WO2021147825A1 - 一种集成瞳孔追踪功能的全息智能显示装置及实现方法 - Google Patents

一种集成瞳孔追踪功能的全息智能显示装置及实现方法 Download PDF

Info

Publication number
WO2021147825A1
WO2021147825A1 PCT/CN2021/072533 CN2021072533W WO2021147825A1 WO 2021147825 A1 WO2021147825 A1 WO 2021147825A1 CN 2021072533 W CN2021072533 W CN 2021072533W WO 2021147825 A1 WO2021147825 A1 WO 2021147825A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
holographic
waveguide
pupil
holographic grating
Prior art date
Application number
PCT/CN2021/072533
Other languages
English (en)
French (fr)
Inventor
张梦华
葛平兰
冯振军
徐忠法
Original Assignee
奥提赞光晶(山东)显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥提赞光晶(山东)显示科技有限公司 filed Critical 奥提赞光晶(山东)显示科技有限公司
Publication of WO2021147825A1 publication Critical patent/WO2021147825A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye

Definitions

  • the invention relates to the field of optoelectronic devices, in particular to a holographic intelligent display device with integrated pupil tracking function and an implementation method.
  • Eyes are one of the most important organs in the human senses and the most important channel for humans to obtain information and knowledge. Humans can perceive various information such as the distance, size, color, and shape of external objects through their eyes. While the eyes are acquiring information, they can also reflect the inner activities of human beings, such as the blinking and erratic eyes when lying. Therefore, tracking the pupil's line of sight has a certain significance for the study of psychology.
  • the pupil tracking can obtain the user's attention point and attention direction, and obtain related data for analysis. For example, when reading the literature, study the eyeball movement trajectory, analyze how to acquire key knowledge process; when shopping, obtain the user's gaze trajectory and stay time on advertisements and products, provide data support for better marketing strategies; detect when driving The gaze trajectory of the eyes judges whether the driver is in a fatigued driving state. After the fatigued driving state is detected, other measures are used to remind the driver to avoid traffic accidents, etc.
  • the application scenarios are relatively wide.
  • pupil tracking has a broader application prospect.
  • certain operations can be performed on the smart device, such as the switch settings of home appliances, the editing of computer text, and the use of mobile phone applications.
  • Pupil tracking technology can be applied to rapidly developing fields such as virtual reality, augmented reality, and mixed reality.
  • pupil tracking technology has the advantages of directness, lightness, and naturalness.
  • the pupil tracking module is currently added to the smart wearable device, which generally suffers from problems such as complex structural design, bulky and heavier modules as a whole.
  • the purpose of the present invention is to provide a holographic smart display device with integrated pupil tracking function and an implementation method thereof.
  • a holographic smart display device with integrated pupil tracking function including:
  • a holographic waveguide which includes a waveguide substrate and a first holographic grating group and a second holographic grating group attached to the waveguide substrate and sensitive to light of two different wavelength bands,
  • the first holographic grating group is used to couple the first incident light with image information into the waveguide base, so that the first incident light is coupled out of the waveguide base after being totally reflected in the waveguide base.
  • the waveguide substrate which outputs the first outgoing light irradiated on the eye,
  • the second holographic grating group is used to couple the second incident light reflected by the eye into the waveguide base, so that the second incident light is totally reflected in the waveguide base and then coupled out of the waveguide base. , Output the second outgoing light,
  • the waveguide base is used for total reflection of the first incident light and the second incident light
  • the pupil imaging unit is located on one side of the holographic waveguide and is used to receive the second emergent light and form an image containing the pupil of the eye.
  • the present invention uses two sets of holographic grating groups sensitive to two different wavelength bands to transmit image information of specific wavelengths, reduces crosstalk between different rays, and can effectively increase the pupil recognition efficiency, and because the two sets of different wavelength bands are sensitive to light
  • the image source and the pupil imaging unit can be placed on the same side, and the entire system can be effectively simplified by sharing part of the optical path system.
  • first holographic grating group and the second holographic grating group are both arranged on the surface of the waveguide base or arranged in the waveguide base, wherein the first holographic grating group is sensitive to visible light, and the second holographic grating group Sensitive to near infrared light.
  • the visible light and near-infrared holographic gratings are visible light and near-infrared holographic gratings composed of reflective holographic gratings and transmissive holographic gratings, and can also be made of photoresist, photopolymer, dichromate gelatin, and photorefractive crystals.
  • Silver halide and other materials obtained by holographic exposure can also be obtained by nano-imprint technology.
  • the difference between materials obtained through holographic exposure or nano-imprinting technology is: the former has the same thickness of the recording medium but the refractive index changes; the latter the thickness of the recording medium changes but the refractive index does not change.
  • the first holographic grating group includes a first incident holographic grating and a first outgoing holographic grating, and the first incident holographic grating and the first outgoing holographic grating are respectively staggered and arranged on different sides of the waveguide substrate, and
  • the first incident holographic grating is used to couple the first incident light to the waveguide base, so that the first incident light is totally reflected in the waveguide base,
  • the first outgoing holographic grating is used for outputting the first incident light after being totally reflected by the waveguide base to form the first outgoing light.
  • the second holographic grating group includes a second incident holographic grating and a second outgoing holographic grating, and the second incident holographic grating and the second outgoing holographic grating are respectively staggered and arranged on different sides of the waveguide substrate, and
  • the second incident holographic grating is used to couple the second incident light to the waveguide base, so that the second incident light is totally reflected in the waveguide base,
  • the second outgoing holographic grating is used for outputting the second incident light after being totally reflected by the waveguide base to form the second outgoing light.
  • the holographic smart display device with integrated pupil tracking function further includes a light-emitting unit, which is arranged on the waveguide substrate or the frame on the side of the eye, and is used to emit infrared light irradiated on the eye.
  • the infrared light is the second incident light after being reflected by the eye.
  • the holographic smart display device with integrated pupil tracking function further includes a light collimating unit, a light splitting unit, and an image source, and the light collimating unit and the light splitting unit are located between the holographic waveguide and the image source ,
  • the light collimating unit is a common relay system for the image source and the pupil imaging unit, and is used to collimate the visible light that carries image information reflected or emitted by the image source to form the first incident light , And receive the second outgoing light, collimate the second outgoing light for input into the pupil imaging unit,
  • the second outgoing light after collimation is input to the pupil imaging unit through the light splitting unit.
  • the image display source includes one of LCOS chip, OLED chip, micro LED chip, SLM chip, LCD, DMD and other chips.
  • the image display source is micro LED, OLED and other self-luminous chips, it can be omitted.
  • Optical elements such as light source, polarization beam splitter prism and half-wave plate make the structure simpler.
  • the image display source is an LCOS chip, etc., which are non-self-luminous chips, a light source needs to be configured, and the light emitted by the light source passes through the beam splitter. The unit is irradiated on the image source and reflected by the image source to form visible light that carries image information.
  • the non-self-luminous chips include DMD, LCD, SLM, etc.
  • the lighting method of each chip is different from that of LCOS.
  • DMD is different from LCOS.
  • LCOS is reflective, LCD and SLM are transmissive.
  • the pupil imaging unit includes an imaging chip, and the imaging chip is an infrared CCD chip or an infrared CMOS chip,
  • the waveguide substrate is made of transparent optical material, including BK7 glass, ZF series glass or resin, and the light splitting unit includes a polarization splitting prism or a dichroic mirror.
  • the holographic intelligent display device with integrated pupil tracking function further includes an image quality correction system located between the beam splitting unit and the pupil imaging unit, wherein the image quality correction system includes at least A piece of optical lens and a piece of long-wave pass filter are used to filter out visible light and other stray light to improve the signal-to-noise ratio of the pupil image.
  • the image quality correction system includes at least A piece of optical lens and a piece of long-wave pass filter are used to filter out visible light and other stray light to improve the signal-to-noise ratio of the pupil image.
  • a method for implementing the integrated pupil tracking function of the above-mentioned holographic smart display device including:
  • the first incident light with image information is coupled to the waveguide base through the first holographic grating group of the holographic waveguide.
  • the first incident light is totally reflected in the waveguide base and then coupled out of the waveguide base, and the output is irradiated on the waveguide base.
  • the second incident light reflected by the eye is coupled and incident to the waveguide base through the second holographic grating group of the holographic waveguide.
  • the second incident light is totally reflected in the waveguide base and then coupled out of the waveguide base to output the second incident light.
  • the second outgoing light is transmitted to the pupil imaging unit to form an image containing the pupil of the eye, and then the pupil position is obtained.
  • the holographic smart display device obtains the pupil position without affecting the display of image information, and realizes the display of image information and pupil Integration of location tracking.
  • the present invention has the following beneficial effects:
  • a first holographic grating group and a second holographic grating group sensitive to light of two different wavelength bands are attached to the waveguide substrate of the holographic waveguide.
  • the present invention uses Two groups of holographic grating groups sensitive to different wavelengths of light transmit image information of specific wavelengths, reducing crosstalk between different lights, and can effectively increase the efficiency of pupil recognition, and because of the use of two groups of light-sensitive holographic grating groups of different wavelengths ,
  • the image source and the pupil imaging unit can be arranged on the same side, so that the two share a part of the optical path system, thereby effectively simplifying the entire system structure to solve the problem that the existing wearable smart glasses cannot be integrated with the pupil tracking module or can be integrated but The module is too large, too heavy, and too complicated technical problems.
  • the implementation method of the integrated pupil tracking function of the holographic smart display device of the example of the present invention simultaneously uses two sets of diffraction gratings sensitive to different wavelengths to transmit visible light display image information and pupil position information, respectively, without affecting Obtaining the pupil position under the premise of image information display, and realizing the integration of image information display and pupil position tracking, is a creative design in this field.
  • Figure 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the variable refractive index phase volume holographic grating of the present invention
  • Figure 3 is a schematic diagram of the structure of the surface relief holographic grating of the present invention.
  • Figure 4 is a schematic structural diagram of Embodiment 2 of the present invention.
  • the holographic intelligent display device with integrated pupil tracking function of this embodiment includes an image source, a light collimating unit, a light splitting unit, an image quality correction system, a light emitting unit, and a pupil imaging unit.
  • the holographic waveguide includes a waveguide substrate and a first holographic grating group and a second holographic grating group attached to the waveguide substrate that are sensitive to light of two different wavelengths.
  • the first holographic grating group and the second holographic grating group are both arranged at all
  • the surface of the waveguide substrate may be arranged in the waveguide substrate, the waveguide substrate is made of BK7 glass, ZF series glass, resin and other transparent optical materials, and the thickness of the substrate is 1 mm.
  • the first holographic grating group is used to couple the first incident light with image information into the waveguide base, so that the first incident light is coupled out of the waveguide base after being totally reflected in the waveguide base.
  • the waveguide substrate outputs the first outgoing light irradiated on the eyes
  • the first holographic grating group specifically includes a first incident holographic grating and a first outgoing holographic grating, the first incident holographic grating and the first outgoing holographic grating respectively Dislocations are arranged on different sides of the waveguide base, wherein the first incident holographic grating is used to couple the first incident light to the waveguide base so that the first incident light is on the waveguide base. Total reflection occurs in the body, and the first outgoing holographic grating is used to output the first incident light after being totally reflected by the waveguide base to output the waveguide base to form the first outgoing light,
  • the second holographic grating group is used to couple the second incident light reflected by the eye into the waveguide base, so that the second incident light is totally reflected in the waveguide base and then coupled out of the waveguide base.
  • the second holographic grating group specifically includes a second incident holographic grating and a second outgoing holographic grating, the second incident holographic grating and the second outgoing holographic grating are respectively dislocated and arranged on the waveguide substrate A different side, wherein the second incident holographic grating is used to couple the second incident light into the waveguide base, so that the second incident light is totally reflected in the waveguide base, and the first The two-outgoing holographic grating is used to output the second incident light after being totally reflected by the waveguide base to output the waveguide base to form the second outgoing light;
  • the waveguide base is used for total reflection of the first incident light and the second incident light.
  • the pupil imaging unit is located on one side of the holographic waveguide and is used to receive the second emergent light and form an image containing the pupil of the eye.
  • the pupil imaging unit specifically includes an imaging chip, which is also called a photosensitive chip, Specifically, it is an infrared CCD chip or an infrared CMOS chip.
  • the light-emitting unit is arranged on the waveguide substrate or on the mirror frame (when the holographic smart display device with integrated pupil tracking function is applied to smart glasses, the light-emitting unit may also be arranged on the frame of the smart glasses, that is, on the mirror frame), It is used to emit infrared rays irradiated on the eyes, and the infrared rays are the second incident rays after being reflected by the eyes.
  • the light collimating unit and the light splitting unit are located between the holographic waveguide and the image source, wherein the light splitting unit includes a polarization beam splitting prism or a dichroic mirror, and the light collimating unit is the image source,
  • the pupil imaging unit shares a relay system for collimating the visible light that carries image information reflected or emitted by the image source to form the first incident light, and receive the second outgoing light, and perform a collimation process on the first incident light. Two outgoing light rays are collimated for input to the pupil imaging unit, wherein the image display source includes one of LCOS chips, OLED chips, microLED chips, SLM chips, etc.
  • the image display source is microLED
  • OLED Such as self-luminous chips, optical components such as light sources, polarization beam splitters, and half-wave plates can be omitted, making the structure simpler.
  • the image display source is an LCOS chip, etc., it is a non-self-luminous chip that requires a light source. The light emitted by the light source is irradiated on the image source through the light splitting unit, and reflected by the image source to form visible light carrying image information.
  • the collimated second outgoing light is input to the pupil imaging unit through the beam splitting unit and the image quality correction system, where the image quality correction system includes at least one optical lens and one long-wave pass filter, which combines visible light and Other stray light is filtered out to improve the signal-to-noise ratio of the pupil image.
  • the image quality correction system includes at least one optical lens and one long-wave pass filter, which combines visible light and Other stray light is filtered out to improve the signal-to-noise ratio of the pupil image.
  • the method for implementing the integrated pupil tracking function of the holographic intelligent display device includes:
  • the first incident light with image information is coupled to the waveguide base through the first holographic grating group of the holographic waveguide.
  • the first incident light is totally reflected in the waveguide base and then coupled out of the waveguide base, and the output is irradiated on the waveguide base.
  • the second incident light reflected by the eye is coupled and incident to the waveguide base through the second holographic grating group of the holographic waveguide.
  • the second incident light is totally reflected in the waveguide base and then coupled out of the waveguide base to output the second incident light.
  • the second outgoing light is transmitted to the pupil imaging unit to form an image containing the pupil of the eye, and then the pupil position is obtained.
  • the holographic smart display device obtains the pupil position without affecting the display of image information, and realizes the display of image information and pupil Integration of location tracking.
  • the light source 300 is an LED chip, and the emitted light passes through the light splitting unit polarization beam splitting prism (PBS) 201 and irradiates the image source 400 (also called picture On the display source), the image source 400 is an LCOS chip, and the reflected light carries image information.
  • PBS polarization beam splitting prism
  • the collimated parallel light 010 is the first incident light irradiating the waveguide substrate 100
  • the first incident holographic grating above can be seen on the light coupling-in grating 111, and the light 010 is diffracted by the visible-light coupling-in grating 111 and propagates without loss in the waveguide substrate 100.
  • the light 010 reaches the position of the first outgoing holographic grating, which is the visible light coupling-out grating 112, it is diffracted and output from the substrate to form the first outgoing light and reach the human eye 600.
  • the external light 040 can pass through the transparent visible light coupling output grating 112 and the infrared coupling input grating 122 to achieve the purpose of superimposing digital information on the real external scene.
  • an infrared light emitting device 700 is designed on the end of the waveguide or on the mirror frame.
  • the device projects infrared light 020 to the human eye 600, and the reflected light 030 from the pupil forms a second incident light.
  • the second incident light passes through the second incident holographic grating infrared coupling input grating 122 and is coupled into the waveguide matrix 100, resulting in lossless
  • the total reflection transmission reaches the second outgoing holographic grating and the infrared coupling-out grating 121 is coupled out of the waveguide base 100 to form the second outgoing light.
  • the photosensitive chip 500 of the pupil imaging unit After the second outgoing light passes through the optical relay system 200, the polarization beam splitting prism 201, and the image quality correction system 203, it is imaged on the photosensitive chip 500 of the pupil imaging unit, and the position information of the pupil can be obtained.
  • the photosensitive chip is an infrared CCD chip or an infrared CMOS chip.
  • the image quality correction system 203 includes a lens group and a long-wave pass filter, which filters out visible light and other stray light, and improves the signal-to-noise ratio of the pupil image.
  • the image source 400 Since the above-mentioned image source 400 is collimated by the optical relay system 200, it enters the waveguide through the visible light holographic grating, is totally reflected in the waveguide, reaches another visible light holographic grating, exits from the waveguide, and enters the human eye; infrared light emitting device Infrared light is emitted to the pupil, and the infrared image of the pupil is coupled into the waveguide through the near-infrared waveguide to be totally reflected, reaches another near-infrared holographic grating and exits from the waveguide, passes through the relay system 200 and the image quality correction system 203 to reach the imaging chip 500 Place.
  • the image source 400 and the imaging chip 500 can share the relay system, thereby improving the integration and reliability of the system, thereby reducing the volume of the device.
  • the photosensitive chip 500 after the photosensitive chip 500 obtains the position of the pupil, it can determine the gaze direction of the human eye, and then adjust the content of the image display source, so as to ensure that the resolution of the area viewed by the human eye reaches the highest resolution, and at the same time lays the foundation for the stereoscopic display.
  • the visible light and near-infrared holographic gratings on the waveguide substrate 100 are visible light and near-infrared holographic gratings composed of reflective holographic gratings and transmissive holographic gratings (wherein, gratings 111 and 112 are reflective holographic gratings, and gratings 121, 122 are transmissive holographic gratings.
  • Type holographic grating can also be obtained by placing holographic materials such as photoresist, photopolymer, dichromate gelatin, photorefractive crystals, silver halide, etc., in the interference field induced by a laser and subjected to holographic exposure.
  • the coherent laser forms an interference pattern with alternating bright and dark distributions, and two regions 1111 and 1112 with different refractive indexes are formed in the bright and dark regions, as shown in FIG. 2. Because the refractive indexes of these two regions are different, a grating structure is formed, which is also a variable refractive index phase holographic grating.
  • the holographic material is obtained through nano-imprint technology, and the micro-nano structure on the template is transferred to the waveguide substrate.
  • the characteristic is that the refractive index of the grating region 1113 is unchanged, but the grating
  • the thickness of is always changing, as shown in Figure 3, it also belongs to the surface relief holographic grating.
  • the image display source 800 is a self-luminous chip such as micro LED, OLED, etc., so the LED illumination light source and polarization beam splitting prism can be omitted. And optical components such as half-wave plates, making the structure of the optical machine simple.
  • the light emitted by the image source passes through the optical relay system 200, it is collimated into parallel light 010, that is, the first incident light irradiates the first incident holographic grating on the waveguide substrate 100.
  • the visible light is coupled into the grating 111, and the light 010 is coupled by visible light.
  • the waveguide substrate 100 After the input grating 111 is diffracted, a lossless total reflection propagation occurs in the waveguide substrate 100.
  • the light 010 reaches the position of the first outgoing holographic grating (ie, the visible light coupling-out grating 112), it is diffracted and output from the waveguide substrate 100 to reach the human eye 600.
  • the external light 040 can pass through the transparent visible light coupling output grating 112 and the infrared coupling input grating 122 to achieve the purpose of superimposing digital information on the real external scene.
  • an infrared light emitting device 700 is designed at the end of the waveguide.
  • the device projects the infrared light 020 to the human eye 600, and the reflected light 030 from the pupil, that is, the second incident light is coupled into the waveguide substrate 100 through the second incident holographic grating infrared coupling input grating 122, and a lossless total reflection transmission occurs, reaching the first
  • the two-outgoing holographic grating infrared coupling-out grating 121 is coupled out of the waveguide base 100.
  • the dichroic mirror 900 of the spectroscopic unit, and the image quality correction system 203 After the infrared light passes through the optical relay system 200, the dichroic mirror 900 of the spectroscopic unit, and the image quality correction system 203, it is imaged on the photosensitive chip 500 of the pupil imaging unit, and the position information of the pupil can be obtained.
  • the photosensitive chip is an infrared CCD chip or an infrared CMOS chip.
  • the image quality correction system 203 includes a lens group and a long-wave pass filter, which filters out visible light and other stray light, and improves the signal-to-noise ratio of the pupil image.
  • the function of the dichroic mirror 900 is to deflect the infrared light toward the photosensitive chip without affecting the transmittance of the light emitted by the image source.
  • the image display source 800 is an SLM chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种集成瞳孔追踪功能的全息智能显示装置及实现方法,全息波导的波导基体(100)上附着有对两种不同波段光线敏感的第一全息光栅组(111,112)、第二全息光栅组(121,122),通过使用两组对不同波段光线敏感的全息光栅组(111,112,121,122)传递特定波长的图像信息,减少了不同光线之间的串扰,可以有效增加瞳孔的识别效率,且由于通过两组不同波段光线敏感的全息光栅组(111,112,121,122)的使用,可以将图像源(400)与瞳孔成像单元(500)设置于同一侧,进而图像源(400)与瞳孔成像单元(500)共用部分光路系统,从而有效简化整个系统结构,以解决现有可穿戴智能眼镜,无法集成瞳孔追踪模块或能集成但模块过大过重过复杂的技术问题。

Description

一种集成瞳孔追踪功能的全息智能显示装置及实现方法 技术领域
本发明涉及光电器件领域,具体涉及一种集成瞳孔追踪功能的全息智能显示装置及实现方法。
背景技术
眼睛是人类感官中最重要的器官之一,是人类获取信息知识最主要的通道。人类可以通过眼睛感知外部物体的距离、大小、颜色、形状等各种信息。眼睛在获取信息的同时,也可以反映出人类的内心活动,譬如在说谎时眼睛的闪烁、飘忽不定,因此,对瞳孔视线进行追踪,对心理学的研究有一定的意义。
另外,对瞳孔跟踪可以获取用户的关注点以及关注方向,获取相关的数据进行分析。譬如在阅读文献时,研究眼球的运动轨迹,分析如何获取关键知识过程;在逛街时获取用户在广告以及商品上的视线轨迹以及停留时间,为更好的营销策略提供数据支持;在开车时检测眼睛的视线轨迹来判断驾驶员是否处于疲劳驾驶状态,检测到疲劳驾驶状态后,通过其他措施来提醒驾驶者,避免交通事故发生等,应用场景比较广泛。
而在人机交互方面,瞳孔追踪具有更加广泛的应用前景。通过分析视线的注视方向、时间长短、眨眼睛的次数快慢等参数作为输入命令,对智能设备进行一定的操作,譬如家电的开关设置、电脑文本的编辑、手机应用程序使用等。瞳孔追踪技术可以应用在虚拟现实、增强现实、混合现实等迅速发展起来的领域上,相较目前的手柄操作、手势识别等交互方式,瞳孔追踪技术具有直接、轻便、自然等优势。
为了不遮挡或者不影响显示效果,目前在智能可穿戴设备上添加瞳孔追踪模块,普遍存在结构设计复杂、模块整体体积庞大、比较重等问题。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种集成瞳孔追踪 功能的全息智能显示装置及实现方法。
根据本发明的一个方面,提供了一种集成瞳孔追踪功能的全息智能显示装置,包括:
全息波导,其包括波导基体及附着在所述波导基体上对两种不同波段光线敏感的第一全息光栅组、第二全息光栅组,
其中,所述第一全息光栅组用于将带有图像信息的第一入射光线耦合入射至所述波导基体,以使所述第一入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出照射在眼睛上的第一出射光线,
所述第二全息光栅组用于将经眼睛反射的第二入射光线耦合入射至所述波导基体,以使所述第二入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出第二出射光线,
所述波导基体用于所述第一入射光线、第二入射光线的全反射;
瞳孔成像单元,位于所述全息波导的一侧,用于接收所述第二出射光线,并形成包含眼睛瞳孔的图像。
本发明通过使用两组对两种不同波段光线敏感的全息光栅组传递特定波长的图像信息,减少了不同光线之间的串扰,可以有效增加瞳孔的识别效率,且由于通过两组不同波段光线敏感的全息光栅组的使用,可以将图像源与瞳孔成像单元置于同一侧,通过共用部分光路系统,从而有效简化整个系统。
进一步的,所述第一全息光栅组、第二全息光栅组均设置在所述波导基体的表面或设置在所述波导基体内,其中,第一全息光栅组对可见光敏感,第二全息光栅组对近红外光敏感。
所述的可见光、近红外全息光栅为反射型全息光栅、透射型全息光栅组成的可见光、近红外全息光栅,也可以由光刻胶、光致聚合物、重铬酸盐明胶、光折变晶体、卤化银等材料经过全息曝光得到也可以是采用纳米压印技术得到。材料经过全息曝光得到或采用纳米压印技术得到的区别是:前者记录介质的厚度不变,折射率在变化;后者是记录介质厚度在变化但是折射率不变。
进一步的,所述第一全息光栅组包括第一入射全息光栅、第一出 射全息光栅,所述第一入射全息光栅、第一出射全息光栅分别错位设置在所述波导基体的不同侧,
其中,
所述第一入射全息光栅用于将所述第一入射光线耦合入射至所述波导基体,以使所述第一入射光线在所述波导基体内发生全反射,
所述第一出射全息光栅用于被所述波导基体全反射后的所述第一入射光线输出所述波导基体,形成所述第一出射光线。
进一步的,所述第二全息光栅组包括第二入射全息光栅、第二出射全息光栅,所述第二入射全息光栅、第二出射全息光栅分别错位设置在所述波导基体的不同侧,
其中,
所述第二入射全息光栅用于将所述第二入射光线耦合入射至所述波导基体,以使所述第二入射光线在所述波导基体内发生全反射,
所述第二出射全息光栅用于被所述波导基体全反射后的所述第二入射光线输出所述波导基体,形成所述第二出射光线。
进一步的,所述的集成瞳孔追踪功能的全息智能显示装置,还包括发光单元,所述发光单元设在所述波导基体或位于眼睛一侧的架框上,用于发射照射在眼睛上的红外光线,所述红外光线经眼睛反射后即为所述第二入射光线。
进一步的,所述的集成瞳孔追踪功能的全息智能显示装置,还包括光线准直单元、分光单元、图像源,所述光线准直单元、分光单元位于所述全息波导与所述图像源之间,
其中,所述光线准直单元为所述图像源、瞳孔成像单元共用中继系统,用于将所述图像源反射或发出的携带图像信息的可见光进行准直处理,形成所述第一入射光线,并接收所述第二出射光线,对所述第二出射光线准直,以供输入所述瞳孔成像单元,
其中,准直后的第二出射光线经所述分光单元输入至所述瞳孔成像单元。
其中,所述图像显示源包括LCOS芯片、OLED芯片、micro LED芯片、SLM芯片、LCD、DMD等芯片中的一种,当图像显示源为micro LED、 OLED等可以自发光的芯片,可以省掉光源、偏振分光棱镜以及半波片等光学元件,使得结构变得更简单,当图像显示源为LCOS芯片等,为不可自发光的芯片,需要配置光源,所述光源发出的光线经过所述分光单元照射在所述图像源上,经所述图像源反射形成携带图像信息的可见光,不可自发光的芯片还有DMD、LCD、SLM等,每个芯片的照明方式与LCOS有所区别,DMD与LCOS是反射式,LCD和SLM为透射式。
所述瞳孔成像单元包括成像芯片,所述成像芯片为红外CCD芯片或者红外CMOS芯片,
所述波导基体材质为透明光学材料,包括BK7玻璃、ZF系列玻璃或树脂,所述分光单元包括偏振分光棱镜或二向色镜。
所述的集成瞳孔追踪功能的全息智能显示装置,还包括像质矫正系统,所述像质矫正系统位于所述分光单元、所述瞳孔成像单元之间,其中,所述像质矫正系统包括至少一片光学透镜以及一片长波通滤光片,用于将可见光以及其他杂散光过滤掉,提高瞳孔图像的信噪比。
根据本发明的另一个方面,提供了一种上述所述全息智能显示装置集成瞳孔追踪功能的实现方法,包括:
带有图像信息的第一入射光线通过全息波导的第一全息光栅组耦合入射至波导基体,所述第一入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出照射在眼睛上的第一出射光线;
经眼睛反射的第二入射光线通过全息波导的第二全息光栅组耦合入射至所述波导基体,所述第二入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出第二出射光线;
所述第二出射光线传输至瞳孔成像单元,形成包含眼睛瞳孔的图像,进而获取瞳孔位置,所述的全息智能显示装置在不影响图像信息显示的前提下获取瞳孔位置,实现图像信息显示与瞳孔位置追踪的集成。
与现有技术相比,本发明具有以下有益效果:
1、本发明示例的集成瞳孔追踪功能的全息智能显示装置,发明在全息波导的波导基体上附着有对两种不同波段光线敏感的第一全息光栅组、第二全息光栅组,本发明通过使用两组对不同波段光线敏感的全 息光栅组传递特定波长的图像信息,减少了不同光线之间的串扰,可以有效增加瞳孔的识别效率,且由于通过两组不同波段光线敏感的全息光栅组的使用,可以将图像源与瞳孔成像单元设置于同一侧,进而使其两者共用部分光路系统,从而有效简化整个系统结构,用以解决现有可穿戴智能眼镜,无法集成瞳孔追踪模块或能集成但模块过大过重过复杂的技术问题。
2、本发明示例的全息智能显示装置集成瞳孔追踪功能的实现方法,全息智能显示装置通过同时使用两组对不同波长敏感的衍射光栅,分别对可见光显示图像信息及瞳孔位置信息传输,在不影响图像信息显示的前提下获取瞳孔位置,实现图像信息显示与瞳孔位置追踪的集成,是本领域创造性的设计。
附图说明
图1为本发明实施例一结构示意图;
图2为本发明变折射率相位体全息光栅结构示意图;
图3为本发明表面浮雕全息光栅结构示意图;
图4为本发明实施例二结构示意图。
具体实施方式
为了更好的了解本发明的技术方案,下面结合具体实施例对本发明作进一步说明。
实施例一
本实施例集成瞳孔追踪功能的全息智能显示装置,包括图像源、光线准直单元、分光单元、像质矫正系统、发光单元、瞳孔成像单元。
其中,
全息波导包括波导基体及附着在所述波导基体上对两种不同波段光线敏感的第一全息光栅组、第二全息光栅组,所述第一全息光栅组、第二全息光栅组均设置在所述波导基体的表面或设置在所述波导基体内,所述波导基体材质为BK7玻璃、ZF系列玻璃、树脂及其他透明光学材料,基体的厚度为1mm。
其中,所述第一全息光栅组用于将带有图像信息的第一入射光线耦合入射至所述波导基体,以使所述第一入射光线在所述波导基体内发生 全反射后耦合射出所述波导基体,输出照射在眼睛上的第一出射光线,所述第一全息光栅组具体包括第一入射全息光栅、第一出射全息光栅,所述第一入射全息光栅、第一出射全息光栅分别错位设置在所述波导基体的不同侧,其中,所述第一入射全息光栅用于将所述第一入射光线耦合入射至所述波导基体,以使所述第一入射光线在所述波导基体内发生全反射,所述第一出射全息光栅用于被所述波导基体全反射后的所述第一入射光线输出所述波导基体,形成所述第一出射光线,
所述第二全息光栅组用于将经眼睛反射的第二入射光线耦合入射至所述波导基体,以使所述第二入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出第二出射光线,所述第二全息光栅组具体包括第二入射全息光栅、第二出射全息光栅,所述第二入射全息光栅、第二出射全息光栅分别错位设置在所述波导基体的不同侧,其中,所述第二入射全息光栅用于将所述第二入射光线耦合入射至所述波导基体,以使所述第二入射光线在所述波导基体内发生全反射,所述第二出射全息光栅用于被所述波导基体全反射后的所述第二入射光线输出所述波导基体,形成所述第二出射光线;
所述波导基体用于所述第一入射光线、第二入射光线的全反射。
瞳孔成像单元,位于所述全息波导的一侧,用于接收所述第二出射光线,并形成包含眼睛瞳孔的图像,所述瞳孔成像单元具体包括成像芯片,所述成像芯片也称感光芯片,具体为红外CCD芯片或者红外CMOS芯片。
所述发光单元设在所述波导基体上或镜框上(当集成瞳孔追踪功能的全息智能显示装置应用于智能眼镜时,所述发光单元还可以设置在智能眼镜的架框,即镜框上),用于发射照射在眼睛上的红外光线,所述红外光线经眼睛反射后即为所述第二入射光线。
所述光线准直单元、分光单元位于所述全息波导与所述图像源之间,其中,所述分光单元包括偏振分光棱镜或二向色镜,所述光线准直单元为所述图像源、瞳孔成像单元共用中继系统,用于将所述图像源反射或发出的携带图像信息的可见光进行准直处理,形成所述第一入射光线,并接收所述第二出射光线,对所述第二出射光线准直,以供输入所述瞳 孔成像单元,其中,所述图像显示源包括LCOS芯片、OLED芯片、microLED芯片、SLM芯片等芯片中的一种,当图像显示源为micro LED、OLED等可以自发光的芯片,可以省掉光源、偏振分光棱镜以及半波片等光学元件,使得结构变得更简单,当图像显示源为LCOS芯片等,为不可自发光的芯片,需要配置光源,所述光源发出的光线经过所述分光单元照射在所述图像源上,经所述图像源反射形成携带图像信息的可见光。
准直后的第二出射光线经所述分光单元、像质矫正系统输入至所述瞳孔成像单元,其中,所述像质矫正系统包括至少一片光学透镜以及一片长波通滤光片,将可见光以及其他杂散光过滤掉,提高瞳孔图像的信噪比。
所述全息智能显示装置集成瞳孔追踪功能的实现方法,包括:
带有图像信息的第一入射光线通过全息波导的第一全息光栅组耦合入射至波导基体,所述第一入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出照射在眼睛上的第一出射光线;
经眼睛反射的第二入射光线通过全息波导的第二全息光栅组耦合入射至所述波导基体,所述第二入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出第二出射光线;
所述第二出射光线传输至瞳孔成像单元,形成包含眼睛瞳孔的图像,进而获取瞳孔位置,所述的全息智能显示装置在不影响图像信息显示的前提下获取瞳孔位置,实现图像信息显示与瞳孔位置追踪的集成。
本实施例集成瞳孔追踪功能的全息智能显示装置具体结构,如图1所示,光源300为LED芯片,发出的光线经过分光单元偏振分光棱镜(PBS)201,照射在图像源400(又称图片显示源)上,图像源400为LCOS芯片,反射回来的光线携带着图像信息,经过光线准直单元光学中继系统200后,准直为平行光线010即为第一入射光线照射在波导基体100上的第一入射全息光栅即可见光耦合输入光栅111上,光线010经可见光耦合输入光栅111衍射后在波导基体100中发生无损耗的全反射传播。光线010在到达第一出射全息光栅即为可见光耦合输出光栅112位置时,经其衍射,从基体中输出,形成第一出射光线,到达人眼600中。外界光线 040可以穿过透明的可见光耦合输出光栅112和红外耦合输入光栅122,即可达到将数字信息叠加在外界真实场景上的目的。
为了清晰地获得瞳孔的图像,在波导末端或镜框上设计一个红外光线发射装置700。该装置将红外光线020投射向人眼600,瞳孔的反射光线030形成第二入射光线,所述第二入射光线经过第二入射全息光栅红外耦合输入光栅122耦合进入波导基体100中,发生无损耗的全反射传输,达到第二出射全息光栅红外耦合输出光栅121耦合输出波导基体100,形成第二出射光线。第二出射光线经过光学中继系统200、偏振分光棱镜201、像质矫正系统203后,成像在瞳孔成像单元感光芯片500上,即可获得瞳孔的位置信息。感光芯片为红外CCD芯片或者红外CMOS芯片。像质矫正系统203包括透镜组和一片长波通滤光片,将可见光以及其他杂散光过滤掉,提高瞳孔图像的信噪比。
由于上述图像源400经过光学中继系统200准直后,经过可见光全息光栅进入波导中,在波导中发生全反射,到达另一可见光全息光栅处从波导中出射,进入人眼;红外光发射装置向瞳孔发射红外光线,瞳孔的红外图像经过近红外波导耦合进入波导中发生全反射,到达另一近红外全息光栅处从波导中出射,经过中继系统200及像质矫正系统203到达成像芯片500处。使图像源400与成像芯片500可以共用中继系统,从而提高了系统的集成度、可靠性,进而降低了设备体积。
其中,感光芯片500获得瞳孔的位置后,可以判断人眼的注视方向,再调整图像显示源的内容,从而保证人眼观看的区域的分辨率达到最高,同时为立体显示打下了基础。
所述波导基体100上的可见光、近红外全息光栅为反射型全息光栅、透射型全息光栅组成的可见光、近红外全息光栅(其中,光栅111、112为反射型全息光栅,光栅121、122为透射型全息光栅),也可以通过将光刻胶、光致聚合物、重铬酸盐明胶、光折变晶体、卤化银等全息材料放置在激光引发的干涉场中,经过全息曝光所得。相干激光形成亮暗交替分布的干涉图,在亮暗区域形成两种折射率不同的区域1111和1112,如图2所示。由于这两个区域的折射率不同,从而形成光栅结构,也属于变折射率相位全息光栅。
或将全息材料通过纳米压印技术所得,将模板上的微纳结构转移到波导基体上,相较厚度不变的变折射率相位光栅,其特点是光栅区域1113的折射率不变,但是光栅的厚度是一直变化的,如图3所示,也属于表面浮雕全息光栅。
实施例二
本实施例与实施例一相同的特征不再赘述,本实施例与实施例一不同的特征在于:
本实施例种集成瞳孔追踪功能的全息智能显示装置的具体结构如图4所示,图像显示源800为micro LED、OLED等可以自发光的芯片,因此就可以省掉LED照明光源、偏振分光棱镜以及半波片等光学元件,使得光机结构变得简单。图像源发出的光线经过光学中继系统200后,准直为平行光线010即为第一入射光线照射在波导基体100上的第一入射全息光栅即可见光耦合输入光栅111上,光线010经可见光耦合输入光栅111衍射后在波导基体100中发生无损耗的全反射传播。光线010在到达第一出射全息光栅即可见光耦合输出光栅112位置时,经其衍射,从波导基体100中输出,到达人眼600中。外界光线040可以穿过透明的可见光耦合输出光栅112和红外耦合输入光栅122,即可达到将数字信息叠加在外界真实场景上的目的。
为了清晰地获得瞳孔的图像,在波导末端设计一个红外光线发射装置700。该装置将红外光线020投射向人眼600,瞳孔的反射光线030即第二入射光线经过第二入射全息光栅红外耦合输入光栅122耦合进入波导基体100中,发生无损耗的全反射传输,达到第二出射全息光栅红外耦合输出光栅121耦合输出波导基体100。红外光线经过光学中继系统200、分光单元二向色镜900、像质矫正系统203后,成像在瞳孔成像单元感光芯片500上,即可获得瞳孔的位置信息。感光芯片为红外CCD芯片或者红外CMOS芯片。像质矫正系统203包括透镜组和一片长波通滤光片,将可见光以及其他杂散光过滤掉,提高瞳孔图像的信噪比。二向色镜900的作用是将红外光线偏折向感光芯片,同时不影响图像源发出光线的透过率。
实施例三
本实施例与实施例一相同的特征不再赘述,本实施例与实施例一不同的特征在于:
图像显示源800为SLM芯片。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

  1. 一种集成瞳孔追踪功能的全息智能显示装置,其特征是,包括:
    全息波导,其包括波导基体及附着在所述波导基体上对两种不同波段光线敏感的第一全息光栅组、第二全息光栅组,
    其中,所述第一全息光栅组用于将带有图像信息的第一入射光线耦合入射至所述波导基体,以使所述第一入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出照射在眼睛上的第一出射光线,
    所述第二全息光栅组用于将经眼睛反射的第二入射光线耦合入射至所述波导基体,以使所述第二入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出第二出射光线,所述波导基体用于所述第一入射光线、第二入射光线的全反射;
    瞳孔成像单元,位于所述全息波导的一侧,用于接收所述第二出射光线,并形成包含眼睛瞳孔的图像。
  2. 根据权利要求1所述的集成瞳孔追踪功能的全息智能显示装置,其特征是,所述第一全息光栅组、第二全息光栅组均设置在所述波导基体的表面或设置在所述波导基体内。
  3. 根据权利要求1所述的集成瞳孔追踪功能的全息智能显示装置,其特征是,所述第一全息光栅组包括第一入射全息光栅、第一出射全息光栅,所述第一入射全息光栅、第一出射全息光栅分别错位设置在所述波导基体的不同侧,
    其中,
    所述第一入射全息光栅用于将所述第一入射光线耦合入射至所述波导基体,以使所述第一入射光线在所述波导基体内发生全反射,
    所述第一出射全息光栅用于被所述波导基体全反射后的所述第一入射光线输出所述波导基体,形成所述第一出射光线。
  4. 根据权利要求3所述的集成瞳孔追踪功能的全息智能显示装置,其特征是,
    所述第二全息光栅组包括第二入射全息光栅、第二出射全息光栅,所述第二入射全息光栅、第二出射全息光栅分别错位设置在所述波导基体的不同侧,
    其中,
    所述第二入射全息光栅用于将所述第二入射光线耦合入射至所述波导基体,以使所述第二入射光线在所述波导基体内发生全反射,
    所述第二出射全息光栅用于被所述波导基体全反射后的所述第二入射光线输出所述波导基体,形成所述第二出射光线。
  5. 根据权利要求4所述的集成瞳孔追踪功能的全息智能显示装置,其特征是,还包括发光单元,所述发光单元设在所述波导基体或位于眼睛一侧的架框上,用于发射照射在眼睛上的红外光线,所述红外光线经眼睛反射后即为所述第二入射光线。
  6. 根据权利要求1-5任一所述的集成瞳孔追踪功能的全息智能显示装置,其特征是,还包括光线准直单元、分光单元、图像源,所述光线准直单元、分光单元位于所述全息波导与所述图像源之间,
    其中,所述光线准直单元为所述图像源、瞳孔成像单元共用中继系统,用于将所述图像源反射或发出的携带图像信息的可见光进行准直处理,形成所述第一入射光线,并接收所述第二出射光线,对所述第二出射光线准直,以供输入所述瞳孔成像单元,
    其中,准直后的第二出射光线经所述分光单元输入至所述瞳孔成像单元。
  7. 根据权利要求6所述的集成瞳孔追踪功能的全息智能显示装置,其特征是,所述图像源包括LCOS芯片、OLED芯片、micro LED芯片、SLM芯片、LCD芯片、DMD芯片中的一种,
    所述瞳孔成像单元包括成像芯片,
    所述波导基体材质为透明光学材料,包括BK7玻璃、ZF系列玻璃或树脂,
    所述分光单元包括偏振分光棱镜或二向色镜。
  8. 根据权利要求6所述的集成瞳孔追踪功能的全息智能显示装置,其特征是,还包括光源,发出的光线经过所述分光单元照射在所述图像源上,经所述图像源反射形成携带图像信息的可见光。
  9. 根据权利要求6所述的集成瞳孔追踪功能的全息智能显示装置,其特征是,还包括像质矫正系统,所述像质矫正系统位于所述分光单元、所述瞳孔成像单元之间,其中,所述像质矫正系统包括至少一片光学透镜以及一片长波通滤光片。
  10. 一种根据权利要求1-9任一所述的全息智能显示装置集成瞳孔追踪功能的实现方法,其特征是,包括:
    带有图像信息的第一入射光线通过全息波导的第一全息光栅组耦合入射至波导基体,所述第一入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出照射在眼睛上的第一出射光线;
    经眼睛反射的第二入射光线通过全息波导的第二全息光栅组耦合入射至所述波导基体,所述第二入射光线在所述波导基体内发生全反射后耦合射出所述波导基体,输出第二出射光线;
    所述第二出射光线传输至瞳孔成像单元,形成包含眼睛瞳孔的图像,进而获取瞳孔位置,所述的全息智能显示装置在不影响图像信息显示的前提下获取瞳孔位置,实现图像信息显示与瞳孔位置追踪的集成。
PCT/CN2021/072533 2020-01-21 2021-01-18 一种集成瞳孔追踪功能的全息智能显示装置及实现方法 WO2021147825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010072020.5A CN111123525A (zh) 2020-01-21 2020-01-21 一种集成瞳孔追踪功能的全息智能显示装置及实现方法
CN202010072020.5 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021147825A1 true WO2021147825A1 (zh) 2021-07-29

Family

ID=70491594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072533 WO2021147825A1 (zh) 2020-01-21 2021-01-18 一种集成瞳孔追踪功能的全息智能显示装置及实现方法

Country Status (2)

Country Link
CN (1) CN111123525A (zh)
WO (1) WO2021147825A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123525A (zh) * 2020-01-21 2020-05-08 奥提赞光晶(山东)显示科技有限公司 一种集成瞳孔追踪功能的全息智能显示装置及实现方法
CN113109942B (zh) * 2021-03-02 2022-07-26 联想(北京)有限公司 显示装置及头戴式显示设备
CN113514955A (zh) * 2021-04-29 2021-10-19 业成科技(成都)有限公司 Ar光学系统及ar显示设备
CN113359297A (zh) * 2021-06-17 2021-09-07 江苏和辰软件技术有限公司 一种智能化视觉训练的ar智能眼镜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104116495A (zh) * 2014-07-11 2014-10-29 北京理工大学 一种视网膜光学相干层析探测-显示系统
CN104950442A (zh) * 2014-03-25 2015-09-30 索尼公司 导光单元、图像显示设备和显示装置
CN105954992A (zh) * 2016-07-22 2016-09-21 京东方科技集团股份有限公司 显示系统和显示方法
US20170277259A1 (en) * 2016-03-24 2017-09-28 Daqri, Llc Eye tracking via transparent near eye lens
CN109116566A (zh) * 2018-09-06 2019-01-01 北京理工大学 一种近眼显示装置
US20190258062A1 (en) * 2018-02-20 2019-08-22 North Inc. Eye tracking system and method, eyeglass lens, and wearable heads-up display
CN111123525A (zh) * 2020-01-21 2020-05-08 奥提赞光晶(山东)显示科技有限公司 一种集成瞳孔追踪功能的全息智能显示装置及实现方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360935B2 (en) * 2013-12-20 2016-06-07 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Integrated bi-sensing optical structure for head mounted display
CN104199196B (zh) * 2014-09-04 2017-02-15 北京理工大学 一种具有眼动追踪功能的波导式集成成像三维显示系统
US10241330B2 (en) * 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
CN211955988U (zh) * 2020-01-21 2020-11-17 奥提赞光晶(山东)显示科技有限公司 一种集成瞳孔追踪功能的全息智能显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950442A (zh) * 2014-03-25 2015-09-30 索尼公司 导光单元、图像显示设备和显示装置
CN104116495A (zh) * 2014-07-11 2014-10-29 北京理工大学 一种视网膜光学相干层析探测-显示系统
US20170277259A1 (en) * 2016-03-24 2017-09-28 Daqri, Llc Eye tracking via transparent near eye lens
CN105954992A (zh) * 2016-07-22 2016-09-21 京东方科技集团股份有限公司 显示系统和显示方法
US20190258062A1 (en) * 2018-02-20 2019-08-22 North Inc. Eye tracking system and method, eyeglass lens, and wearable heads-up display
CN109116566A (zh) * 2018-09-06 2019-01-01 北京理工大学 一种近眼显示装置
CN111123525A (zh) * 2020-01-21 2020-05-08 奥提赞光晶(山东)显示科技有限公司 一种集成瞳孔追踪功能的全息智能显示装置及实现方法

Also Published As

Publication number Publication date
CN111123525A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021147825A1 (zh) 一种集成瞳孔追踪功能的全息智能显示装置及实现方法
US11187904B2 (en) Multiple projector field-of-view stitched waveguide display
JP7125423B2 (ja) スキューミラー補助画像化
US10838132B1 (en) Diffractive gratings for eye-tracking illumination through a light-guide
US11609424B2 (en) Apodized reflective optical elements for eye-tracking and optical artifact reduction
CN109642716A (zh) 包括厚介质的虚拟现实、增强现实和混合现实系统及相关方法
US11067821B2 (en) Apodized optical elements for optical artifact reduction
CN107850780A (zh) 全息近眼显示
KR102584692B1 (ko) 다초점 평면 디스플레이 시스템 및 장치
CN104321682A (zh) 图像显示装置
TWI727217B (zh) 光傳遞模組以及頭戴式顯示裝置
US20200355862A1 (en) Spatial deposition of resins with different functionality on different substrates
CN114072717A (zh) 基于经由光导光学元件对眼睛成像来进行眼睛追踪的设备和方法
KR102162994B1 (ko) 근안 디스플레이를 위한 파장 통과 제어용 편광 시스템 및 방법
WO2020184268A1 (ja) 複合型回折素子、器具、及び映像投射システム
WO2020227355A1 (en) Spatial deposition of resins with different functionality
WO2021007134A1 (en) Apodized optical elements for optical artifact reduction
CN113655615A (zh) 大出瞳光学显示装置、近眼显示装置及图像投射方法
CN211955988U (zh) 一种集成瞳孔追踪功能的全息智能显示装置
CN109116566A (zh) 一种近眼显示装置
CN113534478A (zh) 光学组件、显示系统及制造方法
Zhou et al. Advances in the design of optical see-through displays
JPH1164781A (ja) 網膜直接描画装置
JP2022132274A (ja) 光学システム及び複合現実装置
CN113687518A (zh) 光学系统及光学设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21743717

Country of ref document: EP

Kind code of ref document: A1