WO2021147554A1 - 基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 - Google Patents
基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 Download PDFInfo
- Publication number
- WO2021147554A1 WO2021147554A1 PCT/CN2020/135315 CN2020135315W WO2021147554A1 WO 2021147554 A1 WO2021147554 A1 WO 2021147554A1 CN 2020135315 W CN2020135315 W CN 2020135315W WO 2021147554 A1 WO2021147554 A1 WO 2021147554A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weathering
- feldspar
- rock
- module
- data
- Prior art date
Links
- 239000011435 rock Substances 0.000 title claims abstract description 91
- 239000010433 feldspar Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims description 31
- 239000013078 crystal Substances 0.000 claims abstract description 31
- 238000013135 deep learning Methods 0.000 claims abstract description 15
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 29
- 239000011707 mineral Substances 0.000 claims description 29
- 239000000523 sample Substances 0.000 claims description 21
- 238000004458 analytical method Methods 0.000 claims description 18
- 229910052655 plagioclase feldspar Inorganic materials 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 16
- 238000003776 cleavage reaction Methods 0.000 claims description 14
- 230000007017 scission Effects 0.000 claims description 14
- 238000005070 sampling Methods 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 238000005755 formation reaction Methods 0.000 claims description 12
- 238000013528 artificial neural network Methods 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 11
- 238000005553 drilling Methods 0.000 claims description 10
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 7
- 238000009412 basement excavation Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 6
- 239000003245 coal Substances 0.000 claims description 6
- 229910052652 orthoclase Inorganic materials 0.000 claims description 6
- 238000011002 quantification Methods 0.000 claims description 6
- 238000004445 quantitative analysis Methods 0.000 claims description 6
- 238000000921 elemental analysis Methods 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 229910052729 chemical element Inorganic materials 0.000 claims description 4
- 238000013145 classification model Methods 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 238000002441 X-ray diffraction Methods 0.000 claims description 3
- 239000000428 dust Substances 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract 1
- 235000010755 mineral Nutrition 0.000 description 24
- 238000010586 diagram Methods 0.000 description 10
- 238000004590 computer program Methods 0.000 description 7
- 238000007405 data analysis Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 229940072033 potash Drugs 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 235000015320 potassium carbonate Nutrition 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052656 albite Inorganic materials 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052659 labradorite Inorganic materials 0.000 description 1
- 239000011018 labradorite Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/04—Devices for withdrawing samples in the solid state, e.g. by cutting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/04—Devices for withdrawing samples in the solid state, e.g. by cutting
- G01N1/08—Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/04—Devices for withdrawing samples in the solid state, e.g. by cutting
- G01N2001/045—Laser ablation; Microwave vaporisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/076—X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/616—Specific applications or type of materials earth materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/223—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
Definitions
- the present disclosure belongs to the field of rock and soil weathering resistance testing, and relates to a system and method for judging the weathering resistance of clastic rocks in tunnels based on the characteristics of feldspar.
- Feldspar minerals are the most common silicate minerals in the earth's crust. As the most important rock-forming minerals in the lithosphere, their characteristics are closely related to the structure, hardness, compressive strength, and weathering resistance of rocks. The crystallization temperature of feldspar is lower, second only to quartz and muscovite, so it belongs to a class of minerals with strong resistance to weathering in nature. However, the traditional methods of research on rock hardness or its resistance to weathering mostly focus on the consideration of quartz, and the relative relationship between feldspar and rock resistance to weathering is rarely considered. However, the distribution of feldspar in the lithosphere is more extensive. Need to consider as much as possible to find a mineral factor that can be adapted to a variety of rocks, feldspar is a good choice.
- the current evaluation of the resistance to weathering of clastic rocks lacks consideration of the characteristics of feldspar, and the lack of consideration of the characteristics of feldspar, resulting in fewer types of rocks that can be studied, and a small amount of use
- the quartz content is used to infer the degree of weathering resistance of the rock and other phenomena, resulting in a large range of observation errors.
- the present disclosure proposes a system and method for determining the anti-weathering ability of clastic rocks in tunnels based on the analysis of the characteristics of feldspar.
- the present disclosure judges its anti-weathering ability by studying the characteristics of feldspars in the tunnel clastic rocks. The gaps in the prediction research on the anti-weathering ability of the surrounding rock of the tunnel are discussed.
- the present disclosure adopts the following technical solutions:
- the discrimination system for the anti-weathering ability of clastic rocks in the tunnel based on the analysis of feldspar characteristics including:
- the automatic scanning module is configured to collect all-round images of the rock formation before the sample is obtained;
- the element analysis module is configured to collect basic chemical element information contained in the sample
- the microscopic image module is configured to extract the cleavage characteristics, interference color characteristics, protrusion characteristics and crystal structure characteristics of the feldspar in the sample;
- the wireless transmission module is configured to transmit the data obtained by the automatic scanning module and the element analysis module to the data analysis center;
- the data analysis center obtains cleavage information and crystal structure information by extracting image characteristics and element characteristics, and then determines the level of the anti-weathering ability of the rock formation.
- the sampling mechanism includes a rock breaking mechanism and a sampling mechanical arm mounted on a TBM
- the rock breaking mechanism includes a laser rock breaking device and a drilling rig, wherein the laser rock breaking system cuts a block sample by laser,
- the drilling rig drills for powdered samples, and the sampling robotic arm can move in multiple dimensions.
- the automatic scanning device is equipped with a high-definition fully automatic wide-angle camera lens to collect high-definition image information of the research rock formation.
- the elemental analysis module includes an X-ray analysis device.
- it also includes a mineral quantification module, including an electronic probe system, to quantitatively analyze the content of various feldspars in the sample.
- a mineral quantification module including an electronic probe system, to quantitatively analyze the content of various feldspars in the sample.
- the data analysis center includes a lithology comparison module and a deep learning module, where the lithology comparison module receives information obtained by the automatic scanning module, element analysis module, and microscopic image module, and works in collaboration with the deep learning module;
- the deep learning module is configured to extract image features and element features to feed back basic lithology information, compare the element content of various feldspars with existing data, obtain cleavage information and crystal structure information, and then perform classification. Get the level of resistance to weathering of the rock formation.
- the deep learning module includes an artificially assisted neural network trainer and an automatic model predictor.
- the artificially assisted neural network trainer stores preliminary tunnel excavation rock data, various surface rock data, and oil and coal field data. Drilling lithology data is used as training data to obtain the type and content of feldspar in the rock to classify a single feature anti-weathering level, and to give the basic lithological characteristics of the rock; the automatic model predictor is configured to classify according to the degree of weathering resistance The model is expanded and classified, and the final prediction result is output.
- block samples and powder samples were randomly taken on the tunnel face, and the tunnel face was scanned in all directions to obtain image information and analyze the element types in the sample;
- the model is built through neural network learning, and through repeated comparisons with existing data, the cleavage type and interference color characteristics of feldspar are finally obtained , Protrusion features, etc., and the crystal structure features of feldspar are used to classify the weathering resistance level of a single feature;
- the process of grading the anti-weathering grade of a single feature includes: according to different feldspar types to provide discrimination standards, orthoclase>acid plagioclase>neutral plagioclase>basic plagioclase
- feldspar contains only K element, its anti-weathering ability is the strongest, Na element is second, and its anti-weathering ability is worst when it contains only Ca element.
- it contains both Na and Ca elements its anti-weathering ability is the same as Na element. The increase in content increases.
- the process of grading the anti-weathering grade of a single feature includes: the higher the content of feldspar in the rock, the stronger its anti-weathering ability.
- the process of grading the anti-weathering grade of a single feature includes: the better the crystal shape of the mineral is preserved, the more stable it is, and the higher its anti-weathering ability is.
- the present disclosure provides a method for evaluating the anti-weathering ability of clastic rocks in tunnels by using minerals that are more widely present in the earth's crust, overcomes the shortcomings of current experimental methods, is easy to operate, and can be used to detect the types, content, and crystal structure of feldspar in rock formations This information is combined with computer deep learning methods to integrate this information to judge the weathering resistance of clastic rocks containing different types of feldspar in the tunnel, and the judgment is highly accurate.
- Figure 1 is a diagram of the overall system structure of this embodiment
- FIG. 2 is a schematic diagram of the installation of the TBM data acquisition system and wireless transmission module in the tunnel;
- Figure 3 is a schematic diagram of the installation of the sampling mechanism and the automatic scanning module in the data acquisition system on the TBM front-end robotic arm;
- Figure 4 is a simplified diagram of the actual operation of data analysis, output and storage, display module and mineral quantitative analysis module.
- the system and method for judging the anti-weathering ability of clastic rock in the tunnel based on the analysis of feldspar characteristics includes a data acquisition system, a wireless transmission system, a data analysis system, a data output and storage center, and each system includes There are different modules.
- the sampling mechanism, automatic scanning module, and element analysis module in the data acquisition system are installed on the front end of the TBM through a robotic arm.
- the sampling mechanism and automatic scanning module can be used when the TBM is stopped. Multi-directional random sampling and omni-directional image acquisition;
- the element analysis module is equipped with an X-ray analyzer to collect basic chemical element information contained in the rock;
- the microscopic image module and the mineral quantification module are placed in the remote control laboratory, and the data obtained is transmitted to the deep learning module;
- the microscopic image module is equipped with a high-resolution partial microscope, which is mainly used to extract the cleavage characteristics, interference color characteristics, protrusion characteristics and crystal structure characteristics of feldspar to transmit to the learning module for grading;
- the mineral quantification module is equipped with an electronic probe system. Because the X-ray system can only measure element types semi-quantitatively and cannot quantitatively study, the probe system can further quantitatively analyze the content of various feldspars for the learning system to analyze and grade;
- the wireless transmission system is mounted at the end of the information acquisition system to transmit the data obtained by the automatic scanning module and element analysis module in the acquisition system to the data analysis system;
- the data analysis system includes a lithology comparison module and a deep learning module;
- the lithology comparison module receives information from the data acquisition system, and works with the deep learning module;
- the lithology recognition system is embedded with the lithology library, and the learning module can feed back basic lithology information by extracting image features and element features;
- the deep learning module includes artificial auxiliary neural network trainer and automatic model predictor;
- the trainer has received a large amount of preliminary tunnel excavation rock data, various surface rock data and drilling lithology data of domestic oil fields and coal fields, and these data are stored in the data storage center, and the trainer can continuously obtain from the data storage center Training with new data;
- the trainer receives information from the elemental analysis module and the mineral quantification module, and through comparison and training with existing data, it can finally be classified according to principle one and principle two;
- the trainer receives the microscopic image module information, performs image learning, and extracts data. It is also continuously compared with the existing data in the storage system to obtain cleavage information and crystal structure information, and perform classification according to principle three;
- the trainer finally combines the three classifications to give the level of the anti-weathering ability of the rock formation according to the preset classification standards;
- the predictor compares the results to be detected with the results of various rock samples manually analyzed in the data storage center, and uses the model trained by the trainer to determine the corresponding relationship between the feldspar in the rock and the anti-weathering ability as an auxiliary prediction.
- the data acquisition system collects data on the tunnel face during any shutdown period of the TBM.
- the automatic high-definition camera scans the tunnel face.
- the laser rock breaking equipment is used to randomly sample the tunnel face, and the small impact drill takes powder samples.
- Preliminary identification of various chemical elements in the rock formation is carried out through the equipped X-ray analysis equipment and the corresponding data interpretation system.
- an electronic probe system is required for elemental compounds or minerals. Quantitative analysis.
- the microscopic image module refers to the different microscopic characteristics of feldspar, such as: two groups of orthoclase intersect at 90°, while plagioclase does not cross at 90°.
- the crystal shape is recognized (auto-shaped, semi-automatic). Shape, other shape), interference color recognition (the interference color of orthoclase is first-class gray-gray white, the interference color of plagioclase is first-class yellow, parallel extinction), protrusion recognition (positive feldspar is negative protrusion, plagioclase is positive Protrusion).
- orthoclase (potassium feldspar)> acid plagioclase (albite, austenitic)> neutral plagioclase (medium feldspar)> basic plagioclase Feldspar (labradorite, feldspar, anorthite).
- Principle 3 Crystal structure. If a mineral has sufficient crystallization time and growth space during crystallization, it will grow into a fixed shape according to its own crystal structure. Therefore, when the mineral crystallizes, it maintains its own crystal structure and growth.
- the shape is called euhedral crystal; most of the remaining crystal shape is called semi-automorphic crystal; the complete loss of its own shape is called euhedral crystal, and the better the crystal shape of the mineral is, the better it is. The more stable it is, the higher its resistance to weathering.
- the final judgement level of the feldspar characteristics on the degree of weathering of the rock formation is finally determined: at least one level 1 and level 2 or two level 2 are superior in weathering resistance, and only one level 1 or level 2 exists.
- the anti-weathering ability is medium, and there is no one level 1 or 2, the anti-weathering ability is poor.
- the working process mainly includes the following steps:
- the information acquisition system (1) starts to work, in which the sampling module (2) starts to randomly sample block samples (2a) and powder samples (2b) on the face of the face, and the scanning module (3) starts to match the palms
- the sub-surface starts to scan the acquired image information in all directions
- the element analysis module (4) analyzes the element types in the sample, and finally transmits the data obtained in the above process to the lithology comparison module (8) through the wireless transmission system (7);
- the microscopic image module (5) transfers the extracted images containing cleavage features, interference color features, protrusion features and crystal structure features to the data analysis system (9), and the trainer (10) learns through the neural network Establish a model, and through repeated comparisons with the existing data in the data storage space (13), it is finally necessary to obtain the cleavage type, interference color characteristics, protrusion characteristics, etc. of the feldspar and the crystal structure characteristics of the feldspar to classify the anti-weathering level of a single feature;
- the mineral quantification module (6) can quantitatively obtain the main types of minerals in the sample, and the trainer (10) in the data analysis system (9) combines the mineral quantitative analysis results with the elemental analysis data from the lithology comparison module (8) As well as image data, the type and content of feldspar in the rock can be obtained through the model that has been established through the preliminary learning of the neural network to classify the anti-weathering level of a single feature, and the basic lithological characteristics of the rock can also be given;
- the learning system will integrate all the above information, expand the classification through the embedded anti-weathering degree classification model, and output the final prediction result (12);
- the data output system outputs the data to the storage center and stores it (13);
- the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
- the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
- These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
- the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Environmental & Geological Engineering (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Geology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Remote Sensing (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
Claims (10)
- 一种基于长石特征对隧洞内碎屑岩抗风化能力的判别装置,包括:取样机构,搭载于TBM前方,获取掌子面的岩块或/和岩粉试样;自动扫描模块,被配置为对获取试样前的岩层进行全方位图像采集;元素分析模块,被配置为对试样中所含基本化学元素信息进行采集;显微图像模块,被配置为对试样中长石的解理特征、干涉色特征、突起特征以及晶体结构特征进行提取;无线传输模块,被配置为将自动扫描模块、元素分析模块获取的数据传输至数据分析中心;所述数据分析中心根据获取的信息,通过提取图像特征以及元素特征,获取解理信息与晶体结构信息,进而确定岩层抗风化能力的级别。
- 如权利要求1所述的一种基于长石特征对隧洞内碎屑岩抗风化能力的判别装置,其特征是:所述取样机构包括搭载于TBM上的破岩机构和取样机械臂,所述破岩机构包括激光破岩装置和钻机,其中激光破岩系统通过激光切取块状样品,钻机钻取粉末状样品,取样机械臂可多维运动。
- 如权利要求1所述的一种基于长石特征对隧洞内碎屑岩抗风化能力的判别装置,其特征是:自动扫描设备搭载有高清全自动广角拍照镜头,用以采集研究岩层的高清图像信息。
- 如权利要求1所述的一种基于长石特征对隧洞内碎屑岩抗风化能力的判别装置,其特征是:所述元素分析模块包括X射线分析设备。
- 如权利要求1所述的一种基于长石特征对隧洞内碎屑岩抗风化能力的判 别装置,其特征是:还包括矿物定量模块,包括电子探针系统,对试样中各类长石的含量进行定量分析。
- 如权利要求1所述的一种基于长石特征对隧洞内碎屑岩抗风化能力的判别装置,其特征是:数据分析中心包括岩性对比模块与深度学习模块,其中,岩性对比模块接收自动扫描模块、元素分析模块和显微图像模块获取的信息,与深度学习模块协同工作;深度学习模块被配置为提取图像特征以及元素特征,以反馈出基本的岩性信息,根据各类长石的元素含量与已有数据进行对比,获取解理信息与晶体结构信息,进而进行分级,得到岩层抗风化能力的级别。
- 如权利要求1所述的一种基于长石特征对隧洞内碎屑岩抗风化能力的判别装置,其特征是:深度学习模块包括人工辅助神经网络训练器以及自动模型预测器,所述人工辅助神经网络训练器存储有先期隧洞开挖岩石数据以及各类地表岩石数据以及油田及煤田的钻井岩性数据,作为训练数据,获得岩石中长石的类型和含量用以划分单个特征抗风化级别,给出岩石的基本岩性特征;所述自动模型预测器被配置为根据抗风化程度分级模型展开分级,并输出最终预测结果。
- 一种基于长石特征对隧洞内碎屑岩抗风化能力的判别方法,其特征是:包括以下步骤:提前采集隧道在开挖前期的碎屑岩岩石样品、地表碎屑岩岩石样品、油田或煤田钻井岩心样品,获取其图像特征、元素特征、显微特征、晶体特征以及矿物特征等,利用不同风化等级的判定标准来完成训练模型;在TBM停机期间,在掌子面随机采取块状样和粉末样,对掌子面开始全方位扫描已获取图像信息,分析样品中的元素类型;根据提取到的包含解理特征、干涉色特征、突起特征和晶体结构特征的图像,通过神经网络学习建立模型,通过与已有数据反复对比,最终需得到长石的解理类型、干涉色特征、突起特征等和长石的晶体结构特征用以划分单个特征抗风化级别;定量的获取样品中矿物的主要类型,结合矿物定量分析结果和元素分析数据以及图像数据,通过神经网络先期学习已建立起的模型获得岩石中长石的类型和含量用以划分单个特征抗风化级别,给出岩石的基本岩性特征;将整合上述所有信息,并通过已嵌入的抗风化程度分级模型展开分级,并输出最终预测结果。
- 如权利要求8所述的方法,其特征是:单个特征抗风化级别的分级的过程包括:按照不同长石的种类提供判别标准来看,正长石>酸性斜长石>中性斜长石>基性斜长石,当长石中仅含有K元素时,其抗风化能力最强,Na元素其次,仅含有Ca元素时其抗风化能力最差,当同时含有Na和Ca元素时,其抗风化能力随Na元素含量的增多而增强。
- 如权利要求8所述的方法,其特征是:单个特征抗风化级别分级的过程包括:长石本在岩石中的含量越高,其抗风化能力就越强;或,矿物的晶体形状保存的越完好则说明其更加稳定,其抗风化能力也越高。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/619,203 US11933713B2 (en) | 2020-01-21 | 2020-12-10 | Determining system and method for weathering resistant capability of clastic rocks in tunnel based on feldspar features |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010071313.1 | 2020-01-21 | ||
CN202010071313.1A CN111220616B (zh) | 2020-01-21 | 2020-01-21 | 基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021147554A1 true WO2021147554A1 (zh) | 2021-07-29 |
Family
ID=70829691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/135315 WO2021147554A1 (zh) | 2020-01-21 | 2020-12-10 | 基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11933713B2 (zh) |
CN (1) | CN111220616B (zh) |
WO (1) | WO2021147554A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118551331A (zh) * | 2024-07-30 | 2024-08-27 | 国网山东省电力公司电力科学研究院 | 基于鸟类定位的运行状态数据监测方法及设备 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111220616B (zh) * | 2020-01-21 | 2021-06-01 | 山东大学 | 基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 |
CN113435458B (zh) * | 2021-02-08 | 2024-08-06 | 中国石油化工股份有限公司 | 基于机器学习的岩石薄片图像分割方法、装置及介质 |
CN112801035B (zh) * | 2021-02-24 | 2023-04-07 | 山东大学 | 基于知识与数据双驱动的搭载式岩性智能识别方法及系统 |
CN115761038B (zh) * | 2022-10-19 | 2023-06-30 | 山东大学 | 一种基于图像光谱技术的隧道掌子面地质素描方法及系统 |
CN116718753B (zh) * | 2023-05-31 | 2024-05-07 | 中国地质大学(北京) | 一种土壤地球化学风化基因sg01及其构建方法和应用 |
CN116913416B (zh) * | 2023-09-12 | 2023-12-26 | 中国地质大学(北京) | 海蚀崖岩石风化程度定量评价及预测方法及装置 |
CN117332240B (zh) * | 2023-12-01 | 2024-04-16 | 中铁四局集团有限公司 | 岩爆预测模型构建方法、存储介质、岩爆预测方法及系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10105546A (ja) * | 1996-09-26 | 1998-04-24 | Pub Works Res Inst Ministry Of Constr | 岩盤の風化度判定方法 |
DE102004063019A1 (de) * | 2004-12-22 | 2006-07-13 | Kurth, André | Verfahren zur Herstellung von Abbildungen auf Naturstein |
CN106485223A (zh) * | 2016-10-12 | 2017-03-08 | 南京大学 | 一种砂岩显微薄片中岩石颗粒的自动识别方法 |
CN206016814U (zh) * | 2016-09-18 | 2017-03-15 | 中铁工程装备集团有限公司 | 一种记录与分析tbm渣片的装置 |
CN109765097A (zh) * | 2018-12-21 | 2019-05-17 | 中铁三局集团有限公司 | 一种基于rpd钻机的隧道围岩快速分类方法 |
CN110516730A (zh) * | 2019-08-20 | 2019-11-29 | 中铁工程装备集团有限公司 | 基于pso-svm算法和图像识别的围岩质量在线分级方法 |
CN111220616A (zh) * | 2020-01-21 | 2020-06-02 | 山东大学 | 基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102261250A (zh) * | 2010-05-31 | 2011-11-30 | 三一重型装备有限公司 | 一种硬岩液压破碎式掘进机 |
CN102053268B (zh) * | 2010-11-18 | 2012-07-25 | 中国石油天然气股份有限公司 | 一种蚀变火山岩岩性识别方法及装置 |
KR101382381B1 (ko) * | 2012-05-29 | 2014-04-08 | 대한민국 | 표면 반발 경도계를 이용한 암석의 풍화도지수 산출방법 |
CN102866099B (zh) * | 2012-08-14 | 2015-04-08 | 北京矿产地质研究院 | 一种岩石风化深度的测定方法 |
CN102967548B (zh) * | 2012-11-09 | 2015-08-19 | 中国水利水电科学研究院 | 一种岩石风化速度的测定方法 |
CN103744109B (zh) * | 2013-12-26 | 2017-02-08 | 中国石油天然气股份有限公司 | 一种无井覆盖区碎屑岩风化壳结构的识别方法 |
CN105717149B (zh) * | 2016-01-27 | 2018-08-24 | 中南大学 | 一种玄武岩风化程度的判别方法 |
CN108593531B (zh) * | 2018-03-13 | 2021-11-23 | 成都理工大学 | 一种岩体风化程度快速量化评价方法及其应用 |
CN109187161B (zh) * | 2018-08-30 | 2020-07-10 | 中国石油大学(北京) | 一种碎屑岩中长石溶蚀程度的定量评价方法 |
CN109374456A (zh) * | 2018-09-03 | 2019-02-22 | 山东大学 | 适用于隧道围岩质量分级及风化程度判别装置及方法 |
CN109256179B (zh) * | 2018-10-12 | 2020-09-15 | 中石化石油工程技术服务有限公司 | 一种基于岩石元素的风化指数确定方法及装置 |
CN109344516B (zh) * | 2018-10-12 | 2023-08-04 | 中石化石油工程技术服务有限公司 | 一种地质录井中随钻岩石风化势能指数确定方法及装置 |
CN109612943B (zh) * | 2019-01-14 | 2020-04-21 | 山东大学 | 基于机器学习的隧洞岩石石英含量测试系统及方法 |
CN109886329A (zh) * | 2019-02-18 | 2019-06-14 | 中国铁建重工集团有限公司 | 围岩破碎等级检测方法、检测系统和掘进设备 |
CN110472597A (zh) * | 2019-07-31 | 2019-11-19 | 中铁二院工程集团有限责任公司 | 基于深度学习的岩石图像风化程度检测方法及系统 |
CN111221024B (zh) * | 2019-09-06 | 2021-07-06 | 山东大学 | Tbm搭载式隧道前方围岩放射性预报系统及方法 |
US20230105649A1 (en) * | 2021-10-05 | 2023-04-06 | Saudi Arabian Oil Company | Determining weathering indices by x-ray diffraction |
-
2020
- 2020-01-21 CN CN202010071313.1A patent/CN111220616B/zh active Active
- 2020-12-10 WO PCT/CN2020/135315 patent/WO2021147554A1/zh active Application Filing
- 2020-12-10 US US17/619,203 patent/US11933713B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10105546A (ja) * | 1996-09-26 | 1998-04-24 | Pub Works Res Inst Ministry Of Constr | 岩盤の風化度判定方法 |
DE102004063019A1 (de) * | 2004-12-22 | 2006-07-13 | Kurth, André | Verfahren zur Herstellung von Abbildungen auf Naturstein |
CN206016814U (zh) * | 2016-09-18 | 2017-03-15 | 中铁工程装备集团有限公司 | 一种记录与分析tbm渣片的装置 |
CN106485223A (zh) * | 2016-10-12 | 2017-03-08 | 南京大学 | 一种砂岩显微薄片中岩石颗粒的自动识别方法 |
CN109765097A (zh) * | 2018-12-21 | 2019-05-17 | 中铁三局集团有限公司 | 一种基于rpd钻机的隧道围岩快速分类方法 |
CN110516730A (zh) * | 2019-08-20 | 2019-11-29 | 中铁工程装备集团有限公司 | 基于pso-svm算法和图像识别的围岩质量在线分级方法 |
CN111220616A (zh) * | 2020-01-21 | 2020-06-02 | 山东大学 | 基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118551331A (zh) * | 2024-07-30 | 2024-08-27 | 国网山东省电力公司电力科学研究院 | 基于鸟类定位的运行状态数据监测方法及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN111220616B (zh) | 2021-06-01 |
US11933713B2 (en) | 2024-03-19 |
CN111220616A (zh) | 2020-06-02 |
US20220317021A1 (en) | 2022-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021147554A1 (zh) | 基于长石特征的隧洞内碎屑岩抗风化能力判别系统与方法 | |
WO2020181923A1 (zh) | 基于tbm岩-机参数动态交互机制的隧洞可掘进预测方法及系统 | |
WO2021147553A1 (zh) | 隧道火成岩风化程度确定系统及方法 | |
CN109612943B (zh) | 基于机器学习的隧洞岩石石英含量测试系统及方法 | |
CN104612675B (zh) | 一种碳酸盐岩地层随钻岩性快速识别方法 | |
US20230144184A1 (en) | Advanced geological prediction method and system based on perception while drilling | |
CN102930253B (zh) | 一种基于图像离散多小波变换的煤岩识别方法 | |
CN111222683B (zh) | 一种基于pca-knn的tbm施工围岩综合分级预测方法 | |
CN113685188B (zh) | 一种基于岩渣物理特征的tbm掘进优化方法 | |
CN110244344A (zh) | 一种基于深度学习的tbm超前地质预报方法 | |
CN109271755B (zh) | 一种应用随钻数据计算岩石强度的方法和系统 | |
CN101923084A (zh) | 一种矿用水源识别方法及识别设备 | |
CN111722270A (zh) | 一种基于随钻监测设备的短距离超前地质预报方法 | |
CN109765097B (zh) | 一种基于rpd钻机的隧道围岩快速分类方法 | |
Zhang et al. | Deep learning‐based automatic detection of muck types for earth pressure balance shield tunneling in soft ground | |
CN116291271A (zh) | 一种基于随钻测试的岩土体参数反演方法及系统 | |
CN104678455A (zh) | 一种陆相缝洞型储层识别方法 | |
Dickmann et al. | Towards the integration of smart techniques for tunnel seismic applications | |
CN111706322B (zh) | 一种岩石钻进响应的预测方法和预测系统 | |
CN109886421B (zh) | 基于集成学习的群智能采煤机切割模式识别系统 | |
Fernández et al. | Ore/waste identification in underground mining through geochemical calibration of drilling data using machine learning techniques | |
CN116299733A (zh) | 利用常规测井曲线识别地层中含硫储层的方法 | |
CN115046516A (zh) | 基于单滑面r型深孔测斜曲线的滑动面位置精准确定方法 | |
CN105840175A (zh) | 三维裂缝建模方法 | |
CN110728074A (zh) | 混积细粒岩岩性连续解释的方法及其模型的建模方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915827 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915827 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/01/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915827 Country of ref document: EP Kind code of ref document: A1 |