WO2021147498A1 - 消旋器、混流风机和空调器 - Google Patents

消旋器、混流风机和空调器 Download PDF

Info

Publication number
WO2021147498A1
WO2021147498A1 PCT/CN2020/130096 CN2020130096W WO2021147498A1 WO 2021147498 A1 WO2021147498 A1 WO 2021147498A1 CN 2020130096 W CN2020130096 W CN 2020130096W WO 2021147498 A1 WO2021147498 A1 WO 2021147498A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
derotator
point
line
hub
Prior art date
Application number
PCT/CN2020/130096
Other languages
English (en)
French (fr)
Inventor
马屈杨
池晓龙
张治平
刘煜
夏凯
张碧瑶
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021147498A1 publication Critical patent/WO2021147498A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the present disclosure relates to the technical field of fans, in particular to a deconvolution fan, a mixed flow fan and an air conditioner.
  • the mixed flow fan's own air outlet is inclined and the air supply is not concentrated, which seriously affects the wind speed distribution and heat exchange performance of the heat exchanger surface in the air conditioner, and the required aerodynamic performance cannot be achieved by optimizing the mixed flow fan alone.
  • the embodiments of the present disclosure provide a de-rotator, a mixed flow fan, and an air conditioner to improve the concentration of air supply.
  • a derotator including:
  • the hub is arranged in the cavity and forms a flow channel with the cavity wall of the cavity;
  • the first blade and the second blade are arranged back and forth in the flow channel along the flow direction of the airflow, the first blade and the second blade are configured to guide the airflow flowing through the flow channel to flow out in a direction biased toward the axis of the deconvolution, and the first blade It is different from the second vane in its conduction capacity.
  • both the first blade and the second blade are connected between the outer wall of the hub and the cavity wall of the cavity.
  • the first blade is arranged upstream of the second blade, and the axial flow guiding ability of the first blade is greater than the axial flow guiding ability of the second blade.
  • the first blade is arranged upstream of the second blade, and the blade profile angle of the first blade is greater than the blade profile angle of the second blade.
  • the first blade is arranged upstream of the second blade, and the outlet installation angle of the first blade is smaller than the outlet installation angle of the second blade.
  • the intersection of the axis of the derotator and the inlet end face of the derotator is O 1 point
  • the projection of the trailing edge point on the intersecting surface of the first blade and the outer wall of the hub on the inlet end face of the derotator Is point A
  • the line between point O 1 and point A is the first line
  • the projection of the leading edge point on the intersection of the second blade and the outer wall of the hub on the inlet end face of the derotator is point B
  • the line between point O 1 and point B is the second line
  • the first included angle is 5°-20°.
  • the intersection point of the axis of the derotator and the inlet end face of the derotator is O 1 point
  • the projection of the trailing edge point on the intersecting surface of the first blade and the outer wall of the hub on the inlet end face of the derotator Is point C
  • the line between point O 1 and point C is the third line
  • the line of all the leading edge points of the first blade from the end close to the hub to the end far away from the hub is a straight line.
  • the second included angle is -5° to 5°.
  • the intersection of the axis of the derotator and the inlet end face of the derotator is O 1 point
  • the projection of the leading edge point on the intersection of the second blade and the outer wall of the hub on the inlet end face of the derotator Is point B
  • the line between point O 1 and point B is the second line.
  • the line of the second blade from the end close to the hub to the end far away from the hub is a straight line. There is a third angle between the two lines.
  • the third included angle is -3° to 3°.
  • the intersection of the axis of the derotator and the outlet end of the derotator is the O 2 point
  • the projection of the trailing edge point on the intersection of the first blade and the outer wall of the hub on the inlet end of the derotator Is point D.
  • the line between point O 2 and point D is the fourth line.
  • the line of all trailing edge points of the first blade from the end close to the hub to the end far away from the hub is a straight line. There is a fourth angle between the four lines.
  • the fourth included angle is -16° to 16°.
  • the intersection of the axis of the derotator and the outlet end of the derotator is the O 2 point
  • the projection of the trailing edge point on the intersection of the second blade and the outer wall of the hub on the inlet end of the derotator Is point E.
  • the line between point O 2 and point E is the fifth line.
  • the line of the second blade from the end close to the hub to the end far away from the hub is a straight line. There is a fifth angle between the five lines.
  • the fifth included angle is -10°-10°.
  • the number of the first blade and the second blade is 12-18.
  • the number of the first blade and the number of the second blade are both 15.
  • a mixed flow fan which includes a fan body and the above-mentioned deconvolution device, and the deconvolution device is arranged at an air outlet of the fan body.
  • an air conditioner including the above-mentioned derotator or the above-mentioned mixed flow fan.
  • the embodiment of the derotator of the present disclosure includes first and second blades arranged in the flow channel back and forth along the flow direction of the airflow, which can guide the airflow flowing through the flow path to flow out in a direction biased toward the axis of the derotator, Eliminate the circumferential velocity of the airflow as much as possible to improve the air supply concentration; at the same time, through the two diversion effects of the first blade and the second blade, the flow velocity and flow direction of the airflow can be gradually adjusted to avoid severe changes in the blade shape.
  • Flow separation is conducive to effective unsteady flow separation control of various upstream flows.
  • Fig. 1 is a schematic structural diagram of an embodiment of the disclosed derotator.
  • Fig. 2 is a schematic diagram of the structure of the hub, the first blade and the second blade in an embodiment of the derotator of the present disclosure.
  • Fig. 3 is a longitudinal sectional view of an embodiment of the disclosed racemizer.
  • Fig. 4 is a schematic diagram of the structure of the first blade and the second blade in an embodiment of the derotator of the present disclosure.
  • Fig. 5 is a trajectory diagram of the first middle arc in an embodiment of the derotator of the present disclosure.
  • Fig. 6 is a trajectory diagram of the second middle arc in an embodiment of the derotator of the present disclosure.
  • Fig. 7 is a schematic structural view of an embodiment of the derotator of the present disclosure viewed from the inlet end surface along the airflow direction.
  • Fig. 8 is a schematic structural view of an embodiment of the disclosed derotator viewed from the reverse of the outlet end surface along the airflow direction.
  • Fig. 9 is a schematic diagram of the outline of the wheel cover in an embodiment of the derotator of the present disclosure.
  • Fig. 10 is a schematic diagram of the outline of the hub in an embodiment of the derotator of the present disclosure.
  • Fig. 11 and Fig. 12 are respectively the vorticity diagrams of the reference derotator example and the derotator embodiment of the present disclosure.
  • the derotator includes a wheel cover 10, a hub 20, a first blade 30 and a second blade 40, and the wheel cover 10 has a through
  • the hub 20 is arranged in the cavity, and a flow channel 50 is formed between the hub 20 and the cavity wall of the cavity.
  • the first blade 30 and the second blade 40 are arranged in the flow channel 50 back and forth along the air flow direction.
  • the vanes 30 and the second vanes 40 are configured to guide the airflow flowing through the flow passage 50 to flow out in a direction biased toward the axis of the deconvolution, and the first vane 30 and the second vane 40 have different flow guiding capabilities.
  • the eliminator in this embodiment includes a first blade 30 and a second blade 40 arranged in the flow passage 50 back and forth along the flow direction of the airflow, which can guide the airflow flowing through the flow passage 50 to flow out in a direction biased toward the axis of the eliminator , Eliminate the circumferential velocity of the air flow as much as possible, and improve the air supply concentration; at the same time, through the two diversion effects of the first blade 30 and the second blade 40, the flow velocity and flow direction of the air flow can be gradually adjusted to avoid sudden changes in the blade shape. Causes serious flow separation, which is conducive to effective unsteady flow separation control of various upstream flows.
  • the first blade 30 and the second blade 40 are arranged along the axial direction of the deconvolution, and the first blade 30 is located upstream of the second blade 40.
  • the flow channel 50 includes an inlet 51 and an outlet 52, and the first blade 30 is closer to the inlet 51 than the second blade 40.
  • the derotator embodiment is applied to a fan, the first blade 30 is closer to the air outlet of the fan than the second blade 40 is.
  • the number of the first blade 30 and the number of the second blade 40 is multiple, the multiple first blades 30 are evenly arranged along the circumference of the flow channel 50, and the multiple second blades 40 are arranged along the circumference of the flow channel 50. To evenly arrange.
  • the specific number of the first blade 30 and the second blade 40 can be flexibly selected according to needs.
  • the number of the first blade 30 and the second blade 40 may be the same or different.
  • the number of the first blade 30 and the number of the second blade 40 are both 15. In other embodiments, the number of the first blade 30 and the second blade 40 may be 12-18, such as 12, 13, 14, 16, 17, and 18.
  • first blade 30 and the second blade 40 may be connected between the outer wall of the hub 20 and the cavity wall of the cavity.
  • One end of the first blade 30 is connected to the outer wall of the hub 20, and the other end of the first blade 30 is connected to the cavity wall of the cavity; one end of the second blade 40 is connected to the outer wall of the hub 20, and the other end of the second blade 40 is connected to the cavity.
  • the cavity walls of the cavity are connected. This setting can improve the diversion effect.
  • the first blade 30 may be arranged upstream of the second blade 40, and the axial flow guiding ability of the first blade 30 is greater than the axial flow guiding ability of the second blade 40. This setting can make the air flow gradually stable during the flow process, and make the air flow more concentrated.
  • the blade angle of the first blade 30 is greater than the blade angle of the second blade 40.
  • the first blade 30 and the second blade 40 (collectively referred to as blades) include a blade root and an outer edge.
  • the blade root is connected to the hub 20 and the outer edge is connected to the cavity wall of the wheel cover 10.
  • different heights have different cross-sections, and each cross-section forms a blade profile line of the blade at that height.
  • the shape of the blade profile lines can be the same or different.
  • the blade profile includes a leading edge arc, a concave arc, a trailing edge, and a convex arc that are connected end to end in sequence.
  • the blade profile is a closed curve.
  • the leading edge arc faces the air inlet end, and the trailing edge arc faces the air outlet end.
  • the line connecting the centers of the small inscribed circles of the blade profile line is the middle arc of the blade profile line.
  • the intersection of the middle arc of the blade profile and the leading edge arc is the leading edge point, and the intersection of the middle arc of the blade profile and the trailing edge arc is the trailing edge point.
  • the blade profile lines of the first blade 30 and the second blade 40 in different cross-sections in the direction from the blade root to the outer edge are the same.
  • the degree of curvature of the first blade 30 is greater than the degree of curvature of the second blade 40.
  • the blade profile angle of the first blade 30 is the angle ⁇ 1 between the tangent line at the leading edge point and the tangent line at the trailing edge point of the first middle arc line 31 of the blade profile line of the first blade 30, and the second blade
  • the airfoil bending angle of the second blade 40 is the angle ⁇ 2 between the tangent line of the second middle arc line 41 of the blade profile line of the second blade 40 at the leading edge point and the tangent line at the trailing edge point, ⁇ 1> ⁇ 2.
  • the outlet installation angle of the first blade 30 is the angle ⁇ 1 between the tangent to the trailing edge point of the first mid-arc line 31 of the blade profile of the first blade 30 and the straight line perpendicular to the air flow direction.
  • the second blade 40 The outlet installation angle of the second blade 40 is the angle ⁇ 2, ⁇ 1 ⁇ 2 between the tangent to the trailing edge point of the second middle arc 41 of the blade profile of the second blade 40 and the straight line perpendicular to the flow direction of the airflow.
  • the angle of the blade profile bending angle of the first blade 30 and the second blade 40 may be 20°-60°, and the angle of the outlet installation angle may be 50°-100°.
  • the shape of the middle arc of the blade profile has a direct effect on the overall shape of the blade.
  • the specific formation of the middle arc can be realized in multiple ways.
  • the projection of the intersecting surface of the first blade 30 and/or the second blade 40 and the wheel cover 10 on the longitudinal section passing through the axis 60 of the derotator forms a blade profile, and the middle arc of the blade profile
  • m1, m2, k1 and k2 are adjustable parameters, and 0 ⁇ t ⁇ 1.
  • the middle arc of the blade profile of the first blade 30 and/or the second blade 40 can be obtained by using the above equation.
  • arcs with different curvatures can be obtained.
  • Fig. 5 shows the trajectory diagram of the first middle arc line 31
  • Fig. 6 shows the trajectory diagram of the second middle arc line 41.
  • the curvature of the first middle arc line 31 is greater than that of the second middle arc line 41. degree. When the chord lengths are equal, ⁇ 1> ⁇ 2.
  • Both the outer edge section and the root section of the blade can adopt this trajectory curve to flexibly adjust the inlet angle of the blade according to the incoming flow, gradually eliminate the circumferential sub-velocity of the airflow, and avoid serious bending in some areas of the blade, resulting in local airflow.
  • the separation of the impact and boundary layer greatly reduces the flow loss; at the same time, the air distribution in the exit area of the deconvolution is uniform, the vortex area is eliminated, and the vortex noise is reduced.
  • the intersection of axis 60 with the inlet end surface of rac-rotator device is 7 O 1 point
  • the first blade 30 and the outer wall 20 of the hub of the trailing edge at the point of intersection of the surface of an inlet end surface of racemic The projection above is point A, and the line between point O 1 and point A is the first line.
  • the leading edge point on the intersection of the second blade 40 and the outer wall of the hub 20 is on the inlet end face of the derotator
  • the projection is point B, the line between point O 1 and point B is the second line, and there is a first angle between the first line and the second line.
  • the first included angle may be 5°-20°, such as 5°, 10°, 11°, 15°, 20°, and so on.
  • the intersection of the axis 60 of the derotator and the inlet end face of the derotator is point O 1
  • the projection of the trailing edge point on the intersection surface of the first blade 30 and the outer wall of the hub 20 on the inlet end face of the derotator is point C
  • the line between point O 1 and point C is the third line
  • the line of the first blade 30 from the end close to the hub 20 to the end far away from the hub 20 is a straight line.
  • the second included angle may be -5°-5°, such as -5°, -3°, -1°, 1°, 3°, 5°, etc.
  • a negative number indicates that the third line is located on the other side of the above-mentioned straight line.
  • the intersection point of the axis 60 of the derotator and the inlet end face of the derotator is O 1 point
  • the projection of the leading edge point on the intersection surface of the second blade 40 and the outer wall of the hub 20 on the inlet end face of the derotator is point B
  • the line between point O 1 and point B is the second line
  • the line of the second blade 40 from the end close to the hub 20 to the end far away from the hub 20 is a straight line.
  • the third included angle may be -3° ⁇ 3°, such as -3°, -2°, -1°, 1°, 2°, 3°, etc.
  • a negative number means that the second link is on the other side of the above-mentioned straight line.
  • the intersection point between the axis 60 of the derotator and the outlet end face of the derotator is O 2 point
  • the projection of the trailing edge point on the intersecting surface of the first blade 30 and the outer wall of the hub 20 on the inlet end face of the derotator is point D
  • the line between point O 2 and point D is the fourth line
  • the line of the first blade 30 from the end close to the hub 20 to the end far away from the hub 20 is a straight line.
  • the fourth included angle may be -16°-16°, such as -16°, -12°, -10°, -8°, 8°, 10°, 12°, 16°, etc.
  • a negative number indicates that the fourth line is located on the other side of the above-mentioned straight line.
  • the intersection of the axis 60 of the derotator and the outlet end face of the derotator is O 2 point
  • the projection of the trailing edge point on the intersection surface of the second blade 40 and the outer wall of the hub 20 on the inlet end face of the derotator is E point
  • the line between the O 2 point and the E point is the fifth line
  • the line of the second blade 40 from the end close to the hub 20 to the end far away from the hub 20 is a straight line.
  • the fifth included angle may be -10°-10°, such as -10°, -8°, -7°, -5°, 5°, 7°, 8°, 10°, etc.
  • a negative number indicates that the fifth line is located on the other side of the aforementioned straight line.
  • the embodiment of the present disclosure also improves the shape of the runner 50 and the outer contour shape of the wheel cover 10 and the wheel hub 20.
  • the center trajectory line 53 of the flow channel 50 on the longitudinal section passing through the axis 60 of the derotator includes a first trajectory line M 1 M 2 , and a first trajectory line M 1 M 2 The distance from the axis 60 of the eliminator increases along the flow direction of the airflow.
  • the center trajectory line 53 further includes a second trajectory line M 2 M 3 , the second trajectory line M 2 M 3 is located downstream of the first trajectory line M 1 M 2 , the second trajectory line M 2 M 3 and the derotator The distance between the axes 60 decreases along the flow direction of the airflow.
  • Center trace line 53 comprises a first path M 1 M 2 and a first trace M 1 M 2 downstream of the second path M 2 M 3, M 1 M 2 and rac's axis 60 of the first path
  • the distance between the two increases along the flow direction of the airflow, and the distance between the second trajectory line M 2 M 3 and the axis 60 of the derotator decreases along the flow direction of the airflow, so that the airflow flowing through the flow channel 50 can be guided to make the airflow When it flows out, it is more biased towards the axis of the derotator, eliminating the circumferential sub-velocity of the airflow as much as possible, increasing the outlet pressure head and improving the air supply performance.
  • the center trajectory line 53 here refers to the reference formed by the midpoint of the connection between each point of the cavity wall of the inner cavity of the wheel cover 10 on the projection line of the longitudinal section and the corresponding point of the outer wall of the hub 20 on the projection line of the longitudinal section. Wire.
  • the first trajectory line M 1 M 2 includes at least one of a straight line, a spline curve, and a Bezier curve; and/or, the second trajectory line M 2 M 3 includes at least one of a straight line, a spline curve, and a Bezier curve.
  • the first trajectory line M 1 M 2 can be a straight line segment, a spline curve segment, and a Bezier curve segment, or a combination of any two of a straight line segment, a spline curve segment and a Bezier curve segment, or a straight line segment, Different combinations of three line segments, spline curve segment and Bezier curve segment.
  • the second trajectory line M 2 M 3 can be a straight line segment, a spline curve segment, and a Bézier curve segment, or a combination of any two of a straight line segment, a spline curve segment and a Bézier curve segment, or a straight line segment, Different combinations of three line segments, spline curve segment and Bezier curve segment.
  • the central trajectory line 53 also includes a straight line segment M 3 M 4 located downstream of the second trajectory line.
  • the straight section M 3 M 4 is gradually approaching the axis 60 of the derotator along the flow direction of the airflow. This arrangement can further concentrate the airflow toward the middle and improve the concentration of air supply.
  • the outlet section of the flow channel 50 has a flared shape. This setting can achieve the purpose of deceleration and expansion, effectively increase the pressure head of the fan, and achieve a good anti-static pressure effect.
  • the projection of the wheel cover 10 on the longitudinal section passing through the axis 60 of the derotator forms a wheel cover contour line 11, which includes a second curve section, and the second curve section and the derotator The distance between the axes 60 first increases and then decreases.
  • the wheel cover contour line 11 also includes a second straight line segment, the second straight line segment is located downstream of the second curve segment, and the distance between the second straight line segment and the axis 60 of the derotator remains constant along the flow direction of the airflow.
  • the projection of the hub 20 on the longitudinal section through the axis 60 of the derotator forms a hub contour line 21.
  • the hub contour line 21 includes a first curve section, which is between the first curve section and the axis 60 of the derotator. The distance between them increases first and then decreases.
  • the hub contour line 21 also includes a first straight line segment, the first straight line segment is located downstream of the first curve segment, and the distance between the first straight line segment and the axis 60 of the derotator gradually decreases along the flow direction of the airflow.
  • the curvature of the first curve segment and the curvature of the second curve segment may be the same or different. In the embodiment shown in FIG. 3, the curvature of the first curve segment is smaller than the curvature of the second curve segment.
  • the angle between the first straight line and the axis 60 of the derotator is 15°-20°, such as 15°, 18°, 20°, and so on.
  • the ratio of the length of the first straight line segment to the length of the second straight line segment is 2-4.
  • the hub 20 includes a part protruding out of the cavity of the wheel cover 10 in the axial direction of the derotator. This arrangement can make the air flow flow out of the cavity and still flow along the outer contour of the hub 20 under the action of inertia, which can further concentrate the air flow to the middle.
  • the blocks in Figure 11 and Figure 12 represent the vortex cluster area, and the darker the color, the lower the vortex velocity. From the comparison results, it can be seen that after the structure improvement of the eliminator provided by the present disclosure, the vortex coverage area is significantly reduced, indicating that the vortex is reduced under the same scale, especially the high-speed vortex area at the entrance of the eliminator is weakened, only in front of the blades. There are also some vortices at the edge and trailing edge. It can be seen that the air volume, efficiency and pressure head of the mixed flow fan have been improved, and the aerodynamic performance and wind noise level of the fan have been significantly improved.
  • the embodiment of the derotator of the present disclosure can eliminate the circumferential sub-velocity of the airflow at the outlet of the mixed flow fan by rationally optimizing the structure of the derotator.
  • the flow direction is gradually changed from the circumferential direction to the oblique direction to improve the air supply concentration; improve the air supply conditions, optimize the high-speed area of the air, reduce excessive flow loss, reduce eddy current noise and discrete noise; improve the flow channel Shape, optimize the flow condition, realize the uniform air volume distribution on the surface of the heat exchanger of the air conditioner, improve the flow efficiency and pressure head, and ensure a strong anti-static pressure ability.
  • the present disclosure also proposes a mixed flow fan, which includes the above-mentioned derotator.
  • the present disclosure also proposes an air conditioner, which includes the above-mentioned derotator or mixed flow fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种消旋器、混流风机和空调器,消旋器包括轮盖(10)、轮毂(20)、第一叶片(30)和第二叶片(40),轮盖(10)具有贯通的空腔,轮毂(20)设置于空腔中,且轮毂(20)与空腔的腔壁之间形成流道(50),第一叶片(30)和第二叶片(40)沿气流流动方向前后布置于流道(50)中,第一叶片(30)和第二叶片(40)被配置为引导流经流道(50)的气流沿偏向消旋器的轴线的方向流出,且第一叶片(30)和第二叶片(40)的导流能力不同。该消旋器引导气流沿偏向消旋器的轴线的方向流出,尽可能消除气流的周向速度,提高送风集中性。

Description

消旋器、混流风机和空调器
本申请是以中国申请号为202010063813.0,申请日为2020年1月20日的申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及风机技术领域,尤其涉及一种消旋器、混流风机和空调器。
背景技术
为了提高空调的品质和舒适性,需要针对不同需求和机型搭配合适的风机。在满足风量和噪音要求的前提下,为顺利实现在高静压工况下的送风,目前的空调常采用混流风机送风。
但是,混流风机自身出风倾斜,送风不集中,严重影响空调内部换热器表面的风速分布和换热性能,而且单独通过优化混流风机无法达到所需的气动性能。
需要说明的是,公开于本公开背景技术部分的信息仅仅旨在增加对本公开的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本公开实施例提供一种消旋器、混流风机和空调器,提高送风的集中性。
根据本公开的一个方面,提供一种消旋器,包括:
轮盖,具有贯通的空腔;
轮毂,设置于空腔中,且与空腔的腔壁之间形成流道;
第一叶片和第二叶片,沿气流流动方向前后布置于流道中,第一叶片和第二叶片被配置为引导流经流道的气流沿偏向消旋器的轴线的方向流出,且第一叶片和第二叶片的导流能力不同。
在一些实施例中,第一叶片和第二叶片均连接于轮毂的外壁和空腔的腔壁之间。
在一些实施例中,第一叶片设置在第二叶片的上游,第一叶片的轴向导流能力大于第二叶片的轴向导流能力。
在一些实施例中,第一叶片设置在第二叶片的上游,第一叶片的叶型弯角大于第 二叶片的叶型弯角。
在一些实施例中,第一叶片设置在第二叶片的上游,第一叶片的出口安装角小于第二叶片的出口安装角。
在一些实施例中,消旋器的轴线与消旋器的进口端面的交点为O 1点,第一叶片与轮毂的外壁的相交面上的尾缘点在消旋器的进口端面上的投影为A点,O 1点和A点之间的连线为第一连线,第二叶片与轮毂的外壁的相交面上的前缘点在消旋器的进口端面上的投影为B点,O 1点和B点之间的连线为第二连线,第一连线和第二连线之间具有第一夹角。
在一些实施例中,第一夹角为5°~20°。
在一些实施例中,消旋器的轴线与消旋器的进口端面的交点为O 1点,第一叶片与轮毂的外壁的相交面上的尾缘点在消旋器的进口端面上的投影为C点,O 1点和C点之间的连线为第三连线,第一叶片的自靠近轮毂的一端至远离轮毂的一端的所有前缘点的连线为直线,该直线与第三连线之间具有第二夹角。
在一些实施例中,第二夹角为-5°~5°。
在一些实施例中,消旋器的轴线与消旋器的进口端面的交点为O 1点,第二叶片与轮毂的外壁的相交面上的前缘点在消旋器的进口端面上的投影为B点,O 1点和B点之间的连线为第二连线,第二叶片的自靠近轮毂的一端至远离轮毂的一端的所有前缘点的连线为直线,该直线与第二连线之间具有第三夹角。
在一些实施例中,第三夹角为-3°~3°。
在一些实施例中,消旋器的轴线与消旋器的出口端面的交点为O 2点,第一叶片与轮毂的外壁的相交面上的尾缘点在消旋器的进口端面上的投影为D点,O 2点和D点之间的连线为第四连线,第一叶片的自靠近轮毂的一端至远离轮毂的一端的所有尾缘点的连线为直线,该直线与第四连线之间具有第四夹角。
在一些实施例中,第四夹角为-16°~16°。
在一些实施例中,消旋器的轴线与消旋器的出口端面的交点为O 2点,第二叶片与轮毂的外壁的相交面上的尾缘点在消旋器的进口端面上的投影为E点,O 2点和E点之间的连线为第五连线,第二叶片的自靠近轮毂的一端至远离轮毂的一端的所有尾缘点的连线为直线,该直线与第五连线之间具有第五夹角。
在一些实施例中,第五夹角为-10°~10°。
在一些实施例中,第一叶片和第二叶片的数量为12~18个。
在一些实施例中,第一叶片和第二叶片的数量均为15个。
根据本公开的另一个方面,提供一种混流风机,包括风机主体和上述的消旋器,消旋器设置在风机主体的出风口。
根据本公开的又一个方面,提供一种空调器,包括上述的消旋器或上述的混流风机。
基于上述技术方案,本公开消旋器实施例包括沿气流流动方向前后布置于流道中的第一叶片和第二叶片,可以引导流经流道的气流沿偏向消旋器的轴线的方向流出,尽可能地消除气流的周向速度,提高送风集中性;同时,通过第一叶片和第二叶片的两次导流作用,可以逐步调整气流的流速和流动方向,避免叶型突变造成严重的流动分离,有利于对上游多种来流进行有效的非定常流动分离控制。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开消旋器一个实施例的结构示意图。
图2为本公开消旋器一个实施例中轮毂、第一叶片和第二叶片的结构示意图。
图3为本公开消旋器一个实施例的纵切剖面图。
图4为本公开消旋器一个实施例中第一叶片和第二叶片的结构示意图。
图5为本公开消旋器一个实施例中第一中弧线的轨迹图。
图6为本公开消旋器一个实施例中第二中弧线的轨迹图。
图7为本公开消旋器一个实施例从进口端面沿气流方向看的结构示意图。
图8为本公开消旋器一个实施例从出口端面沿气流方向的反向看的结构示意图。
图9为本公开消旋器一个实施例中轮盖的轮廓线示意图。
图10为本公开消旋器一个实施例中轮毂的轮廓线示意图。
图11和图12分别是参考消旋器实例和本公开消旋器实施例的涡量图。
具体实施方式
下面将结合本公开实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基 于本公开的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“横向”、“纵向”、“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
参考图1~3所示,在本公开提供的消旋器的一个实施例中,该消旋器包括轮盖10、轮毂20、第一叶片30和第二叶片40,轮盖10具有贯通的空腔,轮毂20设置于空腔中,且轮毂20与空腔的腔壁之间形成流道50,第一叶片30和第二叶片40沿气流流动方向前后布置于流道50中,第一叶片30和第二叶片40被配置为引导流经流道50的气流沿偏向消旋器的轴线的方向流出,且第一叶片30和第二叶片40的导流能力不同。
该实施例中的消旋器包括沿气流流动方向前后布置于流道50中的第一叶片30和第二叶片40,可以引导流经流道50的气流沿偏向消旋器的轴线的方向流出,尽可能地消除气流的周向速度,提高送风集中性;同时,通过第一叶片30和第二叶片40的两次导流作用,可以逐步调整气流的流速和流动方向,避免叶型突变造成严重的流动分离,有利于对上游多种来流进行有效的非定常流动分离控制。
在该实施例中,第一叶片30和第二叶片40沿消旋器的轴线方向布置,第一叶片30位于第二叶片40的上游。如图3所示,流道50包括进口51和出口52,第一叶片30比第二叶片40更靠近进口51。在将消旋器实施例应用于风机时,第一叶片30比第二叶片40更靠近风机的出风口。
在一些实施例中,第一叶片30和第二叶片40的数量均为多个,多个第一叶片30沿流道50的周向均匀布置,多个第二叶片40沿流道50的周向均匀布置。
第一叶片30和第二叶片40的具体数量可以根据需要灵活选择。第一叶片30和第二叶片40的数量可以相同,也可以不同。
在如图1所示的实施例中,第一叶片30和第二叶片40的数量均为15个。在其他实施例中,第一叶片30和第二叶片40的数量可以为12~18个,比如12个、13个、14个、16个、17个和18个。
进一步地,第一叶片30和第二叶片40可以连接于轮毂20的外壁和空腔的腔壁 之间。第一叶片30的一端与轮毂20的外壁连接,第一叶片30的另一端与空腔的腔壁连接;第二叶片40的一端与轮毂20的外壁连接,第二叶片40的另一端与空腔的腔壁连接。这样设置可以提高导流效果。
第一叶片30可以设置在第二叶片40的上游,第一叶片30的轴向导流能力大于第二叶片40的轴向导流能力。这样设置可以使气流在流动过程中逐步平稳,使出风气流更加集中。
为了对流道50中的气流实现较好的导流作用,第一叶片30的叶型弯角大于第二叶片40的叶型弯角。
第一叶片30和第二叶片40(统称为叶片)包括叶根和外缘,叶根与轮毂20连接,外缘与轮盖10的腔壁连接。在叶根到外缘的方向上,不同高度有不同的横截面,每个横截面均形成叶片在该高度上的叶片型线,这些叶片型线的形状可以相同,也可以不同。
叶片型线包括依次首尾连接的前缘弧线、凹面弧线、尾缘线和凸面弧线。叶片型线为封闭的曲线。前缘弧线朝向气流的进气端,尾缘弧线朝向气流的出气端。叶片型线的内切小圆的中心的连线为叶片型线的中弧线。叶片型线的中弧线与前缘弧线的交点为前缘点,叶片型线的中弧线与尾缘弧线的交点为尾缘点。
在一些实施例中,第一叶片30和第二叶片40在从叶根到外缘的方向上的不同截面所截得的叶片型线均相同。
如图4所示,第一叶片30的弯曲程度大于第二叶片40的弯曲程度。第一叶片30的叶型弯角为第一叶片30的叶片型线的第一中弧线31在前缘点处的切线与在尾缘点处的切线之间的夹角θ1,第二叶片40的叶型弯角为第二叶片40的叶片型线的第二中弧线41在前缘点处的切线与在尾缘点处的切线之间的夹角θ2,θ1>θ2。
第一叶片30的出口安装角为第一叶片30的叶片型线的第一中弧线31在尾缘点处的切线与垂直于气流流动方向的直线之间的夹角σ1,第二叶片40的出口安装角为第二叶片40的叶片型线的第二中弧线41在尾缘点处的切线与垂直于气流流动方向的直线之间的夹角σ2,σ1<σ2。
第一叶片30和第二叶片40的叶型弯角的角度可以为20°~60°,出口安装角的角度可以为50°~100°。
叶片型线的中弧线的形状对叶片的整体形状有直接影响。中弧线的具体形成可以有多种实现方式。
在一些实施例中,第一叶片30和/或第二叶片40与轮盖10的相交面在通过消旋器的轴线60的纵切面上的投影形成叶片型线,叶片型线的中弧线满足的方程为:
x=m1*cos2πt+m2*cos4πt;
y=k1*sin2πt+k2*sin2πt;
其中,m1、m2、k1和k2为可调节的参数,0≤t≤1。
第一叶片30和/或第二叶片40的叶片型线的中弧线均可以采用上述方程来获得。通过调整m1、m2、k1和k2的大小,可以获得不同弯度的弧线。
如图5所示为第一中弧线31的轨迹图,如图6所示为第二中弧线41的轨迹图,第一中弧线31的弯曲程度大于第二中弧线41的弯曲程度。在弦长相等时,θ1>θ2。
叶片的外缘截面与根部截面均可以采用这种轨迹的曲线,以根据来流情况灵活调节叶片入口进气角,逐步消除气流的周向分速度,避免叶片部分区域弯曲程度严重,产生局部气流冲击和边界层分离,大幅降低流动损失;同时使消旋器的出口区域气流分布均匀,消除涡区,降低涡流噪声。
如图7所示,消旋器的轴线60与消旋器的进口端面的交点为O 1点,第一叶片30与轮毂20的外壁的相交面上的尾缘点在消旋器的进口端面上的投影为A点,O 1点和A点之间的连线为第一连线,第二叶片40与轮毂20的外壁的相交面上的前缘点在消旋器的进口端面上的投影为B点,O 1点和B点之间的连线为第二连线,第一连线和第二连线之间具有第一夹角。
第一夹角可以为5°~20°,比如5°、10°、11°、15°、20°等。
消旋器的轴线60与消旋器的进口端面的交点为O 1点,第一叶片30与轮毂20的外壁的相交面上的尾缘点在消旋器的进口端面上的投影为C点,O 1点和C点之间的连线为第三连线,第一叶片30的自靠近轮毂20的一端至远离轮毂20的一端的所有前缘点的连线为直线,该直线与第三连线之间具有第二夹角。
第二夹角可以为-5°~5°,比如-5°、-3°、-1°、1°、3°、5°等。负数表示第三连线位于上述直线的另一侧。
消旋器的轴线60与消旋器的进口端面的交点为O 1点,第二叶片40与轮毂20的外壁的相交面上的前缘点在消旋器的进口端面上的投影为B点,O 1点和B点之间的连线为第二连线,第二叶片40的自靠近轮毂20的一端至远离轮毂20的一端的所有前缘点的连线为直线,该直线与第二连线之间具有第三夹角。
第三夹角可以为-3°~3°,比如-3°、-2°、-1°、1°、2°、3°等。负数表示第二连线位 于上述直线的另一侧。
消旋器的轴线60与消旋器的出口端面的交点为O 2点,第一叶片30与轮毂20的外壁的相交面上的尾缘点在消旋器的进口端面上的投影为D点,O 2点和D点之间的连线为第四连线,第一叶片30的自靠近轮毂20的一端至远离轮毂20的一端的所有尾缘点的连线为直线,该直线与第四连线之间具有第四夹角。
第四夹角可以为-16°~16°,比如-16°、-12°、-10°、-8°、8°、10°、12°、16°等。负数表示第四连线位于上述直线的另一侧。
消旋器的轴线60与消旋器的出口端面的交点为O 2点,第二叶片40与轮毂20的外壁的相交面上的尾缘点在消旋器的进口端面上的投影为E点,O 2点和E点之间的连线为第五连线,第二叶片40的自靠近轮毂20的一端至远离轮毂20的一端的所有尾缘点的连线为直线,该直线与第五连线之间具有第五夹角。
第五夹角可以为-10°~10°,比如-10°、-8°、-7°、-5°、5°、7°、8°、10°等。负数表示第五连线位于上述直线的另一侧。
本公开实施例还对流道50的形状以及轮盖10和轮毂20的外轮廓形状进行了改进。
在一些实施例中,如图3所示,流道50在通过消旋器的轴线60的纵切面上的中心轨迹线53包括第一轨迹线M 1M 2,第一轨迹线M 1M 2与消旋器的轴线60之间的距离沿气流流动方向增大。
进一步地,中心轨迹线53还包括第二轨迹线M 2M 3,第二轨迹线M 2M 3位于第一轨迹线M 1M 2的下游,第二轨迹线M 2M 3与消旋器的轴线60之间的距离沿气流流动方向减小。
中心轨迹线53包括第一轨迹线M 1M 2和位于第一轨迹线M 1M 2下游的第二轨迹线M 2M 3,第一轨迹线M 1M 2与消旋器的轴线60之间的距离沿气流流动方向增大,第二轨迹线M 2M 3与消旋器的轴线60之间的距离沿气流流动方向减小,这样可以对流经流道50的气流进行引导,使气流流出时更加偏向消旋器的轴线方向,尽可能地消除气流的周向分速度,增大出风压头,改善送风性能。
这里的中心轨迹线53是指轮盖10的内腔的腔壁在纵切面的投影线的各个点与轮毂20的外壁在纵切面的投影线上的对应点的连线中点所形成的参考线。
第一轨迹线M 1M 2包括直线、样条曲线和贝塞尔曲线中的至少一个;和/或,第二轨迹线M 2M 3包括直线、样条曲线和贝塞尔曲线中的至少一个。
第一轨迹线M 1M 2可以为直线段、样条曲线段和贝塞尔曲线段,也可以是直线段、样条曲线段和贝塞尔曲线段中任两个的组合或者直线段、样条曲线段和贝塞尔曲线段三种线段的不同组合。
第二轨迹线M 2M 3可以为直线段、样条曲线段和贝塞尔曲线段,也可以是直线段、样条曲线段和贝塞尔曲线段中任两个的组合或者直线段、样条曲线段和贝塞尔曲线段三种线段的不同组合。
中心轨迹线53还包括位于第二轨迹线下游的直线段M 3M 4
直线段M 3M 4沿气流流动方向逐渐靠近消旋器的轴线60,这样设置可以进一步使气流向中间集中,提高送风的集中性。
流道50的出口段呈扩口形状。这样设置可以实现减速扩压的目的,有效提升风机压头,实现良好的抗静压效果。
如图9所示,轮盖10在通过消旋器的轴线60的纵切面上的投影形成轮盖轮廓线11,轮盖轮廓线11包括第二曲线段,第二曲线段与消旋器的轴线60之间的距离先增大再减小。
轮盖轮廓线11还包括第二直线段,第二直线段位于第二曲线段的下游,第二直线段与消旋器的轴线60之间的距离沿气流流动方向保持不变。
如图10所示,轮毂20在通过消旋器的轴线60的纵切面上的投影形成轮毂轮廓线21,轮毂轮廓线21包括第一曲线段,第一曲线段与消旋器的轴线60之间的距离先增大再减小。
轮毂轮廓线21还包括第一直线段,第一直线段位于第一曲线段的下游,第一直线段与消旋器的轴线60之间的距离沿气流流动方向逐渐减小。
第一曲线段的曲率和第二曲线段的曲率可以相同,也可以不同。在如图3所示的实施例中,第一曲线段的曲率小于第二曲线段的曲率。
第一直线段与消旋器的轴线60之间的夹角为15°~20°,比如15°、18°、20°等。第一直线段的长度与第二直线段的长度之比为2~4。
在一些实施例中,在消旋器的轴线方向上轮毂20包括伸出轮盖10的空腔之外的部分。这样设置可以使气流流出空腔后在惯性作用下仍然沿轮毂20的外轮廓流动,可进一步使气流向中间集中。
如图11所示,为根据本公开提供的消旋器实施例进行结构改进之前,参考消旋器实例的涡量图。
根据本公开提供的消旋器实施例进行结构改进之后,设定第一叶片30的外缘及根部截面的叶型轨迹线对应的叶型弯角θ1=69°,出口安装角σ1=32°,对应弦长23.46mm;第二叶片40的外缘及根部截面的叶型轨迹线对应的叶型弯角θ2=79°,出口安装角σ2=15°,对应弦长18.83mm,然后调节轨迹线方程各参数值,获得如图12所示的涡量图。
图11和图12中的区块代表涡团区域,颜色越深代表涡流速度越小。通过对比结果可知,采用本公开提供的消旋器进行结构改进后,涡团覆盖区域明显减小,说明相同尺度下涡流减少,特别是消旋器进口处的高速涡区削弱,仅在叶片前缘和尾缘还有部分涡流出现,可见,混流风机的风量、效率和压头都有所提升,风机气动性能和风噪水平得到明显改善。
通过对本公开消旋器的多个实施例的说明,可以看到本公开消旋器实施例通过合理地优化设计消旋器的结构,可以消除混流风机出口气流的周向分速度,气流在经过混流风机时,流向从周向逐步变为斜向,提高送风集中性;改善送风条件,优化出风高速区,减少过大的流动损失,降低涡流噪声和离散噪声;通过改进流道的形状,优化流动状况,实现空调器换热器表面风量分布均匀,提高流动效率和压头,保证较强的抗静压能力。
基于上述的消旋器,本公开还提出一种混流风机,该混流风机包括上述的消旋器。
基于上述的混流风机,本公开还提出一种空调器,该空调器包括上述的消旋器或混流风机。
上述各个实施例中消旋器所具有的积极技术效果同样适用于混流风机和空调器,这里不再赘述。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:在不脱离本公开原理的前提下,依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换,这些修改和等同替换均应涵盖在本公开请求保护的技术方案范围当中。

Claims (19)

  1. 一种消旋器,包括:
    轮盖(10),具有贯通的空腔;
    轮毂(20),设置于所述空腔中,且与所述空腔的腔壁之间形成流道(50);
    第一叶片(30)和第二叶片(40),沿气流流动方向前后布置于所述流道(50)中,所述第一叶片(30)和所述第二叶片(40)被配置为引导流经所述流道(50)的气流沿偏向所述消旋器的轴线的方向流出,且所述第一叶片(30)和所述第二叶片(40)的导流能力不同。
  2. 根据权利要求1所述的消旋器,其中,所述第一叶片(30)和所述第二叶片(40)均连接于所述轮毂(20)的外壁和所述空腔的腔壁之间。
  3. 根据权利要求1所述的消旋器,其中,所述第一叶片(30)设置在所述第二叶片(40)的上游,所述第一叶片(30)的轴向导流能力大于所述第二叶片(40)的轴向导流能力。
  4. 根据权利要求1所述的消旋器,其中,所述第一叶片(30)设置在所述第二叶片(40)的上游,所述第一叶片(30)的叶型弯角大于所述第二叶片(40)的叶型弯角。
  5. 根据权利要求1所述的消旋器,其中,所述第一叶片(30)设置在所述第二叶片(40)的上游,所述第一叶片(30)的出口安装角小于所述第二叶片(40)的出口安装角。
  6. 根据权利要求1所述的消旋器,其中,所述消旋器的轴线(60)与所述消旋器的进口端面的交点为O 1点,所述第一叶片(30)与所述轮毂(20)的外壁的相交面上的尾缘点在所述消旋器的进口端面上的投影为A点,所述O 1点和所述A点之间的连线为第一连线,所述第二叶片(40)与所述轮毂(20)的外壁的相交面上的前缘点在所述消旋器的进口端面上的投影为B点,所述O 1点和所述B点之间的连线为第二 连线,所述第一连线和所述第二连线之间具有第一夹角。
  7. 根据权利要求6所述的消旋器,其中,所述第一夹角为5°~20°。
  8. 根据权利要求1所述的消旋器,其中,所述消旋器的轴线(60)与所述消旋器的进口端面的交点为O 1点,所述第一叶片(30)与所述轮毂(20)的外壁的相交面上的尾缘点在所述消旋器的进口端面上的投影为C点,所述O 1点和所述C点之间的连线为第三连线,所述第一叶片(30)的自靠近所述轮毂(20)的一端至远离所述轮毂(20)的一端的所有前缘点的连线为直线,该直线与所述第三连线之间具有第二夹角。
  9. 根据权利要求8所述的消旋器,其中,所述第二夹角为-5°~5°。
  10. 根据权利要求1所述的消旋器,其中,所述消旋器的轴线(60)与所述消旋器的进口端面的交点为O 1点,所述第二叶片(40)与所述轮毂(20)的外壁的相交面上的前缘点在所述消旋器的进口端面上的投影为B点,所述O 1点和所述B点之间的连线为第二连线,所述第二叶片(40)的自靠近所述轮毂(20)的一端至远离所述轮毂(20)的一端的所有前缘点的连线为直线,该直线与所述第二连线之间具有第三夹角。
  11. 根据权利要求10所述的消旋器,其中,所述第三夹角为-3°~3°。
  12. 根据权利要求1所述的消旋器,其中,所述消旋器的轴线(60)与所述消旋器的出口端面的交点为O 2点,所述第一叶片(30)与所述轮毂(20)的外壁的相交面上的尾缘点在所述消旋器的进口端面上的投影为D点,所述O 2点和所述D点之间的连线为第四连线,所述第一叶片(30)的自靠近所述轮毂(20)的一端至远离所述轮毂(20)的一端的所有尾缘点的连线为直线,该直线与所述第四连线之间具有第四夹角。
  13. 根据权利要求12所述的消旋器,其中,所述第四夹角为-16°~16°。
  14. 根据权利要求1所述的消旋器,其中,所述消旋器的轴线(60)与所述消旋器的出口端面的交点为O 2点,所述第二叶片(40)与所述轮毂(20)的外壁的相交面上的尾缘点在所述消旋器的进口端面上的投影为E点,所述O 2点和所述E点之间的连线为第五连线,所述第二叶片(40)的自靠近所述轮毂(20)的一端至远离所述轮毂(20)的一端的所有尾缘点的连线为直线,该直线与所述第五连线之间具有第五夹角。
  15. 根据权利要求14所述的消旋器,其中,所述第五夹角为-10°~10°。
  16. 根据权利要求1所述的消旋器,其中,所述第一叶片(30)和所述第二叶片(40)的数量为12~18个。
  17. 根据权利要求1所述的消旋器,其中,所述第一叶片(30)和所述第二叶片(40)的数量均为15个。
  18. 一种混流风机,包括风机主体和如权利要求1~17任一项所述的消旋器,所述消旋器设置在所述风机主体的出风口。
  19. 一种空调器,包括如权利要求1~17任一项所述的消旋器或如权利要求18所述的混流风机。
PCT/CN2020/130096 2020-01-20 2020-11-19 消旋器、混流风机和空调器 WO2021147498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010063813.0 2020-01-20
CN202010063813.0A CN111120416A (zh) 2020-01-20 2020-01-20 消旋器、混流风机和空调器

Publications (1)

Publication Number Publication Date
WO2021147498A1 true WO2021147498A1 (zh) 2021-07-29

Family

ID=70492598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130096 WO2021147498A1 (zh) 2020-01-20 2020-11-19 消旋器、混流风机和空调器

Country Status (2)

Country Link
CN (1) CN111120416A (zh)
WO (1) WO2021147498A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156179A (zh) * 2020-01-20 2020-05-15 珠海格力电器股份有限公司 消旋结构、混流风机组件及空调器
CN111120416A (zh) * 2020-01-20 2020-05-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器
CN112539466B (zh) * 2020-09-28 2022-09-02 Tcl空调器(中山)有限公司 导风机构和空调室内机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2648133Y (zh) * 2003-09-04 2004-10-13 奇鋐科技股份有限公司 组合式导流风扇
US20070224039A1 (en) * 2006-03-23 2007-09-27 Delta Electronics Inc. Serial fan assembly and air-guiding structure thereof
TW201035454A (en) * 2009-03-30 2010-10-01 Sunonwealth Electr Mach Ind Co A fan housing
CN105756973A (zh) * 2016-04-18 2016-07-13 昆明奥图环保设备股份有限公司 一种送风装置
CN208565061U (zh) * 2018-05-22 2019-03-01 美的集团股份有限公司 斜流风机和家电设备
CN111120416A (zh) * 2020-01-20 2020-05-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器
CN111120417A (zh) * 2020-01-20 2020-05-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器
CN211449213U (zh) * 2020-01-20 2020-09-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器
CN211449214U (zh) * 2020-01-20 2020-09-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2648133Y (zh) * 2003-09-04 2004-10-13 奇鋐科技股份有限公司 组合式导流风扇
US20070224039A1 (en) * 2006-03-23 2007-09-27 Delta Electronics Inc. Serial fan assembly and air-guiding structure thereof
TW201035454A (en) * 2009-03-30 2010-10-01 Sunonwealth Electr Mach Ind Co A fan housing
CN105756973A (zh) * 2016-04-18 2016-07-13 昆明奥图环保设备股份有限公司 一种送风装置
CN208565061U (zh) * 2018-05-22 2019-03-01 美的集团股份有限公司 斜流风机和家电设备
CN111120416A (zh) * 2020-01-20 2020-05-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器
CN111120417A (zh) * 2020-01-20 2020-05-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器
CN211449213U (zh) * 2020-01-20 2020-09-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器
CN211449214U (zh) * 2020-01-20 2020-09-08 珠海格力电器股份有限公司 消旋器、混流风机和空调器

Also Published As

Publication number Publication date
CN111120416A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021147498A1 (zh) 消旋器、混流风机和空调器
EP3842644A1 (en) Counter-rotating fan
CN111120417A (zh) 消旋器、混流风机和空调器
CN211449214U (zh) 消旋器、混流风机和空调器
WO2021147593A1 (zh) 消旋结构、混流风机组件及空调器
CN211715357U (zh) 消旋结构、混流风机组件及空调器
WO2021147605A1 (zh) 叶轮、混流风机以及空调器
WO2021147604A1 (zh) 叶轮、混流风机以及空调器
WO2018045998A1 (zh) 出风组件及具有其的空调器
WO2021147606A1 (zh) 叶轮、混流风机以及空调器
WO2020134066A1 (zh) 风扇组件的造型方法
WO2021063050A1 (zh) 风扇及轴流叶轮
CN109469643A (zh) 轴流风轮、轴流风机、空调室内机和空调室外机
CN211449213U (zh) 消旋器、混流风机和空调器
JP4989705B2 (ja) 貫流ファン及び送風機及び空気調和機
WO2021147595A1 (zh) 消旋结构、混流风机组件及空调器
CN111156197A (zh) 出风导流盖、混流风机组件及空调设备
CN211449215U (zh) 消旋结构、混流风机组件及空调器
CN109595690A (zh) 空调室内机和空调器
CN211737550U (zh) 后向离心截面降噪型离心风叶
CN209042569U (zh) 空调室内机和空调器
EP0928899B1 (en) Once-through blower
CN216691607U (zh) 蜗壳结构、风道部件和空调器
CN212130847U (zh) 一种轴流风叶、风机组件及其空调器
US9453512B2 (en) Cross flow fan, air-sending device, and air-conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915556

Country of ref document: EP

Kind code of ref document: A1