WO2021147348A1 - 探测目标的方法、装置及系统 - Google Patents

探测目标的方法、装置及系统 Download PDF

Info

Publication number
WO2021147348A1
WO2021147348A1 PCT/CN2020/115310 CN2020115310W WO2021147348A1 WO 2021147348 A1 WO2021147348 A1 WO 2021147348A1 CN 2020115310 W CN2020115310 W CN 2020115310W WO 2021147348 A1 WO2021147348 A1 WO 2021147348A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbols
subcarrier
ofdm
ofdm symbol
phase
Prior art date
Application number
PCT/CN2020/115310
Other languages
English (en)
French (fr)
Inventor
罗嘉金
刘辰辰
韩霄
于健
淦明
周保建
张美红
彭晓辉
杜瑞
荣志超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20915089.5A priority Critical patent/EP4080841A4/en
Publication of WO2021147348A1 publication Critical patent/WO2021147348A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2688Resistance to perturbation, e.g. noise, interference or fading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of wireless communication, and more specifically, to methods, devices, and systems for detecting targets.
  • the transmitting end of the radar system transmits a detection signal known by the receiving end.
  • the detection signal is received by the receiving end of the radar system after being reflected by the target.
  • the receiving end can detect the target according to the phase difference of the received detection signal.
  • the above positioning process requires dedicated hardware implementation.
  • mobile communication devices for example, WiFi devices, wearable devices, etc.
  • WiFi devices for example, WiFi devices, wearable devices, etc.
  • the detection of the target cannot be achieved by using the above detection signal in the communication device.
  • the present application provides a method, device, and system for detecting a target, so as to improve the accuracy of detecting a target by the communication device without changing the hardware of the communication device.
  • a method for detecting a target includes: a first device determines N first orthogonal frequency division multiplexing OFDM symbols, where N is a positive integer greater than or equal to 2, and the N first OFDM symbols Each first OFDM symbol in the symbol includes a first subcarrier, and the phase of the first subcarrier in any two adjacent first OFDM symbols in the N first OFDM symbols is continuous, and the first subcarrier
  • the data carried by the carrier is preset data; the first device sends the N first OFDM symbols, and the first subcarrier in the N first OFDM symbols is used to detect the target.
  • the method further includes: the first device receives N second OFDM symbols, the N second OFDM symbols and the N first OFDM symbols one by one Correspondingly, each second OFDM symbol in the N second OFDM symbols includes a second subcarrier, and the phase of the second subcarrier in any two adjacent second OFDM symbols in the N second OFDM symbols Is continuous, the data carried by the second subcarrier is the preset data; the first device is based on the phase of the second subcarrier in the N second OFDM symbols and the phase of the N first OFDM symbols The phase difference of the first subcarrier detects the target.
  • the present application provides a method for determining the continuous phase of pilot subcarriers (ie, the first subcarrier) in an OFDM signal (ie, N first OFDM symbols).
  • the communication device i.e., the first device
  • uses the pilot subcarrier phase continuous OFDM signal i.e., N first OFDM symbols
  • detection e.g., Range and/or speed
  • the determining the N first OFDM symbols includes: compensating the phase of the third subcarrier in the N reference OFDM symbols according to the N phase compensation values , The N first OFDM symbols are obtained, the phases of the third subcarriers in any two adjacent reference OFDM symbols in the N reference OFDM symbols are not continuous, and the third subcarrier after compensation is the first One sub-carrier.
  • the compensation of the phase of the third subcarrier in the N reference OFDM symbols according to the phase compensation value to obtain the N first OFDM symbols includes: According to the i-th phase compensation value in the N phase compensation values, phase compensation is performed on the phase of the third subcarrier in the i-th reference OFDM symbol among the N reference OFDM symbols to obtain the N first OFDM symbols.
  • the subcarrier at the Ki-th position of the i-th first OFDM symbol among the N first OFDM symbols is the i-th first OFDM symbol the first subcarrier symbol
  • K i for the first OFDM symbol length is an integer multiple of the ratio of the GI length before the i-th first OFDM symbol
  • the method before the first device sends the N first OFDM symbols, the method further includes: determining the first subcarrier according to the period of the first subcarrier. GI length before one OFDM symbol.
  • each first OFDM symbol of the N first OFDM symbols further includes a fourth subcarrier, and the fourth subcarrier is used for data communication.
  • the method before sending the N first OFDM symbols, further includes: sending a packet header, the packet header carrying indication information, and the indication information is used to indicate the N first OFDM symbols.
  • the phases of the first subcarriers in any two adjacent first OFDM symbols in the first OFDM symbol are continuous.
  • an apparatus for detecting a target includes: a processing unit configured to determine N first orthogonal frequency division multiplexing OFDM symbols, where N is a positive integer greater than or equal to 2, and the Nth Each first OFDM symbol in an OFDM symbol includes a first subcarrier, and the phase of the first subcarrier in any two adjacent first OFDM symbols in the N first OFDM symbols is continuous, and the first subcarrier
  • the data carried by one subcarrier is preset data; the transceiver unit is used to send the N first OFDM symbols, and the first subcarrier in the N first OFDM symbols is used to detect the target.
  • the transceiver unit is further configured to: receive N second OFDM symbols, where the N second OFDM symbols correspond to the N first OFDM symbols in a one-to-one correspondence, Each of the N second OFDM symbols includes a second subcarrier, and the phases of the second subcarriers in any two adjacent second OFDM symbols in the N second OFDM symbols are continuous ,
  • the data carried by the second subcarrier is the preset data;
  • the processing unit is further configured to: according to the phase of the second subcarrier in the N second OFDM symbols and the difference in the N first OFDM symbols The phase difference of the first subcarrier detects the target.
  • the communication device i.e., the first device
  • uses the pilot sub-carrier phase continuous OFDM signal i.e., N first OFDM symbols
  • the accuracy of the detection eg, ranging and/or speed measurement
  • the processing unit is specifically configured to: compensate the phase of the third subcarrier in the N reference OFDM symbols according to the N phase compensation values to obtain the N First OFDM symbols, the phases of the third subcarriers in any two adjacent reference OFDM symbols in the N reference OFDM symbols are not continuous, and the compensated third subcarrier is the first subcarrier.
  • the subcarrier at the Ki-th position of the i-th first OFDM symbol among the N first OFDM symbols is the i-th first OFDM symbol the first subcarrier symbol
  • K i for the first OFDM symbol length is an integer multiple of the ratio of the GI length before the i-th first OFDM symbol
  • the processing unit is further configured to: before the first device sends the N first OFDM symbols, determine the period of each subcarrier according to the period of the first subcarrier. The GI length before the first OFDM symbol.
  • each of the N first OFDM symbols further includes a fourth subcarrier, and the fourth subcarrier is used for data communication.
  • the transceiver unit is further configured to send a packet header before sending the N first OFDM symbols, the packet header carrying indication information, and the indication information is used to indicate the The phases of the first subcarriers in any two adjacent first OFDM symbols among the N first OFDM symbols are continuous.
  • a system for detecting a target includes: a first device for determining N first orthogonal frequency division multiplexing OFDM symbols, where N is a positive integer greater than or equal to 2, and the N Each first OFDM symbol in the first OFDM symbol includes a first subcarrier, and the phases of the first subcarriers in any two adjacent first OFDM symbols in the N first OFDM symbols are continuous, and The data carried by the first subcarrier is preset data; the first device is also used to send the N first OFDM symbols; the second device is used to receive N second OFDM symbols, the N second OFDM symbols One-to-one correspondence with the N first OFDM symbols, each of the N second OFDM symbols includes a second subcarrier, and any two adjacent second OFDM symbols of the N second OFDM symbols The phase of the second sub-carrier in the OFDM symbol is continuous, and the data carried by the second sub-carrier is the preset data; the second device is also configured to perform according to the second sub-carrier in the N second OFDM symbols, where N is a positive integer
  • the first device and the second device are the same device.
  • the first device serves as a transmitting end to transmit the N first OFDM symbols, and as a receiving end to receive the N second OFDM symbols.
  • the first device and the second device are different devices.
  • the first device acts as a transmitting end to transmit the N first OFDM symbols
  • the second device acts as a receiving end to receive the N second OFDM symbols.
  • the present application provides a method for determining the phase continuity of the pilot sub-carriers (i.e., the first sub-carriers) in an OFDM signal (i.e., N first OFDM symbols).
  • the communication device ie, the second device
  • the first device is specifically configured to: compensate the phase of the third subcarrier in the N reference OFDM symbols according to the N phase compensation values to obtain the N first OFDM symbols, the phases of the third subcarriers in any two adjacent reference OFDM symbols in the N reference OFDM symbols are not continuous, and the third subcarrier after compensation is the first subcarrier .
  • the subcarrier at the Ki-th position of the i-th first OFDM symbol among the N first OFDM symbols is the i-th first OFDM symbol the first subcarrier symbol
  • K i for the first OFDM symbol length is an integer multiple of the ratio of the GI length before the i-th first OFDM symbol
  • the first device is further configured to: before the first device sends the N first OFDM symbols, determine the period of the first subcarrier according to the period of the first subcarrier before the first device sends the N first OFDM symbols The GI length before each first OFDM symbol.
  • each first OFDM symbol in the N OFDM symbols further includes a fourth subcarrier, and the fourth subcarrier is used for data communication.
  • the communication device ie, the second device
  • the OFDM signal can be used to improve the accuracy of the communication device's detection (for example, ranging and/or speed measurement) targets, and at the same time, it can also achieve communication with other communication devices (ie, the first device).
  • Equipment high-speed communication. Without affecting the communication efficiency between communication devices, the integration of detection and communication is effectively realized.
  • the first device is further configured to send a packet header before sending the N OFDM symbols, the packet header carrying indication information, and the indication information is used to indicate the N OFDM symbols.
  • the phases of the first subcarriers in any two adjacent first OFDM symbols in the first OFDM symbols are continuous.
  • a device for detecting a target including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the first aspect or the second aspect.
  • the device for detecting the target further includes a memory.
  • the device for detecting the target further includes a communication interface, and the processor is coupled with the communication interface.
  • the device of the detection target is a communication device, such as the first device and the second device in the embodiment of the present application.
  • the communication interface may be a transceiver or an input/output interface.
  • the detection target device is a chip configured in a communication device, such as a chip configured in the first device and the second device as in the embodiment of the present application.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the foregoing first aspect or the second aspect.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so as to execute the method in any one of the possible implementation manners of the first aspect or the second aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the above sixth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect or the first aspect described above.
  • the method in any one of the two possible implementation modes.
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect or the first aspect described above.
  • the method in any one of the two possible implementation modes.
  • Fig. 1 is a schematic diagram of discontinuous phases of pilot sub-carriers of adjacent OFDM symbols.
  • Fig. 2 is a schematic diagram of continuous phases of pilot sub-carriers of adjacent OFDM symbols.
  • Fig. 3 is a schematic diagram of an application scenario applicable to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method 400 for detecting a target provided by an embodiment of the present application.
  • Fig. 5 is a situation where the phases of adjacent sub-carriers in an OFDM symbol change over time.
  • Fig. 6 shows how the phases of adjacent subcarriers in an OFDM symbol change over time.
  • FIG. 7 is a schematic flowchart of a method 700 for detecting a target according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of an apparatus for detecting a target provided by an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of an apparatus for detecting a target provided by an embodiment of the present application.
  • the technical solution of the embodiment of this application can be applied to wireless local area network (WLAN), and the embodiment of this application can also be applied to the International Institute of Electrical and Electronics Engineers (IEEE) 802.11 series currently adopted by WLAN
  • IEEE International Institute of Electrical and Electronics Engineers
  • Any of the protocols for example, can be applied to the communication system of the IEEE 802.11az protocol currently supported by WLAN, or applicable to the communication system supporting the next-generation protocol of 802.11az, or applied to the communication supporting 802.11be In the system, or in the wireless fidelity sensing communication system, or in other scenarios where positioning is required.
  • Orthogonal frequency division multiplexing It is a multi-carrier modulation technology. The main idea is to divide the channel into several orthogonal sub-channels, convert high-speed data signals into parallel low-speed sub-data streams, and modulate them for transmission on each sub-channel. Orthogonal signals can be separated by using related technologies at the receiving end, which can reduce mutual interference between sub-channels.
  • the signal bandwidth on each sub-channel is smaller than the relevant bandwidth of the channel, so each sub-channel can be regarded as flat fading, which can eliminate the inter-symbol crosstalk, and since the bandwidth of each sub-channel is only a small part of the original channel bandwidth, the channel Balancing becomes relatively easy.
  • Each carrier in OFDM is orthogonal to each other.
  • Each carrier has an integer number of carrier periods within one symbol time.
  • the spectrum zero of each carrier overlaps with the zeros of adjacent carriers, thus reducing inter-carrier interference. Due to the partial overlap between the carriers, compared with the traditional information transmission technology, the utilization rate of the frequency band is improved.
  • the high-speed information data stream is serial-to-parallel converted and allocated to several sub-channels with a relatively low rate for transmission.
  • the symbol period in each sub-channel is relatively increased, which can reduce the multipath delay caused by the wireless channel.
  • Pilot subcarrier It is a subcarrier with a preset sequence placed in an OFDM symbol.
  • the pilot subcarrier is generally used to help detect and correct the phase offset of the subcarrier, thereby improving the accuracy of data subcarrier analysis .
  • Data subcarrier The data subcarrier is the subcarrier on which the data is transmitted.
  • Guard interval is added to the transmitting end of the OFDM system to eliminate inter-symbol interference (ISI) and inter-channel interference (inter-channel interference) caused by multipath. ICI). The method is to fill in (cyclic prefix, CP) in the OFDM symbol guard interval to ensure that the number of waveform cycles included in the delay copy of the OFDM symbol in the fast Fourier transform (FFT) cycle is also an integer. In this way, signals with a delay less than the guard interval will not generate ISI during the demodulation process.
  • ISI inter-symbol interference
  • inter-channel interference inter-channel interference
  • Doppler shift refers to when the mobile station moves in a certain direction at a constant rate, due to the propagation distance difference, it will cause the phase and frequency changes, usually this change It is called Doppler shift.
  • a guard interval GI is inserted before the OFDM symbol when the OFDM technology is used to modulate the signal. Due to the relationship between the existence of the GI and the position of the pilot subcarriers, the phases of the pilot subcarriers at the same position between adjacent OFDM symbols are discontinuous (see Figure 1).
  • Figure 1 shows a schematic diagram of discontinuous phases of pilot sub-carriers of adjacent OFDM symbols.
  • FIG. 1 only shows the change of the phase of one subcarrier in the OFDM symbol with time, and let this subcarrier be the pilot subcarrier.
  • phase of the pilot subcarrier of OFDM symbol #1 is greater than zero, and the phase of the pilot subcarrier of OFDM symbol #2 is less than zero.
  • the phases of the pilot subcarriers of adjacent OFDM symbol #1 and OFDM symbol #2 are discontinuous.
  • the transmitting end sends an OFDM signal.
  • the receiving end demodulates the OFDM signal to obtain a signal. Larger noise.
  • the receiving end may not be able to detect the target using the OFDM signal. Or, when the receiving end uses the OFDM signal to detect the target, the detection accuracy is low.
  • the embodiment of the present application provides a method for detecting a target.
  • This method uses OFDM technology to modulate the signal transmitted by the transmitter.
  • some sub-carriers in the OFDM symbol transmitted by the transmitter are used as pilot sub-carriers, and the pilot sub-carriers are used to transmit a training sequence known by the receiver.
  • the receiving end can compare the phase of the pilot subcarriers in the received OFDM symbol with the pilot subcarriers in the OFDM symbol transmitted by the transmitting end.
  • the phase difference of the carrier wave can realize the detection of the target (for example, ranging and/or speed measurement).
  • some other sub-carriers in the OFDM symbol are used as data sub-carriers.
  • the data sub-carriers are used to carry data.
  • the receiving end can communicate with the transmitting end according to the received data sub-carriers.
  • Figure 2 shows a schematic diagram of continuous phases of pilot sub-carriers of adjacent OFDM symbols.
  • FIG. 1 only shows the change of the phase of one subcarrier in the OFDM symbol with time, and let this subcarrier be the pilot subcarrier.
  • phase value of the pilot subcarrier of OFDM symbol #1 and the phase value of the pilot subcarrier of OFDM symbol #2 are the same (that is, the phase values are both zero). In this case, it can be considered that the phases of the pilot subcarriers of adjacent OFDM symbol #1 and OFDM symbol #2 are continuous.
  • Fig. 3 shows a schematic diagram of an application scenario applicable to an embodiment of the present application.
  • the application scenario may include at least one first device 310 and one second device 320.
  • the first device 310 transmits an OFDM signal, and the OFDM signal is received by the second device 320.
  • the OFDM signal sent by the first device includes pilot subcarriers and data subcarriers.
  • the second device 320 may perform detection (for example, ranging and/or speed measurement) on the first device 310 according to the phase difference of the pilot subcarriers in the received OFDM signal.
  • the second device 320 may also implement communication with the first device 310 according to the data subcarriers in the received OFDM signal. It should be understood that the detection of the first device 310 by the second device 320 and the data communication between the second device 320 and the first device 310 may be performed simultaneously.
  • the first device and the second device are different devices. In this case, the first device serves as the transmitting end of the detection signal, and the second device serves as the receiving end of the detection signal.
  • the first device is the detected target device.
  • the application scenario may include at least one communication device and one measurement target.
  • the communication device transmits the first OFDM signal.
  • the communication device receives the second OFDM signal.
  • the second OFDM signal is a signal obtained after the first OFDM signal is reflected by the measurement target.
  • the second OFDM signal includes pilot subcarriers and data subcarriers.
  • the communication device can detect the measurement target according to the phase difference between the pilot subcarrier in the first OFDM signal sent by the communication device and the pilot subcarrier in the second OFDM signal received by the communication device. In other words, the communication device is the transmitter and receiver of the detection signal.
  • the application scenario may include at least one first device, one second device, and one measurement target.
  • the first device sends a first OFDM signal
  • the first OFDM signal is reflected by the measurement target to obtain a second OFDM signal
  • the second OFDM signal is received by the second device.
  • the second OFDM signal includes pilot subcarriers and data subcarriers.
  • the second device can detect the measurement target according to the phase difference between the pilot subcarrier in the first OFDM signal and the received pilot subcarrier in the second OFDM signal.
  • the second device may also implement communication with the first device according to the data subcarriers in the received second OFDM signal. In this case, the second device can simultaneously realize the detection of the measurement target and the data communication with the first device.
  • the first device and the second device are different devices.
  • the first device serves as the transmitting end of the sounding signal (that is, the first OFDM signal)
  • the second device serves as the receiving end of the sounding signal (that is, the second OFDM signal).
  • the first device 310 may be a wireless fidelity (WiFi) device, a router, a terminal device, or a station (station, STA), which is not limited in the embodiment of the present application.
  • the second device 320 may also be a WiFi device, a router, a terminal device, or an STA, which is not limited in the embodiment of the present application.
  • the first device in the embodiment of the present application may be a WiFi device, and the second device may also be a WiFi device.
  • FIG. 3 is only for illustration, but this should not constitute any limitation to the application.
  • a larger number of first devices and a larger number of second devices may also be included.
  • each first device and each second device can communicate with each other through a wireless protocol.
  • a larger number of communication devices and a larger number of measurement targets may also be included.
  • each communication device can communicate through wireless protocols.
  • a larger number of first devices, a larger number of second devices, and a larger number of measurement targets may also be included.
  • each first device and each second device can communicate with each other through a wireless protocol.
  • the wireless protocol may be a WiFi protocol or a ZigBee (ZigBee) protocol.
  • FIG. 4 shows a schematic flowchart of a method 400 for detecting a target according to an embodiment of the present application. As shown in FIG. 4, the method 400 includes steps 410 to 440, and these steps are described in detail below.
  • Step 410 The first device determines N first orthogonal frequency division multiplexing OFDM symbols, where N is a positive integer greater than or equal to 2, and each of the N first OFDM symbols includes a first subcarrier, The phases of the first subcarriers in any two adjacent first OFDM symbols among the N first OFDM symbols are continuous, and the data carried by the first subcarrier is preset data.
  • each first OFDM symbol may include one first subcarrier, may also include two first subcarriers, and may also include N first subcarriers, where N is a positive integer greater than or equal to 3.
  • the first subcarrier may be a pilot subcarrier.
  • each first OFDM symbol may include multiple data subcarriers and one pilot subcarrier. If one data subcarrier carries preset data, then this data subcarrier is the first subcarrier.
  • the data carried by the first subcarrier is preset data
  • the type of the preset data is not specifically limited.
  • the preset data may be a continuous constant value.
  • the preset data can also be a continuous sine wave.
  • the preset data is a piece of known data for the first device.
  • the preset data carried by the first subcarrier is a piece of partially known data for the second device.
  • the second device only knows the phase and frequency information of the preset data.
  • the preset data is a piece of completely known data for the second device.
  • the second device knows all information such as the phase, amplitude, and frequency of the preset data.
  • the period of the first subcarrier included in the first OFDM symbol is not specifically limited.
  • the first OFDM symbol may include one period of the first subcarrier.
  • the first OFDM symbol may include M periods of first subcarriers, and M is a positive integer greater than or equal to 2. Specifically, when M is equal to 3, the first OFDM symbol includes 3 periods of first subcarriers.
  • the N OFDM symbols sent by the first device can be determined in the following four ways:
  • Method 1 According to the N phase compensation values, the phase of the second subcarrier in the N reference OFDM symbols is compensated to obtain N OFDM symbols (ie, an example of N first OFDM symbols), and N reference OFDM symbols The phases of the second subcarriers in any two adjacent reference OFDM symbols in are not continuous, and the compensated second subcarrier is the first subcarrier.
  • the GI before the reference OFDM symbol includes a subcarrier, and the subcarrier is a part of the first subcarrier in the reference OFDM symbol.
  • performing phase compensation on the phase of the first subcarrier in the reference OFDM symbol can also be understood as the phase of the subcarrier included in the reference OFDM symbol and the phase of the subcarrier included in the GI before the reference OFDM symbol.
  • the phase of the sub-carrier is compensated.
  • the phases of the first subcarriers in adjacent OFDM symbols are continuous, that is, the first subcarrier of the first OFDM symbol among the N OFDM symbols and the first subcarrier of the second OFDM symbol are
  • the carrier is continuous
  • the first subcarrier of the second OFDM symbol and the first subcarrier of the third OFDM symbol are continuous, and so on.
  • the first subcarrier of the first OFDM symbol and the first subcarrier of the second OFDM symbol are continuous. It can be understood that the first subcarrier of the first OFDM symbol is in the first subcarrier.
  • the phase value at the end time of one OFDM symbol is the same as the phase value of the subcarriers in the GI before the second OFDM symbol at the GI start time.
  • the first subcarrier of the second OFDM symbol and the first subcarrier of the third OFDM symbol are continuous, which can be understood as the first subcarrier in the second OFDM symbol at the end of the second OFDM symbol.
  • the phase value of is the same as the phase value of the sub-carriers in the GI before the third OFDM symbol at the GI start time.
  • compensating the phase of the second subcarrier in the N reference OFDM symbols to obtain the N OFDM symbols includes: according to the i-th phase compensation value among the N phase compensation values, comparing the N reference OFDM symbols The phase of the second subcarrier in the i-th reference OFDM symbol in the OFDM symbol is phase-compensated to obtain the i-th OFDM symbol in the N OFDM symbols, and the i-th phase compensation value is the first in the N reference OFDM symbols.
  • the difference between the phase value corresponding to the end time of the i-1 reference OFDM symbol and the phase value of the GI start time corresponding to the i-th reference OFDM symbol, i 2,...,N.
  • phase value of the GI corresponding to the i-th reference OFDM symbol at the start time can be understood as the phase value of the subcarriers in the GI before the i-th OFDM symbol at the GI start time.
  • the first device sends N reference OFDM symbols, the phase of the first subcarrier at the kth position in the N-1th reference OFDM symbol and the kth position in the Nth reference OFDM symbol
  • the phase of the first subcarrier of is not continuous, N is a positive integer greater than or equal to 2, and k is a positive integer greater than or equal to 1.
  • the phase value corresponding to the first subcarrier at the kth position in the N-1th reference OFDM symbol at the end of the N-1th reference OFDM symbol is zero.
  • the phase value at the start time of the GI corresponding to the Nth reference OFDM symbol It can be obtained by the following formula:
  • ⁇ f is the phase difference between the first subcarrier at the kth position in the N-1th OFDM symbol and the first subcarrier at the kth position in the Nth OFDM symbol
  • T IFFT is the Nth The length of -1 OFDM symbol, which does not include the length of the GI corresponding to the N-1th OFDM symbol
  • T GI is the length of the GI before the N-1th OFDM symbol.
  • Figure 5 shows how the phases of adjacent subcarriers in an OFDM symbol change over time.
  • the first device sends 2 OFDM symbols, namely OFDM symbol #1 and OFDM symbol #2.
  • 2 OFDM symbols namely OFDM symbol #1 and OFDM symbol #2.
  • the adjacent OFDM symbol #1 and OFDM symbol #2 are not continuous in phase at the time t1.
  • the phase of the first subcarrier at position 16 in OFDM symbol #1 at time t1 is 0, and the phase of the GI before the first subcarrier at position 16 in OFDM symbol #2 at time t1 is According to formula (1.1) to formula (1.3), the phase compensation of the first subcarrier at position 16 in OFDM symbol #2
  • the compensated first subcarrier is shown by the dashed line in FIG. 5, and it can be seen that the phases of the first subcarrier in the OFDM symbol #1 and the compensated OFDM symbol #2 are continuous at time t1.
  • the first device sends 3 OFDM symbols, which are OFDM symbol #1, OFDM symbol #2, and OFDM symbol #3.
  • the phase value of the first subcarrier at position 24 in OFDM symbol #1 at the end of OFDM symbol #1 is 0, and the phase value of the GI before the first subcarrier at position 24 in OFDM symbol #2 is The phase value of the GI before the first subcarrier at position 24 in OFDM symbol #3 is According to formula (1.1) to formula (1.3), the phase compensation value of the first subcarrier at position 24 in OFDM symbol #1 is obtained
  • the phase compensation value of the first subcarrier at position 24 in OFDM symbol #2 is In other words, the phase value of the first subcarrier at position 24 in OFDM symbol #1 is compensated by 1 Compensate 2 for the phase value of the first subcarrier at position 24 in OFDM symbol #2
  • the first device sends N OFDM symbols
  • the phase of the i-th OFDM symbol is compensated by i-1 N is a positive integer greater than or equal to 2
  • i is a positive
  • the phase of the first subcarrier in adjacent OFDM symbols is continuous.
  • Manner 2 Determine the GI length before each OFDM symbol (that is, an example of N first OFDM symbols) according to the period of the first subcarrier.
  • the period of the first subcarrier determine the GI length before each OFDM symbol, which can be understood as adjusting the GI length before the OFDM symbol so that the period of the first subcarrier in the OFDM symbol is a positive integer of the adjusted GI length Times.
  • the first device transmits N OFDM symbols, assuming that the phase of the first subcarrier at the kth position in the N-1th OFDM symbol is equal to the phase of the kth position in the Nth OFDM symbol.
  • the phase of a subcarrier is not continuous, N is a positive integer greater than or equal to 2, k is a positive integer greater than or equal to 1, and the first subcarrier at the kth position in the N-1th OFDM symbol is in the Nth
  • the phase value corresponding to the end of -1 OFDM symbol is zero.
  • the phase value at the start time of the GI corresponding to the Nth OFDM symbol It can be obtained by the following formula:
  • ⁇ f is the phase difference between the first subcarrier at the kth position in the N-1th OFDM symbol and the first subcarrier at the kth position in the Nth OFDM symbol
  • T IFFT is the Nth The length of -1 OFDM symbol, which does not include the length of the GI corresponding to the N-1th OFDM symbol
  • T GI is the length of the GI before the N-1th OFDM symbol.
  • T GI can be calculated by the following formula:
  • n is a positive integer greater than or equal to 1.
  • Fig. 6 shows the change of the phases of adjacent sub-carriers in the OFDM symbol over time. It can be seen from Fig. 6 that the length of GI2 is greater than the length of GI1. Wherein, the length of GI2 is determined according to formula (2.2), so that the phase of the sub-carrier of OFDM symbol #1 and the phase of the sub-carrier of OFDM symbol #2 are continuous at time t1.
  • the phase of the first subcarrier in the adjacent OFDM symbol is continuous.
  • N OFDM symbols i.e., one case of the N first OFDM symbol
  • K i is an integer multiple of the ratio of the OFDM symbol length to the GI length before the i-th OFDM symbol
  • the first subcarrier is a pilot subcarrier.
  • the first device transmits N OFDM symbols, assuming that the phase of the first subcarrier at the kth position in the N-1th OFDM symbol is equal to the phase of the kth position in the Nth OFDM symbol.
  • the phase of a subcarrier is not continuous, N is a positive integer greater than or equal to 2, k is a positive integer greater than or equal to 1, and the first subcarrier at the kth position in the N-1th OFDM symbol is in the Nth
  • the phase value corresponding to the end of -1 OFDM symbol is zero.
  • the phase value at the start time of the GI corresponding to the Nth OFDM symbol It can be obtained by the following formula:
  • ⁇ f is the phase difference between the first subcarrier at the kth position in the N-1th OFDM symbol and the first subcarrier at the kth position in the Nth OFDM symbol
  • T IFFT is the Nth The length of -1 OFDM symbol, which does not include the length of the GI corresponding to the N-1th OFDM symbol
  • T GI is the length of the GI before the N-1th OFDM symbol.
  • T IFFT is the length of one OFDM symbol duration, which does not include the length of GI
  • T GI is the length of GI
  • the subcarrier at this position can be selected as the first subcarrier.
  • the expression of the subcarrier period T IFFT corresponding to the subcarrier at position k in the OFDM symbol is:
  • 12.8 is the length of the OFDM symbol.
  • the guard interval GI has three lengths: 0.8 ⁇ s, 1.6 ⁇ s and 3.2 ⁇ s.
  • the GI before the OFDM symbol is 0.8 ⁇ s
  • the subcarrier at position k in the OFDM symbol is selected as the first subcarrier, and the subcarrier at position k satisfies the following formula:
  • the subcarrier whose position is an integer multiple of 16 in the OFDM symbol should be selected as the first subcarrier.
  • the subcarrier whose position is an integer multiple of 8 in the OFDM symbol should be selected as the first subcarrier.
  • the subcarrier whose position is an integer multiple of 4 in the OFDM symbol should be selected as the first subcarrier.
  • Table 1 shows the position of the first subcarrier in the OFDM symbol obtained when the IEEE 802.11ax standard is adopted. It is also possible to use other communication protocol standards to obtain the position of the first subcarrier through the above-mentioned method.
  • Method 4 Reserve the position of the subcarrier whose position sequence number in the OFDM symbol (ie, an example of N first OFDM symbols) meets the subcarrier period length being an integer multiple of the GI length, and reserve the position on the subcarrier that meets the above position A piece of preset data is transmitted.
  • the type of the preset data is not specifically limited.
  • the preset data may be a continuous constant value.
  • the preset data can also be a continuous sine wave.
  • the preset data is a piece of known data for the first device, and the preset data is a piece of partially or completely known data for the second device.
  • all or part of the subcarrier positions whose positions are integer multiples of 16 can be reserved for no data transmission, and a constant known value can be transmitted on the subcarriers at the above positions, thereby These sub-carriers whose positions are integer multiples of 16 continuously generate a single-frequency continuous wave in the data transmission device.
  • the first device sends 3 OFDM symbols, so that one is transmitted on the subcarriers at position 16 of the first OFDM symbol, at position 16 of the second OFDM symbol, and at position 16 of the third OFDM symbol. Continuous preset data.
  • the first device sends 3 OFDM symbols, so that a continuous preset is transmitted at the position 32 of the first OFDM symbol, at the position 32 of the second OFDM symbol, and at the position 32 of the third OFDM symbol. data.
  • all or part of the sub-carrier positions whose positions are integer multiples of 8 can be reserved for no data transmission. Instead, a constant value can be transmitted on these sub-carriers during the entire data transmission period. Known values, so that these sub-carriers whose positions are integer multiples of 8 continuously generate a single-frequency continuous wave in the data transmission device.
  • the first device sends 3 OFDM symbols, so that a continuous preset is transmitted at position 8 of the first OFDM symbol, at position 8 of the second OFDM symbol, and at position 8 of the third OFDM symbol data.
  • the first device sends 3 OFDM symbols, so that a continuous preset is transmitted at the position 64 of the first OFDM symbol, at the position 64 of the second OFDM symbol, and at the position 64 of the third OFDM symbol. data.
  • the phases of the first subcarriers in adjacent OFDM symbols are continuous.
  • the first device before the first device sends the N OFDM symbols, determines the GI length before each OFDM symbol according to the period of the first subcarrier in the OFDM symbol.
  • each of the N first OFDM symbols further includes a fourth subcarrier, and the fourth subcarrier may be used for data communication.
  • the fourth subcarrier is a subcarrier carrying data, and the phase of the fourth subcarrier in the adjacent first OFDM symbol may be continuous or discontinuous.
  • the data carried by the fourth subcarrier is an unknown piece of data for the receiving end.
  • the first device before sending the N OFDM symbols, the first device is also used to send a packet header, the packet header carries indication information, and the indication information is used to indicate any two adjacent OFDM symbols among the N OFDM symbols.
  • the phase of the first subcarrier is continuous.
  • the indication information may be carried by at least one of the following signaling: MAC signaling or physical layer signaling.
  • a bit can be reserved in the SIG field of the signal packet header, and this bit is used to indicate whether the phases of the first subcarriers in any two adjacent first OFDM symbols among the N first OFDM symbols are continuous. . For example, when the bit is "1", it means that the phases of the first subcarriers in any two adjacent first OFDM symbols among the N first OFDM symbols are continuous; when the bit is "0" When, it means that the phases of the first subcarriers in any two adjacent first OFDM symbols among the N first OFDM symbols are discontinuous.
  • the second device determines, according to the received packet header, to use the N OFDM symbols corresponding to the packet header to detect the target.
  • the bit in the SIG field of the signal packet header is "1".
  • the second device determines not to use the N OFDM symbols corresponding to the packet header to detect the target according to the received packet header.
  • the bit in the SIG field of the signal packet header is "0".
  • Step 420 The first device sends N first OFDM symbols.
  • Step 430 The second device receives N second OFDM symbols, where the N second OFDM symbols have a one-to-one correspondence with the N first OFDM symbols, and each of the N second OFDM symbols includes a second subcarrier. , The phases of the second subcarriers in any two adjacent second OFDM symbols in the N second OFDM symbols are continuous, and the data carried by the second subcarriers are preset data.
  • the N second OFDM symbols have a one-to-one correspondence with the N first OFDM symbols. It can be understood that the N second OFDM symbols are OFDM symbols obtained after the N first OFDM symbols are reflected by the measurement target.
  • the first device sends N first OFDM symbols, and the measurement target reflects the N first OFDM symbols.
  • the first OFDM symbol reflected by the measuring device is the second OFDM symbol.
  • the N second OFDM symbols correspond to the N first OFDM symbols in a one-to-one correspondence. It can be understood that the N second OFDM symbols are the N first OFDM symbols. OFDM symbol after frequency shift.
  • the first device sends the first OFDM symbol during movement. Due to the movement of the first device, the Doppler effect occurs in the first OFDM symbol sent by the first device. The first OFDM symbol received by the second device after the Doppler effect has occurred is the second OFDM symbol.
  • Step 440 The second device detects the target according to the phase difference between the second subcarrier in the N second OFDM symbols and the first subcarrier in the N first OFDM symbols.
  • the second device detects the target according to the phase difference between the second subcarrier and the first subcarrier, which can be understood as being based on the phase of the second subcarrier and the phase of the first subcarrier. It also combines phase measurement technology to measure the target distance.
  • the second device detects the target according to the phase difference between the second subcarrier and the first subcarrier. It can be understood that it is based on the frequency of the second subcarrier and the first subcarrier. Frequency difference, combined with Doppler frequency shift technology to measure the speed of the target. Among them, the frequency of the sub-carrier can be calculated according to the phase of the sub-carrier.
  • the second device detects the target based on the phase difference between the second subcarrier and the first subcarrier, which may be based on the phase difference between the second subcarrier and the first subcarrier,
  • the phase measurement technology is used to measure the target distance, and the speed of the target is measured according to the frequency difference between the frequency of the second subcarrier and the first subcarrier and the Doppler frequency shift technology.
  • the second device detects the target according to the phase difference between the second subcarrier in the N second OFDM symbols and the first subcarrier in the N first OFDM symbols, which can be understood as :
  • the second device combines the phase difference between the subcarrier #B formed by the second subcarrier in each second OFDM symbol and the subcarrier #A formed by the first subcarrier in each first OFDM symbol.
  • Phase measurement technology detects the target.
  • the symbols reflected by the N first OFDM symbols by the measurement target are N second OFDM symbols, each of the second OFDM symbols includes a second subcarrier, and the frequency of carrier #B formed by the N second subcarriers is f 1 , the phase of this carrier #B is
  • the second device is used to receive N second OFDM symbols.
  • the distance between the first device and the measurement target is R
  • the distance between the measurement target and the second device is R.
  • the phase of the carrier #B in the N second OFDM symbols received by the second device can be obtained by the following formula:
  • the distance R can be expressed as:
  • ⁇ f is equal to the difference between f 0 and f 1 , and f 0 and f 1 can be obtained according to the measurement.
  • c is the speed of light
  • T is the time length of carrier #A
  • T and f 0 are the reciprocal relationship.
  • the Doppler shift ⁇ f of the carrier #A in the N first OFDM symbols and the carrier #B in the N second OFDM symbols can be expressed as:
  • ⁇ f is equal to the difference between f 0 and f 1. According to the measurement, f 0 and f 1 can be obtained.
  • the wavelength ⁇ of the detection signal is known, so combining formula (4.1), formula (4.4) and formula (4.5) can calculate the moving speed of the measurement target.
  • the second device is used to receive N second OFDM symbols.
  • the N second OFDM symbols are OFDM symbols after the N first OFDM symbols are Doppler shifted during the data transmission process.
  • Each second OFDM symbol includes a second subcarrier, the frequency of carrier #B formed by the N second subcarriers is f 1 , and the phase of carrier #B is
  • the distance between the first device and the second device is R. Combining formula (4.1) to formula (4.5), the distance between the first device and the second device and the movement speed of the first device can be calculated. For the sake of brevity, details are not repeated here.
  • each of the N second OFDM symbols further includes a fourth subcarrier, and the fourth subcarrier may be used for data communication.
  • the data carried by the fourth subcarrier is an unknown piece of data for the receiving end.
  • the second device can detect the target according to the received N second OFDM symbols, and at the same time, it can communicate with the first device at high speed.
  • the second device performs distance measurement on the target according to the phase difference between the second subcarrier in the N second OFDM symbols and the first subcarrier in the N first OFDM symbols, combined with the phase measurement technology;
  • second The device measures the speed of the target according to the frequency difference between the second subcarrier in the N second OFDM symbols and the first subcarrier in the N first OFDM symbols, and combined with the Doppler frequency shift technology.
  • the second device performs high-speed communication with the first device according to the data carried by the fourth subcarrier in the N second OFDM symbols.
  • a communication device can communicate with other communication devices.
  • the communication device can use the OFDM signal to improve detection (for example, ranging And/or speed) the accuracy of the target.
  • detection for example, ranging And/or speed
  • the communication device can simultaneously realize accurate detection of the target and high-speed communication with other communication devices. Without affecting the communication efficiency between communication devices, the integration of detection and communication is effectively realized.
  • the method for detecting a target provided in the embodiment of the present application will be introduced in detail. That is to say, in this application scenario, the signal transmitting end and the signal receiving end are the same device.
  • FIG. 7 shows a schematic flowchart of a method 700 for detecting a target according to an embodiment of the present application. As shown in FIG. 7, the method 700 includes steps 710 to 740, and these steps are described in detail below.
  • Step 710 The first device determines N first orthogonal frequency division multiplexing OFDM symbols, where N is a positive integer greater than or equal to 2, and each of the N first OFDM symbols includes a first subcarrier, The phases of the first subcarriers in any two adjacent first OFDM symbols among the N first OFDM symbols are continuous, and the data carried by the first subcarrier is preset data.
  • step 710 is the same as the method of step 410.
  • the method of step 710 is the same as the method of step 410.
  • details are not repeated here.
  • Step 720 The first device sends N first OFDM symbols.
  • Step 730 The first device receives N second OFDM symbols, the N second OFDM symbols correspond to the N first OFDM symbols in a one-to-one correspondence, and each second OFDM symbol of the N second OFDM symbols includes a second subcarrier , The phases of the second subcarriers in any two adjacent second OFDM symbols in the N second OFDM symbols are continuous, and the data carried by the second subcarriers are preset data.
  • the N second OFDM symbols correspond to the N first OFDM symbols in a one-to-one correspondence. It can be understood that the N second OFDM symbols are OFDM symbols obtained after the N first OFDM symbols are reflected by the measurement target. .
  • the first device sends N first OFDM symbols, and the measurement target reflects the N first OFDM symbols.
  • the first OFDM symbol reflected by the measurement target is the second OFDM symbol.
  • Step 740 The first device detects the target according to the phase difference between the second subcarrier in the N second OFDM symbols and the first subcarrier in the N first OFDM symbols.
  • the first device detects the target according to the phase difference between the second subcarrier and the first subcarrier, which can be understood as being based on the phase of the second subcarrier and the phase of the first subcarrier. It also combines phase measurement technology to measure the target distance.
  • the first device detects the target according to the phase difference between the second subcarrier and the first subcarrier. It can be understood that it is based on the frequency of the second subcarrier and the first subcarrier. Frequency difference, combined with Doppler frequency shift technology to measure the speed of the target. Among them, the frequency of the sub-carrier can be calculated according to the phase of the sub-carrier.
  • the first device detects the target based on the phase difference between the second subcarrier and the first subcarrier, which may be based on the phase difference between the second subcarrier and the first subcarrier,
  • the phase measurement technology is used to measure the target distance, and the speed of the target is measured according to the frequency difference between the frequency of the second subcarrier and the first subcarrier and the Doppler frequency shift technology.
  • the first device detects the target according to the phase difference of the second subcarrier in the N second OFDM symbols and the phase difference of the first subcarrier in the N first OFDM symbols.
  • the method of step 440 is the same. For the sake of brevity, details are not repeated here.
  • the OFDM signal provided in the embodiment of the present application can be used to improve the accuracy of the communication device in detecting a target.
  • Fig. 8 is a schematic block diagram of an apparatus for detecting a target provided by an embodiment of the present application.
  • the device 2000 for detecting a target may include a processing unit 2100 and a transceiver unit 2200.
  • the device 2000 for detecting a target may correspond to the first device in the above method embodiment, for example, it may be the first device, or a component (such as a chip or a chip) configured in the first device. system).
  • the device 2000 for detecting a target may correspond to the first device in the method 400 according to an embodiment of the present application, and the device 2000 for detecting a target may include methods for executing the method 400 in FIG. 4 and the method 700 in FIG. The unit of the method executed by the first device.
  • the units in the device 2000 for detecting a target and the other operations and/or functions described above are used to implement the corresponding processes of the method 400 in FIG. 4 and the method 700 in FIG. 7, respectively.
  • the processing unit 2100 may be used to execute step 410 in the method 400, and the transceiver unit 2200 may be used to execute step 420 in the method 400. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the processing unit 2100 may be used to execute steps 710 and 740 in the method 700, and the transceiver unit 2200 may be used to execute steps 720 and 730 in the method 700. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 2200 in the device 2000 for detecting a target can be implemented through an input/output interface.
  • the processing in the device 2000 for detecting a target The unit 2100 may be implemented by a processor, microprocessor, or integrated circuit integrated on the chip or chip system.
  • the device 2000 for detecting a target may correspond to the second device in the above method embodiment, for example, it may be the second device, or a component (such as a chip or a component) configured in the second device. Chip system).
  • the device 2000 for detecting a target may correspond to the second device of the method 400 according to the embodiment of the present application, and the device 2000 for detecting a target may include a device for executing the method executed by the second device in the method 400 in FIG. unit.
  • each unit in the device 2000 for detecting a target and other operations and/or functions described above are used to implement the corresponding process of the method 400 in FIG. 4.
  • the processing unit 2100 can be used to execute step 440 in the method 400, and the transceiver unit 2200 can be used to execute step 430 in the method 400. It should be understood that the specific process of each unit performing the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 2200 in the device 2000 for detecting a target may be implemented through an input/output interface.
  • the processing in the device 2000 for detecting a target The unit 2100 may be implemented by a processor, microprocessor, or integrated circuit integrated on the chip or chip system.
  • FIG. 9 shows a schematic block diagram of an apparatus 3000 for detecting a target provided by an embodiment of the present application.
  • the apparatus 3000 for detecting a target can be applied to the system shown in FIG. 3 to execute the first device or the second device in the foregoing method embodiment. 2.
  • the function of the device As shown in FIG. 9, the device 3000 for detecting a target includes a processor 3100 and a transceiver 3200, and the processor 3100 is connected to the transceiver 3200.
  • the device 3000 for detecting a target further includes a memory 3300, and the memory 3300 is connected to the processor 3100. Connected. Among them, the processor 3100, the memory 3300, and the transceiver 3200 can communicate with each other through an internal connection path.
  • the above-mentioned processor 3100 may be used to perform the actions implemented inside the first device described in the foregoing method embodiments, such as determining N first OFDM symbols.
  • the transceiver 3200 may be used to perform the sending or receiving actions of the first device described in the foregoing method embodiments, such as sending N first OFDM symbols. For details, please refer to the description in the previous method embodiment, which will not be repeated here.
  • the device 3000 for detecting a target shown in FIG. 9 can implement the method shown in FIG. 4 and each process involving the first device in the method embodiment shown in FIG. 7.
  • the operation and/or function of each module in the device 3000 for detecting a target is to implement the corresponding process in the foregoing method embodiment, respectively.
  • the above-mentioned processor 3100 may be used to execute the actions implemented inside the second device described in the foregoing method embodiments, such as detecting a target.
  • the transceiver 3200 may be used to perform the sending or receiving actions of the second device described in the foregoing method embodiments, such as receiving N second OFDM symbols. For details, please refer to the description in the previous method embodiment, which will not be repeated here.
  • the device 3000 for detecting a target shown in FIG. 9 can implement each process involving the second device in the method embodiment shown in FIG. 4.
  • the operation and/or function of each module in the device 3000 for detecting a target is to implement the corresponding process in the foregoing method embodiment, respectively.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the foregoing method embodiments.
  • the aforementioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in FIG. 4 The method executed by the first device and the second device respectively in the first device and the second device, or the computer is caused to execute the method executed by the first device in the embodiment shown in FIG. 7.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the embodiment shown in FIG. 4
  • the method executed by the first device and the second device respectively in the first device and the second device, or the computer is caused to execute the method executed by the first device in the embodiment shown in FIG. 7.
  • the present application also provides a system, which includes the aforementioned one or more first devices and one or more second devices.
  • the first device, the second device in the above device embodiments, and the first device and the second device in the method embodiments are completely corresponding, and the corresponding modules or units execute the corresponding steps, for example, the transceiver unit (transceiver) executes the method implementation In the example of receiving or sending steps, other steps except sending and receiving can be executed by the processing unit (processor).
  • the processing unit processor
  • the functions of specific units refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种探测目标的方法、装置及系统,该方法包括:第一设备确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,该N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,该N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,该第一子载波携带的数据是预设数据;该第一设备发送该N个第一OFDM符号,该N个第一OFDM符号中的该第一子载波用于对目标进行探测。根据本申请实施例提供的探测目标的方法,在不改变通信设备的硬件的情况下,可以提高通信设备探测目标的精度。

Description

探测目标的方法、装置及系统
本申请要求于2020年01月21日提交中国专利局、申请号为202010072372.0、申请名称为“探测目标的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及探测目标的方法、装置及系统。
背景技术
采用雷达系统对目标进行探测(例如,测距或测速)时,雷达系统的发射端发射一段接收端已知的探测信号。该探测信号经过目标反射后被雷达系统的接收端接收。该接收端根据接收到的探测信号的相位差,可以实现对目标的探测。
上述定位过程需要专用的硬件实现。但是移动通信设备(例如,WiFi设备、可穿戴设备等)通常不具备这些专用的硬件。在不改变通信设备的硬件的情况下,在通信设备中采用上述探测信号无法实现对目标的探测。
因此,在不改变通信设备的硬件的情况下,通信设备如何对目标进行精确地探测是亟需解决的问题。
发明内容
本申请提供一种探测目标的方法、装置及系统,在不改变通信设备的硬件的情况下,以提高通信设备探测目标的精度。
第一方面,提供了一种探测目标的方法,该方法包括:第一设备确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,该N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,该N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,该第一子载波携带的数据是预设数据;该第一设备发送该N个第一OFDM符号,该N个第一OFDM符号中的该第一子载波用于对目标进行探测。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一设备接收N个第二OFDM符号,该N个第二OFDM符号与该N个第一OFDM符号一一对应,该N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,该N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,该第二子载波携带的数据是该预设数据;该第一设备根据该N个第二OFDM符号中的该第二子载波的相位与该N个第一OFDM符号中的该第一子载波的相位差,对目标进行探测。
基于上述方案,本申请提供了一种确定OFDM信号(即,N个第一OFDM符号)中导频子载波(即,第一子载波)相位连续的方法。在不需要改变通信设备的硬件的情况下, 该通信设备(即,第一设备)利用该导频子载波相位连续的OFDM信号(即,N个第一OFDM符号),可以提高探测(例如,测距和/或测速)目标的精度。
结合第一方面,在第一方面的某些实现方式中,该确定N个第一OFDM符号,包括:根据N个相位补偿值,对N个参考OFDM符号中的第三子载波的相位进行补偿,得到该N个第一OFDM符号,该N个参考OFDM符号中的任意两个相邻的参考OFDM符号中的第三子载波的相位不是连续的,补偿后的该第三子载波为该第一子载波。
结合第一方面,在第一方面的某些实现方式中,该根据相位补偿值,对N个参考OFDM符号中的第三子载波的相位进行补偿,得到该N个第一OFDM符号,包括:根据该N个相位补偿值中的第i个相位补偿值,对该N个参考OFDM符号中的第i个参考OFDM符号中的第三子载波的相位进行相位补偿,得到该N个第一OFDM符号中的第i个第一OFDM符号,该第i个相位补偿值为该N个参考OFDM符号中的第i-1个参考OFDM符号结束时刻对应的相位值和第i个参考OFDM符号对应的保护间隔GI的起始时刻的相位值的差,i=2,……,N。
结合第一方面,在第一方面的某些实现方式中,该N个第一OFDM符号中的第i个第一OFDM符号的第K i个位置上的子载波为该第i个第一OFDM符号中的该第一子载波,K i为该第一OFDM符号长度与该第i个第一OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
结合第一方面,在第一方面的某些实现方式中,在该第一设备发送该N个第一OFDM符号之前,该方法还包括:根据该第一子载波的周期,确定该每一个第一OFDM符号之前的GI长度。
结合第一方面,在第一方面的某些实现方式中,该N个第一OFDM符号中的每一个第一OFDM符号还包括第四子载波,该第四子载波用于进行数据通信。
结合第一方面,在第一方面的某些实现方式中,在发送该N个第一OFDM符号之前,该方法还包括:发送包头,该包头携带指示信息,该指示信息用于指示该N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的。
第二方面,提供了一种探测目标的装置,该装置包括:处理单元,用于确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,该N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,该N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,该第一子载波携带的数据是预设数据;收发单元,用于发送该N个第一OFDM符号,该N个第一OFDM符号中的该第一子载波用于对目标进行探测。
结合第二方面,在第二方面的某些实现方式中,该收发单元还用于:接收N个第二OFDM符号,该N个第二OFDM符号与该N个第一OFDM符号一一对应,该N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,该N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,该第二子载波携带的数据是该预设数据;该处理单元还用于:根据该N个第二OFDM符号中的该第二子载波的相位与该N个第一OFDM符号中的该第一子载波的相位差,对目标进行探测。
基于上述方案,在不需要改变通信设备的硬件的情况下,该通信设备(即,第一设备)利用该导频子载波相位连续的OFDM信号(即,N个第一OFDM符号),可以提高探测 (例如,测距和/或测速)目标的精度。
结合第二方面,在第二方面的某些实现方式中,该处理单元具体用于:根据N个相位补偿值,对N个参考OFDM符号中的第三子载波的相位进行补偿,得到该N个第一OFDM符号,该N个参考OFDM符号中的任意两个相邻的参考OFDM符号中的第三子载波的相位不是连续的,补偿后的该第三子载波为该第一子载波。
结合第二方面,在第二方面的某些实现方式中,该处理单元具体用于:根据该N个相位补偿值中的第i个相位补偿值,对该N个参考OFDM符号中的第i个参考OFDM符号中的第三子载波的相位进行相位补偿,得到该N个第一OFDM符号中的第i个第一OFDM符号,该第i个相位补偿值为该N个参考OFDM符号中的第i-1个参考OFDM符号结束时刻对应的相位值和第i个参考OFDM符号对应的保护间隔GI的起始时刻的相位值的差,i=2,……,N。
结合第二方面,在第二方面的某些实现方式中,该N个第一OFDM符号中的第i个第一OFDM符号的第K i个位置上的子载波为该第i个第一OFDM符号中的该第一子载波,K i为该第一OFDM符号长度与该第i个第一OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
结合第二方面,在第二方面的某些实现方式中,该处理单元还用于:在该第一设备发送该N个第一OFDM符号之前,根据该第一子载波的周期,确定该每一个第一OFDM符号之前的GI长度。
结合第二方面,在第二方面的某些实现方式中,该N个第一OFDM符号中的每一个第一OFDM符号还包括第四子载波,该第四子载波用于进行数据通信。
结合第二方面,在第二方面的某些实现方式中,该收发单元还用于:在发送该N个第一OFDM符号之前,发送包头,该包头携带指示信息,该指示信息用于指示该N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的。
第三方面,提供了一种探测目标的系统,该系统包括:第一设备,用于确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,该N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,该N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,该第一子载波携带的数据是预设数据;该第一设备,还用于发送该N个第一OFDM符号;第二设备,用于接收N个第二OFDM符号,该N个第二OFDM符号与该N个第一OFDM符号一一对应,该N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,该N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,该第二子载波携带的数据是该预设数据;该第二设备,还用于根据该N个第二OFDM符号中的该第二子载波的相位与该N个第一OFDM符号中的该第一子载波的相位差,对目标进行探测。
在一种实现方式中,该第一设备和该第二设备是同一个设备。在此情况下,该第一设备既作为发射端发射该N个第一OFDM符号,又作为接收端接收该N个第二OFDM符号。
在另一种实现方式中,该第一设备和该第二设备是不同的设备。在此情况下,该第一设备作为发射端发射该N个第一OFDM符号,该第二设备作为接收端接收该N个第二OFDM符号。
基于上述方案,本申请提供了一种确定OFDM信号(即,N个第一OFDM符号)中 导频子载波(即,第一子载波)相位连续的方法。在不需要改变通信设备的硬件的情况下,该通信设备(即,第二设备)利用该导频子载波相位连续的OFDM信号,可以提高探测(例如,测距和/或测速)目标的精度。
结合第三方面,在第三方面的某些实现方式中,该第一设备具体用于:根据N个相位补偿值,对N个参考OFDM符号中的第三子载波的相位进行补偿,得到该N个第一OFDM符号,该N个参考OFDM符号中的任意两个相邻的参考OFDM符号中的第三子载波的相位不是连续的,补偿后的该第三子载波为该第一子载波。
结合第三方面,在第三方面的某些实现方式中,该第一设备具体用于:根据该N个相位补偿值中的第i个相位补偿值,对该N个参考OFDM符号中的第i个参考OFDM符号中的第三子载波的相位进行相位补偿,得到该N个第一OFDM符号中的第i个第一OFDM符号,该第i个相位补偿值为该N个参考OFDM符号中的第i-1个参考OFDM符号结束时刻对应的相位值和第i个参考OFDM符号对应的保护间隔GI的起始时刻的相位值的差,i=2,……,N。
结合第三方面,在第三方面的某些实现方式中,该N个第一OFDM符号中的第i个第一OFDM符号的第K i个位置上的子载波为该第i个第一OFDM符号中的该第一子载波,K i为该第一OFDM符号长度与该第i个第一OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
结合第三方面,在第三方面的某些实现方式中,该第一设备还用于:在该第一设备发送该N个第一OFDM符号之前,根据该第一子载波的周期,确定该每一个第一OFDM符号之前的GI长度。
结合第三方面,在第三方面的某些实现方式中,该N个OFDM符号中的每一个第一OFDM符号还包括第四子载波,该第四子载波用于进行数据通信。
基于上述方案,通信设备(即,第二设备)利用该OFDM信号可以提高通信设备探测(例如,测距和/或测速)目标的精度,同时,还可以实现与其它通信设备(即,第一设备)的高速通信。在不影响通信设备之间的通信效率的情况下,有效地实现了探测和通信的融合。
结合第三方面,在第三方面的某些实现方式中,该第一设备还用于:在发送该N个OFDM符号之前,发送包头,该包头携带指示信息,该指示信息用于指示该N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的。
第四方面,提供了一种探测目标的设备,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第二方面中任一种可能实现方式中的方法。可选地,该探测目标的设备还包括存储器。可选地,该探测目标的设备还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该探测目标的设备为通信设备,如本申请实施例中的第一设备、第二设备。当该探测目标的设备为通信设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该探测目标的设备为配置于通信设备中的芯片,如配置于如本申请实施例中的第一设备、第二设备中的芯片。当该探测目标的设备为配置于通信设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第五方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述第一方面或第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第六方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行上述第一方面或第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第六方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
附图说明
图1是相邻OFDM符号导频子载波相位不连续的示意图。
图2是相邻OFDM符号导频子载波相位连续的示意图。
图3是适用于本申请实施例的应用场景的示意图。
图4是本申请实施例提供的探测目标的方法400的示意性流程图。
图5是OFDM符号中的相邻子载波的相位随时间变化的情况。
图6是OFDM符号中的相邻子载波的相位随时间变化的情况。
图7是本申请实施例提供的探测目标的方法700的示意性流程图。
图8是本申请实施例提供的探测目标的装置的示意性框图。
图9是本申请实施例提供的探测目标的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于无线局域网(wireless local area network,WLAN),并且本申请实施例还可以适用于WLAN当前采用的国际电子工程学会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任一种协议,例如,可以适用于WLAN当前支持的IEEE 802.11az协议的通信系统中,或,适用于支持802.11az的下一代协议的通信系统中,或应用于支持802.11be的通信系统中,或应用于无线保真感知(wireless fidelity sensing)通信系统中,或其他需要进行定位的场景中。
为了便于理解,在描述本申请实施例之前,首先对本申请中涉及的相关术语做简单介绍。
1、正交频分复用(orthogonal frequency division multiplexing,OFDM):是一种多载波调制技术。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上可以看成平坦性衰落,从而可以消除码间串扰,而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。
OFDM中的各个载波是相互正交的,每个载波在一个符号时间内有整数个载波周期,每个载波的频谱零点和相邻载波的零点重叠,这样便减小了载波间的干扰。由于载波间有部分重叠,所以相对于传统的信息传输技术,提高了频带利用率。
在OFDM传播过程中,高速信息数据流通过串并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。
2、导频子载波(pilot subcarrier):是一个OFDM符号中放置预设序列的子载波,导频子载波一般用来帮助检测和纠正子载波相位偏移,从而提高数据子载波解析的准确率。
3、数据子载波(data subcarrier):数据子载波则是放置传输数据的子载波。
4、保护间隔(guard interval,GI):在OFDM系统的发射端加入GI,主要是为了消除多径所造成的符号间干扰(inter-symbol interference,ISI)与信道间干扰(inter-channel interference,ICI)。其方法是在OFDM符号保护间隔内填入(cyclic prefix,CP),以保证在快速傅立叶变换(fast fourier transform,FFT)周期内OFDM符号的时延副本内包含的波形周期个数也是整数。这样时延小于保护间隔的信号就不会在解调过程中产生ISI。
5、多普勒频移(Doppler Shift,DS):是指当移动台以恒定的速率沿某一方向移动 时,由于传播路程差的原因,会造成相位和频率的变化,通常将这种变化称为多普勒频移。
为了避免信号之间的干扰,采用OFDM技术调制信号时会在OFDM符号之前插入保护间隔GI。由于GI的存在和导频子载波位置的关系,导致相邻OFDM符号间相同位置的导频子载波的相位不连续(参见图1)。
图1示出了相邻OFDM符号导频子载波相位不连续的示意图。
如图1所示,在时间长度T内,包括OFDM符号#1和OFDM符号#2,其中GI1为OFDM符号#1的保护间隔,GI2为OFDM符号#2的保护间隔。应理解,图1中仅示出了OFDM符号中的一个子载波的相位随时间变化的情况,令该子载波为导频子载波。
由图1可知,在t1时刻,OFDM符号#1的的导频子载波的相位大于零,OFDM符号#2的导频子载波的相位小于零。在此情况下,可以认为相邻的OFDM符号#1与OFDM符号#2的导频子载波的相位是不连续的。
发射端发送OFDM信号,当该OFDM信号中的相邻OFDM符号的相位存在断续时(即相邻OFDM符号的相位存在不连续时),接收端对该OFDM信号进行解调后获得的信号存在较大噪声。接收端利用该OFDM信号可能无法实现对目标的探测。或者,接收端利用该OFDM信号对目标进行探测时,探测精度较低。
本申请实施例提供一种对目标进行探测的方法。该方法采用OFDM技术对发射端发射的信号进行调制。在这种调制方式下,发射端发射的OFDM符号中的一些子载波被用来作为导频子载波,该导频子载波用于传输一段接收端已知的训练序列。在相邻OFDM符号中的导频子载波连续的情况下(参见图2),接收端可以根据接收到的OFDM符号中的导频子载波的相位与发射端发射的OFDM符号中的导频子载波的相位差,可以实现对目标的探测(例如,测距和/或测速)。此外,OFDM符号中的另一些子载波被用来作为数据子载波,该数据子载波用于携带数据的子载波,接收端根据接收到的数据子载波可以与发射端进行数据通信。
图2示出了相邻OFDM符号导频子载波相位连续的示意图。
如图2所示,在时间长度T内,包括OFDM符号#1和OFDM符号#2,其中GI1为OFDM符号#1的保护间隔,GI2为OFDM符号#2的保护间隔。应理解,图1中仅示出了OFDM符号中的一个子载波的相位随时间变化的情况,令该子载波为导频子载波。
由图2可知,在t1时刻,OFDM符号#1的导频子载波的相位值和OFDM符号#2的导频子载波的相位值相同(即,相位值都为零)。在此情况下,可以认为相邻的OFDM符号#1与OFDM符号#2的导频子载波的相位是连续的。
为了便于理解,首先结合图3详细说明适用于本申请实施例提供的探测目标的方法的应用场景。
图3示出了适用于本申请实施例的应用场景的示意图。
如图3所示,该应用场景中可以至少包括一个第一设备310和一个第二设备320。第一设备310发送OFDM信号,该OFDM信号被第二设备320接收。其中该第一设备发送的OFDM信号包括导频子载波和数据子载波。第二设备320可以根据接收到的该OFDM信号中的导频子载波的相位差,可以对第一设备310进行探测(例如,测距和/或测速)。此外,第二设备320还可以根据接收到的OFDM信号中的数据子载波实现与第一设备310的通信。应理解,第二设备320对第一设备310进行探测,以及第二设备320与第一设备 310之间进行数据通信可以是同时进行的。应理解,在此应用场景中,该第一设备和该第二设备是不同的设备。在此情况下,该第一设备作为探测信号的发射端,该第二设备作为探测信号的接收端。该第一设备是被探测的目标设备。
作为本申请实施例的另一个应用场景,该应用场景中可以至少包括一个通信设备和一个测量目标。该通信设备发送第一OFDM信号。该通信设备接收第二OFDM信号。该第二OFDM信号是该第一OFDM信号经过测量目标反射后获得的信号。该第二OFDM信号包括导频子载波和数据子载波。该通信设备根据由该通信设备发送的第一OFDM信号中的导频子载波的相位与该通信设备接收到的第二OFDM信号中的导频子载波的相位差,可以对测量目标进行探测。换句话说,该通信设备是探测信号的发射端和接收端。
作为本申请实施例的又一个应用场景,该应用场景中可以至少包括一个第一设备、一个第二设备和一个测量目标。第一设备发送第一OFDM信号,该第一OFDM信号经过测量目标反射后获得第二OFDM信号,该第二OFDM信号被第二设备接收。该第二OFDM信号包括导频子载波和数据子载波。第二设备根据第一OFDM信号中的导频子载波的相位与接收到的第二OFDM信号中的导频子载波的相位差,可以对测量目标进行探测。此外,第二设备还可以根据接收到的第二OFDM信号中的数据子载波实现与第一设备的通信。在此情况下,第二设备可以同时实现对测量目标的探测,以及与第一设备的数据通信。应理解,在此应用场景中,该第一设备和该第二设备是不同的设备。在此情况下,该第一设备作为探测信号(即第一OFDM信号)的发射端,该第二设备作为探测信号(即第二OFDM信号)的接收端。
在本申请实施例中,第一设备310可以是无线保真(wireless fidelity,WiFi)设备、路由器、终端设备、站点(station,STA),本申请实施例对此不做限定。第二设备320也可以是WiFi设备、路由器、终端设备、STA,本申请实施例对此不做限定。例如,以WLAN为例,本申请实施例中的第一设备可以是WiFi设备,第二设备也可以是WiFi设备。
应理解,图3仅为示意,但这不应对本申请构成任何限定。例如,在一些应用场景中,还可以包括更多数量的第一设备和更多数量的第二设备。其中,每个第一设备与每个第二设备之间都可以通过无线协议进行通信。例如,在另一些应用场景中,还可以包括更多数量的通信设备和更多数量的测量目标。其中,每个通信设备之间都可以通过无线协议进行通信。例如,在又一些应用场景中,还可以包括更多数量的第一设备、更多数量的第二设备和更多数量的测量目标。其中,每个第一设备与每个第二设备之间都可以通过无线协议进行通信。
本申请对无线协议的类型不作具体限定。例如,该无线协议可以是WiFi协议,也可以是紫蜂(ZigBee)协议。
下面,结合图4,详细介绍本申请实施例提供的探测目标的方法。
图4示出了本申请实施例提供的探测目标的方法400的示意性流程图。如图4所示,方法400包括步骤410至步骤440,下面对这些步骤进行详细说明。
步骤410,第一设备确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,第一 子载波携带的数据是预设数据。
应理解,每一个第一OFDM符号中可以包括1个第一子载波,也可以包括2个第一子载波,还可以包括N个第一子载波,N为大于或等于3的正整数。
在一些实施例中,第一子载波可以是导频子载波。
在另一些实施例中,每个第一OFDM符号中可以包括多个数据子载波和一个导频子载波。如果一个数据子载波中携带的是预设数据,那么这个数据子载波就是第一子载波。
在本申请实施例中,第一子载波携带的数据是预设数据,对预设数据的类型不作具体限定。例如,该预设数据可以是一段连续的恒定值。或者,该预设数据也可以是一段连续的正弦波。该预设数据对于第一设备来说是一段已知的数据。
在一些实施例中,该第一子载波携带的预设数据对于第二设备来说是一段部分已知的数据。例如,第二设备仅知道该预设数据的相位和频率信息。
在另一些实施例中,该预设数据对于第二设备来说是一段完全已知的数据。例如,第二设备知道该预设数据的相位、幅度、频率等所有的信息。
在本申请实施例中,对第一OFDM符号中包括的第一子载波的周期不作具体限定。例如,第一OFDM符号中可以包括一个周期的第一子载波。或者,第一OFDM符号中可以包括M个周期的第一子载波,M为大于或等于2的正整数。具体地,当M等于3,则第一OFDM符号中包括3个周期的第一子载波。
在本申请实施例中,可以通过以下四种方式确定第一设备发送的N个OFDM符号(即,N个第一OFDM符号的一例):
为了便于理解,下面,以在WiFi系统中应用本申请提供的探测目标的方法为例,对确定N个OFDM符号的方法进行详细介绍。
方式一:根据N个相位补偿值,对N个参考OFDM符号中的第二子载波的相位进行补偿,得到N个OFDM符号(即,N个第一OFDM符号的一例),N个参考OFDM符号中的任意两个相邻的参考OFDM符号中的第二子载波的相位不是连续的,补偿后的第二子载波为所述第一子载波。
应理解,参考OFDM符号之前的GI中包括子载波,该子载波为参考OFDM符号中的第一子载波的一部分。
在本申请实施例中,对参考OFDM符号中的第一子载波的相位进行相位补偿,也可以理解为,对参考OFDM符号中包括的子载波的相位,以及参考OFDM符号之前的GI中包括的子载波的相位进行补偿。
在本申请实施例中,相邻OFDM符号中的第一子载波的相位是连续的,即N个OFDM符号中的第1个OFDM符号的第一子载波和第2个OFDM符号的第一子载波是连续的,第2个OFDM符号的第一子载波和第3个OFDM符号的第一子载波是连续的,以此类推。其中,N个OFDM符号中的第1个OFDM符号的第一子载波和第2个OFDM符号的第一子载波是连续的,可以理解为,第1个OFDM符号中的第一子载波在第1个OFDM符号结束时刻的相位值与第2个OFDM符号之前的GI中的子载波在GI起始时刻的相位值相同。其中,第2个OFDM符号的第一子载波和第3个OFDM符号的第一子载波是连续的,可以理解为,第2个OFDM符号中的第一子载波在第2个OFDM符号结束时刻的相位值与第3个OFDM符号之前的GI中的子载波在GI起始时刻的相位值相同。
在一些实施例中,对N个参考OFDM符号中的第二子载波的相位进行补偿,得到N个OFDM符号,包括:根据N个相位补偿值中的第i个相位补偿值,对N个参考OFDM符号中的第i个参考OFDM符号中的第二子载波的相位进行相位补偿,得到N个OFDM符号中的第i个OFDM符号,第i个相位补偿值为N个参考OFDM符号中的第i-1个参考OFDM符号结束时刻对应的相位值和第i个参考OFDM符号对应的GI的起始时刻的相位值的差,i=2,……,N。
其中,第i个参考OFDM符号对应的GI的起始时刻的相位值,可以理解为,第i个OFDM符号之前的GI中的子载波在GI起始时刻的相位值。
作为示例非限定,第一设备发送了N个参考OFDM符号,第N-1个参考OFDM符号中的第k个位置的第一子载波的相位与第N个参考OFDM符号中的第k个位置的第一子载波的相位不连续,N为大于或等于2的正整数,k为大于或等于1的正整数。第N-1个参考OFDM符号中的第k个位置的第一子载波在第N-1个参考OFDM符号结束时刻对应的相位值为零。在此情况下,第N个参考OFDM符号对应的GI的开始时刻的相位值
Figure PCTCN2020115310-appb-000001
可以通过如下公式获得:
Figure PCTCN2020115310-appb-000002
其中,Δf为第N-1个OFDM符号中的第k个位置的第一子载波的相位与第N个OFDM符号中的第k个位置的第一子载波的相位差,T IFFT为第N-1个OFDM符号的长度,该长度不包括第N-1个OFDM符号对应的GI的长度,T GI为第N-1个OFDM符号之前的GI的长度。
根据公式(1.1)可知,为了使得第N-1个参考OFDM符号中的位置为k处的第一子载波的相位与第N个参考OFDM符号中的位置为k处的第一子载波的相位能够连续,则
Figure PCTCN2020115310-appb-000003
的值应为2π的整数倍。对第N个参考OFDM符号中的位置为k处的第一子载波进行相位补偿,该补偿值
Figure PCTCN2020115310-appb-000004
可以通过如下公式获得:
Figure PCTCN2020115310-appb-000005
对OFDM信号中的第N个参考OFDM符号中的位于k处的第一子载波的相位进行相位补偿,则补偿后的第N个OFDM符号中的位于第k处的第一子载波的初始相位值
Figure PCTCN2020115310-appb-000006
可以通过如下公式获得:
Figure PCTCN2020115310-appb-000007
图5示出了OFDM符号中的相邻子载波的相位随时间变化的情况。
在一些实施例中,第一设备发送了2个OFDM符号,分别是OFDM符号#1和OFDM符号#2。如图5实线所示,由于保护间隔GI的存在,使得在t1时刻相邻的OFDM符号#1与OFDM符号#2相位不连续。t1时刻OFDM符号#1中位置16的第一子载波的相位为0,t1时刻OFDM符号#2中位置16的第一子载之前的GI的相位为
Figure PCTCN2020115310-appb-000008
根据公式(1.1)至公式(1.3)可知,对OFDM符号#2中位置16的第一子载波的相位补偿
Figure PCTCN2020115310-appb-000009
补偿后的第一子载波如图5中的虚线所示,可知在t1时刻OFDM符号#1中的第一子载波与补偿后的OFDM符号#2中的第一子载波的相位连续。
在另一些实施例中,第一设备发送了3个OFDM符号,分别是OFDM符号#1、OFDM 符号#2和OFDM符号#3。设OFDM符号#1中位置24的第一子载波的相位在OFDM符号#1结束时刻的相位值为0,OFDM符号#2中位置24的第一子载波之前的GI的相位值为
Figure PCTCN2020115310-appb-000010
OFDM符号#3中位置24的第一子载波之前的GI的相位值为
Figure PCTCN2020115310-appb-000011
根据公式(1.1)至公式(1.3)获得OFDM符号#1中位置24的第一子载波的相位补偿值为
Figure PCTCN2020115310-appb-000012
OFDM符号#2中位置24的第一子载波的相位补偿值为
Figure PCTCN2020115310-appb-000013
也就是说,对OFDM符号#1中位置24的第一子载波的相位值补偿1个
Figure PCTCN2020115310-appb-000014
对OFDM符号#2中位置24的第一子载波的相位值补偿2个
Figure PCTCN2020115310-appb-000015
若第一设备发送了N个该OFDM符号,则对第i个OFDM符号的相位补偿i-1个
Figure PCTCN2020115310-appb-000016
N为大于或等于2的正整数,i为大于或等于2的正整数,且i小于或等于N。
以上,通过对OFDM符号中的第一子载波的相位,以及OFDM符号之前的GI中包括的子载波的相位进行补偿,使得相邻OFDM符号中的第一子载波的相位是连续的。
方式二:根据第一子载波的周期,确定每一个OFDM符号(即,N个第一OFDM符号的一例)之前的GI长度。
根据第一子载波的周期,确定每一个OFDM符号之前的GI长度,可以理解为,调整OFDM符号之前的GI长度,使得OFDM符号中的第一子载波的周期为调整后的GI长度的正整数倍。
作为示例非限定,第一设备发送了N个OFDM符号,假设第N-1个OFDM符号中的第k个位置的第一子载波的相位与第N个OFDM符号中的第k个位置的第一子载波的相位不连续,N为大于或等于2的正整数,k为大于或等于1的正整数,且第N-1个OFDM符号中的第k个位置的第一子载波在第N-1个OFDM符号结束时刻对应的相位值为零。在此情况下,第N个OFDM符号对应的GI的开始时刻的相位值
Figure PCTCN2020115310-appb-000017
可以通过如下公式获得:
Figure PCTCN2020115310-appb-000018
其中,Δf为第N-1个OFDM符号中的第k个位置的第一子载波的相位与第N个OFDM符号中的第k个位置的第一子载波的相位差,T IFFT为第N-1个OFDM符号的长度,该长度不包括第N-1个OFDM符号对应的GI的长度,T GI为第N-1个OFDM符号之前的GI的长度。
根据公式(2.1)可知,为了使得第N-1个OFDM符号中的第k个位置的第一子载波的相位与第N个OFDM符号中的第k个位置的第一子载波的相位能够连续,则
Figure PCTCN2020115310-appb-000019
的值应为2π的整数倍。对于位置在k的第一子载波,若
Figure PCTCN2020115310-appb-000020
是整数时,kT GI为T IFFT的整数倍时,则
Figure PCTCN2020115310-appb-000021
的值为2π的整数倍。在此情况下,第一子载波的相位在相邻OFDM符号之间是连续。可通过如下公式计算T GI
Figure PCTCN2020115310-appb-000022
其中,m为大于或等于1的正整数。
图6示出了OFDM符号中的相邻子载波的相位随时间变化的情况,由图6可知,GI2的长度大于GI1的长度。其中,GI2的长度是根据公式(2.2)确定的,从而使得在t1时刻OFDM符号#1的子载波的相位与OFDM符号#2的子载波的相位连续。
以上,通过改变OFDM符号之前的GI长度,使得相邻OFDM符号中的第一子载波的相位是连续的。
方式三:确定N个OFDM符号(即,N个第一OFDM符号的一例)中的第i个OFDM符号的第K i个位置上的子载波为第i个OFDM符号中的第一子载波,K i为OFDM符号长度与第i个OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
在本申请实施例中,第一子载波为导频子载波。
作为示例非限定,第一设备发送了N个OFDM符号,假设第N-1个OFDM符号中的第k个位置的第一子载波的相位与第N个OFDM符号中的第k个位置的第一子载波的相位不连续,N为大于或等于2的正整数,k为大于或等于1的正整数,且第N-1个OFDM符号中的第k个位置的第一子载波在第N-1个OFDM符号结束时刻对应的相位值为零。在此情况下,第N个OFDM符号对应的GI的开始时刻的相位值
Figure PCTCN2020115310-appb-000023
可以通过如下公式获得:
Figure PCTCN2020115310-appb-000024
其中,Δf为第N-1个OFDM符号中的第k个位置的第一子载波的相位与第N个OFDM符号中的第k个位置的第一子载波的相位差,T IFFT为第N-1个OFDM符号的长度,该长度不包括第N-1个OFDM符号对应的GI的长度,T GI为第N-1个OFDM符号之前的GI的长度。
根据公式(3.1)可知,为了使得第N-1个OFDM符号中的第k个位置的第一子载波的相位与第N个OFDM符号中的第k个位置的第一子载波的相位能够连续,则
Figure PCTCN2020115310-appb-000025
的值应为2π的整数倍。
当以下公式的结果为整数倍时,
Figure PCTCN2020115310-appb-000026
的值为2π的整数倍:
Figure PCTCN2020115310-appb-000027
其中,T IFFT为一个OFDM符号持续时间的长度,该长度不包括GI的长度,T GI为GI的长度。
因此,在OFDM符号中的子载波的位置满足公式(3.2)的情况下,可以选取该位置的子载波作为第一子载波。
作为示例非限定,对于IEEE 802.11ax标准,OFDM符号中的位置k的子载波对应的子载波周期T IFFT的表达式为:
Figure PCTCN2020115310-appb-000028
其中,12.8为OFDM符号的长度。
对于IEEE 802.11ax标准,其保护间隔GI的长度有0.8μs,1.6μs和3.2μs三种。当OFDM符号之前的GI为0.8μs时,选择该OFDM符号中位置为k的子载波作为第一子载 波,该位置为k的子载波满足以下公式:
Figure PCTCN2020115310-appb-000029
即应选择OFDM符号中位置为16整数倍的子载波来作为第一子载波。
对于长度为1.6μs的GI,应选择OFDM符号中位置为8的整数倍的子载波作为第一子载波。
对于长度为3.2μs的GI,应选择OFDM符号中位置为4的整数倍的子载波作为第一子载波。
结合不同GI的长度,带宽和资源单元(resource unit,RU),获得的第一子载波的位置如表一所示:
表一 第一子载波位置
Figure PCTCN2020115310-appb-000030
应理解,表一为采用IEEE 802.11ax标准时,获得的OFDM符号中的第一子载波的位置。也可以采用其他通信协议标准,通过上述方法获得第一子载波的位置。
方式四:将OFDM符号(即,N个第一OFDM符号的一例)中的位置序号满足子载 波周期长度为GI长度整数倍的子载波的位置预留下来,并在满足上述位置的子载波上传输一段预设数据。
在本申请实施例中,对该预设数据的类型不作具体限定。例如,该预设数据可以是一段连续的恒定值。或者,该预设数据也可以是一段连续的正弦波。其中,该预设数据对于第一设备来说是一段已知的数据,该预设数据对于第二设备来说是一段部分或全部已知的数据。
作为示例非限定,针对IEEE 802.11ax标准,可以把位置是16整数倍的子载波位置全部或者部分预留下来不传输数据,并在上述位置的子载波上传输一个恒定的已知的值,从而使得位置为16整数倍的这些子载波在数据传输器件持续产生一个单频的连续波。
例如,第一设备发送3个OFDM符号,使得在第1个OFDM符号的位置16上、在第2个OFDM符号的位置16上、在第3个OFDM符号的位置16上的子载波上传输一个连续的预设数据。
例如,第一设备发送3个OFDM符号,使得在第1个OFDM符号的位置32上、在第2个OFDM符号的位置32上、在第3个OFDM符号的位置32上传输一个连续的预设数据。
作为示例非限定,针对IEEE 802.11ax标准,可以把位置是8整数倍的子载波位置全部或者部分预留下来不传输数据,而是让其在整个数据传输期间,这些子载波上传输一个恒定的已知的值,从而使得位置为8整数倍的这些子载波在数据传输器件持续产生一个单频的连续波。
例如,第一设备发送3个OFDM符号,使得在第1个OFDM符号的位置8上、在第2个OFDM符号的位置8上、在第3个OFDM符号的位置8上传输一个连续的预设数据。
例如,第一设备发送3个OFDM符号,使得在第1个OFDM符号的位置64上、在第2个OFDM符号的位置64上、在第3个OFDM符号的位置64上传输一个连续的预设数据。
以上,通过令OFDM符号中位置序号值等于OFDM符号长度与GI长度之比整数倍的位置上的子载波传输一段预设数据,使得相邻OFDM符号中的第一子载波的相位是连续的。
可选地,在一些实施例中,在第一设备发送N个OFDM符号之前,第一设备根据OFDM符号中的第一子载波的周期,确定每一个OFDM符号之前的GI长度。
在本申请实施例中,N个第一OFDM符号中的每一个第一OFDM符号还包括第四子载波,第四子载波可以用于进行数据通信。
应理解,第四子载波为携带数据的子载波,相邻第一OFDM符号中的该第四子载波的相位可以是连续的,也可以是不连续的。该第四子载波携带的数据对于接收端来说是一段未知的数据。
在本申请实施例中,在发送N个OFDM符号之前,第一设备还用于发送包头,包头携带指示信息,指示信息用于指示N个OFDM符号中的任意两个相邻的OFDM符号中的第一子载波的相位是连续的。
应理解,该指示信息可以通过以下至少一种信令携带:MAC信令或物理层信令。
例如,可以在信号包头的SIG域内预留一个比特位,该一个比特位用来指示N个第 一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是否连续。如当该比特位为“1”时,表示N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的;当该比特位为“0”时,表示N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是不连续的。
在一些实现方式中,第二设备根据接收到的包头确定使用该包头对应的N个OFDM符号对目标进行探测。在此情况下,信号包头的SIG域内的比特位为“1”。
在另一些实现方式中,第二设备根据接收到的包头确定不使用该包头对应的N个OFDM符号对目标进行探测。在此情况下,信号包头的SIG域内的比特位为“0”。
步骤420,第一设备发送N个第一OFDM符号。
步骤430,第二设备接收N个第二OFDM符号,N个第二OFDM符号与N个第一OFDM符号一一对应,N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,第二子载波携带的数据是预设数据。
在一些实现方式中,N个第二OFDM符号与N个第一OFDM符号一一对应,可以理解为,N个第二OFDM符号是N个第一OFDM符号被测量目标反射后得到的OFDM符号。比如,第一设备发送N个第一OFDM符号,测量目标反射该N个第一OFDM符号。经过该测量设备反射后的第一OFDM符号就是第二OFDM符号。
在另一些实现方式中,N个第二OFDM符号与N个第一OFDM符号一一对应,可以理解为,N个第二OFDM符号是N个第一OFDM符号在数据传输过程中发生了多普勒频移后的OFDM符号。比如,第一设备在运动过程中,发送第一OFDM符号。由于第一设备运动,所以第一设备发送的第一OFDM符号会发生多普勒效应。第二设备接收到的发生了多普勒效应后的第一OFDM符号就是第二OFDM符号。
步骤440,第二设备根据N个第二OFDM符号中的第二子载波的相位与N个第一OFDM符号中的第一子载波的相位差,对目标进行探测。
在一种实现方式中,第二设备根据第二子载波的相位与第一子载波的相位差,对目标进行探测,可以理解为,是根据第二子载波的相位与第一子载波的相位差,并结合相位测量技术对目标进行测距。
在另一种实现方式中,第二设备根据第二子载波的相位与第一子载波的相位差,对目标进行探测,可以理解为,是根据第二子载波的频率与第一子载波的频率差,并结合多普勒频移技术对目标进行测速。其中,子载波的频率可以根据子载波的相位计算获得。
在另一种实现方式中,第二设备根据第二子载波的相位与第一子载波的相位差,对目标进行探测,可以是根据第二子载波的相位与第一子载波的相位差,并结合相位测量技术对目标进行测距,并且,根据第二子载波的频率与第一子载波的频率差,并结合多普勒频移技术对目标进行测速。
在本申请实施例中,第二设备根据N个第二OFDM符号中的第二子载波的相位与N个第一OFDM符号中的第一子载波的相位差,对目标进行探测,可以理解为:第二设备根据每个第二OFDM符号中的第二子载波构成的子载波#B的相位与每个第一OFDM符号中的第一子载波构成的子载波#A的相位差,并结合相位测量技术对目标进行探测。
作为示例非限定,第一设备发送N个第一OFDM符号,每个第一OFDM符号包括第 一子载波,该N个第一子载波构成的载波#A的频率为f 0(相当于波长λ=c/f 0),该载波#A的相位为
Figure PCTCN2020115310-appb-000031
N个第一OFDM符号经过测量目标反射后的符号为N个第二OFDM符号,该每个第二OFDM符号包括第二子载波,该N个第二子载波构成的载波#B的频率为f 1,该载波#B的相位为
Figure PCTCN2020115310-appb-000032
第二设备用于接收N个第二OFDM符号。第一设备与测量目标的距离为R,测量目标与第二设备的距离为R。
第二设备接收到的N个第二OFDM符号中的载波#B的相位可通过如下公式获得:
Figure PCTCN2020115310-appb-000033
结合公式(4.1),可知载波#A与载波#B的相位差
Figure PCTCN2020115310-appb-000034
可以表示为:
Figure PCTCN2020115310-appb-000035
由此,距离R可以表示为:
Figure PCTCN2020115310-appb-000036
其中,Δf等于f 0与f 1的差,根据测量可以获得f 0与f 1。c为光速,T为载波#A的时间长度,T与f 0为倒数关系。结合公式(4.1)至公式(4.3),可以计算出第一设备与测量目标之间的距离,或者,测量目标与第二设备之间的距离。
结合公式(4.1),可知第二设备接收到的N个第二OFDM符号中的载波#B的相位随时间的变化率
Figure PCTCN2020115310-appb-000037
可以表示为:
Figure PCTCN2020115310-appb-000038
N个第一OFDM符号中的载波#A与N个第二OFDM符号中的载波#B的多普勒频移Δf可以表示为:
Figure PCTCN2020115310-appb-000039
其中,Δf等于f 0与f 1的差。根据测量可以获得f 0与f 1。又探测信号的波长λ是已知,因此结合公式(4.1)、公式(4.4)和公式(4.5)可以计算出测量目标的运动速度。
作为示例非限定,第一设备发送N个第一OFDM符号,每个第一OFDM符号包括第一子载波,该N个第一子载波构成的载波#A的频率为f 0(相当于波长λ=c/f 0),该载波#A的相位为
Figure PCTCN2020115310-appb-000040
第二设备用于接收N个第二OFDM符号。该N个第二OFDM符号是N个第一OFDM符号在数据传输过程中发生了多普勒频移后的OFDM符号。该每个第二OFDM符号包括第二子载波,该N个第二子载波构成的载波#B的频率为f 1,该载波#B的相位为
Figure PCTCN2020115310-appb-000041
第一设备与第二设备的距离为R。结合公式(4.1)至公式(4.5),可以计算出第一设备与第二设备之间的距离,以及第一设备的运动速度。为了简洁,此处不再详细赘述。
在本申请实施例中,N个第二OFDM符号中的每一个第二OFDM符号还包括第四子载波,第四子载波可以用于进行数据通信。其中第四子载波携带的数据对于接收端来说是一段未知的数据。
在本申请实施例中,第二设备根据接收到的N个第二OFDM符号,可以对目标进行探测同时,还可以与第一设备进行高速通信。其中,第二设备根据N个第二OFDM符号 中的第二子载波的相位与N个第一OFDM符号中的第一子载波的相位差,并结合相位测量技术对目标进行测距;第二设备根据N个第二OFDM符号中的第二子载波的频率与N个第一OFDM符号中的第一子载波的频率差,并结合多普勒频移技术对目标进行测速。第二设备根据N个第二OFDM符号中的第四子载波携带的数据与第一设备进行高速通信。
利用本申请实施例提供的OFDM信号,通信设备可以与其它通信设备进行通信,同时,在不需要改变通信设备的硬件的情况下,该通信设备利用该OFDM信号还可以提高探测(例如,测距和/或测速)目标的精度。根据本申请实施例提供的探测目标的方法,通信设备能够同时实现对目标的精确探测,以及与其它通信设备的高速通信。在不影响通信设备之间的通信效率的情况下,有效地实现了探测和通信的融合。
以上,以第一设备作为信号发射端,第二设备作为信号接收端为例,对本申请实施例提供的探测目标的方法进行了详细介绍。
下面,以第一设备作为信号发射端和信号接收端为例,对本申请实施例提供的探测目标的方法进行详细介绍。也就是说,在此应用场景中,信号的发射端与信号的接收端为同一设备。
图7示出了本申请实施例提供的探测目标的方法700的示意性流程图。如图7所示,方法700包括步骤710至步骤740,下面对这些步骤进行详细说明。
步骤710,第一设备确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,第一子载波携带的数据是预设数据。
在本申请实施例中,步骤710的方法与步骤410的方法相同。为了简洁,此处不再详细赘述。
步骤720,第一设备发送N个第一OFDM符号。
步骤730,第一设备接收N个第二OFDM符号,N个第二OFDM符号与N个第一OFDM符号一一对应,N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,第二子载波携带的数据是预设数据。
在本申请实施例中,N个第二OFDM符号与N个第一OFDM符号一一对应,可以理解为,N个第二OFDM符号是N个第一OFDM符号被测量目标反射后得到的OFDM符号。比如,第一设备发送N个第一OFDM符号,测量目标反射该N个第一OFDM符号。经过该测量目标反射后的第一OFDM符号就是第二OFDM符号。
步骤740,第一设备根据N个第二OFDM符号中的第二子载波的相位与N个第一OFDM符号中的第一子载波的相位差,对目标进行探测。
在一种实现方式中,第一设备根据第二子载波的相位与第一子载波的相位差,对目标进行探测,可以理解为,是根据第二子载波的相位与第一子载波的相位差,并结合相位测量技术对目标进行测距。
在另一种实现方式中,第一设备根据第二子载波的相位与第一子载波的相位差,对目标进行探测,可以理解为,是根据第二子载波的频率与第一子载波的频率差,并结合多普勒频移技术对目标进行测速。其中,子载波的频率可以根据子载波的相位计算获得。
在另一种实现方式中,第一设备根据第二子载波的相位与第一子载波的相位差,对目标进行探测,可以是根据第二子载波的相位与第一子载波的相位差,并结合相位测量技术对目标进行测距,并且,根据第二子载波的频率与第一子载波的频率差,并结合多普勒频移技术对目标进行测速。
在本申请实施例中,第一设备根据N个第二OFDM符号中的第二子载波的相位与N个第一OFDM符号中的第一子载波的相位差,对目标进行探测的具体方法与步骤440的方法相同。为了简洁,此处不再详细赘述。
在不需要改变通信设备的硬件的情况下,利用本申请实施例提供的OFDM信号,可以提高通信设备探测目标的精度。
以上,结合图4至图7详细说明了本申请实施例提供的方法。以下,结合图8和图9详细说明本申请实施例提供的装置。
图8是本申请实施例提供的探测目标的装置的示意性框图。如图8所示,该探测目标的装置2000可以包括处理单元2100和收发单元2200。
在一种可能的设计中,该探测目标的装置2000可对应于上文方法实施例中的第一设备,例如,可以为第一设备,或者配置于第一设备中的部件(如芯片或芯片系统)。
应理解,该探测目标的装置2000可对应于根据本申请实施例的方法400中的第一设备,该探测目标的装置2000可以包括用于执行图4中的方法400、图7中的方法700中第一设备执行的方法的单元。并且,该探测目标的装置2000中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400、图7中的方法700的相应流程。
其中,当该探测目标的装置2000用于执行图4中的方法400时,处理单元2100可用于执行方法400中的步骤410,收发单元2200可用于执行方法400中的步骤420。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该探测目标的装置2000用于执行图7中的方法700时,处理单元2100可用于执行方法700中的步骤710和步骤740,收发单元2200可用于执行方法700中的步骤720和步骤730。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置2000为配置于第一设备中的芯片或芯片系统时,该探测目标的装置2000中的收发单元2200可以通过输入/输出接口实现,该探测目标的装置2000中的处理单元2100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
在另一种可能的设计中,该探测目标的装置2000可对应于上文方法实施例中的第二设备,例如,可以为第二设备,或者配置于第二设备中的部件(如芯片或芯片系统)。
应理解,该探测目标的装置2000可对应于根据本申请实施例的方法400的第二设备,该探测目标的装置2000可以包括用于执行图4中的方法400中第二设备执行的方法的单元。并且,该探测目标的装置2000中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400的相应流程。
其中,当该探测目标的装置2000用于执行图4中的方法400时,处理单元2100可用于执行方法400中的步骤440,收发单元2200可用于执行方法400中的步骤430。应理解, 各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置2000为配置于第二设备中的芯片或芯片系统时,该探测目标的装置2000中的收发单元2200可以通过输入/输出接口实现,该探测目标的装置2000中的处理单元2100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图9示出了本申请实施例提供的探测目标的装置3000的示意性框图,该探测目标的装置3000可应用于如图3所示的系统中,执行上述方法实施例中第一设备或第二设备的功能。如图9所示,探测目标的装置3000包括处理器3100和收发器3200,处理器3100和收发器3200相连,可选地,该探测目标的装置3000还包括存储器3300,存储器3300与处理器3100相连。其中,处理器3100、存储器3300和收发器3200可以通过内部连接通路互相通信。
上述处理器3100可以用于执行前面方法实施例中描述的由第一设备内部实现的动作,如确定N个第一OFDM符号等。收发器3200可以用于执行前面方法实施例中描述的第一设备发送或接收的动作,如发送N个第一OFDM符号。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图9所示的探测目标的装置3000能够实现图4所示方法、图7所示方法实施例中涉及第一设备的各个过程。探测目标的装置3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器3100可以用于执行前面方法实施例中描述的由第二设备内部实现的动作,如对目标进行探测等。收发器3200可以用于执行前面方法实施例中描述的第二设备发送或接收的动作,如接收N个第二OFDM符号等。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图9所示的探测目标的装置3000能够实现图4所示方法实施例中涉及第二设备的各个过程。探测目标的装置3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机 存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4所示实施例中第一设备和第二设备分别执行的方法,或者,使得该计算机执行图7所示实施例中第一设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4所示实施例中第一设备和第二设备分别执行的方法,或者,使得该计算机执行图7所示实施例中第一设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个第一设备以及一个或多个第二设备。
上述各个装置实施例中第一设备、第二设备和方法实施例中的第一设备、第二设备完全对应,由相应的模块或单元执行相应的步骤,例如收发单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体 单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种探测目标的系统,其特征在于,包括:
    第一设备,用于确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,所述N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,所述N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,所述第一子载波携带的数据是预设数据;
    所述第一设备,还用于发送所述N个第一OFDM符号;
    第二设备,用于接收N个第二OFDM符号,所述N个第二OFDM符号与所述N个第一OFDM符号一一对应,所述N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,所述N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,所述第二子载波携带的数据是所述预设数据;
    所述第二设备,还用于根据所述N个第二OFDM符号中的所述第二子载波的相位与所述N个第一OFDM符号中的所述第一子载波的相位差,对目标进行探测。
  2. 根据权利要求1所述的系统,其特征在于,所述第一设备具体用于:
    根据N个相位补偿值,对N个参考OFDM符号中的第三子载波的相位进行补偿,得到所述N个第一OFDM符号,所述N个参考OFDM符号中的任意两个相邻的参考OFDM符号中的第三子载波的相位不是连续的,补偿后的所述第三子载波为所述第一子载波。
  3. 根据权利要求2所述的系统,其特征在于,所述第一设备具体用于:
    根据所述N个相位补偿值中的第i个相位补偿值,对所述N个参考OFDM符号中的第i个参考OFDM符号中的第三子载波的相位进行相位补偿,得到所述N个第一OFDM符号中的第i个第一OFDM符号,所述第i个相位补偿值为所述N个参考OFDM符号中的第i-1个参考OFDM符号结束时刻对应的相位值和第i个参考OFDM符号对应的保护间隔GI的起始时刻的相位值的差,i=2,……,N。
  4. 根据权利要求1所述的系统,其特征在于,所述N个第一OFDM符号中的第i个第一OFDM符号的第K i个位置上的子载波为所述第i个第一OFDM符号中的所述第一子载波,K i为所述OFDM符号长度与所述第i个第一OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
  5. 根据权利要求1所述的系统,其特征在于,所述第一设备还用于:
    在所述第一设备发送所述N个第一OFDM符号之前,根据所述第一子载波的周期,确定所述每一个第一OFDM符号之前的GI长度。
  6. 根据权利要求1-5中任一项所述的系统,其特征在于,
    所述N个第一OFDM符号中的每一个第一OFDM符号还包括第四子载波,所述第四子载波用于进行数据通信。
  7. 根据权利要求1-6中任一项所述的系统,其特征在于,所述第一设备还用于:
    在发送所述N个第一OFDM符号之前,发送包头,所述包头携带指示信息,所述指示信息用于指示所述N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的。
  8. 一种探测目标的方法,其特征在于,包括:
    第一设备确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,所述N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,所述N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,所述第一子载波携带的数据是预设数据;
    所述第一设备发送所述N个第一OFDM符号,所述N个第一OFDM符号中的所述第一子载波用于对目标进行探测。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收N个第二OFDM符号,所述N个第二OFDM符号与所述N个第一OFDM符号一一对应,所述N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,所述N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,所述第二子载波携带的数据是所述预设数据;
    所述第一设备根据所述N个第二OFDM符号中的所述第二子载波的相位与所述N个第一OFDM符号中的所述第一子载波的相位差,对目标进行探测。
  10. 根据权利要求8或9所述的方法,其特征在于,所述确定N个第一OFDM符号,包括:
    根据N个相位补偿值,对N个参考OFDM符号中的第三子载波的相位进行补偿,得到所述N个第一OFDM符号,所述N个参考OFDM符号中的任意两个相邻的参考OFDM符号中的第三子载波的相位不是连续的,补偿后的所述第三子载波为所述第一子载波。
  11. 根据权利要求10所述的方法,其特征在于,所述根据相位补偿值,对N个参考OFDM符号中的第三子载波的相位进行补偿,得到所述N个第一OFDM符号,包括:
    根据所述N个相位补偿值中的第i个相位补偿值,对所述N个参考OFDM符号中的第i个参考OFDM符号中的第三子载波的相位进行相位补偿,得到所述N个第一OFDM符号中的第i个第一OFDM符号,所述第i个相位补偿值为所述N个参考OFDM符号中的第i-1个参考OFDM符号结束时刻对应的相位值和第i个参考OFDM符号对应的保护间隔GI的起始时刻的相位值的差,i=2,……,N。
  12. 根据权利要求8或9所述的方法,其特征在于,所述N个第一OFDM符号中的第i个第一OFDM符号的第K i个位置上的子载波为所述第i个第一OFDM符号中的所述第一子载波,K i为所述第一OFDM符号长度与所述第i个第一OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
  13. 根据权利要求8或9所述的方法,其特征在于,在所述第一设备发送所述N个第一OFDM符号之前,所述方法还包括:
    根据所述第一子载波的周期,确定所述每一个第一OFDM符号之前的GI长度。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,
    所述N个第一OFDM符号中的每一个第一OFDM符号还包括第四子载波,所述第四子载波用于进行数据通信。
  15. 根据权利要求8-14中任一项所述的方法,其特征在于,在发送所述N个第一OFDM符号之前,所述方法还包括:
    发送包头,所述包头携带指示信息,所述指示信息用于指示所述N个第一OFDM符 号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的。
  16. 一种探测目标的方法,其特征在于,包括:
    第二设备,用于接收N个第二正交频分复用OFDM符号,N为大于或等于2的正整数,所述N个第二OFDM符号与N个第一OFDM符号一一对应,所述N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,所述N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,所述第一子载波携带的数据是预设数据,所述N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,所述N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,所述第二子载波携带的数据是所述预设数据;
    所述第二设备,还用于根据所述N个第二OFDM符号中的所述第二子载波的相位与所述N个第一OFDM符号中的所述第一子载波的相位差,对目标进行探测。
  17. 根据权利要求16所述的方法,其特征在于,所述N个第一OFDM符号中的第i个第一OFDM符号的第K i个位置上的子载波为所述第i个第一OFDM符号中的所述第一子载波,K i为所述OFDM符号长度与所述第i个第一OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
  18. 根据权利要求16或17所述的方法,其特征在于,
    所述N个第一OFDM符号中的每一个第一OFDM符号还包括第四子载波,所述第四子载波用于进行数据通信。
  19. 一种探测目标的装置,其特征在于,包括:
    处理单元,用于确定N个第一正交频分复用OFDM符号,N为大于或等于2的正整数,所述N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,所述N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,所述第一子载波携带的数据是预设数据;
    收发单元,用于发送所述N个第一OFDM符号,所述N个第一OFDM符号中的所述第一子载波用于对目标进行探测。
  20. 根据权利要求19所述的装置,其特征在于,
    所述收发单元还用于:接收N个第二OFDM符号,所述N个第二OFDM符号与所述N个第一OFDM符号一一对应,所述N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,所述N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,所述第二子载波携带的数据是所述预设数据;
    所述处理单元还用于:根据所述N个第二OFDM符号中的所述第二子载波的相位与所述N个第一OFDM符号中的所述第一子载波的相位差,对目标进行探测。
  21. 根据权利要求19或20所述的装置,其特征在于,所述处理单元具体用于:
    根据N个相位补偿值,对N个参考OFDM符号中的第三子载波的相位进行补偿,得到所述N个第一OFDM符号,所述N个参考OFDM符号中的任意两个相邻的参考OFDM符号中的第三子载波的相位不是连续的,补偿后的所述第三子载波为所述第一子载波。
  22. 根据权利要求21所述的装置,其特征在于,所述处理单元具体用于:
    根据所述N个相位补偿值中的第i个相位补偿值,对所述N个参考OFDM符号中的第i个参考OFDM符号中的第三子载波的相位进行相位补偿,得到所述N个第一OFDM 符号中的第i个第一OFDM符号,所述第i个相位补偿值为所述N个参考OFDM符号中的第i-1个参考OFDM符号结束时刻对应的相位值和第i个参考OFDM符号对应的保护间隔GI的起始时刻的相位值的差,i=2,……,N。
  23. 根据权利要求19或20所述的装置,其特征在于,所述N个第一OFDM符号中的第i个第一OFDM符号的第K i个位置上的子载波为所述第i个第一OFDM符号中的所述第一子载波,K i为所述第一OFDM符号长度与所述第i个第一OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
  24. 根据权利要求19或20所述的装置,其特征在于,所述收发单元还用于:
    在所述第一设备发送所述N个第一OFDM符号之前,根据所述第一子载波的周期,确定所述每一个第一OFDM符号之前的GI长度。
  25. 根据权利要求19-24中任一项所述的装置,其特征在于,
    所述N个第一OFDM符号中的每一个第一OFDM符号还包括第四子载波,所述第四子载波用于进行数据通信。
  26. 根据权利要求19-25中任一项所述的装置,其特征在于,所述收发单元还用于:
    在发送所述N个第一OFDM符号之前,发送包头,所述包头携带指示信息,所述指示信息用于指示所述N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的。
  27. 一种探测目标的装置,其特征在于,包括:
    收发单元,用于接收N个第二正交频分复用OFDM符号,N为大于或等于2的正整数,所述N个第二OFDM符号与N个第一OFDM符号一一对应,所述N个第一OFDM符号中的每一个第一OFDM符号包括第一子载波,所述N个第一OFDM符号中的任意两个相邻的第一OFDM符号中的第一子载波的相位是连续的,所述第一子载波携带的数据是预设数据,所述N个第二OFDM符号中的每一个第二OFDM符号包括第二子载波,所述N个第二OFDM符号中的任意两个相邻的第二OFDM符号中的第二子载波的相位是连续的,所述第二子载波携带的数据是所述预设数据;
    处理单元,用于用于根据所述N个第二OFDM符号中的所述第二子载波的相位与所述N个第一OFDM符号中的所述第一子载波的相位差,对目标进行探测。
  28. 根据权利要求27所述的装置,其特征在于,所述N个第一OFDM符号中的第i个第一OFDM符号的第K i个位置上的子载波为所述第i个第一OFDM符号中的所述第一子载波,K i为所述OFDM符号长度与所述第i个第一OFDM符号之前的GI长度之比的整数倍,K i为大于或等于1的整数,i=1,……N。
  29. 根据权利要求27或28所述的装置,其特征在于,所述N个第一OFDM符号中的每一个第一OFDM符号还包括第四子载波,所述第四子载波用于进行数据通信。
  30. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求8至15中任一项或16至18中任一项所述的方法。
  31. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求8至15中任一项或16至18中任一项所述的方法。
  32. 一种计算机程序产品,包括计算机程序,当其在计算机上运行时,使得所述计算 机执行如权利要求8至15中任一项所述的方法。
  33. 一种芯片,其特征在于,包括至少一个处理器和接口;所述至少一个所述处理器,用于调用并运行计算机程序,以使所述芯片执行如8至15中任一项或16至18中任一项所述的方法。
PCT/CN2020/115310 2020-01-21 2020-09-15 探测目标的方法、装置及系统 WO2021147348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20915089.5A EP4080841A4 (en) 2020-01-21 2020-09-15 METHOD, APPARATUS AND SYSTEM FOR TARGET DETECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010072372.0A CN113225287B (zh) 2020-01-21 2020-01-21 探测目标的方法、装置及系统
CN202010072372.0 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021147348A1 true WO2021147348A1 (zh) 2021-07-29

Family

ID=76992786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115310 WO2021147348A1 (zh) 2020-01-21 2020-09-15 探测目标的方法、装置及系统

Country Status (3)

Country Link
EP (1) EP4080841A4 (zh)
CN (1) CN113225287B (zh)
WO (1) WO2021147348A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430290A (zh) * 2022-01-13 2022-05-03 北京四季豆信息技术有限公司 一种基于bplc系统的残留采样时钟偏差补偿方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726697B (zh) * 2022-04-06 2024-01-26 北京邮电大学 信息处理方法、装置、终端及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030025914A1 (en) * 2001-08-02 2003-02-06 Demarest Frank C. Glitch filter for distance measuring interferometry
CN101217818A (zh) * 2008-01-03 2008-07-09 北京北方烽火科技有限公司 一种基站接收机的测距码检测方法
CN101815342A (zh) * 2009-02-25 2010-08-25 北京信威通信技术股份有限公司 一种无线通信系统中的测距方法及装置
CN107347210A (zh) * 2017-07-04 2017-11-14 江苏先安科技有限公司 一种基于信道状态信息的精确目标定位方法
CN108549048A (zh) * 2018-03-23 2018-09-18 武汉大学 一种多频WiFi外辐射源雷达相参处理方法
WO2019166429A1 (en) * 2018-02-27 2019-09-06 Iee International Electronics & Engineering S.A. Method for joint radar-communication
CN110471051A (zh) * 2019-08-16 2019-11-19 广州大学 一种多用户接入下ofdm波形目标探测方法、装置及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101676309B1 (ko) * 2008-09-05 2016-11-15 엘지전자 주식회사 포지셔닝 정보를 획득하는 방법
US8619908B2 (en) * 2009-12-02 2013-12-31 Harris Corporation Wireless ranging system and related methods
KR101323681B1 (ko) * 2012-03-23 2013-10-30 국방과학연구소 Ofdm 레이더 시스템의 속도추정장치 및 속도추정방법
US10827341B2 (en) * 2018-01-12 2020-11-03 The Euclide 2012 Investment Trust Method of environmental sensing through pilot signals in a spread spectrum wireless communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030025914A1 (en) * 2001-08-02 2003-02-06 Demarest Frank C. Glitch filter for distance measuring interferometry
CN101217818A (zh) * 2008-01-03 2008-07-09 北京北方烽火科技有限公司 一种基站接收机的测距码检测方法
CN101815342A (zh) * 2009-02-25 2010-08-25 北京信威通信技术股份有限公司 一种无线通信系统中的测距方法及装置
CN107347210A (zh) * 2017-07-04 2017-11-14 江苏先安科技有限公司 一种基于信道状态信息的精确目标定位方法
WO2019166429A1 (en) * 2018-02-27 2019-09-06 Iee International Electronics & Engineering S.A. Method for joint radar-communication
CN108549048A (zh) * 2018-03-23 2018-09-18 武汉大学 一种多频WiFi外辐射源雷达相参处理方法
CN110471051A (zh) * 2019-08-16 2019-11-19 广州大学 一种多用户接入下ofdm波形目标探测方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080841A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430290A (zh) * 2022-01-13 2022-05-03 北京四季豆信息技术有限公司 一种基于bplc系统的残留采样时钟偏差补偿方法和装置

Also Published As

Publication number Publication date
EP4080841A4 (en) 2023-05-24
CN113225287A (zh) 2021-08-06
CN113225287B (zh) 2023-03-10
EP4080841A1 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
US11812416B2 (en) Coherent detection of large physical random access control channel (PRACH) delays
WO2021115217A1 (zh) 一种测距的方法和装置
WO2021259318A1 (zh) 一种测量上报方法、定位测量设备及定位服务器
US20190086505A1 (en) Methods for estimating angle of arrival or angle of departure
US10263824B2 (en) Method and device for estimating frequency offset of reception signal
JP5613233B2 (ja) 直交周波数分割多重化システムの時間オフセット推定装置及び方法
US9918195B2 (en) Signaling usage of cyclic shift diversity in transmitting wireless devices
WO2021147348A1 (zh) 探测目标的方法、装置及系统
WO2018028705A1 (zh) 信号发送装置、信号检测装置及方法
KR101117433B1 (ko) 무선 통신 시스템에서 신호 및 타이밍을 검출하기 위한 방법 및 장치
CN102664840B (zh) 基于循环前缀的水声正交频分复用多普勒估计方法
WO2022135587A1 (zh) 导频传输方法、装置、设备及存储介质
WO2022121892A1 (zh) 导频传输方法、装置、网络侧设备及存储介质
CN101001232A (zh) 一种同步信号的发射方法及系统
WO2022028582A1 (zh) 测量方法、信息获取方法、发送方法、终端及网络侧设备
WO2010080995A1 (en) Methods and systems for time tracking in ofdm systems
CN107367723B (zh) 一种测量距离的方法及设备
CN114142977A (zh) 导频处理方法及相关设备
CN114221837A (zh) 帧结构指示方法、帧结构更新方法及相关设备
JP2011045027A (ja) 受信装置及び干渉電力推定方法
CN111884978B (zh) 一种基于ofdm抗脉冲噪声的符号同步方法
CN115407269A (zh) 测距方法和装置
WO2022008068A1 (en) Measurement signals for sensing
CN101662446B (zh) 信道估计方法及装置
US20240224218A1 (en) Method and device for generating positioning reference signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020915089

Country of ref document: EP

Effective date: 20220720

NENP Non-entry into the national phase

Ref country code: DE