WO2021146914A1 - 一种同轴激光器to-can - Google Patents

一种同轴激光器to-can Download PDF

Info

Publication number
WO2021146914A1
WO2021146914A1 PCT/CN2020/073498 CN2020073498W WO2021146914A1 WO 2021146914 A1 WO2021146914 A1 WO 2021146914A1 CN 2020073498 W CN2020073498 W CN 2020073498W WO 2021146914 A1 WO2021146914 A1 WO 2021146914A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
substrate
semiconductor laser
chip assembly
laser chip
Prior art date
Application number
PCT/CN2020/073498
Other languages
English (en)
French (fr)
Inventor
刘丽红
宁雅农
刘统玉
金光贤
孟辉
蔡德宇
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Priority to PCT/CN2020/073498 priority Critical patent/WO2021146914A1/zh
Publication of WO2021146914A1 publication Critical patent/WO2021146914A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Definitions

  • This application relates to a TO-CAN (transistor-outline can package), and specifically relates to a coaxial laser TO-CAN.
  • Semiconductor laser has the advantages of small size, high photoelectric conversion efficiency, long working life and high-speed direct modulation. It is an important light source for communications, optical pump lasers, optical information storage, etc., and is also a core device in the photoelectric subsystem of high-efficiency monochromatic light sources. It is widely used in industrial production and military fields.
  • part of the outgoing laser beam will be reflected or scattered by external objects to form reverse light.
  • the reverse light will interact with the laser cavity.
  • the oscillating beam interferes. Since the reverse light carries external object information, it will modulate the output power of the laser after it is mixed with the oscillating beam, forming a self-mixing interference effect of the laser.
  • the self-mixing interference effect of the laser will cause the self-coupling effect between the optical path systems, which makes the laser operation unstable and produces system reflection noise.
  • the reflected noise of the system will bring strong background noise to the detection signal, which greatly affects the measurement accuracy and the stability of the measurement system.
  • the reflected noise of this system will change the optical amplifier on the optical fiber link and generate self-excitation, causing the entire optical fiber communication system to fail to work normally.
  • This application provides a coaxial laser TO-CAN to solve the problem that the stability and measurement accuracy of the photoelectric detection system is affected by the reverse optical self-mixing interference effect of the existing semiconductor laser during use, or caused in the field of optical fiber communication
  • the optical fiber communication system cannot work normally.
  • This application provides a coaxial laser TO-CAN, including:
  • a substrate, one side surface of the substrate is provided with pins;
  • a pipe cap, the pipe cap is located on the other side of the substrate and is fixedly connected to the other side surface of the substrate, and the pipe cap and the substrate form an accommodation space;
  • a lens the lens is embedded on the end surface of the tube cap away from the substrate, an anti-reflection structure is provided on one surface of the lens, and the geometric center of the anti-reflection structure is located on the central axis of the lens superior;
  • a semiconductor laser chip assembly the semiconductor laser chip assembly is located in the accommodating space, and the semiconductor laser chip assembly is fixedly connected to the other side surface of the substrate.
  • a coaxial laser TO-CAN provided by this application includes: a substrate, one side surface of the substrate is provided with pins; a tube cap, the tube cap is located on the substrate The other side is fixedly connected to the other side surface of the substrate, the tube cap and the substrate form an accommodating space; a lens, the lens is embedded on the end surface of the tube cap away from the substrate , An anti-reflection structure is provided on one surface of the lens, and the geometric center of the anti-reflection structure is located on the central axis of the lens; a semiconductor laser chip assembly, the semiconductor laser chip assembly is located in the accommodating space Inside, the semiconductor laser chip assembly is fixedly connected to the other side surface of the substrate.
  • the TO-CAN a coaxial laser provided by this application, can solve the problem that the stability and measurement accuracy of the photoelectric detection system are affected by the reverse optical self-mixing interference effect of the existing semiconductor laser during use, or in optical fiber communication.
  • the field causes problems such as the failure of the optical fiber communication system to work.
  • FIG. 1 is a schematic diagram of the structure of a coaxial laser TO-CAN provided by this application;
  • Fig. 2 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • FIG. 4 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • Fig. 5 is a front view of the optical absorption coating shown in Fig. 4;
  • Fig. 6 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • Fig. 7 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in Fig. 6;
  • FIG. 8 is a schematic structural diagram of a coaxial laser TO-CAN provided by this application.
  • Fig. 9 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in Fig. 8;
  • FIG. 10 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • FIG. 11 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • FIG. 12 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • Fig. 13 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in Fig. 11;
  • FIG. 14 is a schematic structural diagram of a coaxial laser TO-CAN provided by this application.
  • Fig. 15 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in Fig. 14.
  • FIG. 1 is a schematic diagram of the structure of a coaxial laser TO-CAN provided by this application.
  • the present application provides a coaxial laser TO-CAN, which is a cylindrical laser transistor package module.
  • the coaxial laser TO-CAN includes: a substrate 1, a pin fixedly connected to one side 11 of the substrate 1, a tube cap 3 fixedly connected to the other side 12 of the substrate 1, and a tube cap 3 embedded away from The lens 4 on the end surface of the substrate 1 and the semiconductor laser chip assembly 5 fixedly connected to the surface of the other side 12 of the substrate 1.
  • the substrate 1 is used to fixedly connect the semiconductor laser chip assembly 5, the substrate 1 and the semiconductor laser chip assembly 5 may be connected by welding, and the pin 2 and the substrate may also be connected by welding, which is not specifically limited in this application.
  • Pin 2 is used to connect the coaxial laser TO-CAN to other devices.
  • the cap 3 may be provided with a through hole 31 (shown in the dashed frame in FIG. 1) on the end surface away from the substrate 1, and the lens 4 is embedded on the end surface of the cap 3 away from the substrate 1 through the through hole 31. Wherein, the lens 4 may be partially embedded in the through hole 31, or may be completely embedded in the through hole 31, which is not specifically limited in this application.
  • the cap 3 and the substrate 1 form an accommodating space, the semiconductor laser chip assembly 5 is located in the accommodating space, and the accommodating space plays a role of accommodating and protecting the semiconductor laser chip assembly 5.
  • the cap 3 and the other side 12 of the substrate 1 can be connected by welding, and sealant can be applied to the welding connection, so that the lens 4, the cap 3 and the substrate 1 form a sealed space, and the semiconductor laser chip assembly 5 is placed The service life can be increased in the sealed space.
  • An anti-reflection structure 41 is provided on one side surface of the lens 4.
  • the anti-reflection structure 41 shown in FIG. 1 is located on the surface of the lens 4 away from the semiconductor laser chip assembly 5, and the geometric center of the anti-reflection structure 41 is located on the central axis of the lens 4. 42 on.
  • the semiconductor laser chip assembly 5 is used as a light source to emit a laser beam (not shown in FIG. 1).
  • the lens 4 plays a role of focusing and collimating the laser beam emitted by the semiconductor laser chip assembly 5.
  • the tube cap 3 is for the semiconductor laser chip assembly 5. Play a role of sealing and protection.
  • the number of pins 2 shown in FIG. 1 is only illustrative, and is not specifically limited in this application.
  • the focal length of the lens 4 can be 9.7mm, and the 9.7mm is only a schematic illustration, as long as the lens can focus and collimate the laser beam emitted by the semiconductor laser chip assembly. This application does not make any adjustments to the focal length of the lens 4 Specific restrictions.
  • the drawings of the present application do not illustrate the detailed structure of the semiconductor laser chip assembly 5. It is obvious to those skilled in the art that the semiconductor laser chip assembly 5 includes a laser resonator, and the laser resonator is used to oscillate the reciprocating reflection and oscillation of the laser beam therein to output the laser beam.
  • Fig. 2 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in Fig. 1.
  • the reverse light F when part of the outgoing laser beam (not shown in Figure 2) is reflected or scattered by an external object, the reverse light F is formed, and the reverse light F is re-ejected back into the laser cavity of the semiconductor laser chip assembly 5. At this time, the reverse light F will interfere with the oscillating laser beam in the laser cavity.
  • the reverse light F carries information about external objects. After being mixed with the laser beam oscillating in the cavity, it modulates the output power of the laser, forming a self-mixing interference effect of the laser, resulting in a self-coupling effect between the optical path systems, making the operation of the laser impossible Stabilize and generate system reflection noise.
  • This system reflection noise will bring strong background noise to the detection signal of the laser detector, which greatly affects the measurement accuracy and the stability of the measurement system.
  • this noise can change the optical amplifier on the optical fiber link and generate self-excitation, causing the entire optical fiber communication system to fail to work normally.
  • an optical isolator is usually connected between the output end of the semiconductor laser and the input end of the photodetector.
  • the access to the optical isolator increases the number of components, increases the cost, and the connection between components becomes complicated.
  • the laser is packaged, and an anti-reflection structure 41 is provided on the lens 4 of the packaged laser to absorb, reflect or refract part of the reverse light F, and by absorbing part of the reverse light F Or change the propagation direction of part of the reverse light F ( Figure 2 only shows the case where the anti-reflection structure 41 absorbs the reverse light F), thereby enhancing the working stability of the laser, improving the accuracy of photoelectric detection, and ensuring the normality of the optical fiber communication system jobs.
  • the anti-reflection structure 41 can have the same effect as using an optical isolator, but because the structure and manufacturing process of the anti-reflection structure 41 are simple, the cost is low, and there is no need to increase the connection relationship between components, and the reliability is higher.
  • FIG. 3 is a schematic diagram of the structure of another coaxial laser TO-CAN provided by this application.
  • the anti-reflection structure 41 is located on the surface of the lens 4 close to the semiconductor laser chip assembly 5, and the geometric center of the anti-reflection structure 41 is located on the central axis 42 of the lens 4.
  • Fig. 4 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • the anti-reflection structure 41 may be an optical absorption coating 43.
  • Fig. 5 is a front view of the optical absorption coating shown in Fig. 4.
  • the shape of the optical absorption coating 43 determines the shape of the orthographic projection in the direction along the central axis 42 of the lens 4, for example, it may be a circle, an ellipse or a rectangle.
  • the diameter D of the circular projection can be 2-3 times the diameter L of the light exit surface of the semiconductor laser chip assembly 5.
  • the long axis length of the ellipse may be the size D shown in FIG. 4, and the long side of the rectangle may be the size D shown in FIG.
  • the optical absorption coating 43 can be provided by processes such as printing, coating, pasting, vapor deposition, etc., which is not specifically limited in this application.
  • the diameter D of the circular, elliptical or rectangular projection may be between 2-3 times the diameter L of the light-emitting surface of the semiconductor laser chip assembly 5, for example 2.3 times, 2.5 times, 2.7 times, 2.9 times.
  • Fig. 4 shows the optical path diagram of another coaxial laser TO-CAN provided by the present application.
  • the diameter D of the circular, elliptical or rectangular projection is 2-3 times the diameter L of the light-emitting surface of the semiconductor laser chip assembly 5, which can ensure that the optical absorption coating 43 is projected along the central axis 42 of the lens 4 to the semiconductor laser chip.
  • the light-emitting surface of the component 5 is completely covered, which can eliminate or reduce the self-mixing interference effect of the laser.
  • Fig. 6 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • the anti-reflection structure 41 is a rough surface structure 44 formed by polishing a part of the surface on the central axis 42 of the lens 4.
  • the surface roughness structure 44 may be located on the surface of the lens 4 away from the semiconductor laser chip assembly 5.
  • the geometric center of the surface roughness structure 44 is located on the central axis 42.
  • Fig. 7 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in Fig. 6.
  • the back light F hits the lens 4
  • the back light F hit on the surface roughness structure 44 will be reflected and transmitted by the surface roughness structure 44.
  • the amount of reflected light is greater than the amount of transmitted light.
  • a very small amount of reverse light F is transmitted through the surface roughness structure 44 back into the laser cavity of the semiconductor laser chip assembly 5, and the surface roughness structure 44 functions to eliminate or weaken the self-mixing interference effect of the laser.
  • FIG. 8 is a schematic structural diagram of a coaxial laser TO-CAN provided by this application. As shown in FIG. 8, the rough surface structure 44 may be located on the surface of the lens 4 on the side close to the semiconductor laser chip assembly 5.
  • Fig. 9 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in Fig. 8.
  • the anti-reflection principle of the surface roughness structure 44 shown in FIG. 7 and FIG. 9 is the same, and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • the surface roughness structure 44 is located on the surface of the lens 4 close to the semiconductor laser chip assembly 5, and at the same time, an optical absorption coating 43 may be provided on the surface of the lens 4 away from the semiconductor laser chip assembly 5. While the surface roughness structure 44 reflects the reverse light F, the optical absorption coating 43 absorbs the reverse light F incident on the optical absorption coating 43, which plays a dual role in reducing the self-mixing interference effect of the laser.
  • the orthographic projection of the optical absorbing coating in the direction along the central axis 42 of the lens 4 can cover the orthographic projection of the surface roughness structure 44 in the direction along the central axis 42 of the lens 4, and the optical absorbing coating in the direction along the central axis 42 of the lens 4
  • the orthographic projection in the direction may also coincide with the orthographic projection of the surface roughness structure 44 in the direction along the central axis 42 of the lens 4.
  • the shape of the surface roughness structure 44 determines the shape of the orthographic projection in the direction along the central axis 42 of the lens 4, for example, it may be a circle, an ellipse and a rectangle.
  • the diameter, major axis length, and major sides of the circular, elliptical, and rectangular projections can be the size H shown in FIGS. 6, 8 and 10.
  • the diameter H of the circle may be greater than or equal to the diameter L of the light exit surface of the semiconductor laser chip assembly 5.
  • Table 1 shows the relationship between the ratio of the size H to the size L and the percentage of the reverse light reflected back to the semiconductor laser chip assembly.
  • Table 2 shows the relationship between the ratio of the size H to the size L and the percentage of the reverse light reflected back to the semiconductor laser chip assembly.
  • the surface of the surface roughness structure 44 can be approximated to an ideal diffuse reflection surface, satisfying the Lambertian scattering mathematical model.
  • the surface roughness structure 44 may be formed by mechanical polishing on a partial surface on the central axis 42 of the lens 4, and the polishing method and tools used are not specifically limited in this application.
  • the numerical values shown in Table 1 and Table 2 are only illustrative, and not as a limitation of the present application.
  • FIG. 11 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application
  • FIG. 12 is a schematic structural diagram of another coaxial laser TO-CAN provided by this application.
  • the surface of the lens 4 away from the semiconductor laser chip assembly 5 is provided with a chamfered surface 45; the angle ⁇ between the chamfered surface 45 and the central axis 42 of the lens 4 is between 75° and 85°.
  • the reflective structure 41 is a chamfered surface 45, and the geometric center of the chamfered surface 45 may be located on the central axis 42.
  • FIG. 14 is a schematic diagram of the structure of a coaxial laser TO-CAN provided by this application.
  • the beveled surface 45 includes a first beveled surface 451 and a second beveled surface 452.
  • the first beveled surface 451 and the second beveled surface 452 are symmetrical about the central axis 42 of the lens 4, and the first beveled surface 451 and the second beveled surface 452
  • the angle ⁇ between the chamfered surface 452 and the central axis 42 of the lens 4 is between 75° and 85°.
  • an optical absorption coating can be provided on the surface of the chamfer 45 (not marked in Fig. 11, Fig. 12 and Fig. 14), and the chamfer 45 will be reversed. While the light F is refracted, the optical absorption coating absorbs the reverse light F incident on the optical absorption coating, which plays a dual role in reducing the self-mixing interference effect of the laser.
  • the included angle ⁇ when the included angle ⁇ is an acute angle, the value range of the included angle ⁇ can be between 75°-85°, such as 75°, 78°, 80°, 82° or 85°, etc., the included angle ⁇ can be set according to specific conditions. If the angle ⁇ is selected from 75°-85°, the reverse light F can be refracted better, so that the reverse light F cannot be reflected back into the laser cavity of the semiconductor laser chip assembly 5 after being refracted by the chamfer 45. .
  • FIG. 13 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in FIG. 11, and FIG. 15 is an optical path diagram of the coaxial laser TO-CAN of the embodiment shown in FIG. 14.
  • the reverse light F hits the lens 4
  • the reverse light F incident on the beveled surface 45 will be reflected by the beveled surface 45, and there will be no or very little reverse light.
  • the chamfer 45 plays a role in eliminating or reducing the self-mixing interference effect of the laser.
  • the chamfered surface 45 can be formed by mechanical grinding, or can be formed by cutting.
  • Figures 11, 12 and 14 only schematically show three situations of the chamfered surface 45, and the chamfered surface 45 may also have other forms not shown in the drawings of the present application.
  • the light rays shown in FIG. 2, FIG. 7, FIG. 9, FIG. 13 and FIG. 15 are only schematic, and the number of light rays and the distribution density are all schematic representations, and are not a limitation of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请公开一种同轴激光器TO-CAN,包括:衬底,所述衬底的一侧表面设有管脚;管帽,所述管帽位于所述衬底的另一侧,与所述衬底的另一侧表面固定连接,所述管帽与所述衬底形成容置空间;透镜,所述透镜嵌设在所述管帽远离所述衬底的端面上,所述透镜的一侧表面上设有抗反射结构,所述抗反射结构的几何中心位于所述透镜的中轴线上;半导体激光器芯片组件,所述半导体激光器芯片组件位于所述容置空间内,所述半导体激光器芯片组件与所述衬底的另一侧表面固定连接。以解决,由于现有半导体激光器在使用过程中存在反向光自混合干涉效应而影响光电检测系统的稳定性和测量精度等问题。

Description

一种同轴激光器TO-CAN 技术领域
本申请涉及一种TO-CAN(transistor-outline can package,晶体管引线式外壳封装),具体的涉及一种同轴激光器TO-CAN。
背景技术
半导体激光器具有体积小、光电转换效率高、工作寿命长和高速直接调制等优点,是通信、光泵浦激光器、光信息存储等的重要光源,也是高效单色光源光电子系统中的核心器件,在工业生产和军事领域中被广泛应用。
在半导体激光器作为光源使用的过程中,部分出射激光束会被外部物体反射或散射,形成反向光,当反向光重新射回到激光谐振腔内时,反向光会与激光谐振腔内的振荡光束发生干涉。由于反向光携载外部物体信息,因此它与振荡光束相混合后,会调制激光器的输出功率,形成激光器的自混合干涉效应。然而,在利用红外激光光谱吸收原理来测量气体成分和浓度的光电技术应用中,激光器自混合干涉效应,会导致光路系统间产生自耦合效应,使激光器运行不稳定并产生系统反射噪声,这种系统反射噪声会给探测信号带来很强的本底噪音,极大的影响测量精度和测量系统的稳定性。另外,在光纤通信领域,这种系统反射噪声会使光纤链路上的光放大器发生变化并产生自激励,造成整个光纤通信系统无法正常工作。
由此可见,如何解决反向光带来的上述问题,成为本领域技术人员亟待解决的技术问题。
发明内容
本申请提供一种同轴激光器TO-CAN,以解决,由于现有半导体激光器在使用过程中存在反向光自混合干涉效应而影响光电检测系统的稳定性和测量精度,或者在光纤通讯领域导致光纤通讯系统无法正常工作等问题。
本申请提供一种同轴激光器TO-CAN,包括:
衬底,所述衬底的一侧表面设有管脚;
管帽,所述管帽位于所述衬底的另一侧,与所述衬底的另一侧表面固定连接,所述管帽与所述衬底形成容置空间;
透镜,所述透镜嵌设在所述管帽远离所述衬底的端面上,所述透镜的一侧表面上设有抗反射结构,所述抗反射结构的几何中心位于所述透镜的中轴线上;
半导体激光器芯片组件,所述半导体激光器芯片组件位于所述容置空间内,所述半导体激光器芯片组件与所述衬底的另一侧表面固定连接。
由以上技术方案可知,本申请提供的一种同轴激光器TO-CAN,包括:衬底,所述衬底的一侧表面设有管脚;管帽,所述管帽位于所述衬底的另一侧,与所述衬底的另一侧表面固定连接,所述管帽与所述衬底形成容置空间;透镜,所述透镜嵌设在所述管帽远离所述衬底的端面上,所述透镜的一侧表面上设有抗反射结构,所述抗反射结构的几何中心位于所述透镜的中轴线上;半导体激光器芯片组件,所述半导体激光器芯片组件位于所述容置空间内,所述半导体激光器芯片组件与所述衬底的另一侧表面固定连接。通过本申请提供的一种同轴激光器TO-CAN,可以解决,由于现有半导体激光器在使用过程中存在反向光自混合干涉效应而影响光电检测系统的稳定性和测量精度,或者在光纤通讯领域导致光纤通讯系统无法正常工作等问题。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种同轴激光器TO-CAN的结构示意图;
图2为图1所示实施例的同轴激光器TO-CAN的光路图;
图3为本申请提供的另一种同轴激光器TO-CAN的结构示意图;
图4为本申请提供的再一种同轴激光器TO-CAN的结构示意图;
图5为图4所示光学吸收涂层的正视图;
图6为本申请提供的又一种同轴激光器TO-CAN的结构示意图;
图7为图6所示实施例的同轴激光器TO-CAN的光路图;
图8为本申请提供的一种同轴激光器TO-CAN的结构示意图;
图9为图8所示实施例的同轴激光器TO-CAN的光路图;
图10为本申请提供的另一种同轴激光器TO-CAN的结构示意图;
图11为本申请提供的再一种同轴激光器TO-CAN的结构示意图;
图12为本申请提供的又一种同轴激光器TO-CAN的结构示意图;
图13为图11所示实施例的同轴激光器TO-CAN的光路图;
图14为本申请提供的一种同轴激光器TO-CAN的结构示意图;
图15为图14所示实施例的同轴激光器TO-CAN的光路图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请提供的一种同轴激光器TO-CAN的结构示意图。如图1所示,本申请提供一种同轴激光器TO-CAN,同轴激光器TO-CAN是圆柱形的激光器晶体管封装模组。同轴激光器TO-CAN包括:衬底1、与衬底1的一侧11固定连接的管脚2、与衬底1的另一侧12固定连接的管帽3、嵌设在管帽3远离衬底1端面上的透镜4和与衬底1另一侧12表面固定连接的半导体激光器芯片组件5。衬底1用于固定连接半导体激光器芯片组件5,衬底1与半导体激光器芯片组件5可以是焊接连接,管脚2与衬底也可以是焊接连接,本申请不作具体限定。管脚2用于将同轴激光器TO-CAN连接到其他装置上。管帽3可以在远离衬底1的端面上设置有通孔31(图1中虚线框所示),通过通孔31,透镜4嵌设在管帽3远离衬底1的端面上。其中,透镜4可以部分嵌设于通孔31内,也可以全部嵌设于通孔31内,本申请不作具体限定。管帽3和衬底1形成一容置空间,半导体激光器芯片组件5位于容置空间内,所述容置空间起到容纳和保护半导体激光器芯片组件5的作用。管帽3和衬底1的另一侧12可以是焊接连接,在焊接连接处还可以涂抹密封胶,使得透镜4、管帽3与衬底1形成一密封空间,半导体激光器芯片组件5置于密封空间内可以增加其使用寿命。透镜4的一侧表面上设有抗反射结构41,图1所示抗反射结构41位于透镜4远离半导体激光器芯片组件5一侧的表面上,抗反射结构41的几何中心位于透镜4的中轴线42上。半导体激光器芯片组件5作为光源,发出激光光束(图1中未示出),透镜4对半导体激光器芯片组件5发出的激光光束起到聚焦和准直的作用,管帽3对于半导体激光器芯片组件5起到密封和防护的作用。
图1所示管脚2的数量只是示意性的,本申请不作具体限定。透镜4的焦距可以是9.7mm,所述9.7mm只是示意性的说明,只要满足透镜对半导体激光器芯片组件发出的激光光束起到聚焦和准直的作用即可,本申请对于透镜4的焦距不作具体限定。
需要说明的是,本申请的附图对于半导体激光器芯片组件5的详细结构未作示意。对于本领域技术人员显而易见的是,半导体激光器芯片组件5包括激光谐振腔,激光谐振腔用于振荡激光束在其内的往复反射振荡以输出激光束。
图2为图1所示实施例的同轴激光器TO-CAN的光路图。如图2所示,当部分出射激光束(图2中未示出)被外部物体反射或散射后形成反向光F,反向光F重新射回到半导体激光器芯片组件5的激光谐振腔内,此时,反向光F会与激光谐振腔内的振荡激光束相互干涉。反向光F携载外部物体信息,与腔内振荡激光束混合后,会调制激光器的输出功率,形成激光器的自混合干涉效应,导致光路系统间产生自耦合效应,使激光器的运行变得不稳定并产生系统反射噪声,这种系统反射噪声会给激光探测器的探测信号带来很强的本底噪音,极大的影响测量精度和测量系统的稳定性。在光纤通信领域,这种噪音可以使光纤链路上的光放大器发生变化并产生自激励,造成整个光纤通信系统无法正常工作。为了消除或减弱光路通道中的反向光F,通常在半导体 激光器输出端和光电探测器输入端连接光隔离器。但是,接入光隔离器使得增加了部件,提高了成本,部件之间连接变得复杂。本实施例提供的同轴激光器TO-CAN通过将激光器封装,在封装激光器的透镜4上设置抗反射结构41,用于吸收、反射或者折射部分反向光F,通过吸收掉部分反向光F或者改变部分反向光F的传播方向(图2中只示出了抗反射结构41将反向光F吸收的情况),从而增强激光器的工作稳定性,提高光电检测精度,保证光纤通信系统正常工作。抗反射结构41可以起到与使用光隔离器相同的效果,但是由于抗反射结构41的结构和制作工艺简单,成本低廉,无需增加部件连接关系,可靠性更高。
图3为本申请提供的另一种同轴激光器TO-CAN的结构示意图。如图3所示,抗反射结构41位于透镜4靠近半导体激光器芯片组件5一侧的表面上,抗反射结构41的几何中心位于透镜4的中轴线42上。
图4为本申请提供的再一种同轴激光器TO-CAN的结构示意图。如图4所示,抗反射结构41可以是光学吸收涂层43。图5为图4所示光学吸收涂层的正视图。结合图4和图5,光学吸收涂层43的形状决定了在沿着透镜4中轴线42方向上的正投影形状,例如可以是圆形、椭圆形或矩形。圆形投影的直径D可以是半导体激光器芯片组件5出光表面口径L的2-3倍。椭圆形的长轴长可以为图4所示的尺寸D,矩形的长边可以为图4所示的尺寸D。
其中,光学吸收涂层43可以通过印刷、涂覆、贴覆、蒸镀等工艺进行设置,本申请不作具体限定。圆形、椭圆形或矩形投影的直径D可以是半导体激光器芯片组件5出光表面口径L的2-3倍之间,例如2.3倍、2.5倍、2.7倍、2.9倍。
图4所示本申请提供的再一种同轴激光器TO-CAN的光路图可以参考图2,当反向光F射到透镜4上时,由于,照射在光学吸收涂层43上的反向光F会被光学吸收涂层43吸收掉,因此,不会有反向光F或者极少的反向光F射回到半导体激光器芯片组件5的激光谐振腔内,则光学吸收涂层43可以起到消除或减弱激光器自混合干涉效应的作用。圆形、椭圆形或矩形投影的直径D是半导体激光器芯片组件5出光表面口径L的2-3倍,可以保证光学吸收涂层43沿着透镜4中轴线42方向上的正投影将半导体激光器芯片组件5出光表面完全覆盖,可以消除或减弱激光器的自混合干涉效应。
图6为本申请提供的又一种同轴激光器TO-CAN的结构示意图。如图6所示,抗反射结构41为透镜4中轴线42上的局部表面经过打磨形成的表面粗糙结构44。表面粗糙结构44可以位于透镜4远离半导体激光器芯片组件5一侧的表面。表面粗糙结构44的几何中心位于中轴线42上。
图7为图6所示实施例的同轴激光器TO-CAN的光路图。如图7所示,当反向光F射到透镜4上时,射在表面粗糙结构44上的反向光F会被表面粗糙结构44反射和透射,此时的反射光量大于透射光量,可以使得极少的反向光F透过表面粗糙结构44射回到半导体激光器芯片组件5的激光谐振腔内,则表面粗糙结构44起到消除或减弱激光器的自混合干涉效应的作用。
图8为本申请提供的一种同轴激光器TO-CAN的结构示意图。如图8所示,表面粗 糙结构44可以位于透镜4靠近半导体激光器芯片组件5一侧的表面。
图9为图8所示实施例的同轴激光器TO-CAN的光路图。图7和图9所示的表面粗糙结构44的抗反射原理相同,此处不再赘述。
图10为本申请提供的另一种同轴激光器TO-CAN的结构示意图。如图10所示,表面粗糙结构44位于透镜4靠近半导体激光器芯片组件5一侧的表面,同时,在透镜4远离半导体激光器芯片组件5一侧的表面还可以设置光学吸收涂层43。在表面粗糙结构44将反向光F反射的同时,光学吸收涂层43将射在光学吸收涂层43上的反向光F吸收掉,对减弱激光器的自混合干涉效应起到双重作用。光学吸收涂层在沿着透镜4中轴线42方向上的正投影可以覆盖住表面粗糙结构44在沿着透镜4中轴线42方向上的正投影,光学吸收涂层在沿着透镜4中轴线42方向上的正投影也可以与表面粗糙结构44在沿着透镜4中轴线42方向上的正投影重合。
如图6、图8和图10所示,表面粗糙结构44的形状决定了在沿着透镜4中轴线42方向上的正投影形状,例如可以是圆形、椭圆形和矩形。圆形、椭圆形和矩形投影的直径、长轴长和长边可以为图6、图8和图10所示的尺寸H。圆形的直径H可以大于或等于半导体激光器芯片组件5出光表面口径L。
如图6所示,当表面粗糙结构44位于透镜4远离半导体激光器芯片组件5一侧的表面时,尺寸H与半导体激光器芯片组件5出光表面口径L的比值可以参照表1进行取值。表1为尺寸H与尺寸L的比值和反向光射回半导体激光器芯片组件的百分数的关系。
Figure PCTCN2020073498-appb-000001
表1
如图8或图10所示,当表面粗糙结构44位于透镜4靠近半导体激光器芯片组件5一侧的表面时,尺寸H与半导体激光器芯片组件5出光表面口径L的比值可以参照表2进行取值。表2为尺寸H与尺寸L的比值和反向光射回半导体激光器芯片组件的百分数的关系。
Figure PCTCN2020073498-appb-000002
表2
如图6、图8和图10所示,表面粗糙结构44的表面可以近似于理想的漫反射面,满足朗伯散射数学模型,朗伯散射数学公式为:I S=cosα·I i,其中,I i是入射光强,I S是散射光强,α是入射光线与散射面法向量的夹角(I i、I S和α均未在图6、图8和图10中示出)。
表面粗糙结构44可以通过透镜4中轴线42上的局部表面经过机械打磨形成,对于打磨的方式和使用工具等,本申请不作具体限定。表1和表2所示的数值只是示意性的,不作为本申请的限定。
图11为本申请提供的再一种同轴激光器TO-CAN的结构示意图,图12为本申请提供的又一种同轴激光器TO-CAN的结构示意图。如图11和图12所示,透镜4远离半导体激光器芯片组件5一侧的表面设置有斜切面45;斜切面45与透镜4中轴线42的夹角β在75°-85°之间,抗反射结构41为斜切面45,斜切面45的几何中心可以位于中轴线42上。
图14为本申请提供的一种同轴激光器TO-CAN的结构示意图。如图14所示,斜切面45包括第一斜切面451和第二斜切面452,第一斜切面451和第二斜切面452关于透镜4的中轴线42对称,第一斜切面451和第二斜切面452与透镜4的中轴线42的夹角β在75°-85°之间。
在图11、图12和图14所示实施例的基础上,在斜切面45的表面可以设置光学吸收涂层(图11、图12和图14中未标识),在斜切面45将反向光F折射的同时,光学吸收涂层将射在光学吸收涂层上的反向光F吸收掉,对减弱激光器的自混合干涉效应起到双重作用。
如图11、图12和图14所示,当夹角β为锐角时,夹角β的取值范围可以在75°-85°之间,例如75°、78°、80°、82°或85°等,夹角β可通过具体情况进行设定。夹角β在75°-85°中取值可以对反向光F进更好的折射,使得反向光F经过斜切面45的折射后无法射回到半导体激光器芯片组件5的激光谐振腔内。
图13为图11所示实施例的同轴激光器TO-CAN的光路图,图15为图14所示实施例的同轴激光器TO-CAN的光路图。如图13和图15所示,当反向光F射到透镜4上时,射在斜切面45上的反向光F会被斜切面45反射,则不会有或者极少的反向光F射回到半导体激光器芯片组件5的激光谐振腔内,则斜切面45起到消除或减弱激光器的自混合干涉效应的作用。
斜切面45可以通过机械打磨形成,也可以通过切割形成。图11、图12和图14只是示意性的表示出斜切面45的三种情况,斜切面45还可以是本申请附图未示出的其他形态。图2、图7、图9图13和图15所示的光线只是示意性的,光线数量,分布密度均是示意性表示,不作为本申请的限定。
本说明书中各个实施例之间相同相似的部分互相参见即可。

Claims (10)

  1. 一种同轴激光器TO-CAN,其特征在于,包括:
    衬底(1),所述衬底(1)的一侧(11)表面设有管脚(2);
    管帽(3),所述管帽(3)位于所述衬底(1)的另一侧(12),与所述衬底(1)的另一侧(12)表面固定连接,所述管帽(3)与所述衬底(1)形成容置空间;
    透镜(4),所述透镜(4)嵌设在所述管帽(3)远离所述衬底(1)的端面上,所述透镜(4)的一侧表面上设有抗反射结构(41),所述抗反射结构(41)的几何中心位于所述透镜(4)的中轴线(42)上;
    半导体激光器芯片组件(5),所述半导体激光器芯片组件(5)位于所述容置空间内,所述半导体激光器芯片组件(5)与所述衬底(1)的另一侧(12)表面固定连接。
  2. 根据权利要求1所述的同轴激光器TO-CAN,其特征在于,所述抗反射结构(41)设置在所述透镜(4)远离所述半导体激光器芯片组件(5)一侧的表面上。
  3. 根据权利要求1所述的同轴激光器TO-CAN,其特征在于,所述抗反射结构(41)设置在所述透镜(4)靠近所述半导体激光器芯片组件(5)一侧的表面上。
  4. 根据权利要求2所述的同轴激光器TO-CAN,其特征在于,所述抗反射结构(41)为光学吸收涂层(43)。
  5. 根据权利要求4所述的同轴激光器TO-CAN,其特征在于,所述光学吸收涂层(43)在沿着所述透镜(4)中轴线(42)方向上的正投影是圆形,所述圆形的直径(D)是所述半导体激光器芯片组件(5)出光表面口径(L)的2-3倍。
  6. 根据权利要求2或3所述的同轴激光器TO-CAN,其特征在于,所述抗反射结构(41)为所述透镜(4)中轴线(42)上的局部表面经过打磨形成的表面粗糙结构(44)。
  7. 根据权利要求6所述的同轴激光器TO-CAN,其特征在于,所述表面粗糙结构(44)沿着所述透镜(4)中轴线(42)方向上的正投影是圆形,所述圆形的直径(H)大于或等于所述半导体激光器芯片组件(5)出光表面口径(L)。
  8. 根据权利要求1所述的同轴激光器TO-CAN,其特征在于,所述透镜(4)远离所述半导体激光器芯片组件(5)一侧的表面设有斜切面(45),所述斜切面(45)与所述透镜(4)中轴线(42)的夹角(β)在75°-85°之间,所述抗反射结构(41)为斜切面(45)。
  9. 根据权利要求8所述的同轴激光器TO-CAN,其特征在于,所述斜切面(45)包括第一斜切面(451)和第二斜切面(452),所述第一斜切面(451)与所述第二斜切面(452)关于所述透镜(4)的中轴线(42)对称。
  10. 根据权利要求8或9所述的同轴激光器TO-CAN,其特征在于,所述斜切面(45)的表面设置有光学吸收涂层。
PCT/CN2020/073498 2020-01-21 2020-01-21 一种同轴激光器to-can WO2021146914A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073498 WO2021146914A1 (zh) 2020-01-21 2020-01-21 一种同轴激光器to-can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073498 WO2021146914A1 (zh) 2020-01-21 2020-01-21 一种同轴激光器to-can

Publications (1)

Publication Number Publication Date
WO2021146914A1 true WO2021146914A1 (zh) 2021-07-29

Family

ID=76992017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073498 WO2021146914A1 (zh) 2020-01-21 2020-01-21 一种同轴激光器to-can

Country Status (1)

Country Link
WO (1) WO2021146914A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586208A (en) * 1994-06-29 1996-12-17 Sumitomo Electric Industries, Ltd. Analog photodiode module
CN2255682Y (zh) * 1995-12-29 1997-06-04 财团法人工业技术研究院 半导体激光塑料成型封装装置
CN101006591A (zh) * 2004-08-25 2007-07-25 赛勒克斯有限公司 发光器件及其封装结构以及该封装结构的制造方法
CN102313937A (zh) * 2010-07-02 2012-01-11 深圳新飞通光电子技术有限公司 一种带致冷同轴光发射管芯
CN207473158U (zh) * 2017-11-30 2018-06-08 武汉光迅科技股份有限公司 一种高速同轴光发射组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586208A (en) * 1994-06-29 1996-12-17 Sumitomo Electric Industries, Ltd. Analog photodiode module
CN2255682Y (zh) * 1995-12-29 1997-06-04 财团法人工业技术研究院 半导体激光塑料成型封装装置
CN101006591A (zh) * 2004-08-25 2007-07-25 赛勒克斯有限公司 发光器件及其封装结构以及该封装结构的制造方法
CN102313937A (zh) * 2010-07-02 2012-01-11 深圳新飞通光电子技术有限公司 一种带致冷同轴光发射管芯
CN207473158U (zh) * 2017-11-30 2018-06-08 武汉光迅科技股份有限公司 一种高速同轴光发射组件

Similar Documents

Publication Publication Date Title
JPH0595169A (ja) 半導体レーザ装置および半導体レーザモジユール
WO2013150864A1 (ja) 半導体レーザ光学装置
US11108214B2 (en) Wavelength combining laser apparatus
CN111244747B (zh) 一种同轴激光器to-can
US11619563B2 (en) Optical path test system and method for return light resistance of laser chip
WO2019080345A1 (zh) 一种基于双胶合透镜的传输光器件
US4926430A (en) Laser module with a built-in optical isolator, and method of adjusting the angular position of the optical isolator
US20200021081A1 (en) Optical module
WO2021146914A1 (zh) 一种同轴激光器to-can
CN108490556B (zh) 光模块
JP2016062918A (ja) Ldモジュール
WO2021121111A1 (zh) 光源装置
JP7488445B2 (ja) 光源ユニット
CN112886382A (zh) 一种单组大功率光纤耦合半导体激光器封装结构与应用
CN217545225U (zh) 一种多芯片封装的半导体激光器
JP4997543B2 (ja) レーザ集光プリズム
CN215641913U (zh) 一种光阑以及激光器
JP2018173610A (ja) レーザモジュール
CN113794108A (zh) 一种光纤耦合半导体激光器
CN107634448B (zh) 一种外腔半导体激光器
WO2019065162A1 (ja) 光モジュール
JP2012047766A (ja) 光ビーム再配置光学系、光学素子および光源装置
CN111916991A (zh) 偏振式大功率激光器
US20210373263A1 (en) Optical Assembly And Manufacturing Method Thereof
CN218557074U (zh) 一种激光划线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915855

Country of ref document: EP

Kind code of ref document: A1