WO2021145409A1 - Communication device and communication method - Google Patents

Communication device and communication method Download PDF

Info

Publication number
WO2021145409A1
WO2021145409A1 PCT/JP2021/001197 JP2021001197W WO2021145409A1 WO 2021145409 A1 WO2021145409 A1 WO 2021145409A1 JP 2021001197 W JP2021001197 W JP 2021001197W WO 2021145409 A1 WO2021145409 A1 WO 2021145409A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
signal
channel
resource
unit
Prior art date
Application number
PCT/JP2021/001197
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 浜口
良太 山田
和彦 府川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2021571247A priority Critical patent/JPWO2021145409A1/ja
Publication of WO2021145409A1 publication Critical patent/WO2021145409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a communication device and a communication method.
  • the present application claims priority with respect to Japanese Patent Application No. 2020-006001 filed in Japan on January 17, 2020, the contents of which are incorporated herein by reference.
  • Non-Patent Document 2 describes a physical layer security technique using artificial noise.
  • Non-Patent Document 2 uses a wireless channel as a key, a downlink channel estimate is required on the transmitting side.
  • a downlink channel estimate is required on the transmitting side.
  • One aspect of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a communication device and a communication method capable of safely communicating even when the channel estimated value includes an error. To provide.
  • the configuration of the communication device and the communication method according to one aspect of the present invention in order to solve the above-mentioned problems is as follows.
  • the communication device includes a transmission / reception unit that receives an uplink reference signal and transmits signals of a plurality of layers, and a channel estimation unit that estimates a downlink channel channel estimation value from the uplink reference signal.
  • the uplink reference signal is transmitted from a communication partner using a plurality of antennas, and the signals of the plurality of layers are phase-controlled and amplitude-controlled using the channel estimates, and the signals of the plurality of layers are subjected to phase control and amplitude control.
  • Each is associated with and transmitted to each of the plurality of antennas.
  • the transmission / reception unit transmits a reference signal (CSI-RS) for measuring channel state information (CSI), and the number of resources of the CSI-RS is plurality.
  • CSI-RS reference signal
  • Each of the plurality of CSI-RS resources is for measuring CSI for different ranks
  • each of the plurality of CSI-RS resources is set with a mapping to one resource element
  • the resource element is , One Orthogonal Frequency Division Multiplexing (OFDM) symbol in a slot and one subcarrier in a resource block.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the channel quality index (CQI) in each of the plurality of CSI-RS resources is received.
  • the CSI-RS resource index indicating one of the plurality of CSI-RS resources and the channel quality index (CQI) measured by the CSI-RS resource are received. ..
  • the communication device uses a plurality of antennas to transmit an uplink reference signal and to receive a plurality of layer signals, and to detect a desired signal from the received signals of the plurality of layers.
  • a plurality of antennas to transmit an uplink reference signal and to receive a plurality of layer signals, and to detect a desired signal from the received signals of the plurality of layers.
  • Each of the plurality of layers and each of the plurality of antennas are associated with each other.
  • each of the signals of the plurality of layers is obtained based on one of the plurality of antennas.
  • the transmission / reception unit receives a reference signal (CSI-RS) for measuring channel state information (CSI), and the number of resources of the CSI-RS is plurality.
  • CSI-RS reference signal
  • Each of the plurality of CSI-RS resources is for measuring CSI for different ranks
  • each of the plurality of CSI-RS resources is set with a mapping to one resource element
  • the resource element is , One Orthogonal Frequency Division Multiplexing (OFDM) symbol in a slot and one subcarrier in a resource block.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the channel quality index (CQI) in each of the plurality of CSI-RS resources is measured, and the CSI-RS resource and the CQI are reported in association with each other.
  • one is selected from the plurality of CSI-RS resources, and the selected CSI-RS resource index and the channel quality index (CQI) measured by the CSI-RS resource are used. Report.
  • the communication method includes a step of receiving an uplink reference signal and transmitting a signal of a plurality of layers, and a step of estimating a downlink channel estimated value from the uplink reference signal.
  • the uplink reference signal is transmitted from a communication partner using a plurality of antennas, the signals of the plurality of layers are phase-controlled and amplitude-controlled using the channel estimates, and each of the signals of the plurality of layers is controlled. Is transmitted in association with each of the plurality of antennas.
  • the communication system in the present embodiment includes a base station device (transmission device, cell, transmission point, transmission antenna group, transmission antenna port group, component carrier, eNodeB, gNodeB, transmission point, transmission / reception point, transmission panel, access point, sub-array, etc. It includes a communication device) and a terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving device, receiving antenna group, receiving antenna port group, UE, receiving point, receiving panel, station, sub-array, communication device).
  • a base station device connected to a terminal device is called a serving cell.
  • the term "communication device" refers to a base station device or a terminal device.
  • the base station device and the terminal device in this embodiment can communicate in a frequency band that requires a license (license band) and / or a frequency band that does not require a license (unlicensed band).
  • X / Y includes the meaning of "X or Y”. In this embodiment, “X / Y” includes the meaning of "X and Y”. In this embodiment, “X / Y” includes the meaning of "X and / or Y”.
  • FIG. 1 is a diagram showing an example of a communication system according to the present embodiment.
  • the communication system in this embodiment includes a base station device 1A and a terminal device 2A.
  • coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device.
  • the base station device 1A is also simply referred to as a base station device.
  • the terminal device 2A is also simply referred to as a terminal device.
  • the following uplink physical channels are used in the uplink wireless communication from the terminal device 2A to the base station device 1A.
  • the uplink physical channel is used to transmit the information output from the upper layer.
  • ⁇ PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PUCCH is used to transmit uplink control information (UCI).
  • the uplink control information includes ACK (a positive acknowledgment) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK or HARQ feedback.
  • the uplink control information includes channel state information (Channel State Information: CSI) for the downlink.
  • the uplink control information includes a scheduling request (Scheduling Request: SR) used for requesting a resource of the uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank index RI (Rank Indicator) that specifies a suitable spatial multiplexing number, a precoding matrix index PMI (Precoding Matrix Indicator) that specifies a suitable precoder, and a channel quality index CQI that specifies a suitable transmission rate.
  • rank index RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI channel quality index
  • CSI-RS Reference Signal, reference signal
  • CRI CSI-RS Resource Indicator
  • CSI-RS or SS Synchronization Signal; synchronization signal
  • RSRP Reference Signal Received Power
  • the channel quality index CQI (hereinafter, CQI value) may be a suitable modulation method (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) in a predetermined band (details will be described later), and a coding rate.
  • the CQI value can be an index (CQIIndex) determined by the change method or the coding rate.
  • the CQI value can be set in advance by the system.
  • the CRI indicates a CSI-RS resource having a suitable reception power / reception quality from a plurality of CSI-RS resources.
  • the rank index and the recording quality index can be determined in advance by the system.
  • the rank index and the pre-recording matrix index can be an index determined by the spatial multiples and the pre-recording matrix information.
  • the CQI value, PMI value, RI value, and a part or all of the CRI value are also collectively referred to as a CSI value.
  • PUSCH is used to transmit uplink data (uplink transport block, UL-SCH).
  • the PUSCH may also be used to transmit ACK / NACK and / or channel state information along with uplink data. Further, PUSCH may be used to transmit only uplink control information.
  • PUSCH is also used to send RRC messages.
  • the RRC message is information / signal processed in the radio resource control (RRC) layer.
  • PUSCH is used to transmit MAC CE (Control Element).
  • MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
  • the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the level of power headroom.
  • PRACH is used to send a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: ULRS) is used as an uplink physical signal.
  • the uplink physical signal is not used to transmit the information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes DMRS (Demodulation Reference Signal), SRS (Sounding Reference Signal), and PT-RS (Phase-Tracking reference signal).
  • DMRS is related to the transmission of PUSCH or PUCCH.
  • base station apparatus 1A uses DMRS to perform PUSCH or PUCCH propagation path correction.
  • base station apparatus 1A uses SRS to measure uplink channel status.
  • SRS is also used for uplink observation (sounding).
  • PT-RS is also used to compensate for phase noise.
  • the uplink DMRS is also referred to as an uplink DMRS.
  • the following downlink physical channels are used in the downlink wireless communication from the base station device 1A to the terminal device 2A.
  • the downlink physical channel is used to transmit the information output from the upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PBCH is used to notify the master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in terminal devices.
  • MIB Master Information Block
  • BCH Broadcast Channel
  • PCFICH is used to transmit information indicating a region used for PDCCH transmission (for example, the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols).
  • the MIB is also called the minimum system information.
  • PHICH is used to transmit ACK / NACK for uplink data (transport block, code word) received by base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2A notifies the upper layer of the received ACK / NACK.
  • ACK / NACK is an ACK indicating that the data was correctly received, an NACK indicating that the data was not received correctly, and a DTX indicating that there was no corresponding data. Further, when PHICH for the uplink data does not exist, the terminal device 2A notifies the upper layer of ACK.
  • PDCCH and EPDCCH are used to transmit downlink control information (DCI).
  • DCI downlink control information
  • a plurality of DCI formats are defined for the transmission of downlink control information. That is, the fields for downlink control information are defined in DCI format and mapped to information bits.
  • the DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined.
  • the DCI format for downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as TPC command for PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • the DCI format for the uplink the DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
  • the DCI format for the uplink includes uplink control information such as information on the resource allocation of the PUSCH, information on the MCS for the PUSCH, and a TPC command for the PUSCH.
  • the DCI format for the uplink is also referred to as an uplink grant (or uplink assignment).
  • the DCI format for the uplink can be used to request (CSI request) the channel state information (CSI; Channel State Information; also referred to as reception quality information) of the downlink.
  • CSI channel state information
  • reception quality information channel state information
  • the DCI format for the uplink can also be used to indicate the uplink resource that maps the channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • channel state information reporting can be used to indicate an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel status information report can be used for mode setting (CSI report mode) for periodically reporting channel status information.
  • the channel state information report can be used for setting to indicate an uplink resource that reports irregular channel state information (Aperiodic CSI).
  • the channel status information report can be used for setting a mode (CSI report mode) in which channel status information is reported irregularly.
  • the channel state information report can be used to set an uplink resource for reporting semi-persistent CSI.
  • the channel status information report can be used for setting a mode (CSI report mode) for semi-permanently reporting channel status information.
  • the semi-permanent CSI report is a periodic CSI report during the period of activation and deactivation by the signal of the upper layer or the downlink control information.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal device feeds back to the base station device.
  • Types of channel state information reporting include wideband CSI (eg Wideband CQI) and narrowband CSI (eg Subband CQI).
  • the terminal device When the PDSCH resource is scheduled using the downlink assignment, the terminal device receives the downlink data on the scheduled PDSCH. Further, when the PUSCH resource is scheduled by using the uplink grant, the terminal device transmits the uplink data and / or the uplink control information by the scheduled PUSCH.
  • the PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is also used to transmit system information block type 1 messages.
  • the system information block type 1 message is cell-specific (cell-specific) information.
  • the PDSCH is also used to send system information messages.
  • the system information message includes a system information block X other than the system information block type 1.
  • System information messages are cell-specific information.
  • PDSCH is used to send RRC messages.
  • the RRC message transmitted from the base station device may be common to a plurality of terminal devices in the cell.
  • the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2A (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • PDSCH is used to transmit MAC CE.
  • the RRC message and / or MAC CE is also referred to as a higher layer signaling.
  • PDSCH can be used to request downlink channel state information.
  • the PDSCH can also be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • CSI feedback report can be used to indicate an uplink resource that periodically reports channel state information (PeriodicCSI).
  • PeriodicCSI channel state information
  • the channel status information report can be used for mode setting (CSI report mode) for periodically reporting channel status information.
  • wideband CSI for example, Wideband CSI
  • narrowband CSI for example, Subband CSI
  • Broadband CSI calculates one channel state information for the system bandwidth of the cell.
  • the narrowband CSI divides the system band into predetermined units and calculates one channel state information for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Reference Signal: DLRS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit the information output from the upper layer, but is used by the physical layer.
  • the synchronization signal includes a primary synchronization signal (PrimarySynchronizationSignal: PSS) and a secondary synchronization signal (SecondarySynchronizationSignal: SSS).
  • the synchronization signal is used by the terminal device to synchronize the frequency domain and the time domain of the downlink.
  • the synchronization signal is used to measure the received power, reception quality, or signal-to-interference and noise power ratio (SINR).
  • the received power measured by the synchronization signal is SS-RSRP (Synchronization Signal-Reference Signal Received Power)
  • the reception quality measured by the synchronization signal is SS-RSRQ (Reference Signal Received Quality)
  • the SINR measured by the synchronization signal is SS-.
  • SINR SINR
  • SS-RSRQ is the ratio of SS-RSRP and RSSI.
  • RSSI Receiveived Signal Strength Indicator
  • the synchronization signal / downlink reference signal is used by the terminal device to correct the propagation path of the downlink physical channel.
  • the sync signal / downlink reference signal is used by the terminal device to calculate downlink channel state information.
  • the downlink reference signal includes DMRS (Demodulation Reference Signal; demodulation reference signal), NZP CSI-RS (Non-Zero Power Channel State Information-Reference Signal), and ZP CSI-RS (Zero Power Channel State Information-Reference). Signal), PT-RS, and TRS (Tracking Reference Signal) are included.
  • the downlink DMRS is also referred to as a downlink DMRS.
  • the term CSI-RS includes NZP CSI-RS and / or ZP CSI-RS.
  • DMRS is transmitted in the subframes and bands used to transmit DMRS-related PDSCH / PBCH / PDCCH / EPDCCH, and is used to demodulate DMRS-related PDSCH / PBCH / PDCCH / EPDCCH.
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink physical signal.
  • the uplink physical channel and the uplink physical signal are generically also referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are generically also referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • the channel used in the MAC layer is called a transport channel.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit).
  • a transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, the transport block is mapped to a code word, and coding processing or the like is performed for each code word.
  • a master cell group MCG; Master Cell Group
  • SCG Secondary Cell Group
  • the MCG consists of a PCell and optionally one or more SCells.
  • the SCG is composed of a primary SCell (PSCell) and optionally one or more SCells.
  • the base station device can communicate using a wireless frame.
  • a wireless frame is composed of a plurality of subframes (subsections).
  • the radio frame length can be 10 milliseconds (ms) and the subframe length can be 1 ms.
  • the radio frame is composed of 10 subframes.
  • the slot is composed of 14 OFDM symbols. Since the OFDM symbol length can change depending on the subcarrier interval, the slot length can also be changed at the subcarrier interval. Also, minislots are composed of fewer OFDM symbols than slots. Slots / minislots can be scheduling units. In the terminal device, slot-based scheduling / mini-slot-based scheduling can be known from the position (arrangement) of the first downlink DMRS. In slot-based scheduling, the first downlink DMRS is placed on the third or fourth symbol of the slot. In minislot-based scheduling, the first downlink DMRS is placed on the first symbol of the scheduled data (resource, PDSCH).
  • a resource block is defined by 12 consecutive subcarriers.
  • the resource element is defined by an index in the frequency domain (for example, a subcarrier index) and an index in the time domain (for example, an OFDM symbol index).
  • Resource elements are classified as uplink resource elements, downlink elements, flexible resource elements, and reserved resource elements. In the reserved resource element, the terminal device does not transmit the uplink signal and does not receive the downlink signal.
  • subcarrier spacing SCS
  • SCS subcarrier spacing
  • FIG. 2 is a schematic block diagram showing the configuration of the base station apparatus according to the present embodiment.
  • the base station apparatus includes a transmission / reception unit (transmission / reception step) 100, an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, and a transmission / reception antenna 105.
  • the transmission / reception unit 100 includes a transmission unit (transmission step) 103, a reception unit (reception step) 104, and a measurement unit (measurement step) 106.
  • the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012.
  • the transmission unit 103 includes a coding unit (coding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, and a radio. It is configured to include a transmission unit (wireless transmission step) 1035.
  • the receiving unit 104 includes a wireless receiving unit (radio receiving step) 1041, a multiple separation unit (multiple separation step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
  • the upper layer processing unit 101 includes a medium access control (MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). ResourceControl: RRC) Layer processing is performed. Further, the upper layer processing unit 101 generates information necessary for controlling the transmission unit 103 and the reception unit 104, and outputs the information to the control unit 102.
  • MAC medium access control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio ResourceControl
  • the upper layer processing unit 101 receives information about the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal device transmits its function to the base station device by a signal of the upper layer.
  • the information about the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device has been introduced and tested for the predetermined function.
  • whether or not to support a predetermined function includes whether or not the introduction and testing of the predetermined function have been completed.
  • the terminal device when the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether or not the predetermined function is supported. If the terminal does not support a given function, the terminal does not send information (parameters) indicating whether it supports the given function. That is, whether or not to support the predetermined function is notified by whether or not to transmit information (parameter) indicating whether or not to support the predetermined function. Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 bit of 1 or 0.
  • the radio resource control unit 1011 generates downlink data (transport block), system information, RRC message, MAC CE, etc. arranged in the downlink PDSCH, or acquires them from an upper node.
  • the radio resource control unit 1011 outputs downlink data to the transmission unit 103, and outputs other information to the control unit 102.
  • the wireless resource control unit 1011 manages various setting information of the terminal device.
  • the scheduling unit 1012 determines the frequency and slot to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate of the physical channels (PDSCH and PUSCH), the modulation method (or MCS), the transmission power, and the like.
  • the scheduling unit 1012 outputs the determined information to the control unit 102.
  • the scheduling unit 1012 generates information used for scheduling physical channels (PDSCH and PUSCH) based on the scheduling result.
  • the scheduling unit 1012 outputs the generated information to the control unit 102.
  • the control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the upper layer processing unit 101.
  • the control unit 102 generates downlink control information based on the information input from the upper layer processing unit 101, and outputs the downlink control information to the transmission unit 103.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, the downlink control information, and the downlink data input from the upper layer processing unit 101. And modulated, the PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signals are multiplexed and transmitted to the terminal device 2A via the transmit / receive antenna 105.
  • the coding unit 1031 uses block coding, convolutional coding, turbo coding, and LDPC (low density parity check: Low density) for the HARQ indicator, downlink control information, and downlink data input from the upper layer processing unit 101.
  • parity check Coding is performed using a predetermined coding method such as coding or Polar coding, or coding is performed using a coding method determined by the radio resource control unit 1011.
  • the modulation unit 1032 sets the coding bits input from the coding unit 1031 to BPSK (Binary Phase Shift Keying), QPSK (quadrature Phase Shift Keying), 16QAM (quadrature amplification modulation), 64QAM, 256QAM, or the like. Alternatively, modulation is performed by the modulation method determined by the radio resource control unit 1011.
  • the downlink reference signal generation unit 1033 refers to a sequence known to the terminal device 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station device 1A. Generate as a signal.
  • PCI physical cell identifier
  • the multiplexing unit 1034 multiplexes the modulated symbol of each modulated channel, the generated downlink reference signal, and the downlink control information. That is, the multiplexing unit 1034 arranges the modulated symbol of each modulated channel, the generated downlink reference signal, and the downlink control information in the resource element.
  • the radio transmission unit 1035 generates an OFDM symbol by performing an inverse fast Fourier transformation (IFFT) on a multiplexed modulation symbol or the like, and adds a cyclic prefix (CP) to the OFDM symbol as a base.
  • IFFT inverse fast Fourier transformation
  • CP cyclic prefix
  • the receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmitting / receiving antenna 105 according to the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. ..
  • the radio receiver 1041 converts the uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so as to be properly maintained.
  • the level is controlled, and based on the in-phase component and the quadrature component of the received signal, quadrature demodulation is performed and the quadrature demodulated analog signal is converted into a digital signal.
  • the wireless receiver 1041 removes the portion corresponding to the CP from the converted digital signal.
  • the radio reception unit 1041 performs a fast Fourier transform (FFT) on the signal from which the CP has been removed, extracts a signal in the frequency domain, and outputs the signal to the multiplex separation unit 1042.
  • FFT fast Fourier transform
  • the multiplex separation unit 1042 separates the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signals. This separation is performed based on the radio resource allocation information included in the uplink grant that the base station device 1A determines in advance by the radio resource control unit 1011 and notifies each terminal device 2A.
  • the multiple separation unit 1042 compensates for the propagation paths of PUCCH and PUSCH. Further, the multiplex separation unit 1042 separates the uplink reference signal.
  • the demodulation unit 1043 performs inverse discrete Fourier transformation (Inverse Discrete Fourier Transform: IDFT) on PUSCH, acquires modulation symbols, and for each of the modulation symbols of PUCCH and PUSCH, BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc. in advance.
  • IDFT Inverse Discrete Fourier Transform
  • the received signal is demodulated by using the modulation method that is determined or that the own device notifies the terminal device 2A in advance by the uplink grant.
  • the decoding unit 1044 sets the demodulated PUCCH and PUSCH coding bits at a predetermined coding method, or at a coding rate that the own device notifies the terminal device 2A in advance by an uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing unit 101. When the PUSCH is retransmitted, the decoding unit 1044 performs decoding using the coding bits held in the HARQ buffer input from the upper layer processing unit 101 and the demodulated coding bits.
  • the measuring unit 106 observes the received signal and obtains various measured values such as RSRP / RSRQ / RSSI. Further, the measuring unit 106 obtains the received power, the reception quality, and the suitable SRS resource index from the SRS transmitted from the terminal device.
  • FIG. 3 is a schematic block diagram showing the configuration of the terminal device according to the present embodiment.
  • the terminal device includes a transmission / reception unit (transmission / reception step) 200, an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, and a transmission / reception antenna 206.
  • the transmission / reception unit 200 includes a transmission unit (transmission step) 203, a reception unit (reception step) 204, and a measurement unit (measurement step) 205.
  • the upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012.
  • the transmission unit 203 includes a coding unit (coding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio. It is configured to include a transmission unit (wireless transmission step) 2035.
  • the receiving unit 204 includes a wireless receiving unit (radio receiving step) 2041, a multiple separation unit (multiple separation step) 2042, and a signal detection unit (signal detection step) 2043.
  • the upper layer processing unit 201 outputs the uplink data (transport block) generated by the user's operation or the like to the transmission unit 203.
  • the upper layer processing unit 201 includes a medium access control (MAC) layer, a packet data integration protocol (PacketData Convergence Protocol: PDCP) layer, a wireless link control (RadioLink Control: RLC) layer, and a wireless resource control (RadioLink Control: RLC) layer. RadioResourceControl: RRC) Layer processing is performed.
  • MAC medium access control
  • PDCP PacketData Convergence Protocol
  • RLC wireless link control
  • RadioLink Control RadioResourceControl: RRC
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
  • the wireless resource control unit 2011 manages various setting information of the own terminal device. Further, the radio resource control unit 2011 generates information arranged in each channel of the uplink and outputs the information to the transmission unit 203.
  • the wireless resource control unit 2011 acquires the setting information transmitted from the base station device and outputs it to the control unit 202.
  • the scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines the scheduling information. Further, the scheduling information interpretation unit 2012 generates control information for controlling the receiving unit 204 and the transmitting unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
  • the control unit 202 generates a control signal for controlling the receiving unit 204, the measuring unit 205, and the transmitting unit 203 based on the information input from the upper layer processing unit 201.
  • the control unit 202 outputs the generated control signal to the reception unit 204, the measurement unit 205, and the transmission unit 203 to control the reception unit 204 and the transmission unit 203.
  • the control unit 202 controls the transmission unit 203 so as to transmit the CSI / RSRP / RSRQ / RSSI generated by the measurement unit 205 to the base station apparatus.
  • the receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus via the transmitting / receiving antenna 206 according to the control signal input from the control unit 202, and outputs the decoded information to the upper layer processing unit 201. do.
  • the radio receiver 2041 converts the downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained. Is quadrature demodulated based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the wireless receiver 2041 removes a portion corresponding to the CP from the converted digital signal, performs a fast Fourier transform on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
  • the multiplex separation unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal, respectively. Further, the multiplex separation unit 2042 compensates the channels of PHICH, PDCCH, and EPDCCH based on the estimated value of the channel of the desired signal obtained from the channel measurement, detects the downlink control information, and causes the control unit 202. Output. Further, the control unit 202 outputs the PDSCH and the channel estimated value of the desired signal to the signal detection unit 2043.
  • the signal detection unit 2043 demodulates and decodes using the PDSCH and the channel estimated value, and outputs the data to the upper layer processing unit 201.
  • the measurement unit 205 performs various measurements such as CSI measurement, RRM (Radio Resource Management) measurement, and RLM (Radio Link Monitoring) measurement, and obtains CSI / RSRP / RSRQ / RSSI and the like.
  • CSI measurement Radio Resource Management
  • RLM Radio Link Monitoring
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the upper layer processing unit 201, and performs PUCCH,
  • the PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus via the transmission / reception antenna 206.
  • the coding unit 2031 performs coding such as convolutional coding, block coding, turbo coding, LDPC coding, and Polar coding of the uplink control information or uplink data input from the upper layer processing unit 201.
  • the modulation unit 2032 modulates the coding bits input from the coding unit 2031 by a modulation method notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation method predetermined for each channel. ..
  • the uplink reference signal generation unit 2033 is a physical cell identifier (referred to as PCI, Cell ID, etc.) for identifying the base station device, a bandwidth for arranging the uplink reference signal, and an uplink grant. Based on the notified cyclic shift, the value of the parameter for the generation of the DMRS sequence, etc., a series obtained by a predetermined rule (expression) is generated.
  • PCI physical cell identifier
  • a series obtained by a predetermined rule (expression) is generated.
  • the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmitting antenna port. That is, the multiplexing unit 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • the radio transmission unit 2035 performs inverse fast Fourier transform (IFFT) on the multiplexed signal, performs OFDM modulation, generates an OFDMA symbol, adds CP to the generated OFDMA symbol, and bases it. Generates a band digital signal, converts the baseband digital signal to an analog signal, removes excess frequency components, converts it to a carrier frequency by up-conversion, amplifies the power, outputs it to the transmit / receive antenna 206, and transmits it. ..
  • IFFT inverse fast Fourier transform
  • the terminal device is not limited to the OFDMA system, and can perform modulation of the SC-FDMA (DFT-sprad-OFDMA) system.
  • SC-FDMA DFT-sprad-OFDMA
  • the base station device can transmit the desired signal with a random phase and amplitude from each of the plurality of transmitting antennas so that the legitimate user can correctly receive the desired signal and the non-regular user cannot correctly receive the desired signal. Can be done (also called random phase method). Further, if the amplitude is obtained so that the transmission power becomes small, safe communication becomes possible while suppressing the transmission power.
  • the random phase method requires that the sender knows the channel to and from the legitimate user.
  • secure communication from the base station device to the regular terminal device will be described, but one aspect of the present invention is not limited to this. For example, one aspect of the present invention is also included in the case of secure communication from a legitimate terminal device to a base station device.
  • the above-mentioned random phase method estimates the channel in order to know the channel in the base station apparatus. Since the channel estimates include errors, the legitimate terminal device may not be able to receive the desired signal accurately. Therefore, on the receiving side, the desired signal is extracted by diversity synthesis using a plurality of receiving antennas. To increase safety, the legitimate terminal device estimates by blind estimation without training signals.
  • the legitimate terminal device is provided with a plurality of receiving antennas, high-speed transmission with high safety is performed if the transmitting side transmits the signals of a plurality of layers (streams) by spatially multiplexing and transmitting by the MIMO (Multiple Input Multiple Output) method. Is possible.
  • MIMO Multiple Input Multiple Output
  • the modulated signal bk (n) of the kth subcarrier of the tth transmitting antenna can be expressed by Eq. (1).
  • ⁇ t and k represent the phases randomly set by the base station apparatus.
  • a t (k) is the amplitude of the t transmit antennas, the modulation signal of the k subcarrier.
  • a t (k) is allowed to receive the desired signal correctly, and is determined so as to suppress the transmission power.
  • a t (k) is a real number, may take a negative value.
  • it is desirable that the desired signal dr (k) of the r-th layer and the k-th subcarrier to be correctly received by the regular terminal device is as shown in the equation (2).
  • NT is the number of transmitting antennas
  • H q, t (k) is the channel between the qth receiving antenna and the t transmitting antenna. That is, the desired signal of the rth layer is transmitted so as to be received by the qth receiving antenna. At this time, a t (k) is obtained as equation (3).
  • H ⁇ q, t (k) represents the channel estimate of H q, t (k).
  • the superscript T represents the transposed matrix
  • Re (x) represents the real part of the complex number x
  • Im (x) represents the imaginary part of the complex number x.
  • the regular terminal device obtains a desired signal by diversity synthesis.
  • the diversity composite weight can be obtained from the training signal or the reference signal, but it is obtained by a blind algorithm that does not use the training signal or the reference signal in order to improve safety.
  • the superscript H represents the complex conjugate transposed matrix, and ⁇ is the forgetting coefficient. Also, ⁇ is a very small positive number.
  • the C r is N R-dimensional vector, elements for each layer to obtain different. For example, when receiving a desired signal of the r layer in the q receive antennas, C r in the q element 1, other elements are zero.
  • the base station equipment needs to know the downlink channel.
  • the channel reciprocity of TDD Time Division Duplex
  • the downlink channel is estimated using the uplink signal (for example, SRS, uplink DMRS).
  • transmission is performed from a plurality of transmitting antennas.
  • the base station apparatus 401 is provided with N T antennas 402-1 ⁇ 402-N T
  • normal terminal device 403 is provided with N R antennas 404-1 ⁇ 404-N R And.
  • the legitimate terminal device 403 transmits SRS from the N R antenna port
  • the base station device 401 receives SRS with NT antennas to estimate the downlink channel.
  • the base station apparatus 401 can transmit spatially multiplexed signals up to N R layer.
  • the base station apparatus 401 uses the channel estimates to transmit the desired signal so that the signal of each layer is received by the receiving antenna of the regular terminal apparatus 403.
  • the channel In order for the legitimate terminal device 403 to correctly receive the desired signal, the channel must not change significantly. Therefore, it is desirable that the regular terminal device 403 receives the desired signal by using the antenna (or the antenna at the same position) used for transmitting the SRS. Further, since the regular terminal device 403 obtains the diversity composite weight for each receiving antenna and obtains the desired signal of the corresponding layer, it is necessary to associate each layer transmitted by the base station device 401 with the receiving antenna of the regular terminal device 403. ..
  • the regular terminal device 403 antenna port number of SRS (or DMRS) and 1 ⁇ N R using.
  • the layer 1 is associated with the SRS antenna port 1
  • the layer 2 is associated with the SRS antenna port 2, and so on, and the layer index and the SRS antenna port number are associated with each other on a one-to-one basis.
  • the regular terminal device receives the layer 1 signal at the same antenna as the SRS antenna port 1, and receives the layer 2 signal at the SRS antenna port 2.
  • the base station apparatus 401 transmits a signal of L ( ⁇ N R) layer, it is also possible to select a good channel state receiving antenna.
  • the base station apparatus 401 instructs the regular terminal apparatus 403 of the correspondence between the layer index and the SRS antenna port number by the control information. Further, the base station apparatus 401 can indicate the antenna to be received by each layer as QCL (Quantum Collaboration) information. For example, when SRS antenna port number 1 is set as QCL information for layer 1, the regular terminal device 403 receives the layer 1 signal with an antenna having the same channel as when it is received at SRS antenna port number 1. Means you have to.
  • QCL Quadantum Collaboration
  • the base station device since the base station device estimates the downlink channel, the precoding, rank (number of layers), and MCS suitable for the regular terminal device can be determined using the downlink channel estimated value. On the other hand, if there is a deterioration factor such as cell-to-cell interference that cannot be estimated by the base station device, it is desirable to have the regular terminal device report the CSI.
  • the base station equipment transmits CSI-RS, and the regular terminal equipment obtains and reports a suitable rank index and channel quality index from CSI-RS.
  • the regular terminal device estimates the diversity composite weight by the blind algorithm, the channel estimation using CSI-RS is not performed. Therefore, CSI-RS can measure CSI with one resource element regardless of the number of ranks.
  • the CSI-RS resource may refer to the resource element of one port.
  • the regular terminal device refers to the resource element of the CSI-RS antenna port 1 when the number of ranks is 1, and refers to the resource element of the CSI-RS antenna port 2 when the number of ranks is 2.
  • a maximum of several resource elements are required for rank adaptation. For example, in the case of a maximum of 4 ranks, 4 resource elements are required: a resource element for rank 1, a resource element for rank 2, a resource element for rank 3, and a resource element for rank 4. ..
  • r CSI-RSs are transmitted as CSI-RS.
  • the r CSI-RSs are associated with the r CSI-RS antenna port numbers.
  • r CSI-RSs are the same as CSI-RSs transmitted by CSI-RS antenna port numbers 1 to r.
  • the legitimate receiver measures the CSI using the blindly estimated quality of the CSI-RS.
  • the regular terminal device can measure the CSI at each resource element and report a suitable rank number, CQI, or RSRP (Reference Signal Received Power) to the base station device.
  • the legitimate terminal device can report a suitable resource index instead of a suitable number of ranks.
  • the regular terminal device can report CQI and RSRP for one or more ranks.
  • the resource element for each rank number can be a different CSI-RS resource.
  • the CSI-RS resource is set by associating the CSI-RS resource ID (identifier) with the resource element to which the CSI-RS is mapped.
  • the resource element to which the CSI-RS is mapped is indicated by the OFDM symbol in the slot in which the CSI-RS is transmitted and the subcarrier in the resource block.
  • the CSI-RS resource used for the rank measurement may be included in one CSI-RS resource set.
  • the maximum number of ranks to be reported may be the number of CSI-RS resources set in the CSI-RS resource set.
  • the base station device transmits the CSI-RS based on the downlink channel estimated value as well as the desired signal, it is necessary to indicate the receiving antenna of the legitimate terminal device corresponding to the CSI-RS antenna port.
  • each of the CSI-RS antenna ports 1 to R and each of the SRS antenna ports 1 to R are associated with the resource element having the rank number R.
  • the base station apparatus can be set by associating the CSI-RS antenna port and the SRS antenna port as a QCL relationship.
  • the frequency band used by the communication device is not limited to the license band and unlicensed band described so far.
  • the frequency band targeted by this embodiment is not actually used for the purpose of preventing interference between frequencies, although the use permission for a specific service is given by the country or region.
  • Frequency bands called white bands for example, frequency bands assigned for television broadcasting but not used in some regions
  • white bands for example, frequency bands assigned for television broadcasting but not used in some regions
  • shared frequency band (license sharing band) that is expected to be shared by multiple operators in the future.
  • the program that operates in the device according to one aspect of the present invention is a program that controls a Central Processing Unit (CPU) or the like to operate a computer so as to realize the functions of the embodiment according to one aspect of the present invention. Is also good.
  • the program or the information handled by the program is temporarily stored in a volatile memory such as Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage device system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the program for realizing the function of the embodiment according to one aspect of the present invention may be recorded on a computer-readable recording medium. It may be realized by loading the program recorded on this recording medium into a computer system and executing it.
  • the "computer system” as used herein is a computer system built into a device, and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another recording medium that can be read by a computer. Is also good.
  • each functional block or various features of the device used in the above-described embodiment can be implemented or executed in an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others. Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • the general purpose processor may be a microprocessor, a conventional processor, a controller, a microcontroller, or a state machine.
  • the electric circuit described above may be composed of a digital circuit or an analog circuit.
  • one or more aspects of the present invention can also use a new integrated circuit according to the technology.
  • the invention of the present application is not limited to the above-described embodiment.
  • an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and is a stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
  • One aspect of the present invention is suitable for use in communication devices and communication methods.
  • Base station device 2A Terminal device 100 Transmission / reception unit 101 Upper layer processing unit 102 Control unit 103 Transmission unit 104 Reception unit 105 Transmission / reception antenna 106 Measurement unit 1011 Wireless resource control unit 1012 Scheduling unit 1031 Coding unit 1032 Modulation unit 1033 Downlink reference signal Generation unit 1034 Multiplexing unit 1035 Wireless transmitting unit 1041 Wireless receiving unit 1042 Multiplexing unit 1043 Degrading unit 1044 Decoding unit 200 Transmission / reception unit 201 Upper layer processing unit 202 Control unit 203 Transmission unit 204 Reception unit 205 Measuring unit 206 Transmission / reception antenna 2011 Wireless resource control Part 2012 Scheduling information interpretation part 2031 Coding part 2032 Modulation part 2033 Uplink reference signal generation part 2034 Multiplexing part 2035 Wireless transmitting part 2041 Wireless receiving part 2042 Multiplexing part 2043 Signal detecting part 401 Base station equipment 402-1 to 402-N T antenna 403 terminal devices 404-1 ⁇ 404-N R antennas

Abstract

The present invention is provided with a transmission/reception unit for receiving an uplink reference signal and transmitting multi-layer signals, and a channel estimation unit for estimating the estimated channel value of a downlink channel from the uplink reference signal. The uplink reference signal is transmitted from a communication partner using a plurality of antennas, and the phases and amplitudes of the multi-layer signals are controlled using the estimated channel value, each of the multi-layer signals being transmitted in association with each of the plurality of antennas.

Description

通信装置および通信方法Communication device and communication method
 本発明は、通信装置および通信方法に関する。
 本願は、2020年1月17日に日本に出願された特願2020-006001号について優先権を主張し、その内容をここに援用する。
The present invention relates to a communication device and a communication method.
The present application claims priority with respect to Japanese Patent Application No. 2020-006001 filed in Japan on January 17, 2020, the contents of which are incorporated herein by reference.
 2020年頃の商業サービス開始を目指し、第5世代移動無線通信システム(5Gシステム)に関する研究・開発活動が盛んに行なわれている。最近、国際標準化機関である国際電気通信連合 無線通信部門(International Telecommunication Union Radio communications Sector:ITU-R)より、5Gシステムの標準方式(International mobile telecommunication - 2020 and beyond:IMT-2020)に関するビジョン勧告が報告された(非特許文献1参照)。 Aiming to start commercial services around 2020, research and development activities related to the 5th generation mobile wireless communication system (5G system) are being actively carried out. Recently, the International Telecommunication Union Radiocommunication Sector (ITU-R), which is an international standardization organization, has issued a vision recommendation regarding the standard method (International mobile telecommunication-2020 and beyond: IMT-2020) of 5G systems. Reported (see Non-Patent Document 1).
 無線通信は、今後ますます重要になり、通信装置の数もさらに増加すると考えられる。このときにセキュリティが問題となる可能性がある。セキュリティは通信システムにおいて、最重要技術の1つである。一般に、セキュリティは、物理層よりも上位レイヤでの暗号化による安全な通信が良く用いられる。しかしながら、無線通信は、広範囲に送信されるため、盗聴者は暗号化されていない制御情報などを受信できる可能性がある。このような、物理層において、安全な通信をするための技術として、物理層セキュリティがある。物理層セキュリティ技術としては、例えば、正規ユーザに対してヌルとした人工雑音を送信信号に付加して送信する技術がある。人工雑音は、送信側と正規ユーザとの間の無線チャネルを鍵として安全な通信を可能とする技術である。人工雑音を用いた物理層セキュリティ技術については非特許文献2に記載されている。 Wireless communication will become more and more important in the future, and the number of communication devices is expected to increase further. Security can be an issue at this time. Security is one of the most important technologies in communication systems. In general, for security, secure communication by encryption at a layer higher than the physical layer is often used. However, since wireless communication is transmitted over a wide area, an eavesdropper may be able to receive unencrypted control information or the like. There is physical layer security as a technique for secure communication in such a physical layer. As a physical layer security technique, for example, there is a technique of adding null artificial noise to a transmission signal and transmitting it to a legitimate user. Artificial noise is a technology that enables secure communication using a wireless channel between the transmitting side and a legitimate user as a key. Non-Patent Document 2 describes a physical layer security technique using artificial noise.
 非特許文献2に記載の方式は、無線チャネルを鍵とするため、送信側で下りリンクのチャネル推定値が必要である。チャネル推定値に誤差が生じた場合、誤差を含むチャネル推定値で送信制御をすると、正規ユーザが正しく希望信号を受信することができない可能性がある。 Since the method described in Non-Patent Document 2 uses a wireless channel as a key, a downlink channel estimate is required on the transmitting side. When an error occurs in the channel estimate, if transmission control is performed using the channel estimate including the error, the legitimate user may not be able to correctly receive the desired signal.
 本発明の一態様はこのような事情を鑑みてなされたものであり、その目的は、チャネル推定値が誤差を含む場合であっても、安全に通信することが可能な通信装置及び通信方法を提供することにある。 One aspect of the present invention has been made in view of such circumstances, and an object of the present invention is to provide a communication device and a communication method capable of safely communicating even when the channel estimated value includes an error. To provide.
 上述した課題を解決するために本発明の一態様に係る通信装置、及び通信方法の構成は、次の通りである。 The configuration of the communication device and the communication method according to one aspect of the present invention in order to solve the above-mentioned problems is as follows.
 本発明の一態様に係る通信装置は、上りリンク参照信号を受信、及び複数レイヤの信号を送信する送受信部と、前記上りリンク参照信号から下りリンクチャネルのチャネル推定値を推定するチャネル推定部と、を備え、前記上りリンク参照信号は、複数のアンテナを用いて通信相手から送信され、前記複数レイヤの信号は、前記チャネル推定値を用いて位相制御及び振幅制御され、前記複数レイヤの信号の各々は、前記複数のアンテナの各々に関連付けられて送信される。 The communication device according to one aspect of the present invention includes a transmission / reception unit that receives an uplink reference signal and transmits signals of a plurality of layers, and a channel estimation unit that estimates a downlink channel channel estimation value from the uplink reference signal. , The uplink reference signal is transmitted from a communication partner using a plurality of antennas, and the signals of the plurality of layers are phase-controlled and amplitude-controlled using the channel estimates, and the signals of the plurality of layers are subjected to phase control and amplitude control. Each is associated with and transmitted to each of the plurality of antennas.
 また、本発明の一態様に係る通信装置において、前記送受信部は、チャネル状態情報(CSI)測定のための参照信号 (CSI-RS)を送信し、前記CSI-RSのリソース数は複数であり、前記複数のCSI-RSリソースの各々は異なるランクに対するCSIを測定するためのものであり、前記複数のCSI-RSリソースの各々は、1つのリソースエレメントへのマッピングが設定され、前記リソースエレメントは、スロット内の1つの直交周波数分割多重(OFDM)シンボル及びリソースブロック内の1つのサブキャリアである。 Further, in the communication device according to one aspect of the present invention, the transmission / reception unit transmits a reference signal (CSI-RS) for measuring channel state information (CSI), and the number of resources of the CSI-RS is plurality. , Each of the plurality of CSI-RS resources is for measuring CSI for different ranks, each of the plurality of CSI-RS resources is set with a mapping to one resource element, and the resource element is , One Orthogonal Frequency Division Multiplexing (OFDM) symbol in a slot and one subcarrier in a resource block.
 また、本発明の一態様に係る通信装置において、前記複数のCSI-RSリソースの各々におけるチャネル品質指標(CQI)を受信する。 Further, in the communication device according to one aspect of the present invention, the channel quality index (CQI) in each of the plurality of CSI-RS resources is received.
 また、本発明の一態様に係る通信装置において、前記複数のCSI-RSリソースのうちの1つを示すCSI-RSリソースインデックスと該CSI-RSリソースで測定したチャンネル品質指標(CQI)を受信する。 Further, in the communication device according to one aspect of the present invention, the CSI-RS resource index indicating one of the plurality of CSI-RS resources and the channel quality index (CQI) measured by the CSI-RS resource are received. ..
 また、本発明の一態様に係る通信装置は、複数のアンテナを用いて、上りリンク参照信号を送信、及び複数レイヤ信号を受信する送受信部と、前記受信した複数レイヤの信号から希望信号を検出する信号検出部と、を備え、前記複数レイヤの各々と前記複数のアンテナの各々は関連付けられている。 Further, the communication device according to one aspect of the present invention uses a plurality of antennas to transmit an uplink reference signal and to receive a plurality of layer signals, and to detect a desired signal from the received signals of the plurality of layers. Each of the plurality of layers and each of the plurality of antennas are associated with each other.
 また、本発明の一態様に係る通信装置において、前記複数レイヤの信号の各々は、前記複数のアンテナのうちの1つに基づいて求められる。 Further, in the communication device according to one aspect of the present invention, each of the signals of the plurality of layers is obtained based on one of the plurality of antennas.
 また、本発明の一態様に係る通信装置において、前記送受信部は、チャネル状態情報(CSI)測定のための参照信号 (CSI-RS)を受信し、前記CSI-RSのリソース数は複数であり、前記複数のCSI-RSリソースの各々は異なるランクに対するCSIを測定するためのものであり、前記複数のCSI-RSリソースの各々は、1つのリソースエレメントへのマッピングが設定され、前記リソースエレメントは、スロット内の1つの直交周波数分割多重(OFDM)シンボル及びリソースブロック内の1つのサブキャリアである。 Further, in the communication device according to one aspect of the present invention, the transmission / reception unit receives a reference signal (CSI-RS) for measuring channel state information (CSI), and the number of resources of the CSI-RS is plurality. , Each of the plurality of CSI-RS resources is for measuring CSI for different ranks, each of the plurality of CSI-RS resources is set with a mapping to one resource element, and the resource element is , One Orthogonal Frequency Division Multiplexing (OFDM) symbol in a slot and one subcarrier in a resource block.
 また、本発明の一態様に係る通信装置において、前記複数のCSI-RSリソースの各々におけるチャネル品質指標(CQI)を測定し、前記CSI-RSリソースと前記CQIを関連付けて報告する。 Further, in the communication device according to one aspect of the present invention, the channel quality index (CQI) in each of the plurality of CSI-RS resources is measured, and the CSI-RS resource and the CQI are reported in association with each other.
 また、本発明の一態様に係る通信装置において、前記複数のCSI-RSリソースから1つを選択し、選択したCSI-RSリソースインデックスと該CSI-RSリソースで測定したチャンネル品質指標(CQI)を報告する。 Further, in the communication device according to one aspect of the present invention, one is selected from the plurality of CSI-RS resources, and the selected CSI-RS resource index and the channel quality index (CQI) measured by the CSI-RS resource are used. Report.
 また、本発明の一態様に係る通信方法は、上りリンク参照信号を受信、及び複数レイヤの信号を送信するステップと、前記上りリンク参照信号から下りリンクチャネルのチャネル推定値を推定するステップと、を備え、前記上りリンク参照信号は、複数のアンテナを用いて通信相手から送信され、前記複数レイヤの信号は、前記チャネル推定値を用いて位相制御及び振幅制御され、前記複数レイヤの信号の各々は、前記複数のアンテナの各々に関連付けられて送信される。 Further, the communication method according to one aspect of the present invention includes a step of receiving an uplink reference signal and transmitting a signal of a plurality of layers, and a step of estimating a downlink channel estimated value from the uplink reference signal. The uplink reference signal is transmitted from a communication partner using a plurality of antennas, the signals of the plurality of layers are phase-controlled and amplitude-controlled using the channel estimates, and each of the signals of the plurality of layers is controlled. Is transmitted in association with each of the plurality of antennas.
 本発明の一態様によれば、受信側でダイバーシチ合成するため、チャネル推定値に誤差が含まれる場合であっても、安全な通信が可能となる。 According to one aspect of the present invention, since diversity synthesis is performed on the receiving side, secure communication is possible even when the channel estimated value contains an error.
本実施形態に係る通信システムの例を示す図である。It is a figure which shows the example of the communication system which concerns on this embodiment. 本実施形態に係る基地局装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the base station apparatus which concerns on this embodiment. 本実施形態に係る端末装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the terminal apparatus which concerns on this embodiment. 本実施形態に係る基地局装置と端末装置の構成例を示す図である。It is a figure which shows the configuration example of the base station apparatus and the terminal apparatus which concerns on this embodiment.
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB、gNodeB、送信ポイント、送受信ポイント、送信パネル、アクセスポイント、サブアレー、通信装置)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE、受信ポイント、受信パネル、ステーション、サブアレー、通信装置)を備える。また端末装置と接続している(無線リンクを確立している)基地局装置をサービングセルと呼ぶ。なお、以下の実施形態において、通信装置といった場合、基地局装置又は端末装置を表す。 The communication system in the present embodiment includes a base station device (transmission device, cell, transmission point, transmission antenna group, transmission antenna port group, component carrier, eNodeB, gNodeB, transmission point, transmission / reception point, transmission panel, access point, sub-array, etc. It includes a communication device) and a terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving device, receiving antenna group, receiving antenna port group, UE, receiving point, receiving panel, station, sub-array, communication device). A base station device connected to a terminal device (establishing a wireless link) is called a serving cell. In the following embodiments, the term "communication device" refers to a base station device or a terminal device.
 本実施形態における基地局装置及び端末装置は、免許が必要な周波数帯域(ライセンスバンド)及び/又は免許不要の周波数帯域(アンライセンスバンド)で通信することができる。 The base station device and the terminal device in this embodiment can communicate in a frequency band that requires a license (license band) and / or a frequency band that does not require a license (unlicensed band).
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。 In this embodiment, "X / Y" includes the meaning of "X or Y". In this embodiment, "X / Y" includes the meaning of "X and Y". In this embodiment, "X / Y" includes the meaning of "X and / or Y".
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2Aを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また基地局装置1Aを単に基地局装置とも呼ぶ。また端末装置2Aを単に端末装置とも呼ぶ。 FIG. 1 is a diagram showing an example of a communication system according to the present embodiment. As shown in FIG. 1, the communication system in this embodiment includes a base station device 1A and a terminal device 2A. Further, coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device. Further, the base station device 1A is also simply referred to as a base station device. Further, the terminal device 2A is also simply referred to as a terminal device.
 図1において、端末装置2Aから基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
In FIG. 1, the following uplink physical channels are used in the uplink wireless communication from the terminal device 2A to the base station device 1A. The uplink physical channel is used to transmit the information output from the upper layer.
・ PUCCH (Physical Uplink Control Channel)
・ PUSCH (Physical Uplink Shared Channel)
・ PRACH (Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。 PUCCH is used to transmit uplink control information (UCI). Here, the uplink control information includes ACK (a positive acknowledgment) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH). ACK / NACK for downlink data is also referred to as HARQ-ACK or HARQ feedback.
 また、上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。また、上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)、好適なCSI-RSリソースを示すCSI-RS(Reference Signal、参照信号)リソース指標CRI(CSI-RS Resource Indicator)、CSI-RS又はSS(Synchronization Signal; 同期信号)により測定されたRSRP(Reference Signal Received Power)などが該当する。 In addition, the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. In addition, the uplink control information includes a scheduling request (Scheduling Request: SR) used for requesting a resource of the uplink shared channel (Uplink-Shared Channel: UL-SCH). The channel state information includes a rank index RI (Rank Indicator) that specifies a suitable spatial multiplexing number, a precoding matrix index PMI (Precoding Matrix Indicator) that specifies a suitable precoder, and a channel quality index CQI that specifies a suitable transmission rate. (Channel Quality Indicator), CSI-RS (Reference Signal, reference signal) resource index indicating suitable CSI-RS resource Measured by CRI (CSI-RS Resource Indicator), CSI-RS or SS (Synchronization Signal; synchronization signal) RSRP (Reference Signal Received Power) etc. are applicable.
 前記チャネル品質指標CQIは(以下、CQI値)、所定の帯域(詳細は後述)における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)とすることができる。CQI値は、前記変更方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものをすることができる。 The channel quality index CQI (hereinafter, CQI value) may be a suitable modulation method (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) in a predetermined band (details will be described later), and a coding rate. can. The CQI value can be an index (CQIIndex) determined by the change method or the coding rate. The CQI value can be set in advance by the system.
 前記CRIは、複数のCSI-RSリソースから受信電力/受信品質が好適なCSI-RSリソースを示す。 The CRI indicates a CSI-RS resource having a suitable reception power / reception quality from a plurality of CSI-RS resources.
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記CQI値、PMI値、RI値及びCRI値の一部又は全部をCSI値とも総称する。 The rank index and the recording quality index can be determined in advance by the system. The rank index and the pre-recording matrix index can be an index determined by the spatial multiples and the pre-recording matrix information. The CQI value, PMI value, RI value, and a part or all of the CRI value are also collectively referred to as a CSI value.
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。 PUSCH is used to transmit uplink data (uplink transport block, UL-SCH). The PUSCH may also be used to transmit ACK / NACK and / or channel state information along with uplink data. Further, PUSCH may be used to transmit only uplink control information.
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。 PUSCH is also used to send RRC messages. The RRC message is information / signal processed in the radio resource control (RRC) layer. In addition, PUSCH is used to transmit MAC CE (Control Element). Here, MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられても良い。 For example, the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the level of power headroom.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。 PRACH is used to send a random access preamble.
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。ここで、上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)、PT-RS(Phase-Tracking reference signal)が含まれる。 Also, in uplink wireless communication, an uplink reference signal (Uplink Reference Signal: ULRS) is used as an uplink physical signal. The uplink physical signal is not used to transmit the information output from the upper layer, but is used by the physical layer. Here, the uplink reference signal includes DMRS (Demodulation Reference Signal), SRS (Sounding Reference Signal), and PT-RS (Phase-Tracking reference signal).
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。またSRSは上りリンクの観測(サウンディング)に用いられる。またPT-RSは位相雑音を補償するために用いられる。なお、上りリンクのDMRSを上りリンクDMRSとも呼ぶ。 DMRS is related to the transmission of PUSCH or PUCCH. For example, base station apparatus 1A uses DMRS to perform PUSCH or PUCCH propagation path correction. For example, base station apparatus 1A uses SRS to measure uplink channel status. SRS is also used for uplink observation (sounding). PT-RS is also used to compensate for phase noise. The uplink DMRS is also referred to as an uplink DMRS.
 図1において、基地局装置1Aから端末装置2Aへの下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel;報知チャネル)
・PCFICH(Physical Control Format Indicator Channel;制御フォーマット指示チャネル)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel;HARQ指示チャネル)
・PDCCH(Physical Downlink Control Channel;下りリンク制御チャネル)
・EPDCCH(Enhanced Physical Downlink Control Channel;拡張下りリンク制御チャネル)
・PDSCH(Physical Downlink Shared Channel;下りリンク共有チャネル)
In FIG. 1, the following downlink physical channels are used in the downlink wireless communication from the base station device 1A to the terminal device 2A. The downlink physical channel is used to transmit the information output from the upper layer.
・ PBCH (Physical Broadcast Channel)
・ PCFICH (Physical Control Format Indicator Channel)
・ PHICH (Physical Hybrid automatic repeat request Indicator Channel)
-PDCCH (Physical Downlink Control Channel)
・ EPDCCH (Enhanced Physical Downlink Control Channel)
・ PDSCH (Physical Downlink Shared Channel)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)シンボルの数)を指示する情報を送信するために用いられる。なお、MIBは最小システムインフォメーションとも呼ぶ。 PBCH is used to notify the master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in terminal devices. PCFICH is used to transmit information indicating a region used for PDCCH transmission (for example, the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols). The MIB is also called the minimum system information.
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。また、ACK/NACKは、HARQ-ACKとも呼称する。端末装置2Aは、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2AはACKを上位レイヤに通知する。 PHICH is used to transmit ACK / NACK for uplink data (transport block, code word) received by base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK. The terminal device 2A notifies the upper layer of the received ACK / NACK. ACK / NACK is an ACK indicating that the data was correctly received, an NACK indicating that the data was not received correctly, and a DTX indicating that there was no corresponding data. Further, when PHICH for the uplink data does not exist, the terminal device 2A notifies the upper layer of ACK.
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。 PDCCH and EPDCCH are used to transmit downlink control information (DCI). Here, a plurality of DCI formats are defined for the transmission of downlink control information. That is, the fields for downlink control information are defined in DCI format and mapped to information bits.
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。 For example, as the DCI format for the downlink, the DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined.
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割り当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンドなどの下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。 For example, the DCI format for downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as TPC command for PUCCH. Here, the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
 また、例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。 Further, for example, as the DCI format for the uplink, the DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割り当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンドなど上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。 For example, the DCI format for the uplink includes uplink control information such as information on the resource allocation of the PUSCH, information on the MCS for the PUSCH, and a TPC command for the PUSCH. The DCI format for the uplink is also referred to as an uplink grant (or uplink assignment).
 また、上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI;Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。 Further, the DCI format for the uplink can be used to request (CSI request) the channel state information (CSI; Channel State Information; also referred to as reception quality information) of the downlink.
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 The DCI format for the uplink can also be used to indicate the uplink resource that maps the channel state information report (CSI feedback report) that the terminal device feeds back to the base station device. For example, channel state information reporting can be used to indicate an uplink resource that periodically reports channel state information (Periodic CSI). The channel status information report can be used for mode setting (CSI report mode) for periodically reporting channel status information.
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 For example, the channel state information report can be used for setting to indicate an uplink resource that reports irregular channel state information (Aperiodic CSI). The channel status information report can be used for setting a mode (CSI report mode) in which channel status information is reported irregularly.
 例えば、チャネル状態情報報告は、半永続的なチャネル状態情報(semi-persistent CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、半永続的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。なお、半永続的なCSI報告は、上位層の信号又は下りリンク制御情報でアクティベーションされてからデアクティベーションされる期間に、周期的にCSI報告ことである。 For example, the channel state information report can be used to set an uplink resource for reporting semi-persistent CSI. The channel status information report can be used for setting a mode (CSI report mode) for semi-permanently reporting channel status information. The semi-permanent CSI report is a periodic CSI report during the period of activation and deactivation by the signal of the upper layer or the downlink control information.
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えばWideband CQI)と狭帯域CSI(例えば、Subband CQI)などがある。 Further, the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal device feeds back to the base station device. Types of channel state information reporting include wideband CSI (eg Wideband CQI) and narrowband CSI (eg Subband CQI).
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。 When the PDSCH resource is scheduled using the downlink assignment, the terminal device receives the downlink data on the scheduled PDSCH. Further, when the PUSCH resource is scheduled by using the uplink grant, the terminal device transmits the uplink data and / or the uplink control information by the scheduled PUSCH.
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。また、PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。 PDSCH is used to transmit downlink data (downlink transport block, DL-SCH). The PDSCH is also used to transmit system information block type 1 messages. The system information block type 1 message is cell-specific (cell-specific) information.
 また、PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。 PDSCH is also used to send system information messages. The system information message includes a system information block X other than the system information block type 1. System information messages are cell-specific information.
 また、PDSCHは、RRCメッセージを送信するために用いられる。ここで、基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2Aに対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。また、PDSCHは、MAC CEを送信するために用いられる。 Also, PDSCH is used to send RRC messages. Here, the RRC message transmitted from the base station device may be common to a plurality of terminal devices in the cell. Further, the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2A (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message. In addition, PDSCH is used to transmit MAC CE.
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。 Here, the RRC message and / or MAC CE is also referred to as a higher layer signaling.
 また、PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。また、PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(PeriodicCSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 Also, PDSCH can be used to request downlink channel state information. The PDSCH can also be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device. For example, channel state information reporting can be used to indicate an uplink resource that periodically reports channel state information (PeriodicCSI). The channel status information report can be used for mode setting (CSI report mode) for periodically reporting channel status information.
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えばWideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。 There are two types of downlink channel status information reporting: wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI). Broadband CSI calculates one channel state information for the system bandwidth of the cell. The narrowband CSI divides the system band into predetermined units and calculates one channel state information for the division.
 また、下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。なお、同期信号には、プライマリ同期信号(Primary Synchronization Signal: PSS)とセカンダリ同期信号(Secondary Synchronization Signal: SSS)がある。 In downlink wireless communication, a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Reference Signal: DLRS) are used as downlink physical signals. The downlink physical signal is not used to transmit the information output from the upper layer, but is used by the physical layer. The synchronization signal includes a primary synchronization signal (PrimarySynchronizationSignal: PSS) and a secondary synchronization signal (SecondarySynchronizationSignal: SSS).
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、同期信号は受信電力、受信品質又は信号対干渉雑音電力比(Signal-to-Interference and Noise power Ratio: SINR)を測定するために用いられる。なお、同期信号で測定した受信電力をSS-RSRP(Synchronization Signal - Reference Signal Received Power)、同期信号で測定した受信品質をSS-RSRQ(Reference Signal Received Quality)、同期信号で測定したSINRをSS-SINRとも呼ぶ。なお、SS-RSRQはSS-RSRPとRSSIの比である。RSSI(Received Signal Strength Indicator)はある観測期間におけるトータルの平均受信電力である。また、同期信号/下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、同期信号/下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。 The synchronization signal is used by the terminal device to synchronize the frequency domain and the time domain of the downlink. In addition, the synchronization signal is used to measure the received power, reception quality, or signal-to-interference and noise power ratio (SINR). The received power measured by the synchronization signal is SS-RSRP (Synchronization Signal-Reference Signal Received Power), the reception quality measured by the synchronization signal is SS-RSRQ (Reference Signal Received Quality), and the SINR measured by the synchronization signal is SS-. Also called SINR. SS-RSRQ is the ratio of SS-RSRP and RSSI. RSSI (Received Signal Strength Indicator) is the total average received power in a certain observation period. Further, the synchronization signal / downlink reference signal is used by the terminal device to correct the propagation path of the downlink physical channel. For example, the sync signal / downlink reference signal is used by the terminal device to calculate downlink channel state information.
 ここで、下りリンク参照信号には、DMRS(Demodulation Reference Signal;復調参照信号)、NZP CSI-RS(Non-Zero Power Channel State Information - Reference Signal)、ZP CSI-RS(Zero Power Channel State Information - Reference Signal)、PT-RS、TRS(Tracking Reference Signal)が含まれる。なお、下りリンクのDMRSを下りリンクDMRSとも呼ぶ。なお、以降の実施形態で、単にCSI-RSといった場合、NZP CSI-RS及び/又はZP CSI-RSを含む。 Here, the downlink reference signal includes DMRS (Demodulation Reference Signal; demodulation reference signal), NZP CSI-RS (Non-Zero Power Channel State Information-Reference Signal), and ZP CSI-RS (Zero Power Channel State Information-Reference). Signal), PT-RS, and TRS (Tracking Reference Signal) are included. The downlink DMRS is also referred to as a downlink DMRS. In the following embodiments, the term CSI-RS includes NZP CSI-RS and / or ZP CSI-RS.
 DMRSは、DMRSが関連するPDSCH/PBCH/PDCCH/EPDCCHの送信に用いられるサブフレームおよび帯域で送信され、DMRSが関連するPDSCH/PBCH/PDCCH/EPDCCHの復調を行なうために用いられる。 DMRS is transmitted in the subframes and bands used to transmit DMRS-related PDSCH / PBCH / PDCCH / EPDCCH, and is used to demodulate DMRS-related PDSCH / PBCH / PDCCH / EPDCCH.
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。 Here, the downlink physical channel and the downlink physical signal are collectively referred to as a downlink physical signal. Further, the uplink physical channel and the uplink physical signal are generically also referred to as an uplink signal. In addition, the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel. Further, the downlink physical signal and the uplink physical signal are generically also referred to as a physical signal.
 また、BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。また、MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。 Also, BCH, UL-SCH and DL-SCH are transport channels. The channel used in the MAC layer is called a transport channel. Further, the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit). A transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, the transport block is mapped to a code word, and coding processing or the like is performed for each code word.
 また、キャリアアグリゲーション(CA; Carrier Aggregation)をサポートしている端末装置に対して、基地局装置は、より広帯域伝送のため複数のコンポーネントキャリア(CC; Component Carrier)を統合して通信することができる。キャリアアグリゲーションでは、1つのプライマリセル(PCell;Primary Cell)及び1または複数のセカンダリセル(SCell;Secondary Cell)がサービングセルの集合として設定される。 In addition, the base station device can integrate and communicate with a plurality of component carriers (CC; Component Carrier) for wider band transmission with respect to the terminal device that supports carrier aggregation (CA). .. In carrier aggregation, one primary cell (PCell; Primary Cell) and one or more secondary cells (SCell; Secondary Cell) are set as a set of serving cells.
 また、デュアルコネクティビティ(DC; Dual Connectivity)では、サービングセルのグループとして、マスターセルグループ(MCG; Master Cell Group)とセカンダリセルグループ(SCG; Secondary Cell Group)が設定される。MCGはPCellとオプションで1又は複数のSCellから構成される。またSCGはプライマリSCell(PSCell)とオプションで1又は複数のSCellから構成される。 In dual connectivity (DC; Dual Connectivity), a master cell group (MCG; Master Cell Group) and a secondary cell group (SCG; Secondary Cell Group) are set as serving cell groups. The MCG consists of a PCell and optionally one or more SCells. The SCG is composed of a primary SCell (PSCell) and optionally one or more SCells.
 基地局装置は無線フレームを用いて通信することができる。無線フレームは複数のサブフレーム(サブ区間)から構成される。フレーム長を時間で表現する場合、例えば、無線フレーム長は10ミリ秒(ms)、サブフレーム長は1msとすることができる。この例では無線フレームは10個のサブフレームで構成される。 The base station device can communicate using a wireless frame. A wireless frame is composed of a plurality of subframes (subsections). When the frame length is expressed in time, for example, the radio frame length can be 10 milliseconds (ms) and the subframe length can be 1 ms. In this example, the radio frame is composed of 10 subframes.
 またスロットは、14個のOFDMシンボルで構成される。OFDMシンボル長はサブキャリア間隔によって変わり得るため、サブキャリア間隔でスロット長も代わり得る。またミニスロットは、スロットよりも少ないOFDMシンボルで構成される。スロット/ミニスロットは、スケジューリング単位になることができる。なお端末装置は、スロットベーススケジューリング/ミニスロットベーススケジューリングは、最初の下りリンクDMRSの位置(配置)によって知ることができる。スロットベーススケジューリングでは、スロットの3番目又は4番目のシンボルに最初の下りリンクDMRSが配置される。またミニスロットベーススケジューリングでは、スケジューリングされたデータ(リソース、PDSCH)の最初のシンボルに最初の下りリンクDMRSが配置される。 The slot is composed of 14 OFDM symbols. Since the OFDM symbol length can change depending on the subcarrier interval, the slot length can also be changed at the subcarrier interval. Also, minislots are composed of fewer OFDM symbols than slots. Slots / minislots can be scheduling units. In the terminal device, slot-based scheduling / mini-slot-based scheduling can be known from the position (arrangement) of the first downlink DMRS. In slot-based scheduling, the first downlink DMRS is placed on the third or fourth symbol of the slot. In minislot-based scheduling, the first downlink DMRS is placed on the first symbol of the scheduled data (resource, PDSCH).
 またリソースブロックは、12個の連続するサブキャリアで定義される。またリソースエレメントは、周波数領域のインデックス(例えばサブキャリアインデックス)と時間領域のインデックス(例えばOFDMシンボルインデックス)で定義される。リソースエレメントは、上りリンクリソースエレメント、下りリンクエレメント、フレキシブルリソースエレメント、予約されたリソースエレメントとして分類される。予約されたリソースエレメントでは、端末装置は、上りリンク信号を送信しないし、下りリンク信号を受信しない。 Also, a resource block is defined by 12 consecutive subcarriers. The resource element is defined by an index in the frequency domain (for example, a subcarrier index) and an index in the time domain (for example, an OFDM symbol index). Resource elements are classified as uplink resource elements, downlink elements, flexible resource elements, and reserved resource elements. In the reserved resource element, the terminal device does not transmit the uplink signal and does not receive the downlink signal.
 また複数のサブキャリア間隔(Subcarrier spacing: SCS)がサポートされる。例えばSCSは、15/30/60/120/240/480 kHzである。 Also, multiple subcarrier intervals (Subcarrier spacing: SCS) are supported. For example, the SCS is 15/30/60/120/240/480 kHz.
 図2は、本実施形態における基地局装置の構成を示す概略ブロック図である。図2に示すように、基地局装置は、送受信部(送受信ステップ)100、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送受信アンテナ105を含んで構成される。送受信部100は、送信部(送信ステップ)103、受信部(受信ステップ)104、測定部(測定ステップ)106を含んで構成される。また、上位層処理部101は、無線リソース制御部(無線リソース制御ステップ)1011、スケジューリング部(スケジューリングステップ)1012を含んで構成される。また、送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、無線送信部(無線送信ステップ)1035を含んで構成される。また、受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、復調部(復調ステップ)1043、復号部(復号ステップ)1044を含んで構成される。 FIG. 2 is a schematic block diagram showing the configuration of the base station apparatus according to the present embodiment. As shown in FIG. 2, the base station apparatus includes a transmission / reception unit (transmission / reception step) 100, an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, and a transmission / reception antenna 105. The transmission / reception unit 100 includes a transmission unit (transmission step) 103, a reception unit (reception step) 104, and a measurement unit (measurement step) 106. Further, the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012. Further, the transmission unit 103 includes a coding unit (coding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, and a radio. It is configured to include a transmission unit (wireless transmission step) 1035. Further, the receiving unit 104 includes a wireless receiving unit (radio receiving step) 1041, a multiple separation unit (multiple separation step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。 The upper layer processing unit 101 includes a medium access control (MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). ResourceControl: RRC) Layer processing is performed. Further, the upper layer processing unit 101 generates information necessary for controlling the transmission unit 103 and the reception unit 104, and outputs the information to the control unit 102.
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。 The upper layer processing unit 101 receives information about the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal device transmits its function to the base station device by a signal of the upper layer.
 なお、以下の説明において、端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。なお、以下の説明において、所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。 In the following description, the information about the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device has been introduced and tested for the predetermined function. In the following description, whether or not to support a predetermined function includes whether or not the introduction and testing of the predetermined function have been completed.
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。 For example, when the terminal device supports a predetermined function, the terminal device transmits information (parameter) indicating whether or not the predetermined function is supported. If the terminal does not support a given function, the terminal does not send information (parameters) indicating whether it supports the given function. That is, whether or not to support the predetermined function is notified by whether or not to transmit information (parameter) indicating whether or not to support the predetermined function. Information (parameter) indicating whether or not a predetermined function is supported may be notified using 1 bit of 1 or 0.
 無線リソース制御部1011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CEなどを生成、又は上位ノードから取得する。無線リソース制御部1011は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。また、無線リソース制御部1011は、端末装置の各種設定情報の管理をする。 The radio resource control unit 1011 generates downlink data (transport block), system information, RRC message, MAC CE, etc. arranged in the downlink PDSCH, or acquires them from an upper node. The radio resource control unit 1011 outputs downlink data to the transmission unit 103, and outputs other information to the control unit 102. In addition, the wireless resource control unit 1011 manages various setting information of the terminal device.
 スケジューリング部1012は、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびスロット、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式(あるいはMCS)および送信電力などを決定する。スケジューリング部1012は、決定した情報を制御部102に出力する。 The scheduling unit 1012 determines the frequency and slot to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate of the physical channels (PDSCH and PUSCH), the modulation method (or MCS), the transmission power, and the like. The scheduling unit 1012 outputs the determined information to the control unit 102.
 スケジューリング部1012は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部1012は、生成した情報を制御部102に出力する。 The scheduling unit 1012 generates information used for scheduling physical channels (PDSCH and PUSCH) based on the scheduling result. The scheduling unit 1012 outputs the generated information to the control unit 102.
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。 The control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the upper layer processing unit 101. The control unit 102 generates downlink control information based on the information input from the upper layer processing unit 101, and outputs the downlink control information to the transmission unit 103.
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および、下りリンクデータを、符号化および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ105を介して端末装置2Aに信号を送信する。 The transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, the downlink control information, and the downlink data input from the upper layer processing unit 101. And modulated, the PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signals are multiplexed and transmitted to the terminal device 2A via the transmit / receive antenna 105.
 符号化部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化、LDPC(低密度パリティチェック:Low density parity check)符号化、Polar符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部1011が決定した符号化方式を用いて符号化を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた、または無線リソース制御部1011が決定した変調方式で変調する。 The coding unit 1031 uses block coding, convolutional coding, turbo coding, and LDPC (low density parity check: Low density) for the HARQ indicator, downlink control information, and downlink data input from the upper layer processing unit 101. parity check) Coding is performed using a predetermined coding method such as coding or Polar coding, or coding is performed using a coding method determined by the radio resource control unit 1011. The modulation unit 1032 sets the coding bits input from the coding unit 1031 to BPSK (Binary Phase Shift Keying), QPSK (quadrature Phase Shift Keying), 16QAM (quadrature amplification modulation), 64QAM, 256QAM, or the like. Alternatively, modulation is performed by the modulation method determined by the radio resource control unit 1011.
 下りリンク参照信号生成部1033は、基地局装置1Aを識別するための物理セル識別子(PCI、セルID)などを基に予め定められた規則で求まる、端末装置2Aが既知の系列を下りリンク参照信号として生成する。 The downlink reference signal generation unit 1033 refers to a sequence known to the terminal device 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station device 1A. Generate as a signal.
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。 The multiplexing unit 1034 multiplexes the modulated symbol of each modulated channel, the generated downlink reference signal, and the downlink control information. That is, the multiplexing unit 1034 arranges the modulated symbol of each modulated channel, the generated downlink reference signal, and the downlink control information in the resource element.
 無線送信部1035は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成し、OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送受信アンテナ105に出力して送信する。 The radio transmission unit 1035 generates an OFDM symbol by performing an inverse fast Fourier transformation (IFFT) on a multiplexed modulation symbol or the like, and adds a cyclic prefix (CP) to the OFDM symbol as a base. Generates a band digital signal, converts the baseband digital signal to an analog signal, removes excess frequency components by filtering, upconverts to the carrier frequency, amplifies the power, outputs it to the transmit / receive antenna 105, and transmits it. ..
 受信部104は、制御部102から入力された制御信号に従って、送受信アンテナ105を介して端末装置2Aから受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。 The receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmitting / receiving antenna 105 according to the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. ..
 無線受信部1041は、送受信アンテナ105を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The radio receiver 1041 converts the uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so as to be properly maintained. The level is controlled, and based on the in-phase component and the quadrature component of the received signal, quadrature demodulation is performed and the quadrature demodulated analog signal is converted into a digital signal.
 無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出し多重分離部1042に出力する。 The wireless receiver 1041 removes the portion corresponding to the CP from the converted digital signal. The radio reception unit 1041 performs a fast Fourier transform (FFT) on the signal from which the CP has been removed, extracts a signal in the frequency domain, and outputs the signal to the multiplex separation unit 1042.
 多重分離部1042は、無線受信部1041から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。なお、この分離は、予め基地局装置1Aが無線リソース制御部1011で決定し、各端末装置2Aに通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。 The multiplex separation unit 1042 separates the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signals. This separation is performed based on the radio resource allocation information included in the uplink grant that the base station device 1A determines in advance by the radio resource control unit 1011 and notifies each terminal device 2A.
 また、多重分離部1042は、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1042は、上りリンク参照信号を分離する。 Further, the multiple separation unit 1042 compensates for the propagation paths of PUCCH and PUSCH. Further, the multiplex separation unit 1042 separates the uplink reference signal.
 復調部1043は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置2Aに上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。 The demodulation unit 1043 performs inverse discrete Fourier transformation (Inverse Discrete Fourier Transform: IDFT) on PUSCH, acquires modulation symbols, and for each of the modulation symbols of PUCCH and PUSCH, BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc. in advance. The received signal is demodulated by using the modulation method that is determined or that the own device notifies the terminal device 2A in advance by the uplink grant.
 復号部1044は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、又は自装置が端末装置2Aに上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号部1044は、上位層処理部101から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。 The decoding unit 1044 sets the demodulated PUCCH and PUSCH coding bits at a predetermined coding method, or at a coding rate that the own device notifies the terminal device 2A in advance by an uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing unit 101. When the PUSCH is retransmitted, the decoding unit 1044 performs decoding using the coding bits held in the HARQ buffer input from the upper layer processing unit 101 and the demodulated coding bits.
 測定部106は、受信信号を観測し、RSRP/RSRQ/RSSIなどの様々な測定値を求める。また測定部106は、端末装置から送信されたSRSから受信電力、受信品質、好適なSRSリソースインデックスを求める。 The measuring unit 106 observes the received signal and obtains various measured values such as RSRP / RSRQ / RSSI. Further, the measuring unit 106 obtains the received power, the reception quality, and the suitable SRS resource index from the SRS transmitted from the terminal device.
 図3は、本実施形態における端末装置の構成を示す概略ブロック図である。図3に示すように、端末装置は、送受信部(送受信ステップ)200、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送受信アンテナ206を含んで構成される。また、送受信部200は送信部(送信ステップ)203、受信部(受信ステップ)204、測定部(測定ステップ)205を含んで構成される。また、上位層処理部201は、無線リソース制御部(無線リソース制御ステップ)2011、スケジューリング情報解釈部(スケジューリング情報解釈ステップ)2012を含んで構成される。また、送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035を含んで構成される。また、受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、信号検出部(信号検出ステップ)2043を含んで構成される。 FIG. 3 is a schematic block diagram showing the configuration of the terminal device according to the present embodiment. As shown in FIG. 3, the terminal device includes a transmission / reception unit (transmission / reception step) 200, an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, and a transmission / reception antenna 206. Further, the transmission / reception unit 200 includes a transmission unit (transmission step) 203, a reception unit (reception step) 204, and a measurement unit (measurement step) 205. Further, the upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012. Further, the transmission unit 203 includes a coding unit (coding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio. It is configured to include a transmission unit (wireless transmission step) 2035. Further, the receiving unit 204 includes a wireless receiving unit (radio receiving step) 2041, a multiple separation unit (multiple separation step) 2042, and a signal detection unit (signal detection step) 2043.
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。また、上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(PacketData Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。 The upper layer processing unit 201 outputs the uplink data (transport block) generated by the user's operation or the like to the transmission unit 203. In addition, the upper layer processing unit 201 includes a medium access control (MAC) layer, a packet data integration protocol (PacketData Convergence Protocol: PDCP) layer, a wireless link control (RadioLink Control: RLC) layer, and a wireless resource control (RadioLink Control: RLC) layer. RadioResourceControl: RRC) Layer processing is performed.
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。 The upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
 無線リソース制御部2011は、自端末装置の各種設定情報の管理をする。また、無線リソース制御部2011は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。 The wireless resource control unit 2011 manages various setting information of the own terminal device. Further, the radio resource control unit 2011 generates information arranged in each channel of the uplink and outputs the information to the transmission unit 203.
 無線リソース制御部2011は、基地局装置から送信された設定情報を取得し、制御部202に出力する。 The wireless resource control unit 2011 acquires the setting information transmitted from the base station device and outputs it to the control unit 202.
 スケジューリング情報解釈部2012は、受信部204を介して受信した下りリンク制御情報を解釈し、スケジューリング情報を判定する。また、スケジューリング情報解釈部2012は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。 The scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines the scheduling information. Further, the scheduling information interpretation unit 2012 generates control information for controlling the receiving unit 204 and the transmitting unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204、測定部205および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、測定部205および送信部203に出力して受信部204、および送信部203の制御を行なう。 The control unit 202 generates a control signal for controlling the receiving unit 204, the measuring unit 205, and the transmitting unit 203 based on the information input from the upper layer processing unit 201. The control unit 202 outputs the generated control signal to the reception unit 204, the measurement unit 205, and the transmission unit 203 to control the reception unit 204 and the transmission unit 203.
 制御部202は、測定部205が生成したCSI/RSRP/RSRQ/RSSIを基地局装置に送信するように送信部203を制御する。 The control unit 202 controls the transmission unit 203 so as to transmit the CSI / RSRP / RSRQ / RSSI generated by the measurement unit 205 to the base station apparatus.
 受信部204は、制御部202から入力された制御信号に従って、送受信アンテナ206を介して基地局装置から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。 The receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus via the transmitting / receiving antenna 206 according to the control signal input from the control unit 202, and outputs the decoded information to the upper layer processing unit 201. do.
 無線受信部2041は、送受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The radio receiver 2041 converts the downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained. Is quadrature demodulated based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
 また、無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行い、周波数領域の信号を抽出する。 Further, the wireless receiver 2041 removes a portion corresponding to the CP from the converted digital signal, performs a fast Fourier transform on the signal from which the CP has been removed, and extracts a signal in the frequency domain.
 多重分離部2042は、抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部2042は、チャネル測定から得られた所望信号のチャネルの推定値に基づいて、PHICH、PDCCH、およびEPDCCHのチャネルの補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。また、制御部202は、PDSCHおよび所望信号のチャネル推定値を信号検出部2043に出力する。 The multiplex separation unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal, respectively. Further, the multiplex separation unit 2042 compensates the channels of PHICH, PDCCH, and EPDCCH based on the estimated value of the channel of the desired signal obtained from the channel measurement, detects the downlink control information, and causes the control unit 202. Output. Further, the control unit 202 outputs the PDSCH and the channel estimated value of the desired signal to the signal detection unit 2043.
 信号検出部2043は、PDSCH、チャネル推定値を用いて、復調、復号し、上位層処理部201に出力する。 The signal detection unit 2043 demodulates and decodes using the PDSCH and the channel estimated value, and outputs the data to the upper layer processing unit 201.
 測定部205は、CSI測定、RRM(Radio Resource Management)測定、RLM(Radio Link Monitoring)測定などの各種測定を行い、CSI/RSRP/RSRQ/RSSIなどを求める。 The measurement unit 205 performs various measurements such as CSI measurement, RRM (Radio Resource Management) measurement, and RLM (Radio Link Monitoring) measurement, and obtains CSI / RSRP / RSRQ / RSSI and the like.
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ206を介して基地局装置に送信する。 The transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the upper layer processing unit 201, and performs PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus via the transmission / reception antenna 206.
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報又は上りリンクデータを畳み込み符号化、ブロック符号化、ターボ符号化、LDPC符号化、Polar符号化等の符号化を行う。 The coding unit 2031 performs coding such as convolutional coding, block coding, turbo coding, LDPC coding, and Polar coding of the uplink control information or uplink data input from the upper layer processing unit 201.
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。 The modulation unit 2032 modulates the coding bits input from the coding unit 2031 by a modulation method notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation method predetermined for each channel. ..
 上りリンク参照信号生成部2033は、基地局装置を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。 The uplink reference signal generation unit 2033 is a physical cell identifier (referred to as PCI, Cell ID, etc.) for identifying the base station device, a bandwidth for arranging the uplink reference signal, and an uplink grant. Based on the notified cyclic shift, the value of the parameter for the generation of the DMRS sequence, etc., a series obtained by a predetermined rule (expression) is generated.
 多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。 The multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmitting antenna port. That is, the multiplexing unit 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast FourierTransform: IFFT)して、OFDM方式の変調を行い、OFDMAシンボルを生成し、生成されたOFDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送受信アンテナ206に出力して送信する。 The radio transmission unit 2035 performs inverse fast Fourier transform (IFFT) on the multiplexed signal, performs OFDM modulation, generates an OFDMA symbol, adds CP to the generated OFDMA symbol, and bases it. Generates a band digital signal, converts the baseband digital signal to an analog signal, removes excess frequency components, converts it to a carrier frequency by up-conversion, amplifies the power, outputs it to the transmit / receive antenna 206, and transmits it. ..
 なお、端末装置はOFDMA方式に限らず、SC-FDMA(DFT-sperad-OFDM)方式の変調を行うことができる。 Note that the terminal device is not limited to the OFDMA system, and can perform modulation of the SC-FDMA (DFT-sprad-OFDMA) system.
 特に無線通信システムにおいて、正規ユーザ(正規端末装置)以外に情報を漏らすことなく、安全に通信相手と通信することは、最重要なことの1つである。安全な通信を保つため、上位レイヤによる暗号化が一般的である。安全性をさらに高めるために、物理層においてもセキュリティ対策をすることが望ましい。 Especially in a wireless communication system, it is one of the most important things to communicate safely with a communication partner without leaking information to anyone other than a legitimate user (legitimate terminal device). In order to maintain secure communication, encryption by an upper layer is common. In order to further enhance safety, it is desirable to take security measures at the physical layer as well.
 無線通信では、送信信号は広範囲に届いてしまうため、盗聴者(非正規ユーザ、非正規端末装置)が無線信号を受信することは可能である。仮に、暗号化されていない制御情報などが漏れてしまった場合、盗聴者は復調・復号できる確率が高まる。従って、物理層において、盗聴者による復調・復号を困難にすることによって安全な通信が可能となる。 In wireless communication, since the transmitted signal reaches a wide range, it is possible for an eavesdropper (non-genuine user, non-genuine terminal device) to receive the wireless signal. If unencrypted control information is leaked, the probability that the eavesdropper can demodulate / decrypt it increases. Therefore, in the physical layer, secure communication is possible by making demodulation / decoding difficult by an eavesdropper.
 また、基地局装置は、正規ユーザは正しく希望信号を受信でき、非正規ユーザは正しく希望信号を受信できないように、複数の送信アンテナの各々からランダムな位相・振幅で希望信号を送信することができる(ランダム位相法とも呼ぶ)。また、送信電力が小さくなるように振幅を求めれば、送信電力を抑えながら、安全な通信が可能となる。ランダム位相法は送信側で正規ユーザとの間のチャネルが既知である必要がある。なお、本実施形態では、基地局装置から正規端末装置への安全な通信について説明するが、本発明の一態様はこれに限らない。例えば、正規端末装置から基地局装置への安全な通信の場合も本発明の一態様は含まれる。 In addition, the base station device can transmit the desired signal with a random phase and amplitude from each of the plurality of transmitting antennas so that the legitimate user can correctly receive the desired signal and the non-regular user cannot correctly receive the desired signal. Can be done (also called random phase method). Further, if the amplitude is obtained so that the transmission power becomes small, safe communication becomes possible while suppressing the transmission power. The random phase method requires that the sender knows the channel to and from the legitimate user. In the present embodiment, secure communication from the base station device to the regular terminal device will be described, but one aspect of the present invention is not limited to this. For example, one aspect of the present invention is also included in the case of secure communication from a legitimate terminal device to a base station device.
 上述のランダム位相法は、基地局装置でチャネルを知るためにチャネル推定を行う。チャネル推定値は誤差を含むため、正規端末装置は正確に希望信号を受信できない可能性がある。そこで、受信側では複数の受信アンテナによるダイバーシチ合成により希望信号を抽出する。安全性を高めるために、正規端末装置はトレーニング信号を用いないブラインド推定により推定する。 The above-mentioned random phase method estimates the channel in order to know the channel in the base station apparatus. Since the channel estimates include errors, the legitimate terminal device may not be able to receive the desired signal accurately. Therefore, on the receiving side, the desired signal is extracted by diversity synthesis using a plurality of receiving antennas. To increase safety, the legitimate terminal device estimates by blind estimation without training signals.
 また、正規端末装置は複数の受信アンテナを備えることから、送信側が複数レイヤ(ストリーム)の信号を空間多重して送信するMIMO(Multiple Input Multiple Output)方式で送信すれば、安全性が高い高速伝送が可能となる。 In addition, since the legitimate terminal device is provided with a plurality of receiving antennas, high-speed transmission with high safety is performed if the transmitting side transmits the signals of a plurality of layers (streams) by spatially multiplexing and transmitting by the MIMO (Multiple Input Multiple Output) method. Is possible.
 ランダム位相法の詳細を説明する。第t送信アンテナの第kサブキャリアの変調信号b(n)を式(1)のように表せる。 The details of the random phase method will be described. The modulated signal bk (n) of the kth subcarrier of the tth transmitting antenna can be expressed by Eq. (1).
Figure JPOXMLDOC01-appb-M000001
 ただし、θt,kは基地局装置でランダムに設定される位相を表す。また、a(k)は第t送信アンテナ、第kサブキャリアの変調信号の振幅である。また、a(k)は希望信号を正しく受信させ、かつ、送信電力を抑えるように求められる。なお、a(k)は実数であり、負の値を取り得る。また、正規端末装置の正しく受信すべき第rレイヤ、第kサブキャリアの希望信号d(k)は式(2)のようになることが望ましい。
Figure JPOXMLDOC01-appb-M000001
However, θ t and k represent the phases randomly set by the base station apparatus. Further, a t (k) is the amplitude of the t transmit antennas, the modulation signal of the k subcarrier. Further, a t (k) is allowed to receive the desired signal correctly, and is determined so as to suppress the transmission power. Incidentally, a t (k) is a real number, may take a negative value. Further, it is desirable that the desired signal dr (k) of the r-th layer and the k-th subcarrier to be correctly received by the regular terminal device is as shown in the equation (2).
Figure JPOXMLDOC01-appb-M000002
 ただし、Nは送信アンテナ数、Hq,t(k)は第q受信アンテナと第t送信アンテナとの間のチャネルである。つまり、第rレイヤの希望信号は、第q受信アンテナで受信されるように送信される。このとき、a(k)は式(3)のように求められる。
Figure JPOXMLDOC01-appb-M000002
However, NT is the number of transmitting antennas, and H q, t (k) is the channel between the qth receiving antenna and the t transmitting antenna. That is, the desired signal of the rth layer is transmitted so as to be received by the qth receiving antenna. At this time, a t (k) is obtained as equation (3).
Figure JPOXMLDOC01-appb-M000003
 ただし、H^q,t(k)はHq,t(k)のチャネル推定値を表す。また、上付きのTは転置行列、Re(x)は複素数xの実部、Im(x)は複素数xの虚部を表す。
Figure JPOXMLDOC01-appb-M000003
However, H ^ q, t (k) represents the channel estimate of H q, t (k). The superscript T represents the transposed matrix, Re (x) represents the real part of the complex number x, and Im (x) represents the imaginary part of the complex number x.
 チャネル推定値が誤差を含む場合、正規端末装置で希望信号を正しく受信できない可能性がある。そこで、正規端末装置はダイバーシチ合成により、希望信号を求める。ダイバーシチ合成重みは、トレーニング信号や参照信号から求めることも可能であるが、安全性を高めるためにトレーニング信号や参照信号を用いないブラインドアルゴリズムで求める。正規端末装置における第kサブキャリア、第iOFDMシンボルの受信信号をY(i)としたとき、正規端末装置が求めた第rレイヤ、第kサブキャリアの希望信号d^(k)は第rレイヤのダイバーシチ合成重みWを用いて式(8)となる。 If the channel estimate contains an error, the legitimate terminal may not be able to receive the desired signal correctly. Therefore, the regular terminal device obtains a desired signal by diversity synthesis. The diversity composite weight can be obtained from the training signal or the reference signal, but it is obtained by a blind algorithm that does not use the training signal or the reference signal in order to improve safety. When the received signal of the kth subcarrier and the iOFDM symbol in the regular terminal device is Yk (i), the desired signal d ^ r (k) of the rth layer and the kth subcarrier obtained by the regular terminal device is the first. the equation (8) using a diversity combining weights W r of r layer.
Figure JPOXMLDOC01-appb-M000004
 ただし、上付きHは複素共役転置行列を表し、λは忘却係数である。また、δは非常に小さい正数である。またCはN次元ベクトルであり、求めるレイヤ毎に要素は異なる。例えば、第rレイヤの希望信号を第q受信アンテナで受信する場合は、Cは第q要素が1で、他の要素は0とする。
Figure JPOXMLDOC01-appb-M000004
However, the superscript H represents the complex conjugate transposed matrix, and λ is the forgetting coefficient. Also, δ is a very small positive number. The C r is N R-dimensional vector, elements for each layer to obtain different. For example, when receiving a desired signal of the r layer in the q receive antennas, C r in the q element 1, other elements are zero.
 基地局装置は、下りリンクのチャネルを知る必要がある。本実施形態では、TDD(Time Division Duplex)のチャネル相反性を想定し、上りリンク信号(例えばSRS、上りリンクDMRS)を用いて、下りリンクチャネルを推定する。複数レイヤ伝送の場合は、複数の送信アンテナから送信される。例えば、図4に示すように、基地局装置401はN本のアンテナ402-1~402-Nを備え、正規端末装置403はN本のアンテナ404-1~404-Nを備えるとする。例えば、正規端末装置403は、NアンテナポートからSRSを送信し、基地局装置401はN本のアンテナでSRSを受信し、下りリンクチャネルを推定する。このとき、基地局装置401は最大Nレイヤの信号を空間多重して送信することができる。上述のように、基地局装置401は、チャネル推定値を用いて、正規端末装置403の受信アンテナで各レイヤの信号が受信されるように希望信号を送信する。正規端末装置403で正しく希望信号を受信されるためには、チャネルが大きく変わってはいけない。従って、正規端末装置403は、SRSの送信に用いたアンテナ(又は同じ位置のアンテナ)を用いて希望信号を受信することが望ましい。また、正規端末装置403は、受信アンテナ毎にダイバーシチ合成重みを求めて対応するレイヤの希望信号を求めるため、基地局装置401が送信した各レイヤと正規端末装置403の受信アンテナを関連付ける必要がある。ここで正規端末装置403が用いたSRS(又はDMRS)のアンテナポート番号を1~Nとする。例えば、レイヤ1とSRSアンテナポート1が関連付けられ、レイヤ2とSRSアンテナポート2が関連付けられ、といったようにレイヤインデックスとSRSアンテナポート番号を1対1で関連付ける。このとき、正規端末装置は、レイヤ1の信号をSRSアンテナポート1と同じアンテナで受信し、レイヤ2の信号をSRSアンテナポート2で受信する。また、基地局装置401がL(<N)レイヤの信号を送信する場合、チャネル状態の良い受信アンテナを選択することも可能である。このとき、基地局装置401はレイヤインデックスとSRSアンテナポート番号の対応関係を正規端末装置403に制御情報で指示する。また、基地局装置401は、QCL(Quasi Colocation)情報として各レイヤの受信するアンテナを指示することができる。例えば、レイヤ1について、QCL情報としてSRSアンテナポート番号1が設定されている場合、正規端末装置403は、レイヤ1の信号をSRSアンテナポート番号1で受信したときと同じチャネルとなるアンテナで受信しなければならないことを意味する。 The base station equipment needs to know the downlink channel. In this embodiment, the channel reciprocity of TDD (Time Division Duplex) is assumed, and the downlink channel is estimated using the uplink signal (for example, SRS, uplink DMRS). In the case of multi-layer transmission, transmission is performed from a plurality of transmitting antennas. For example, as shown in FIG. 4, the base station apparatus 401 is provided with N T antennas 402-1 ~ 402-N T, normal terminal device 403 is provided with N R antennas 404-1 ~ 404-N R And. For example, the legitimate terminal device 403 transmits SRS from the N R antenna port, and the base station device 401 receives SRS with NT antennas to estimate the downlink channel. At this time, the base station apparatus 401 can transmit spatially multiplexed signals up to N R layer. As described above, the base station apparatus 401 uses the channel estimates to transmit the desired signal so that the signal of each layer is received by the receiving antenna of the regular terminal apparatus 403. In order for the legitimate terminal device 403 to correctly receive the desired signal, the channel must not change significantly. Therefore, it is desirable that the regular terminal device 403 receives the desired signal by using the antenna (or the antenna at the same position) used for transmitting the SRS. Further, since the regular terminal device 403 obtains the diversity composite weight for each receiving antenna and obtains the desired signal of the corresponding layer, it is necessary to associate each layer transmitted by the base station device 401 with the receiving antenna of the regular terminal device 403. .. Here the regular terminal device 403 antenna port number of SRS (or DMRS) and 1 ~ N R using. For example, the layer 1 is associated with the SRS antenna port 1, the layer 2 is associated with the SRS antenna port 2, and so on, and the layer index and the SRS antenna port number are associated with each other on a one-to-one basis. At this time, the regular terminal device receives the layer 1 signal at the same antenna as the SRS antenna port 1, and receives the layer 2 signal at the SRS antenna port 2. Further, when the base station apparatus 401 transmits a signal of L (<N R) layer, it is also possible to select a good channel state receiving antenna. At this time, the base station apparatus 401 instructs the regular terminal apparatus 403 of the correspondence between the layer index and the SRS antenna port number by the control information. Further, the base station apparatus 401 can indicate the antenna to be received by each layer as QCL (Quantum Collaboration) information. For example, when SRS antenna port number 1 is set as QCL information for layer 1, the regular terminal device 403 receives the layer 1 signal with an antenna having the same channel as when it is received at SRS antenna port number 1. Means you have to.
 本実施形態では、基地局装置が下りリンクチャネルを推定するため、下りリンクチャネル推定値を用いて正規端末装置に好適なプリコーディング、ランク(レイヤ数)、MCSを決めることができる。一方で、セル間干渉など、基地局装置では推定できない劣化要因がある場合は、正規端末装置からCSIを報告させることが望ましい。基地局装置はCSI-RSを送信し、正規端末装置はCSI-RSから好適なランク指標、チャネル品質指標を求めて報告する。本実施形態では、正規端末装置はブラインドアルゴリズムでダイバーシチ合成重みを推定しているため、CSI-RSを用いたチャネル推定は行わない。そのためCSI-RSはランク数に依らず、1リソースエレメントでCSIを測定することができる。この場合、正規端末装置は、複数のCSI-RSアンテナポートが設定されたとしても、そのCSI-RSリソースは1ポートのリソースエレメントを参照すればよい。例えば、正規端末装置は、ランク数1の場合はCSI-RSアンテナポート1のリソースエレメントを参照し、ランク数2の場合はCSI-RSアンテナポート2のリソースエレメントを参照する。なお、ランクアダプテーションのためには、最大ランク数個のリソースエレメントが必要となる。例えば最大4ランクの場合、ランク数1のためのリソースエレメント、ランク数2のためのリソースエレメント、ランク数3のためのリソースエレメント、ランク数4のためのリソースエレメントの4リソースエレメントが必要となる。なお、ランク数rのためのリソースエレメントでは、CSI-RSは、r個のCSI-RSが送信される。r個のCSI-RSはr個のCSI-RSアンテナポート番号と関連付けられる。例えば、r個のCSI-RSは、CSI-RSアンテナポート番号1~rで送信されるCSI-RSと同じである。正規受信端末は、ブラインド推定したCSI-RSの品質を用いてCSIを測定する。このとき正規端末装置は、各リソースエレメントでCSIを測定し、好適なランク数、CQI、又はRSRP(Reference Signal Received Power)を基地局装置に報告することができる。正規端末装置は、好適なランク数の代わりに好適なリソースインデックスを報告することができる。なお、正規端末装置は、1又は複数のランク数について、CQI、RSRPを報告することができる。ランク数毎のリソースエレメントは、異なるCSI-RSリソースとすることができる。CSI-RSリソースは、CSI-RSリソースID(identifier)とCSI-RSがマッピングされるリソースエレメントが関連付けられて設定される。CSI-RSがマッピングされるリソースエレメントは、CSI-RSが送信されるスロット内のOFDMシンボルとリソースブロック内のサブキャリアで示される。またランク測定に用いられるCSI-RSリソースは、1つのCSI-RSリソースセットに含まれるものであっても良い。例えば、報告すべき最大ランク数はCSI-RSリソースセットで設定されるCSI-RSリソース数であってもよい。また基地局装置は、希望信号と同様に、CSI-RSも下りリンクチャネル推定値に基づいて送信されるため、CSI-RSアンテナポートと対応する正規端末装置の受信アンテナを指示する必要がある。例えば、正規端末装置は、ランク数Rのリソースエレメントでは、CSI-RSアンテナポート1~Rの各々と、SRSアンテナポート1~Rの各々が関連付けられる。また、基地局装置は、CSI-RSアンテナポートとSRSアンテナポートをQCLの関係として関連付けて設定することができる。 In the present embodiment, since the base station device estimates the downlink channel, the precoding, rank (number of layers), and MCS suitable for the regular terminal device can be determined using the downlink channel estimated value. On the other hand, if there is a deterioration factor such as cell-to-cell interference that cannot be estimated by the base station device, it is desirable to have the regular terminal device report the CSI. The base station equipment transmits CSI-RS, and the regular terminal equipment obtains and reports a suitable rank index and channel quality index from CSI-RS. In the present embodiment, since the regular terminal device estimates the diversity composite weight by the blind algorithm, the channel estimation using CSI-RS is not performed. Therefore, CSI-RS can measure CSI with one resource element regardless of the number of ranks. In this case, even if a plurality of CSI-RS antenna ports are set in the regular terminal device, the CSI-RS resource may refer to the resource element of one port. For example, the regular terminal device refers to the resource element of the CSI-RS antenna port 1 when the number of ranks is 1, and refers to the resource element of the CSI-RS antenna port 2 when the number of ranks is 2. Note that a maximum of several resource elements are required for rank adaptation. For example, in the case of a maximum of 4 ranks, 4 resource elements are required: a resource element for rank 1, a resource element for rank 2, a resource element for rank 3, and a resource element for rank 4. .. In the resource element for the rank number r, r CSI-RSs are transmitted as CSI-RS. The r CSI-RSs are associated with the r CSI-RS antenna port numbers. For example, r CSI-RSs are the same as CSI-RSs transmitted by CSI-RS antenna port numbers 1 to r. The legitimate receiver measures the CSI using the blindly estimated quality of the CSI-RS. At this time, the regular terminal device can measure the CSI at each resource element and report a suitable rank number, CQI, or RSRP (Reference Signal Received Power) to the base station device. The legitimate terminal device can report a suitable resource index instead of a suitable number of ranks. The regular terminal device can report CQI and RSRP for one or more ranks. The resource element for each rank number can be a different CSI-RS resource. The CSI-RS resource is set by associating the CSI-RS resource ID (identifier) with the resource element to which the CSI-RS is mapped. The resource element to which the CSI-RS is mapped is indicated by the OFDM symbol in the slot in which the CSI-RS is transmitted and the subcarrier in the resource block. Further, the CSI-RS resource used for the rank measurement may be included in one CSI-RS resource set. For example, the maximum number of ranks to be reported may be the number of CSI-RS resources set in the CSI-RS resource set. Further, since the base station device transmits the CSI-RS based on the downlink channel estimated value as well as the desired signal, it is necessary to indicate the receiving antenna of the legitimate terminal device corresponding to the CSI-RS antenna port. For example, in the legitimate terminal device, each of the CSI-RS antenna ports 1 to R and each of the SRS antenna ports 1 to R are associated with the resource element having the rank number R. Further, the base station apparatus can be set by associating the CSI-RS antenna port and the SRS antenna port as a QCL relationship.
 なお、本実施形態に係る通信装置(基地局装置、端末装置)が使用する周波数バンドは、これまで説明してきたライセンスバンドやアンライセンスバンドには限らない。本実施形態が対象とする周波数バンドには、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンド(ホワイトスペース)と呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、これまで特定の事業者に排他的に割り当てられていたものの、将来的に複数の事業者で共用することが見込まれる共用周波数バンド(ライセンス共有バンド)も含まれる。 Note that the frequency band used by the communication device (base station device, terminal device) according to the present embodiment is not limited to the license band and unlicensed band described so far. The frequency band targeted by this embodiment is not actually used for the purpose of preventing interference between frequencies, although the use permission for a specific service is given by the country or region. Frequency bands called white bands (for example, frequency bands assigned for television broadcasting but not used in some regions) and, although previously exclusively assigned to specific operators, It also includes a shared frequency band (license sharing band) that is expected to be shared by multiple operators in the future.
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。 The program that operates in the device according to one aspect of the present invention is a program that controls a Central Processing Unit (CPU) or the like to operate a computer so as to realize the functions of the embodiment according to one aspect of the present invention. Is also good. The program or the information handled by the program is temporarily stored in a volatile memory such as Random Access Memory (RAM), a non-volatile memory such as a flash memory, a Hard Disk Drive (HDD), or another storage device system.
 尚、本発明の一態様に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。 Note that the program for realizing the function of the embodiment according to one aspect of the present invention may be recorded on a computer-readable recording medium. It may be realized by loading the program recorded on this recording medium into a computer system and executing it. The "computer system" as used herein is a computer system built into a device, and includes hardware such as an operating system and peripheral devices. The "computer-readable recording medium" is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another recording medium that can be read by a computer. Is also good.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。 Further, each functional block or various features of the device used in the above-described embodiment can be implemented or executed in an electric circuit, for example, an integrated circuit or a plurality of integrated circuits. Electrical circuits designed to perform the functions described herein are general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others. Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof. The general purpose processor may be a microprocessor, a conventional processor, a controller, a microcontroller, or a state machine. The electric circuit described above may be composed of a digital circuit or an analog circuit. In addition, when an integrated circuit technology that replaces the current integrated circuit appears due to advances in semiconductor technology, one or more aspects of the present invention can also use a new integrated circuit according to the technology.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 The invention of the present application is not limited to the above-described embodiment. In the embodiment, an example of the device has been described, but the present invention is not limited to this, and the present invention is not limited to this, and is a stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device, a kitchen device, and the like. It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other living equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like within a range not deviating from the gist of the present invention are also included. In addition, one aspect of the present invention can be variously modified within the scope of the claims, and the technical aspects of the present invention are also obtained by appropriately combining the technical means disclosed in the different embodiments. Included in the range. In addition, the elements described in each of the above embodiments include a configuration in which elements having the same effect are replaced with each other.
 本発明の一態様は、通信装置および通信方法に用いて好適である。 One aspect of the present invention is suitable for use in communication devices and communication methods.
1A 基地局装置
2A 端末装置
100 送受信部
101 上位層処理部
102 制御部
103 送信部
104 受信部
105 送受信アンテナ
106 測定部
1011 無線リソース制御部
1012 スケジューリング部
1031 符号化部
1032 変調部
1033 下りリンク参照信号生成部
1034 多重部
1035 無線送信部
1041 無線受信部
1042 多重分離部
1043 復調部
1044 復号部
200 送受信部
201 上位層処理部
202 制御部
203 送信部
204 受信部
205 測定部
206 送受信アンテナ
2011 無線リソース制御部
2012 スケジューリング情報解釈部
2031 符号化部
2032 変調部
2033 上りリンク参照信号生成部
2034 多重部
2035 無線送信部
2041 無線受信部
2042 多重分離部
2043 信号検出部
401 基地局装置
402-1~402-N アンテナ
403 端末装置
404-1~404-N アンテナ
1A Base station device 2A Terminal device 100 Transmission / reception unit 101 Upper layer processing unit 102 Control unit 103 Transmission unit 104 Reception unit 105 Transmission / reception antenna 106 Measurement unit 1011 Wireless resource control unit 1012 Scheduling unit 1031 Coding unit 1032 Modulation unit 1033 Downlink reference signal Generation unit 1034 Multiplexing unit 1035 Wireless transmitting unit 1041 Wireless receiving unit 1042 Multiplexing unit 1043 Degrading unit 1044 Decoding unit 200 Transmission / reception unit 201 Upper layer processing unit 202 Control unit 203 Transmission unit 204 Reception unit 205 Measuring unit 206 Transmission / reception antenna 2011 Wireless resource control Part 2012 Scheduling information interpretation part 2031 Coding part 2032 Modulation part 2033 Uplink reference signal generation part 2034 Multiplexing part 2035 Wireless transmitting part 2041 Wireless receiving part 2042 Multiplexing part 2043 Signal detecting part 401 Base station equipment 402-1 to 402-N T antenna 403 terminal devices 404-1 ~ 404-N R antennas

Claims (10)

  1.  上りリンク参照信号を受信、及び複数レイヤの信号を送信する送受信部と、
     前記上りリンク参照信号から下りリンクチャネルのチャネル推定値を推定するチャネル推定部と、を備え、
     前記上りリンク参照信号は、複数のアンテナを用いて通信相手から送信され、
     前記複数レイヤの信号は、前記チャネル推定値を用いて位相制御及び振幅制御され、
     前記複数レイヤの信号の各々は、前記複数のアンテナの各々に関連付けられて送信される、
     通信装置。
    A transmitter / receiver that receives uplink reference signals and transmits signals of multiple layers,
    A channel estimation unit that estimates the channel estimation value of the downlink channel from the uplink reference signal is provided.
    The uplink reference signal is transmitted from a communication partner using a plurality of antennas, and is transmitted.
    The signals of the plurality of layers are phase-controlled and amplitude-controlled using the channel estimates.
    Each of the plurality of layers of signal is transmitted in association with each of the plurality of antennas.
    Communication device.
  2.  前記送受信部は、チャネル状態情報(CSI)測定のための参照信号 (CSI-RS)を送信し、
     前記CSI-RSのリソース数は複数であり、前記複数のCSI-RSリソースの各々は異なるランクに対するCSIを測定するためのものであり、
     前記複数のCSI-RSリソースの各々は、1つのリソースエレメントへのマッピングが設定され、
     前記リソースエレメントは、スロット内の1つの直交周波数分割多重(OFDM)シンボル及びリソースブロック内の1つのサブキャリアである、
     請求項1に記載の通信装置。
    The transmitter / receiver transmits a reference signal (CSI-RS) for channel state information (CSI) measurement.
    The number of resources of the CSI-RS is plural, and each of the plurality of CSI-RS resources is for measuring the CSI for different ranks.
    Each of the plurality of CSI-RS resources is set with a mapping to one resource element.
    The resource element is one orthogonal frequency division multiplexing (OFDM) symbol in the slot and one subcarrier in the resource block.
    The communication device according to claim 1.
  3.  前記複数のCSI-RSリソースの各々におけるチャネル品質指標(CQI)を受信する、請求項2に記載の通信装置。 The communication device according to claim 2, which receives a channel quality index (CQI) in each of the plurality of CSI-RS resources.
  4.  前記複数のCSI-RSリソースのうちの1つを示すCSI-RSリソースインデックスと該CSI-RSリソースで測定したチャンネル品質指標(CQI)を受信する、請求項2に記載の通信装置。 The communication device according to claim 2, which receives a CSI-RS resource index indicating one of the plurality of CSI-RS resources and a channel quality index (CQI) measured by the CSI-RS resource.
  5.  複数のアンテナを用いて、上りリンク参照信号を送信、及び複数レイヤ信号を受信する送受信部と、
     前記受信した複数レイヤの信号から希望信号を検出する信号検出部と、を備え、
     前記複数レイヤの各々と前記複数のアンテナの各々は関連付けられている、通信装置。
    A transmitter / receiver that transmits uplink reference signals and receives multiple layer signals using multiple antennas.
    A signal detection unit that detects a desired signal from the received signals of a plurality of layers is provided.
    A communication device in which each of the plurality of layers and each of the plurality of antennas are associated with each other.
  6.  前記複数レイヤの信号の各々は、前記複数のアンテナのうちの1つに基づいて求められる、請求項5に記載の通信装置。 The communication device according to claim 5, wherein each of the signals of the plurality of layers is obtained based on one of the plurality of antennas.
  7.  前記送受信部は、チャネル状態情報(CSI)測定のための参照信号 (CSI-RS)を受信し、
     前記CSI-RSのリソース数は複数であり、前記複数のCSI-RSリソースの各々は異なるランクに対するCSIを測定するためのものであり、
     前記複数のCSI-RSリソースの各々は、1つのリソースエレメントへのマッピングが設定され、
     前記リソースエレメントは、スロット内の1つの直交周波数分割多重(OFDM)シンボル及びリソースブロック内の1つのサブキャリアである、
     請求項5に記載の通信装置。
    The transmitter / receiver receives a reference signal (CSI-RS) for channel state information (CSI) measurement, and receives the reference signal (CSI-RS).
    The number of resources of the CSI-RS is plural, and each of the plurality of CSI-RS resources is for measuring the CSI for different ranks.
    Each of the plurality of CSI-RS resources is set with a mapping to one resource element.
    The resource element is one orthogonal frequency division multiplexing (OFDM) symbol in the slot and one subcarrier in the resource block.
    The communication device according to claim 5.
  8.  前記複数のCSI-RSリソースの各々におけるチャネル品質指標(CQI)を測定し、
     前記CSI-RSリソースと前記CQIを関連付けて報告する,請求項6に記載の通信装置。
    The channel quality index (CQI) in each of the plurality of CSI-RS resources was measured and
    The communication device according to claim 6, wherein the CSI-RS resource is associated with the CQI and reported.
  9.  前記複数のCSI-RSリソースから1つを選択し、選択したCSI-RSリソースインデックスと該CSI-RSリソースで測定したチャンネル品質指標(CQI)を報告する、請求項6に記載の通信装置。 The communication device according to claim 6, wherein one is selected from the plurality of CSI-RS resources, and the selected CSI-RS resource index and the channel quality index (CQI) measured by the CSI-RS resource are reported.
  10.  上りリンク参照信号を受信、及び複数レイヤの信号を送信するステップと、
     前記上りリンク参照信号から下りリンクチャネルのチャネル推定値を推定するステップと、を備え、
     前記上りリンク参照信号は、複数のアンテナを用いて通信相手から送信され、
     前記複数レイヤの信号は、前記チャネル推定値を用いて位相制御及び振幅制御され、
     前記複数レイヤの信号の各々は、前記複数のアンテナの各々に関連付けられて送信される、
     通信方法。
    The step of receiving the uplink reference signal and transmitting the signal of multiple layers,
    A step of estimating the channel estimate of the downlink channel from the uplink reference signal is provided.
    The uplink reference signal is transmitted from a communication partner using a plurality of antennas, and is transmitted.
    The signals of the plurality of layers are phase-controlled and amplitude-controlled using the channel estimates.
    Each of the plurality of layers of signal is transmitted in association with each of the plurality of antennas.
    Communication method.
PCT/JP2021/001197 2020-01-17 2021-01-15 Communication device and communication method WO2021145409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021571247A JPWO2021145409A1 (en) 2020-01-17 2021-01-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020006001 2020-01-17
JP2020-006001 2020-01-17

Publications (1)

Publication Number Publication Date
WO2021145409A1 true WO2021145409A1 (en) 2021-07-22

Family

ID=76864457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001197 WO2021145409A1 (en) 2020-01-17 2021-01-15 Communication device and communication method

Country Status (2)

Country Link
JP (1) JPWO2021145409A1 (en)
WO (1) WO2021145409A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500982A (en) * 2012-10-24 2016-01-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated Enhanced SRS transmission for MIMO operation in LTE-A
JP2019512935A (en) * 2016-03-11 2019-05-16 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー Method and apparatus for transmitting feedback information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500982A (en) * 2012-10-24 2016-01-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated Enhanced SRS transmission for MIMO operation in LTE-A
JP2019512935A (en) * 2016-03-11 2019-05-16 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー Method and apparatus for transmitting feedback information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONEDA, TSUYOSHI ET AL.: "Wireless cipher communication method using random phase in MIMO-OFDM communications", LECTURE PROCEEDINGS 1 OF THE 2016 COMMUNICATION SOCIETY CONFERENCE OF IEICE, 6 January 2016 (2016-01-06), pages 341 *

Also Published As

Publication number Publication date
JPWO2021145409A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
CN108496387B (en) Base station device, terminal device, and communication method
CN110073704B (en) Base station device, terminal device, communication method, and integrated circuit
AU2012369247B2 (en) User equipment, network node and methods therein for determining a transport block size in downlink transmissions in a telecommunications system
US9232535B2 (en) Wireless communication system, base station apparatus, mobile station apparatus, wireless communication method and integrated circuit
JP6795489B2 (en) Terminal equipment, base station equipment, and communication methods
CN110999185B (en) Method for transmitting/receiving reference signal in wireless communication system and apparatus therefor
CN113261322B (en) Terminal device, base station device, and communication method
CN108496388B (en) Base station device, terminal device, and communication method
JP6555827B2 (en) Communication device and communication method
JP2020010072A (en) Base station device, terminal and communication method
WO2020003897A1 (en) Base station device, terminal device, and communication method
WO2017130967A2 (en) Base station device, terminal device, and communication method
WO2019065189A1 (en) Base station device, terminal device, and communication method
JP2021044598A (en) Base station device, terminal device, and communication method
WO2019130847A1 (en) Base station device, terminal device and communication method
WO2019130858A1 (en) Base station device, terminal device and communication method
JP2020072372A (en) Terminal device and communication method
WO2020054607A1 (en) Base station device, terminal device, and communications method
CN112970283B (en) Terminal device and communication method
JPWO2018008459A1 (en) Base station apparatus, terminal apparatus and communication method
WO2016043019A1 (en) Terminal device, base station device and communication method
WO2017169366A1 (en) Base station, terminals and communication method
WO2019065191A1 (en) Base station device, terminal device, and communication method
CN110178400B (en) Base station device, terminal device, and communication method
JP6548334B2 (en) Terminal device, base station device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021571247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741000

Country of ref document: EP

Kind code of ref document: A1