WO2021147110A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2021147110A1
WO2021147110A1 PCT/CN2020/074037 CN2020074037W WO2021147110A1 WO 2021147110 A1 WO2021147110 A1 WO 2021147110A1 CN 2020074037 W CN2020074037 W CN 2020074037W WO 2021147110 A1 WO2021147110 A1 WO 2021147110A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
information
harq process
configuration
modulo
Prior art date
Application number
PCT/CN2020/074037
Other languages
English (en)
French (fr)
Inventor
许斌
单宝堃
李秉肇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20915109.1A priority Critical patent/EP4084373A4/en
Priority to PCT/CN2020/074037 priority patent/WO2021147110A1/zh
Priority to CN202080093940.3A priority patent/CN114982160A/zh
Publication of WO2021147110A1 publication Critical patent/WO2021147110A1/zh
Priority to US17/869,274 priority patent/US20220361233A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a data transmission method and device.
  • Hybrid Automatic Repeat reQuest In the field of communication technology, in order to ensure the reliability of data transmission, when transmitting data, a hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) method is usually used for feedback and retransmission.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest, HARQ
  • the embodiments of the present application provide a data transmission method and device, and a terminal device can perform the same HARQ operation for the same service, thereby improving the flexibility of data transmission.
  • a data transmission method which is applicable to a communication device
  • the communication device is, for example, a terminal device, and includes: receiving first information; the first information is used to indicate the hybrid automation associated with the first configuration authorization
  • the retransmission requests the HARQ function of the HARQ process to be turned on or off, the first configuration authorization is configured by radio resource control RRC signaling; the first configuration authorization is used for data transmission according to the first information.
  • the first information can be used to ensure that the HARQ function status of all HARQ processes associated with the same configured grant is consistent. For example, when a terminal device transmits data through a configured grant, the HARQ function of the HARQ process is enabled. Or, when the terminal device transmits data through the configured grant, the HARQ function of the HARQ process is closed. It can be seen that the embodiment of this application can ensure that the HARQ function status of the HARQ process used by multiple transmission opportunities authorized by the same configuration of the RRC signaling configuration is consistent, and the terminal device uses the same HARQ operation when authorized by the same configuration to perform the same service, which is better. To match the service requirements of the terminal equipment to improve the data transmission performance, among which, each transmission opportunity of the configuration authorization corresponds to a HARQ process.
  • the method further includes: receiving second information; the second information is used to indicate that the HARQ function of the first HARQ process is turned on and/or the second HARQ The HARQ function of the process is turned off.
  • the HARQ process available to the terminal device and the HARQ function state of the available HARQ process can also be configured through the second information.
  • the terminal device can select the HARQ process consistent with the HARQ function status indicated by the first information in the available processes to ensure that the data transmission authorized by the first configuration performs the same
  • both the HARQ function is turned on or the HARQ function is turned off, which improves the flexibility of data transmission.
  • the second information is only applicable to dynamically scheduled resources, and the method further includes: when using the first configuration to authorize data transmission Ignore the instructions of the second message.
  • the terminal device can determine the HARQ function status of the dynamic scheduling resource (also called dynamic authorization) according to the second information, and only determine the configuration authorization (also called the configuration resource) according to the first information.
  • HARQ function status ignoring the indication of the second information, therefore, it can be guaranteed that the first configuration authorization is mapped to the HARQ process consistent with the HARQ function status indicated by the first information, and the data transmission performed through the first configuration authorization performs the same HARQ Operation, all enable the HARQ function or all disable the HARQ function to improve the flexibility of data transmission.
  • using the first configuration to authorize data transmission according to the first information includes: according to the first information and the second information Use the first configuration authorization for data transmission.
  • both the first information and the first information may be applicable to configuration authorization, and the HARQ function status of the first configuration authorization may be determined according to the first information and the second information.
  • the priority of the first information is higher than the priority of the second information.
  • the priority of the first information is higher than that of the second information.
  • the HARQ function authorized by the first configuration can be determined according to the first information. state.
  • the method further includes: determining a third HARQ process, the third The HARQ process is associated with the first configuration authorization, where the HARQ function status of the third HARQ process is consistent with the HARQ function status authorized by the first configuration.
  • the first configuration authorization can be mapped to the HARQ process with the same HARQ function status to ensure that the data transmission performed through the first configuration authorization performs the same HARQ operate.
  • the embodiment of the present application provides a method for determining the HARQ process index. According to the HARQ process index, one HARQ process in the first process set can be determined, thereby mapping the first configuration authorization to the HARQ process with the same HARQ function status.
  • the embodiment of the present application provides another method for determining the HARQ process index. According to the HARQ process index, one HARQ process in the first process set can be determined, thereby mapping the first configuration authorization to the HARQ process with the same HARQ function status.
  • the embodiment of the present application provides another method for determining the HARQ process index. According to the HARQ process index, one HARQ process in the first process set can be determined, thereby mapping the first configuration authorization to the HARQ process with the same HARQ function status.
  • the priority of the first information is higher than the priority of the second information.
  • the method further includes: determining a third HARQ process The third HARQ process is associated with the first configuration authorization, wherein the HARQ function status of the third HARQ process is consistent with the HARQ function status authorized by the first configuration.
  • the processing unit is specifically configured to use the first configuration to authorize data transmission according to the first information and the second information.
  • the processing unit is further configured to determine the third HARQ process The third HARQ process is associated with the first configuration authorization, wherein the HARQ function status of the third HARQ process is consistent with the HARQ function status authorized by the first configuration.
  • a communication device configured to be, for example, a network device. It includes: a communication unit, configured to send first information to the terminal device, the first information is used to indicate that the HARQ function of the HARQ process associated with the first configuration authorization is turned on or off, the first configuration authorization is configured by radio resource control RRC signaling
  • the processing unit is configured to use the first configuration to authorize data transmission with the terminal device according to the first information.
  • the communication unit is further configured to send second information to the terminal device; the second information is used to indicate that the HARQ function of the first HARQ process is turned on and/or the first HARQ process 2.
  • the HARQ function of the HARQ process is closed.
  • the second information is only applicable to dynamically scheduled resources, and the processing unit is also used to authorize data using the first configuration The instruction of the second information is ignored during transmission.
  • the processing unit is further configured to use the first configuration to authorize data transmission according to the first information and the second information.
  • the priority of the first information is higher than the priority of the second information.
  • the processing unit is further configured to determine the third HARQ process The third HARQ process is associated with the first configuration authorization, wherein the HARQ function status of the third HARQ process is consistent with the HARQ function status authorized by the first configuration.
  • the communication unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc., and the transceiver may be an integrated
  • the processing module can be a processor, such as a baseband chip.
  • the communication unit may be a radio frequency unit, and the processing module may be a processor.
  • the communication device is a chip system
  • the communication unit may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system, such as a central processing unit (CPU).
  • CPU central processing unit
  • a communication device including at least one processor and a communication interface.
  • the processor is configured to execute the method described in the second aspect and any one of the implementation manners of the second aspect, or, the first aspect and the first aspect. On the one hand, any of the methods described in the implementation manner.
  • the communication interface is used for communication between the communication device and other devices.
  • the communication device may further include a memory, and the at least one processor may be coupled with the memory; the memory is used to store a computer program;
  • the at least one processor is configured to execute a computer program stored in the memory, so that the apparatus executes the method according to any one of the foregoing second aspect and the second aspect, or, the foregoing first aspect And the method described in any implementation manner of the first aspect.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; When the device is running, the communication device is caused to execute the communication method described in the second aspect and any one of the implementation manners of the second aspect.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; When the device is running, the communication device is caused to execute the communication method described in the first aspect and any one of the implementation manners of the first aspect.
  • a wireless communication device includes a processor, for example, applied to a communication device for implementing the method described in the first aspect and any one of the implementation manners of the first aspect.
  • the device may be a chip system, for example.
  • the chip system further includes a memory, and the memory is configured to store program instructions and data necessary to realize the functions of the method described in the first aspect.
  • a wireless communication device includes a processor, for example, applied to a communication device for implementing the above-mentioned second aspect and the method involved in any one of the implementation manners of the second aspect Function or method, the communication device may be a chip system, for example. In a feasible implementation manner, the chip system further includes a memory for storing program instructions and data necessary to realize the functions of the method described in the second aspect.
  • the chip system in the above aspect may be a system on chip (SOC), or a baseband chip, etc., where the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • a communication system including network equipment and terminal equipment.
  • the terminal device receives the first information, and uses the first configuration authorization to perform data transmission according to the first information.
  • Figure 3 is a schematic diagram of an existing HARQ mapping method
  • FIG. 4b is another structural block diagram of a communication device provided by an embodiment of this application.
  • Figures 12 to 15 are another structural block diagrams of a communication device provided by an embodiment of the application.
  • FIG. 1 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
  • the communication system may include multiple network devices (only network device 100 is shown) and multiple terminal devices (only shown in the figure).
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solutions provided in this application.
  • the communication system supports side-line communication, such as: device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • the network equipment and the terminal equipment can perform uplink and downlink transmission through the cellular link (Uu link), and the terminal equipment can communicate through the side link (sidelink link), such as D2D communication, V2X communication, and machine Type communication (machine type communication, MTC), etc.
  • sidelink link such as D2D communication, V2X communication, and machine Type communication (machine type communication, MTC), etc.
  • the network device 100 is mounted on a high-altitude aircraft (for example, a satellite), the high-altitude aircraft orbits the earth cycle, and the terminal device (using terminal device 201 as an example) is located on the ground. Since the signal coverage provided by the network device 100 is relatively large and its orbital period is short, for the terminal device 201, when the signal coverage provided by the network device 100 periodically appears in the same geographic area, the terminal device 201 generally does not Move out of this geographic area. Referring to FIG. 1, when the network device 100 runs somewhere in its track, the terminal device 201 can obtain system information of the network device 100 and communicate within the signal coverage area of the network device 100. When the network device 100 continues to operate, the terminal device 201 will leave the signal coverage area of the network device 100, and the network device 100 will no longer provide signal coverage for the terminal device 201.
  • a high-altitude aircraft for example, a satellite
  • the terminal device using terminal device 201 as an example
  • the network device 100 (for example, a base station) is on the ground, and the terminal device communicates with the core network device through the network device on the ground.
  • the network device 100 may be any device with a wireless transceiving function. Including but not limited to: evolved base station (E-UTRAN NodeB or e-NodeB or eNB) in LTE, base station (gNodeB or gNB) or transmission point (transmission) in 5G or new radio (NR) access technology /reception point, TRP), 3GPP subsequent evolution of base stations, access nodes in the WiFi system, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a wireless controller in an access network, CRAN) scenario, a centralized unit (CU), and/a distributed unit (DU) .
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and it can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations of different technologies.
  • a terminal device can communicate with a base station that supports an LTE network, can also communicate with a base station that supports a 5G network, and can also support communication with a base station of an LTE network and a base station of a 5G network. Double connection.
  • a terminal device (such as terminal device 201) is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed In the air (for example, on airplanes, balloons, satellites, etc.).
  • the terminal equipment may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control ( Wireless terminals in industrial control), vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, etc.
  • the embodiments of this application do not limit the application scenarios.
  • Terminals can sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal can also be fixed or mobile.
  • the terminal device of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit that is built into a vehicle as one or more components or units. The vehicle passes through the built-in vehicle-mounted module, vehicle-mounted module, An on-board component, on-board chip, or on-board unit can implement the method of the present application.
  • configuration authorization may also be referred to as configuration scheduling or configuration resource.
  • Configuration authorization can include type 1 configuration resources (type 1) and type 2 configuration resources (type 2).
  • Configuration resources can also be called grant free, and configuration resource type 2 can also be called SPS (semi-persistent scheduling). , Semi-persistent scheduling).
  • SPS sub-persistent scheduling
  • the base station can also activate the configured grant through downlink control information (DCI), and then the terminal device can perform data transmission through the configured grant. The terminal device does not need to use the DCI for activation when using the first type of configuration resource for data transmission.
  • DCI downlink control information
  • the configuration resource is used for data transmission, that is, data is transmitted on the configuration authorization. If the HARQ function is configured during data transmission, the HARQ process needs to be executed according to the HARQ function status.
  • the base station sends DCI to the terminal device through the physical downlink control channel (PDCCH).
  • the DCI can dynamically indicate the resources and HARQ information configured by the base station.
  • the HARQ information can include the HARQ process number and redundancy version. Wait.
  • Such resources that use DCI for dynamic scheduling can be referred to as dynamic authorization, and dynamic authorization can also be referred to as dynamic scheduling resources.
  • One HARQ entity can contain multiple HARQ processes.
  • multiple HARQ processes can be used to transmit different data in parallel between the terminal device and the network device.
  • Different data transmissions are associated with different HARQ processes.
  • Equipment and network equipment can identify the corresponding data transmission through the process identification.
  • the HARQ process is used for data transmission, which can be understood as associating the HARQ process with one data transmission. For example, if process 1 is used to transmit data packet 1 on a transmission resource (for example, configuration authorization or dynamic authorization), it can be understood that this transmission of data packet 1 is associated with process 1, and is processed in terminal equipment and network equipment. At the time, the data packet 1 will be placed in the HARQ buffer corresponding to the process 1 for processing. If there is a subsequent retransmission for the data packet 1, the same HARQ process will be used to ensure that the terminal device and the network device can recognize the transmission It is for the retransmission of data packet 1, and then performs HARQ combining.
  • a transmission resource for example, configuration authorization
  • a network device can use a certain HARQ process to send data, receive HARQ feedback information of the corresponding process from the terminal device, and retransmit the data to the terminal device according to the feedback information.
  • the terminal device can use a certain HARQ process to send data to the network device, and receive the HARQ feedback information corresponding to the HARQ process sent by the network device.
  • the HARQ feedback information is used to indicate the receiving status of data corresponding to a certain HARQ process. Assuming that the data is successfully received, the HARQ feedback information corresponding to the HARQ process is an acknowledgement (acknowledgement, ACK). Assuming that the data is not successfully received, the HARQ feedback information corresponding to the HARQ process is a negative acknowledgement (NACK).
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the media access control (MAC) entity of the terminal device maintains multiple HARQ entities for the terminal device, and one HARQ entity can maintain multiple parallel HARQ processes.
  • the receiving end successfully decodes the data packet after receiving the data packet from the sending end, the receiving end sends an ACK to the sending end, and the sending end will send the next data packet after receiving the ACK.
  • the receiver can discard the data packet and send a NACK to the sender. After receiving the NACK, the sender will retransmit the data packet.
  • the terminal device may also use HARQ with soft combining (HARQ with soft combining) technology to improve decoding performance. For example, save the unsuccessfully decoded data packet in the corresponding HARQ buffer of the process, and combine it with the retransmitted data packet received subsequently, and decode the combined data packet. Compared with decoding a data packet alone, it can improve reliability.
  • HARQ with soft combining HARQ with soft combining
  • the HARQ process ID is the HARQ ID used to identify the HARQ process.
  • Each HARQ entity of the terminal device maintains a certain number of HARQ processes through the HARQ ID to distinguish different HARQ processes.
  • the HARQ function state may include an on state or an off state, or in other words, an enabled state (enabled) or a disabled state (disabled).
  • HARQ feedback includes ACK or NACK.
  • the sender and receiver may not maintain the HARQ buffer for the process. After the sender sends a certain data packet, it does not need to buffer the data packet. When the receiver receives the data packet, Regardless of whether the connection is successful or the reception fails, there is no need to send HARQ feedback to the sender. If the reception fails, you can choose to discard the data packet without putting it in the buffer to wait for HARQ combination.
  • HARQ process ID satisfies the following formula:
  • T represents the identifier CURRENT_symbol of the symbol that appears in the transmission opportunity
  • P represents the period of resource configuration
  • M represents the maximum number of HARQ processes in one HARQ entity configured by the terminal device.
  • the HARQ entity is the HARQ entity corresponding to the serving cell where the terminal device resides, and the HARQ process maintained by the HARQ entity may be configured by the network device through RRC signaling.
  • "floor" is the round-down operation
  • modulo is the modulus operation.
  • configuration authorization is configured for the same service with the same quality of service (QoS) or configured for the same service, and when the same service of the terminal device uses the configured resources in some transmission opportunities, the calculated HARQ of the HARQ process
  • QoS quality of service
  • the calculated HARQ of the HARQ process The function is turned on, and when other transmission opportunities use the configured resources, the calculated HARQ function of the HARQ process is turned off, resulting in different HARQ functions of the same service, which affects the data transmission performance.
  • the HARQ function needs to be turned off and the HARQ feedback information is not sent, which can reduce the data transmission delay.
  • the configuration resource may be mapped to the HARQ process enabled by the HARQ function, resulting in transmission
  • the increase in time delay cannot meet business needs.
  • the HARQ processes maintained by one HARQ entity of the terminal equipment are 1-8, where the HARQ functions of the HARQ processes corresponding to the HARQ processes 1 to 4 are turned on, and the HARQ functions of the HARQ processes 5 to 8 are turned off.
  • the process numbers used by the four transmission opportunities authorized by the configuration in Fig. 2 are calculated as 1, 2, 5, and 6, respectively, according to the above formula (1).
  • the HARQ functions of HARQ processes 1 and 2 are turned on, and the HARQ functions of HARQ processes 5 and 6 are turned off. Assuming the service delay-sensitive service of the terminal device, enabling the HARQ function terminal device to feed back ACK or NACK will increase the transmission delay and cannot meet the service requirements.
  • the embodiment of the present application provides a data transmission method in which a terminal device receives first information; the first information is used to indicate that the HARQ function of the HARQ process associated with the first configuration resource is turned on or off, and the first configuration resource is The radio resource control is configured by RRC signaling.
  • the terminal device may also use the first configuration resource to perform data transmission according to the first information, for example, determine whether to enable the HARQ function when using the first configuration resource for data transmission according to the first information.
  • the first information can be used to ensure that the HARQ function status of all HARQ processes associated with the same configured grant is consistent.
  • the embodiment of this application can ensure that the HARQ function status of the HARQ process used by multiple transmission opportunities authorized by the same configuration of the RRC signaling configuration is consistent, and the terminal device uses the same HARQ operation when authorized by the same configuration to perform the same service, which is better.
  • each transmission opportunity of the configuration authorization corresponds to a HARQ process.
  • FIG. 4a shows a schematic diagram of the hardware structure of a communication device 410 provided by an embodiment of the application.
  • the communication device 410 includes a processor 4101, a memory 4102, and at least one communication interface (in FIG. 4a, it is only an example and the communication interface 4103 is included as an example for illustration).
  • the processor 4101, the memory 4102, and the communication interface 4103 are connected to each other.
  • the communication device 410 may not include the memory 4102.
  • the processor 4101 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication interface 4103 using any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN) Wait.
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 4102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently, or it can be connected to the processor. The memory can also be integrated with the processor.
  • the memory 4102 is used to store computer-executable instructions for executing the solution of the present application, and the processor 4101 controls the execution.
  • the processor 4101 is configured to execute computer-executable instructions stored in the memory 4102, so as to implement the intention processing method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 4101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4a.
  • the communication device 410 may include multiple processors, such as the processor 4101 and the processor 4106 in FIG. 4a.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 410 may further include an output device 4104 and an input device 4105.
  • the output device 4104 communicates with the processor 4101 and can display information in a variety of ways.
  • the output device 4104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 4105 communicates with the processor 4101, and can receive user input in a variety of ways.
  • the input device 4105 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the aforementioned communication device 410 may be a general-purpose device or a special-purpose device.
  • the communication device 410 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in Figure 4a. equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 410.
  • the communication device 410 may be a complete terminal machine, may also be a functional component or component that implements the terminal, or may be a communication chip, such as a baseband chip.
  • the communication interface may be a radio frequency module.
  • the communication interface 4103 may be an input/output interface circuit of the chip, and the input/output interface circuit is used to read in and output baseband signals.
  • Figure 4b is a schematic diagram of the structure of a network device.
  • the structure of the network device 420 can refer to the structure shown in FIG. 4b.
  • the network device includes at least one processor 4201, at least one memory 4202, at least one transceiver 4203, at least one network interface 4204, and one or more antennas 4205.
  • the processor 4201, the memory 4202, the transceiver 4203 and the network interface 4204 are connected, for example, by a bus.
  • the antenna 4205 is connected to the transceiver 4203.
  • the network interface 4204 is used for the network device to connect to other communication devices through a communication link, for example, the network device is connected to the core network element through the S1 interface.
  • the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the network device 420 may not include the memory 4202.
  • the processor in the embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a microprocessor, Application-Specific Integrated Circuit (ASIC), Microcontroller Unit (MCU), Field Programmable Gate Array (FPGA), or integrated circuit used to implement logic operations .
  • the processor 4201 may be a single-CPU processor or a multi-CPU processor.
  • the at least one processor 4201 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory Random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory Random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a CD-ROM (compct disc read-only memory), other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • other optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 4202 may exist independently and is connected to the processor 4201.
  • the memory 4202 may also be integrated with the processor 4201, for example, integrated in one chip.
  • the memory 4202 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 4201 controls execution, and various types of computer program codes executed can also be regarded as driver programs of the processor 4201.
  • the processor 4201 is configured to execute computer program codes stored in the memory 4202, so as to implement the technical solutions in the embodiments of the present application.
  • the transceiver 4203 may be used to support the reception or transmission of radio frequency signals between the network device and the terminal device, and the transceiver 4203 may be connected to the antenna 4205.
  • one or more antennas 4205 can receive radio frequency signals
  • the transceiver 4203 can be used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband signals or
  • the digital intermediate frequency signal is provided to the processor 4201, so that the processor 4201 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transceiver 4203 can be used to receive a modulated digital baseband signal or digital intermediate frequency signal from the processor 4201, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through one or more antennas 4205 Sending the radio frequency signal.
  • the transceiver 4203 may selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of precedence is adjustable.
  • the transceiver 4203 can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and digital-to-analog conversion processing The order of precedence is adjustable. Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver may be called a transceiver circuit, a transceiver unit, a transceiver device, a transmission circuit, a transmission unit, or a transmission device, etc.
  • the communication device 420 may be a complete network device, a component or component that realizes the function of the network device, or a communication chip.
  • the transceiver 4203 may be an interface circuit of the chip, and the interface circuit is used to read in and output baseband signals.
  • the embodiment of the present application provides a HARQ indication method. As shown in FIG. 5, the method includes the following steps:
  • a network device sends first information to a terminal device.
  • the first information is used to indicate that the HARQ function of the HARQ process associated with the first configuration authorization is turned on or off, and the first configuration authorization is configured by radio resource control RRC signaling.
  • the first configuration authorization is Configured grant.
  • the network device is configured with configuration authorization through RRC signaling, that is, the first configuration authorization is semi-persistent scheduling.
  • the configuration authorization includes a plurality of transmission opportunities that occur periodically, and the terminal device can use the configuration authorization for data transmission at each transmission opportunity.
  • the HARQ process associated with the first configuration authorization that is, the HARQ process used by the transmission opportunity authorized by the first configuration.
  • a HARQ process is used to perform data transmission through the first configuration authorization. It can be understood that a data transmission performed at a transmission opportunity authorized by the first configuration is identified by the HARQ process, including Data reception and data transmission authorized by the first configuration. It should be noted that the data transmission includes data and/or signaling transmission.
  • the first configuration authorization includes four transmission opportunities A, B, C, and D.
  • the HARQ processes used in these four transmission opportunities are processes 1 to 4, and the HARQ process associated with the first configuration authorization is processes 1 to 4. .
  • the first information may indicate the HARQ function status of all HARQ processes associated with a configuration authorization of an RRC signaling configuration, so as to ensure that the HARQ function status of all HARQ processes associated with the same configuration authorization is consistent.
  • the HARQ process associated with the first configuration authorization is used for the terminal device and the network device to perform data transmission through the first configuration authorization. Take the following line transmission as an example.
  • the HARQ process associated with the first configuration authorization is HARQ process 1.
  • the network device can use HARQ process 1 to send new or retransmitted data to the terminal device through the first configuration authorization, and the terminal device can use HARQ process 1.
  • the first information is indication information for the first configuration authorization, and each HARQ process associated with the first configuration authorization turns on or off the HARQ function according to the instructions of the first information.
  • the first information may be a bit, and the bit has two states: the first state and the second state.
  • the first information is the first state, which may indicate that the HARQ function of the HARQ process associated with the first configuration authorization is turned on; the first information is the second state, which may indicate that the HARQ function of the HARQ process associated with the first configuration authorization is turned off.
  • the first state is "1" and the second state is "0".
  • the first information may be of Boolean type, and it is “true” or “false” to indicate that the status of the HARQ function is on or off;
  • the first information may indicate the status of the HARQ function through whether a certain cell or field appears in the signaling. For example, if the signaling includes the first information element, it indicates that the HARQ function is turned on, and if the first information element is not included, it indicates that the HARQ function is turned off.
  • the first indication information may be included in RRC signaling used to configure the first configuration authorization.
  • the first indication information may be included in a DCI used to activate a certain configuration authorization. In another possible implementation manner, the first indication information may be included in a MAC CE (control element, control element) used to indicate the status of the HARQ function.
  • MAC CE control element, control element
  • the terminal device receives first information, and uses the first configuration authorization to perform data transmission according to the first information.
  • the terminal device may determine the HARQ function state authorized by the first configuration according to the first information.
  • the HARQ function status authorized by the first configuration may be the HARQ function status indicated by the first information, that is, the HARQ function status of the HARQ process associated with the first configuration authorization. Whether the HARQ function of the HARQ process used for each authorized transmission opportunity is enabled.
  • the terminal device determines the HARQ function status authorized by the first configuration
  • the first configuration authorization needs to be associated with the specific HARQ process, that is, the first configuration authorization is used for association
  • the HARQ process performs data transmission, and at the same time, the HARQ function is executed according to the HARQ function status indicated by the first information.
  • using the HARQ process associated with the first configuration authorization for data transmission can also be understood as using the HARQ process associated with the first configuration authorization to identify the data transmission performed on the first configuration authorization, where the data transmission may include: data reception or data transmission Or the corresponding HARQ feedback or retransmission operation.
  • executing the HARQ function according to the HARQ function status indicated by the first information may also be understood as executing the corresponding HARQ operation according to the HARQ function status authorized by the first configuration.
  • the HARQ function authorized by the first configuration is turned on, and the terminal device or the network device performs HARQ feedback or HARQ retransmission for the data received on the first configuration authorization.
  • the sending end may buffer the data sent on the first configuration authorization, so as to retransmit the data after receiving the NACK sent by the receiving end.
  • the receiving end may buffer the data sent on the first configuration authorization, so that after receiving the retransmission from the sending end, the data can be combined and decoded.
  • the network device can configure the available HARQ process or the total number of HARQ processes for the terminal device, and can further specify the HARQ process in which the HARQ function is enabled and the HARQ process in which the HARQ function is disabled.
  • the method shown in FIG. 5 further includes step 503: the terminal device receives second information from the network device; the second information is used to indicate that the HARQ function of the first HARQ process is turned on and/or the HARQ function of the second HARQ process is turned off .
  • the second information may be used to indicate the HARQ function status of the HARQ process.
  • the first HARQ process and the second HARQ process are only examples, and the second information may also indicate other HARQ processes.
  • the HARQ process function status of the HARQ process for example, the third HARQ process described in the embodiment of the present application.
  • the second information is the indication information for the HARQ process.
  • the indication granularity of the second information is the HARQ process.
  • Each HARQ process configured by the second information can enable or disable the HARQ function according to the instructions of the second information.
  • the second indication information may be included in RRC signaling used to configure HARQ, or may be included in RRC signaling used to configure configured grant, or may be included in RRC signaling used to configure a physical downlink data channel (physical downlink data channel). Shared channel, PDSCH) or physical uplink data channel (physical uplink share channel, PUSCH) RRC signaling.
  • the second information may also be included in the MAC CE or DCI used to change the HARQ function state.
  • the network device configures the terminal device with HARQ processes 1 to 8 through the second information.
  • the second information may also indicate that the HARQ functions of HARQ processes 1 to 4 are started, and the HARQ functions of HARQ processes 5 to 8 are turned off.
  • the terminal device combines the first information and the second information to associate the first configuration authorization with the HARQ process with the same HARQ function status in the following two ways, which specifically include:
  • Method 1 The application scope or priority of the first information and the second information can be limited. Based on this, the terminal device can determine the HARQ function status authorized by the first configuration in the following two ways: a and b:
  • the second information is only applicable to dynamic scheduling resources.
  • the HARQ function status of the configuration authorization (for example, the first configuration authorization) is determined according to the first information, and the HARQ function status of the dynamic authorization may also be determined according to the second information.
  • the HARQ function status of the dynamic authorization may be the HARQ function status of the HARQ process associated with the dynamic authorization.
  • the HARQ process associated with the dynamic authorization may be the HARQ process used during data transmission through the dynamic authorization.
  • the network device can specify the HARQ process used for this scheduling in the DCI, and the terminal device can determine whether the HARQ function status of the HARQ process used for this scheduling is on or off according to the second information.
  • the network device configures the terminal device with HARQ processes 1 to 8 through the second information.
  • the second information may also indicate that the HARQ functions of HARQ processes 1 to 4 are started, and the HARQ processes of HARQ processes 5 to 8 are started.
  • the HARQ function is turned off.
  • the network device also indicates the dynamic scheduling resource F and the process number "5" of the HARQ process used for data transmission on the dynamic scheduling resource F through the DCI.
  • the HARQ function of the HARQ process 5 is turned off. Therefore, the HARQ function is turned off when the HARQ process 5 is used for data transmission on the dynamic scheduling resource F.
  • the network device does not buffer the data corresponding to the HARQ process 5, and the terminal device does not send HARQ feedback information to indicate the reception status of the data corresponding to the HARQ process 5.
  • the base station can configure periodically distributed configured grants for data transmission.
  • the terminal device can calculate a HARQ process number for each transmission opportunity corresponding to it, and use the HARQ process corresponding to the process number to perform data transmission through the configuration authorization at the transmission opportunity.
  • it is determined according to the first information whether the HARQ function status of the HARQ process used for each transmission opportunity of the configuration authorization is on or off.
  • the terminal device or the network device ignores the indication of the second information when using the first configuration authorization for data transmission, and executes the corresponding HARQ operation according to the HARQ function status indicated by the first information.
  • the HARQ function of the HARQ process associated with the authorization of the first configuration may be changed according to the first information, and when the associated HARQ process is again dynamically authorized to be used, the corresponding HARQ function status indicated by the second information is executed. HARQ operation.
  • the terminal device uses the process 5 for the third transmission opportunity authorized by the first configuration, it starts the HARQ function of the HARQ process 5 according to the first information.
  • the HARQ function of the HARQ process 5 is turned off according to the second information.
  • the HARQ process is used up means that the data packet corresponding to the HARQ process is successfully received, or the HARQ is used for new data packet transmission.
  • the second information is suitable for dynamic resource scheduling and configuration authorization.
  • the terminal device uses the first configuration authorization to perform data transmission according to the first information and the second information.
  • the terminal device may determine the HARQ function status of the HARQ process associated with the first configuration authorization according to the higher priority information in the first information and the second information.
  • the priority may be predefined, pre-configured, or the priority may be indicated in the first information and the second information.
  • HARQ process 5 Taking HARQ process 5 as an example, if the first information indicates that the HARQ function of HARQ process 5 is turned on, and the second information indicates that the HARQ function of HARQ process 5 is turned on, then the HARQ function of HARQ process 5 is turned on;
  • HARQ process 5 Taking HARQ process 5 as an example, if the first information indicates that the HARQ function of HARQ process 5 is turned off, and the second information indicates that the HARQ function of HARQ process 5 is turned on, then the HARQ function of HARQ process 5 is turned off;
  • HARQ process 5 Taking HARQ process 5 as an example, if the first information indicates that the HARQ function of HARQ process 5 is turned off, and the second information indicates that the HARQ function of HARQ process 5 is turned off, then the HARQ function of HARQ process 5 is turned off;
  • HARQ process 5 Taking HARQ process 5 as an example, if the first information indicates that the HARQ function of HARQ process 5 is turned off, and the second information indicates that the HARQ function of HARQ process 5 is turned on, then the HARQ function of HARQ process 5 is turned off.
  • the terminal device can also calculate the process number of the HARQ process associated with the first configuration authorization according to the calculation method of the prior art, and use the corresponding HARQ process to pass the first configuration.
  • the corresponding HARQ operation is performed according to the HARQ function state authorized by the first configuration.
  • the HARQ process number associated with the first configuration authorization is calculated according to the aforementioned formula (1), and the HARQ process corresponding to the HARQ process number (for example, the third HARQ process described in the embodiment of this application) is passed
  • the HARQ function of the HARQ process corresponding to the HARQ process number is turned on or the HARQ function of the HARQ process corresponding to the HARQ process number is turned off according to the HARQ function status authorized by the first configuration.
  • the HARQ process number calculated by combining the above formula (1) according to the symbol identification where the first configuration is authorized is "5", assuming that the HARQ function status authorized by the first configuration is on, then the first configuration is authorized
  • the HARQ process corresponding to the process number "5" can be used to identify one data transmission, and the HARQ function is enabled.
  • the terminal device feeds back ACK or NACK for this data transmission.
  • Method 2 Without limiting the scope or priority of the first information and the second information, the terminal device can determine the HARQ function status authorized by the first configuration according to the first information, and calculate the index of the HARQ process number associated with the first configuration authorization, The HARQ process is determined according to the index of the HARQ process number. Associate the first configuration authorization with the HARQ process with the same HARQ function status.
  • the index of the third HARQ process associated with the first configuration authorization is calculated, and the third HARQ process can be determined according to the index of the third HARQ process.
  • the third HARQ process may also be associated with the first configuration authorization, and when data transmission is performed through a transmission opportunity authorized by the first configuration, the third HARQ process is used to identify this data transmission.
  • the third HARQ process is associated with the first configuration authorization, which can be understood as mapping the first configuration authorization to the third HARQ process, or the third HARQ process is associated with a data transmission performed on the first configuration authorization .
  • the index of the third HARQ process is an index for the first process set, and is used to indicate the position of the third HARQ process in the first process set.
  • the first process set is a set of HARQ processes consistent with the HARQ function status authorized by the first configuration, for example, some processes in the HARQ process configured by the network device for a certain HARQ entity of the terminal device If the HARQ function of the HARQ function is turned on, and the HARQ functions of other HARQ processes are turned off, the first process set is the process set composed of processes with the HARQ function turned on or the process set composed of processes with the HARQ function turned off. Specifically, if the first information indicates that the HARQ function is enabled, the first process set is a set of HARQ processes in which the HARQ function is enabled among the available HARQ processes configured by RRC signaling. If the first information indicates that the HARQ function is turned off, the first process set is a set of HARQ processes in which the HARQ function is turned off among the available HARQ processes configured by RRC signaling.
  • the index of the HARQ process can be determined in the following ways E, F, G:
  • Manner E Calculate the index of the HARQ process according to the number M of HARQ processes in the first process set.
  • the index i of the third HARQ process is determined according to formula (2), and the i satisfies the following formula (2):
  • T is the identifier of the time unit where the first configuration authorization is located
  • the time unit is a symbol or a time slot or a subframe
  • the P is the period of the configuration authorization
  • the M is the first process set The number of processes
  • floor is round-down operation
  • modulo is modulo operation.
  • the index of the HARQ process will not exceed the number M of HARQ processes in the first process set. After determining the index i, it needs to be mapped to the HARQ process, and the number of indexes will not exceed the number of HARQ processes in the first set. number.
  • the third HARQ process is the i-th HARQ process in the first process set.
  • the M HARQ processes in the first process set are arranged in a certain order
  • the i-th HARQ process is the i-th HARQ process after sorting.
  • M HARQ processes are arranged in descending order of process numbers, or M HARQ processes are arranged in descending order of process numbers.
  • the first configuration authorization includes four transmission opportunities of A, B, C, and D.
  • the HARQ process configured by the network device for the terminal device through RRC signaling is 1 to 8. Among them, the HARQ process 1-3 and The HARQ function of HARQ process 6 is turned on, and the HARQ function of HARQ process 4-5 and HARQ process 7-8 is turned off.
  • the first process set is the HARQ process with the HARQ function enabled in HARQ processes 1 to 8, that is, the first process set is the set of HARQ processes 1-3 and HARQ process 6.
  • the fourth HARQ process in the first process set is HARQ process 6, that is, the third HARQ process is HARQ process 6. Transmission opportunity D actually uses HARQ process 6.
  • Method F Calculate the index of the HARQ process according to the maximum number N of HARQ processes configured by the RRC signaling, where N>M.
  • the index j of the third HARQ process is determined according to formula (3), and the j satisfies the following formula (3):
  • T is the identifier of the time unit where the first configuration authorization is located
  • the time unit is a symbol or a time slot or a subframe
  • the P is the period of the configuration authorization
  • the N is the HARQ process configured by RRC signaling
  • the total quantity, floor is round down operation
  • modulo is modulo operation.
  • the time unit where the first configuration authorization is located may be the time unit where a transmission opportunity of the first configuration authorization is located.
  • the calculated HARQ process index j may be greater than the number M of HARQ processes in the first process set.
  • T is the identifier of the time unit where the first configuration authorization is located
  • the time unit is a symbol or a time slot or a subframe
  • the P is the period of the configuration authorization
  • the N is the HARQ process configured by RRC signaling
  • the total quantity, floor is round down operation
  • modulo is modulo operation.
  • the time unit where the first configuration authorization is located may be the time unit where a transmission opportunity of the first configuration authorization is located.
  • the third HARQ process is the jth HARQ process in the first process set.
  • the M HARQ processes in the first process set are arranged in a certain order
  • the j-th HARQ process is the j-th HARQ process after sorting.
  • M HARQ processes are arranged in descending order of process numbers, or M HARQ processes are arranged in descending order of process numbers.
  • the first configuration authorization includes four transmission opportunities of A, B, C, and D.
  • the HARQ process configured by the network device for the terminal device through RRC signaling is 1 to 8. Among them, the HARQ process 1-3 and The HARQ function of HARQ process 6 is turned on, and the HARQ function of HARQ process 4-5 and HARQ process 7-8 is turned off.
  • the first indication information indicates that the HARQ function of the HARQ process associated with the first configuration authorization is enabled
  • the first process set is the set of HARQ processes 1-3 and HARQ process 6.
  • the first configuration authorization includes five transmission opportunities A, B, C, D, and E.
  • the HARQ process configured by the network device for the terminal device through RRC signaling is 1 to 8, where HARQ process 1-
  • the HARQ function of 3 and HARQ process 6 is turned on, and the HARQ function of HARQ process 4-5 and HARQ process 7-8 is turned off.
  • the index j of the HARQ process used at the transmission opportunity E is calculated by using formula (4) to be "5".
  • the first process set is the HARQ process enabled by the HARQ function in HARQ processes 1 to 8, that is, the first process set is the set of HARQ processes 1-3 and HARQ process 6. It can be seen that the index "5" of the third HARQ process exceeds the number "4" of HARQ processes in the first process set, and the modulo 5 can be continued to obtain the index "1" of the third HARQ process.
  • 5modulo4 1, that is, the index t of the third HARQ process is 1, which represents that the third HARQ process is the first HARQ process in the first process set.
  • the first HARQ process in the first process set is HARQ process 1
  • the third HARQ process is HARQ process 1.
  • transmission opportunity D HARQ process 1 is actually used.
  • the index t of the HARQ process used in the transmission opportunity E is calculated by formula (4) to be "2"
  • the index t is 2, which represents that the third HARQ process is the second HARQ process in the first process set.
  • the second HARQ process in the first process set is HARQ process 2 in the descending order of process numbers, that is, the third HARQ process is HARQ process 2.
  • HARQ process 2 is actually used.
  • the terminal device may determine the process ID of the third HARQ process according to other possible methods.
  • Method 1, method 2, method a, method b, method E, method F, and method G described in the embodiments of the present application are not limited to terminal devices, and network devices can also execute methods one and two. , Method a, Method b, Method E, Method F, and Method G, determine the HARQ function status authorized by the first configuration, and associate the first configuration authorization with the HARQ process with the same HARQ function status.
  • the first information can be used to ensure that the HARQ function status of all HARQ processes associated with the same configured grant is consistent. For example, when a terminal device transmits data through a configured grant, the HARQ function of the HARQ process is enabled. Or, when the terminal device transmits data through the configured grant, the HARQ function of the HARQ process is closed. It can be seen that the embodiment of this application can ensure that the HARQ function status of the HARQ process used by multiple transmission opportunities authorized by the same configuration of the RRC signaling configuration is consistent, and the terminal device uses the same HARQ operation when authorized by the same configuration to perform the same service, which is better. To match the service requirements of the terminal equipment to improve the data transmission performance, among which, each transmission opportunity of the configuration authorization corresponds to a HARQ process.
  • the communication device includes: a processing module 1301 and a communication module 1302.
  • the processing module 1301 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1201, and/or to perform other processes of the technology described herein.
  • the communication module 1302 is configured to perform the steps performed by the above-mentioned communication unit 1202, and supports interaction between the communication device and other devices, such as interaction with other devices.
  • the communication device may further include a storage module 1303, and the storage module 1303 is used to store the program code and data of the communication device.
  • the processing unit 1401 is configured to support the network device to generate the first information, the second information, and/or other processes used in the technology described herein.
  • the communication device includes: a processing module 1501 and a communication module 1502.
  • the processing module 1501 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1401, and/or to perform other processes of the technology described herein.
  • the communication module 1502 is configured to perform the steps performed by the above-mentioned communication unit 1402, and support interaction between the communication device and other devices, such as interaction with other first network equipment devices.
  • the communication device may further include a storage module 1503, and the storage module 1503 is used to store the program code and data of the communication device.
  • the processing module 1501 is a processor
  • the communication module 1502 is a transceiver
  • the storage module 1503 is a memory
  • the communication device is the communication device shown in FIG. 4b.
  • the embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores instructions; the instructions are used to execute the method shown in FIG. 5.
  • the embodiment of the present application provides a computer program product including instructions, which when running on a communication device, causes the communication device to execute the method shown in FIG. 5.
  • a wireless communication device in an embodiment of the present application includes: instructions stored in the wireless communication device; when the wireless communication device runs on the communication device shown in FIG. 4a, FIG. 4b, and FIG. 12 to FIG. The method shown in Figure 5.
  • the wireless communication device may be a chip.
  • the embodiment of the present application also provides a communication system, including: a terminal device and a network device.
  • the terminal device may be the communication device shown in FIG. 4a, FIG. 12, and FIG. 13, and the network device may be the communication device shown in FIG. 4b, FIG. 14, and FIG. 15.
  • the processor in the embodiment of the present application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU) ), or various computing devices running software such as artificial intelligence processors.
  • Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits).
  • the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the memory in the embodiments of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory , RAM) or other types of dynamic storage devices that can store information and instructions, and may also be electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • At least one refers to one or more.
  • Multiple means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the disclosed database access device and method can be implemented in other ways.
  • the embodiments of the database access device described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or
  • the components can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, database access devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置,涉及通信领域,终端设备可以针对同一业务执行相同的HARQ操作,提高数据传输的灵活性。所述方法包括:接收第一信息;所述第一信息用于指示第一配置授权所关联的混合自动重传请求HARQ进程的HARQ功能开启或者关闭,所述第一配置授权是由无线资源控制RRC信令配置的;根据所述第一信息使用所述第一配置授权进行数据传输。

Description

一种数据传输方法及装置 技术领域
本申请实施例涉通信领域,尤其涉及一种数据传输方法及装置。
背景技术
在通信技术领域,为了保证数据传输的可靠性,在传输数据时通常采用混合式自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)的方式进行反馈与重传。
现有技术中,对于同一个终端设备而言,终端设备的所有业务都采用相同的HARQ操作,例如,所有业务均反馈数据接收情况,或所有业务均不反馈数据接收情况。而一个终端设备存在多种不同传输需求的业务,HARQ技术虽然能提高数据传输可靠性,但是反馈、重传也会带来传输时延。现有技术无法根据不同业务的需求进行不同的数据传输处理,造成数据传输的灵活性不高。
发明内容
本申请实施例提供一种数据传输方法及装置,终端设备可以针对同一业务执行相同的HARQ操作,提高数据传输的灵活性。
第一方面,提供了一种数据传输方法,该方法适用于通信装置,所述通信装置例如为终端设备,包括:接收第一信息;第一信息用于指示第一配置授权所关联的混合自动重传请求HARQ进程的HARQ功能开启或者关闭,第一配置授权是由无线资源控制RRC信令配置的;根据第一信息使用第一配置授权进行数据传输。
本申请实施例提供的方法中,通过第一信息可以确保同一configured grant关联的所有HARQ进程的HARQ功能状态是一致的,例如,终端设备通过configured grant传输数据时,HARQ进程的HARQ功能均开启,或,终端设备通过configured grant传输数据时,HARQ进程的HARQ功能均关闭。可见,本申请实施例可以确保RRC信令配置的同一配置授权的多个传输机会使用的HARQ进程的HARQ功能状态保持一致,终端设备通过同一配置授权进行同一业务时使用相同的HARQ操作,更好地匹配终端设备的业务需求,提高数据传输性能,其中,配置授权的每个传输机会都会对应一个HARQ进程。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:接收第二信息;第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。
本申请实施例提供的方法中,还可以通过第二信息配置终端设备可用的HARQ进程以及可用的HARQ进程的HARQ功能状态。当第一信息指示了第一配置授权的HARQ功能状态,终端设备可以在可用的进程选择与第一信息指示的HARQ功能状态一致的HARQ进程,保证通过第一配置授权进行的数据传输执行相同的HARQ操作,均开启HARQ功能或均关闭HARQ功能,提高数据传输的灵活性。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,第二信息仅适用于动态调度资源,方法还包括:使用第一配置授权进行数据传输时忽 略第二信息的指示。
本申请实施例提供的方法中,终端设备可以根据第二信息确定动态调度资源(还可以称为动态授权)的HARQ功能状态,仅根据第一信息确定配置授权(还可以称为配置资源)的HARQ功能状态,忽略第二信息的指示,因此,可以保证将第一配置授权映射到与第一信息指示的HARQ功能状态一致的HARQ进程上,通过第一配置授权进行的数据传输执行相同的HARQ操作,均开启HARQ功能或均关闭HARQ功能,提高数据传输的灵活性。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,根据第一信息使用第一配置授权进行数据传输,包括:根据第一信息和第二信息使用第一配置授权进行数据传输。
本申请实施例提供的方法中,第一信息和第一信息可能均适用于配置授权,可以根据第一信息和第二信息确定第一配置授权的HARQ功能状态。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,第一信息的优先级高于第二信息的优先级。
本申请实施例提供的方法中,第一信息的优先级高于第二信息,当第一信息和第一信息可能均适用于配置授权,可以根据第一信息来确定第一配置授权的HARQ功能状态。
结合第一方面或第一方面的第一至第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述方法还包括:确定第三HARQ进程,所述第三HARQ进程关联于所述第一配置授权,其中,第三HARQ进程的HARQ功能状态与第一配置授权的HARQ功能状态一致。
本申请实施例中,确定了第一配置授权的HARQ功能状态后,还可以将第一配置授权映射到HARQ功能状态一致的HARQ进程,以保证通过第一配置授权进行的数据传输执行相同的HARQ操作。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,第三HARQ进程的进程为第一进程集合中的第i个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合;i满足以下公式:i=[floor(T/P)]modulo M;其中,T为第一配置授权所在的时间单位的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,M为第一进程集合中的进程的数量,floor为向下取整运算,modulo为取模运算。
本申请实施例提供了一种确定HARQ进程索引的方法,根据HARQ进程索引可以确定第一进程集合中的一个HARQ进程,从而将第一配置授权映射到HARQ功能状态一致的HARQ进程。
结合第一方面的第五种可能的实现方式,在第一方面的第七种可能的实现方式中,第三HARQ进程为第一进程集合中的第j个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合,j满足以下公式:j=[floor(T/P)]modulo N;其中,T为第一配置授权所在的时间单元的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。
本申请实施例提供了另一种确定HARQ进程索引的方法,根据HARQ进程索引可以确定第一进程集合中的一个HARQ进程,从而将第一配置授权映射到HARQ功能状态一致的HARQ进程。
结合第一方面的第五种可能的实现方式,在第一方面的第八种可能的实现方式中,第三HARQ进程为第一进程集合中的第t个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合,t满足以下公式:t={[floor(T/P)]modulo N}modulo M;其中,T为第一配置授权所在的时间单元的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算,M为第一进程集合中的进程的数量。
本申请实施例提供了另一种确定HARQ进程索引的方法,根据HARQ进程索引可以确定第一进程集合中的一个HARQ进程,从而将第一配置授权映射到HARQ功能状态一致的HARQ进程。
第二方面,提供了一种数据传输方法,该方法适用于通信装置,所述通信装置例如为网络设备,包括:向终端设备发送第一信息,第一信息用于指示第一配置授权所关联的HARQ进程的HARQ功能开启或者关闭,第一配置授权是由无线资源控制RRC信令配置的;根据第一信息使用第一配置授权与终端设备进行数据传输。
本申请实施例提供的方法中,通过第一信息可以确保同一configured grant关联的所有HARQ进程的HARQ功能状态是一致的,例如,终端设备通过configured grant传输数据时,HARQ进程的HARQ功能均开启,或,终端设备通过configured grant传输数据时,HARQ进程的HARQ功能均关闭。可见,本申请实施例可以确保RRC信令配置的同一配置授权的多个传输机会使用的HARQ进程的HARQ功能状态保持一致,终端设备通过同一配置授权进行同一业务时使用相同的HARQ操作,更好地匹配终端设备的业务需求,提高数据传输性能,其中,配置授权的每个传输机会都会对应一个HARQ进程。
结合第二方面,在第二方面的第一种可能的实现方式中,该方法还包括:向终端设备第二信息;第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,第二信息仅适用于动态调度资源,方法还包括:使用第一配置授权进行数据传输时忽略第二信息的指示。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,根据第一信息使用第一配置授权与终端设备进行数据传输,包括:根据第一信息和第二信息使用第一配置授权进行数据传输。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,第一信息的优先级高于第二信息的优先级。
结合第二方面或第二方面的第一至第四种可能的实现方式中的任意一种,在第二方面的第五种可能的实现方式中,所述方法还包括:确定第三HARQ进程,所述第三HARQ进程关联于所述第一配置授权,其中,第三HARQ进程的HARQ功能状态与第一配置授权的HARQ功能状态一致。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,第三HARQ进程的进程为第一进程集合中的第i个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合;i满足以下公式:i=[floor(T/P)]modulo M;其中,T为第一配置授权所在的时间单位的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,M为第一进程集合中的进程的数量,floor为向下取整运算,modulo为取模运算。
结合第二方面的第五种可能的实现方式,在第二方面的第七种可能的实现方式中,第三HARQ进程为第一进程集合中的第j个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合,j满足以下公式:j=[floor(T/P)]modulo N;其中,T为第一配置授权所在的时间单元的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。
结合第二方面的第五种可能的实现方式,在第二方面的第八种可能的实现方式中,第三HARQ进程为第一进程集合中的第t个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合,t满足以下公式:t={[floor(T/P)]modulo N}modulo M;其中,T为第一配置授权所在的时间单元的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算,M为第一进程集合中的进程的数量。
第三方面,提供了一种通信装置,所述通信装置例如为终端设备。包括:通信单元,用于接收第一信息;第一信息用于指示第一配置授权所关联的混合自动重传请求HARQ进程的HARQ功能开启或者关闭,第一配置授权是由无线资源控制RRC信令配置的;处理单元,用于根据第一信息使用第一配置授权进行数据传输。
结合第三方面,在第三方面的第一种可能的实现方式中,通信单元还用于,接收第二信息;第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,第二信息仅适用于动态调度资源,处理单元还用于,使用第一配置授权进行数据传输时忽略第二信息的指示。
结合第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中,处理单元具体用于,根据第一信息和第二信息使用第一配置授权进行数据传输。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,第一信息的优先级高于第二信息的优先级。
结合第三方面或第三方面的第一至第四种可能的实现方式中的任意一种,在第三方面的第五种可能的实现方式中,处理单元还用于,确定第三HARQ进程,所述第三HARQ进程关联于所述第一配置授权,其中,第三HARQ进程的HARQ功能状态与第一配置授权的HARQ功能状态一致。
结合第三方面的第五种可能的实现方式,在第三方面的第六种可能的实现方式中,第三HARQ进程的进程为第一进程集合中的第i个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合;i满足以下公式:i=[floor(T/P)] modulo M;其中,T为第一配置授权所在的时间单位的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,M为第一进程集合中的进程的数量,floor为向下取整运算,modulo为取模运算。
结合第三方面的第五种可能的实现方式,在第三方面的第七种可能的实现方式中,第三HARQ进程为第一进程集合中的第j个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合,j满足以下公式:j=[floor(T/P)]modulo N;其中,T为第一配置授权所在的时间单元的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。
结合第三方面的第五种可能的实现方式,在第三方面的第八种可能的实现方式中,第三HARQ进程为第一进程集合中的第t个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合,t满足以下公式:t={[floor(T/P)]modulo N}modulo M;其中,T为第一配置授权所在的时间单元的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算,M为第一进程集合中的进程的数量。
第四方面,提供了一种通信装置,所述通信装置例如为网络设备。包括:通信单元,用于向终端设备发送第一信息,第一信息用于指示第一配置授权所关联的HARQ进程的HARQ功能开启或者关闭,第一配置授权是由无线资源控制RRC信令配置的;处理单元,用于根据第一信息使用第一配置授权与终端设备进行数据传输。
结合第四方面,在第四方面的第一种可能的实现方式中,通信单元还用于,向终端设备第二信息;第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,第二信息仅适用于动态调度资源,处理单元还用于,使用第一配置授权进行数据传输时忽略第二信息的指示。
结合第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,处理单元还用于,根据第一信息和第二信息使用第一配置授权进行数据传输。
结合第四方面的第一种可能的实现方式,在第四方面的第四种可能的实现方式中,第一信息的优先级高于第二信息的优先级。
结合第四方面或第四方面的第一至第四种可能的实现方式中的任意一种,在第四方面的第五种可能的实现方式中,处理单元还用于,确定第三HARQ进程,所述第三HARQ进程关联于所述第一配置授权,其中,第三HARQ进程的HARQ功能状态与第一配置授权的HARQ功能状态一致。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,第三HARQ进程的进程为第一进程集合中的第i个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合;i满足以下公式:i=[floor(T/P)]modulo M;其中,T为第一配置授权所在的时间单位的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,M为第一进程集合中的进程的数量,floor为向下取整运算,modulo为取模运算。
结合第四方面的第五种可能的实现方式,在第四方面的第七种可能的实现方式中,第三HARQ进程为第一进程集合中的第j个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合,j满足以下公式:j=[floor(T/P)]modulo N;其中,T为第一配置授权所在的时间单元的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。
结合第四方面的第五种可能的实现方式,在第四方面的第八种可能的实现方式中,第三HARQ进程为第一进程集合中的第t个HARQ进程,第一进程集合为与第一配置授权的HARQ功能状态一致的HARQ进程的集合,t满足以下公式:t={[floor(T/P)]modulo N}modulo M;其中,T为第一配置授权所在的时间单元的标识,时间单位是符号或者时隙或者子帧,P为配置授权的周期,N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算,M为第一进程集合中的进程的数量。
需要说明的是,当上述通信装置是网络设备、终端设备或可实现上述网络设备、终端设备功能的组合器件时,通信单元可以是收发器,可以包括天线和射频电路等,收发器可以是整合的发送器和接收器,处理模块可以是处理器,例如基带芯片等。当通信装置是具有上述网络设备、终端设备功能的部件时,通信单元可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,通信单元可以是芯片系统的输入输出接口,处理模块可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
第五方面,提供了一种通信装置,包括至少一个处理器和通信接口,处理器用于执行上述第二方面以及第二方面任意一种实现方式所述的方法,或,上述第一方面以及第一方面任意一种实现方式所述的方法。
通信接口用于所述通信装置和其他设备之间的通信。
可选的,所述通信装置还可以包括存储器,所述至少一个处理器可以与所述存储器耦合;所述存储器,用于存储计算机程序;
所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如上述第二方面以及第二方面任意一种实现方式所述的方法,或,上述第一方面以及第一方面任意一种实现方式所述的方法。
第六方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第四方面以及第四方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第二方面以及第二方面任意一种实现方式所述的通信方法。
第七方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第三方面以及第三方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第一方面以及第一方面任意一种实现方式所述的通信方法。
第八方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第一方面以及第一方面任意一种实现方式所述的方法,该通信装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器, 所述存储器,用于保存实现上述第一方面所述方法的功能必要的程序指令和数据。
第九方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第二方面以及第二方面任意一种实现方式所述的方法所涉及的功能或方法,该通信装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存实现上述第二方面所述方法的功能必要的程序指令和数据。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
第十方面,提供了一种通信系统,包括网络设备以及终端设备。
其中,网络设备向终端设备发送第一信息;所述第一信息用于指示第一配置授权所关联的混合自动重传请求HARQ进程的HARQ功能开启或者关闭,所述第一配置授权是由无线资源控制RRC信令配置的;
终端设备接收第一信息,根据所述第一信息使用所述第一配置授权进行数据传输。
终端设备的具体执行过程可参照上述第一方面以及第一方面的任意一种可能的实现方式,在此不做赘述。网络设备的具体执行过程可参照上述第二方面以及第二方面的任意一种可能的实现方式,在此不做赘述。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述处理器用于执行上述第二方面以及第二方面任意一种实现方式所述的方法,或,上述第一方面以及第一方面任意一种实现方式所述的方法。所述通信接口用于所述通信装置和其他设备之间的通信。
附图说明
图1为本申请实施例提供的通信通信系统的示意图;
图2为本申请实施例提供的配置授权的示意图;
图3为现有的HARQ映射方法的示意图;
图4a为本申请实施例提供的通信装置的结构框图;
图4b为本申请实施例提供的通信装置的另一结构框图;
图5为本申请实施例提供的数据传输方法的流程示意图;
图6~图11为本申请实施例提供的HARQ映射方法的示意图;
图12~图15为本申请实施例提供的通信装置的另一结构框图。
具体实施方式
本申请实施例提供的方法可用于图1所示的通信系统。参考图1,该通信系统可以包括多个终端设备以及网络设备。
图1给出了本申请提供的技术方案所适用的一种通信系统的示意图,该通信系统可以包括多个网络设备(仅示出了网络设备100)以及多个终端设备(图中仅示出了终端设备201和终端设备202)。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。该通信系统支持侧行通信,如:设备到设备(device to device,D2D)通信、车对一切(vehicle to everything,V2X)通信等。
其中,网络设备和终端设备之间可以通过蜂窝链路(Uu链路)进行上下行传输, 终端设备之间可以通过侧行链路(sidelink链路)进行通信,例如D2D通信、V2X通信、机器类型通信(machine type communication,MTC)等。
[根据细则91更正 11.03.2020] 
一种可能的实现方式中,网络设备100搭载于高空飞行器(例如,卫星)上,高空飞行器绕地球周期运行,终端设备(以终端设备201作为示例)位于地面。由于网络设备100提供的信号覆盖范围较大且其运行轨道周期较短,对于终端设备201而言,当网络设备100提供的信号覆盖周期性出现在相同的地理区域时,终端设备201一般不会移出该地理区域。参考图1,当网络设备100运行到其轨道的某处时,终端设备201可以获取网络设备100的系统信息,在网络设备100的信号覆盖范围内进行通信。当网络设备100继续运行,终端设备201会离开网络设备100的信号覆盖范围,网络设备100不再为终端设备201提供信号覆盖。
在网络设备搭载于卫星的场景下,根据卫星轨道高度的不同,可分为低轨(low earth orbits,LEO)卫星、中轨(medium earth orbits,MEO)卫星、地球同步轨道(geostationary earth orbits,GEO)卫星和高椭圆轨道(highly earth orbits,HEO)卫星。
一种可能的实现方式中,网络设备100(例如,基站)在地面上,终端设备通过地面上的网络设备与核心网设备进行通信。
网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(E-UTRAN NodeB或e-NodeB或eNB),5G或新无线(new radio,NR)接入技术中的基站(gNodeB或gNB)或收发点(transmission/reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,o access network,CRAN)场景下的无线控制器、集中式单元(centralized unit,CU),和/分布式单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端设备(例如终端设备201)是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home) 中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
首先,对本申请实施例涉及的术语进行解释说明:
(1)配置授权(configured grant)
参考图2,在配置调度方式(例如,半静态调度方式)中,基站可以通过无线资源控制(radio resource control,RRC)信令配置周期性出现的资源(传输机会),上述周期性出现的资源可以称为configured grant。可以理解的是,配置授权包括多个传输机会,例如,图2所示的配置授权包括4个周期性出现的传输机会。
本申请实施例中,配置授权也可以称为配置调度或者配置资源。配置授权可以包含第一类型配置资源(type1)和第二类型配置资源(type2),配置资源也可以称为免调度授权(grant free),配置资源类型2也可以称为SPS(semi-persistent scheduling,半静态调度)。对于SPS资源,基站还可以通过下行控制信息(downlink control information,DCI)激活configured grant,然后终端设备便可以通过configured grant进行数据传输。终端设备在使用第一类型配置资源进行数据传输的时候无需使用DCI进行激活。
可以理解的是,使用配置资源进行数据传输,即在配置授权上传输数据,在进行数据传输的时候如果配置了HARQ功能,则需要按照HARQ功能状态执行HARQ过程。
(2)动态授权(dynamic grant)
在动态调度方式中,基站通过下行控制信道(physical downlink control channel,PDCCH)向终端设备发送DCI,DCI可以动态指示基站配置的资源和HARQ信息,其中HARQ信息中可以包括HARQ进程号、冗余版本等。这种利用DCI进行动态调度的资源可以称为动态授权,动态授权也可以称为动态调度资源。
(3)HARQ进程(process)
一个HARQ实体中可以包含多个HARQ进程,在数据传输的过程中,终端设备与网络设备之间可以使用多个HARQ进程并行传输不同的数据,其中不同的数据传输和不同的HARQ进程关联,终端设备和网络设备可以通过进程标识来识别相应的数据传输。本申请实施例中,使用HARQ进程进行数据传输,可以理解为将HARQ进程与一次数据传输进行关联。示例地,在传输资源(例如,配置授权或动态授权)上使用进程1传输数据包1,则可以理解为本次对数据包1的传输与进程1相关联,在终端设备和网络设备进行处理的时候,会将数据包1放到进程1对应的HARQ缓存中处理,后续如果有针对数据包1的重传,也会使用相同的HARQ进程,以保证终端设备和网络设备能够识别该次传输是针对数据包1的重传,进而进行HARQ合并。
例如,对于下行数据传输,网络设备可以使用某个HARQ进程发送数据,从终端 设备接收对应进程的HARQ反馈信息,并根据反馈信息向终端设备重传数据。对于上行数据传输,终端设备可以使用某个HARQ进程向网络设备发送数据,并接收网络设备发送的对应该HARQ进程的HARQ反馈信息。
其中,HARQ反馈信息用于指示某个HARQ进程对应的数据的接收情况。假设成功接收数据,则HARQ进程对应的HARQ反馈信息为肯定应答(acknowledgement,ACK)。假设未成功接收数据,则HARQ进程对应的HARQ反馈信息为否定应答(negative acknowledgement,NACK)。
需要说明的是,终端设备的无线接入控制(media access control,MAC)实体为终端设备维护多个HARQ实体,一个HARQ实体可以维护多个并行的HARQ进程。
使用HARQ进程传输数据时,接收端从发送端接收到数据包以后成功解码数据包,则接收端向发送端发送一个ACK,发送端收到ACK后,会接着发送下一个数据包。
如果没有成功解码数据包,接收端可以丢弃该数据包,并向发送端发送一个NACK,发送端收到NACK后,会重传数据包。一种可能的实现方式中,终端设备还可以软合并(HARQ with soft combining)技术提高解码性能。例如,将未成功解码的数据包保存在进程相应的HARQ buffer中,并与后续接收到的重传数据包进行合并,对合并后的数据包进行解码,相比单独解码一个数据包,可以提高可靠性。
(4)HARQ进程号
HARQ进程号是用于标识HARQ进程的HARQ ID,终端设备的每个HARQ实体中维护一定数目的HARQ进程通过HARQ ID可以区分不同的HARQ进程。
(5)HARQ功能状态
HARQ功能状态可以包括开启状态或关闭状态,或者说包括启用状态(enabled)或不启用状态(disabled)。
假设某一进程对应的HARQ功能开启时,发送端和接收端需要维护该进程的对应的HARQ缓冲,来存放对应的数据包,接收端需要根据数据包的接收情况发送HARQ反馈,发送端可以根据HARQ反馈进行重传或者新传。HARQ反馈包括ACK或者NACK。
假设某一进程对应的HARQ功能关闭时,发送端和接收端可以不针对该进程维护HARQ缓存,发送端发送完某个数据包以后,不需要缓存该数据包,接收端接收该数据包时,无论接成功还是接收失败,均不需要向发送端发送HARQ反馈,假设接收失败则可以选择丢弃该数据包,而无需将其放到缓冲中等待HARQ合并。
现有技术在配置调度中,终端设备可以使用多个周期性出现的配置授权(configured grant)进行数据传输时,对于一个configured grant配置授权的一个的传输机会,终端设备可以根据该传输机会出现的时域符号计算出一个HARQ进程号,使用该进程号标识的HARQ进程通过该配置授权进行数据传输。示例的,HARQ进程号满足以下公式:
HARQ进程号=[floor(T/P)]modulo M  (1)
其中,T表示该传输机会出现的符号的标识CURRENT_symbol,P表示配置资源的周期,M表示为终端设备配置的一个HARQ实体中的HARQ进程的最大数目。该HARQ实体是终端设备驻留的服务小区对应的HARQ实体,HARQ实体维护的HARQ 进程可以是网络设备通过RRC信令配置的。公式(1)中“floor”为下取整运算,“modulo”为取模运算。
通常,配置授权是为服务质量(quality of service,QoS)相同的业务配置的或者为同一业务配置的,而终端设备的同一业务在某些传输机会使用配置资源时,计算出的HARQ进程的HARQ功能是开启的,而在另一些传输机会使用配置资源时,计算出的HARQ进程的HARQ功能是关闭的,造成相同业务的HARQ功能不同,影响数据传输性能。例如,对于时延敏感业务需要关闭HARQ功能,不发送HARQ反馈信息,这样可以降低数据传输时延。但是根据上面描述的过程,假设为该业务配置了配置授权,则终端设备在某些传输机会上使用该配置资源的时候,可能会将该配置资源映射到HARQ功能开启的HARQ进程上,导致传输时延的增加,无法满足业务需求。
示例的,参考图3,终端设备一个HARQ实体维护的HARQ进程为1~8,其中,HARQ进程1~4对应的HARQ进程的HARQ功能开启,HARQ进程5~8的HARQ功能关闭。假设根据上述公式(1)计算出图2中配置授权的四个传输机会使用的进程号分别为1、2、5、6。其中,HARQ进程1、2的HARQ功能开启,HARQ进程5、6的HARQ功能关闭。假设终端设备的业务时延敏感业务,开启HARQ功能终端设备反馈ACK或NACK会增加传输时延,无法满足业务需求。
本申请实施例提供一种数据传输方法,终端设备接收第一信息;所述第一信息用于指示第一配置资源所关联的HARQ进程的HARQ功能开启或者关闭,所述第一配置资源是由无线资源控制RRC信令配置的。终端设备还可以根据所述第一信息使用所述第一配置资源进行数据传输,例如,根据第一信息确定使用第一配置资源进行数据传输时,是否开启HARQ功能。本申请实施例提供的方法中,通过第一信息可以确保同一configured grant关联的所有HARQ进程的HARQ功能状态是一致的,例如,终端设备通过configured grant传输数据时,HARQ进程的HARQ功能均开启,或,终端设备通过configured grant传输数据时,HARQ进程的HARQ功能均关闭。可见,本申请实施例可以确保RRC信令配置的同一配置授权的多个传输机会使用的HARQ进程的HARQ功能状态保持一致,终端设备通过同一配置授权进行同一业务时使用相同的HARQ操作,更好地匹配终端设备的业务需求,提高数据传输性能,其中,配置授权的每个传输机会都会对应一个HARQ进程。
本申请实施例所述的终端设备,可以通过图4a中的通信装置410来实现。图4a所示为本申请实施例提供的通信装置410的硬件结构示意图。该通信装置410包括处理器4101、存储器4102以及至少一个通信接口(图4a中仅是示例性的以包括通信接口4103为例进行说明)。其中,处理器4101、存储器4102以及通信接口4103之间互相连接。可选的,通信装置410可以不包括存储器4102。
处理器4101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口4103,使用任何收发器一类的装置,用于与其他设备或通信网络进行通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器4102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器4102用于存储执行本申请方案的计算机执行指令,并由处理器4101来控制执行。处理器4101用于执行存储器4102中存储的计算机执行指令,从而实现本申请下述实施例提供的意图处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器4101可以包括一个或多个CPU,例如图4a中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置410可以包括多个处理器,例如图4a中的处理器4101和处理器4106。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置410还可以包括输出设备4104和输入设备4105。输出设备4104和处理器4101通信,可以以多种方式来显示信息。例如,输出设备4104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备4105和处理器4101通信,可以以多种方式接收用户的输入。例如,输入设备4105可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置410可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置410可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、嵌入式设备或有图4a中类似结构的设备。本申请实施例不限定通信装置410的类型。
需要说明的是,通信装置410可以是终端整机,也可以是实现终端上的功能部件或组件,也可以是通信芯片,例如基带芯片等。通信装置410是终端整机时,通信接口可以是射频模块。当通信装置410为通信芯片,通信接口4103可以是该芯片的输入输出接口电路,输入输出接口电路用于读入和输出基带信号。
图4b是一种网络设备的结构示意图。网络设备420的结构可以参考图4b所示的结构。
网络设备包括至少一个处理器4201、至少一个存储器4202、至少一个收发器4203、至少一个网络接口4204和一个或多个天线4205。处理器4201、存储器4202、收发器4203和网络接口4204相连,例如通过总线相连。天线4205与收发器4203相连。网 络接口4204用于网络设备通过通信链路与其它通信设备相连,例如网络设备通过S1接口与核心网网元相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。可选的,网络设备420可以不包括存储器4202。
本申请实施例中的处理器,例如处理器4201,可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器4201可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器4201可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器4202,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compct disc read-only memory,CD-ROM)其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器4202可以是独立存在,与处理器4201相连。可选的,存储器4202也可以和处理器4201集成在一起,例如集成在一个芯片之内。其中,存储器4202能够存储执行本申请实施例的技术方案的程序代码,并由处理器4201来控制执行,被执行的各类计算机程序代码也可被视为是处理器4201的驱动程序。例如,处理器4201用于执行存储器4202中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器4203可以用于支持网络设备与终端设备之间射频信号的接收或者发送,收发器4203可以与天线4205相连。具体地,一个或多个天线4205可以接收射频信号,该收发器4203可以用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器4201,以便处理器4201对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器4203可以用于从处理器4201接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线4205发送所述射频信号。具体地,收发器4203可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。收发器4203可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。收发器可以称为收发电路、收发单元、收发器件、发送电路、发送单元或者发送器件等等。
需要说明的是,通信装置420可以是网络设备整机,也可以是实现网络设备功能 的部件或组件,也可以是通信芯片。当通信装置420为通信芯片,收发器4203可以是该芯片的接口电路,该接口电路用于读入和输出基带信号。
本申请实施例提供一种HARQ指示方法,如图5所示,所述方法包括以下步骤:
501、网络设备向终端设备发送第一信息。所述第一信息用于指示第一配置授权所关联的HARQ进程的HARQ功能开启或者关闭,所述第一配置授权是由无线资源控制RRC信令配置的。
可以理解的是,第一配置授权是Configured grant。示例的,参考图2,网络设备通过RRC信令配置了配置授权,也就是说所述第一配置授权为半静态调度的。其中,配置授权包括多个周期性出现的传输机会,在每个传输机会终端设备可以使用该配置授权进行数据传输。
第一配置授权所关联的HARQ进程,即第一配置授权的传输机会所使用的HARQ进程。在第一配置授权的不同传输机会,使用一个HARQ进程通过第一配置授权进行数据传输,可以理解为,在第一配置授权的一个传输机会进行的一次数据传输是通过HARQ进程来标识的,包括通过第一配置授权进行的数据接收和数据发送。需要说明的是,所述数据传输包括数据和/或信令的传输。
例如,第一配置授权包括A、B、C、D四个传输机会,在这个四个传输机会使用的HARQ进程为进程1~4,则第一配置授权所关联的HARQ进程为进程1~4。
一种可能的实现方式中,第一信息可以指示一个RRC信令配置的配置授权关联的所有HARQ进程的HARQ功能状态,以保证同一配置授权关联的所有HARQ进程的HARQ功能状态一致。
此外,第一配置授权所关联的HARQ进程用于终端设备、网络设备通过第一配置授权进行数据传输。以下行传输为例,第一配置授权关联的HARQ进程为HARQ进程1,网络设备可以使用HARQ进程1通过第一配置授权向终端设备发送新传数据或重传数据,终端设备可以使用HARQ进程1通过第一配置授权接收网络设备发送的数据,针对HARQ进程1向网络设备反馈ACK或NACK。第一信息是针对第一配置授权的指示信息,第一配置授权所关联的每一个HARQ进程都按照第一信息的指示来开启或关闭HARQ功能。
具体实现中,第一信息可以是一比特,该比特有两个状态:第一状态和第二状态。第一信息为第一状态,可以指示第一配置授权所关联的HARQ进程的HARQ功能开启;第一信息为第二状态,可以指示第一配置授权所关联的HARQ进程的HARQ功能关闭。示例的,第一状态为“1”,第二状态为“0”。
或者第一信息可以是布尔类型,通过为“true”或“false”来指示HARQ功能的状态为开或者关闭;
或者第一信息可以通过信令中某个信元或者字段是否出现来指示HARQ功能的状态。示例的,假设信令中包含第一信元,则指示HARQ功能开启,如果不包含第一信元,则指示HARQ关闭。
一种可能的实现方式中,所述第一指示信息可以包含在用于配置第一配置授权的RRC信令中。
另一种可能的实现方式中,所述第一指示信息可以包含在用于激活某个配置授权 的DCI中。另一种可能的实现方式中,所述第一指示信息可以包含在用于指示HARQ功能状态的MAC CE(control element,控制元素)中。
502、终端设备接收第一信息,根据所述第一信息使用所述第一配置授权进行数据传输。
具体地,终端设备可以根据第一信息确定第一配置授权的HARQ功能状态。其中,第一配置授权的HARQ功能状态可以是第一信息指示的HARQ功能状态,即第一配置授权关联的HARQ进程的HARQ功能状态,例如,通过第一配置授权传输数据时,在第一配置授权的每一个传输机会所使用的HARQ进程的HARQ功能是否开启。
其中,终端设备确定第一配置授权的HARQ功能状态之后,在每次使用第一配置授权进行数据传输的时候,需要将第一配置授权与具体的HARQ进程关联起来,即使用第一配置授权关联的HARQ进程进行数据传输,同时根据第一信息指示的HARQ功能状态执行HARQ功能。
具体地,使用第一配置授权关联的HARQ进程进行数据传输也可以理解为使用第一配置授权关联的HARQ进程标识第一配置授权上进行的数据传输,其中数据传输可以包括:数据接收或者数据发送或者相应的HARQ反馈或着重传操作。
此外,根据第一信息指示的HARQ功能状态执行HARQ功能也可以理解为根据第一配置授权的HARQ功能状态执行相应的HARQ操作。例如,第一配置授权的HARQ功能为开启状态,终端设备或者网络设备则针对第一配置授权上接收的数据进行HARQ反馈或者HARQ重传。此外,发送端可以针对第一配置授权上发送的数据进行缓冲,以便收到接收端发送的NACK后进行数据重传。而接收端可以针对第一配置授权上发送的数据进行缓冲,以便收到发送端的重传后,对数据进行合并解码。
需要说明的是,网络设备可以为终端设备配置可用的HARQ进程或者HARQ进程总数,进一步地还可以指定其中开启HARQ功能的HARQ进程,以及关闭HARQ功能的HARQ进程。
例如,图5所示的方法还包括步骤503:终端设备从网络设备接收第二信息;所述第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。需要说明的是,在本申请实施例中,所述第二信息可以用于指示HARQ进程的HARQ功能状态,第一HARQ进程和第二HARQ进程仅作为示例,第二信息还可以指示其他HARQ进程以及HARQ进程的HARQ进程功能状态,例如,本申请实施例所述的第三HARQ进程。
第二信息是针对HARQ进程的指示信息,相比于第一信息,第二信息的指示粒度为HARQ进程,第二信息配置的每一个HARQ进程可以按照第二信息的指示来开启或关闭HARQ功能。具体地,所述第二指示信息可以包含在用于配置HARQ的RRC信令中或者可以包含在用于配置configured grant的RRC信令中,也可以包含在用于配置物理下行数据信道(physical downlink shared channel,PDSCH)或者物理上行数据信道(physical uplink share channel,PUSCH)的RRC信令中。或者,第二信息也可以包含在用于改变HARQ功能状态的MAC CE或者DCI中。
示例的,参考图3,网络设备通过第二信息为终端设备配置HARQ进程1~8,第二信息还可以指示HARQ进程1~4的HARQ功能开始,HARQ进程5~8的HARQ功 能关闭。
本申请实施例中,终端设备结合第一信息、第二信息,通过以下两种方式将第一配置授权关联到HARQ功能状态一致的HARQ进程,具体包括:
方式一:可以对第一信息和第二信息的适用范围或优先级进行限定,基于此终端设备可以通过以下a、b两种方式确定第一配置授权的HARQ功能状态:
方式a、第二信息仅适用于动态调度资源。根据第一信息确定配置授权(例如,第一配置授权)的HARQ功能状态,还可以根据第二信息确定动态授权的HARQ功能状态。其中,动态授权的HARQ功能状态可以是动态授权所关联的HARQ进程的HARQ功能状态。动态授权所关联的HARQ进程可以是通过动态授权进行数据传输时使用的HARQ进程。
对于动态调度来说,网络设备可以在DCI中指定本次调度所使用的HARQ进程,终端设备可以根据第二信息确定本次调度所使用的HARQ进程的HARQ功能状态为开启或者关闭。
示例的,在图6所示的示例中,网络设备通过第二信息为终端设备配置HARQ进程1~8,第二信息还可以指示HARQ进程1~4的HARQ功能开始,HARQ进程5~8的HARQ功能关闭。
网络设备还通过DCI指示了动态调度资源F以及在动态调度资源F上进行数据传输所使用的HARQ进程的进程号“5”。根据第二信息,HARQ程5的HARQ功能关闭,因此,在动态调度资源F上使用HARQ进程5进行数据传输时关闭HARQ功能。例如,网络设备不缓存HARQ进程5对应的数据,终端设备不发送HARQ反馈信息示HARQ进程5对应的数据的接收情况。
对于半静态调度来说,基站可以配置周期性分布的配置授权(configured grant)进行数据传输。对于一个配置授权来说,终端设备可以为其对应的每个传输机会计算出一个HARQ进程号,并使用该进程号对应的HARQ进程,在该传输机会通过该配置授权进行数据传输。此外,根据第一信息确定配置授权的每个传输机会所使用的HARQ进程的HARQ功能状态为开启或者关闭。
在一种可能的实现中,终端设备、网络设备使用所述第一配置授权进行数据传输时忽略所述第二信息的指示,根据第一信息指示的HARQ功能状态执行相应的HARQ操作。
可选的,可以根据所述第一信息改变所述第一配置授权关联的HARQ进程的HARQ功能,在关联的HARQ进程再次被动态授权使用完时,根据第二信息指示的HARQ功能状态执行相应的HARQ操作。
或者,根据所述第一信息改变所述第一配置授权关联的HARQ进程的HARQ功能,在关联的HARQ进程再次被配置授权使用完时,根据第一信息指示的HARQ功能状态执行相应的HARQ操作。
示例的,参考图7,假设第一信息指示第一配置授权所关联的HARQ进程的HARQ功能开启,第二信息指示HARQ进程1~4的HARQ功能开启,而进程HARQ5~8的HARQ功能为关闭。则终端设备在第一配置授权的第三个传输机会使用进程5的时候,根据第一信息开启HARQ进程5的HARQ功能。
可选的,HARQ进程5被使用完以后,根据第二信息关闭HARQ进程5的HARQ功能。其中HARQ进程被使用完是指,该HARQ进程对应的数据包接收成功,或者该HARQ进又用于新的数据包传输。
方式b、第二信息适用于动态调度资源和配置授权。所述终端设备根据所述第一信息和所述第二信息使用所述第一配置授权进行数据传输。
具体实现中,终端设备可以根据第一信息和第二信息中优先级较高的信息确定第一配置授权所关联的HARQ进程的HARQ功能状态。所述优先级可以是预定义的、预配置的,或者所述优先级可以是在第一信息和第二信息中指示的。
一种可能的实现方式中,所述第一信息的优先级高于所述第二信息的优先级。对于配置授权来说,当第一信息的指示和第二信息的指示冲突,根据第一信息的指示确定HARQ进程的HARQ状态,而忽略第二信息的指示。
以HARQ进程5为例,若所述第一信息指示HARQ进程5的HARQ功能开启,第二信息指示HARQ进程5的HARQ功能开启,则开启HARQ进程5的HARQ功能;
以HARQ进程5为例,若所述第一信息指示HARQ进程5的HARQ功能关闭,第二信息指示HARQ进程5的HARQ功能开启,则关闭HARQ进程5的HARQ功能;
以HARQ进程5为例,若所述第一信息指示HARQ进程5的HARQ功能关闭,第二信息指示HARQ进程5的HARQ功能关闭,则关闭HARQ进程5的HARQ功能;
以HARQ进程5为例,若所述第一信息指示HARQ进程5的HARQ功能关闭,第二信息指示HARQ进程5的HARQ功能开启,则关闭HARQ进程5的HARQ功能。
在方式一中,终端设备在确定第一配置授权的HARQ功能状态后,还可以根据现有技术的计算方式,计算第一配置授权关联的HARQ进程的进程号,在使用相应的HARQ进程通过第一配置授权传输数据时,根据第一配置授权的HARQ功能状态执行相应的HARQ操作。
具体地,根据前文所述的公式(1)计算出第一配置授权关联的HARQ进程号,在使用该HARQ进程号对应的HARQ进程(例如,本申请实施例所述的第三HARQ进程)通过第一配置授权进行数据传输时,根据第一配置授权的HARQ功能状态开启该HARQ进程号对应的HARQ进程的HARQ功能,或关闭该HARQ进程号对应的HARQ进程的HARQ功能。
例如,根据第一配置授权的所在的符号标识,结合上述公式(1)计算出的HARQ进程号为“5”,假设前文确定第一配置授权的HARQ功能状态为开启,则通过第一配置授权进行数据传输时,可以使用进程号“5”对应的HARQ进程(例如,本申请实施例所述的第三HARQ进程)标识一次数据传输,并且开启HARQ功能。例如,终端设备针对本次数据传输反馈ACK或NACK。
方式二:不对第一信息、第二信息的适用范围或优先级进行限定,终端设备可以根据第一信息确定第一配置授权的HARQ功能状态,计算第一配置授权关联的HARQ进程号的索引,根据HARQ进程号的索引确定HARQ进程。将第一配置授权关联到HARQ功能状态一致的HARQ进程。
示例的,计算第一配置授权关联的第三HARQ进程的索引,根据第三HARQ进程的索引可以确定第三HARQ进程。还可以将第三HARQ进程关联于所述第一配置授权, 在通过第一配置授权的一次传输机会进行的数据传输时,使用第三HARQ进程来标识这次数据传输。
需要说明的是,第三HARQ进程关联于所述第一配置授权,可以理解为将第一配置授权映射到第三HARQ进程,或者第三HARQ进程关联于第一配置授权上进行的一次数据传输。
具体实现中,可以确定第三HARQ进程的索引是针对第一进程集合的索引,用于指示第三HARQ进程在第一进程集合中的位置。
一种可能的实现方式中,所述第一进程集合为与所述第一配置授权的HARQ功能状态一致的HARQ进程的集合,例如网络设备为终端设备某个HARQ实体配置的HARQ进程中有些进程的HARQ功能是开启的,另一些HARQ进程的HARQ功能是关闭的,则第一进程集合即为HARQ功能开启的进程组成的进程集合或者HARQ功能关闭的进程组成的进程集合。具体的,若第一信息指示HARQ功能开启,第一进程集合为RRC信令配置的可用的HARQ进程中,HARQ功能开启的HARQ进程的集合。若第一信息指示HARQ功能关闭,则第一进程集合为RRC信令配置的可用的HARQ进程中,HARQ功能关闭的HARQ进程的集合。
具体的,可以通过以下方式E、F、G将确定HARQ进程的索引:
方式E:根据第一进程集合中HARQ进程的数量M计算HARQ进程的索引。
示例的,根据公式(2)确定第三HARQ进程的索引i,所述i满足以下公式(2):
i=[floor(T/P)]modulo M  (2)
其中,T为所述第一配置授权所在的时间单位的标识,所述时间单位是符号或者时隙或者子帧,所述P为配置授权的周期,所述M为所述第一进程集合中的进程的数量,floor为向下取整运算,modulo为取模运算。
在这种方式中,HARQ进程的索引不会超过第一进程集合中HARQ进程的数量M,确定索引i以后需要将其映射到HARQ进程中,索引的数量不会超过第一集合中HARQ进程的数目。
一种可能的实现方式中,第三HARQ进程为所述第一进程集合中的第i个HARQ进程。具体地,按照一定顺序排列所述第一进程集合中的M个HARQ进程,所述第i个HARQ进程为排序后的第i个HARQ进程。例如,按照进程号从大到小的顺序排列M个HARQ进程,或者,按照进程号从小到大的顺序排列M个HARQ进程。
示例的,参考图8,第一配置授权包括A、B、C、D四个传输机会,网络设备通过RRC信令为终端设备配置的HARQ进程为1~8,其中,HARQ进程1-3以及HARQ进程6的HARQ功能开启,HARQ进程4-5以及HARQ进程7-8的HARQ功能关闭。
假设第一指示信息指示第一配置授权关联的HARQ进程的HARQ功能为开启,当利用公式(2)计算出传输机会D关联的第三HARQ进程的索引i为“4”,代表第三HARQ进程为第一进程集合中的第4个HARQ进程。图6所示的示例中,第一进程集合为HARQ进程1~8中HARQ功能开启的HARQ进程,即第一进程集合为HARQ进程1-3以及HARQ进程6的集合。按照进程号从小到大的顺序,第一进程集合中的第4个HARQ进程为HARQ进程6,即所述第三HARQ进程为HARQ进程6。传输机会D实际使用的是HARQ进程6。
方式F:根据RRC信令配置的HARQ进程的最大数量N计算HARQ进程的索引,其中N>M。
示例的,根据公式(3)确定第三HARQ进程的索引j,所述j满足以下公式(3):
j=[floor(T/P)]modulo N  (3)
其中,T为所述第一配置授权所在的时间单元的标识,所述时间单位是符号或者时隙或者子帧,所述P为配置授权的周期,所述N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。所述第一配置授权所在的时间单元,可以是所述第一配置授权的一个传输机会所在的时间单元。
在这种方式中,计算出的HARQ进程的索引j可能会大于第一进程集合中HARQ进程的数量M。其中,T为所述第一配置授权所在的时间单元的标识,所述时间单位是符号或者时隙或者子帧,所述P为配置授权的周期,所述N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。所述第一配置授权所在的时间单元,可以是所述第一配置授权的一个传输机会所在的时间单元。
(1)当j不大于M,第三HARQ进程为所述第一进程集合中的第j个HARQ进程。具体地,按照一定顺序排列所述第一进程集合中的M个HARQ进程,所述第j个HARQ进程为排序后的第j个HARQ进程。例如,按照进程号从大到小的顺序排列M个HARQ进程,或者,按照进程号从小到大的顺序排列M个HARQ进程。
示例的,参考图9,第一配置授权包括A、B、C、D四个传输机会,网络设备通过RRC信令为终端设备配置的HARQ进程为1~8,其中,HARQ进程1-3以及HARQ进程6的HARQ功能开启,HARQ进程4-5以及HARQ进程7-8的HARQ功能关闭。
假设第一指示信息指示第一配置授权关联的HARQ进程的HARQ功能为开启,第一进程集合为HARQ进程1-3以及HARQ进程6的集合。利用公式(3)计算出终端设备在四个传输机会使用的HARQ进程的索引j分别为“1”“2”“3”“4”,不会超过第一进程集合中的HARQ进程的数量“4”。
(2)当j大于M,还需要对索引j取模,以使得第一配置授权映射在第一进程集合中的HARQ进程。
示例的,参考图10,第一配置授权包括A、B、C、D、E五个传输机会,网络设备通过RRC信令为终端设备配置的HARQ进程为1~8,其中,HARQ进程1-3以及HARQ进程6的HARQ功能开启,HARQ进程4-5以及HARQ进程7-8的HARQ功能关闭。
假设第一指示信息指示第一配置授权关联的HARQ进程的HARQ功能为开启,当利用公式(4)计算出在传输机会E使用的HARQ进程的索引j为“5”。第一进程集合为HARQ进程1~8中HARQ功能开启的HARQ进程,即第一进程集合为HARQ进程1-3以及HARQ进程6的集合。可见,第三HARQ进程的索引“5”超过了第一进程集合的HARQ进程的数量“4”,可以继续对5取模,得到第三HARQ进程的索引“1”。例如,5modulo4=1,即第三HARQ进程的索引t为1,代表第三HARQ进程为第一进程集合中的第1个HARQ进程。图6所示的示例中,按照进程号从小到大的顺序,第一进程集合中的第1个HARQ进程为HARQ进程1,即所述第三HARQ进程为HARQ进程1。在传输机会D实际使用的是HARQ进程1。
方式G:采用公式(4)计算出的HARQ进程的索引t,该索引t不会超过第一进程集合中HARQ进程的数量M,可以根据索引t将第一配置授权映射在第一进程集合中的HARQ进程。
示例的,根据公式(4)确定第三HARQ进程的索引t,所述t满足以下公式(4):t={[floor(T/P)]modulo N}modulo M   (4)
其中,T为所述第一配置授权所在的时间单元的标识,所述时间单位是符号或者时隙或者子帧,所述P为配置授权的周期,所述N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算,所述M为所述第一进程集合中的进程的数量。
一种可能的实现方式中,第三HARQ进程为所述第一进程集合中的第t个HARQ进程。具体地,按照一定顺序排列所述第一进程集合中的M个HARQ进程,所述第t个HARQ进程为排序后的第t个HARQ进程。例如,按照进程号从大到小的顺序排列M个HARQ进程,或者,按照进程号从小到大的顺序排列M个HARQ进程。
示例的,参考图11,第一配置授权包括A、B、C、D、E四个传输机会,网络设备通过RRC信令为终端设备配置的HARQ进程为1~8,其中,HARQ进程1-3以及HARQ进程6的HARQ功能开启,HARQ进程4-5以及HARQ进程7-8的HARQ功能关闭。
假设第一指示信息指示第一配置授权关联的HARQ进程的HARQ功能为开启,当利用公式(4)计算出在传输机会E使用的HARQ进程的索引t为“2”,即第三HARQ进程的索引t为2,代表第三HARQ进程为第一进程集合中的第2个HARQ进程。图11所示的示例中,按照进程号从小到大的顺序,第一进程集合中的第2个HARQ进程为HARQ进程2,即所述第三HARQ进程为HARQ进程2。在传输机会D实际使用的是HARQ进程2。
以上三种确定方式仅为可能的示例,在具体实现中,终端设备可以根据其他可能的方法确定第三HARQ进程的进程号。
需要说明的是,本申请实施例中所述的方式一、方式二、方式a、方式b、方式E、方式F以及方式G不仅仅局限于终端设备,网络设备也可以执行方式一、方式二、方式a、方式b、方式E、方式F以及方式G,确定第一配置授权的HARQ功能状态,将第一配置授权与HARQ功能状态一致的HARQ进程关联。
本申请实施例提供的方法中,通过第一信息可以确保同一configured grant关联的所有HARQ进程的HARQ功能状态是一致的,例如,终端设备通过configured grant传输数据时,HARQ进程的HARQ功能均开启,或,终端设备通过configured grant传输数据时,HARQ进程的HARQ功能均关闭。可见,本申请实施例可以确保RRC信令配置的同一配置授权的多个传输机会使用的HARQ进程的HARQ功能状态保持一致,终端设备通过同一配置授权进行同一业务时使用相同的HARQ操作,更好地匹配终端设备的业务需求,提高数据传输性能,其中,配置授权的每个传输机会都会对应一个HARQ进程。
在采用对应各个功能划分各个功能模块的情况下,图12示出上述实施例中所涉及 的通信装置的一种可能的结构示意图。图12所示的通信装置可以是本申请实施例所述的终端设备,也可以是终端设备中实现上述方法的部件,或者,也可以是应用于终端设备中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。如图12所示,通信装置包括处理单元1201以及通信单元1202。处理单元可以是一个或多个处理器,通信单元可以是收发器。
处理单元1201,用于支持终端设备执行步骤502,和/或用于本文所描述的技术的其它过程。
通信单元1202,用于支持该终端设备与其他通信装置之间的通信,例如,支持终端设备执行步骤501,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图13所示。在图13中,该通信装置包括:处理模块1301和通信模块1302。处理模块1301用于对通信装置的动作进行控制管理,例如,执行上述处理单元1201执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1302用于执行上述通信单元1202执行的步骤,支持通信装置与其他设备之间的交互,如与其他设备装置之间的交互。可选的,如图13所示,通信装置还可以包括存储模块1303,存储模块1303用于存储通信装置的程序代码和数据。
当处理模块1301为处理器,通信模块1302为收发器,存储模块1303为存储器时,通信装置为图4a所示的通信装置。
在采用对应各个功能划分各个功能模块的情况下,图14示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图14所示的通信装置可以是本申请实施例所述的网络设备,也可以是网络设备中实现上述方法的部件,或者,也可以是应用于网络设备网络设备中的芯片。所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。如图14所示,通信装置包括处理单元1401以及通信单元1402。处理单元1401可以是一个或多个处理器,通信单元1402可以是收发器。
处理单元1401,用于支持网络设备生成第一信息、第二信息,和/或用于本文所描述的技术的其它过程。
通信单元1402,用于支持网络设备与其他通信装置之间的通信,例如,支持网络设备执行步骤501,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图15所示。在图15中,该通信装置包括:处理模块1501和通信模块1502。处理模块1501用于对通信装置的动作进行控制管理,例如,执行上述处理单元1401执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1502用于执行上述通信单元1402执行的步骤,支持通信装置与其他设备之间的交互,如与其他第一网络设备装置之间的交互。可选的,如图15所示,通信装置还可以包括存储模块1503,存储模块1503用于存储通信装置的程序代码和数据。
当处理模块1501为处理器,通信模块1502为收发器,存储模块1503为存储器时,通信装置为图4b所示的通信装置。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;指令用于执行如图5所示的方法。
本申请实施例提供一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行如图5所示的方法。
本申请实施例一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在图4a、图4b、图12至图15所示的通信装置上运行时,使得通信装置执行如图5所示的方法。该无线通信装置可以为芯片。
本申请实施例还提供一种通信系统,包括:终端设备以及网络设备。示例性的,终端设备可以是图4a、图12、图13所示的通信装置,网络设备可以是图4b、图14、图15所示的通信装置。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将数据库访问装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
本申请实施例中的处理器,可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请中,“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。 字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种数据传输方法,所述方法适用于终端设备,其特征在于,包括:
    接收第一信息;所述第一信息用于指示第一配置授权所关联的混合自动重传请求HARQ进程的HARQ功能开启或者关闭,所述第一配置授权是由无线资源控制RRC信令配置的;
    根据所述第一信息使用所述第一配置授权进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二信息;所述第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。
  3. 根据权利要求2所述的方法,其特征在于,所述第二信息仅适用于动态调度资源,所述方法还包括:
    使用所述第一配置授权进行数据传输时忽略所述第二信息的指示。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述第一信息使用所述第一配置授权进行数据传输,包括:
    根据所述第一信息和所述第二信息使用所述第一配置授权进行数据传输。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信息的优先级高于所述第二信息的优先级。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    确定第三HARQ进程,所述第三HARQ进程关联于所述第一配置授权;
    其中,所述第三HARQ进程的HARQ功能状态与所述第一配置授权的HARQ功能状态一致。
  7. 根据权利要求6所述的方法,其特征在于,包括:
    所述第三HARQ进程为第一进程集合中的第i个HARQ进程或第j个HARQ进程或第t个HARQ进程,其中:
    i=[floor(T/P)]modulo M,
    j=[floor(T/P)]modulo N,
    t={[floor(T/P)]modulo N}modulo M,
    所述第一进程集合为与所述第一配置授权的HARQ功能状态一致的HARQ进程的集合,T为所述第一配置授权所在的时间单元的标识,所述时间单元是符号或者时隙或者子帧,所述P为配置授权的周期,所述M为所述第一进程集合中的进程的数量,所述N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。
  8. 一种数据传输方法,所述方法适用于网络设备,其特征在于,包括:
    向终端设备发送第一信息,所述第一信息用于指示第一配置授权所关联的HARQ进程的HARQ功能开启或者关闭,所述第一配置授权是由无线资源控制RRC信令配置的;
    根据所述第一信息使用所述第一配置授权与所述终端设备进行数据传输。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述终端设备第二信息;所述第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。
  10. 根据权利要求9所述的方法,其特征在于,所述第二信息仅适用于动态调度资源,所述方法还包括:
    使用所述第一配置授权进行数据传输时忽略所述第二信息的指示。
  11. 根据权利要求9所述的方法,其特征在于,所述根据所述第一信息使用所述第一配置授权与所述终端设备进行数据传输,包括:
    根据所述第一信息和所述第二信息使用所述第一配置授权进行数据传输。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信息的优先级高于所述第二信息的优先级。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述方法还包括:
    确定第三HARQ进程,所述第三HARQ进程关联于所述第一配置授权;
    其中,所述第三HARQ进程的HARQ功能状态与所述第一配置授权的HARQ功能状态一致。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第三HARQ进程为第一进程集合中的第i个HARQ进程或第j个HARQ进程或第t个HARQ进程,其中:
    i=[floor(T/P)]modulo M,
    j=[floor(T/P)]modulo N,
    t={[floor(T/P)]modulo N}modulo M,
    所述第一进程集合为与所述第一配置授权的HARQ功能状态一致的HARQ进程的集合,T为所述第一配置授权所在的时间单元的标识,所述时间单元是符号或者时隙或者子帧,所述P为配置授权的周期,所述M为所述第一进程集合中的进程的数量,所述N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。
  15. 一种通信装置,其特征在于,包括:
    通信单元,用于接收第一信息;所述第一信息用于指示第一配置授权所关联的混合自动重传请求HARQ进程的HARQ功能开启或者关闭,所述第一配置授权是由无线资源控制RRC信令配置的;
    处理单元,用于根据所述第一信息使用所述第一配置授权进行数据传输。
  16. 根据权利要求15所述的通信装置,其特征在于,所述通信单元还用于,接收第二信息;所述第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。
  17. 根据权利要求16所述的通信装置,其特征在于,所述第二信息仅适用于动态调度资源,
    所述处理单元还用于,使用所述第一配置授权进行数据传输时忽略所述第二信息的指示。
  18. 根据权利要求16所述的通信装置,其特征在于,所述处理单元具体用于,根 据所述第一信息和所述第二信息使用所述第一配置授权进行数据传输。
  19. 根据权利要求18所述的通信装置,其特征在于,所述第一信息的优先级高于所述第二信息的优先级。
  20. 根据权利要求15-19任一项所述的通信装置,其特征在于,所述处理单元还用于,确定第三HARQ进程,所述第三HARQ进程关联于所述第一配置授权;
    其中,所述第三HARQ进程的HARQ功能状态与所述第一配置授权的HARQ功能状态一致。
  21. 根据权利要求20所述的通信装置,其特征在于,
    所述第三HARQ进程为第一进程集合中的第i个HARQ进程或第j个HARQ进程或第t个HARQ进程,其中:
    i=[floor(T/P)]modulo M,
    j=[floor(T/P)]modulo N,
    t={[floor(T/P)]modulo N}modulo M,
    所述第一进程集合为与所述第一配置授权的HARQ功能状态一致的HARQ进程的集合,T为所述第一配置授权所在的时间单元的标识,所述时间单元是符号或者时隙或者子帧,所述P为配置授权的周期,所述M为所述第一进程集合中的进程的数量,所述N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。
  22. 一种通信装置,其特征在于,包括:
    通信单元,用于向终端设备发送第一信息,所述第一信息用于指示第一配置授权所关联的HARQ进程的HARQ功能开启或者关闭,所述第一配置授权是由无线资源控制RRC信令配置的;
    处理单元,用于根据所述第一信息使用所述第一配置授权与所述终端设备进行数据传输。
  23. 根据权利要求22所述的通信装置,其特征在于,所述通信单元还用于,向所述终端设备第二信息;所述第二信息用于指示第一HARQ进程的HARQ功能开启和/或第二HARQ进程的HARQ功能关闭。
  24. 根据权利要求23所述的通信装置,其特征在于,所述第二信息仅适用于动态调度资源,
    所述处理单元还用于,使用所述第一配置授权进行数据传输时忽略所述第二信息的指示。
  25. 根据权利要求23所述的通信装置,其特征在于,所述处理单元还用于,根据所述第一信息和所述第二信息使用所述第一配置授权进行数据传输。
  26. 根据权利要求25所述的通信装置,其特征在于,所述第一信息的优先级高于所述第二信息的优先级。
  27. 根据权利要求22-26任一项所述的通信装置,其特征在于,所述处理单元还用于,确定第三HARQ进程,所述第三HARQ进程关联于所述第一配置授权;
    其中,所述第三HARQ进程的HARQ功能状态与所述第一配置授权的HARQ功 能状态一致。
  28. 根据权利要求27所述的通信装置,其特征在于,所述第三HARQ进程为第一进程集合中的第i个HARQ进程或第j个HARQ进程或第t个HARQ进程,其中:
    i=[floor(T/P)]modulo M,
    j=[floor(T/P)]modulo N,
    t={[floor(T/P)]modulo N}modulo M,
    所述第一进程集合为与所述第一配置授权的HARQ功能状态一致的HARQ进程的集合,T为所述第一配置授权所在的时间单元的标识,所述时间单元是符号或者时隙或者子帧,所述P为配置授权的周期,所述M为所述第一进程集合中的进程的数量,所述N为RRC信令配置的HARQ进程总数量,floor为向下取整运算,modulo为取模运算。
  29. 一种计算机可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求1至14中任意一项所述的方法被执行。
PCT/CN2020/074037 2020-01-23 2020-01-23 一种数据传输方法及装置 WO2021147110A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20915109.1A EP4084373A4 (en) 2020-01-23 2020-01-23 DATA TRANSMISSION METHOD AND DEVICE
PCT/CN2020/074037 WO2021147110A1 (zh) 2020-01-23 2020-01-23 一种数据传输方法及装置
CN202080093940.3A CN114982160A (zh) 2020-01-23 2020-01-23 一种数据传输方法及装置
US17/869,274 US20220361233A1 (en) 2020-01-23 2022-07-20 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074037 WO2021147110A1 (zh) 2020-01-23 2020-01-23 一种数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/869,274 Continuation US20220361233A1 (en) 2020-01-23 2022-07-20 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021147110A1 true WO2021147110A1 (zh) 2021-07-29

Family

ID=76992007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074037 WO2021147110A1 (zh) 2020-01-23 2020-01-23 一种数据传输方法及装置

Country Status (4)

Country Link
US (1) US20220361233A1 (zh)
EP (1) EP4084373A4 (zh)
CN (1) CN114982160A (zh)
WO (1) WO2021147110A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086405A1 (en) * 2014-12-05 2016-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and bs for scheduling ue and method and ue for transmitting harq
CN107736049A (zh) * 2015-06-26 2018-02-23 华为技术有限公司 上行数据传输的方法和装置
CN108141877A (zh) * 2016-02-03 2018-06-08 Lg 电子株式会社 无线通信系统中执行用户设备触发的半静态调度激活的方法和装置
US20180352471A1 (en) * 2017-06-02 2018-12-06 Hughes Network Systems, Llc System and method for mitigating impact of hybrid automatic repeat request (harq) on delay sensitive bearers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086405A1 (en) * 2014-12-05 2016-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and bs for scheduling ue and method and ue for transmitting harq
CN107736049A (zh) * 2015-06-26 2018-02-23 华为技术有限公司 上行数据传输的方法和装置
CN108141877A (zh) * 2016-02-03 2018-06-08 Lg 电子株式会社 无线通信系统中执行用户设备触发的半静态调度激活的方法和装置
US20180352471A1 (en) * 2017-06-02 2018-12-06 Hughes Network Systems, Llc System and method for mitigating impact of hybrid automatic repeat request (harq) on delay sensitive bearers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC, HUAWEI, HISILICON, SONY, KT CORP.: "Further consideration on HARQ configuration in NTN", 3GPP DRAFT; R2-1913173 FURTHER CONSIDERATION ON HARQ CONFIGURATION IN NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051791186 *
ERICSSON: "Feature lead summary #5 on Resource allocation for NR sidelink Mode 1", 3GPP DRAFT; R1-1907947 - FEATURE LEAD SUMMARY AI 7.2.4.2.1 V5, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 20 May 2019 (2019-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051740205 *

Also Published As

Publication number Publication date
CN114982160A (zh) 2022-08-30
EP4084373A1 (en) 2022-11-02
US20220361233A1 (en) 2022-11-10
EP4084373A4 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
CN107196689B (zh) 一种上行mu-mimo的方法及系统
WO2021057805A1 (zh) 一种通信方法及装置
WO2020244599A1 (zh) 一种反馈指示方法及通信装置
WO2020155691A1 (zh) 用于无线通信的方法及装置
WO2018202193A1 (zh) 一种数据传输方法、装置和系统
US20220216946A1 (en) Communication Method and Apparatus
CN112398596B (zh) 一种处理侧行链路资源的方法、装置及系统
WO2021062774A1 (zh) 一种侧行链路资源处理的方法、装置和系统
JP7481440B2 (ja) ハイブリッド自動再送要求処理方法及び通信装置
WO2021164036A1 (zh) 一种数据传输方法及装置
WO2020108043A1 (zh) 一种信息发送方法、接收方法及装置
WO2021147110A1 (zh) 一种数据传输方法及装置
WO2022001893A1 (zh) 确定数据传输方式的方法及装置
WO2021032064A1 (zh) 一种确定侧行链路资源的方法、装置以及系统
WO2022061661A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2021062855A1 (zh) 一种通信方法及装置
WO2021035440A1 (zh) 收发控制信息的方法、装置和系统
CN113709865A (zh) 一种通信方法及装置
WO2021078253A1 (zh) 一种数据传输方法、通信装置及通信系统
WO2023050277A1 (zh) 通信方法及通信装置
WO2023020329A1 (zh) 无线通信方法、装置、设备以及存储介质
WO2022028158A1 (zh) 一种重传数据的方法及装置
WO2024041295A1 (zh) 一种通信方法及装置
WO2019075693A1 (zh) Harq反馈码本的处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020915109

Country of ref document: EP

Effective date: 20220727

NENP Non-entry into the national phase

Ref country code: DE