WO2021145749A1 - Procédé de fonctionnement d'un ue par rapport à un cbr dans un système de communication sans fil - Google Patents

Procédé de fonctionnement d'un ue par rapport à un cbr dans un système de communication sans fil Download PDF

Info

Publication number
WO2021145749A1
WO2021145749A1 PCT/KR2021/000678 KR2021000678W WO2021145749A1 WO 2021145749 A1 WO2021145749 A1 WO 2021145749A1 KR 2021000678 W KR2021000678 W KR 2021000678W WO 2021145749 A1 WO2021145749 A1 WO 2021145749A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
frequency band
cbr
cbr information
resource
Prior art date
Application number
PCT/KR2021/000678
Other languages
English (en)
Korean (ko)
Inventor
이승민
홍의현
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/793,616 priority Critical patent/US20230082892A1/en
Priority to KR1020227027151A priority patent/KR20220126739A/ko
Priority to EP21740940.8A priority patent/EP4093119A4/fr
Publication of WO2021145749A1 publication Critical patent/WO2021145749A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following description relates to a wireless communication system, and more particularly, a method and apparatus for operating a sidelink UE related to Channel Busy Ratio (CBR).
  • CBR Channel Busy Ratio
  • a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency
  • 5G Radio Access Technology
  • various RAT Radio Access Technology
  • LTE, LTE-A, and WiFi are used
  • 5G is also included in this.
  • the three main requirement areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area and (3) Ultra-reliable and It includes an Ultra-reliable and Low Latency Communications (URLLC) area.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • 5G is to support these various use cases in a flexible and reliable way.
  • eMBB goes far beyond basic mobile internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services.
  • voice is simply expected to be processed as an application using the data connection provided by the communication system.
  • the main causes for increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are other key factors that increase the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes.
  • Another use example is augmented reality for entertainment and information retrieval.
  • augmented reality requires very low latency and instantaneous amount of data.
  • URLLC includes new services that will transform the industry through ultra-reliable/available low-latency links such as self-driving vehicles and remote control of critical infrastructure. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in resolutions of 4K and higher (6K, 8K and higher), as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force for 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections regardless of their location and speed.
  • Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark and overlays information that tells the driver about the distance and movement of the object over what the driver is seeing through the front window.
  • wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between automobiles and other connected devices (eg, devices carried by pedestrians).
  • Safety systems can help drivers reduce the risk of accidents by guiding alternative courses of action to help them drive safer.
  • the next step will be remote-controlled or self-driven vehicles.
  • Smart cities and smart homes referred to as smart societies, will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify conditions for cost and energy-efficient maintenance of a city or house.
  • a similar setup can be performed for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • Smart grids use digital information and communication technologies to interconnect these sensors to collect information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economy, sustainability of production and distribution of fuels such as electricity in an automated manner.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care services in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operate with cable-like delay, reliability and capacity, and that its management be simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
  • Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to enable tracking of inventory and packages from anywhere.
  • Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
  • a wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (eg, bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency
  • a sidelink refers to a communication method in which a direct link is established between user equipment (UE), and voice or data is directly exchanged between terminals without going through a base station (BS).
  • SL is being considered as one way to solve the burden of the base station due to the rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and infrastructure-built objects through wired/wireless communication.
  • V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through a PC5 interface and/or a Uu interface.
  • RAT radio access technology
  • MTC massive machine type communication
  • URLLC Ultra-Reliable and Low Latency Communication
  • RAT new radio access technology
  • NR new radio
  • V2X vehicle-to-everything
  • FIG. 1 is a diagram for explaining a comparison of V2X communication based on RAT before NR and V2X communication based on NR.
  • V2X message may include location information, dynamic information, attribute information, and the like.
  • the UE may transmit a periodic message type CAM and/or an event triggered message type DENM to another UE.
  • the CAM may include basic vehicle information such as dynamic state information of the vehicle such as direction and speed, vehicle static data such as dimensions, external lighting conditions, and route details.
  • the UE may broadcast the CAM, and the CAM latency may be less than 100 ms.
  • the terminal may generate a DENM and transmit it to another terminal.
  • all vehicles within the transmission range of the terminal may receive the CAM and/or DENM.
  • the DENM may have a higher priority than the CAM.
  • V2X scenarios are being presented in NR.
  • various V2X scenarios may include vehicle platooning, advanced driving, extended sensors, remote driving, and the like.
  • vehicles can be dynamically grouped and moved together.
  • vehicles belonging to the group may receive periodic data from a leading vehicle.
  • the vehicles belonging to the group may use periodic data to reduce or widen the distance between the vehicles.
  • the vehicle can be semi-automated or fully automated.
  • each vehicle may adjust trajectories or maneuvers based on data obtained from local sensors of the proximate vehicle and/or proximate logical entity.
  • each vehicle may share driving intention with adjacent vehicles.
  • raw data or processed data obtained through local sensors, or live video data may include a vehicle, a logical entity, a terminal of a pedestrian and / or can be interchanged between V2X application servers.
  • the vehicle may recognize an environment that is improved over an environment that can be detected using its own sensor.
  • a remote driver or V2X application may operate or control the remote vehicle.
  • a route can be predicted such as in public transportation
  • cloud computing-based driving may be used to operate or control the remote vehicle.
  • access to a cloud-based back-end service platform may be considered for remote driving.
  • the embodiment(s) makes technical tasks such as providing CBR information in the sidelink and changing the frequency based on it.
  • An embodiment provides a method of operating a first UE (User Equipment) in a wireless communication system, the method comprising: receiving, by the first UE, second CBR information from a second UE; determining a frequency band change based on the second CBR information and the first CBR information generated by the first UE, wherein the frequency band of the first UE is narrower than the frequency band of the second UE; , wherein the second CBR information is generated by the second UE based on the frequency band of the first UE.
  • a first UE User Equipment
  • a wireless communication system in a first UE, at least one processor; and at least one computer memory operably coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: 2 receiving CBR information; determining a frequency band change based on the second CBR information and the first CBR information generated by the first UE, wherein the frequency band of the first UE is narrower than the frequency band of the second UE; , the second CBR information is the first UE, which the second UE generates based on the frequency band of the first UE.
  • An embodiment provides a processor for performing operations for a UE in a wireless communication system, the operations comprising: receiving second CBR information from a second UE; determining a frequency band change based on the second CBR information and the first CBR information generated by the first UE, wherein the frequency band of the first UE is narrower than the frequency band of the second UE; , the second CBR information is that the second UE generated based on the frequency band of the first UE, the processor.
  • An embodiment provides a non-volatile computer-readable storage medium storing at least one computer program comprising instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a UE, the The operations may include: receiving second CBR information from a second UE; determining a frequency band change based on the second CBR information and the first CBR information generated by the first UE, wherein the frequency band of the first UE is narrower than the frequency band of the second UE; , the second CBR information is a storage medium that is generated by the second UE based on the frequency band of the first UE.
  • the method may further include transmitting selected resource information by the first UE to a second UE, wherein the selected resource information may be generated based on the second frequency band.
  • the frequency band change is the value of the first CBR information, It may be performed when the value of the second CBR information is equal to or greater than a preset ratio.
  • the frequency band change may be performed when the value of the first CBR information is equal to or greater than a preset threshold value.
  • the second CBR information may be generated based on the frequency band of the second UE.
  • the frequency band of the first UE may be narrower than that of the second UE.
  • the UE may communicate with at least one of another UE, a UE related to an autonomous vehicle, or a base station or a network.
  • FIG. 1 is a diagram for explaining a comparison of V2X communication based on RAT before NR and V2X communication based on NR.
  • FIG 2 shows the structure of an LTE system according to an embodiment of the present disclosure.
  • FIG 3 illustrates a radio protocol architecture for a user plane and a control plane according to an embodiment of the present disclosure.
  • FIG. 4 shows a structure of an NR system according to an embodiment of the present disclosure.
  • 5 illustrates functional division between NG-RAN and 5GC according to an embodiment of the present disclosure.
  • FIG. 6 shows the structure of a radio frame of NR to which embodiment(s) can be applied.
  • FIG. 7 illustrates a slot structure of an NR frame according to an embodiment of the present disclosure.
  • FIG. 8 illustrates a radio protocol architecture for SL communication according to an embodiment of the present disclosure.
  • FIG 9 illustrates a radio protocol architecture for SL communication according to an embodiment of the present disclosure.
  • FIG. 10 illustrates a procedure for a terminal to perform V2X or SL communication according to a transmission mode, according to an embodiment of the present disclosure.
  • 11 to 12 are diagrams for explaining the embodiment(s).
  • 13 to 19 are diagrams for explaining various devices to which embodiment(s) can be applied.
  • “/” and “,” should be interpreted as indicating “and/or”.
  • “A/B” may mean “A and/or B”.
  • “A, B” may mean “A and/or B”.
  • “A/B/C” may mean “at least one of A, B, and/or C”.
  • “A, B, and C” may mean “at least one of A, B and/or C”.
  • “or” should be construed as indicating “and/or”.
  • “A or B” may include “only A”, “only B”, and/or “both A and B”.
  • “or” should be construed as indicating “additionally or alternatively”.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e, and provides backward compatibility with a system based on IEEE 802.16e.
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) that uses evolved-UMTS terrestrial radio access (E-UTRA), and employs OFDMA in downlink and SC in uplink - Adopt FDMA.
  • LTE-A (advanced) is an evolution of 3GPP LTE.
  • 5G NR is a successor technology of LTE-A, and is a new clean-slate type mobile communication system with characteristics such as high performance, low latency, and high availability. 5G NR can utilize all available spectrum resources, from low frequency bands below 1 GHz, to intermediate frequency bands from 1 GHz to 10 GHz, and high frequency (millimeter wave) bands above 24 GHz.
  • LTE-A or 5G NR is mainly described, but the technical idea according to an embodiment of the present disclosure is not limited thereto.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station 20 that provides a control plane and a user plane to the terminal 10 .
  • the terminal 10 may be fixed or mobile, and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and a wireless device.
  • the base station 20 refers to a fixed station that communicates with the terminal 10 and may be called by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to an Evolved Packet Core (EPC) 30 through an S1 interface, more specifically, a Mobility Management Entity (MME) through S1-MME and a Serving Gateway (S-GW) through S1-U.
  • EPC Evolved Packet Core
  • the EPC 30 is composed of an MME, an S-GW, and a Packet Data Network-Gateway (P-GW).
  • the MME has access information of the terminal or information about the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • the S-GW is a gateway having E-UTRAN as an end point
  • the P-GW is a gateway having a PDN (Packet Date Network) as an end point.
  • the layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) standard model widely known in communication systems, L1 (Layer 1), It may be divided into L2 (second layer) and L3 (third layer).
  • OSI Open System Interconnection
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer is a radio resource between the terminal and the network. plays a role in controlling To this end, the RRC layer exchanges RRC messages between the terminal and the base station.
  • 3A illustrates a radio protocol architecture for a user plane according to an embodiment of the present disclosure.
  • the user plane is a protocol stack for transmitting user data
  • the control plane is a protocol stack for transmitting a control signal.
  • a physical layer provides an information transmission service to an upper layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel.
  • MAC medium access control
  • Data moves between the MAC layer and the physical layer through the transport channel. Transmission channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel may be modulated in an Orthogonal Frequency Division Multiplexing (OFDM) scheme, and time and frequency are used as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer provides a logical channel multiplexing function by mapping a plurality of logical channels to a single transport channel.
  • the MAC sublayer provides data transfer services on logical channels.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC Serving Data Units (SDUs).
  • SDUs RLC Serving Data Units
  • the RLC layer is a transparent mode (Transparent Mode, TM), an unacknowledged mode (Unacknowledged Mode, UM) and an acknowledged mode (Acknowledged Mode).
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM acknowledged Mode
  • AM RLC provides error correction through automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer) for data transfer between the terminal and the network.
  • the functions of the PDCP layer in the user plane include delivery of user data, header compression and ciphering.
  • the functions of the PDCP layer in the control plane include transmission of control plane data and encryption/integrity protection.
  • Setting the RB means defining the characteristics of a radio protocol layer and channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be further divided into a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the UE When an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in the RRC_CONNECTED state, otherwise it is in the RRC_IDLE state.
  • the RRC_INACTIVE state is additionally defined, and the UE in the RRC_INACTIVE state may release the connection with the base station while maintaining the connection with the core network.
  • a downlink transmission channel for transmitting data from the network to the terminal there are a BCH (Broadcast Channel) for transmitting system information and a downlink SCH (Shared Channel) for transmitting user traffic or control messages. Traffic or control messages of downlink multicast or broadcast services may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • a random access channel RACH
  • SCH uplink shared channel
  • the logical channels that are located above the transport channel and are mapped to the transport channel include a Broadcast Control Channel (BCCH), a Paging Control Channel (PCCH), a Common Control Channel (CCCH), a Multicast Control Channel (MCCH), and a Multicast Traffic Channel (MTCH). channels), etc.
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • a physical channel consists of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame is composed of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of sub-carriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for a Physical Downlink Control Channel (PDCCH), that is, an L1/L2 control channel.
  • PDCCH Physical Downlink Control Channel
  • a Transmission Time Interval (TTI) is a unit time of subframe transmission.
  • FIG. 4 shows a structure of an NR system according to an embodiment of the present disclosure.
  • a Next Generation Radio Access Network may include a next generation-Node B (gNB) and/or an eNB that provides user plane and control plane protocol termination to a UE.
  • gNB next generation-Node B
  • eNB that provides user plane and control plane protocol termination to a UE.
  • 4 illustrates a case in which only gNBs are included.
  • the gNB and the eNB are connected to each other through an Xn interface.
  • the gNB and the eNB are connected to the 5G Core Network (5GC) through the NG interface. More specifically, it is connected to an access and mobility management function (AMF) through an NG-C interface, and is connected to a user plane function (UPF) through an NG-U interface.
  • AMF access and mobility management function
  • UPF user plane function
  • 5 illustrates functional division between NG-RAN and 5GC according to an embodiment of the present disclosure.
  • the gNB is inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement setup and provision Functions such as (Measurement configuration & Provision) and dynamic resource allocation may be provided.
  • AMF may provide functions such as NAS (Non Access Stratum) security, idle state mobility processing, and the like.
  • the UPF may provide functions such as mobility anchoring and protocol data unit (PDU) processing.
  • a Session Management Function (SMF) may provide functions such as terminal Internet Protocol (IP) address assignment, PDU session control, and the like.
  • IP Internet Protocol
  • FIG. 6 shows the structure of an NR radio frame to which the present invention can be applied.
  • radio frames may be used in uplink and downlink transmission in NR.
  • a radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF).
  • a half-frame may include 5 1ms subframes (Subframe, SF).
  • a subframe may be divided into one or more slots, and the number of slots in a subframe may be determined according to a subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot may include 14 symbols.
  • each slot may include 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
  • Table 1 shows the number of symbols per slot ( ), the number of slots per frame ( ) and the number of slots per subframe ( ) is exemplified.
  • Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to SCS when the extended CP is used.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • the (absolute time) interval of a time resource eg, subframe, slot, or TTI
  • TU Time Unit
  • multiple numerology or SCS to support various 5G services may be supported. For example, when SCS is 15 kHz, wide area in traditional cellular bands can be supported, and when SCS is 30 kHz/60 kHz, dense-urban, lower latency) and a wider carrier bandwidth may be supported. For SCS of 60 kHz or higher, bandwidths greater than 24.25 GHz may be supported to overcome phase noise.
  • the NR frequency band may be defined as two types of frequency ranges.
  • the two types of frequency ranges may be FR1 and FR2.
  • the numerical value of the frequency range may be changed, for example, the two types of frequency ranges may be as shown in Table 3 below.
  • FR1 may mean “sub 6GHz range”
  • FR2 may mean “above 6GHz range” and may be called millimeter wave (mmW).
  • mmW millimeter wave
  • FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 4 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) included in FR1 may include an unlicensed band. The unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).
  • FIG. 7 illustrates a slot structure of an NR frame according to an embodiment of the present disclosure.
  • a slot includes a plurality of symbols in the time domain.
  • one slot may include 14 symbols, but in the case of an extended CP, one slot may include 12 symbols.
  • one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P Physical Resource Block
  • a carrier may include a maximum of N (eg, 5) BWPs. Data communication may be performed through the activated BWP.
  • Each element may be referred to as a resource element (RE) in the resource grid, and one complex symbol may be mapped.
  • RE resource element
  • the wireless interface between the terminal and the terminal or the wireless interface between the terminal and the network may be composed of an L1 layer, an L2 layer and an L3 layer.
  • the L1 layer may mean a physical layer.
  • the L2 layer may mean at least one of a MAC layer, an RLC layer, a PDCP layer, and an SDAP layer.
  • the L3 layer may mean an RRC layer.
  • V2X or SL (sidelink) communication will be described.
  • FIG. 8 illustrates a radio protocol architecture for SL communication according to an embodiment of the present disclosure. Specifically, FIG. 8(a) shows a user plane protocol stack of LTE, and FIG. 8(b) shows a control plane protocol stack of LTE.
  • FIG. 9 illustrates a radio protocol architecture for SL communication according to an embodiment of the present disclosure. Specifically, FIG. 9(a) shows a user plane protocol stack of NR, and FIG. 9(b) shows a control plane protocol stack of NR.
  • the transmission mode may be referred to as a mode or a resource allocation mode.
  • a transmission mode in LTE may be referred to as an LTE transmission mode
  • a transmission mode in NR may be referred to as an NR resource allocation mode.
  • (a) of FIG. 10 shows a terminal operation related to LTE transmission mode 1 or LTE transmission mode 3.
  • (a) of FIG. 10 shows a terminal operation related to NR resource allocation mode 1.
  • LTE transmission mode 1 may be applied to general SL communication
  • LTE transmission mode 3 may be applied to V2X communication.
  • (b) of FIG. 10 shows a terminal operation related to LTE transmission mode 2 or LTE transmission mode 4.
  • (b) of FIG. 10 shows a terminal operation related to NR resource allocation mode 2.
  • the base station may schedule an SL resource to be used by the terminal for SL transmission.
  • the base station may perform resource scheduling to UE 1 through a PDCCH (more specifically, Downlink Control Information (DCI)), and UE 1 may perform V2X or SL communication with UE 2 according to the resource scheduling.
  • DCI Downlink Control Information
  • UE 1 transmits SCI (Sidelink Control Information) to UE 2 through a Physical Sidelink Control Channel (PSCCH), and then transmits data based on the SCI to UE 2 through a Physical Sidelink Shared Channel (PSSCH).
  • SCI Servicelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the UE may be provided with or allocated resources for transmission of one or more SLs of one TB (Transport Block) from the base station through a dynamic grant.
  • the base station may provide a resource for transmission of the PSCCH and/or PSSCH to the terminal by using a dynamic grant.
  • the transmitting terminal may report the SL HARQ (Hybrid Automatic Repeat Request) feedback received from the receiving terminal to the base station.
  • PUCCH resources and timing for reporting SL HARQ feedback to the base station may be determined based on an indication in the PDCCH for the base station to allocate resources for SL transmission.
  • DCI may indicate a slot offset between DCI reception and a first SL transmission scheduled by DCI.
  • the minimum gap between the DCI scheduling the SL transmission resource and the first scheduled SL transmission resource may not be smaller than the processing time of the corresponding terminal.
  • the terminal may be provided or allocated a resource set from the base station periodically for a plurality of SL transmissions through a configured grant.
  • the to-be-configured grant may include a configured grant type 1 or a configured grant type 2.
  • the terminal may determine the TB to transmit in each case (occasions) indicated by a given configured grant (given configured grant).
  • the base station may allocate the SL resource to the terminal on the same carrier, and may allocate the SL resource to the terminal on different carriers.
  • the NR base station may control LTE-based SL communication.
  • the NR base station may transmit the NR DCI to the terminal to schedule the LTE SL resource.
  • a new RNTI for scrambling the NR DCI may be defined.
  • the terminal may include an NR SL module and an LTE SL module.
  • the NR SL module may convert the NR SL DCI to LTE DCI type 5A, and the NR SL module is X ms LTE DCI type 5A may be delivered to the LTE SL module as a unit.
  • the LTE SL module may apply activation and/or release to the first LTE subframe after Z ms.
  • the X may be dynamically indicated using a field of DCI.
  • the minimum value of X may be different according to UE capability.
  • the terminal may report a single value according to the terminal capability.
  • X may be a positive number.
  • the terminal can determine the SL transmission resource within the SL resource set by the base station / network or the preset SL resource.
  • the configured SL resource or the preset SL resource may be a resource pool.
  • the UE may autonomously select or schedule a resource for SL transmission.
  • the terminal may perform SL communication by selecting a resource by itself within a set resource pool.
  • the terminal may select a resource by itself within the selection window by performing a sensing (sensing) and resource (re)selection procedure.
  • the sensing may be performed in units of subchannels.
  • UE 1 which has selected a resource within the resource pool, transmits the SCI to UE 2 through the PSCCH, and may transmit data based on the SCI to UE 2 through the PSSCH.
  • the terminal may help select an SL resource for another terminal.
  • the UE may receive a configured grant for SL transmission.
  • the terminal may schedule SL transmission of another terminal.
  • the UE may reserve an SL resource for blind retransmission.
  • the first terminal may indicate to the second terminal the priority of SL transmission by using SCI.
  • the second terminal may decode the SCI, and the second terminal may perform sensing and/or resource (re)selection based on the priority.
  • the resource (re)selection procedure includes the step of the second terminal identifying a candidate resource in a resource selection window, and the second terminal selecting a resource for (re)transmission from among the identified candidate resources can do.
  • the resource selection window may be a time interval during which the terminal selects a resource for SL transmission.
  • the resource selection window may start at T1 ⁇ 0, and the resource selection window is determined by the remaining packet delay budget of the second terminal. may be limited.
  • a specific resource is indicated by the SCI received by the second terminal from the first terminal, and the L1 SL RSRP measurement value for the specific resource is If the SL RSRP threshold is exceeded, the second terminal may not determine the specific resource as a candidate resource.
  • the SL RSRP threshold may be determined based on the priority of the SL transmission indicated by the SCI received by the second terminal from the first terminal and the priority of the SL transmission on the resource selected by the second terminal.
  • the L1 SL RSRP may be measured based on an SL DMRS (Demodulation Reference Signal).
  • SL DMRS Demodulation Reference Signal
  • one or more PSSCH DMRS patterns may be set or preset for each resource pool in the time domain.
  • the PDSCH DMRS configuration type 1 and/or type 2 may be the same as or similar to the frequency domain pattern of the PSSCH DMRS.
  • the exact DMRS pattern may be indicated by the SCI.
  • the transmitting terminal may select a specific DMRS pattern from among DMRS patterns configured or preset for the resource pool.
  • the transmitting terminal may perform initial transmission of a TB (Transport Block) without reservation. For example, based on the sensing and resource (re)selection procedure, the transmitting terminal may reserve the SL resource for the initial transmission of the second TB by using the SCI associated with the first TB.
  • a TB Transport Block
  • the UE may reserve a resource for feedback-based PSSCH retransmission through signaling related to previous transmission of the same TB (Transport Block).
  • the maximum number of SL resources reserved by one transmission including the current transmission may be two, three, or four.
  • the maximum number of SL resources may be the same regardless of whether HARQ feedback is enabled.
  • the maximum number of HARQ (re)transmissions for one TB may be limited by configuration or preset.
  • the maximum number of HARQ (re)transmissions may be up to 32.
  • the maximum number of HARQ (re)transmissions may be unspecified.
  • the setting or preset may be for a transmitting terminal.
  • HARQ feedback for releasing resources not used by the UE may be supported.
  • the UE may indicate to another UE one or more subchannels and/or slots used by the UE by using SCI.
  • the UE may indicate to another UE one or more subchannels and/or slots reserved by the UE for PSSCH (re)transmission by using SCI.
  • the minimum allocation unit of the SL resource may be a slot.
  • the size of the subchannel may be set for the terminal or may be preset.
  • SCI Servicelink Control Information
  • Control information transmitted by the base station to the terminal through the PDCCH may be referred to as downlink control information (DCI), while control information transmitted by the terminal to another terminal through the PSCCH may be referred to as SCI.
  • DCI downlink control information
  • SCI control information transmitted by the terminal to another terminal through the PSCCH
  • the UE may know the start symbol of the PSCCH and/or the number of symbols of the PSCCH.
  • the SCI may include SL scheduling information.
  • the UE may transmit at least one SCI to another UE to schedule the PSSCH.
  • one or more SCI formats may be defined.
  • the transmitting terminal may transmit the SCI to the receiving terminal on the PSCCH.
  • the receiving terminal may decode one SCI to receive the PSSCH from the transmitting terminal.
  • the transmitting terminal may transmit two consecutive SCIs (eg, 2-stage SCI) to the receiving terminal on the PSCCH and/or the PSSCH.
  • the receiving terminal may decode two consecutive SCIs (eg, 2-stage SCI) to receive the PSSCH from the transmitting terminal.
  • the SCI configuration fields are divided into two groups in consideration of the (relatively) high SCI payload size
  • the SCI including the first SCI configuration field group is called the first SCI or the 1st SCI.
  • the SCI including the second SCI configuration field group may be referred to as a second SCI or a 2nd SCI.
  • the transmitting terminal may transmit the first SCI to the receiving terminal through the PSCCH.
  • the transmitting terminal may transmit the second SCI to the receiving terminal on the PSCCH and/or the PSSCH.
  • the second SCI may be transmitted to the receiving terminal through (independent) PSCCH, or may be piggybacked with data through PSSCH and transmitted.
  • two consecutive SCIs may be applied for different transmissions (eg, unicast, broadcast, or groupcast).
  • the transmitting terminal may transmit some or all of the following information to the receiving terminal through SCI.
  • the transmitting terminal may transmit some or all of the following information to the receiving terminal through the first SCI and/or the second SCI.
  • PSSCH and / or PSCCH related resource allocation information for example, time / frequency resource location / number, resource reservation information (eg, period), and / or
  • SL CSI transmission indicator (or SL (L1) RSRP (and / or SL (L1) RSRQ and / or SL (L1) RSSI) information transmission indicator), and / or
  • NDI New Data Indicator
  • RV Redundancy Version
  • QoS information eg, priority information, and/or
  • - Reference signal eg, DMRS, etc.
  • information related to decoding and/or channel estimation of data transmitted through the PSSCH for example, information related to a pattern of a (time-frequency) mapping resource of DMRS, rank (rank) ) information, antenna port index information;
  • the first SCI may include information related to channel sensing.
  • the receiving terminal may decode the second SCI using the PSSCH DMRS.
  • a polar code used for the PDCCH may be applied to the second SCI.
  • the payload size of the first SCI may be the same for unicast, groupcast and broadcast.
  • the receiving terminal does not need to perform blind decoding of the second SCI.
  • the first SCI may include scheduling information of the second SCI.
  • the transmitting terminal since the transmitting terminal may transmit at least one of SCI, the first SCI, and/or the second SCI to the receiving terminal through the PSCCH, the PSCCH is the SCI, the first SCI and/or the second SCI. 2 may be substituted/substituted with at least one of SCI. And/or, for example, SCI may be replaced/substituted with at least one of PSCCH, first SCI, and/or second SCI. And/or, for example, since the transmitting terminal may transmit the second SCI to the receiving terminal through the PSSCH, the PSSCH may be replaced/substituted with the second SCI.
  • the bandwidth used by UEs may be different for each UE.
  • a UE eg, a pedestrian UE
  • Rel-17 UE there may be cases in which messages are transmitted and received using only a narrow BW area to reduce battery consumption.
  • Rel-17 UE only a narrow BW area is configured (pre-), and sensing operation can be performed using only the corresponding BW area.
  • legacy UEs or Rel-16 UEs
  • the BW in which the Rel-17 UE and the legacy UE operate is different, the following problem may occur to perform the sensing operation for resource reservation.
  • the legacy UE can know the information about the reservation indicated in the control information (SCI or 1st-stage SCI) of the Rel-17 UE, but because they have different subchannel sizes, each other's sub Information on the channel index can be understood differently between the Rel-17 UE and legacy UEs.
  • SCI control information
  • 1st-stage SCI 1st-stage SCI
  • each other's sub Information on the channel index can be understood differently between the Rel-17 UE and legacy UEs.
  • the legacy UE uses 8 subchannels (subchannel indexes 0-7) and Rel-17 UE uses two subchannels (subchannel indexes 0,1) as shown in FIG. 11 (a)
  • the subchannel index 0 of the legacy UE and the subchannel index 0 of the Rel-17 UE indicate different regions.
  • the Rel-17 UE is the BW region allocated to the Rel-17 UE in the legacy UE and control information (SCI or 1st-stage SCI) in the same BW region for reservation indicated in The information can be known, but information about resource reservation for the region indicated by the control information (SCI) in the remaining BW region (BW region other than the BW region allocated to the Rel-17 UE) of the legacy UE is unknown. does not exist.
  • the sensing result between the Rel-17 UE and the legacy UE ie, UEs having different subchannel sizes
  • the first UE may receive the second CBR information from the second UE (Legacy UE, UE operating in a wider BW area) ( S1201 of FIG. 12 )
  • the first UE determines/performs a frequency band change (or determines to perform a frequency hopping operation) based on the second CBR information and the first CBR information generated by the first UE It can be done ( S1202 in FIG. 12 ).
  • the frequency band of the first UE may be narrower than that of the second UE
  • the second CBR information may be generated by the second UE based on the frequency band of the first UE.
  • the second CBR information may be generated based on the frequency band of the second UE, and the frequency band of the first UE may be narrower than that of the second UE.
  • the generation based on the frequency band of the first UE means that the second UE generates the second CBR information based on the frequency band of the first UE means that the frequency band of the resource pool is the frequency band size of the first UE. After division into units, for each division band, it can be interpreted as generating CBR measurement and related information.
  • the second CBR information received by the POWER SAVING UE (eg, the first UE) operating based on the NARROW BAND from another UE (eg, the second UE) is in the NARROW BAND where the POWER SAVING UE performs the transmission/reception operation. It may be set to include (or not include) CBR information for ?
  • the second CBR information received from another UE may be measured based on the entire band of the resource pool, and the POWER SAVING UE (eg, the first UE) operating based on the NARROW BAND (eg, the first UE) has its own NARROW
  • the first CBR value measured based on BAND is greater than or equal to the preset PERCENTAGE compared to the received second CBR value (and/or when RANKING is greater than or equal to the preset PERCENTAGE)
  • it can be set to perform a frequency band hopping operation there is also
  • the P-UE determines whether to perform a frequency hopping operation based on CBR information for the frequency resource region it monitors and other frequency resource regions signaled from the V-UE (REL-16). can decide
  • the frequency hopping operation is performed when the CBR value of the frequency domain monitored by the P-UE is at a position greater than or equal to the preset PERCENTAGE among the CBR values for the entire frequency resource domain, or when the P-UE monitors It may be set to be performed when the CBR value in the frequency domain is greater than or equal to a preset threshold.
  • the V-UE may directly instruct the P-UE of the frequency hopping operation through preset signaling (eg, PC5 RRC, SL MAC CE).
  • the first UE operating in the narrow band receives the CBR from another UE to save power, and determines a frequency band change based on this.
  • the second UE providing CBR information generates CBR information based on the frequency band/subchannel of the first UE, and provides/transmits it to the first UE. That is, the CBR value is a value recalculated based on the PUE band so that the second CBR can be used by the narrow band PUE.
  • each subchannel/subchannel group in each subchannel/subchannel group, the subchannel/subchannel group and all other or (near the Rel-17 UE) to the Rel-17 UE using the corresponding subchannel/subchannel group. ) information (eg, CBR, etc.) on the channel complexity/congestion of some subchannels/subchannel groups may be informed. Alternatively, another subchannel/subchannel group hopping operation may be instructed to the Rel-17 UE.
  • the resource information selected by the first UE may be transmitted to the second UE, and the selected resource information may be generated based on the second frequency band. That is, the PUE notifies other UEs of the resource selection result, but in this case, the SCI field values are also generated based on the band of the other UE, not the narrow band. That is, let the P-UE (REL-17) perform SL communication based on NARROW BW in the resource pool (that is, increase the POWER SAVING effect), when signaling information about the frequency resource reserved/selected by the P-UE, The V-UE (REL-16) can generate the corresponding information based on the size of the monitored frequency domain (that is, BACKWARD COMPATIBILITY is guaranteed).
  • the Rel-17 UE indicates information on their BW area (eg, starting subchannel index and / or ending subchannel index and / or number of subchannels) can give as an example, if the legacy UE uses 8 subchannels (subchannel index 0-7) and Rel-17 UE uses two subchannels, as shown in Figure 11 (b), the subchannel index value of the legacy UE A subchannel index value of the Rel-17 UE may be set as a reference.
  • the SCI size between the Legacy UE and the Rel-17 UEs should also be matched equally. That is, (in the above example) SCI (or 1st-stage SCI_size (or number of bits) for indicating subchannel index information) SCI (or 1st-stage SCI) size (or number of bits) for Rel-17 UE and ( It is necessary to do the same (based on a legacy UE or a UE operating in a wider BW area) In an example, 3 bits are needed to indicate subchannel information in the assumption of Fig. 11 (b).
  • the Rel-17 UE informs the information about the BW area used in the resource pool of the legacy UE (eg, information about resource reservation), the Rel-17 UE has fewer subchannels / subchannels with fewer collisions when allocating resources.
  • a frequency hopping operation may be performed to another BW region.
  • compatibility of narrow band PUE can be guaranteed through the configuration of generating CBR information and/or SCI information based on the relative frequency.
  • the presence or absence of the indication of the hopping operation is determined by the value of information (eg, CBR, etc.) about the channel complexity of the subchannel/subchannel group used by the Rel-17 UE, and the corresponding value of the neighboring subchannel/subchannel group. can be determined by comparison of As an example, the information value about the channel complexity of the subchannel / subchannel group used by the Rel-17 UE is greater than a certain ratio value or a certain range (or hereinafter), the hopping operation (described above) may be instructed.
  • information eg, CBR, etc.
  • the information value on the channel complexity of the subchannel / subchannel group used by the Rel-17 UE is less than (or greater than) a certain ratio value or a certain range within the information values about the channel complexity of the neighboring subchannel / subchannel group.
  • the hopping operation (described above) is not indicated.
  • a collision may occur when reserving a BW area allocated to the Rel-17 UE in a BW area other than the BW allocated to the Rel-17 UE.
  • Whether or not the hopping operation (described above) is indicated may be determined by information (eg, CBR, etc.) on the channel complexity of the subchannel/subchannel group used by the Rel-17 UE.
  • the Rel-17 UE may instruct the hopping operation (described above) when the information value on the channel complexity of the subchannel / subchannel group is greater than (or less than) the (pre-set) threshold.
  • the (described above) hopping operation is not instructed.
  • a collision may occur when reserving a BW area allocated to the Rel-17 UE in a BW area other than the BW allocated to the Rel-17 UE.
  • the frequency band change is the value of the first CBR information
  • the frequency band change may be performed when the value of the second CBR information is equal to or greater than a preset ratio.
  • the frequency band change may be performed when the value of the first CBR information is equal to or greater than a preset threshold value.
  • information about the channel complexity of the corresponding subchannel/subchannel group (received through the legacy UE) and all or some subchannels/subchannel groups (near Rel-17 UE) may perform other subchannel/subchannel group hopping operation.
  • the presence or absence of the hopping operation is determined by comparing the information (eg, CBR, etc.) on the channel complexity of the subchannel/subchannel group used by the Rel-17 UE and the corresponding value of the neighboring subchannel/subchannel group.
  • the information value about the channel complexity of the subchannel / subchannel group used by the Rel-17 UE is a certain ratio value or more than a certain range (or less than the information value about the channel complexity of the neighboring subchannel / subchannel group) ), the hopping operation (described above) can be performed.
  • the hopping operation (described above) is not performed. In this case, a collision may occur when reserving a BW area allocated to the Rel-17 UE in a BW area other than the BW allocated to the Rel-17 UE.
  • Whether or not the hopping operation (described above) is performed may be determined by information (eg, CBR, etc.) value about the channel complexity of the subchannel/subchannel group used by the Rel-17 UE.
  • the Rel-17 UE may perform the (described above) hopping operation when the information value on the channel complexity of the subchannel/subchannel group is greater than (or less than) the (pre-set) threshold value.
  • the hopping operation (described above) is not performed. In this case, a collision may occur when reserving a BW area allocated to the Rel-17 UE in a BW area other than the BW allocated to the Rel-17 UE.
  • hopping-related information (and / or information on whether the proposed rule is applied) is a resource pool (and / or service type / priority and / or (service) QOS parameters (eg, reliability, latency) and/or UE (absolute or relative) speed and/or UE type and/or sub-channel size and/or scheduled frequency resource region size) specifically, (by the network/base station) differently (or independently) ) or may be implicitly determined based on preset parameters (eg, frequency resource size, etc.).
  • QOS parameters eg, reliability, latency
  • UE absolute speed and/or UE type and/or sub-channel size and/or scheduled frequency resource region size
  • preset parameters eg, frequency resource size, etc.
  • FIG. 13 illustrates a communication system 1 applied to the present invention.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Things (IoT) device 100f, and an AI device/server 400 .
  • XR eXtended Reality
  • IoT Internet of Things
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • Home appliances may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device may include a sensor, a smart meter, and the like.
  • the base station and the network may be implemented as a wireless device, and a specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
  • the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg relay, IAB (Integrated Access Backhaul)).
  • This can be done through technology (eg 5G NR)
  • Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 13 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • the memory 104 may provide instructions for performing some or all of the processes controlled by the processor 102 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 106 may be coupled with the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102, 202 may be configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
  • the one or more processors 102, 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , may be provided to one or more transceivers 106 and 206 .
  • One or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • PDU, SDU, message, control information, data, or information may be acquired according to the above.
  • One or more processors 102 , 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software which may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed herein provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
  • the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • One or more memories 104 , 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 .
  • one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. there is.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , procedures, suggestions, methods and/or operation flowcharts, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, or the like.
  • AV unmanned aerial vehicle
  • the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), servers, and the like.
  • the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 110 may non/periodically acquire the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • the vehicle 16 illustrates a vehicle to which the present invention is applied.
  • the vehicle may be implemented as a means of transport, a train, an aircraft, a ship, or the like.
  • the vehicle 100 may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , and a position measurement unit 140b .
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
  • the controller 120 may control components of the vehicle 100 to perform various operations.
  • the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the vehicle 100 .
  • the input/output unit 140a may output an AR/VR object based on information in the memory unit 130 .
  • the input/output unit 140a may include a HUD.
  • the position measuring unit 140b may acquire position information of the vehicle 100 .
  • the location information may include absolute location information of the vehicle 100 , location information within a driving line, acceleration information, location information with a surrounding vehicle, and the like.
  • the position measuring unit 140b may include a GPS and various sensors.
  • the communication unit 110 of the vehicle 100 may receive map information, traffic information, and the like from an external server and store it in the memory unit 130 .
  • the position measuring unit 140b may obtain vehicle position information through GPS and various sensors and store it in the memory unit 130 .
  • the controller 120 may generate a virtual object based on map information, traffic information, and vehicle location information, and the input/output unit 140a may display the created virtual object on a window inside the vehicle ( 1410 and 1420 ).
  • the controller 120 may determine whether the vehicle 100 is normally operating within the driving line based on the vehicle location information. When the vehicle 100 abnormally deviates from the driving line, the controller 120 may display a warning on the windshield of the vehicle through the input/output unit 140a.
  • control unit 120 may broadcast a warning message regarding the driving abnormality to surrounding vehicles through the communication unit 110 .
  • control unit 120 may transmit the location information of the vehicle and information on driving/vehicle abnormality to the related organization through the communication unit 110 .
  • the XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • HMD head-up display
  • a television a television
  • smartphone a smartphone
  • a computer a wearable device
  • a home appliance a digital signage
  • a vehicle a robot, and the like.
  • the XR device 100a may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , a sensor unit 140b , and a power supply unit 140c . .
  • the communication unit 110 may transmit/receive signals (eg, media data, control signals, etc.) to/from external devices such as other wireless devices, portable devices, or media servers.
  • Media data may include images, images, sounds, and the like.
  • the controller 120 may perform various operations by controlling the components of the XR device 100a.
  • the controller 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
  • the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the XR device 100a/creating an XR object.
  • the input/output unit 140a may obtain control information, data, and the like from the outside, and may output the generated XR object.
  • the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 140b may obtain an XR device state, surrounding environment information, user information, and the like.
  • the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is.
  • the power supply unit 140c supplies power to the XR device 100a, and may include a wired/wireless charging circuit, a battery, and the like.
  • the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary for generating an XR object (eg, AR/VR/MR object).
  • the input/output unit 140a may obtain a command to operate the XR device 100a from the user, and the controller 120 may drive the XR device 100a according to the user's driving command. For example, when the user wants to watch a movie or news through the XR device 100a, the controller 120 transmits the content request information through the communication unit 130 to another device (eg, the mobile device 100b) or can be sent to the media server.
  • the communication unit 130 may download/stream contents such as movies and news from another device (eg, the portable device 100b) or a media server to the memory unit 130 .
  • the controller 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is acquired through the input/output unit 140a/sensor unit 140b
  • An XR object can be created/output based on information about one surrounding space or a real object.
  • the XR device 100a is wirelessly connected to the portable device 100b through the communication unit 110 , and the operation of the XR device 100a may be controlled by the portable device 100b.
  • the portable device 100b may operate as a controller for the XR device 100a.
  • the XR device 100a may obtain 3D location information of the portable device 100b, and then generate and output an XR object corresponding to the portable device 100b.
  • Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use.
  • the robot 100 may include a communication unit 110 , a control unit 120 , a memory unit 130 , an input/output unit 140a , a sensor unit 140b , and a driving unit 140c .
  • the communication unit 110 may transmit/receive signals (eg, driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers.
  • the controller 120 may perform various operations by controlling the components of the robot 100 .
  • the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the robot 100 .
  • the input/output unit 140a may obtain information from the outside of the robot 100 and may output information to the outside of the robot 100 .
  • the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 140b may obtain internal information, surrounding environment information, user information, and the like of the robot 100 .
  • the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
  • the driving unit 140c may perform various physical operations such as moving a robot joint. In addition, the driving unit 140c may make the robot 100 travel on the ground or fly in the air.
  • the driving unit 140c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
  • AI devices are fixed or mobile devices such as TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, and vehicles. It can be implemented with possible devices.
  • the AI device 100 includes a communication unit 110 , a control unit 120 , a memory unit 130 , input/output units 140a/140b , a learning processor unit 140c and a sensor unit 140d). may include.
  • the communication unit 110 communicates with external devices such as other AI devices (eg, FIGS. 13, 100x, 200, 400) or an AI server (eg, 400 in FIG. 13) using wired and wireless communication technology and wired and wireless signals (eg, sensor information). , user input, learning model, control signal, etc.) can be transmitted and received. To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from the external device to the memory unit 130 .
  • the controller 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 120 may control the components of the AI device 100 to perform the determined operation. For example, the control unit 120 may request, search, receive, or utilize the data of the learning processor unit 140c or the memory unit 130, and may be a predicted operation among at least one executable operation or determined to be preferable. Components of the AI device 100 may be controlled to execute the operation. In addition, the control unit 120 collects history information including user feedback on the operation contents or operation of the AI device 100 and stores it in the memory unit 130 or the learning processor unit 140c, or the AI server ( 13 and 400), and the like may be transmitted to an external device. The collected historical information may be used to update the learning model.
  • the memory unit 130 may store data supporting various functions of the AI device 100 .
  • the memory unit 130 may store data obtained from the input unit 140a , data obtained from the communication unit 110 , output data of the learning processor unit 140c , and data obtained from the sensing unit 140 .
  • the memory unit 130 may store control information and/or software codes necessary for the operation/execution of the control unit 120 .
  • the input unit 140a may acquire various types of data from the outside of the AI device 100 .
  • the input unit 140a may obtain training data for model learning, input data to which the learning model is applied, and the like.
  • the input unit 140a may include a camera, a microphone, and/or a user input unit.
  • the output unit 140b may generate an output related to sight, hearing, or touch.
  • the output unit 140b may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit 140 may obtain at least one of internal information of the AI device 100 , surrounding environment information of the AI device 100 , and user information by using various sensors.
  • the sensing unit 140 may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is.
  • the learning processor unit 140c may train a model composed of an artificial neural network by using the training data.
  • the learning processor unit 140c may perform AI processing together with the learning processor unit of the AI server ( FIGS. 13 and 400 ).
  • the learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130 . Also, the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or stored in the memory unit 130 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

Un mode de réalisation de l'invention concerne un procédé de fonctionnement d'un premier équipement utilisateur (UE) dans un système de communication sans fil, le procédé comprenant les étapes consistant à : recevoir, par le premier UE, des secondes informations CBR provenant d'un second UE ; et déterminer un changement dans une bande de fréquence sur la base des secondes informations CBR et des premières informations CBR générées par le premier UE, une bande de fréquence du premier UE étant plus étroite qu'une bande de fréquence du second UE, et les secondes informations CBR étant générées par le second UE sur la base de la bande de fréquence du premier UE.
PCT/KR2021/000678 2020-01-16 2021-01-18 Procédé de fonctionnement d'un ue par rapport à un cbr dans un système de communication sans fil WO2021145749A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/793,616 US20230082892A1 (en) 2020-01-16 2021-01-18 Method for operating ue related to cbr in wireless communication system
KR1020227027151A KR20220126739A (ko) 2020-01-16 2021-01-18 무선통신시스템에서 cbr에 관련된 ue의 동작 방법
EP21740940.8A EP4093119A4 (fr) 2020-01-16 2021-01-18 Procédé de fonctionnement d'un ue par rapport à un cbr dans un système de communication sans fil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0006041 2020-01-16
KR20200006041 2020-01-16

Publications (1)

Publication Number Publication Date
WO2021145749A1 true WO2021145749A1 (fr) 2021-07-22

Family

ID=76863909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000678 WO2021145749A1 (fr) 2020-01-16 2021-01-18 Procédé de fonctionnement d'un ue par rapport à un cbr dans un système de communication sans fil

Country Status (4)

Country Link
US (1) US20230082892A1 (fr)
EP (1) EP4093119A4 (fr)
KR (1) KR20220126739A (fr)
WO (1) WO2021145749A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103322A1 (fr) * 2017-11-23 2019-05-31 엘지전자 주식회사 Dispositif de communication v2x et procédé d'opération de dcc de celui-ci
US20190239039A1 (en) * 2018-02-01 2019-08-01 Hyundai Motor Company Method and apparatus for load distribution using a plurality of carriers in communication system supporting vehicle-to-everything communication
KR20190096435A (ko) * 2017-02-06 2019-08-19 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 이를 위한 장치
KR20190098156A (ko) * 2017-01-12 2019-08-21 엘지전자 주식회사 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10856176B2 (en) * 2016-11-03 2020-12-01 Lg Electronics Inc. Method and device for transmitting sidelink channel busy ratio in wireless communication system
KR102541055B1 (ko) * 2017-09-15 2023-06-05 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 캐리어 선택 방법 및 통신 기기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190098156A (ko) * 2017-01-12 2019-08-21 엘지전자 주식회사 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
KR20190096435A (ko) * 2017-02-06 2019-08-19 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 이를 위한 장치
WO2019103322A1 (fr) * 2017-11-23 2019-05-31 엘지전자 주식회사 Dispositif de communication v2x et procédé d'opération de dcc de celui-ci
US20190239039A1 (en) * 2018-02-01 2019-08-01 Hyundai Motor Company Method and apparatus for load distribution using a plurality of carriers in communication system supporting vehicle-to-everything communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Discussion on SL radio link management", 3GPP DRAFT; R2-1915186, vol. RAN WG2, 7 November 2019 (2019-11-07), Reno, USA, pages 1 - 3, XP051815831 *
See also references of EP4093119A4 *

Also Published As

Publication number Publication date
KR20220126739A (ko) 2022-09-16
EP4093119A4 (fr) 2024-01-17
US20230082892A1 (en) 2023-03-16
EP4093119A1 (fr) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2021066451A1 (fr) Procédé de fonctionnement lié à un sci de second étage d'un ue dans un système de communication sans fil
WO2021154061A1 (fr) Procédé de fonctionnement d'un ue lié à un rapport de csi de liaison latérale dans un système de communication sans fil
WO2021162506A1 (fr) Procédé de fonctionnement d'équipement utilisateur relatif à un équipement utilisateur relais dans un système de communication sans fil
WO2021085908A1 (fr) Procédé de fonctionnement lié à la configuration d'as d'un ue de liaison latérale dans un système de communications sans fil
WO2021221448A1 (fr) Procédé de fonction d'un ue de relais lié à une demande d'établissement de relais dans un système de communication sans fil
WO2022080702A1 (fr) Procédé de fonctionnement d'équipement utilisateur associé à un relais de liaison latérale et à une défaillance de liaison radio dans un système de communication sans fil
WO2022211582A1 (fr) Procédé de fonctionnement lié à une connexion rrc d'un équipement utilisateur dans un relais de liaison latérale dans un système de communication sans fil
WO2022019643A1 (fr) Procédé de fonctionnement d'un ue relais dans un système de communication sans fil
WO2022025667A1 (fr) Procédé de fonctionnement d'un équipement utilisateur (ue) relais associé à une partie de bande passante (bwp) dans un système de communication sans fil
WO2021206462A1 (fr) Procédé de fonctionnement d'ue de relais associé à un relais de liaison latérale dans un système de communication sans fil
WO2022025665A1 (fr) Procédé de fonctionnement lié à la sélection d'un ue relais dans un système de communication sans fil
WO2021075877A1 (fr) Procédé de fonctionnement d'un ue par rapport à un temporisateur de liaison latérale dans un système de communication sans fil
WO2021085909A1 (fr) Procédé de fonctionnement d'ue lié à la libération de liaison de monodiffusion pc5 dans un système de communication sans fil
WO2021040378A1 (fr) Procédé de fonctionnement d'ue pour l'émission ou la réception de signal de liaison latérale après l'apparition d'une rlf dans un système de communication sans fil, et appareil associé
WO2022060117A1 (fr) Procédé de commande d'ue lié à des informations système et un relais de liaison latérale dans un système de communication sans fil
WO2021235863A1 (fr) Procédé de fonctionnement de vru pour la transmission et la réception de signaux vers et depuis le rsu dans un système de communication sans fil
WO2022025615A1 (fr) Procédé de commande lié à une découverte de liaison latérale dans un système de communications sans fil
WO2022186670A1 (fr) Procédé de fonctionnement d'un équipement utilisateur lié à un temporisateur de réception drx de liaison latérale dans un système de communication sans fil
WO2021256908A1 (fr) Procédé de fonctionnement d'un ue associé à un relais dans un système de communication sans fil
WO2021071328A1 (fr) Procédé de fonctionnement de liaison latérale d'un ue lié à la transmission de csi-rs dans un système de communication sans fil
WO2021060953A1 (fr) Procédé de fonctionnement d'un ue lié à une transmission de sci dans un système de communication sans fil
WO2021145751A1 (fr) Procédé de fonctionnement d'eu associé à un ptrs de liaison latérale dans un système de communication sans fil
WO2021145749A1 (fr) Procédé de fonctionnement d'un ue par rapport à un cbr dans un système de communication sans fil
WO2021187930A1 (fr) Procédé de réception de pscch par ue ps dans un système de communication sans fil
WO2021172969A1 (fr) Procédé de fonctionnement d'un ue relais lié à la qualité de liaison dans un système de communications sans fil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21740940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227027151

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021740940

Country of ref document: EP

Effective date: 20220816