant supply line and a coolant discharge line.
  • the cooling circuits are also coupled, specifically via a common return line, via which the coolant supply lines can be supplied with coolant.
  • a return with at least one auxiliary unit is also connected to the common return line.
  • the auxiliary unit can be, for example, an electrical heating device and / or a heating heat exchanger.
  • auxiliary unit is an electrical see heating device, it can be used to heat up all coupled fuel cell systems during a cold start. This is because coolant heated by the electrical heating device reaches the common return line via the return and is distributed from here to the coolant supply lines of the individual fuel cell systems.
  • One electrical heating device can thus be used as a parking heater for all fuel cell systems. As a result, the efficiency of the electric heater can be increased.
  • At least two auxiliary units are preferably connected to the common return line via the return. These can be connected in parallel or in series.
  • an electrical heating device as the first auxiliary unit and a heating heat exchanger as the second auxiliary unit are seen before.
  • a cabin heating can be implemented.
  • the heating heat exchanger can use the heat from the fuel cell systems for this purpose.
  • the heating heat exchanger is connected on the inlet side - at least indirectly - to at least onedemit telab discoursetechnisch of a fuel cell system.
  • the coolant discharge lines of the fuel cell systems can each be connected to the corresponding coolant supply line of the respective fuel cell system via a branch valve and a branch line.
  • coolant discharged or heated from the fuel cell systems can be introduced into the coolant supply lines in order to control the temperature thereof.
  • the temperature control for each system can be carried out individually, preferably depending on the load.
  • the branch valves are preferably designed as 3/2-way valves and / or are continuously adjustable.
  • the branch lines carry heated coolant
  • an inlet of the at least one auxiliary unit be connected to at least one branch line.
  • the waste heat from the fuel cell system can be used to increase the efficiency of the auxiliary unit.
  • the auxiliary unit is preferably a heating heat exchanger and / or an electrical see heater.
  • the auxiliary unit is advantageously connected to all branch lines on the inlet side, so that the waste heat from all fuel cell systems is used.
  • a pump is preferably arranged in the inlet.
  • This can be, for example, a simple pump that is constructed in the manner of a water pump.
  • a pump is also preferably arranged in each of the coolant supply lines of the fuel cell systems. Via the coolant volume flows generated with the aid of the pumps, a defined amount of coolant is branched off from the common return line and fed to the respective fuel cell system. With the help of the pumps, the coolant can therefore be distributed to the various cooling circuits.
  • heated coolant can be sucked in from the respective branch lines with the help of the pumps.
  • the branch lines of the fuel cell systems therefore preferably open into the respective coolant supply line upstream of the pump.
  • At least one heat exchanger is advantageously arranged in the cooling circuits or in the common return line. With the help of the heat exchanger, the heat can be withdrawn from heated coolant that is discharged from a fuel cell system via a coolant discharge line. If each cooling circuit has a heat exchanger, this is arranged upstream of the common return line. Alternatively, a heat exchanger for several cooling circuits can be arranged in the common return line. In this way, the space requirement can be further reduced.
  • Fig. 1 is a schematic representation of a fuel cell system composite according to the invention
  • FIG. 2 shows an enlarged section of FIG. 2 in the area of the connected ancillary units
  • a fuel cell system assembly which comprises two fuel cell systems A and B can be seen from FIG. 1 by way of example.
  • Each fuel cell system A, B can be operated at a different load point.
  • the cooling requirements of the fuel cell systems A, B can vary.
  • a cooling circuit 3A, 3B is therefore assigned to each fuel cell system A, B, the cooling circuits 3A, 3B being coupled via a common return line 4 in the present case. The same coolant therefore circulates in both cooling circuits 3A, 3B.
  • the first fuel cell system A is connected to the cooling circuit 3A via a first coolant supply line 1A and a first coolant discharge line 2A.
  • the second fuel cell system B is connected to the cooling circuit 3B via a second coolant supply line 1B and a second coolant discharge line 2B.
  • a heat exchanger 12A, 12B is arranged to extract heat from heated coolant that is introduced into the respective cooling circuit 3A, 3B from a fuel cell system A, B via the respective coolant discharge line 2A, 2B.
  • the heat exchangers 12A, 12B are each received upstream of the common return line 4 in the respective cooling circuit 3A, 3B.
  • a heat exchanger 12 can be arranged in the common return line 4.
  • the Coolant supply lines 1A, 1B heated coolant from the coolant discharge lines 2A, 2B are introduced.
  • the coolant discharge lines 2A, 2B are each connected to the corresponding coolant supply line 1A, 1B via a branch valve 7A, 7B and a branch line 8A, 8B.
  • the branch lines 8A, 8B each open upstream of a pump 11A, 11B into the respective coolant supply line 1A, 1B.
  • the fuel cell system assembly shown in FIG. 1 also has two ancillary units 6 which are integrated into a secondary circuit comprising an inlet 9 and a return 5.
  • the secondary circle is shown greatly enlarged in FIG.
  • the auxiliary units 6 are connected to the branch lines 8A, 8B via the inlet 9, which has several branches. Via a pump 10 arranged in the inlet 9, coolant is fed to the auxiliary units 6 from the branch lines 8A, 8B.
  • the auxiliary units 6 are in the present case connected in paral lel, but can also be connected in series, as shown by way of example in FIG.
  • the secondary units 6 are connected to the common return line 4 via the return 5 of the secondary circuit.
  • the auxiliary units 6 are in the present case an electrical heating device 6.1, by means of which the fuel cell systems A, B can be supplied with heated coolant during a cold start.
  • the electrical Schuein direction 6.1 can thus be used as a parking heater for all fuel cell systems A, B.
  • the amount of coolant heated by means of the electrical heating device 6.1 also only has to cover a short coolant path to the fuel cell systems A, B. Furthermore, only a comparatively small amount of coolant needs to be heated, so that the efficiency of the auxiliary heating is increased.
  • the second auxiliary unit 6 is a heating heat exchanger 6.2, which uses the waste heat from the fuel cell systems A, B to heat a passenger compartment.
  • heated coolant from the fuel cell systems A, B is fed to the heating system heat exchanger 6.2 via the branch lines 8A, 8B and the inlet 9. In this way the waste heat from the fuel cell systems A, B can be used to increase the efficiency of the heating heat exchanger 6.2.

Abstract

Die Erfindung betrifft einen Brennstoffzellensystemverbund, umfassend mindestens zwei gekoppelte und bei unterschiedlichen Lastpunkten betreibbare Brennstoffzellensysteme (A, B), wobei jedes Brennstoffzellensystem (A, B) über eine Kühlmittelzuführleitung (1A, 1B) und eine Kühlmittelabführleitung (2A, 2B) an jeweils einen Kühlkreis (3A, 3B) mit einem zirkulierenden Kühlmittel angeschlossen ist. Erfindungsgemäß sind die Kühlkreise (3A, 3B) über eine gemeinsame Rückführleitung (4), über welche die Kühlmittelzuführleitungen (1A, 1B) mit Kühlmittel versorgbar sind, gekoppelt, wobei an die gemeinsame Rücklaufleitung (4) ein Rücklauf mindestens eines Nebenaggregats (5, 6), beispielsweise einer elektrischen Heizeinrichtung (5) und/oder eines Heizungswärmetauschers (6), angeschlossen ist.

Description

Beschreibung
Brennstoffzellensystemverbund
Die Erfindung betrifft einen Brennstoffzellensystemverbund mit den Merkmalen des Oberbegriffs des Anspruchs 1. Ein derartiger Brennstoffzellensystemverbund umfasst mehrere gekoppelte und bei unterschiedlichen Lastpunkten betreibbare Brennstoffzellensysteme.
Stand der Technik
Ein Brennstoffzellensystem oxidiert einen Brennstoff, beispielsweise Wasserstoff, durch Zusammenführen mit Sauerstoff. Bei diesem Prozess werden Elektronen frei und es baut sich eine elektrische Spannung auf, die durch Anlegen an einen geeigneten Widerstand zum Verrichten von elektrischer Arbeit verwendet werden kann. Bei kontinuierlicher Zufuhr von Brennstoff und Sauerstoff kann dieser Vor gang nahezu beliebig lange ablaufen.
Der in einem Brennstoffzellensystem ablaufende elektrochemische Prozess ist verlustbehaftet, da ein Teil der im Brennstoff enthaltenen Energie in Wärme um gewandelt wird. Diese gilt es mit Hilfe einer geeigneten Kühleinrichtung abzufüh ren, um den Wirkungsgrad und die Lebensdauer des Systems zu erhalten. Die Menge der abzuführenden Wärme hängt unter anderem von den Betriebspara metern des Systems ab.
Eine häufig eingesetzte Kühlmethode ist die Anbindung des Brennstoffzellensys tems an einen Kühlkreis. Das Kühlmittel des Kühlkreises wird durch geeignete Kanäle des Brennstoffzellensystems gepumpt, so dass es auf seinem Weg durch das System Wärme aufnimmt und abtransportiert. Die aufgenommene Wärme wird anschließend mittels einer geeigneten Kühleinrichtung, beispielsweise ei nem Wärmeübertrager, dem Kühlmittel wieder entnommen, so dass es erneut zur Kühlung des Brennstoffzellensystems einsetzbar ist. In den Kühlkreis sind dabei regelmäßig Nebenaggregate eingebunden, welche die Abwärme des Brennstoffzellensystems nutzen, beispielsweise zum Beheizen eines Fahrgast raums, und/oder das Brennstoffzellensystem im Startfall bei tiefen Außentempe raturen aufheizen.
Werden mehrere Brennstoffzellensysteme zur Abdeckung eines erhöhten Leis tungsbedarfs zu einem Verbund gekoppelt, erweist sich die erforderliche Kühlung der Systeme aufgrund von Bauraumbeschränkungen häufig als schwierig. Soll zudem mindestens ein Nebenaggregat in das Kühlsystem eingebunden werden, steigt die Komplexität weiter.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, die Einbindung mindestens eines Nebenaggregats in einen mehrere Brennstoffzellensysteme umfassenden Verbund zu erleichtern. Ferner soll die Effizienz des Nebenaggre gats gesteigert werden.
Zur Lösung der Aufgabe wird der Brennstoffzellensystemverbund mit den Merk malen des Anspruchs 1 angegeben. Vorteilhafte Ausführungsformen der Erfin dung sind den Unteransprüchen zu entnehmen.
Offenbarung der Erfindung
Vorgeschlagen wird ein Brennstoffzellensystemverbund, der mindestens zwei gekoppelte und bei unterschiedlichen Lastpunkten betreibbare Brennstoffzellen systeme umfasst. Jedes Brennstoffzellensystem ist über eine Kühlmittelzuführlei- tung und eine Kühlmittelabführleitung an jeweils einen Kühlkreis mit einem zirku lierenden Kühlmittel angeschlossen. Erfindungsgemäß sind die Kühlkreise eben falls gekoppelt, und zwar über eine gemeinsame Rückführleitung, über welche die Kühlmittelzuführleitungen mit Kühlmittel versorgbar sind. An die gemeinsame Rücklaufleitung ist zudem ein Rücklauf mit mindestens einem Nebenaggregat angeschlossen. Bei dem Nebenaggregat kann es sich beispielsweise um eine elektrische Heizeinrichtung und/oder einen Heizungswärmetauscher handeln.
Durch Kopplung der Kühlkreise werden Leitungslängen eingespart, so dass sich der Bauraumbedarf und die Kosten verringern. Zugleich kann die Kühlmittelmen ge reduziert werden. Handelt es sich bei dem Nebenaggregat um eine elektri- sehe Heizeinrichtung, kann diese bei einem Kaltstart zum Aufheizen aller gekop pelten Brennstoffzellensysteme genutzt werden. Denn über die elektrische Heiz einrichtung erwärmtes Kühlmittel gelangt über den Rücklauf in die gemeinsame Rückführleitung und wird von hier aus auf die Kühlmittelzuführleitungen der ein zelnen Brennstoffzellensysteme verteilt. Die eine elektrische Heizeinrichtung kann somit als Standheizung für alle Brennstoffzellensysteme eingesetzt werden. Im Ergebnis kann somit die Effizienz der elektrischen Heizeinrichtung gesteigert werden.
Bevorzugt sind über den Rücklauf mindestens zwei Nebenaggregate an die ge meinsame Rückführleitung angeschlossen. Diese können parallel oder in Reihe geschaltet sein. Bevorzugt sind eine elektrische Heizeinrichtung als erstes Ne benaggregat und ein Heizungswärmetauscher als zweites Nebenaggregat vor gesehen. Mit Hilfe des Heizungswärmetauschers kann beispielsweise eine Kabi nenheizung realisiert werden. Der Heizungswärmetauscher kann hierzu die Ab wärme der Brennstoffzellensysteme nutzen. Bevorzugt ist daher der Heizungs wärmetauscher zulaufseitig - zumindest mittelbar - an mindestens eine Kühlmit telabführleitung eines Brennstoffzellensystems angeschlossen.
In Weiterbildung der Erfindung wird vorgeschlagen, dass die Kühlmittelabführlei tungen der Brennstoffzellensysteme jeweils über ein Abzweigventil und eine Ab zweigleitung mit der entsprechenden Kühlmittelzuführleitung des jeweiligen Brennstoffzellensystems verbindbar sind. In die Kühlmittelzuführleitungen kann somit aus den Brennstoffzellensystemen abgeführtes bzw. erwärmtes Kühlmittel eingeleitet werden, um dieses zu temperieren. Da jedes Brennstoffzellensystem mit einem eigenen Abzweigventil und einer eigenen Abzweigleitung ausgestattet ist, kann die Temperierung für jedes System individuell, und zwar vorzugsweise lastabhängig vorgenommen werden. Die Abzweigventile sind hierzu bevorzugt als 3/2-Wegeventile ausgeführt und/oder stufenlos verstellbar.
Da die Abzweigleitungen erwärmtes Kühlmittel führen, wird als weiterbildende Maßnahme ferner vorgeschlagen, dass ein Zulauf des mindestens einen Neben- aggregats an mindestens eine Abzweigleitung angeschlossen ist. Auf diese Wei se kann die Abwärme des Brennstoffzellensystems zur Effizienzsteigerung des Nebenaggregats genutzt werden. Bei dem Nebenaggregat handelt es sich in die sem Fall vorzugsweise um einen Heizungswärmetauscher und/oder eine elektri- sehe Heizeinrichtung. Vorteilhafterweise ist das Nebenaggregat zulaufseitig an alle Abzweigleitungen angeschlossen, so dass die Abwärme aller Brennstoffzel lensysteme genutzt wird.
Um dem Nebenaggregat eine definierte Menge an erwärmtem Kühlmittel zuzu führen, ist vorzugsweise im Zulauf eine Pumpe angeordnet. Hierbei kann es sich beispielsweise um eine einfache Pumpe handeln, die nach Art einer Wasser pumpe aufgebaut ist.
Des Weiteren bevorzugt ist auch in den Kühlmittelzuführleitungen der Brennstoff zellensysteme jeweils eine Pumpe angeordnet. Über die mit Hilfe der Pumpen erzeugten Kühlmittelvolumenströme wird jeweils eine definierte Menge an Kühl mittel aus der gemeinsamen Rückführleitung abgezweigt und dem jeweiligen Brennstoffzellensystem zugeführt. Mit Hilfe der Pumpen kann demnach das Kühlmittel auf die verschiedenen Kühlkreise verteilt werden.
Ferner kann mit Hilfe der Pumpen erwärmtes Kühlmittel aus den jeweiligen Ab zweigleitungen angesaugt werden. Bevorzugt münden daher die Abzweigleitun gen der Brennstoffzellensysteme jeweils stromaufwärts der Pumpe in die jeweili ge Kühlmittelzuführleitung.
Vorteilhafterweise ist in den Kühlkreisen oder in der gemeinsamen Rückführlei tung mindestens ein Wärmeübertrager angeordnet. Mit Hilfe des Wärmeübertra gers kann erwärmtem Kühlmittel, das über eine Kühlmittelabführleitung aus ei nem Brennstoffzellensystem abgeführt wird, die Wärme wieder entzogen werden. Sofern jeder Kühlkreis einen Wärmeübertrager aufweist, ist dieser jeweils strom aufwärts der gemeinsamen Rückführleitung angeordnet. Alternativ kann ein Wärmeübertrager für mehrere Kühlkreise in der gemeinsamen Rückführleitung angeordnet werden. Auf diese Weise kann der Bauraumbedarf weiter gesenkt werden.
Über den mindestens einen Wärmeübertrager gelangt eine definierte Menge an gekühltem Kühlmittel in die gemeinsame Rückführleitung, die sich dort mit einer definierten Menge an erwärmtem Kühlmittel aus den Abzweigleitungen ver mischt. Die Erfindung wird nachfolgend anhand der beigefügten Zeichnungen näher er läutert. Diese zeigen:
Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Brennstoffzel lensystemverbunds,
Fig. 2 einen vergrößerten Ausschnitt der Fig. 2 im Bereich der angeschlosse nen Nebenaggregate und
Fig. 3 eine Abwandlung der in der Fig. 2 dargestellten Ausführungsform. Ausführliche Beschreibung der Zeichnungen
Der Fig. 1 ist beispielhaft ein Brennstoffzellensystemverbund zu entnehmen, das zwei Brennstoffzellensysteme A und B umfasst. Jedes Brennstoffzellensystem A, B kann bei einem unterschiedlichen Lastpunkt betrieben werden. Demzufolge kann der Kühlbedarf der Brennstoffzellensysteme A, B variieren. Jedem Brenn stoffzellensystem A, B ist daher ein Kühlkreis 3A, 3B zugeordnet, wobei vorlie gend die Kühlkreise 3A, 3B über eine gemeinsame Rückführleitung 4 gekoppelt sind. In beiden Kühlkreisen 3A, 3B zirkuliert demnach dasselbe Kühlmittel.
Das erste Brennstoffzellensystem A ist über eine erste Kühlmittelzuführleitung 1A und eine erste Kühlmittelabführleitung 2A an den Kühlkreis 3A angeschlossen. Das zweite Brennstoffzellensystem B ist über eine zweite Kühlmittelzuführlei tung 1B und eine zweite Kühlmittelabführleitung 2B an den Kühlkreis 3B ange schlossen. In jedem Kühlkreis 3A, 3B ist ein Wärmeübertrager 12A, 12B ange ordnet, um erwärmtem Kühlmittel, das aus einem Brennstoffzellensystem A, B über die jeweilige Kühlmittelabführleitung 2A, 2B in den jeweiligen Kühlkreis 3A, 3B eingeleitet wird, Wärme zu entziehen. Die Wärmeübertrager 12A, 12B sind jeweils stromaufwärts der gemeinsamen Rückführleitung 4 im jeweiligen Kühl kreis 3A, 3B aufgenommen. Alternativ kann ein Wärmeübertrager 12 in der ge meinsamen Rückführleitung 4 angeordnet werden.
Um die Temperatur des Kühlmittels in den jeweiligen Kühlmittelzuführleitun- gen 1A, 1B der Brennstoffzellensystems A, B individuell einzustellen, kann in die Kühlmittelzuführleitungen 1A, 1B erwärmtes Kühlmittel aus den Kühlmittelabführ leitungen 2A, 2B eingeleitet werden. Die Kühlmittelabführleitungen 2A, 2B sind hierzu jeweils über ein Abzweigventil 7A, 7B und eine Abzweigleitung 8A, 8B mit der entsprechenden Kühlmittelzuführleitung 1A, 1B verbunden. Die Abzweiglei tungen 8A, 8B münden jeweils stromaufwärts einer Pumpe 11A, 11B in die jewei lige Kühlmittelzuführleitung 1A, 1B. Mit Hilfe der Pumpen 11A, 11B kann jedem Brennstoffzellensystem A, B die aktuell benötigte Menge an Kühlmittel zugeführt werden.
Der in der Fig. 1 dargestellte Brennstoffzellensystemverbund weist darüber hin aus zwei Nebenaggregate 6 auf, die in einen Nebenkreis, umfassend einen Zu lauf 9 und einen Rücklauf 5, integriert sind. Der Nebenkreis ist stark vergrößert in der Fig. 2 dargestellt. Über den Zulauf 9, der mehrere Zweige aufweist, sind die Nebenaggregate 6 an die Abzweigleitungen 8A, 8B angeschlossen. Über eine im Zulauf 9 angeordnete Pumpe 10 wird den Nebenaggregaten 6 Kühlmittel aus den Abzweigleitungen 8A, 8B zugeführt. Die Nebenaggregate 6 sind vorliegend paral lel geschaltet, können jedoch auch in Reihe geschaltet werden, wie beispielhaft in der Fig. 3 dargestellt. Über den Rücklauf 5 des Nebenkreises sind die Neben- aggregate 6 an die gemeinsame Rückführleitung 4 angeschlossen.
Bei den Nebenaggregaten 6 handelt es sich vorliegend um eine elektrische Hei zeinrichtung 6.1, mittels welcher den Brennstoffzellensystemen A, B bei einem Kaltstart erwärmtes Kühlmittel zugeführt werden kann. Die elektrische Heizein richtung 6.1 kann somit als Standheizung für alle Brennstoffzellensysteme A, B genutzt werden. Die mittels der elektrischen Heizeinrichtung 6.1 erwärmte Kühl mittelmenge muss zudem nur eine kurze Kühlmittelstrecke bis zu den Brenn stoffzellensystemen A, B zurücklegen. Ferner muss nur eine vergleichsweise ge ringe Menge an Kühlmittel erwärmt werden, so dass die Effizienz der Standhei zung gesteigert wird.
Bei dem zweiten Nebenaggregat 6 handelt es sich vorliegend um einen Hei zungswärmetäuscher 6.2, der die Abwärme der Brennstoffzellensysteme A, B zum Beheizen eines Fahrgastraums nutzt. Dem Heizungswärmetauscher 6.2 werden hierzu über die Abzweigleitungen 8A, 8B und den Zulauf 9 erwärmtes Kühlmittel aus den Brennstoffzellensystemen A, B zugeführt. Auf diese Weise kann die Abwärme der Brennstoffzellensysteme A, B zur Effizienzsteigerung des Heizungswärmetauschers 6.2 genutzt werden.

Claims

Ansprüche
1. Brennstoffzellensystemverbund, umfassend mindestens zwei gekoppelte und bei unterschiedlichen Lastpunkten betreibbare Brennstoffzellensysteme (A, B), wobei jedes Brennstoffzellensystem (A, B) über eine Kühlmittelzuführlei- tung (1A, 1B) und eine Kühlmittelabführleitung (2A, 2B) an jeweils einen Kühl kreis (3A, 3B) mit einem zirkulierenden Kühlmittel angeschlossen ist, dadurch gekennzeichnet, dass die Kühlkreise (3A, 3B) über eine gemeinsame Rückführleitung (4), über welche die Kühlmittelzuführleitungen (1A, 1B) mit Kühlmittel versorgbar sind, gekoppelt sind, wobei an die gemeinsame Rücklauf leitung (4) ein Rücklauf (5) mit mindestens einem Nebenaggregat (6), beispiels weise einer elektrischen Heizeinrichtung (6.1) und/oder eines Heizungswärme täuschers (6.2), angeschlossen ist.
2. Brennstoffzellensystemverbund nach Anspruch 1, dadurch gekennzeichnet, dass über den Rücklauf (5) mindestens zwei Neben- aggregate (6.1, 6.2), die parallel oder in Reihe geschaltet sind, an die gemein same Rückführleitung (4) angeschlossen sind.
3. Brennstoffzellensystemverbund nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlmittelabführleitungen (2A, 2B) der Brennstoffzellensysteme (A, B) jeweils über ein Abzweigventil (7A, 7B) und eine Abzweigleitung (8A, 8B) mit der entsprechenden Kühlmittelzuführleitung (1A, 1B) des jeweiligen Brennstoffzellensystems (A, B) verbindbar sind.
4. Brennstoffzellensystemverbund nach Anspruch 3, dadurch gekennzeichnet, dass ein Zulauf (9) des mindestens einen Nebenag gregats (6) an mindestens eine Abzweigleitung (8A, 8B) angeschlossen ist, wo bei vorzugsweise im Zulauf (9) eine Pumpe (10) angeordnet ist.
5. Brennstoffzellensystemverbund nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in den Kühlmittelzuführleitungen (1A, 1B) der Brennstoffzellensysteme (A, B) jeweils eine Pumpe (11A, 11 B) angeordnet ist.
6. Brennstoffzellensystemverbund nach Anspruch 5, dadurch gekennzeichnet, dass die Abzweigleitungen (8A, 8B) der Brennstoff zellensysteme (A, B) jeweils stromaufwärts der Pumpe (11A, 11 B) in die jeweilige Kühlmittelzuführleitung (1A, 1B) münden.
7. Brennstoffzellensystemverbund nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in den Kühlkreisen (3A, 3B) oder in der gemein samen Rückführleitung (4) mindestens ein Wärmeübertrager (12A, 12 B) ange ordnet ist.
PCT/EP2020/087906 2020-01-22 2020-12-28 Brennstoffzellensystemverbund WO2021148226A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20841943.2A EP4094317A1 (de) 2020-01-22 2020-12-28 Brennstoffzellensystemverbund
CN202080094218.1A CN115004424A (zh) 2020-01-22 2020-12-28 燃料电池系统联合体
US17/794,247 US20230073323A1 (en) 2020-01-22 2020-12-28 Fuel cell system assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020200709.8 2020-01-22
DE102020200709.8A DE102020200709A1 (de) 2020-01-22 2020-01-22 Brennstoffzellensystemverbund

Publications (1)

Publication Number Publication Date
WO2021148226A1 true WO2021148226A1 (de) 2021-07-29

Family

ID=74184608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/087906 WO2021148226A1 (de) 2020-01-22 2020-12-28 Brennstoffzellensystemverbund

Country Status (5)

Country Link
US (1) US20230073323A1 (de)
EP (1) EP4094317A1 (de)
CN (1) CN115004424A (de)
DE (1) DE102020200709A1 (de)
WO (1) WO2021148226A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224201A1 (en) * 1998-09-22 2004-11-11 Ballard Power Systems Inc. Antifreeze cooling subsystem
JP2005005087A (ja) * 2003-06-11 2005-01-06 Toyota Motor Corp 燃料電池システム
US20130171536A1 (en) * 2012-01-03 2013-07-04 Air Liquide, Societe Anonyme Pour Etude Et Exploitation Des Procedes Georges Claude Fuel Cell
DE102015015635A1 (de) * 2015-12-02 2017-06-08 Daimler Ag Brennstoffzellenanordnung, Verfahren zum Betrieb einer solchen Brennstoffzellenanordnung und Verwendung einer solchen Brennstoffzellenanordnung
WO2020044260A1 (de) * 2018-08-29 2020-03-05 Robert Bosch Gmbh Kühlsystem für brennstoffzellenstacks
WO2020044259A1 (de) * 2018-08-29 2020-03-05 Robert Bosch Gmbh Verfahren zum betreiben eines brennstoffzellensystems für ein kraftfahrzeug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224201A1 (en) * 1998-09-22 2004-11-11 Ballard Power Systems Inc. Antifreeze cooling subsystem
JP2005005087A (ja) * 2003-06-11 2005-01-06 Toyota Motor Corp 燃料電池システム
US20130171536A1 (en) * 2012-01-03 2013-07-04 Air Liquide, Societe Anonyme Pour Etude Et Exploitation Des Procedes Georges Claude Fuel Cell
DE102015015635A1 (de) * 2015-12-02 2017-06-08 Daimler Ag Brennstoffzellenanordnung, Verfahren zum Betrieb einer solchen Brennstoffzellenanordnung und Verwendung einer solchen Brennstoffzellenanordnung
WO2020044260A1 (de) * 2018-08-29 2020-03-05 Robert Bosch Gmbh Kühlsystem für brennstoffzellenstacks
WO2020044259A1 (de) * 2018-08-29 2020-03-05 Robert Bosch Gmbh Verfahren zum betreiben eines brennstoffzellensystems für ein kraftfahrzeug

Also Published As

Publication number Publication date
CN115004424A (zh) 2022-09-02
US20230073323A1 (en) 2023-03-09
EP4094317A1 (de) 2022-11-30
DE102020200709A1 (de) 2021-07-22

Similar Documents

Publication Publication Date Title
EP3454401B1 (de) Kraftfahrzeug mit einem kühlsystem
DE102007046057B4 (de) Verfahren zum Starten eines Brennstoffzellensystems für ein Fahrzeug
DE112007002347B4 (de) Klimatisierungssteuerungssystem
EP3747074A1 (de) Kühlsystem für brennstoffzellenstacks
WO2017092853A1 (de) Brennstoffzellenanordnung, verfahren zum betrieb einer solchen brennstoffzellenanordnung und verwendung einer solchen brennstoffzellenanordnung
DE102012218584A1 (de) Kaltstartprozedur für einen Brennstoffzellenstack
WO2021004758A1 (de) Kühlkreislauf
DE102021111088A1 (de) Antriebssystem für ein Elektrofahrzeug und Elektrofahrzeug
DE102004022052A1 (de) Vorrichtung und Verfahren zur Steuerung der Stapeltemperatur
WO2006034790A1 (de) Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems
WO2021148226A1 (de) Brennstoffzellensystemverbund
DE102007029426A1 (de) Externe Steuerung einer Fahrzeugkühlmittelpumpe mit Fernheizoption
DE102018205345B4 (de) Elektromotor mit Flüssigkeitskühlung und Verwendung eines derartigen Elektromotors
EP4171979A1 (de) Kraftfahrzeug-wärmetransportmittelkreislauf
DE102021103483A1 (de) Klimasystem für ein elektrisch antreibbares Kraftfahrzeug mit einem Kühlkörper und einer Heizeinrichtung, Kraftfahrzeug sowie Verfahren zum Betreiben eines Klimasystems
DE102021125741A1 (de) Kühlsystem eines Kraftfahrzeugs und Verfahren für ein Kühlsystem eines Kraftfahrzeugs
DE102016010073A1 (de) Kühleinrichtung für ein Kraftfahrzeug
WO2021148227A1 (de) Brennstoffzellensystemverbund sowie verfahren zum betreiben eines brennstoffzellensystemverbunds
DE102022203081A1 (de) Kaltstartverfahren für ein Brennstoffzellensystem sowie Brennstoffzellensystem
WO2021110420A1 (de) Kühlsystem, fahrzeug mit kühlsystem
DE102018009269B4 (de) Klimatisierungseinrichtung für ein Kraftfahrzeug, sowie Kraftfahrzeug damit
DE102013017342A1 (de) Kühleinrichtung für einen Energiespeicher in einem Kraftwagen sowie Verfahren zum Betreiben einer solchen Kühleinrichtung
DE10232870A1 (de) Brennstoffzelle mit Vorheizzone
DE102006015572A1 (de) Verdichtungsvorrichtung für einen Brennstoffzellenstapel
DE102022120860A1 (de) Kühlsystem und Verfahren zum Betreiben eines Kühlsystems für wenigstens eine Komponente eines Brennstoffzellensystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020841943

Country of ref document: EP

Effective date: 20220822