WO2021147251A1 - 物联网设备连接测试方法、装置、计算机设备及存储介质 - Google Patents

物联网设备连接测试方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2021147251A1
WO2021147251A1 PCT/CN2020/098960 CN2020098960W WO2021147251A1 WO 2021147251 A1 WO2021147251 A1 WO 2021147251A1 CN 2020098960 W CN2020098960 W CN 2020098960W WO 2021147251 A1 WO2021147251 A1 WO 2021147251A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
parameters
connection parameter
transmission line
internet
Prior art date
Application number
PCT/CN2020/098960
Other languages
English (en)
French (fr)
Inventor
莫焱莉
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021147251A1 publication Critical patent/WO2021147251A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity

Definitions

  • This application relates to the field of big data technology, and in particular to a method, device, computer equipment, and storage medium for testing the connection of Internet of Things equipment.
  • This application provides a method, device, computer equipment and storage medium for testing the connection of Internet of Things equipment, the main purpose of which is to provide the user with an efficient method for testing the connection of Internet of Things equipment when the user performs the connection test of the Internet of Things equipment.
  • a method for testing the connection of an Internet of Things device includes:
  • connection parameter set Acquiring a connection parameter set of an information collection unit in an Internet of Things system, and generating a connection parameter linked list after transmitting the connection parameter set to a cluster of the Internet of Things system, where the connection parameter set includes sensor parameters in the information collection unit;
  • the classification clusters of the transmission lines are input into the pre-built master control execution machine to test the connection performance of the Internet of things equipment, and the test results are returned to the user.
  • the present application provides a device for testing the connection of Internet of Things equipment, which includes:
  • Linked list generation module used to obtain the connection parameter set of the information collection unit in the Internet of Things system, transmit the connection parameter set to the cluster of the Internet of Things system to generate a connection parameter linked list, the connection parameter set includes the information collection Sensor parameters in the unit;
  • the calculation clustering module is used to calculate the similarity between the connection parameters in the connection parameter linked list, and perform clustering processing on the transmission lines corresponding to the connection parameters when the similarity is greater than a preset threshold, to obtain the classification of the transmission line Cluster
  • the test module is used to input the classified clusters of the transmission lines into the pre-built master control execution machine to test the connection performance of the Internet of Things equipment, and return the test results to the user.
  • the present application provides a computer device, wherein the computer device includes a memory and a processor, and an IoT device connection test program that can be run on the processor is stored in the memory.
  • the IoT device connection test program is executed by the processor to implement the following steps:
  • connection parameter set Acquiring a connection parameter set of an information collection unit in an Internet of Things system, and generating a connection parameter linked list after transmitting the connection parameter set to a cluster of the Internet of Things system, where the connection parameter set includes sensor parameters in the information collection unit;
  • the classification clusters of the transmission lines are input into the pre-built master control execution machine to test the connection performance of the Internet of Things devices, and the test results are returned to the user.
  • the present application also provides a computer-readable storage medium having an IoT device connection test program stored on the computer-readable storage medium, and the IoT device connection test program can be used by one or more
  • the processor executes to achieve the following steps:
  • connection parameter set Acquiring a connection parameter set of an information collection unit in an Internet of Things system, and generating a connection parameter linked list after transmitting the connection parameter set to a cluster of the Internet of Things system, where the connection parameter set includes sensor parameters in the information collection unit;
  • the classification clusters of the transmission lines are input into the pre-built master control execution machine to test the connection performance of the Internet of things equipment, and the test results are returned to the user.
  • the Internet of Things device connection test method, device, computer equipment, and storage medium proposed in this application acquire the connection parameter set of the information collection unit in the physical network system, and transmit the connection parameter set to the cluster of the Internet of Things system to generate Connection parameter linked list; calculating the similarity between the connection parameters in the connection parameter linked list to obtain a similarity set of the connection parameters, and clustering the transmission lines in the information collection unit according to the similarity set, Obtain the classified cluster set of the transmission line; input the classified cluster set of the transmission line into a pre-built master control execution machine to test the connection performance of the Internet of Things device, so that the test result can be presented to the user.
  • FIG. 1 is a schematic flowchart of a method for testing the connection of an Internet of Things device provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of the internal structure of a computer device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a module of an Internet of Things device connection test apparatus provided by an embodiment of the application.
  • This application provides a method for testing the connection of an Internet of Things device.
  • FIG. 1 it is a schematic flowchart of a method for testing the connection of an Internet of Things device provided by an embodiment of this application.
  • the method can be executed by a device, and the device can be implemented by software and/or hardware.
  • the method for testing the connection of the Internet of Things device includes:
  • connection parameter set includes sensor parameters in the information collection unit .
  • the information collection unit is composed of a sensor of the target product directly installed in the Internet of Things system and a transmission line connecting the sensor and the data center of the Internet of Things system.
  • the target product may include: scanner, barcode recognizer, infrared sensor, etc.
  • the connection parameter set includes sensor parameters, and the sensor parameters include, but are not limited to: sensor type, target service type, and transmission frequency.
  • the sensor types include: distance sensors, light sensors, and temperature sensors.
  • the sensor type can be coded as A, B, C, etc.
  • the target service type refers to the type of the target product accessed by the sensor, including: cultivation plant type, logistics transmission type, manufacturing and processing type, and electronic information type.
  • the type of the target product can be coded as: 1, 2, 4, 5, etc.
  • the transmission frequency refers to the number of times the transmission line transmits the information in the target product measured in a unit of 24 hours. If the number of transmissions is less than or equal to 10 times, it can be coded as 1t.
  • a temperature sensor used by an information collection unit monitors improved piglets on a new type of farm, and transmits piglet breeding data to the Internet of Things system data center 8 times every 24 hours, because the target business type is a breeding plant species .
  • the connection parameters of the information collection unit are: C, 1, 1t.
  • this application transmits the connection parameters to the cluster of the physical network system through the metadata management module in the Internet of Things system, and generates the connection parameter linked list.
  • the metadata management module is a memory unit allocated to the sensor by the server of the Internet of Things system, and the memory unit stores the connection parameters of the corresponding information collection unit, namely: the parameters of the sensor, and passes The information monitoring/sending interface of the memory unit completes the real-time update and transmission of the connection parameters.
  • the connection parameter linked list is a large linked list generated by the parameter linked list Meta_Info_Map for storing the connection parameters of all the information collection units in the Internet of Things system.
  • the method for calculating the similarity between the connection parameters in the connection parameter linked list includes:
  • O A and O B respectively represent the set of two connection parameters
  • respectively represent the number of elements in the two connection parameters
  • Jaccard(O A ,O B ) represents the connection parameter A And B's similarity coefficient.
  • the calculation method of the Jaccard coefficient includes:
  • O A ⁇ O B represents the number of the same elements in the connection parameter A and the connection parameter B
  • O A ⁇ O B represents the combination of the same elements in the connection parameter A and the connection parameter B (the same element is counted as only one).
  • Semsor 39 ⁇ Sensor 40 5 because after combining the same element 4 in the two connection parameters, the total elements are: B, 4, 10t, A, 100t, and the number is 5, then :
  • clustering is performed on the transmission lines of the information collection unit corresponding to the connection parameters whose similarity is greater than the preset threshold to obtain the classification cluster of the transmission lines, wherein the preset threshold is 1.5 .
  • the clustering process in this application includes: obtaining the maximum and minimum values of the parameters in the connection parameters whose similarity is greater than a preset threshold; according to the maximum and minimum values of the parameters, the k-clustering algorithm is used to calculate According to the cluster center value of the transmission line corresponding to the connection parameter, data classification is performed on the transmission line corresponding to the connection parameter through the fuzzy C-means algorithm according to the cluster center value, thereby generating a classification cluster of the transmission line .
  • the K clustering algorithm includes:
  • k represents the cluster center value
  • D max represents the maximum value of the parameter in the connection parameter
  • D min represents the minimum value of the parameter in the connection parameter
  • n represents the total amount of the parameter in the connection parameter
  • X(t ) Represents the transmission line corresponding to the connection parameter at time t
  • X(t-1) represents the transmission line corresponding to the connection parameter at time t-1.
  • the pre-built master control executor refers to a test code template, and the test code template tests the connection performance of the transmission lines in the transmission line classification cluster by running a test script.
  • the test by changing the default parameters of the main control actuator to the corresponding characteristic parameters of the classification cluster of the transmission line, the concurrent connection performance of all transmission lines in the classification cluster of different transmission lines is realized. Test, so as to realize the connection performance test between IoT devices.
  • a master control executor is called for each transmission line classification cluster, that is, one transmission line classification cluster corresponds to one master control executor,
  • the characteristic parameter refers to the average value of the target service type codes corresponding to all transmission lines in the classification cluster of each transmission line and the transmission frequency corresponding to each transmission line in the classification cluster of each transmission line Encoding value.
  • connection performance test operation is performed on the classification cluster of a certain transmission line
  • the default parameters of the master control actuator are updated to the average value of the target service type codes of all transmission lines in the transmission line classification cluster
  • the connection performance test is performed on all transmission lines in the transmission line classification cluster according to the average value of the target service type code and the code value of the transmission frequency, thereby completing the connection performance of the IoT device corresponding to the transmission line test.
  • the transmission line Line15 (transmission frequency of 10t) and Line19 (transmission frequency of 1t) in the classification cluster G of the transmission line are tested for connection performance, and the average value of the service type codes of all the transmission lines in the classification cluster G If it is 2.5, the default parameter of the main control executor of the classification cluster G is first changed to 2.5, based on the script of the transmission line Line15 running under the environment of the main control executor (the missing parameter of the script is preset 10t) and execute the script of the transmission line Line19 (the missing parameter of the script is preset to 1t), thereby completing the connection performance test of Line15 and Line19 in the classification cluster G.
  • connection performance test of all the transmission lines in the classification cluster of all the transmission lines is completed and the concurrent connection performance test of the entire Internet of Things system equipment is completed, and the test result is returned to the user.
  • This application also provides a computer device.
  • FIG. 2 it is a schematic diagram of the internal structure of a computer device provided by an embodiment of this application.
  • the computer device 1 may be a PC (Personal Computer, personal computer), or a terminal device such as a smart phone, a tablet computer, or a portable computer, or a server.
  • the computer device 1 at least includes a memory 11, a processor 12, a communication bus 13, and a network interface 14.
  • the memory 11 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), magnetic memory, magnetic disk, optical disk, and the like.
  • the memory 11 may be an internal storage unit of the computer device 1 in some embodiments, such as a hard disk of the computer device 1. In other embodiments, the memory 11 may also be an external storage device of the computer device 1, such as a plug-in hard disk, a smart media card (SMC), and a secure digital (SD) equipped on the computer device 1. Card, Flash Card, etc. Further, the memory 11 may also include both an internal storage unit of the computer device 1 and an external storage device.
  • the memory 11 can be used not only to store application software and various data installed in the computer device 1, such as the code of the IoT device connection test program 01, etc., but also to temporarily store data that has been output or will be output.
  • the processor 12 may be a central processing unit (CPU), controller, microcontroller, microprocessor, or other data processing chip, for running program codes or processing stored in the memory 11 Data, such as the implementation of the Internet of Things device connection test program 01, etc.
  • CPU central processing unit
  • controller microcontroller
  • microprocessor or other data processing chip, for running program codes or processing stored in the memory 11 Data, such as the implementation of the Internet of Things device connection test program 01, etc.
  • the communication bus 13 is used to realize the connection and communication between these components.
  • the network interface 14 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface), and is usually used to establish a communication connection between the computer device 1 and other electronic devices.
  • the computer device 1 may also include a user interface.
  • the user interface may include a display (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface may also include a standard wired interface and a wireless interface.
  • the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light-emitting diode) touch device, etc.
  • the display can also be appropriately called a display screen or a display unit, which is used to display the information processed in the computer device 1 and to display a visualized user interface.
  • Figure 2 only shows the computer device 1 with components 11-14 and the Internet of Things device connection test program 01. Those skilled in the art can understand that the structure shown in Figure 1 does not constitute a limitation on the computer device 1. Including fewer or more components than shown, or combining some components, or different component arrangements.
  • the memory 11 stores the Internet of Things device connection test program 01; when the processor 12 executes the Internet of Things device connection test program 01 stored in the memory 11, the following steps are implemented:
  • Step 1 Obtain the connection parameter set of the information collection unit in the Internet of Things system, and transmit the connection parameter set to the cluster of the Internet of Things system to generate a connection parameter linked list, and the connection parameter set includes the sensors in the information collection unit parameter.
  • the information collection unit is composed of a sensor of the target product directly installed in the Internet of Things system and a transmission line connecting the sensor and the data center of the Internet of Things system.
  • the target product may include: scanner, barcode recognizer, infrared sensor, etc.
  • the connection parameter set includes sensor parameters, and the sensor parameters include, but are not limited to: sensor type, target service type, and transmission frequency.
  • the sensor types include: distance sensors, light sensors, and temperature sensors.
  • the sensor type can be coded as A, B, C, etc.
  • the target service type refers to the type of the target product accessed by the sensor, including: cultivation plant type, logistics transmission type, manufacturing and processing type, and electronic information type.
  • the type of the target product can be coded as: 1, 2, 4, 5, etc.
  • the transmission frequency refers to the number of times the transmission line transmits the information in the target product measured in a unit of 24 hours. If the number of transmissions is less than or equal to 10 times, it can be coded as 1t.
  • a temperature sensor used by an information collection unit monitors improved piglets on a new type of farm, and transmits piglet breeding data to the Internet of Things system data center 8 times every 24 hours, because the target business type is a breeding plant species .
  • the connection parameters of the information collection unit are: C, 1, 1t.
  • this application transmits the connection parameters to the cluster of the physical network system through the metadata management module in the Internet of Things system, and generates the connection parameter linked list.
  • the metadata management module is a memory unit allocated to the sensor by the server of the Internet of Things system, and the memory unit stores the connection parameters of the corresponding information collection unit, namely: the parameters of the sensor, and passes The information monitoring/sending interface of the memory unit completes the real-time update and transmission of the connection parameters.
  • the connection parameter linked list is a large linked list generated by the parameter linked list Meta_Info_Map for storing the connection parameters of all the information collection units in the Internet of Things system.
  • Step 2 Calculate the similarity between the connection parameters in the connection parameter linked list, and perform clustering processing on the transmission lines corresponding to the connection parameters when the similarity is greater than a preset threshold, to obtain a classification cluster of the transmission lines.
  • the method for calculating the similarity between the connection parameters in the connection parameter linked list includes:
  • O A and O B respectively represent the set of two connection parameters
  • respectively represent the number of elements in the two connection parameters
  • Jaccard(O A ,O B ) represents the connection parameter A And B's similarity coefficient.
  • the calculation method of the Jaccard coefficient includes:
  • O A ⁇ O B represents the number of the same elements in the connection parameter O A and the connection parameter O B
  • O A ⁇ O B represents the combination of the same elements in the connection parameter A and the connection parameter B (the same element is counted as only one)
  • Sensor40 ⁇ A,4,100t ⁇
  • Semsor 39 ⁇ Sensor 40 5, because after merging the same element 4 in the two connection parameters, the total elements are: B, 4, 10t, A, 100t, and the number is 5, then :
  • clustering is performed on the transmission lines of the information collection unit corresponding to the connection parameters whose similarity is greater than the preset threshold to obtain the classification cluster of the transmission lines, wherein the preset threshold is 1.5 .
  • the clustering process in this application includes: obtaining the maximum and minimum values of the parameters in the connection parameters whose similarity is greater than a preset threshold; according to the maximum and minimum values of the parameters, the k-clustering algorithm is used to calculate According to the cluster center value of the transmission line corresponding to the connection parameter, data classification is performed on the transmission line corresponding to the connection parameter through the fuzzy C-means algorithm according to the cluster center value, thereby generating a classification cluster of the transmission line .
  • the K clustering algorithm includes:
  • k represents the cluster center value
  • D max represents the maximum value of the parameter in the connection parameter
  • D min represents the minimum value of the parameter in the connection parameter
  • n represents the total amount of the parameter in the connection parameter
  • X(t ) Represents the transmission line corresponding to the connection parameter at time t
  • X(t-1) represents the transmission line corresponding to the connection parameter at time t-1.
  • Step 3 Input the classified clusters of the transmission lines into the pre-built master control execution machine to test the connection performance of the Internet of Things devices, and return the test results to the user.
  • the pre-built master control executor refers to a test code template, and the test code template tests the connection performance of the transmission lines in the transmission line classification cluster by running a test script.
  • the test by changing the default parameters of the main control actuator to the corresponding characteristic parameters of the classification cluster of the transmission line, the concurrent connection performance of all transmission lines in the classification cluster of different transmission lines is realized. Test, so as to realize the connection performance test between IoT devices.
  • a master control executor is called for each transmission line classification cluster, that is, one transmission line classification cluster corresponds to one master control executor,
  • the characteristic parameter refers to the average value of the target service type codes corresponding to all transmission lines in the classification cluster of each transmission line and the transmission frequency corresponding to each transmission line in the classification cluster of each transmission line Encoding value.
  • connection performance test operation is performed on the classification cluster of a certain transmission line
  • the default parameters of the master control actuator are updated to the average value of the target service type codes of all transmission lines in the transmission line classification cluster
  • the connection performance test is performed on all transmission lines in the transmission line classification cluster according to the average value of the target service type code and the code value of the transmission frequency, thereby completing the connection performance of the IoT device corresponding to the transmission line test.
  • the transmission line Line15 (transmission frequency of 10t) and Line19 (transmission frequency of 1t) in the classification cluster G of the transmission line are tested for connection performance, and the average value of the service type codes of all the transmission lines in the classification cluster G If it is 2.5, the default parameter of the main control executor of the classification cluster G is first changed to 2.5, based on the script of the transmission line Line15 running under the environment of the main control executor (the missing parameter of the script is preset 10t) and execute the script of the transmission line Line19 (the missing parameter of the script is preset to 1t), thereby completing the connection performance test of Line15 and Line19 in the classification cluster G.
  • connection performance test of all the transmission lines in the classification cluster of all the transmission lines is completed after the concurrent connection performance test of the entire Internet of Things system equipment is completed, and the test result is returned to the user.
  • FIG. 3 this is a schematic diagram of modules of an embodiment of an Internet of Things device connection test device of this application.
  • the Internet of Things device connection device includes a linked list generation module 10, a calculation clustering module 20, and a test module. 30.
  • a linked list generation module 10 for example, a linked list generation module 10.
  • a calculation clustering module 20 for example, a test module.
  • a test module. 30 for example, referring to FIG. 3, this is a schematic diagram of modules of an embodiment of an Internet of Things device connection test device of this application.
  • the Internet of Things device connection device includes a linked list generation module 10, a calculation clustering module 20, and a test module. 30.
  • the linked list generation module 10 is used to obtain the connection parameter set of the information collection unit in the Internet of Things system, transmit the connection parameter set to the cluster of the Internet of Things system to generate a connection parameter linked list, and the connection parameter set includes all the connection parameters.
  • the sensor parameters in the information acquisition unit are used to obtain the connection parameter set of the information collection unit in the Internet of Things system.
  • the calculation clustering module 20 is used to calculate the similarity between the connection parameters in the connection parameter linked list, and perform clustering processing on the transmission lines corresponding to the connection parameters when the similarity is greater than a preset threshold, to obtain the transmission Classification and clustering of lines.
  • the test module 30 is used to input the classification clusters of the transmission lines into the pre-built master control execution machine to test the connection performance of the Internet of Things equipment, and return the test results to the user.
  • the embodiment of the present application also proposes a computer-readable storage medium.
  • the computer-readable storage medium may be non-volatile or volatile.
  • the computer-readable storage medium stores Internet of Things device connection Test program, the Internet of Things device connection test program can be executed by one or more processors to achieve the following operations:
  • connection parameter set Acquiring a connection parameter set of an information collection unit in an Internet of Things system, and generating a connection parameter linked list after transmitting the connection parameter set to a cluster of the Internet of Things system, where the connection parameter set includes sensor parameters in the information collection unit;
  • the classification clusters of the transmission lines are input into the pre-built master control execution machine to test the connection performance of the Internet of things equipment, and the test results are returned to the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Probability & Statistics with Applications (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Computer And Data Communications (AREA)

Abstract

本申请涉及一种大数据技术,揭露了一种物联网设备连接测试方法,包括:获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值时的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。本申请还提出一种物联网设备连接测试装置、计算机设备以及一种计算机可读存储介质。本申请实现了物联网设备连接测试。

Description

物联网设备连接测试方法、装置、计算机设备及存储介质
本申请要求于2020年1月20日提交中国专利局、申请号为202010068108.X,发明名称为“物联网设备连接测试方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及大数据技术领域,尤其涉及一种物联网设备连接测试方法、装置、计算机设备及存储介质。
背景技术
目前对物联网设备之间的连接测试,通常需要对设备之间的传输线路调用执行机来运行测试脚本。发明人意识到由于物联网系统是一个庞大的系统,若对设备之间的每一条传输线路都调用执行机运行测试脚本,势必会占用过多存储资源。此外,在进行物联网设备之间的连接测试时不对各传输线路的传输类型进行区分,势必会影响测试精度。
发明内容
本申请提供一种物联网设备连接测试方法、装置、计算机设备及存储介质,其主要目的在于当用户进行物联网设备连接测试时,给用户提供一种高效的物联网设备连接测试方法。
为实现上述目的,本申请提供的一种物联网设备连接测试方法,包括:
获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
此外,为实现上述目的,本申请提供一种物联网设备连接测试装置,该装置包括:
链表生成模块,用于获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
计算聚类模块,用于计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值时的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
测试模块,用于将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
此外,为实现上述目的,本申请提供一种计算机设备,其中,所述计算机设备包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的物联网设备连接测试程序,所述物联网设备连接测试程序被所述处理器执行,以实现如下步骤:
获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性 能测试,并将测试结果返回给用户。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有物联网设备连接测试程序,所述物联网设备连接测试程序可被一个或者多个处理器执行,以实现如下步骤:
获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
本申请提出的物联网设备连接测试方法、装置、计算机设备及存储介质,获取物理网系统中的信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表;计算所述连接参数链表中连接参数之间的相似度,得到所述连接参数的相似度集,根据所述相似度集对所述信息采集单元中的传输线路进行聚类处理,得到所述传输线路的分类簇集;将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,从而可以给用户呈现出测试结果。
附图说明
图1为本申请一实施例提供的物联网设备连接测试方法的流程示意图;
图2为本申请一实施例提供的计算机设备的内部结构示意图;
图3为本申请一实施例提供的物联网设备连接测试装置的模块示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供一种物联网设备连接测试方法。参照图1所示,为本申请一实施例提供的物联网设备连接测试方法的流程示意图。该方法可以由一个装置执行,该装置可以由软件和/或硬件实现。
在本实施例中,物联网设备连接测试方法包括:
S1、获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数。
本申请较佳实施例中,所述信息采集单元由直接安装于物联网系统中的目标产品的传感器以及所述传感器与所述物联网系统数据中心相连接的传输线路所组成。其中,所述目标产品可以包括:扫描器、条码识别器以及红外线感应器等。
本申请较佳实施例中,所述连接参数集包括传感器参数,所述传感器参数包括、但不限于:传感器类型、目标业务类型、传输频率。其中,所述传感器类型包括:距离传感器、光传感器、温度传感器。所述传感器类型可以编码为A、B、C等。所述目标业务类型指的是所述传感器接入的目标产品的类型,包括:养殖栽种类、物流传送类、制造加工类、电子信息类。所述目标产品的类型可以编码为:1、2、4、5等。所述传输频率指的是以24小时为单位计量所述传输线路传输所述目标产品中信息的传输次数,其中,若所述传输次数小于等于10次,则可以编码为1t,若所述传输次数大于10次且小于等于100次,则可以编码为10t,如所述传输次数大于100次,则可以编码为100t等。例如,某信息采集单元采用的温度传感器对新型农场的改良猪崽进行监控,每24小时向所述物联网系统数据中心传输猪崽的养殖数据8次,由于所述目标业务类型属于养殖栽种类,得到所述信息采集单元的连接参数为:C、1、1t。
较佳地,本申请通过所述物联网系统中的元数据管理模块将所述连接参数传输到所述物理网系统的集群中,并生成所述连接参数链表。其中,所述元数据管理模块是所述物联网系统的服务器为所述传感器分配的内存单元,所述内存单元存储了对应的信息采集单元的连接参数,即:所述传感器的参数,并通过所述内存单元的信息监听/发送接口,完成所述连接参数的实时更新以及传输。所述连接参数链表是参数链表Meta_Info_Map用于存放所述物联网系统中所有信息采集单元的连接参数而生成的大型链表。
S2、计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值时的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集。
本申请较佳实施例中,所述连接参数链表中连接参数之间的相似度的计算方法包括:
Figure PCTCN2020098960-appb-000001
其中,O A和O B分别表示两个连接参数的集合,|O A|和|O B|分别表示两个连接参数内的元素的个数,Jaccard(O A,O B)表示连接参数A和B的相似系数。其中,所述Jaccard系数的计算方法包括:
Figure PCTCN2020098960-appb-000002
其中,O A∩O B表示连接参数A和连接参数B中相同元素的个数,O A∪O B表示将连接参数A和连接参数B中相同元素进行合并(相同元素只算一个)后所有元素的总个数。例如:预设两个连接参数:Sensor39={B,4,10t},Sensor40={A,4,100t},则Semsor 39∩Sensor 40=1,因为两个连接参数中的元素中只有1个相同的元素4,同理,Semsor 39∪Sensor 40=5,因为将两个连接参数中相同的元素4合并以后,总的元素为:B、4、10t、A、100t,个数为5,则:
Figure PCTCN2020098960-appb-000003
|Semsor 39|=|Sensor 40|=3,
因为Sensor39和Sensor40中的元素个数都为3,则Sensor39和Sensor40的相似度为:
Figure PCTCN2020098960-appb-000004
较佳地,本申请中将相似度大于预设阈值的连接参数所对应的信息采集单元的传输线路进行聚类处理,得到所述传输线路的分类簇集,其中,所述预设阈值为1.5。
较佳地,本申请中所述聚类处理包括:获取相似度大于预设阈值的连接参数中参数的最大值和最小值;根据所述参数的最大值和最小值,利用k聚类算法计算所述连接参数所对应的传输线路的聚类中心值,根据所述聚类中心值通过模糊C均值算法对述连接参数所对应的传输线路进行数据分类,从而生成所述传输线路的分类簇集。其中,所述K聚类算法包括:
Figure PCTCN2020098960-appb-000005
其中,k表示聚类中心值,D max表示所述连接参数中参数的最大值,D min表示所述连接参数中参数的最小值,n表示所述连接参数中参数的总量,X(t)表示在t时刻所述连接参数所对应的传输线路,X(t-1)表示在t-1时刻所述连接参数所对应的传输线路。
S3、将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
本申请较佳实施例中,所述预先构建的主控执行机指的是测试代码模板,所述测试代码模板通过运行测试脚本对所述传输线路分类簇中的传输线路连接性能进行测试。在测试 进行时,通过将所述主控执行机的默认参数更改为所对应的所述传输线路的分类簇集的特性参数,实现对不同传输线路的分类簇中的所有传输线路进行并发连接性能测试,从而实现物联网设备之间的连接性能测试。进一步地,本申请中为每一个所述传输线路分类簇调用一个主控执行机,即:一个所述传输线路分类簇对应一个所述主控执行机,
所述特性参数指的是所述每一个传输线路的分类簇中所有传输线路所对应的目标业务类型编码的平均值以及所述每一个传输线路的分类簇中每一个传输线路所对应的传输频率的编码值。
进一步地,在对某一个传输线路的分类簇进行连接性能测试操作时,将所述主控执行机的默认参数更新为该传输线路分类簇中所有传输线路的目标业务类型编码的平均值后,在更新后的所述默认参数的主控执行机环境下,逐一运行每一条传输线路对应的脚本,并将所述脚本的缺失参数由相应的传输线路所对应的所述传输频率的编码值来代替,根据所述目标业务类型编码的平均值和所述传输频率的编码值实现对所述传输线路分类簇中所有传输线路进行连接性能测试,从而完成所述传输线路对应的物联网设备连接性能测试。
例如:对传输线路的分类簇G中的传输线路Line15(传输频率为10t)和Line19(传输频率为1t)进行连接性能测试,所述分类簇G中的所有传输线路的业务类型编码的平均值为2.5,则优先将所述分类簇G的主控执行机的默认参数更改为2.5,基于在所述主控执行机的环境下,运行所述传输线路Line15的脚本(脚本的缺失参数预设为10t)和执行所述传输线路Line19的脚本(脚本的缺失参数预设为1t),从而完成了分类簇G中Line15和Line19的连接性能测试。
较佳地,本申请中对所有所述传输线路的分类簇中的所有传输线路进行连接性能测试后完成对整个物联网系统设备的并发连接性能测试,并将测试结果返回给用户。
本申请还提供一种计算机设备。参照图2所示,为本申请一实施例提供的计算机设备的内部结构示意图。
在本实施例中,所述计算机设备1可以是PC(Personal Computer,个人电脑),或者是智能手机、平板电脑、便携计算机等终端设备,也可以是一种服务器等。该计算机设备1至少包括存储器11、处理器12,通信总线13,以及网络接口14。
其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器11在一些实施例中可以是计算机设备1的内部存储单元,例如该计算机设备1的硬盘。存储器11在另一些实施例中也可以是计算机设备1的外部存储设备,例如计算机设备1上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器11还可以既包括计算机设备1的内部存储单元也包括外部存储设备。存储器11不仅可以用于存储安装于计算机设备1的应用软件及各类数据,例如物联网设备连接测试程序01的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器12在一些实施例中可以是一中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器11中存储的程序代码或处理数据,例如执行物联网设备连接测试程序01等。
通信总线13用于实现这些组件之间的连接通信。
网络接口14可选的可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该计算机设备1与其他电子设备之间建立通信连接。
可选地,该计算机设备1还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。其中,显示器 也可以适当的称为显示屏或显示单元,用于显示在计算机设备1中处理的信息以及用于显示可视化的用户界面。
图2仅示出了具有组件11-14以及物联网设备连接测试程序01的计算机设备1,本领域技术人员可以理解的是,图1示出的结构并不构成对计算机设备1的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
在图2所示的计算机设备1实施例中,存储器11中存储有物联网设备连接测试程序01;处理器12执行存储器11中存储的物联网设备连接测试程序01时实现如下步骤:
步骤一、获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数。
本申请较佳实施例中,所述信息采集单元由直接安装于物联网系统中的目标产品的传感器以及所述传感器与所述物联网系统数据中心相连接的传输线路所组成。其中,所述目标产品可以包括:扫描器、条码识别器以及红外线感应器等。
本申请较佳实施例中,所述连接参数集包括传感器参数,所述传感器参数包括、但不限于:传感器类型、目标业务类型、传输频率。其中,所述传感器类型包括:距离传感器、光传感器、温度传感器。所述传感器类型可以编码为A、B、C等。所述目标业务类型指的是所述传感器接入的目标产品的类型,包括:养殖栽种类、物流传送类、制造加工类、电子信息类。所述目标产品的类型可以编码为:1、2、4、5等。所述传输频率指的是以24小时为单位计量所述传输线路传输所述目标产品中信息的传输次数,其中,若所述传输次数小于等于10次,则可以编码为1t,若所述传输次数大于10次且小于等于100次,则可以编码为10t,如所述传输次数大于100次,则可以编码为100t等。例如,某信息采集单元采用的温度传感器对新型农场的改良猪崽进行监控,每24小时向所述物联网系统数据中心传输猪崽的养殖数据8次,由于所述目标业务类型属于养殖栽种类,得到所述信息采集单元的连接参数为:C、1、1t。
较佳地,本申请通过所述物联网系统中的元数据管理模块将所述连接参数传输到所述物理网系统的集群中,并生成所述连接参数链表。其中,所述元数据管理模块是所述物联网系统的服务器为所述传感器分配的内存单元,所述内存单元存储了对应的信息采集单元的连接参数,即:所述传感器的参数,并通过所述内存单元的信息监听/发送接口,完成所述连接参数的实时更新以及传输。所述连接参数链表是参数链表Meta_Info_Map用于存放所述物联网系统中所有信息采集单元的连接参数而生成的大型链表。
步骤二、计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值时的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集。
本申请较佳实施例中,所述连接参数链表中连接参数之间的相似度的计算方法包括:
Figure PCTCN2020098960-appb-000006
其中,O A和O B分别表示两个连接参数的集合,|O A|和|O B|分别表示两个连接参数内的元素的个数,Jaccard(O A,O B)表示连接参数A和B的相似系数。其中,所述Jaccard系数的计算方法包括:
Figure PCTCN2020098960-appb-000007
其中,O A∩O B表示连接参数O A和连接参数O B中相同元素的个数,O A∪O B表示将连接参数A和连接参数B中相同元素进行合并(相同元素只算一个)后所有元素的总个数。例如:预设两个连接参数:Sensor39={B,4,10t},Sensor40={A,4,100t},则Semsor 39∩Sensor 40=1,因为两个连接参数中的元素中只有1个相同的元素4,同理, Semsor 39∪Sensor 40=5,因为将两个连接参数中相同的元素4合并以后,总的元素为:B、4、10t、A、100t,个数为5,则:
Figure PCTCN2020098960-appb-000008
|Semsor 39|=|Sensor 40|=3,
因为Sensor39和Sensor40中的元素个数都为3,则Sensor39和Sensor40的相似度为:
Figure PCTCN2020098960-appb-000009
较佳地,本申请中将相似度大于预设阈值的连接参数所对应的信息采集单元的传输线路进行聚类处理,得到所述传输线路的分类簇集,其中,所述预设阈值为1.5。
较佳地,本申请中所述聚类处理包括:获取相似度大于预设阈值的连接参数中参数的最大值和最小值;根据所述参数的最大值和最小值,利用k聚类算法计算所述连接参数所对应的传输线路的聚类中心值,根据所述聚类中心值通过模糊C均值算法对述连接参数所对应的传输线路进行数据分类,从而生成所述传输线路的分类簇集。其中,所述K聚类算法包括:
Figure PCTCN2020098960-appb-000010
其中,k表示聚类中心值,D max表示所述连接参数中参数的最大值,D min表示所述连接参数中参数的最小值,n表示所述连接参数中参数的总量,X(t)表示在t时刻所述连接参数所对应的传输线路,X(t-1)表示在t-1时刻所述连接参数所对应的传输线路。
步骤三、将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
本申请较佳实施例中,所述预先构建的主控执行机指的是测试代码模板,所述测试代码模板通过运行测试脚本对所述传输线路分类簇中的传输线路连接性能进行测试。在测试进行时,通过将所述主控执行机的默认参数更改为所对应的所述传输线路的分类簇集的特性参数,实现对不同传输线路的分类簇中的所有传输线路进行并发连接性能测试,从而实现物联网设备之间的连接性能测试。进一步地,本申请中为每一个所述传输线路分类簇调用一个主控执行机,即:一个所述传输线路分类簇对应一个所述主控执行机,
所述特性参数指的是所述每一个传输线路的分类簇中所有传输线路所对应的目标业务类型编码的平均值以及所述每一个传输线路的分类簇中每一个传输线路所对应的传输频率的编码值。
进一步地,在对某一个传输线路的分类簇进行连接性能测试操作时,将所述主控执行机的默认参数更新为该传输线路分类簇中所有传输线路的目标业务类型编码的平均值后,在更新后的所述默认参数的主控执行机环境下,逐一运行每一条传输线路对应的脚本,并将所述脚本的缺失参数由相应的传输线路所对应的所述传输频率的编码值来代替,根据所述目标业务类型编码的平均值和所述传输频率的编码值实现对所述传输线路分类簇中所有传输线路进行连接性能测试,从而完成所述传输线路对应的物联网设备连接性能测试。
例如:对传输线路的分类簇G中的传输线路Line15(传输频率为10t)和Line19(传输频率为1t)进行连接性能测试,所述分类簇G中的所有传输线路的业务类型编码的平均值为2.5,则优先将所述分类簇G的主控执行机的默认参数更改为2.5,基于在所述主控执行机的环境下,运行所述传输线路Line15的脚本(脚本的缺失参数预设为10t)和执行所述传输线路Line19的脚本(脚本的缺失参数预设为1t),从而完成了分类簇G中Line15和Line19的连接性能测试。
较佳地,本申请中对所有所述传输线路的分类簇中的所有传输线路进行连接性能测试 后完成对整个物联网系统设备的并发连接性能测试,并将测试结果返回给用户。
例如,参照图3所示,为本申请物联网设备连接测试装置一实施例的模块示意图,该实施例中,所述物联网设备连接装置包括链表生成模块10、计算聚类模块20以及测试模块30,示例性地:
所述链表生成模块10用于:获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数。
所述计算聚类模块20用于:计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值时的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集。
所述测试模块30用于:将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
上述链表生成模块10、计算聚类模块20以及测试模块30等模块被执行时所实现的功能或操作步骤与上述物联网设备连接测试方法各实施例大体相同,在此不再赘述。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质可以是非易失性,也可以是易失性,所述计算机可读存储介质上存储有物联网设备连接测试程序,所述物联网设备连接测试程序可被一个或多个处理器执行,以实现如下操作:
获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值时的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
本申请计算机可读存储介质具体实施方式与上述物联网设备连接测试方法各实施例基本相同,在此不作累述。
需要说明的是,上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种物联网设备连接测试方法,其中,所述方法包括:
    获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
    计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
    将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
  2. 如权利要求1所述的物联网设备连接测试方法,其中,所述传感器参数包括:传感器类型、目标业务类型、传输频率;
    其中,所述传感器类型包括:距离传感器、光传感器、温度传感器;
    所述目标业务类型表示传感器接入目标产品的类型;
    所述传输频率表示基于时间为单位计量时目标产品中信息的传输次数。
  3. 如权利要求1所述的物联网设备连接测试方法,其中,所述连接参数链表中连接参数之间的相似度,包括:
    利用下述公式计算所述参数链表中任意两个连接参数A和B之间的相似度Sensor_Similarity(A,B):
    Figure PCTCN2020098960-appb-100001
    其中,O A和O B分别表示两个连接参数的集合,|O A|和|O B|分别表示两个连接参数集合内元素的个数,Jaccard(O A,O B)表示连接参数A和B的相似系数。
  4. 如权利要求3所述的物联网设备连接测试方法,其中,所述相似系数采用下述公式计算:
    Figure PCTCN2020098960-appb-100002
    其中,O A∩O B表示连接参数A和连接参数B中相同元素的个数,O A∪O B表示将连接参数A和连接参数B中相同元素进行合并后所有元素的总个数。
  5. 如权利要求1所述的物联网设备连接测试方法,其中,所述聚类处理包括:
    获取相似度大于预设阈值的连接参数中参数的最大值和最小值;
    根据所述参数的最大值和最小值,利用聚类算法计算所述连接参数所对应的传输线路的聚类中心值,根据所述聚类中心值通过模糊均值算法对述连接参数所对应的传输线路进行数据分类,从而生成所述传输线路的分类簇集。
  6. 如权利要求5中所述的物联网设备连接测试方法,其中,所述利用聚类算法计算所述连接参数所对应的传输线路的聚类中心值包括:
    利用下述公式计算所述聚类中心值k:
    Figure PCTCN2020098960-appb-100003
    其中,D max表示所述连接参数中参数的最大值,D min表示所述连接参数中参数的最小值,n表示所述连接参数中参数的总量,X(t)表示在t时刻所述连接参数所对应的传输线路,X(t-1)表示在t-1时刻所述连接参数所对应的传输线路。
  7. 如权利要求1至6任意一项中所述的物联网设备连接测试方法,其中,所述预先构建的主控执行机为测试代码模板;及所述将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,包括:
    将所述主控执行机的默认参数更新为对应传输线路分类簇中目标业务类型编码的平 均值;
    在更新后的所述默认参数的主控执行机环境下,运行所述传输线路对应的脚本,并将所述脚本的缺失参数由所述传输线路所对应的所述传输频率的编码值来代替;
    根据所述目标业务类型编码的平均值和所述传输频率的编码值实现对所述传输线路的分类簇集进行连接性能测试,从而完成所述传输线路对应的物联网设备连接性能测试。
  8. 一种联网设备连接测试装置,其中,该装置包括:
    链表生成模块,用于获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
    计算聚类模块,用于计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值时的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
    测试模块,用于将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
  9. 一种计算机设备,其中,所述计算机设备包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的物联网设备连接测试程序,所述物联网设备连接测试程序被所述处理器执行时实现如下步骤:
    获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
    计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
    将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
  10. 如权利要求9所述的计算机设备,其中,所述传感器参数包括:传感器类型、目标业务类型、传输频率;
    其中,所述传感器类型包括:距离传感器、光传感器、温度传感器;
    所述目标业务类型表示传感器接入目标产品的类型;
    所述传输频率表示基于时间为单位计量时目标产品中信息的传输次数。
  11. 如权利要求9所述的计算机设备,其中,所述连接参数链表中连接参数之间的相似度,包括:
    利用下述公式计算所述参数链表中任意两个连接参数A和B之间的相似度Sensor_Similarity(A,B):
    Figure PCTCN2020098960-appb-100004
    其中,O A和O B分别表示两个连接参数的集合,|O A|和|O B|分别表示两个连接参数集合内元素的个数,Jaccard(O A,O B)表示连接参数A和B的相似系数。
  12. 如权利要求11所述的计算机设备,其中,所述相似系数采用下述公式计算:
    Figure PCTCN2020098960-appb-100005
    其中,O A∩O B表示连接参数A和连接参数B中相同元素的个数,O A∪O B表示将连接参数A和连接参数B中相同元素进行合并后所有元素的总个数。
  13. 如权利要求9所述的计算机设备,其中,所述聚类处理包括:
    获取相似度大于预设阈值的连接参数中参数的最大值和最小值;
    根据所述参数的最大值和最小值,利用聚类算法计算所述连接参数所对应的传输线路的聚类中心值,根据所述聚类中心值通过模糊均值算法对述连接参数所对应的传输线路进行数据分类,从而生成所述传输线路的分类簇集。
  14. 如权利要求9至13任意一项中所述的计算机设备,其中,所述预先构建的主控执行机为测试代码模板;及所述将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,包括:
    将所述主控执行机的默认参数更新为对应传输线路分类簇中目标业务类型编码的平均值;
    在更新后的所述默认参数的主控执行机环境下,运行所述传输线路对应的脚本,并将所述脚本的缺失参数由所述传输线路所对应的所述传输频率的编码值来代替;
    根据所述目标业务类型编码的平均值和所述传输频率的编码值实现对所述传输线路的分类簇集进行连接性能测试,从而完成所述传输线路对应的物联网设备连接性能测试。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有物联网设备连接测试程序,所述物联网设备连接测试程序可被一个或者多个处理器执行,以实现如下步骤:
    获取物联网系统中信息采集单元的连接参数集,将所述连接参数集传输到所述物联网系统的集群后生成连接参数链表,所述连接参数集包括所述信息采集单元中传感器参数;
    计算所述连接参数链表中连接参数之间的相似度,将相似度大于预设阈值的连接参数所对应的传输线路进行聚类处理,得到所述传输线路的分类簇集;
    将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,并将测试结果返回给用户。
  16. 如权利要求15所述的计算机可读存储介质,其中,所述传感器参数包括:传感器类型、目标业务类型、传输频率;
    其中,所述传感器类型包括:距离传感器、光传感器、温度传感器;
    所述目标业务类型表示传感器接入目标产品的类型;
    所述传输频率表示基于时间为单位计量时目标产品中信息的传输次数。
  17. 如权利要求15所述的计算机可读存储介质,其中,所述连接参数链表中连接参数之间的相似度,包括:
    利用下述公式计算所述参数链表中任意两个连接参数A和B之间的相似度Sensor_Similarity(A,B):
    Figure PCTCN2020098960-appb-100006
    其中,O A和O B分别表示两个连接参数的集合,|O A|和|O B|分别表示两个连接参数集合内元素的个数,Jaccard(O A,O B)表示连接参数A和B的相似系数。
  18. 如权利要求17所述的计算机可读存储介质,其中,所述相似系数采用下述公式计算:
    Figure PCTCN2020098960-appb-100007
    其中,O A∩O B表示连接参数A和连接参数B中相同元素的个数,O A∪O B表示将连接参数A和连接参数B中相同元素进行合并后所有元素的总个数。
  19. 如权利要求15所述的计算机可读存储介质,其中,所述聚类处理包括:
    获取相似度大于预设阈值的连接参数中参数的最大值和最小值;
    根据所述参数的最大值和最小值,利用聚类算法计算所述连接参数所对应的传输线路的聚类中心值,根据所述聚类中心值通过模糊均值算法对述连接参数所对应的传输线路进行数据分类,从而生成所述传输线路的分类簇集。
  20. 如权利要求15至19任意一项中所述的计算机可读存储介质,其中,所述预先构建的主控执行机为测试代码模板;及所述将所述传输线路的分类簇集输入至预先构建的主控执行机中进行物联网设备连接性能测试,包括:
    将所述主控执行机的默认参数更新为对应传输线路分类簇中目标业务类型编码的平均值;
    在更新后的所述默认参数的主控执行机环境下,运行所述传输线路对应的脚本,并将所述脚本的缺失参数由所述传输线路所对应的所述传输频率的编码值来代替;
    根据所述目标业务类型编码的平均值和所述传输频率的编码值实现对所述传输线路的分类簇集进行连接性能测试,从而完成所述传输线路对应的物联网设备连接性能测试。
PCT/CN2020/098960 2020-01-20 2020-06-29 物联网设备连接测试方法、装置、计算机设备及存储介质 WO2021147251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010068108.X 2020-01-20
CN202010068108.XA CN111277464B (zh) 2020-01-20 2020-01-20 物联网设备连接测试方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021147251A1 true WO2021147251A1 (zh) 2021-07-29

Family

ID=71001177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098960 WO2021147251A1 (zh) 2020-01-20 2020-06-29 物联网设备连接测试方法、装置、计算机设备及存储介质

Country Status (2)

Country Link
CN (1) CN111277464B (zh)
WO (1) WO2021147251A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277464B (zh) * 2020-01-20 2022-11-11 平安科技(深圳)有限公司 物联网设备连接测试方法、装置及计算机可读存储介质
CN111913861A (zh) * 2020-07-31 2020-11-10 中国建设银行股份有限公司 物联网系统的性能测试方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034986A (ja) * 2008-07-30 2010-02-12 Hitachi Plant Technologies Ltd 無線通信システム及び無線通信試験方法並びに無線通信システム試験プログラム
CN106028385A (zh) * 2016-05-05 2016-10-12 南京邮电大学 一种移动物联网系统故障测定方法
CN107453785A (zh) * 2017-09-13 2017-12-08 潘金文 电网输电线路智能监测系统
CN109040216A (zh) * 2018-07-25 2018-12-18 深圳明创自控技术有限公司 输电线路无线智能监测系统
CN109120435A (zh) * 2018-07-27 2019-01-01 南昌航空大学 网络链路质量预测方法、装置及可读存储介质
CN111277464A (zh) * 2020-01-20 2020-06-12 平安科技(深圳)有限公司 物联网设备连接测试方法、装置及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105183796A (zh) * 2015-08-24 2015-12-23 同济大学 一种基于聚类的分布式链路预测方法
US20170168885A1 (en) * 2015-12-09 2017-06-15 Hcl Technologies Limited System and Method for Testing Internet of Things Network
CN108519943A (zh) * 2018-03-06 2018-09-11 平安科技(深圳)有限公司 测试控制和测试执行装置、方法及计算机存储介质
CN110070111A (zh) * 2019-03-29 2019-07-30 国电南瑞科技股份有限公司 一种配网线路分类方法及系统
CN110084321B (zh) * 2019-05-08 2023-01-20 宿迁学院 一种基于k-均值聚类的软件测试目标路径选择方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034986A (ja) * 2008-07-30 2010-02-12 Hitachi Plant Technologies Ltd 無線通信システム及び無線通信試験方法並びに無線通信システム試験プログラム
CN106028385A (zh) * 2016-05-05 2016-10-12 南京邮电大学 一种移动物联网系统故障测定方法
CN107453785A (zh) * 2017-09-13 2017-12-08 潘金文 电网输电线路智能监测系统
CN109040216A (zh) * 2018-07-25 2018-12-18 深圳明创自控技术有限公司 输电线路无线智能监测系统
CN109120435A (zh) * 2018-07-27 2019-01-01 南昌航空大学 网络链路质量预测方法、装置及可读存储介质
CN111277464A (zh) * 2020-01-20 2020-06-12 平安科技(深圳)有限公司 物联网设备连接测试方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN111277464A (zh) 2020-06-12
CN111277464B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US10459954B1 (en) Dataset connector and crawler to identify data lineage and segment data
US11416456B2 (en) Method, apparatus, and computer program product for data quality analysis
CN111462845A (zh) 动态表单生成方法、装置、计算机设备和存储介质
WO2019205373A9 (zh) 相似用户查找装置、方法及计算机可读存储介质
US20230004536A1 (en) Systems and methods for a data search engine based on data profiles
US11483408B2 (en) Feature-based network embedding
WO2021147251A1 (zh) 物联网设备连接测试方法、装置、计算机设备及存储介质
WO2022110444A1 (zh) 云原生资源动态预测方法、装置、计算机设备及存储介质
TWI670623B (zh) 獲取設備指紋的方法及裝置
CN113836131B (zh) 一种大数据清洗方法、装置、计算机设备及存储介质
CN109426600B (zh) 数据采集处理方法、装置、设备及可读存储介质
CN112306835B (zh) 用户数据监控分析方法、装置、设备及介质
WO2019227711A1 (zh) 流感预测模型的生成方法、装置及计算机可读存储介质
CN109933502B (zh) 电子装置、用户操作记录的处理方法和存储介质
CN111177113A (zh) 数据迁移方法、装置、计算机设备和存储介质
CN112035611A (zh) 目标用户推荐方法、装置、计算机设备和存储介质
CN110807050B (zh) 性能分析方法、装置、计算机设备及存储介质
CN112346775A (zh) 指标数据通用处理方法、电子设备和存储介质
CN110674020B (zh) App智能推荐方法、装置及计算机可读存储介质
CN112181794A (zh) 页面监听方法、装置、计算机设备及存储介质
CN116450723A (zh) 数据提取方法、装置、计算机设备及存储介质
Lakshmanan et al. Detecting changes in a semi-structured business process through spectral graph analysis
US20230033753A1 (en) Automatic improvement of software applications
WO2021042528A1 (zh) Noe4j图数据库的更新维护方法、装置及计算机可读存储介质
CN112308172B (zh) 一种识别方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915858

Country of ref document: EP

Kind code of ref document: A1