WO2021145009A1 - Traveling path management system for work vehicle - Google Patents

Traveling path management system for work vehicle Download PDF

Info

Publication number
WO2021145009A1
WO2021145009A1 PCT/JP2020/023961 JP2020023961W WO2021145009A1 WO 2021145009 A1 WO2021145009 A1 WO 2021145009A1 JP 2020023961 W JP2020023961 W JP 2020023961W WO 2021145009 A1 WO2021145009 A1 WO 2021145009A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
route
traveling
travel
running
Prior art date
Application number
PCT/JP2020/023961
Other languages
French (fr)
Japanese (ja)
Inventor
鈴川めぐみ
玉谷健二
阪口和央
中瀬了介
目野鷹博
松井裕佑
宇都仁
國安恒寿
吉水健悟
藤井健次
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020003991A external-priority patent/JP7403323B2/en
Priority claimed from JP2020003989A external-priority patent/JP7458794B2/en
Priority claimed from JP2020004020A external-priority patent/JP2021108621A/en
Priority claimed from JP2020003990A external-priority patent/JP2021108607A/en
Priority claimed from JP2020004015A external-priority patent/JP7466315B2/en
Priority claimed from JP2020003988A external-priority patent/JP7442321B2/en
Priority claimed from JP2020004012A external-priority patent/JP7407600B2/en
Priority claimed from JP2020004013A external-priority patent/JP2021108614A/en
Priority claimed from JP2020004016A external-priority patent/JP2021108617A/en
Priority claimed from JP2020004017A external-priority patent/JP7335173B2/en
Priority claimed from JP2020004014A external-priority patent/JP7378300B2/en
Priority claimed from JP2020003986A external-priority patent/JP7372158B2/en
Priority claimed from JP2020003987A external-priority patent/JP2021108604A/en
Priority claimed from JP2020004019A external-priority patent/JP7409880B2/en
Priority claimed from JP2020003992A external-priority patent/JP7413031B2/en
Priority claimed from JP2020004018A external-priority patent/JP7409879B2/en
Priority claimed from JP2020004011A external-priority patent/JP7489780B2/en
Priority claimed from JP2020004010A external-priority patent/JP7489779B2/en
Priority to KR1020227019125A priority Critical patent/KR20220127228A/en
Priority to CN202080084379.2A priority patent/CN115334868A/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2021145009A1 publication Critical patent/WO2021145009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • A01C11/025Transplanting machines using seedling trays; Devices for removing the seedlings from the trays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles

Definitions

  • the work vehicle (working machine) performs work such as planting work while traveling in the field (working area).
  • the work vehicle (working machine) performs work traveling by automatic traveling.
  • the work vehicle (working machine) calculates a traveling route and automatically travels along the traveling route based on the position of the own machine calculated using GNSS (Global Navigation Satellite System) or the like.
  • GNSS Global Navigation Satellite System
  • the travel route management system for a work machine capable of automatically traveling on a farm has a travel locus in an outer shape calculation run that travels along the boundary line of the farm in order to calculate the outer shape of the farm. Based on this, a round-trip route creation unit that creates at least one or more round-trip routes in the outer peripheral area of the farm, and a round-trip route creation that creates a round-trip route including a plurality of straight routes in the internal region located inside the outer peripheral area.
  • the number of the circuit paths is determined by the area required for turning from the traveling straight path to the next traveling straight path.
  • the number of laps can be limited to as small as possible on the condition that the area required for turning when shifting from the straight path to the straight path in the round-trip route is secured.
  • the direction change performed in the corner area of the field in the orbital travel becomes a complicated route, and that the travel using the round-trip route connecting multiple straight routes by the turning route becomes an easy route. For example, it is convenient to reduce the number of laps.
  • the round-trip route is created based on a travel locus in the outer shape calculation travel traveling along the boundary line of the farm.
  • the running locus obtained by manually running to calculate the outer shape of the farm shows the current outer shape of the farm. Therefore, if a round-trip route is created in the widest possible range based on this farm outline, efficient work becomes possible.
  • One of the preferred embodiments of the present invention includes a driving mode management unit that enables selection from manned automatic driving and unmanned automatic driving as the driving mode of the circuit route.
  • the orbital route which is the closest to the boundary line of the field such as ridges, can be driven in the appropriate driving mode of manned automatic driving and unmanned automatic driving.
  • unmanned automatic driving if the work machine can run according to the orbital route that has been proven in the outer shape calculation running that was performed earlier, the automatic running will be as desired, but the accuracy of the following running is based on the automatic running control technology. Will depend on it. If the work equipment is automatically driven so that it does not deviate from the tolerance set in advance from the circuit path, the result will be obtained in terms of labor saving.
  • manned automatic driving is preferable even if a worker gets on the work machine.
  • the worker who gets into the work machine does not actually operate the work machine, but performs emergency processing such as stopping the work machine in the event of an unexpected situation or a contact danger situation.
  • emergency processing such as stopping the work machine in the event of an unexpected situation or a contact danger situation.
  • the orbital path includes an outer orbital path that matches the traveling locus in the outer shape calculation run and an inner orbital path that is located inside the outer orbital path. Including, the operation mode of the outer circuit route is limited to the manned automatic traveling or the manual traveling.
  • the inner orbital path When the orbital path is composed of an inner orbital path and an outer orbital path, the inner orbital path shall be located between the end contour line (end envelope) of the straight path of the reciprocating path and the outer orbital path. Become. Since the field area located between the end contour line and the work area by the outer orbital route is worked by the work run using the inner orbital route, the inner orbital route is the end contour line and the outer orbital route of the straight route. By creating along with, smooth work becomes possible. From this, in one of the preferred embodiments of the present invention, the inner circumferential path is an end contour line (end envelope) of a plurality of straight paths created in an inner region located inside the outer peripheral region. ) And the outer circuit path. Since the round-trip route is created in the internal area of the farm, the round-trip route is also referred to as an internal round-trip route.
  • the work width for the field area located between the end contour line and the work area by the outer circuit path fluctuates
  • the work width is adjusted (in the case of a rice transplanter, each line clutch is controlled) and overlapping work is performed. .. From this, in one of the preferred embodiments of the present invention, when the distance between the end contour line and the outer circuit path fluctuates (when the working width changes with traveling), the inner circuit path is used.
  • work control information on / off (on / off) of each clutch for changing the work width according to the fluctuation of the interval is assigned.
  • the information terminal with a touch panel connected to the in-vehicle LAN of the work machine is provided with the circuit route creation unit, the reciprocating route creation unit, and the operation mode management unit.
  • the circuit path is constructed so as to be operable through the graphic user interface, and the circuit path is identifiablely displayed on the screen of the touch panel according to the operation mode.
  • the route on which manual driving is executed does not need to be displayed on a screen such as a touch panel, but the screen can be suitably used for another purpose by deleting it from the screen.
  • the route is a route on which manual travel is executed, it can be suitably used as a guide route to support manual travel by displaying it on the screen.
  • a straight route along the lap travel may be used in the turning travel to shift from the traveling straight route to the next traveling straight route.
  • the circuit path Some are used as a part of the turning path for performing the turning traveling from the traveling straight path to the next traveling straight path.
  • the characteristic configuration of the work machine according to the present invention is a work machine capable of automatically traveling, and a machine position calculation unit that calculates the machine position using satellite positioning and map information indicating the shape of the work site are provided.
  • a map information storage unit that stores the location information indicating the position of the work site and the time information indicating the time when the map information was created, a display device having a display screen, and the map information storage unit store the map information.
  • the map information display unit that displays the map information extracted based on the aircraft position, the position information, and the time information on the display screen, and the map displayed on the display screen.
  • an input area determination unit that determines the input area in which the operation input by the user has been performed
  • an input position information calculation unit that calculates the position information in the map information corresponding to the determined input area as input position information. And, based on the input position information, the map information stored in the map information storage unit is extracted and displayed as a thumbnail on the display screen.
  • map information according to the machine body position of the work machine can be automatically displayed on the display screen, and map information according to the user's input operation for the displayed map information. Can also be displayed on the display screen as thumbnails. Therefore, since the map information stored in the map information storage unit can be easily used, for example, in automatic work running, it becomes easier for the user to grasp the map information, and the convenience can be improved.
  • an operation determination unit for determining whether or not the input area covers at least two or more map information.
  • the input area determination unit includes an area calculation unit that calculates the area of the input area in each of the map information when the input area covers at least two or more map information.
  • the map information of the input area having the largest area is the map information on which the operation input is performed.
  • the thumbnail display unit also displays work information indicating information on work performed at the work site based on the map information displayed by the thumbnail.
  • the elapsed time from the creation of the map information is calculated based on the time information related to the map information displayed on the display screen, and the re-creation of the map information is notified according to the elapsed time. Suitable.
  • the map information may differ from the actual shape and situation of the work area. Therefore, with such a configuration, it is possible to encourage the user to recreate the map information according to the occurrence situation of the disaster. Therefore, it is not necessary for the user himself / herself to know the occurrence situation of the disaster, so that the convenience can be improved.
  • the travel route management system for a work machine capable of automatically traveling on a farm has a reference edge setting unit that sets one side of the outer shape of the farm as a reference edge, and a predetermined reference edge with respect to the reference edge. It includes a reciprocating route creating unit that creates a reciprocating route including a plurality of straight routes extending in a direction, and a traveling direction setting unit that sets a traveling direction in the reciprocating route.
  • a plurality of straight routes extending in a predetermined direction with respect to one side of the farm set as the reference side are stretched in the inner area of the farm.
  • the plurality of straight paths are parallel to each other and extend in the same direction, so that their formation and management are easy.
  • autonomous driving along such straight routes is easier than traveling on winding routes such as ordinary roads.
  • efficient work travel is realized by sequentially connecting a plurality of straight routes by turning the aircraft. At that time, the work running start point and the work running end point are determined according to the running direction set by the running direction setting unit.
  • the traveling direction setting unit may be configured to set the traveling direction or determine the traveling direction, the traveling direction setting unit is also referred to as a traveling direction determining unit.
  • the farms are square, almost rectangular.
  • farms are divided based on agricultural roads, so it is easier to estimate the shape and size of farms based on the agricultural roads in contact with the farms. Therefore, when a side adjacent to the farm road is selected as the reference side, the long side of the farm is either a side parallel to the reference side or a side perpendicular to the reference side.
  • the straight path is created so as to extend parallel or perpendicular to the reference side. This makes it possible to form a long straight path.
  • short straight paths may be formed.
  • Working machines such as rice transplanters, fertilizers, and chemical sprayers use one side of the outer shape of the farm, for example, the side in contact with the farm road, as the material supply side in order to replenish the materials to be administered to the farm. Approaches this material supply side.
  • the material is usually replenished in a posture in which the front end or the rear end of the machine is brought close to the material replenishment side. If the material supply side is located ahead of the straight route, it is convenient because it is possible to approach the material supply side directly, forward or backward from the traveling posture on the straight route.
  • a supply side setting unit for setting one side of the outer shape of the farm as a material supply side of the material consumed by the work machine is provided, and the material supply side is provided. , It is set to face the extending direction of the straight path.
  • the end point of the round-trip route is set at the end of the straight-ahead route that is close to the doorway of the farm.
  • seedlings are replenished as material replenishment with the front end of the aircraft close to the material replenishment side. Therefore, when replenishing seedlings, it is convenient to travel ahead of the traveling straight route without shifting from the traveling straight route to the next straight route. At that time, it is preferable to give the operator time to consider whether or not to replenish the materials before entering the turning run for entering the next straight path from the running straight path.
  • drug replenishment is usually performed with the rear end of the aircraft close to the material replenishment side. In this case, in the posture before starting the work run on the next straight path, the run is carried out as it is in the reverse direction toward the material supply side. It is preferable to give the worker time to consider whether or not to replenish the materials before starting the work run.
  • the end region of the straight path traveling toward the material supply side, the start region of the straight path traveling next, or both regions. is assigned a temporary stop of the vehicle body as travel control information.
  • the vehicle body need only be temporarily stopped only in the terminal region of the straight path traveling toward the material supply side.
  • the outer peripheral area of the farm used as a space for a turning run for shifting from a straight path to the next straight path after a work run using a round-trip route is not yet available. It is left as a work place. Therefore, in one of the preferred embodiments of the present invention, the farm is divided into an outer peripheral region where orbiting along the boundary line of the farm is performed and an inner region located inside the outer peripheral region. The straight path is formed in the internal region, and in the outer peripheral region, a turning run is performed to shift from the traveling straight path to the next traveling straight path. For this reason, the round-trip route is also referred to as an internal round-trip route.
  • the setting of the reference side and the setting of the traveling direction are performed based on the operation input by the operator. It is convenient to use a graphic interface in order to facilitate the operator's operation input to such a work machine. From this, in one of the preferred embodiments of the present invention, the reference side setting unit, the reciprocating route creation unit, and the traveling direction setting unit ( The traveling direction determination unit) is constructed so as to be operable through the graphic user interface, and the reciprocating route is displayed on the screen of the touch panel so that the operation mode for the reciprocating route can be identified.
  • the characteristic configuration of the work machine according to the present invention is a work machine capable of automatically traveling, and has a machine body position calculation unit for calculating the machine body position and a plurality of regions divided along the outer periphery of the work site, respectively.
  • the position information is calculated based on the position of the aircraft and the position of the rear end on the outer peripheral side of the aircraft, and at the end of traveling in the one region.
  • a position information calculation unit that calculates the position information based on the position of the machine body and the position of the front end portion on the outer peripheral side of the machine body, and map information indicating the shape of the work site based on the position information.
  • the point is that it has a map information creation unit to be created.
  • the position at the start of running and the position at the end of running in each of the plurality of areas divided along the outer circumference of the work site are accurately detected, and each of them is based on these positions.
  • the position information of the area can be calculated accurately. Therefore, since the map information indicating the shape of the work site can be appropriately created, it is possible to improve the convenience by using the map information, for example, in the automatic work running.
  • a work unit for performing ground work is provided so as to be able to move up and down with respect to the machine body, and the position information calculation unit sets the time when the work unit in the ascending position is in the descending state as the start of traveling. It is preferable that the time when the working unit in the lowered state is returned to the raised position is the end of the traveling.
  • a work unit for performing ground work is provided on the machine body, and when traveling along the outer circumference of the work place, the center of the work place is relative to the outer peripheral portion of the work place indicated by the map information. It is preferable to include a travel route generation unit that generates a travel route when performing the ground work with the position offset to the side as a reference.
  • the position information calculation unit is a first line that virtually extends from the position of the center of gravity of the aircraft along the width direction of the aircraft from the start to the end of traveling in the one region. It is preferable to calculate the position information based on the position where the most protruding portion of the airframe that protrudes along the width direction of the airframe intersects with the second line that is virtually extended along the length direction of the airframe. Is.
  • the position information is calculated based on the position where the first line and the second line intersect from the departure of the travel start position to the arrival of the travel end position. , It becomes possible to calculate the location information according to the standard by the user.
  • a display device having a display screen is provided, and the shape of the work area indicated by the map information is clearly indicated by using a plurality of indexes on the display screen, and the map information creation unit is responsible for data related to the map information.
  • the amount of the data exceeds a preset value, the data corresponding to the portion where the amount of change in the shape of the work site is small is deleted, and the index corresponding to the deleted data is displayed on the display screen. It is preferable to clearly indicate that the index is distinguishable from the above-mentioned index.
  • the position at the start of the previous run when the moving distance of the aircraft from the position at the start of the previous run to the position at the start of the next run is less than or equal to a preset distance, the position at the start of the previous run. It is preferable to disable.
  • traveling and stopping may be repeated in order to adjust the position of the aircraft to the desired position. Therefore, with such a configuration, it is possible to invalidate the result detected as the position at the start of traveling when adjusting the position of the aircraft, so that it is possible to appropriately create map information.
  • a display device having a display screen is provided, and on the display screen, the shape of the work area indicated by the map information is clearly indicated by using a plurality of indexes, and on the display screen, the position at the start of traveling and the said. It is preferable that the position at the end of running is displayed by an index different from the index indicating the position at the start of running and the position at the end of running.
  • the position at the start of traveling and the position at the end of traveling are displayed with different indexes.
  • the machine when the machine is provided with a work unit for performing the ground work and the ground work is performed in the outer peripheral region of the work site, it is preferable to travel at the same speed as the machine speed when creating the map information.
  • the map information creation unit creates the map information using only the position information transmitted to the map information creation unit among the position information calculated by the position information calculation unit.
  • the travel route management system for a work machine capable of automatically traveling on a farm includes an orbital route creating unit that creates at least one or more orbital routes in the outer peripheral region of the farm, and the outer peripheral region.
  • a reciprocating route creation unit that creates a reciprocating route consisting of a plurality of straight routes and a turning path connecting the two straight routes and a start point of work running using the reciprocating route are set. It is provided with a start point setting unit for setting a start point and a start point guidance route creating unit for creating a start point guidance route for automatically guiding the work machine satisfying the guidance condition to the start point.
  • the work machine when the preset guidance conditions are satisfied, the work machine is guided to the start point of the work run using the reciprocating route by automatic running with the start point guide route as the target route. Eliminates the need to manually move to the starting point. Positioning the work machine accurately at the start point of work running is a difficult task for a worker who is not skilled in operating the work machine, so the starting point for automatic running can be selected by appropriately selecting the guidance conditions. Creating a guidance route reduces the burden on workers.
  • the guidance condition includes that the difference between the preset guideable direction and the direction of travel of the work machine is within an allowable range.
  • the work machine is guided to the start point by automatic running with the start point guidance route as the target route only by positioning the traveling destination in a preset direction, so that the burden on the worker is reduced. do.
  • the guidance condition includes that at least a part of the working machine is contained in a preset guideable area.
  • the work machine can automatically travel to the start point, so that the worker can move.
  • the burden is small. If the navigable area is near the doorway of the farm, the work run on the farm will be virtually fully automated.
  • a plurality of the guideable areas are set. In this configuration, if there are a plurality of guideable areas for locating the work machine, which are required for automating the work run, the options are increased. It is convenient for the operator because the operator can select a simpler guideable area.
  • the guideable area is set so that a straight path of a predetermined distance or more can be secured between the center point of the guideable area and the start point.
  • a straight path of a predetermined distance or more can be secured between the center point of the guideable area and the start point.
  • At least a part of the starting point guidance path is diverted from a part of the circuit path. Since the starting point is the starting point of the round-trip path set in the internal region, the starting point guidance path is formed in the outer peripheral region. Therefore, the starting point guidance path extends along a part of the circuit path. Therefore, a part of the circuit path can be easily diverted as at least a part of the starting point guidance path. As a result, the burden of creating the starting point guidance route is reduced.
  • the information terminal with a touch panel connected to the in-vehicle LAN of the work machine is provided with the circuit route creation unit, the reciprocating route creation unit, and the start point setting unit.
  • the start point guidance route creation unit is constructed so as to be operable through a graphic user interface and the guidance conditions are not satisfied, guidance for satisfying the guidance conditions is displayed on the screen of the touch panel.
  • a representation indicating that the guidance condition is satisfied is displayed on the screen of the touch panel.
  • the displayed representation may be characters, but it is better to use illustrations or even moving images to make it easier for the operator to understand.
  • the number of straight routes of the round-trip route affects the positions of the start point and the end point of the round-trip route. For example, if the number of straight paths is odd, the start point position and the end point position are opposite to each other in the internal region, that is, opposite to each other. If the number of straight paths is even, the start point position and the end point position are on the same side of the internal area. In other words, by changing the number of straight routes, the positional relationship between the start point and the end point, which is important for overall route creation, can be changed. From this, in one of the preferred embodiments of the present invention, the starting point is determined by adjusting the number of the straight paths and the idle running or the number of the straight paths running on the straight path without work.
  • the positional relationship between the vehicle and the end point of the work run using the reciprocating route is adjusted.
  • This operation can be performed through the touch panel screen of the information terminal both during the creation of the travel route and during the actual work travel. Specifically, when the start point and the end point are on the same side, the number of the straight paths is set to an even number, and when the start point and the end point are on different sides, the straight path It is convenient for route design if the number is configured to be set to an odd number.
  • traveling without work referred to as idle running or running with empty planting
  • traveling with work are duplicated for one straight route.
  • the positional relationship between the start point and the end point can be reversed.
  • the idle running is executed so that the start point and the end point are located on the same side.
  • Can be configured to This operation can be performed through the touch panel screen of the information terminal both during the creation of the travel route and during the actual work travel.
  • the automatically traveling work machine includes a machine body position calculation unit that calculates the machine body position using satellite positioning, a plurality of object detection sensors attached to the machine body and scanning around the machine body, and the above.
  • the sensor management unit includes an obstacle detection unit that detects an obstacle based on a detection signal from the object detection sensor and a sensor management unit that manages an operation check of the object detection sensor, and the sensor management unit satisfies a predetermined condition.
  • the effectiveness of the operation check flag is recorded. It has an effectiveness determination unit for determination.
  • the operation confirmation flag here is interpreted not only in the narrow sense of the flag used in programming, but also in the broad sense including data (information) indicating that the object detection sensor has been confirmed to operate. Will be done.
  • the function to detect obstacles is important for automatic driving, especially for unmanned automatic driving.
  • the sensor management unit collaborates with the operator to check whether the object detection sensor is malfunctioning due to the adhesion of mud or water droplets. It is necessary to perform the sensor check process at.
  • frequently performing sensor checks during automatic driving imposes a heavy burden on both the operator and the control system.
  • the sensor check execution unit performs the sensor check process only when a predetermined condition is satisfied, so that the burden is suppressed. Further, when the operation of all the object detection sensors is confirmed, an operation confirmation flag indicating that is recorded.
  • this operation confirmation flag As long as this operation confirmation flag is recorded, it is considered that the operating state of the object detection sensor is good, and automatic driving is performed. However, since the sensor check needs to be performed in a timely manner, the operation confirmation flag once recorded is invalidated at a predetermined timing.
  • the timing at which the recorded operation confirmation flag is invalidated, that is, how long the operation confirmation flag is valid is determined by the validity determination unit. Since the judgment conditions in the effectiveness judgment unit differ depending on the type of work, the environmental condition of the work, etc., they are set based on actual experience and experiments for each type of work machine.
  • an initial sensor check request command for requesting execution of the sensor check process is given to the sensor check execution unit when the working machine is started, and the initial sensor check request is made.
  • the operation confirmation flag is recorded (overwritten) and updated.
  • this work machine basically performs work at the work place by automatic running, it is preferable that a sensor check is performed before the work machine tries to enter the work place. From this, in one of the preferred embodiments of the present invention, when the machine reaches an area where the machine can enter the work site to be worked on in a state where the operation confirmation flag is invalid, the sensor check process is performed. A pre-work sensor check request command for requesting execution of the above is given to the sensor check execution unit.
  • the work machine When the work machine leaves the work area, it basically runs manually, so obstacle detection using the object detection sensor is unnecessary, so cancel the operation confirmation flag recorded at this timing and next It is preferable to wait for the opportunity of sensor check. However, considering that the work machine temporarily leaves the work area and then immediately returns to the work area to resume work, it is preferable to cancel the operation confirmation flag immediately after the work machine leaves the work area. do not have. From this, in one of the preferred embodiments of the present invention, when the work machine leaves the work site, after a predetermined time has elapsed from the time point, or when the work machine is separated from the work site by a predetermined distance or more. The operation confirmation flag is canceled.
  • This work machine basically shifts from automatic driving to manual driving when the work at the work site is completed. Therefore, it is preferable that the recorded operation confirmation flag is canceled in preparation for the next automatic driving at the end of the work.
  • the sensor check must be performed when the next work is resumed. In order to avoid such inconvenience, it is necessary to manage the sensor check by separating the complete work end and the temporary work end (that is, work interruption). From this, in one of the preferred embodiments of the present invention, when the work end command for work end is given, the operation confirmation flag is canceled, and when the work stop command for work stop is given, the work stop command is given. The operation confirmation flag is maintained.
  • the most reliable sensor check is performed by an operator (including an observer) by arranging a pseudo obstacle within the detection range of the object detection sensor. Since the sensor check is a collaborative work between the control system of the work machine and a human being, it is necessary for the operator to recognize the start of the sensor check. Further, since a plurality of object detection sensors are provided, the operator must grasp the processing result, identify any malfunctioning object detection sensor, and investigate the cause of the defect. Therefore, in one of the preferred embodiments of the present invention, the sensor check execution unit notifies the start of execution of the sensor check process and the processing result of the sensor check process through the notification device.
  • the work machine capable of automatic driving is equipped with a touch panel type graphic display for displaying the traveling route and the like. Therefore, it is preferable to use a graphic display as a notification device. In that case, it is convenient to have a display form in which the processing results of individual object detection sensors and the processing results of the entire object detection sensor can be grasped at a glance.
  • the notification device is a graphic display (for example, a touch panel), and the first visual symbol indicating the individual processing result of the object detection sensor and the second visual indicating that all the object detection sensors are good. The symbol and is displayed.
  • the operation confirmation flag will be invalid, but there is a possibility that automatic driving will be performed without the sensor check simply by notifying the operator of this. In order to avoid this, in one of the preferred embodiments of the present invention, if the operation confirmation flag is invalid, automatic driving is prohibited. Regardless of whether or not there is an object detection sensor that is actually malfunctioning, the reliability of automatic driving is improved by prohibiting automatic driving because the sensor check is not performed in a timely manner.
  • the sensor management unit is the sonar management unit
  • the sensor check execution unit is the sonar check execution unit
  • the travel route management system for a work machine capable of automatically traveling on a farm is a material supply side of a material whose work machine consumes a specific side consisting of one or more sides of the outer shape of the farm.
  • a supply side setting unit set as, a round-trip route creation unit that creates a round-trip route including a plurality of straight routes extending toward the material supply side, and the straight-ahead traveling toward the material supply side.
  • a replenishment control management unit that manages replenishment travel control for attracting the work machine to the material replenishment side from the end region of the route, the start region of the straight route traveling next to the route, or both regions.
  • the round-trip route is also referred to as an internal round-trip route.
  • Working machines such as rice transplanters, fertilizers, and chemical sprayers use the outer edge of the farm, for example, the side in contact with the farm road as the material supply side in order to replenish the materials to be administered to the farm. Approaches this material supply side.
  • the material is usually replenished in a posture in which the front end or the rear end of the machine is brought close to the material supply side.
  • the material supply side set by the supply side setting unit can be moved forward or backward from the traveling posture on the straight route based on the supply travel control, and is brought closer to the material supply side. Becomes easier.
  • the replenishment traveling control includes a pre-alignment mode in which the front end of the work machine is brought closer to the material replenishment side. , The transition running from the running straight path to the next straight path is stopped, the working machine is brought to the material supply side by straight running as it is, and after the material is replenished, the reverse turning back run is performed next. Head toward the straight route to be traveled.
  • the front-alignment mode when the front-alignment mode is set, the vehicle travels directly from the traveling straight route toward the material supply side and is brought to the material supply side, so that efficient material supply is performed. Is realized.
  • a temporary stop of the vehicle body as travel control information is assigned to the terminal region of the straight path traveling toward the material supply side.
  • the automatic running is interrupted and the time to consider whether to replenish the materials is worked. Can be given to a person.
  • the extension of the straight route to leave is extended to reach the material supply side as the target route for the automatic running.
  • Using a route is efficient because it is not necessary to calculate a special route. From this, in one of the preferred embodiments of the present invention, the approaching travel to the material supply side in the front approaching mode is performed by automatic traveling with an extension route extending from the straight route as a target route. ..
  • an extension route can be used as a guide route to support the manual run.
  • the replenishment traveling control includes a rear-rearrangement mode in which the rear end of the work machine is brought closer to the material replenishment side, and the replenishment mode. Then, after the transition running from the traveling straight path to the next traveling straight path is completed, the working machine is brought close to the material supply side by the reverse traveling as it is, and after the material is replenished, the next traveling by the forward traveling. Head toward the straight route. In this configuration, the rear end of the work machine reaches the material supply side by moving backward as it is in the attitude of the aircraft trying to travel on the next straight route, so that efficient material supply is realized.
  • the selection of the front approaching mode or the rear approaching mode depends on the type of material to be replenished.
  • the work machine is equipped with a mechanism for detecting the remaining amount of the replenishment material normally installed. Since it is possible to calculate a material shortage or a material shortage from the detected remaining amount of the replenishment material and the amount of material consumed per work run, it is possible to manage the replenishment timing of the replenishment material. Therefore, in one of the preferred embodiments of the present invention, a material supply management unit for determining the supply timing of the supply material based on the calculated remaining amount of the supply material is provided, and the type of material to be replenished can be selected.
  • the material supply management unit may also be used by the supply control management unit.
  • the work machine In the approaching run for replenishing materials, the work machine will head for the straight route as the destination after replenishing the materials. Even if the approaching driving is performed manually, it is possible to shift to the automatic driving when the straight route, which is the next traveling route, is captured. From this, in one of the preferred embodiments of the present invention, the replenishment travel control is performed manually by interrupting the automatic traveling, and when the next straight route is captured after replenishing the materials, the automatic traveling is performed automatically. Is restarted. This simplifies the transition from manual driving to automatic driving and reduces the burden on workers.
  • the replenishment running control can be remotely controlled using a remote controller.
  • the close-up running is performed manually using a remote controller. For this reason, even if the traveling using the reciprocating route or the like is an unmanned automatic traveling, the operator can manually perform the traveling by approaching from a position away from the working machine, for example, from a ridge, which is convenient.
  • the setting of the supply side and various settings in route creation are performed based on the operation input by the operator. It is convenient to use a graphic interface in order to facilitate the operator's operation input to such a work machine. From this, in one of the preferred embodiments of the present invention, the information terminal with a touch panel connected to the in-vehicle LAN of the working machine is provided with the supply side setting unit, the reciprocating route creation unit, and the supply control management unit. However, it is constructed so that it can be operated through the graphic user interface, and the selection of the material supply side and the content selection of the supply travel control are performed through the touch panel.
  • the work machine is a work machine that travels by the driving force output from the power source while performing the work, and the angle of the swash plate is set.
  • a stepless speed changer that shifts the driving force by being changed, a vehicle speed control tool that controls the angle of the swash plate, a swash plate angle detector that detects the angle of the swash plate, and the vehicle speed control tool. It is provided with an operation position detector for detecting the operation position of the above and an actuator for adjusting the angle of the swash plate according to the operation position detected by the operation position detector.
  • the actuator adjusts the angle of the swash plate of the continuously variable transmission according to the operating position of the vehicle speed operating tool detected by the operating position detector. Then, the angle of the swash plate is detected by the swash plate angle detector, the operation position of the vehicle speed control tool detected by the operation position detector is compared with the detected angle of the swash plate, and the operation position of the vehicle speed control tool is compared. It can be confirmed whether or not the angle of the swash plate is set, and whether or not the traveling vehicle speed is set according to the operation position of the vehicle speed control tool.
  • an accelerator lever that increases or decreases the number of rotations corresponding to the driving force output from the power source and an accelerator detector that detects the operating position of the accelerator lever may be provided.
  • the vehicle speed control tool is operated in the forward direction and the reverse direction with the neutral position in between, the operation path is cranked at the neutral position, the vehicle speed control tool is fixed to the lever holding portion, and the lever holding portion is a gear.
  • the vehicle speed control tool is only moved on a predetermined route, and it is not easy to accurately position the vehicle speed control tool at a desired position. Further, if the operating position of the vehicle speed control tool moves unintentionally, the proper traveling vehicle speed cannot be operated. As described above, by providing the neutral holding mechanism, it becomes easy to maintain the vehicle speed control tool in the neutral position. Further, by providing the holding mechanism, a certain resistance force can be given to move the operating position of the vehicle speed control tool. As a result, the feeling of operation for moving the operation position of the vehicle speed control tool is improved, and the vehicle speed control tool can be operated with high accuracy.
  • an information terminal may be provided in which the operating position of the vehicle speed operating tool is converted into the number of gears and displayed.
  • the driver can intuitively grasp the traveling vehicle speed and easily operate the traveling vehicle speed.
  • the work machine is a work machine that performs work travel by automatic travel along a predetermined travel route, and includes an automatic travel control unit that controls automatic travel, and the automatic travel control unit is provided.
  • the traveling control unit controls the deceleration start position so as to start decelerating the traveling vehicle speed by a predetermined distance from the end of the straight traveling when shifting from the straight traveling to the turning traveling, and the distance Is controlled so that the faster the traveling vehicle speed, the longer the vehicle.
  • Turning running is slower than straight running.
  • the acceleration of deceleration is steep, the field is roughened, or if the driver is on board, the driver feels uncomfortable.
  • By setting the deceleration start position farther according to the traveling vehicle speed it is possible to prevent the deceleration acceleration from becoming steep.
  • the automatic travel control unit may control the distance so that the faster the maximum vehicle speed, the longer the distance.
  • the traveling vehicle speed will be less than or equal to the maximum vehicle speed.
  • the automatic driving includes a manned automatic driving mode and an unmanned automatic driving mode, and the deceleration start position may be adjusted at the time of the manned automatic driving mode.
  • the driver In the unmanned automatic driving mode, the driver often does not board, whereas in the manned automatic driving mode, the driver is required to board. With the above configuration, it is possible to prevent the deceleration acceleration from becoming steep preferentially in the manned automatic driving mode in which the deceleration acceleration is required to be steeper than in the unmanned automatic driving mode. ..
  • the acceleration for deceleration of the traveling vehicle speed may be set.
  • the acceleration of deceleration that you feel is inappropriate differs depending on the work conditions, field conditions, and the driver on board. With the above configuration, it is possible to decelerate at an appropriate acceleration suitable for the situation.
  • the automatic driving control unit may notify that fact when starting deceleration.
  • the driver and the observer can grasp that the aircraft is decelerating and can contribute to appropriate operation.
  • a vehicle speed control tool for controlling the traveling vehicle speed is provided, and the turning vehicle speed at the time of turning is predetermined, and the automatic traveling control unit turns at the turning vehicle speed regardless of the operating position of the vehicle speed control tool. It may be controlled to run.
  • the work machine is a work machine that performs work while automatically traveling along a predetermined travel path, and is seated in a driver's seat and the driver's seat.
  • a seating sensor for detecting seating and an automatic driving control unit for controlling automatic driving are provided, and the automatic driving control unit performs a predetermined driving restriction when the seating sensor does not detect seating in automatic driving. To control.
  • the traveling restriction may be a control in which at least one of notification for prompting seating, deceleration of traveling vehicle speed, and stopping of traveling is performed when the seating sensor does not detect seating during automatic driving.
  • the traveling restriction may be a control that does not start automatic driving when the seating sensor does not detect seating at the start of automatic driving.
  • the automatic running control unit gives a predetermined notification when the seating sensor does not detect the seating during the automatic running. Control may be performed as it is.
  • the direction of travel will change, which may cause discomfort to the driver.
  • the driver can recognize in advance that the traveling direction changes, so that discomfort is suppressed.
  • the driver's seat may be configured to be rotatable, and wirings connected to the seating sensor may be arranged along the rotation fulcrum of the driver's seat.
  • the working machine is a working machine that travels by a driving force output from a power source while performing work, and operates the power source.
  • the sensor for detecting the charge amount of the battery, and the power source is performed, the charge amount of the battery becomes a predetermined number.
  • the sensor detects that the amount of charge is 1 or less it includes a charge control unit that continues the operation of the power source.
  • the charge control unit may stop the operation of the power source when the sensor detects that the charge amount of the battery becomes a second charge amount equal to or more than the predetermined first charge amount.
  • the power source can be appropriately stopped while sufficiently recovering the capacity of the battery.
  • the charge control unit may be stopped after the operation of the power source is continued for a predetermined time.
  • the power source can be appropriately stopped while sufficiently recovering the capacity of the battery.
  • the charge control unit may notify that the operation is continued when the operation of the power source is continued.
  • the operation of the power source continues contrary to the intention of the driver who performed the operation to stop the power source.
  • the driver can recognize that the operation of the power source is continued in order to charge the battery by being notified that the operation of the power source is continued due to insufficient capacity of the battery. You can understand that it is not a malfunction.
  • running and work may be stopped while the operation of the power source is continued.
  • the charge control unit may increase the rotation speed of the power source when continuing the operation of the power source.
  • vehicle speed control tool for controlling the traveling vehicle speed may be provided, and the vehicle speed control tool may be set to the neutral position when the operation of the power source is continued.
  • the vehicle speed control tool may be notified to be in the neutral position.
  • the work machine is a work machine that performs work running by automatic running, and detects obstacles in a predetermined area around the machine body as a detection range.
  • the obstacle detection device includes one or more front obstacle detection devices having a detection range in front of the machine, and one or more rear obstacle detection devices having a detection range in the rear of the machine. , Includes one or more lateral obstacle detection devices whose detection range is lateral to the side of the aircraft.
  • the number of the front obstacle detection devices may be the same as or less than the number of the rear obstacle detection devices.
  • the work machine is a work machine that performs work running by automatic running, and includes an obstacle detection device that detects an obstacle with a predetermined area around the machine body as a detection range.
  • an obstacle detection device a plurality of front obstacle detection devices having a detection range in front of the machine, one or more rear obstacle detection devices having a detection range in the rear of the machine, and a detection range in the lateral side of the machine 1
  • the number of the front obstacle detection devices may be larger than the number of the rear obstacle detection devices
  • the number of the front obstacle detection devices may be larger than the number of the lateral obstacle detection devices.
  • Work running is generally done by forward running.
  • a detection control device for controlling the obstacle detection device may be provided, and the detection control device may be arranged in the vicinity of the central portion of the machine body in a plan view.
  • the wiring connecting the obstacle detection device and the detection control device to be controlled can be efficiently arranged.
  • the detection control device for controlling the obstacle detection device is provided, the detection control device controls the obstacle detection device within a predetermined number, and the number of the obstacle detection devices is controlled by the detection control device. It may be an integral multiple of the number that can be created.
  • the obstacle detection device and the detection control device can be efficiently provided.
  • the detection control device that controls the front obstacle detection device is arranged in the front region of the airframe in a plan view
  • the detection control device that controls the rear obstacle detection device is a rear portion of the airframe in a plan view. It may be arranged in the area.
  • the lateral obstacle detection device and the rear obstacle detection device may be controlled by the common detection control device.
  • the detection control device can be efficiently provided.
  • the detection control device that controls the lateral obstacle detection device and the rear obstacle detection device may be arranged in an area surrounded by the lateral obstacle detection device and the rear obstacle detection device.
  • the detection control device can be efficiently provided, and the length of the wiring connecting the obstacle detection device and the detection control device can be shortened so that the detection control device can be efficiently arranged.
  • the detection control device that controls the post-obstacle detection device may be detachable from the outside of the machine body.
  • the detection control device that controls the rear obstacle detection device may be provided at a position away from the hydraulic hose arranged on the machine body.
  • a power source for traveling the aircraft and an engine frame supporting the power source are provided, four or more front obstacle detection devices are provided, and two of the front obstacle detection devices from the center of the aircraft are provided. , May be supported by a member extending from the engine frame.
  • a power source for traveling the aircraft and an engine bonnet in which the power source is housed may be provided, and at least one of the front obstacle detection devices may be supported by the engine bonnet.
  • the front obstacle detection device may be installed upward with respect to the horizontal direction of the airframe from the direction in which the rear obstacle detection device and the lateral obstacle detection device are installed.
  • the lateral obstacle detection device may be supported by a rear step provided in the rear region of the airframe.
  • the lateral obstacle detection device is supported in the vicinity of a spare seedling support frame on which a spare seedling storage device provided in the aircraft is supported, or a positioning unit that receives radio waves from a satellite to calculate the position of the aircraft. You may.
  • the rear obstacle detection device may be provided in a non-operating portion in the rear region of the airframe.
  • an obstacle detection device is installed in the moving part, it becomes difficult to properly detect the obstacle when the part is in operation. Further, in the rear part of the machine body, there are many working devices such as working devices. With the above configuration, obstacles behind the aircraft can be detected with high accuracy.
  • the post-obstacle detection device may be provided above the seedling stand provided on the machine body or above the mudguard cover provided on the chemical spraying device.
  • a plurality of the rear obstacle detection devices may be provided, and the rear obstacle detection devices may be provided outward from the front-rear direction of the aircraft.
  • the rear obstacle detection device may be provided in three or more side by side on the upper part of the seedling stand provided on the machine body, and each of the rear obstacle detection devices may be provided in the rear direction parallel to the front-rear direction of the machine body.
  • a plurality of the rear obstacle detection devices may be provided, and may be provided side by side in the left-right direction intersecting the front-back direction of the machine body with the drug spraying device provided on the machine body interposed therebetween.
  • the chemical spraying device is installed at a position protruding to the rear of the machine, which is an obstacle when securing the detection range of the rear obstacle detection device.
  • the detection range of the rear obstacle detection device provided across the drug spray device can complement each other's blind spots caused by the drug spray device, and the detection range for detecting obstacles behind the machine body can be easily set. Can be secured.
  • the obstacle detection device may be provided in an area above the step where the aircraft is provided.
  • the obstacle detection device may be provided at a position overlapping the steps provided on the machine body in a plan view.
  • the obstacle detection device is installed at a position where it protrudes from the machine, mud or the like tends to adhere, and sufficient obstacle detection may not be possible. With the above configuration, it is possible to prevent mud from adhering to the obstacle detection device, and to continuously detect obstacles during automatic driving.
  • the work machine is a work machine that performs work running by performing work while performing automatic running, and covers a predetermined area around the machine body.
  • the detection range includes an obstacle detection device that detects an obstacle and an automatic driving control unit that controls driving according to the detection result of the obstacle detecting device.
  • the automatic driving control unit travels at the start of automatic driving. Automatic driving is controlled including a start suppression mode in which whether or not the vehicle can be started is determined from the obstacle detection result, and an obstacle detection mode in which automatic driving is controlled according to the obstacle detection result during automatic driving. ..
  • the control state is divided into a start suppression mode in which control is performed at the start of automatic driving and an obstacle detection mode in which control is performed during automatic driving. Is appropriate. As a result, it is possible to appropriately control automatic driving according to the traveling state.
  • the obstacle detection device one or a plurality of front obstacle detection devices having a detection range in front of the machine, one or a plurality of rear obstacle detection devices having a detection range in the rear of the machine, and lateral sides of the machine are used. It may be provided with one or a plurality of lateral obstacle detection devices as a detection range.
  • the lateral obstacle detection device may include the vicinity of the boarding / alighting step that the driver passes when boarding in the detection range.
  • Drivers and the like generally board the aircraft using the boarding / alighting steps.
  • the driver or the like is trying to get on and off the aircraft at the time of starting the traveling, it is inappropriate to start the traveling.
  • the automatic traveling control unit may detect the obstacles in front of the direction in which the aircraft travels and on the lateral sides of the aircraft in the start suppression mode.
  • the automatic driving control unit includes an obstacle determination unit that determines whether or not the obstacle detected by the obstacle detection device is a muddy surface, and the automatic driving control unit is operated by the obstacle determination unit in the start suppression mode.
  • the obstacle determined to be a muddy surface may be recognized as not the obstacle and automatic driving may be controlled.
  • the automatic driving control unit includes an obstacle determination unit that determines whether or not the obstacle detected by the obstacle detection device is a moving person, and the automatic driving control unit determines only a moving person in the start suppression mode. It may be recognized as the obstacle and the automatic running may be controlled.
  • the most problematic obstacle is the moving person.
  • the start of running is appropriately controlled according to the obstacle, and the start of running can be started more appropriately.
  • the control unit may control automatic driving by using the front obstacle detection device when traveling forward, and may control automatic driving by using the rear obstacle detection device when traveling backward.
  • the obstacle detection device one or a plurality of lateral obstacle detection devices having a detection range on the lateral side of the machine body are provided, and the automatic driving control unit is in the obstacle detection mode during forward traveling and reverse traveling.
  • the automatic traveling may be controlled by using the lateral obstacle detection device.
  • Obstacles may approach the aircraft during automatic driving. Obstacles may approach from the side of the aircraft. With the above configuration, obstacles that hinder driving can be detected more reliably, and automatic driving can be continued more appropriately.
  • the traveling control unit may control automatic traveling by using all the obstacle detecting devices during forward traveling and reverse traveling in the obstacle detection mode.
  • the vehicle includes an obstacle determination unit that determines whether or not the obstacle detected by the obstacle detection device is approaching, and the automatic driving control unit approaches when traveling backward in the obstacle detection mode.
  • the automatic driving may be controlled based on the obstacle.
  • the obstacle detection device one or a plurality of front obstacle detection devices having a detection range in front of the machine, one or a plurality of rear obstacle detection devices having a detection range in the rear of the machine, and lateral sides of the machine are used. It is provided with one or a plurality of lateral obstacle detection devices as a detection range, and the detection range of the lateral obstacle detection device is narrower than the detection range of the front obstacle detection device and the detection range of the rear obstacle detection device. Is also good.
  • the obstacle detection device detects these devices as obstacles, it will hinder work driving. With the above configuration, the possibility of erroneously detecting these devices as obstacles can be suppressed, and appropriate work running can be performed.
  • the detection range of the obstacle detection device in the obstacle detection mode may be narrower than the detection range of the obstacle detection device in the start suppression mode.
  • the detection range of the obstacle detection device in the obstacle detection mode may be widened as the distance from the ridge increases.
  • the distance to the ridges provided on the outer periphery of the field constantly changes.
  • the ridge is detected as an obstacle.
  • the travel route is generated in consideration of the ridges. Therefore, even if the ridge is detected in relation to the length of the detection range of the obstacle, there should be no hindrance to the work running.
  • the possibility of detecting the ridge as an obstacle is reduced by optimizing the length of the detection range of the obstacle according to the distance from the ridge. As a result, the work running can be continued appropriately.
  • the obstacle detection device a plurality of front obstacle detection devices having a detection range in front of the aircraft are provided, and when turning, the front obstacle detection device in the obstacle detection mode is the front obstacle inside the turn.
  • the detection device may have a wider detection range.
  • the aircraft moves in the turning direction as it runs.
  • it is possible to more appropriately detect obstacles in front of the aircraft in the traveling direction, and more appropriately detect obstacles that hinder work traveling.
  • the obstacle detection device one or a plurality of rear obstacle detection devices having a detection range behind the machine body are provided, and the detection range of the front obstacle detection device is the front side of the spare seedling storage device provided in the machine body. It may be outside the locus drawn by the outermost end portion, and the detection range of the rear obstacle detection device may be outside the locus drawn by the outermost rear end portion of the sliding plate guard provided on the aircraft.
  • the maximum detection range can be secured while suppressing false detection.
  • the automatic running includes a reciprocating work run performed on the inner region of the field and a lap work run performed on the outer peripheral region of the field, and the lap work run includes the outermost work run and is said to be automatic.
  • the traveling control unit may control automatic traveling based on the obstacle during the reciprocating work traveling.
  • the automatic traveling control unit may control automatic traveling based on the obstacle even in the outermost working traveling in the obstacle detection mode.
  • the obstacle detection device does not control the automatic driving using the detection result, and when the automatic driving is started, the automatic driving using the detection result together with the notification is performed. Control may be initiated.
  • the control according to the detection result is not performed, and the control according to the detection result is performed from the time when the running is started. Then, when the control is started, a notification to that effect is given. As a result, the control operation is performed only when necessary, the automatic driving control unit operates efficiently, and the driver or the like can accurately recognize that the control is performed according to the detection result.
  • the automatic driving control unit may set the main transmission for controlling the traveling vehicle speed to the neutral position and maintain the engine speed.
  • the obstacle detection device may include at least one of a sonar sensor, a laser sensor, an image analysis device, and an analysis using a machine-learned trained model.
  • the working machine of the present invention has a self-propelled vehicle, a work device located behind the self-propelled vehicle, a control unit that controls automatic work traveling, and a control mode of the control unit outside the self-propelled vehicle.
  • the laminated light is provided on the outer peripheral portion of the self-propelled vehicle.
  • the working device has a seedling stand, a planting mechanism for taking out seedlings from the seedling stand and planting the taken out seedlings in a field, and spare seedlings arranged in a plurality of upper and lower stages on the self-propelled vehicle. It is preferable that the stacking lamp is provided at a position higher than the uppermost preliminary seedling loading platform among the upper and lower plurality of preliminary seedling loading platforms.
  • the uppermost spare seedling stand is generally provided at a high position, and the laminated light is located at a higher position than the uppermost spare seedling stand, so that the display of the laminated light is easier to see and the work equipment can be used. It is easier to know the driving situation and work situation.
  • the self-propelled vehicle is provided with a positioning unit that receives radio waves from satellites of the global navigation satellite system to acquire position information of the self-propelled vehicle, and the self-propelled vehicle is provided with a vehicle body vertical direction.
  • the positioning unit is supported by the upper end side portion of the support frame, and the laminated lamp is the lower end portion of the support frame lower than the upper end side portion.
  • the support frame is supported by a side portion, and the support frame is in a state in which the upper end side portion is lifted and swung with respect to the lower end side portion to position the positioning unit in an ascending use position, and the upper end side portion is said. It is preferable that the positioning unit can be changed to a state in which the positioning unit is positioned in the descending storage position by being swung downward with respect to the lower end side portion.
  • the laminated lamp is supported by the lower end side of the support frame and remains in the same posture as when used.
  • the same support frame is used for the support and the support of the positioning unit to simplify the support structure, but even if the positioning unit is stored at a lower position than when it is used, for example, it is difficult for car wash water or rainwater to enter the laminated light. Can be maintained.
  • the self-propelled vehicle is provided with an antenna for receiving a radio command signal from the remote control device, and the antenna is detachably supported on the upper end side portion.
  • the antenna when used is supported by the upper end side of the support frame that is swung up and down and is located at a high position, when the positioning unit is stored, the antenna is moved from the upper end side. It can be removed, for example, to prevent the antenna from sticking to the upper end side and descending to hit surrounding members.
  • the self-propelled vehicle is provided with a sonar sensor for detecting obstacles to the running of the self-propelled vehicle, a sonar control device for controlling the sonar sensor, the laminated lamp, the sonar control device, and the antenna. It is preferable that the receiving device linked with the above is provided on one of the lateral sides of the self-propelled vehicle.
  • the laminated light, the sonar control device, and the receiving device are located on one side of the self-propelled vehicle, so that, for example, when inspecting or repairing the laminated light, the sonar control device is inspected and the receiving device is inspected. It is easy to perform the inspection together.
  • a battery is provided on both side portions of the self-propelled vehicle on the side portion on which the laminated light, the sonar control device, and the receiving device are provided. ..
  • the wiring for supplying power from the battery to the laminated light, the sonar control device, and the receiving device can be shortened.
  • the self-propelled vehicle is provided with spare seedling stands arranged in a plurality of upper and lower stages, and the upper and lower multiple stages of spare seedling stands are supported by the support frame.
  • the same support frame is used for the support of the positioning unit and the support of the spare seedling stand, so the support structure of the positioning unit and the spare seedling stand can be simplified.
  • the work machine is a work machine that performs work running by automatic running, and includes a notification device for notifying a warning, and the notification device is automatically.
  • a warning is issued at least at least during reverse driving during driving, turning during automatic driving, and at the start of automatic driving.
  • the warning may be a voice warning.
  • the driver can easily notice the warning regardless of the driver's condition, and the driver is less likely to feel discomfort.
  • automatic driving includes manned automatic driving that requires the driver to board and unmanned automatic driving that does not require the driver to board.
  • the work running by the unmanned automatic running is started or restarted by operating the vehicle speed control tool at a position other than the neutral position, and the work running by the unmanned automatic running is a condition for starting or restarting when the vehicle speed control tool is in the neutral position. It may be.
  • the driver can easily operate the start of running during manned automatic running.
  • unmanned automatic driving automatically controls the start of driving, it is not necessary to operate the vehicle speed control tool, but when the vehicle speed control tool is operated to a position other than the neutral position and the automatic driving is canceled, At that moment, the aircraft starts running.
  • the vehicle speed control tool is operated to the neutral position during unmanned automatic driving, so that it is possible to prevent the aircraft from unintentionally traveling after the automatic driving is canceled.
  • the work running is equipped with a remote controller that can be remotely controlled from a position away from the aircraft, and an automatic travel start / stop switch that is installed on the aircraft to operate the start and stop of work travel by automatic driving, and is equipped with unmanned automatic driving.
  • the work running may be started or restarted only when the remote controller is operated, and in the case of manned automatic running, the work running may be started or restarted only when the automatic running start / stop switch is operated. ..
  • unmanned automatic driving it is not necessary for the driver to board, so it is appropriate to be able to give instructions to start driving from a position away from the aircraft using the remote control.
  • manned automatic driving since the driver is on board, it is appropriate that the aircraft is provided with an operating tool for instructing the start of driving. With the above configuration, it is possible to perform a work running start operation according to the necessity of the driver in the automatic running.
  • a work operation tool for operating the work device is provided, and the manned automatic driving requires a manual operation in which the movement operation of the vehicle speed operation tool and the operation of the work operation tool are performed with guidance by voice guidance.
  • the notification device provides voice guidance until the operation corresponding to the voice guidance is performed. You may notify.
  • the driver can easily grasp the necessary operation, erroneous operation in the predetermined manned automatic driving is suppressed, and the work driving can be performed efficiently.
  • a work operation tool for operating the work device and an information terminal for displaying information are provided, and in manned automatic driving, the movement operation of the vehicle speed operation tool and the operation of the work operation tool are performed manually with guidance.
  • the guidance is provided by a predetermined number of voice guidances. After being performed by the device, it may be performed by displaying it on the information terminal until the corresponding operation is performed.
  • guidance may be given to encourage the vehicle speed control tool to be operated from the neutral position in the traveling direction at the start and restart of the work running by manned automatic running.
  • the traveling may not be started.
  • a predetermined operation is required for manned automatic driving.
  • the operation of the aircraft in the change of direction is constant and can be performed in the flow of automatic driving. With the above configuration, work running can be continued continuously and smoothly.
  • the continuously variable transmission for adjusting the traveling vehicle speed is provided, and when it is necessary to move the vehicle speed control tool to the neutral position and the continuously variable transmission is not in the neutral position, the vehicle speed control tool is provided.
  • Guidance may be given to encourage the movement operation to the neutral position.
  • guidance to perform the operation according to the automatic driving may be notified until the operation according to the automatic driving is performed.
  • the work traveling is automatic traveling of the internal reciprocating route in the inner region of the work site, automatic traveling of the inner peripheral route of the outer peripheral region, and manned automatic traveling on each side of the outer peripheral route of the outer peripheral region.
  • a guidance start area is provided in the work area, and when the aircraft is stopped in the guidance start area, it is guided by manned automatic traveling to the start point of the internal round-trip route, and the start of automatic traveling is automatically started by the internal round-trip route.
  • the manned automatic driving in the guidance from the guidance start area is performed forward after the vehicle moves backward, guidance is given to encourage the vehicle speed control tool to be operated to the reverse position, and after the predetermined reverse travel is performed.
  • Manned automatic driving in the guidance from the guidance start area may be performed by providing guidance for urging the vehicle speed control tool to be operated to the forward position.
  • a work operating tool for operating the work device is provided, and it is necessary to operate the vehicle speed operating tool in the forward direction at the start of manned automatic traveling on the first side of the outer circuit path, and manned automatic traveling on other sides. It is not necessary to operate the vehicle speed operating tool at the start of the operation, and it may be necessary to operate the working operating tool in a non-operating state before turning between the sides.
  • the running is continued only by first operating the vehicle speed control tool, and it is only necessary to perform the operation of deactivating the work device, so that the work running can be continued with a simple operation. be able to.
  • the driver can select whether or not to perform the turning by automatic control, so that the automatic traveling suitable for the working state can be performed.
  • the work machine is a work machine that performs work running by automatic running, and is a vehicle speed control tool that controls the vehicle speed and a first vehicle speed control tool that displaces the vehicle speed control tool according to a running state. It includes an actuator and a clutch that switches the vehicle speed controller and the first actuator between a connected state and a disconnected state.
  • the vehicle speed controller is displaced to a forward position and a reverse position via a neutral position, and is in a neutral position. Then, the clutch is in the disengaged state.
  • a second actuator that displaces the vehicle speed control tool in the neutral position may be provided.
  • the vehicle speed control tool can be displaced between the forward position and the reverse position by the second actuator in a state where the connection between the vehicle speed control tool and the first actuator is disconnected, and the vehicle speed control tool can be displaced.
  • a notification device for notifying a warning may be provided, and when the vehicle speed control tool is displaced, the notification device may notify the operating status of the vehicle speed control tool.
  • vehicle speed control tool may be maintained in the forward position when moving backward due to a change of direction.
  • a brake used for decelerating the traveling vehicle speed is provided, and the vehicle speed controller may be displaced according to the operation of the brake.
  • the vehicle speed controller is displaced according to the traveling vehicle speed that changes according to the operation of the brake, and the driver can imagine the traveling vehicle speed from the position of the vehicle speed controller.
  • the working machine of the present invention includes a self-propelled vehicle, a driving unit provided in the self-propelled vehicle, a working device located behind the self-propelled vehicle, a control unit for controlling automatic work traveling, and the above.
  • a notification device for notifying the control executed by the control unit is provided, and the notification device is provided at a front upper portion of the operation unit.
  • the notification device since the notification device notifies the status of the automatic work running, the notification by the notification device is performed from the front upper part of the driving unit and is easy to know, so that the status of the automatic work running can be easily recognized. In addition, it is easy to take countermeasures such as changes to the controls to be performed.
  • a positioning unit is provided at a position in front of and above the driving unit to receive radio waves from satellites of the global navigation satellite system and acquire position information of the self-propelled vehicle, and the notification device is provided. It is preferable that the positioning unit is provided below the positioning unit so as to be covered from above.
  • the positioning unit is used as a covering member for the notification device, it is possible to inexpensively prevent the notification device from getting wet due to rainwater or car wash water.
  • a frame portion provided in a state extending in the lateral width direction of the vehicle body at a front upper portion of the driving portion, a mounting table supported by the frame portion and on which the positioning unit is mounted and fixed, and the above description.
  • a support member extending downward from the pedestal is provided, and it is preferable that the notification device is supported by the support member.
  • the notification device is positioned while the structure of the support member is simplified as compared with the case where the support member is directly supported by the frame portion. It can be located below the unit.
  • the driver's seat is provided with a driver's seat, and the lower end of the notification device is located above the upper end of the driver's seat.
  • the notification device does not hinder the ability to see ahead from the driver's seat and is easy to drive.
  • the driving unit is provided with a steering wheel, and the lower end of the notification device is located above the upper end of the steering wheel.
  • the notification device does not hinder the ability to see ahead from the driving unit and is easy to drive.
  • a driving portion having an engine and an engine bonnet is provided in the front side region of the self-propelled vehicle, and the lower end of the notification device is located above the upper end of the engine bonnet. Is suitable.
  • the notification device does not hinder the ability to see ahead from the driving unit and is easy to drive.
  • the notification device is a voice alarm generator, and it is preferable that the voice alarm generator is provided with the sounding unit facing the driving unit.
  • the working machine is a working machine that performs work running by automatic running
  • the automatic running is a manned automatic driving that requires the driver to board. It has driving and unmanned automatic driving that does not require the driver to board, and is equipped with a driver's seat in which the driver is seated and a seating sensor that detects that the driver is seated in the driver's seat. It is a condition for starting manned automatic driving that the seating sensor detects that the driver is seated in the driver's seat.
  • manned autonomous driving it is essential that the driver is on board. If the driver is on board the aircraft, it is appropriate that the driver is seated in the driver's seat. With the above configuration, manned automatic driving is started only when the driver is seated in the driver's seat, so that manned automatic driving is suppressed in an inappropriate state.
  • the warning device may notify the warning.
  • the vehicle is equipped with a notification device for notifying a warning, and in unmanned automatic driving, after the seating sensor detects that the driver is seated in the driver's seat, the driver is seated in the driver's seat.
  • the warning device notifies the warning, and then the unmanned automatic driving starts until the seating sensor detects that the driver is seated in the driver's seat.
  • the configuration may not be performed.
  • Unmanned autonomous driving does not require the driver to board, but it does not prevent the driver from boarding. Even in unmanned autonomous driving, it is appropriate for the driver to sit in the driver's seat when the driver is on board. According to the above configuration, after the seating sensor detects that the driver is boarding (seating), when the seating sensor does not detect that the driver is seated, the driver is boarding. Nevertheless, it can be inferred that he is not seated. Then, in such a case, by configuring the configuration so that the work driving is not started, it becomes possible to perform appropriate automatic driving while the driver is seated.
  • a warning may be displayed on the information terminal.
  • the seating sensor is provided with a notification device for notifying a warning and an information terminal for displaying information, and the seating sensor detects that the driver is seated in the driver's seat at the start of turning and reverse driving. If not, the warning device may notify the warning and the information terminal may display the warning.
  • the driving direction When switching to turning or reverse driving, the driving direction will be switched, and it is appropriate that the driver on board is seated.
  • the driver on board when switching to turning or reverse driving, if the driver on board is not seated, the driver can be urged to sit down, and the work driving can be performed in an inappropriate state. It is suppressed.
  • the traveling vehicle speed may be reduced.
  • the seating sensor may be a pressure sensor provided in the driver's seat.
  • the driver's seat has a rotatable configuration, and the wiring of the seating sensor may be arranged along the rotation axis of the driver's seat.
  • Wiring such as power supply and signal is connected to the seating sensor such as pressure sensor.
  • the seating sensor such as pressure sensor.
  • the working machine of the present invention includes a machine that works and travels in a field, a positioning unit that acquires position information of the machine based on a positioning signal of a navigation satellite, a supply device that supplies agricultural materials to the field, and the above.
  • a control unit capable of controlling the supply device based on the position information while the machine is running is provided, and the control unit is used when the work running is started from a preset start position. It is characterized in that the supply device is operated before the start, and when the work run is finished at a preset end position, the supply device is stopped before the end of the work run.
  • a start position and an end position are set in the field based on the position information.
  • the start position is the position where the supply of agricultural materials should be started
  • the end position is the position where the supply of agricultural materials should be ended.
  • the control unit adjusts the timings of starting and stopping the operation of the supply device, it is not necessary to attach a special valve mechanism or the like to the end portion of the supply device in the transport direction. It is advantageous in terms of cost as compared with a configuration in which a special valve mechanism or the like is attached. This further improves convenience in automatic work driving.
  • the supply device conveys a storage unit for storing agricultural materials, a feeding mechanism for feeding agricultural materials from the storage unit, and agricultural materials fed by the feeding mechanism, and discharges agricultural materials to a field.
  • the control unit has a hose, and the control unit operates the supply device so that the agricultural material conveyed along the hose starts to be discharged at the starting position, and the agricultural material conveyed along the hose is operated. It is preferable that the supply device is configured to stop so as to be exhausted at the end position.
  • the time lag from the start or stop of the operation of the supply device to the actual start or stop of the supply of agricultural materials to the field increases in proportion to the length of the hose.
  • a speed detection unit capable of detecting the speed of the machine body
  • the control unit is configured to be able to change the timing of operating or stopping the supply device based on the speed. ..
  • the timing at which the control unit operates or stops the supply device can be variably controlled according to the speed, so that the supply device may operate at high speed or low speed according to the speed of the aircraft.
  • the control unit can flexibly control the supply device.
  • control unit decelerates the airframe before operating or stopping the supply device when the speed is faster than a preset set speed.
  • the supply of agricultural materials may not start accurately at the start position, and the supply of agricultural materials may not end accurately at the end position.
  • the control unit decelerates the airframe before the supply device operates or stops, the supply of agricultural materials starts accurately at the start position and ends accurately at the end position.
  • control unit accelerates the airframe before operating or stopping the supply device when the speed is slower than a preset set speed.
  • control unit can output instructions to start and stop the operation of the supply device while the aircraft is running at a preset speed, so the supply device can be used for farming in the field. Materials can be supplied more accurately.
  • control unit runs the machine at the speed until the operation or stop of the supply device is started.
  • control unit can output instructions to start and stop the operation of the supply device while maintaining the speed of the aircraft, so the supply device can supply agricultural materials to the field more accurately. It becomes.
  • the control unit has a first time, which is the time until the airframe reaches the start position, and a time, which is the time until the airframe reaches the end position, based on the position information. 2 hours is calculated, and when the first time is equal to or less than a preset threshold value, the supply device is operated, and when the second time is equal to or less than a preset threshold value, the supply device is operated. It is preferable that it is configured to stop.
  • the first time is calculated as the time until the aircraft reaches the start position
  • the second time is calculated as the time until the aircraft reaches the end position.
  • the control unit can manage the timing of starting the operation of the supply device in the first time and the timing of stopping the operation of the supply device in the second time.
  • the supply device can supply agricultural materials to the field with higher accuracy.
  • the control unit has a first distance, which is the distance until the aircraft reaches the start position, and a distance, which is the distance until the aircraft reaches the end position, based on the position information.
  • the two distances are calculated, and when the first distance is equal to or less than a preset threshold value, the supply device is operated, and when the second distance is equal to or less than a preset threshold value, the supply device is operated. It is preferable that it is configured to stop.
  • the first distance is calculated as the distance until the aircraft reaches the start position
  • the second distance is calculated as the distance until the aircraft reaches the end position.
  • the control unit can manage the position where the operation of the supply device is started at the first distance, and can manage the position where the operation of the supply device is stopped at the second distance.
  • the supply device can supply agricultural materials to the field with higher accuracy.
  • a working device capable of planting seedlings for each row in a field
  • the control unit interlocks with the row in which the working device sows seedlings, and the supply device is provided for each row. It is preferable that it is configured to operate or stop.
  • the work device is linked to the row for planting seedlings, and the supply device can operate for each row. Therefore, the supply device depends on the position where the seedlings are actually planted. Agricultural materials can be supplied accurately.
  • the "seedling” includes seeds before germination and seedlings after germination.
  • planting is a general term for the work of sowing seeds before germination in a field and transplanting seedlings after germination to a field.
  • the feature of the present invention is a work machine capable of automatically traveling, a work device for performing work in a paddy field, and a work clutch for switching the drive state of the work device by turning on / off the power transmission from the engine.
  • a clutch control unit that controls the on / off state of the work clutch and a vehicle speed control unit that controls the vehicle speed are provided, and the clutch control unit executes switching control that is a control for switching the on / off state of the work clutch.
  • the vehicle speed control unit executes deceleration control, which is a control for lowering the vehicle speed, before the on / off state of the work clutch is switched.
  • the on / off state of the work clutch is switched in a state where the vehicle speed is relatively low. Therefore, when the work clutch is controlled so that the on / off state of the work clutch is switched at a predetermined position, the actual position of the machine at the time when the on / off state of the work clutch is switched is from the predetermined position. Hard to slip.
  • the accuracy of the position where the driving state of the working device is switched is good. As a result, it is possible to further improve the convenience in the automatic work running of the work machine.
  • the work device is a planting system work device that performs seedling planting work or sowing work along a predetermined row direction
  • the work clutch is a work start and work by the work device. It is preferable that the clutch is configured so that the stop can be selected for each predetermined number of rows.
  • the work device is a planting system work device that performs seedling planting work or sowing work along a predetermined row direction, and when the work clutch is in the engaged state, the work.
  • the work device is stopped.
  • the vehicle speed control unit performs speed-up control which is a control for increasing the vehicle speed. It is suitable to carry out.
  • the first point which is the switching point and the second point which is the switching point are located on the traveling path of the aircraft, and the aircraft is located at the first point.
  • the vehicle speed control unit may perform the vehicle speed control unit. It is preferable that the speed-up control is not executed from the time when the aircraft passes through the first point until it reaches the second point.
  • Another feature of the present invention is a working machine capable of automatically traveling, which controls the driving state of the seedling planting device for performing seedling planting work and the seedling planting device by turning on / off the power transmission from the engine.
  • a planting clutch for switching, a clutch control unit for controlling the on / off state of the planting clutch, and an elevating control unit for controlling the elevating / lowering of the seedling planting device are provided, and the planting clutch is in the on / off state from the off state.
  • the driving of the seedling planting device is started by switching to, and the driving of the seedling planting device is stopped by switching the planting clutch from the on state to the off state.
  • the elevating control unit lowers the seedling planting device when the driving of the seedling planting device is started, and raises the seedling planting device when the driving of the seedling planting device is stopped.
  • the elevating control unit is configured to plant seedlings while the aircraft travels a predetermined distance from the aircraft position at the time when the planting clutch is switched from the on state to the off state by the clutch control unit. The purpose is to keep the device down.
  • the seedling planting device is maintained in the lowered state while the aircraft travels a predetermined distance. Therefore, as described above, it is easy to avoid a situation in which the seedlings that were in the state immediately before planting are not planted and fall off from the seedling planting device. Therefore, it is easy to avoid a situation in which seedlings for planting are wasted. As a result, it is possible to further improve the convenience in the automatic work running of the work machine.
  • the predetermined distance is equal to or greater than the seedling planting interval along the traveling direction of the machine body.
  • the seedling planting device is equipped with a rotary planting mechanism.
  • the planting mechanism is configured to stop in a predetermined stop posture when the drive is stopped. Therefore, when the planting clutch is switched from the on state to the off state while the planting mechanism is being driven, the planting mechanism is in a predetermined stop posture from the time when the planting clutch is switched from the on state to the off state. Until, the planting mechanism will continue to drive.
  • the length of time from the time when the planting clutch is switched from the on state to the off state until the planting mechanism is in the predetermined stop posture is the time when the planting clutch is switched from the on state to the off state. It depends on the posture of the planting mechanism. The length of this time, in the longest case, is equal to the length of time it takes for the aircraft to travel the equivalent distance between the stocks.
  • the interval between stocks is the planting interval of seedlings along the traveling direction of the aircraft.
  • the seedling planting device is in a lowered state from the time when the planting clutch is switched from the on state to the off state until the aircraft finishes traveling a distance corresponding to the distance between the plants. Be maintained. During this period, the planting mechanism is in a predetermined stop posture. This makes it easy for the planting mechanism to reliably stop while the seedling planting device is maintained in a lowered state.
  • the feature of the present invention is a hydraulic type traveling device driven by power from the engine and a swash plate whose angle can be changed, and the power from the engine is changed and transmitted to the traveling device side.
  • a stepless speed changer a brake device that brakes the traveling device, a brake pedal that is configured to be able to depress from an initial position to a maximum depressing position, and a brake pedal that brakes the brake device, and detects that the brake pedal is depressed.
  • the brake detection unit includes a brake detection unit for controlling the stepless speed change device, and the control unit detects that the brake pedal has been depressed by the brake detection unit. The purpose is to start returning the swash plate to the neutral position before reaching the maximum stepping position.
  • the swash plate when the brake pedal is depressed, the swash plate begins to return to the neutral position before the brake pedal reaches the maximum depression position. As a result, it is possible to reduce the load applied to each part such as the brake when the brake pedal is depressed. That is, according to this feature configuration, it is possible to further improve the convenience in automatic work running in the work machine.
  • the brake detection unit has a depression sensor that detects that the brake pedal has been depressed to an intermediate position located between the initial position and the maximum depression position
  • the control unit has a depression sensor.
  • the depression sensor detects that the brake pedal has been depressed to the intermediate position, it is preferable to start returning the swash plate to the neutral position.
  • the swash plate does not start to return to the neutral position unless the brake pedal is depressed halfway, thus preventing malfunction of the swash plate due to erroneous detection of the brake pedal.
  • the brake pedal is depressed to a position higher than the middle position, the load applied to each part such as the brake can be reduced.
  • the brake detection unit has a stepping end sensor that detects that the brake pedal has been depressed to the maximum depression position, and the control unit has the brake pedal depressed to the intermediate position.
  • the depression sensor detects that the brake pedal has been depressed to the maximum depression position
  • the swash plate begins to be returned to the neutral position
  • the depression end sensor detects that the brake pedal has been depressed to the maximum depression position
  • the swash plate is pressed. It is preferable to finish returning to the neutral position.
  • the swash plate returns to the neutral position while the brake pedal is depressed from the middle position to the maximum depression position.
  • the brake detection unit is located between the stepping start sensor that detects that the brake pedal is depressed from the initial position and the brake pedal between the initial position and the maximum depression position.
  • the control unit has a stepping sensor that detects that the brake pedal has been stepped on to an intermediate position, and when the stepping start sensor detects that the brake pedal has been stepped on from the initial position, the control unit presses the swash plate. When it starts to return to the neutral position and the depression sensor detects that the brake pedal has been depressed to the intermediate position, it is preferable to finish returning the swash plate to the neutral position.
  • the swash plate returns to the neutral position while the brake pedal is depressed from the initial position to the intermediate position.
  • the load applied to each part such as the brake when the brake pedal is depressed from a relatively early stage when the degree of depression of the brake pedal is less than or equal to the intermediate position.
  • the brake detection unit has a depression amount sensor that detects the depression amount of the brake pedal, and the control unit increases the depression amount of the brake pedal detected by the depression amount sensor. Therefore, it is preferable to return the swash plate to the neutral position side.
  • the swash plate returns to the neutral position side as the amount of depression of the brake pedal detected by the depression amount sensor increases.
  • the load applied to each part such as the brake when the brake pedal is depressed in a form suitable for the braking force of the brake device.
  • a starting operation tool for starting the engine a neutral sensor for detecting that the shifting position of the stepless speed changer is in the neutral position, and the control unit for controlling the engine are provided.
  • the control unit detects that the brake pedal has been depressed to the maximum depression position by the brake detecting unit, and the stepless transmission device. It is preferable to start the engine based on the starting operation of the starting operation tool when the neutral sensor detects that the shifting position of the engine is the neutral position.
  • the engine can be started only when the traveling device is braked by the braking device and the power from the continuously variable transmission is not transmitted to the traveling device. As a result, the engine can be started in a stable state of the airframe.
  • a notification device for notifying that the engine will not be started.
  • the notification device if the engine is not started, the notification device will notify that the engine will not be started. This makes it possible to ensure that the driver is aware that the engine will not start.
  • control unit estimates the amount of wear of the brake device based on the travel information when the brake device brakes the traveling device.
  • a correlation is recognized between the traveling information when the braking device brakes the traveling device and the amount of wear of the braking device. According to this feature configuration, the amount of wear of the braking device can be estimated with high accuracy.
  • front direction of arrow F shown in FIG. 1
  • rear direction of arrow B shown in FIG. 1
  • left-right direction or the lateral direction is the aircraft crossing direction (aircraft width direction) orthogonal to the aircraft front-rear direction, that is, "left" (direction of arrow L shown in FIG. 2) and “right” (arrow R shown in FIG. 2).
  • Direction shall mean the left and right directions of the aircraft, respectively.
  • the rice transplanter is a passenger type and has a four-wheel drive type body.
  • the machine body 1 includes a parallel quadruple link type link mechanism 13 oscillatingly connected to the rear portion of the machine body 1, a hydraulic lifting link 13a for swinging the link mechanism 13, and a rear end region of the link mechanism 13.
  • the seedling planting device 3 is rotatably connected to the seedling planting device 3, the fertilizer application device 4 installed from the rear end region of the machine body 1 to the seedling planting device 3, and the rear end region of the seedling planting device 3.
  • a chemical spraying device 18 and the like are provided.
  • the seedling planting device 3, the fertilizer application device 4, and the chemical spraying device 18 are examples of working devices.
  • the airframe 1 includes wheels 12, an engine 2 (corresponding to a "power source"), and a hydraulic continuously variable transmission 9 as a main transmission as a mechanism for traveling.
  • the continuously variable transmission 9 is, for example, an HST (Hydro-Static Transmission), and shifts the driving force (rotation speed) output from the engine 2 by adjusting the angles of the motor swash plate and the pump swash plate.
  • the wheels 12 have left and right front wheels 12A that can be steered and left and right rear wheels 12B that cannot be steered.
  • the engine 2 and the continuously variable transmission 9 are mounted on the front portion of the airframe 1. The power from the engine 2 is supplied to the front wheels 12A, the rear wheels 12B, the working device, and the like via the continuously variable transmission 9 and the like.
  • the seedling planting device 3 is configured as an 8-row planting type as an example.
  • the seedling planting device 3 includes a seedling stand 21, a planting mechanism 22 for eight rows, and the like.
  • the seedling planting device 3 can be changed to a type such as 2-row planting, 4-row planting, 6-row planting, etc. by controlling each row clutch (not shown).
  • the seedling pedestal 21 is a pedestal on which eight mat-shaped seedlings are placed.
  • the seedling stand 21 reciprocates in the left-right direction with a constant stroke corresponding to the left-right width of the mat-shaped seedling, and the vertical feed mechanism 23 is placed on the seedling stand 21 each time the seedling stand 21 reaches the left and right stroke ends.
  • Each mat-shaped seedling is vertically fed at a predetermined pitch toward the lower end of the seedling stand 21.
  • the eight planting mechanisms 22 are rotary type and are arranged in the left-right direction at regular intervals corresponding to the planting rows. Then, in each planting mechanism 22, the driving force is transmitted from the engine 2 by shifting the planting clutch (see C5 in FIG. 15 described later) to the transmission state, and each mat placed on the seedling loading table 21.
  • seedling also called planted seedling
  • seedlings can be taken out from the mat-shaped seedlings placed on the seedling stand 21 and planted in the mud portion of the paddy field.
  • the fertilizer application device 4 includes a horizontally long hopper 25, a feeding mechanism 26, an electric blower 27, a plurality of fertilizer hoses 28, and a groove making device 29 provided for each row. ..
  • the hopper 25 stores granular or powdery fertilizer.
  • the feeding mechanism 26 is operated by power transmitted from a motor (not shown), and feeds two rows of fertilizer from the hopper 25 in predetermined amounts.
  • the blower 27 is operated by electric power from the battery 73 mounted on the machine body 1, and generates a transport wind for transporting the fertilizer delivered by each feeding mechanism 26 toward the mud surface of the field.
  • the fertilizer application device 4 can switch between an operating state in which a predetermined amount of fertilizer stored in the hopper 25 is supplied to the field and a non-operating state in which the supply is stopped by an intermittent operation of the blower 27 or the like.
  • Each fertilizer hose 28 guides the fertilizer transported by the transport wind to each groove making device 29.
  • Each groover 29 is deployed on each leveling float 15. Then, each groove-growing device 29 moves up and down together with each leveling float 15 to form a fertilizer-applying groove in the mud portion of the paddy field and guide the fertilizer into the fertilizer-applying groove during the work running when each leveling float 15 touches the ground.
  • the airframe 1 includes a driving unit 14 in the rear region.
  • the driver unit 14 controls the steering wheel 10 for steering the front wheels, the main speed change lever 7A (corresponding to the "vehicle speed control tool") that adjusts the vehicle speed by shifting the speed of the continuously variable transmission 9, and the speed change operation of the auxiliary transmission.
  • Auxiliary speed change lever 7B (corresponding to “vehicle speed control tool"), work operation lever 11 (corresponding to “work control tool”) that enables raising and lowering operation of the seedling planting device 3 and switching of the operating state, etc.
  • Information terminal 5 having a touch panel for displaying (notifying) the information of the above and notifying (outputting) to the operator and receiving input of various information, a driver's seat 16 for the operator (driver / worker), and the like are provided. .. Further, in front of the driving unit 14, a spare seedling storage device 17A for accommodating spare seedlings is supported by the spare seedling support frame 17.
  • the steering wheel 10 is connected to the front wheels 12A via a steering mechanism (not shown), and the steering angle of the front wheels 12A is adjusted through the rotation operation of the steering wheel 10.
  • the rice transplanter in the present embodiment can selectively perform manual traveling and automatic traveling.
  • Manual running and automatic running are selected by switching the automatic / manual changeover switch 7C.
  • the manual running the driver manually operates the operating tools such as the steering wheel 10, the main shift lever 7A, the auxiliary shift lever 7B, and the work operation lever 11 to perform the work run.
  • automatic driving the rice transplanter automatically controls driving and working along a preset traveling route. Further, the automatic driving can be performed as a manned automatic driving that requires the driver's boarding (manned automatic driving mode) and an unmanned automatic driving that does not require the driver's boarding (unmanned automatic driving mode).
  • manned automatic driving the rice transplanter automatically controls other driving and operations associated with the work while the driver performs some operations according to the guidance provided by the rice transplanter.
  • unmanned autonomous driving it is not necessary for the driver to board, but the driver may be on board during unmanned automatic driving.
  • the driver performs an automatic driving start operation, for example, a start operation by a remote controller 90 (see FIG. 33) described later, so that the work driving is automatically controlled and the work driving is set in advance. Is automatically controlled.
  • the manned automatic mode in which manned automatic driving is performed and the unmanned automatic mode in which unmanned automatic driving is performed are set by using the information terminal 5.
  • the driver When the rice transplanter performs the planting work, the driver first manually runs the rice transplanter along the outer circumference of the field without performing the work. By this outer peripheral running, the outer peripheral shape (field map) of the field is generated, and the field is divided into the outer peripheral region OA and the inner region IA. At this time, the entrance / exit E for the rice transplanter to enter the field is set, and one side or a plurality of designated sides of the outer periphery of the field puts mat-like seedlings, fertilizers, chemicals, fuel, etc. on the rice transplanter. It is set as a seedling supply side SL for replenishment.
  • the travel route for the rice transplanter to carry out the work is set.
  • an internal reciprocating path IPL connecting a plurality of paths substantially parallel to one side of the field with a swirling path is generated.
  • the internal round-trip route IPL is a travel route that travels all over the entire internal region IA from the start point S to the end point G.
  • the guidance startable area GA is generated in the vicinity of the entrance / exit E. By stopping the rice transplanter in the guidance startable area GA, the rice transplanter can automatically travel to the start point S of the internal round-trip route IPL.
  • a dedicated travel route is set for the start point guidance performed from the guidance startable area GA, but a plurality of these travel routes may be set. Depending on the shape of the field, it may be difficult to guide the starting point from the stop position. By setting a plurality of travel routes, it is preferable that the starting point is appropriately guided regardless of the stop position.
  • an inner peripheral route IRL and an outer peripheral route ORL which orbit the outer peripheral region OA along the outer peripheral region of the field.
  • the entire work travel of the outer peripheral region OA is performed.
  • the movement to the work travel start position of the inner circuit route IRL is performed by traveling on a separately set travel route.
  • a travel route including a route parallel to any one side of the field may be provided as a travel route for moving from the end point of the internal round-trip route IPL to the start point of the inner circuit route IRL.
  • the rice transplanter In the case of automatic driving, the rice transplanter first invades the field from the entrance / exit E, moves to the guidance startable area GA, and stops in the state where the traveling route is generated in this way.
  • the rice transplanter moves backward once and then moves to the start point S (start point guidance), and automatically of the internal round-trip route IPL of the internal area IA until the end point G is reached.
  • the run is done.
  • the traveling vehicle speed in unmanned automatic driving is controlled according to the maximum speed of the traveling vehicle speed set in advance.
  • the work run of the outer region OA is performed.
  • the rice transplanter is manually moved to the start point of the inner circuit route IRL, and then the rice transplanter is subjected to the work operation of the inner circuit route IRL by unmanned automatic traveling.
  • the rice transplanter is manually moved to the start point of the outer orbital route ORL, and then the work traveling of the outer orbital route ORL is performed by manned automatic traveling (orbiting work traveling).
  • manned automatic driving automatic driving is performed along a traveling route at a manually operated traveling vehicle speed, and the working device is manually operated according to guidance (driving assist).
  • the machine body 1 is automatically temporarily stopped at a predetermined position, and when the necessary work device is manually operated according to the guidance, the turning running is automatically performed.
  • the internal round-trip route IPL and the inner circuit route IRL are not limited to unmanned automatic traveling, and work traveling may be performed by manned automatic traveling or manual traveling.
  • the outer circuit path ORL is not limited to manned automatic traveling, and work traveling may be performed by manual traveling, or work traveling may be performed by unmanned automatic traveling.
  • the movement from the end point G of the internal round-trip route IPL to the inner circuit route IRL is not limited to manual traveling, and may be performed by manned or unmanned automatic traveling.
  • the movement from the end point of the inner circuit route IRL to the outer circuit route ORL is not limited to manual driving, and may be performed by manned or unmanned automatic driving.
  • the driver is on board and the main shift lever 7A is in the neutral position, which are the conditions for starting automatic driving.
  • the main shift lever 7A is moved in the traveling direction in a state where the start condition is satisfied, automatic traveling is started.
  • the manned automatic traveling is performed during the work traveling on the outer circuit route ORL, but may be performed on other traveling routes.
  • the raising and lowering of the seedling planting device 3 is performed by automatic control.
  • the raising and lowering of the seedling planting device 3 is performed by automatic control.
  • the seedling planting device 3 is lowered by a manual operation. Specifically, when the machine body 1 reaches the turning position of the outer circuit path ORL, the seedling planting device 3 is automatically controlled and raised. When the turning is completed in that state, the machine body 1 is stopped, and the seedling planting device 3 is lowered by a manual operation to continue the work running by the automatic running. Obstacles are more likely to be present in the outer orbital route ORL than in other travel routes. In order to carry out smooth work running, the seedling planting device 3 is lowered by a manual operation after confirming that there are no obstacles or the like in the work running on the outer circuit path ORL.
  • the automatic running is started by operating the remote controller 90, and the work running is performed by the automatic control on the preset running route.
  • the unmanned automatic traveling can be performed during the working traveling on the internal round-trip route IPL and the inner circuit route IRL. Even in unmanned automatic traveling, the seedling planting device 3 is raised and lowered by automatic control.
  • the control unit 30 which forms the core of the control system of the rice transplanter, controls the traveling of the rice transplanter and controls the operation of various work devices 1C.
  • the control unit 30 controls according to the operation of various operating tools 1B performed by the driver during manual driving, and controls according to the position of the own vehicle while acquiring the position of the own vehicle during automatic driving. conduct.
  • the control unit 30 including the automatic traveling microcomputer 6 and the like detects the positioning unit 8 for calculating the position of the own vehicle, the information terminal 5 for performing various settings and operations and displaying various information, and various states of the rice transplanter. It is connected to a traveling device 1D including a sensor group 1A, various operating tools 1B, various working devices 1C, front wheels 12A related to steering, and a continuously variable transmission 9.
  • the mode changeover switch 7E which is one of the operating tools 1B, selects one of a manual driving mode for manual driving, a manned automatic driving mode for manned automatic driving, and an unmanned automatic driving mode for unmanned automatic driving. It is a switch for.
  • the positioning unit 8 outputs positioning data for calculating the position and orientation of the aircraft 1.
  • the positioning unit 8 includes a satellite positioning module 8A that receives radio waves from satellites of the Global Navigation Satellite System (GNSS) and an inertial measurement unit 8B that detects the tilt and acceleration of the three axes of the aircraft 1.
  • GNSS Global Navigation Satellite System
  • control unit 30 controls the traveling device 1D according to the operation of the operating tool 1B and the setting state of the information terminal 5, and controls the traveling by controlling the vehicle speed and the steering amount. Further, the control unit 30 controls the operation of the work device 1C according to the operation of the operation tool 1B and the setting state of the information terminal 5.
  • the control unit 30 calculates the map coordinates (own vehicle position) of the aircraft 1 based on the satellite positioning data sequentially sent from the positioning unit 8. Further, the control unit 30 acquires the field map and sets the traveling route according to the setting and operation of the field map and the information terminal 5. At the same time, the control unit 30 determines the operation of the work device 1C according to the position in the traveling path. Then, the control unit 30 calculates the traveling position in the traveling path based on the own vehicle position, and controls the traveling device 1D and the working device 1C according to the traveling position in the traveling path and the set state of the information terminal 5. .. In this way, the control unit 30 controls the work traveling in the automatic traveling mode.
  • control unit 30 reduces the vehicle speed in the manned automatic driving mode as compared with the unmanned automatic driving mode, and controls so that acceleration / deceleration is performed slowly. As a result, the work can be efficiently performed in the unmanned automatic driving mode, and the riding comfort of the driver can be prevented from being impaired in the manned automatic driving mode.
  • the control unit 30 can have an arbitrary configuration as long as the above functions can be realized, and may be composed of a plurality of functional blocks. Further, a part or all of the functions of the control unit 30 may be configured by software.
  • the software-related program is stored in an arbitrary storage unit, and is executed by a processor such as an ECU or CPU included in the control unit 30, or a processor provided separately.
  • the angle of the swash plate is adjusted as the main speed change lever 7A is operated, and the forward / backward movement is switched and the traveling vehicle speed is adjusted.
  • the forward operation area and the reverse operation area are arranged linearly or in a crank shape with the neutral position in between.
  • the operating position of the main speed change lever 7A is detected by an operating position detector such as a potentiometer 40.
  • the lower end of the main speed change lever 7A is fixed to the lever holding portion 42A.
  • the potentiometer 40 is supported by a shaft cover or the like that protects the steering shaft (not shown).
  • the potentiometer 40 includes a shaft 40A.
  • the gear 42 is supported in a configuration capable of swinging along a shaft 41 held by the machine body 1. The gear 42 swings around the shaft 41 according to the operating position of the main speed change lever 7A.
  • the rotation transmission unit 40B is fixed to the shaft 40A of the potentiometer 40, and the shaft 40A rotates as the rotation transmission unit 40B rotates.
  • a pin 40C is provided at the other end of the rotation transmission portion 40B.
  • the gear 42 includes a rotation transmission unit 42B.
  • a hole 42C is provided at the tip of the rotation transmission portion 42B.
  • the rotation transmission unit 40B is arranged so that the pin 40C penetrates the hole 42C.
  • a lever guide 43 that defines the operating range of the main shifting lever 7A is supported by the power steering unit 44.
  • the lever guide 43 is provided with a hole 43B having a shape that defines the operating range of the main speed change lever 7A.
  • a rod 43A is fixed to the lever holding portion 42A. The rod 43A penetrates the hole 43B.
  • a plurality of notches 42H arranged along the swing direction of the gear 42 are formed on the outer peripheral edge of one end of the gear 42.
  • the notch 42H is formed in both the swing directions of the gear 42, sandwiching the one that engages with the holding pin 42I when the main speed change lever 7A is operated to the neutral position.
  • These notches 42H engage with the holding pin 42I when the main speed change lever 7A is located on the forward side and engage with the holding pin 42I when the main speed change lever 7A is located on the reverse side, respectively.
  • the notch 42H is arranged side by side with the one corresponding to the neutral position and the one corresponding to the forward operation area and the one corresponding to the reverse operation area side by side.
  • the driver who operates the main speed change lever 7A can feel a certain response depending on the operation position. This serves as a guide when the driver operates the main shift lever 7A, and the operability of the main shift lever 7A is improved.
  • the driver has recognized the traveling vehicle speed by the number of stages of the main speed change lever 7A.
  • the number of gears is expressed as the number of gears, for example, 1st gear, 2nd gear, and so on.
  • the continuously variable transmission 9 since the continuously variable transmission 9 is adopted, the concept of the number of stages does not exist, but the driver can recognize the number of stages in a pseudo manner from the presence or absence of the above-mentioned response, and the conventional operation. It is harder to feel a sense of discomfort compared to sex.
  • the notch 42H corresponding to the neutral position may be formed with a wider opening width than the other notches 42H. Even if the neutral position of the main shift lever 7A deviates slightly due to the assembly or deterioration of use of the main shift lever 7A, the neutral position can be defined with a certain width, and the operability of the main shift lever 7A is improved. do.
  • a friction holding mechanism 42D (corresponding to a "holding mechanism") or a neutral holding mechanism 42E may be provided.
  • the friction holding mechanism 42D is provided between the shaft 40A and the gear 42 around the shaft 40A, and the frictional force causes resistance when the gear 42 swings with respect to the shaft 40A.
  • the friction holding mechanism 42D generates an appropriate resistance when operating the main speed change lever 7A, and makes it easy to operate the main speed change lever 7A to a desired operation position.
  • the friction holding mechanism 42D is not limited to such a configuration, and any configuration can be used as long as it can provide resistance to the movement of the operating position of the main shifting lever 7A to the extent that the operability of the main shifting lever 7A can be ensured. can do.
  • the neutral holding mechanism 42E includes a rod 42F fixed to the gear 42 and a torsion coil spring 42G through which the rod 42F is inserted.
  • the torsion coil spring 42G is provided so that one end is in contact with the gear 42 and the other end is in contact with the side portion of the lever holding portion 42A.
  • the lever holding portion 42A is urged in the direction intersecting the moving direction).
  • the hole 43B of the lever guide 43 is formed in a crank shape, for example, in order to operate the main shift lever 7A from the neutral position to the forward position, the main shift lever 7A moves from the neutral position to the crank. After being operated in the lateral direction (the direction in which the gear 42 intersects the swinging direction) along the line, it is necessary to move to the forward position.
  • the main shift lever 7A Since the main shift lever 7A is urged by the neutral holding mechanism 42E in the direction of suppressing the movement of the main shift lever 7A from the neutral position to the forward region, the main shift lever 7A is moved from the neutral position to the forward region. Requires a certain amount of force. As a result, the main shift lever 7A is properly held in the neutral position.
  • the angle of the swash plate of the continuously variable transmission 9 is changed according to the operating position of the main speed change lever 7A.
  • the main shift lever 7A is not mechanically connected to the continuously variable transmission 9, and the angle of the swash plate of the continuously variable transmission 9 is changed by an actuator composed of a motor 45 or the like.
  • the actuator for changing the angle of the swash plate of the continuously variable transmission 9 includes a motor 45, a gear 48, and a link 49.
  • the gear 48 is driven by the motor 45, and the angle of the swash plate of the continuously variable transmission 9 is changed by the link 49 connected to the gear 48 and the continuously variable transmission 9.
  • the angle of the swash plate of the continuously variable transmission 9 is detected by a swash plate angle detector such as a potentiometer 46, and the operating position of the main speed change lever 7A detected by the potentiometer 40 and the angle of the swash plate of the continuously variable transmission 9 Consistency is confirmed by the control unit 30 and the like described above. That is, the control unit 30 controls the motor 45 based on the detection results of the potentiometer 40 and the potentiometer 46 so as to be the angle of the swash plate of the continuously variable transmission 9 corresponding to the operation position of the main shift lever 7A.
  • the potentiometer 46 and the motor 45 are supported by the power steering unit 44 via the stay 47.
  • the potentiometer 46 includes a shaft 46A and can detect the rotation angle of the shaft 46A.
  • the gear 48 has a configuration in which it swings as the shaft 46A rotates, and is fixed to the shaft 46A.
  • the motor 45 drives the gear 48 to swing.
  • the shaft 46A of the potentiometer 46 rotates as the gear 48 swings. Therefore, the potentiometer 46 detects the swing angle of the gear 48.
  • the link 49 includes a rod 49A and an operating portion 49B.
  • One end of the rod 49A is supported by the gear 48.
  • One end of the operation unit 49B is supported by the other end of the rod 49A, and the other end of the operation unit 49B is connected to the swash plate of the continuously variable transmission 9.
  • the motor 45 is driven according to the detection value of the potentiometer 40, the gear 48 is oscillated, and the angle of the swash plate of the continuously variable transmission 9 is changed by the link 49.
  • the main speed change lever 7A and the motor 45 are not connected, the operating position of the main speed change lever 7A is detected by the potentiometer 40, and the motor 45 is driven according to the detected value of the potentiometer 40.
  • the configuration is not limited to such a configuration, and the main shift lever 7A and the motor 45 may be directly connected, and the motor 45 may be directly driven according to the operating position of the main shift lever 7A.
  • the motor 45 is driven to adjust the angle of the swash plate of the continuously variable transmission 9 in automatic traveling regardless of the operating position of the main speed change lever 7A. Can be changed.
  • the machine body 1 travels in a traveling state according to the angle of the swash plate of the continuously variable transmission 9.
  • an actuator such as a motor may be provided on the main speed change lever 7A, and the operation position of the main speed change lever 7A may be changed according to the angle of the swash plate of the continuously variable transmission device 9.
  • the main speed change lever 7A is operated in a crank shape in the neutral position.
  • the operation path of the main speed change lever 7A is regulated in a crank shape, and the main speed change lever 7A moves in a neutral position in a direction intersecting the forward / backward movement direction when switching between forward / backward movement. Therefore, when this actuator is connected to the main speed change lever 7A, the main speed change lever 7A cannot move between the forward side and the reverse side across the neutral position. Therefore, a clutch may be provided between the main shift lever 7A and this actuator, and the clutch may be disengaged at the neutral position so that the main shift lever 7A can be operated in the left-right direction.
  • actuators for moving the main shift lever 7A in the left-right direction may be provided, and the main shift lever 7A may be moved in the left-right direction by switching the clutch only in the neutral position.
  • an actuator for moving the main shift lever 7A from the neutral position to the forward side and an actuator for moving the main shift lever 7A from the neutral position to the reverse side may be provided separately.
  • These actuators and clutches are detected by the potentiometer 46 by the control unit 30, the main shift lever control unit built in the control unit 30, or the main shift lever control unit provided outside the control unit 30. It is controlled according to the angle of the swash plate of the continuously variable transmission 9.
  • the emergency equipment has a configuration in which the rod 43F and the gear 48 can be directly connected, and is preferably always equipped on the airframe 1.
  • the gear 48 is driven according to the operating position of the main transmission lever 7A, and the angle of the swash plate of the continuously variable transmission 9 can be changed.
  • the actuator for changing the angle of the swash plate which includes the motor 45, the gear 48, and the link 49, is arranged between the main transmission lever 7A and the continuously variable transmission 9. It is a configuration to be done.
  • the position of the actuator is arbitrary, and the actuator may be placed in a region below step 14A in the machine body 1.
  • the traveling vehicle speed may be displayed on a display device such as the main monitor 14B or the information terminal 5.
  • the traveling vehicle speed may be displayed by the number of gears.
  • the driver selects and sets the traveling vehicle speed at the time of work in advance by using the information terminal 5 or the like, but the traveling vehicle speed at this time may be set by the number of gears. As a result, the driver and the observer can intuitively recognize the traveling vehicle speed, and can efficiently perform work or setting.
  • the recommended traveling vehicle speed according to the work content may be displayed on a display device such as the information terminal 5 during the work driving.
  • a display device such as the information terminal 5 during the work driving.
  • the work contents there are suitable traveling vehicle speeds for traveling over the shore, traveling during planting, traveling before turning, traveling during turning, and traveling after turning.
  • the recommended engine speed may be displayed according to the work content.
  • the engine speed is displayed on a display device such as the main monitor 14B.
  • the engine load differs depending on the work content, and the engine load depends on the engine speed.
  • the driver operates the main speed change lever 7A and the like while checking the engine speed displayed on the main monitor 14B so that the recommended engine speed is displayed. As a result, the driver can easily perform the work running at the engine speed suitable for the work content.
  • the planting operation is performed by operating the planting mechanism 22 when the planting clutch (not shown) is shifted to the transmission state.
  • the operating speed of the planting mechanism 22 is determined according to the traveling vehicle speed, and the planting work is performed so that the distance between the stocks is constant. Therefore, if the running is continued even though the planting clutch is stopped during the planting work, the seedlings to be planted during that period are not planted, resulting in a stock shortage.
  • the angle of the swash plate of the continuously variable transmission 9 may be shifted to the neutral position to stop the work running.
  • a warning to stop the aircraft 1 may be given in advance. Further, when the airframe 1 is stopped, it is preferable that the airframe 1 is not suddenly decelerated, but is gradually decelerated until the airframe is stopped.
  • An accelerator lever 7F may be further provided as an operating tool for controlling the vehicle speed.
  • the traveling vehicle speed is mainly controlled according to the operating position of the main speed change lever 7A according to the map scheduled by the angle of the swash plate of the continuously variable transmission 9 and the engine speed.
  • the engine speed is increased or decreased by the accelerator lever 7F.
  • a potentiometer (corresponding to "accelerator detector") for detecting the operating position of the accelerator lever 7F may be provided.
  • the engine speed is determined according to the detection value of the potentiometer 40 of the main speed change lever 7A.
  • the engine speed increases or decreases according to the detection value of the potentiometer on the accelerator lever 7F.
  • the engine speed increases. Then, this engine speed becomes the minimum required speed indicated by the accelerator lever 7F.
  • deceleration is started at a position in front of the position where the vehicle enters the turning path (turning start position) by a predetermined distance.
  • the traveling vehicle speed in the work traveling on the straight route is set by the information terminal 5 or the like.
  • the maximum vehicle speed which is the maximum traveling vehicle speed during automatic driving, is set by using the information terminal 5.
  • the deceleration start position may be a position in front of the turning start position by a predetermined distance, but may be a different position depending on the traveling vehicle speed.
  • the length of the deceleration section provided in front of the turning path may be variable according to the traveling vehicle speed.
  • the vehicle speed set by the information terminal 5 may be changed by the main speed change lever 7A, and the turning vehicle speed may be set based on the changed set vehicle speed.
  • the traveling vehicle speed the actually measured traveling vehicle speed may be used, or the traveling vehicle speed set by the information terminal 5 or the like may be used.
  • manned automatic driving and unmanned automatic driving can be set.
  • the driver In manned automatic driving, the driver is always on board, but in unmanned automatic driving, the driver does not need to be on board, and in fact, work driving may be performed without the driver on board.
  • sudden deceleration increases the driver's discomfort and is inappropriate.
  • it is more effective from the viewpoint of work efficiency to rapidly accelerate or decelerate the running speed within a range that does not interfere with the working running. Therefore, it is preferable that the deceleration start position is different between the manned automatic driving and the unmanned automatic driving. The deceleration at this time is performed regardless of the operating position of the main speed change lever 7A (see FIG. 6). Therefore, the operating position of the main speed change lever 7A may not be changed even if the traveling vehicle speed is changed.
  • the deceleration section is set long and deceleration is started from a position far from the turning start position.
  • the deceleration section is set short and deceleration is started from a position close to the turning start position.
  • the deceleration start position may be adjusted only during manned automatic driving, and deceleration may be performed from a predetermined deceleration start position during unmanned automatic driving.
  • a deceleration section is secured with a margin on the seedling supply side SL side, and the deceleration start position at the time of turning on a side other than the seedling supply side SL may be a position closer to the turning start position than the seedling supply side SL side.
  • the adjustment efficiency may be set when adjusting the deceleration start position.
  • the deceleration can be set, and the deceleration start position is adjusted so that the deceleration section becomes shorter when it is set to allow sudden deceleration, and when it is set to decelerate slowly, it decelerates.
  • the deceleration start position may be adjusted so that the section becomes longer. As a result, it is possible to select an appropriate automatic driving according to the situation.
  • the driver When approaching the deceleration start position, the driver may be notified that deceleration will start. For example, the information terminal 5 can be displayed to that effect or can be notified by voice. By providing the notification, the driver can prepare for deceleration.
  • Whether or not to adjust the deceleration start position as described above is not limited to the case where it is determined by whether it is set to manned automatic driving or unmanned automatic driving, and whether the driver is actually on board. You may decide whether or not to do so. Even in unmanned autonomous driving, it is appropriate to consider the driver's discomfort when the driver is on board, and it is preferable to focus on work efficiency only when the driver is not actually on board.
  • the driver it is determined whether or not the driver is actually on board, and if the driver is not on board, deceleration is started from a predetermined position, and even if the deceleration start position is adjusted only when the driver is on board. good.
  • the driver is actually on board, such as a seating sensor 16A (FIG. 1) provided in the driver's seat 16 (see FIG. 1), a motion sensor, or the like (one of the sensor group 1A shown in FIG. 5). It can be done by one).
  • the position information of the wearable terminal or smartphone held by the driver is detected, and the driver's position and the position of the aircraft 1 detected from the position information are within a predetermined range for driving. It may be determined whether or not the person is actually on board.
  • manned autonomous driving it is necessary for the driver to board. Therefore, it is determined whether or not the driver is on board by providing the seating sensor 16A and the like. Then, it is a condition for starting manned automatic driving that it is detected that the driver is on board. Further, in manned automatic driving, when it is not detected that the driver is on board, an alarm prompting the driver to sit down (boarding) may be notified. At this time, a warning may also be displayed on the information terminal 5. Further, these warnings may be given even in unmanned automatic driving. The warning given in unmanned autonomous driving does not need to prompt the driver to sit down, but may merely notify that the driver is not seated.
  • the traveling vehicle speed may be reduced or the traveling may be stopped.
  • a warning to that effect may be notified in advance.
  • stopping the airframe 1 it is preferable that the airframe 1 is stopped by gradually decelerating without stopping suddenly. After that, when it is detected that the driver is seated, the driving may be started or the traveling vehicle speed may be returned.
  • the automatic driving may not be started or the automatic driving may not be restarted after the temporary stop.
  • the seating sensor 16A detects seating as a condition for starting manned automatic driving.
  • a notification requesting seating may be performed.
  • the notification is performed by voice, display on the information terminal 5, or the like.
  • the maximum vehicle speed in work driving is set, the maximum vehicle speed set when seating cannot be confirmed can be reduced, and when seating is confirmed, the work exceeds the set maximum vehicle speed. It can also be configured so that it can run.
  • unmanned autonomous driving it is not necessary for the driver to board, but this does not mean that the driver should not board.
  • unmanned automatic driving the traveling vehicle speed is controlled faster than in manned automatic driving, and acceleration / deceleration is also performed steeply. Therefore, in unmanned automatic driving, after the driver is detected to be seated in the driver's seat 16 by the seating sensor 16A or the like, if the driver stands up and the seating is not detected, a notification prompting the driver to sit is issued. It may be done. Further, when the departure from the seat is detected, the automatic driving is temporarily stopped, and the automatic driving may be controlled so as not to be restarted until the seating is confirmed.
  • manned automatic driving or unmanned automatic driving it is confirmed whether or not the driver is seated even when turning or reverse movement is started, and when not seated, a display is displayed on the information terminal 5. , A buzzer, or other warning may prompt you to sit down. At this time, the machine body 1 may be decelerated or stopped, but the machine body 1 does not necessarily have to be decelerated or stopped in consideration of the convenience of the operator.
  • the traveling speed is set so as to decelerate at the turning start position regardless of the operating position of the main speed change lever 7A (see FIG. 1) and the traveling vehicle speed set by the information terminal 5 or the like. It will be adjusted.
  • Such control of the traveling vehicle speed according to the traveling condition may be performed not only at the turning start position but also when traveling in the vicinity of the outer periphery of the field such as a ridge.
  • the control unit 30 may notify that a planting defect may occur, or suppress the traveling vehicle speed. You may control it. Roughness of the tillage board can be detected from the movement of the machine body 1, for example, the behavior of the work device in the roll or pitching direction can be detected and determined from the work link, and the swing of the float can be detected and determined. , It is also possible to detect and judge the change in the inclination of the airframe 1 from the inertial measurement module 8B.
  • the seating sensor 16A may be provided in the driver's seat 16 (see FIG. 1). Since the seating sensor 16A transmits and receives signals to and from the control ECU such as the control unit 30, wirings such as signal wiring and power supply wiring may be connected. Further, the driver's seat 16 may be configured to be rotatable about an axis in a direction intersecting the seat surface. When the driver's seat 16 rotates, the wirings connected to the seating sensor 16A may come into contact with, get entangled with, or be damaged by the rotation shaft or the like of the driver's seat 16.
  • the wirings are arranged along the vicinity of the rotation axis, which is the rotation fulcrum of the driver's seat 16, and are clamped in the vicinity of the rotation portion.
  • the seating sensor 16A may have an arbitrary configuration as long as a pressure sensor or the like is used and the seating can be confirmed.
  • the engine speed is determined according to the operating position of the main speed change lever 7A (see FIG. 1) in manual driving, and according to the control of the automatic driving ECU (corresponding to or built in the control unit 30 in FIG. 5) in automatic driving.
  • the engine speed control microcomputer (corresponding to or built in the control unit 30 of FIG. 5) is controlled by driving the motor 45 (see FIG. 6).
  • the engine speed control microcomputer has at least one of the engine speed and the angle of the swash plate of the stepless transmission 9 (see FIG. 6). It may be controlled to improve the fuel efficiency. For example, in order to improve fuel efficiency, the engine speed control microcomputer shifts the angle of the swash plate of the continuously variable transmission 9 to the high speed side and reduces the engine speed.
  • the remaining amount of fuel can be detected by, for example, providing a sensor or the like (one of the sensor group 1A shown in FIG. 5) in the fuel tank and using the sensor or the like.
  • the angle of the swash plate of the continuously variable transmission 9 may be controlled by a dedicated transmission control microcomputer (corresponding to or built in the control unit 30 or the like in FIG. 5).
  • the operation position of the main shift lever 7A (see FIG. 1)
  • the operation position of the accelerator lever 7F (see FIG. 2)
  • the information terminal 5 Regardless of the traveling vehicle speed set by the above, it is preferable to displace the continuously variable transmission 9 (see FIG. 1) to the low speed side and set the engine speed higher. At this time, the angle of the swash plate of the continuously variable transmission 9 and the engine speed may be adjusted regardless of the operating position of the main speed change lever 7A or the like.
  • the rice transplanter crosses the ridge or is in a state of moving to the truck bed, it can be determined by detecting the inclination of the machine 1 or the like, or as one of the operating tools, the rice transplanter crosses the ridge.
  • a mode switch (not shown) may be provided and the ridge-crossing mode switch may be manually operated to set the rice transplanter to move over the ridge or to the truck bed.
  • the state may be detected from the change in the height position of the aircraft 1 detected by the mounted positioning unit 8.
  • the engine 2 (see FIG. 1) is loaded and requires a large amount of power, and in the worst case, the engine 2 is stopped and the work is interrupted. Therefore, when working in a strong wet field, the engine speed may be increased and the angle of the swash plate of the continuously variable transmission 9 may be automatically controlled to be on the low speed side. This makes it possible to continue appropriate work running.
  • Such a work load is judged by the engine speed, and when the work load is large, it is preferable that the engine speed is increased.
  • the angle of the swash plate of the continuously variable transmission 9 may be controlled to be on the low speed side. As a result, even if the work load becomes large, the engine 2 is suppressed from stopping, and the work running can be continued.
  • the workload is small, it is preferable that the engine speed is reduced.
  • the angle of the swash plate of the continuously variable transmission 9 may be controlled to be on the high speed side. As a result, fuel efficiency can be improved.
  • the work running can be continued at an appropriate engine speed.
  • Reverse running is performed at a lower speed than forward running. Therefore, the maximum value of the engine speed may be kept lower during reverse travel than during forward travel.
  • the engine speed control microcomputer may be built in the above-mentioned control unit 30, but may be provided separately.
  • the engine speed control microcomputer may be arranged in the vicinity of the steering shaft.
  • the engine speed control microcomputer and the transmission control microcomputer control the engine 2 and the continuously variable transmission 9. Therefore, it is preferable that the engine speed control microcomputer and the transmission control microcomputer are arranged in the vicinity of the engine 2 and the continuously variable transmission 9.
  • the traveling vehicle speed is operated according to the operation position of the main speed change lever 7A, the angle of the swash plate of the continuously variable transmission 9 and the engine speed are controlled, and the speed (operation speed) according to the operation position of the main speed change lever 7A. ),
  • the aircraft 1 runs.
  • the higher the engine speed the faster the traveling vehicle speed.
  • control in the normal mode In the conventional control of the traveling vehicle speed, the faster the operation speed operated by the main speed change lever 7A, the higher the engine speed is proportional to the operation speed, and the opening degree of the swash plate of the continuously variable transmission 9 is increased. ..
  • control in the normal mode such control is referred to as control in the normal mode, and this relationship is shown in the graph A of the normal mode in FIG.
  • the engine speed is limited to 3000 [rpm]
  • the opening degree of the swash plate of the continuously variable transmission 9 is controlled to 100 [%]
  • the traveling vehicle speed is the maximum traveling vehicle speed. It becomes 1.8 [m / s].
  • control unit 30 sets the engine speed to Ro [rpm] and the continuously variable transmission 9
  • the opening degree of the swash plate is controlled to r [%].
  • the traveling vehicle speed is controlled not in the normal mode but in the eco mode that prioritizes fuel efficiency.
  • the eco mode is a control that preferentially increases the opening degree of the swash plate of the continuously variable transmission 9 and secures the set speed even if the engine speed is lowered by that amount. It is a control to improve efficiency.
  • the control unit 30 sets the opening degree of the swash plate of the continuously variable transmission 9 to r.
  • the rE [%] is set to be larger than [%], and the engine speed is increased toward the target engine speed RE [rpm].
  • the opening degree of the swash plate of the continuously variable transmission 9 is rE [%] and the engine speed is RE [rpm]
  • the target engine speed RE may not be reached even if the engine speed is increased.
  • the target engine speed RE is set high and controlled so that the engine speed reaches RE. Further, if the engine speed does not reach RE even if the target engine speed RE is set to 3000 [rpm], which is the limit of the engine speed, the opening rE of the swash plate of the continuously variable transmission 9 is reduced.
  • the traveling vehicle speed is controlled so as to reach the set speed ES. By performing such control, it is possible to improve fuel efficiency when working at the set speed ES.
  • the engine speed cannot be increased and the engine 2 may stop. Therefore, even before the target engine speed RE is set to the limit of the engine speed of 3000 [rpm], if a load exceeding a predetermined load is applied to the engine 2, the swash plate of the continuously variable transmission 9 Control may be performed to set the opening rE to a small value. As a result, it is possible to prevent the engine 2 from stopping and to continuously perform the work running.
  • the configuration in which the traveling vehicle speed is controlled only in the eco mode has been described as an example, but the configuration in which the eco mode and the normal mode can be selectively implemented may be used.
  • the configuration in which the eco mode and the normal mode can be selectively implemented may be used.
  • the signal from the satellite acquired by the positioning unit 8 may be temporarily weakened, but in many cases, the reception state of radio waves is only temporarily lowered, and the state is restored immediately. Not a few. If the automatic running is terminated every time such a state occurs, the work efficiency may deteriorate. Therefore, in such a case, it is preferable that the automatic driving is temporarily stopped and only the driving is stopped. It is preferable to wait for a while and stop the automatic driving for the first time when the situation is not improved, and perform necessary repairs and the like.
  • a warning may be given in advance to the effect that the machine 1 is stopped, that a problem has occurred, the content of the problem, or the like. Further, when the airframe 1 is stopped, it is preferable that the airframe 1 is not suddenly decelerated, but is gradually decelerated until the airframe is stopped.
  • the aircraft 1 may slide down the slope.
  • the angle of the swash plate of the continuously variable transmission 9 may be adjusted in the direction of going up the inclination instead of setting the angle of the swash plate of the continuously variable transmission 9 to the neutral position.
  • the control unit 30 moves the angle of the swash plate of the continuously variable transmission 9 in the reverse direction.
  • the airframe 1 is driven in the direction opposite to the sliding down direction, so that the airframe 1 can be suppressed from sliding down and the airframe 1 can be stopped.
  • the own vehicle position calculated by using the positioning unit 8 is moving, the own vehicle position
  • the angle of the swash plate of the continuously variable transmission 9 may be adjusted according to the above, and may be controlled so that the stopped state is maintained.
  • the engine speed may be controlled in addition to the angle of the swash plate of the continuously variable transmission 9.
  • Some of the various devices mounted on the rice transplanter operate on the electric power supplied from the battery 73 (see FIG. 2). Each of these devices uses a different amount of electric power for operation.
  • the blower of the fertilizer application device 4 consumes a large amount of electric power.
  • the battery 73 is charged during the operation of the engine 2 (see FIG. 1).
  • power may be consumed in excess of the charge amount of the battery 73, and the remaining amount of the battery 73 may be low. Therefore, when the remaining amount of the battery 73 is less than a predetermined amount, it is preferable to operate the engine 2 for a while in order to charge the battery 73 even if the operation of stopping the engine 2 is performed. ..
  • the battery 73 includes a sensor for measuring the amount of charge (one of the sensor group 1A shown in FIG. 5).
  • the engine 2 is stopped and started by operating a key or the like.
  • the control unit 30 does not immediately stop the engine 2 but continues the operation of the engine 2.
  • the battery 73 is charged, and then the engine 2 is stopped. After the stop operation of the engine 2, while the battery 73 is being charged (engine operation continuation period), even if the engine 2 is operating, the running and the work are stopped.
  • the swash plate of the continuously variable transmission 9 maintains a neutral position, the planting clutch and the like are shut off, and the brake is put into a braking state. Further, at least one of the main shift lever 7A and the auxiliary shift lever 7B may be maintained in the neutral position.
  • the engine operation continuation period may be a predetermined time, but may be a period in which the charge amount becomes equal to or higher than a predetermined value by the sensor provided in the battery 73. Further, when the engine 2 is not stopped even if the operation of stopping the engine 2 is performed, it is preferable to be notified to that effect.
  • the control to increase the engine speed may be performed. By increasing the engine speed, charging of the battery 73 is promoted.
  • the control unit 30 may perform the control related to the charging of the battery 73 and the operation of the engine 2, but the charge control unit (shown) is built in the control unit 30 or provided separately from the control unit 30.
  • a functional block such as (1) may be performed.
  • the auxiliary shift lever 7B (see FIG. 1) is used for an operation of switching the traveling vehicle speed between the working speed during work and the moving speed during movement. For example, movement between fields is performed at a moving speed, and planting work and the like are performed at a working speed.
  • the moving speed is faster than the working speed.
  • the seedling planting device 3 is controlled so that the distance between the plants planted in the field is constant at the working speed.
  • the control unit 30 is controlled so that the work is not started unless the auxiliary transmission lever 7B is operated on the working speed side.
  • the control unit 30 controls so that the planting clutch is not connected unless the auxiliary transmission lever 7B is operated on the working speed side.
  • the vehicle can be driven at a traveling vehicle speed suitable for the work, and the appropriate work can be performed.
  • the auxiliary shift lever 7B is also provided with a potentiometer in order to confirm the operating position of the auxiliary shift lever 7B.
  • the auxiliary shift lever 7B is operated to the neutral position when starting the work running after moving between the fields. That is, it is preferable that the start operation of the work such as the planting work is effective only in the state where the auxiliary shift lever 7B is operated in the neutral position. Specifically, after the auxiliary shift lever 7B is operated to the neutral position, the work start operation is performed, and then the auxiliary shift lever 7B is operated at the working speed to start the work. Further, when the work start operation is performed, if the auxiliary transmission lever 7B is not in the neutral position, a notification prompting the operation of the auxiliary transmission lever 7B in the neutral position may be performed.
  • the auxiliary shift lever 7B takes a neutral position even when the operation of the engine 2 is continued in order to charge the battery 73 described above.
  • the main shift lever 7A and the auxiliary shift lever 7B may automatically return to the neutral position when the main shift lever 7A and the swash plate are positioned in the neutral position or the brake operation is performed.
  • the inspection / maintenance can be performed only when the auxiliary transmission lever 7B is operated in the neutral position.
  • a notification prompting the operation of the auxiliary shift lever 7B in the neutral position may be performed.
  • the aircraft 1 When replenishing mat-shaped seedlings, replenishing chemicals, etc., the aircraft 1 is brought close to the ridges at the edge of the field.
  • the automatic traveling rice transplanter detects obstacles, and when it detects an obstacle, it stops traveling. Therefore, even if you try to bring it closer to the edge of the field, the ridges will be detected as obstacles and you will not be able to drive normally. Therefore, the rice transplanter of the present embodiment temporarily stops obstacle detection when moving the machine 1 to the edge of the field, and brings the rice transplanter closer to the edge of the field in a state where the ridges are not detected as obstacles. It has a function that can be used.
  • the rice transplanter of this embodiment can run automatically. If there is an obstacle in front of the traveling direction or around the aircraft 1 at the start of traveling by automatic traveling or during automatic traveling, problems may occur in traveling or work. Therefore, the rice transplanter of the present embodiment includes a sonar sensor 60 as an example of an obstacle detection device (one of the sensor groups 1A shown in FIG. 5) that detects obstacles around the machine body 1. Obstacles are basically detected during automatic driving, but obstacles can also be detected during manual driving.
  • the sonar sensor 60 includes four front sonars 61 that detect obstacles in the area in front of the aircraft 1, two rear sonars 62 that detect obstacles in the area behind the aircraft 1, and the aircraft. It is composed of two horizontal sonars 63 that detect obstacles in the area on the side of 1.
  • the traveling vehicle speed when the aircraft 1 travels straight ahead is faster than the traveling vehicle speed during reverse travel and turning travel. Therefore, the number of front sonars 61 for detecting obstacles in the area in front of the aircraft 1 is larger than that of the rear sonar 62 and the lateral sonar 63. As a result, obstacles can be detected with high accuracy even when the vehicle is traveling straight ahead at a high speed.
  • Two of the front sonar 61s are provided side by side in the left-right direction of the machine body 1 on the side surface of the front end portion of step 14A.
  • the other two of the front sonar 61s are supported by stays 61A projecting forward from the left and right reserve seedling support frames 17, respectively.
  • the ground heights of the four front sonars 61 are substantially the same.
  • each front sonar 61 extends in a fan shape from the front sonar 61.
  • the detection range of the front sonar 61 in the forward direction is adjusted so that when traveling at the maximum traveling vehicle speed, the length that allows the aircraft 1 to stop in front of the obstacle after detecting the obstacle can be secured.
  • the front sonar 61 is arranged so that at least a part of the horizontal detection range of the adjacent front sonar 61 overlaps with each other. As a result, the accuracy of detecting obstacles is improved.
  • the detection range of the sensor may be automatically adjusted according to the vehicle speed. As a result, when traveling at a low speed, the detection range is not increased more than necessary, and obstacles can be detected in the optimum detection range.
  • the rear sonar 62 is supported by a support structure 62A supported by a seedling planting device 3 or the like in order to support the drug spraying device 18.
  • the two rear sonars 62 are arranged on each side of the chemical spraying device 18 in the left-right direction, and the height of the rear sonar 62 to the ground is substantially the same as the upper end of the chemical spraying device 18.
  • the rear sonar 62 mainly detects obstacles when moving backward. As shown in FIG. 13, the detection range of each rear sonar 62 in the plane direction extends in a fan shape from the rear sonar 62. Each rear sonar 62 is arranged slightly outward from directly behind, and the detection range of each rear sonar 62 is slightly biased outward. As a result, it is possible to secure a wide detection range in the left-right direction of the airframe 1 behind the airframe 1.
  • the rear sonar 62 is arranged so that at least a portion of the horizontal detection ranges of the two rear sonar 62s overlap each other. As a result, the accuracy of detecting obstacles is improved.
  • the horizontal sonar 63 is provided on the side surface of both side ends (rear step 14C) of the aircraft 1 behind step 14A on the side of the driver's seat 16.
  • the rear step 14C is located higher than step 14A. Therefore, the influence of mud splash from the rear wheels and the like can be suppressed.
  • the horizontal sonar 63 may be mounted on the spare seedling support frame 17 located opposite to the step 14A.
  • the horizontal sonar 63 detects the vicinity of the boarding / alighting area in step 14A, and detects an obstacle on the side of the aircraft 1. There is a problem when a person is trying to get on and off the driving unit 14 at the start of automatic driving.
  • the horizontal sonar 63 detects, in particular, a person who is about to get on and off the driving unit 14. As shown in FIG. 12, the detection range of each lateral sonar 63 in the plane direction extends in a fan shape from the front sonar 61.
  • a person who gets on and off the driving unit 14 mainly gets on and off from the side of the driver's seat 16 and the front of the driver's seat 16.
  • a fertilizer application device 4 or the like is provided behind the driver's seat 16, and it is unlikely that a person gets on and off from that direction. Therefore, the detection range of the horizontal sonar 63 in the plane direction is slightly inclined forward from the side of the machine body 1. Further, a spare seedling support frame 17 projects in the left-right direction in front of the machine body 1. The front end of the detection range in the plane direction of the horizontal sonar 63 is set to be behind the spare seedling support frame 17 so that the horizontal sonar 63 does not detect the spare seedling support frame 17 or the spare seedling storage device 17A. NS.
  • the sonar sensor 60 detects an object existing within a specific detection range as described above. Further, if the mud surface of the field is within the detection range, the sonar sensor 60 detects the mud surface as an obstacle. When the mud surface is detected as an obstacle, the automatic running is not started and the running is not continued. Therefore, the detection range of the sonar sensor 60 is adjusted so as not to detect the mud surface.
  • the sonar sensor 60 is supported slightly upward and is adjusted so as not to detect the mud surface while securing a predetermined detection distance. That is, the sonar sensor 60 is adjusted so that the lower end of the detection range does not reach the mud surface at a predetermined detection distance. Further, since the airframe 1 swings up and down as it travels, it becomes easier to detect the mud surface as it moves up and down. In addition, mud lumps generated during turning exist in headland and the like, and mud lumps protruding from the mud surface may be erroneously detected. Therefore, a certain margin may be taken into consideration for the distance from the mud surface to the lower end of the detection range. In this way, the vertical detection range (side view detection range) of the sonar sensor 60 is adjusted in consideration of the required detection distance and the fact that it does not detect mud surfaces, etc., thereby providing an appropriate detection range. Secured.
  • the sonar sensor 60 may be supported slightly downward.
  • the detection range is adjusted so that an obstacle having a low height near the aircraft 1 can be detected.
  • the sonar sensor 60 is supported slightly downward and adjusted so as to include the lower region in the vicinity of the airframe 1 in the detection range. At this time, the mud surface and the like will be detected more than necessary. Therefore, it is preferable to analyze the detection pattern of the mud surface, determine whether or not the detected obstacle is the mud surface, and control the mud surface so that it is not recognized as an obstacle even if it is detected.
  • the front sonar 61 is not limited to the configuration supported by step 14A or the preliminary seedling support frame 17, and can be arranged at any position as long as an appropriate detection range can be secured.
  • the front sonar 61 may be supported by the engine bonnet 2B or may be supported by an extension member supported by the airframe 1.
  • the front sonar 61 may be provided in the vicinity of the positioning unit 8 or may be provided in the vicinity of the positioning unit 8 in place of the four front sonars 61 or in addition to the four front sonars 61.
  • the sonar sensor 60 is preferably supported at a position where the arrangement position does not move during the detection of an obstacle.
  • the rear sonar 62 is also preferably arranged at a position where the arrangement position does not move (non-operating portion), but can be arranged at an arbitrary position as long as an appropriate detection range can be secured.
  • the rear sonar 62 may be provided on a toolbar that supports the work device, a planting case of the seedling planting device 3, a sliding plate 3A, a sliding plate guard 3B, a support column of the seedling loading platform 21, and the like.
  • the rear sonar 62 is close to the rear wheel 12B and is easily affected by mud splashes. Therefore, the rear sonar 62 is preferably provided at a position having a high ground height away from the mud surface.
  • the rear sonar 62 may be provided at the upper end of the seedling stand 21.
  • the seedling stand 21 has an inclination that inclines forward as it goes upward. Further, as described above, the rear sonar 62 has a fan-shaped detection range. Therefore, by providing the rear sonar 62 at the upper end of the seedling loading table 21, it is possible to efficiently secure an appropriate detection range while suppressing the rear sonar 62 from erroneously detecting the seedling loading table 21.
  • the rear sonar 62 may be provided in an area above the mudguard cover 18A provided in the chemical spraying device 18.
  • the chemical spraying device 18 may include a mud protection cover, and by providing the rear sonar 62 in a region above the mud protection cover, mud adhesion to the rear sonar 62 is suppressed.
  • the rear sonar 62 may be provided in an area above the upper end of the planting transmission case 3D of the seedling planting device 3, and is an area above the mud scattering prevention cover 3E included in the seedling planting device 3. It is better if it is provided in.
  • a dedicated cover may be provided in the lower region of the rear sonar 62.
  • the post-sonar 62 may be provided in the fertilizer application device 4, the powder or granular material feeder for insecticides, fungicides, herbicides, etc., or in the upper part of the direct sowing machine or in the region above these.
  • each rear sonar 62 does not need to be arranged slightly outward of the aircraft 1, the arrangement direction of each rear sonar 62 is arbitrary, and some or all of the rear sonar 62 is the aircraft. It may be arranged slightly inward of 1 or directly behind.
  • the plurality of rear sonars 62 may be arranged side by side along the seedling stand 21.
  • the two rear sonars 62 are arranged so as to sandwich the drug spraying device 18. As a result, obstacles such as people around the drug spraying device 18 can be appropriately detected.
  • the detection range of the sonar 62 is set to a region that does not include the drug spraying device 18 in the detection range in order to prevent the drug spraying device 18 from being erroneously detected.
  • the chemical spraying device 18 is not always provided in the rice transplanter. In this case, the area where the drug spraying device 18 is arranged does not fall within the detection range of the rear sonar 62. Specific members may be provided in this area, at least to prevent a person from entering the area.
  • Each sonar sensor 60 may be provided inside the machine body 1 from the end portion of the body body 1. Since the detection range of each sonar sensor 60 expands in a fan shape, the blind spot of the detection range around the machine 1 is reduced by providing the sonar sensor 60 inside the end of the machine 1, and the area closer to the periphery of the machine 1 is reduced. Obstacles can be easily detected. Further, in order to prevent mud from adhering to each sonar sensor 60, it is preferable that each sonar sensor 60 is arranged inside the machine body 1, that is, at a position overlapping the machine body 1, for example, step 14A in a plan view.
  • each sonar sensor 60 may be provided at the tip end portion of the machine body 1. If each sonar sensor 60 is provided inside the machine body 1, there is a possibility that the machine body 1 itself may be erroneously detected as an obstacle. When each sonar sensor 60 is provided at the tip end portion of the airframe 1, the possibility that the airframe 1 itself is erroneously detected as an obstacle is reduced. In this case, it is preferable that a mudguard member is provided below each sonar sensor 60.
  • the front sonar 61 may be provided above the axle of the airframe 1, preferably above the upper end of the axle, and more preferably above the lower end of step 14A. Further, the front sonar 61 may be provided below the upper end of the positioning unit 8, preferably below the upper end of the steering wheel 10, and more preferably below the upper end of step 14A. Further, the front sonar 61 may be provided on the preliminary seedling support frame 17. By arranging the front sonar 61 at a position away from the mud surface in this way, it becomes easy to set a detection range capable of more accurately detecting an assumed obstacle while suppressing the detection of the mud surface. Further, the front sonar 61 may be provided on the engine frame 1F or the step frame 1G.
  • the front sonar 61 may be provided in a configuration in which the arrangement position can be adjusted.
  • the front sonar 61 is supported via a stay, and the position for supporting the front sonar 61 of the stay can be selected, or the stay supporting the front sonar 61 is deformed so that the arrangement position of the front sonar 61 can be changed. It may be configured to be possible.
  • the sonar sensor 60 may be configured so that the posture is changed to the used state in the obstacle detection state and the posture is changed to the retracted state in the state where the obstacle is not detected.
  • the detection unit of the sonar sensor 60 in the stored state, the detection unit of the sonar sensor 60 is hidden behind other members, or the detection unit faces upward. As a result, dirt such as mud is suppressed from adhering to the sonar sensor 60 in a state where no obstacle is detected, and it is easy to maintain a state in which obstacle detection is appropriately performed in the obstacle detection state.
  • the adjacent sonar sensors 60 are not limited to a configuration in which at least a part of each other's detection range overlaps, and may have a configuration in which there is no overlapping region as long as the detection range can be appropriately secured.
  • At least one of the front sonar 61 and the rear sonar 62 may be arranged closer to the center in the left-right direction of the aircraft 1.
  • the detection range of each sonar sensor 60 may be changed according to the position of the aircraft 1, the traveling vehicle speed, and the operating condition.
  • the position of the machine 1 is determined from the position information of the machine 1 and the field map, and is the distance to the ridge, the distance from the outer peripheral portion of the field, whether or not the outer circuit path is ORL, and the like.
  • the outer peripheral portion of the field is an electronic boundary or the like defined in the field map as the boundary portion of the field.
  • the detection range of each sonar sensor 60 may be changed according to the situation of the traveling route or the work content by obtaining the position to travel next from the predetermined traveling route and the field map.
  • the sonar sensor 60 is controlled by a sonar ECU 64 (corresponding to a detection control device).
  • the sonar ECU 64 controls the operation of the sonar sensor 60, acquires the detection result, and transmits the detection result to the control unit 30 (see FIG. 5).
  • the front sonar ECU 64A and the rear sonar ECU 64B are provided as the sonar ECU 64.
  • the four front sonars 61 are controlled by the front sonar ECU 64A, and the two rear sonars 62 and the two lateral sonars 63 are controlled by the rear sonar ECU 64B.
  • a large number of signal wirings, power supply wirings, and the like are arranged between the front side region and the rear side region of the airframe 1.
  • the front sonar ECU 64A connected to the sonar sensor 60 (front sonar 61) arranged near the front of the aircraft 1 and the sonar sensor 60 (rear sonar 62 and the horizontal sonar 63) arranged near the rear of the aircraft 1.
  • the sonar ECU 64B and the sonar ECU 64B are arranged in front and behind.
  • wirings such as signal wiring and power supply wiring connected to the sonar sensor 60 and the sonar ECU 64 are suppressed from being arranged in front of and behind the machine body 1, and the wiring efficiency of the machine body 1 is improved.
  • the front sonar ECU 64A is provided in the front region of the machine body 1, and is supported, for example, on the left lateral side surface of the laminated lamp support member 74 supported by the spare seedling support frame 17. Wiring such as communication wiring and power supply wiring for data communication between the front sonar ECU 64A and each front sonar 61 are grouped together in the vicinity of the front sonar 61. One wire is connected to the front sonar ECU 64A.
  • the front sonar ECU 64A is supported on the left lateral side surface of the laminated light support member 74, it can be easily attached to and detached from the outside of the machine body 1. Therefore, the front sonar 61 can be retrofitted, and the front sonar ECU 64A can be easily repaired or replaced.
  • the rear sonar ECU 64B is provided in the rear region of the airframe 1, and is arranged in, for example, an region surrounded by each rear sonar 62 and each lateral sonar 63.
  • the rear sonar ECU 64B is supported on the left lateral side surface of the fuselage frame 1E in the lower region of the driver's seat 16 in the vicinity of the left lateral sonar 63.
  • the wiring such as the communication wiring and the power supply wiring for data communication between the rear sonar ECU 64B and each rear sonar 62 and each horizontal sonar 63 includes one communication wiring connected to each rear sonar 62 and each horizontal sonar 63.
  • One piece of wiring is connected to the front sonar ECU 64A. As a result, wiring between each rear sonar 62 and each lateral sonar 63 and the rear sonar ECU 64B is efficiently performed.
  • a hydraulic hose or the like is arranged in the right area of the machine body 1. Therefore, by providing the rear sonar ECU 64B in the left side region of the machine body, the wirings connected to the rear sonar ECU 64B and the rear sonar ECU 64B do not interfere with the hydraulic hose or the like, and damage to the wirings is suppressed. Easy to put on and take off.
  • the rear sonar ECU 64B is supported on the left lateral side surface of the airframe frame 1E, it can be easily attached to and detached from the outside of the airframe 1. Therefore, the rear sonar 62 and the horizontal sonar 63 can be retrofitted, and the rear sonar ECU 64B can be easily repaired or replaced.
  • sonar ECU 64 There is a limit to the number of sonar sensors 60 that can be connected to the sonar ECU 64. Therefore, in this embodiment, two sonar ECUs 64 are provided. When all the sonar sensors 60 can be controlled by one sonar ECU 64, it is preferable that one sonar ECU 64 is provided in the central portion of the airframe 1. Thereby, the wiring efficiency can be optimized.
  • the total number of sonar sensors 60 mounted is preferably an integral multiple of the limit number of sonar sensors 60 that can be connected to the sonar ECU 64. That is, it is preferable to provide as many sonar sensors 60 as possible with respect to the limitation of the sonar ECU 64. As a result, the accuracy of detecting obstacles can be improved.
  • the number of sonar sensors 60 that can be mounted is sufficient, the number of front sonars 61 does not need to be larger than the number of rear sonars 62, and the same number can be used. As a result, the obstacle detection accuracy of the rear sonar 62 can be improved.
  • the obstacle detection device is not limited to the sonar sensor 60, and any device can be used as long as it can detect an obstacle.
  • a laser sensor or a contact sensor can be used as the obstacle detection device.
  • the periphery of the machine body 1 may be photographed by an image pickup device, and an obstacle may be detected by image analysis.
  • Image analysis can also be performed using a trained model generated by machine learning, or can be performed by any means using artificial intelligence.
  • the sonar sensor 60 detects obstacles around the aircraft 1, and in automatic driving, the control unit 30 (see FIG. 5) controls automatic driving according to the detection content of the obstacles. Specifically, such control can be performed by a functional block such as an automatic driving control unit or an obstacle handling unit built in the control unit 30 including the automatic driving microcomputer 6 and the like, and further, these functions.
  • the block may be provided separately from the control unit 30.
  • the start is suppressed and the vehicle does not start (start suppression mode).
  • start suppression mode For example, at the start of unmanned automatic driving in forward movement, the detection results of the front sonar 61 and the lateral sonar 63 are used among the sonar sensors 60, and when the front sonar 61 and the lateral sonar 63 detect an obstacle, the start is suppressed and the vehicle travels. Will not start. Further, at the start of unmanned automatic driving in reverse, the detection results of the rear sonar 62 and the lateral sonar 63 are used among the sonar sensors 60, and when the rear sonar 62 and the lateral sonar 63 detect an obstacle, the start is suppressed and the vehicle travels.
  • the horizontal sonar 63 detects the surroundings of the boarding / alighting step (step 14A), which is the boarding area that the driver passes through when boarding, and in particular, detects a person who is about to get on / off the driving unit 14.
  • Obstacles are detected during driving by unmanned automatic driving, and when an obstacle is detected, control such as stopping automatic driving is performed (obstacle detection mode). Specifically, when the sonar sensor 60 detects an obstacle during traveling by unmanned automatic traveling, the traveling is stopped or the traveling vehicle speed is decelerated. For example, the detection result of the front sonar 61 is used when the aircraft 1 travels straight by unmanned automatic traveling, and the detection result of the rear sonar 62 is used when the aircraft 1 travels backward by unmanned automatic traveling. Further, when turning by unmanned automatic traveling, the detection result of the horizontal sonar 63 may be used in addition to these, or the detection result of only the horizontal sonar 63 in the turning direction may be used.
  • the traveling vehicle speed may be gradually reduced, and the aircraft 1 may be finally stopped. Obstacles may be detected during the reciprocating work traveling on the internal reciprocating path IPL, and further, obstacle detection may be performed during the outermost planting (outermost peripheral work traveling).
  • the angle of the swash plate of the continuously variable transmission 9 is maintained in the neutral state. At this time, it is preferable that the engine speed is maintained without being reduced. As a result, when it is confirmed that the detected obstacle does not hinder the running, or when the obstacle is eliminated, the running can be started / restarted promptly. Further, when an obstacle is detected by the sonar sensor 60, it may be notified that the obstacle has been detected. For example, the control unit 30 controls the voice alarm generator 100 to notify the voice alarm generator 100.
  • the notification that an obstacle has been detected may be notified to the laminated light 71 or the center mascot 20, which will be described later, in a predetermined display pattern, or may be notified to the remote controller 90 or the mobile terminal held by the work vehicle. , The information terminal 5 or the like may be notified.
  • the running control using the detection result of the sonar sensor 60 is not limited to the case of unmanned automatic running, but may be performed during manned automatic running or manual running.
  • the outer circuit path ORL (see FIG. 4) is subjected to work traveling by manned automatic traveling or manual traveling.
  • driving may be controlled using the detection result of the sonar sensor 60 only in an area where there are many obstacles such as a water outlet.
  • the configuration is such that it is possible to detect whether or not the driver is on the driver's unit 14, and if it cannot be detected that the driver is on the driver's unit 14 even in the case of manned automatic driving or manual driving.
  • Travel control may be performed using the detection result of the sonar sensor 60.
  • the seating sensor 16A or the like can be used to detect whether or not the driver is on board the driving unit 14.
  • the detection range of the sonar sensor 60 is set so as not to detect the mud surface. Since the condition of the field varies, it may be easy to detect the mud surface even if it is set in this way.
  • the aircraft 1 since the aircraft 1 is stationary at the start of unmanned automatic driving, it is easy to determine whether or not the detected obstacle is a muddy surface. Based on this, at the start of unmanned automatic driving, when the control unit 30 detects an obstacle, it determines whether or not it is a muddy surface, and if it is determined to be a muddy surface, the obstacle surface. If is not detected, the detection result may be corrected (ignored).
  • the control unit 30 can recognize that it is not an obstacle even if it detects the mud surface and control the automatic driving, and it is less likely that the control unit 30 detects an obstacle more than necessary and suppresses the start. , Smooth automatic driving becomes possible.
  • the obstacle determination unit may determine whether the surface is mud.
  • the obstacle determination unit may be built in the control unit 30, but may be provided outside the control unit 30.
  • start suppression mode it may be controlled as if an obstacle is detected when the sonar sensor 60 detects only a moving object such as a moving person.
  • a person is trying to get on and off the driving unit 14. Therefore, by setting only moving objects such as people as detection targets (obstacles to be considered during automatic driving), erroneous detection can be suppressed and appropriate control at the start of unmanned automatic driving can be performed.
  • the obstacle determination unit determines whether or not the object is a moving object such as a person.
  • the obstacle determination unit can determine an obstacle by image analysis or the like, or can also perform an obstacle determination by inputting an captured image into the machine-learned learned data.
  • the sonar sensor 60 may continue to detect obstacles, or may be put into an unused state such as turning off the power.
  • the rear sonar 62 is supported by the seedling planting device 3, and the seedling planting device 3 moves up and down according to the running of the planting work. As a result, the seedling planting device 3 is in a lowered state during the planting operation, and the rear sonar 62 is in a position where it is easy to detect the mud surface. In addition, it is in a forward state during the planting work, and there is little need to detect obstacles behind it. From the above, the rear sonar 62 may be in an unused state on condition that the seedling planting device 3 is lowered in the forward work traveling.
  • the state in which the seedling planting device 3 is lowered can also be detected by a sensor (one of the sensor groups 1A shown in FIG. 5) that detects the state of the elevating link 13a, and the posture of the marker 19 and the ground leveling float 15 can be detected. It can also be judged by whether or not it is grounded.
  • the rear sonar 62 may be controlled so as to recognize only an approaching object as an obstacle when moving backward. At this time, when the seedling planting device 3 is in the ascending position, it is easy to detect an obstacle at a position high from the mud surface, and it is easy to detect an obstacle invading the rear of the machine body 1. Whether or not an obstacle is approaching can be determined by the obstacle determination unit.
  • the horizontal sonar 63 is set to have a narrower detection range in the plane direction than the other sonar sensors 60 so that the preliminary seedling support frame 17 is not erroneously detected as an obstacle.
  • the detection range of the horizontal sonar 63 may be the same as or greater than that of the other sonar sensors 60.
  • the size of the detection range of the sonar sensor 60 may be different between the start suppression mode and the obstacle detection mode.
  • the size of the detection range of the sonar sensor 60 is larger in the start suppression mode than in the obstacle detection mode.
  • the detection range in the vertical direction also increases, making it easier to detect the mud surface.
  • the aircraft 1 since the aircraft 1 is stationary in the start suppression mode, it is determined by the control after the detection whether it is a mud surface, and even if the mud surface is detected, the detection result is ignored in the subsequent control. Can be done.
  • the aircraft 1 in the obstacle detection mode, the aircraft 1 is in a running state, it is easy to detect the mud surface, and it is difficult to determine whether or not the detected obstacle is the mud surface. Therefore, in the obstacle detection mode, it is preferable to reduce the detection range in order to suppress the detection of the mud surface.
  • the aircraft 1 In the work run on the internal round-trip route IPL (see FIG. 4), the aircraft 1 approaches the ridge as it runs.
  • the ridges are higher than the mud surface and are easily detected by the sonar sensor 60.
  • the size of the detection range of the sonar sensor 60 may be arbitrarily changed. For example, in work traveling on the internal round-trip path IPL, when the distance from the aircraft 1 to the ridge approaches within a predetermined distance, the shorter the distance to the ridge, the shorter the length of the detection range of the sonar sensor 60. Be controlled.
  • the detection range of the sonar sensor 60 located inside the turn may be increased during the turn. For example, in forward traveling, the detection range of one or more of the front sonar 61s located inside the turn may be increased. If the front sonar 61 can detect an obstacle in the area through which the aircraft 1 passes by turning, the risk of the aircraft 1 coming into contact with the obstacle can be sufficiently reduced. Therefore, the front sonar 61 may have a configuration that can detect the locus of the outermost front end portion of the airframe 1 drawn along the turn. For example, when the outermost front end portion of the machine body 1 is the outermost front end portion of the spare seedling storage device 17A, the locus drawn by the outermost front end portion of the spare seedling storage device 17A may be included in the detection range. This reduces the risk of missed detection.
  • the detection range of the rear sonar 62 located inside the turn may be increased among the rear sonar 62.
  • the rearmost outermost portion of the machine body 1 is the rearmost outermost portion of the sliding plate guard 3B. Therefore, the locus drawn by the rearmost outermost portion of the sliding plate guard 3B may be included in the detection range.
  • an auxiliary worker or the like often waits in the field on the opposite side of the turning direction.
  • the sonar sensor 60 may be configured to operate at the time of use, for example, at the start of unmanned running, but when the engine 2 is started, the sonar sensor 60 also operates and an obstacle is detected, but the unmanned running is started.
  • the configuration may be such that the detection result is not used until (until it is used).
  • a voice alarm generator 100 or the like notifies a notification to that effect.
  • the sonar sensor 60 may erroneously detect an object that does not interfere with work running as an obstacle.
  • the observer can confirm whether or not the object does not interfere with the work running, it is preferable to start the running or continue the running. Therefore, if the observer can determine that the object does not interfere with the work running, the operator may be able to operate the object so as not to temporarily consider the detected obstacle.
  • the remote controller 90 is provided with a button operation that can temporarily not consider (ignore) the detected obstacle.
  • the period for ignoring the detected obstacle may be a predetermined time, a button operation for resuming consideration of the detected obstacle may be separately prepared, or the button operation is continued. It may be configured to ignore only the interval (the state where the button is pressed and held).
  • the period for ignoring the detected obstacle may be a period during which the vehicle travels for a predetermined distance.
  • These button operations may be hidden commands that are not disclosed as normal remote control 90 operations.
  • the button operation may be a complicated operation in order to suppress an operation error. For example, operations that are frequently operated and that can be redone immediately even if they are erroneously operated can be operated with one button on the remote controller 90, and operations that cannot be easily redoed once they are erroneously operated, such as starting automatic driving. May operate two or more buttons at the same time. One of the two or more buttons may be a function button.
  • Such an operation may be configured such that an announcement is made by voice and is performed while referring to the announcement. Further, the operation may be effective only after such an operation is performed after the announcement.
  • a sensor other than the sonar sensor 60 may be separately provided, and this sensor may be capable of detecting the size of an obstacle.
  • This sensor may be configured to analyze an image taken by an imaging device, or may be a laser sensor that irradiates an obstacle, and is arbitrary as long as it can detect the size. Then, when the sonar sensor 60 detects an obstacle, the sensor detects the size of the obstacle, and if the size is less than a predetermined size, the sensor may not recognize the obstacle.
  • the operation of the sonar sensor 60 may be stopped / started by the operation of the remote controller 90 or the information terminal 5, and the start / stop of whether or not to perform the control according to the detection of the obstacle may be selected.
  • the sonar sensor 60 does not detect the obstacle. , Or it may be configured to be detected or ignored. Further, after a predetermined period of time has elapsed, the detection and processing of the obstacle using the sonar sensor 60 may be restarted. At this time, if there are many obstacles to be detected, such as traveling on a ridge, the detection and processing may not be restarted. Whether or not there are many obstacles may be determined from the position information and the field map, or may be determined by image analysis using an imaging device.
  • Obstacle detection and processing may not be restarted automatically, but may be restarted only after a specific human operation is performed. In addition, it is determined by image analysis using an image pickup device whether or not automatic driving has started properly, and if it is determined that automatic driving has started properly, obstacle detection and processing are restarted. You may.
  • the rice transplanter replenishes seedlings when the seedlings run out.
  • the aircraft 1 is brought to the edge of the seedling replenishment side SL by traveling forward.
  • the aircraft 1 moves backward and returns to the traveling route.
  • the horizontal sonar 63 may be operated at the time of reverse movement after the seedling supply is completed. Further, at the time of this reverse movement, there is a ridge near the front of the aircraft 1. Therefore, it is preferable to operate the front sonar 61 even when moving backward, at least until it reaches the inner region IA of the field. It should be noted that the same control may be performed not only when replenishing seedlings but also when replenishing other materials.
  • the sonar sensor 60 may not be able to properly detect obstacles due to mud or the like adhering to it. At the start of running, the operation of the sonar sensor 60 is confirmed, but even if a problem occurs in the sonar sensor 60 during running, it is difficult to detect it.
  • the sonar ECU 64 or the control unit 30 may determine that the front sonar 61 has a problem. Even if the front sonar 61 detects an obstacle when moving backward, the control is performed so that the front sonar 61 does not recognize the obstacle. Further, the front sonar 61 includes a mud surface in the detection range, determines whether or not the obstacle is a mud surface, and if it is a mud surface, the control is performed so that the obstacle is not recognized as an obstacle. Therefore, if the front sonar 61 does not detect the mud surface for a predetermined period during reverse travel, it can be determined that the front sonar 61 has a problem.
  • the position information indicates that the ridge is approaching, even if the ridge is within the detection range of the sonar sensor 60, if the sonar sensor 60 that detects an obstacle in front of the traveling direction does not detect an obstacle, that is the case. It can be determined that the sonar sensor 60 has a problem.
  • the rice transplanter replenishes the medicine when the loaded medicine runs out.
  • the aircraft 1 is brought to the edge of the seedling replenishment side SL in the reverse running.
  • the aircraft 1 moves forward and returns to the traveling path.
  • the aircraft 1 In unmanned automatic driving, the aircraft 1 is temporarily stopped when shifting from the turning path to the internal reciprocating path IPL, and by performing an artificial operation during that time, the aircraft 1 moves backward at a predetermined speed (choice). , Aircraft 1 is brought to the edge of the seedling supply side SL.
  • This artificial operation can be performed by the remote controller 90 or the like. It should be noted that such an artificial operation can be accepted while traveling in the middle of the turn, and after the turn is completed, the aircraft 1 moves backward at a predetermined speed.
  • a notification screen is displayed on the information terminal 5 to prompt the operator to confirm whether the seedlings have run out or the drug has run out.
  • a sensor one of the sensor group 1A shown in FIG. 5 for detecting the remaining amount of seedlings and chemicals is provided, and when seedlings or chemicals run out, automatic running is not started and seedlings or chemicals run out. At least one of the fact that the cut has occurred and the fact that the seedlings and the medicine are urged to be replenished may be notified.
  • Such a notification may be displayed on the information terminal 5, may be notified by voice by the voice alarm generator 100, may be notified by lighting the laminated light 71, or may be notified to the remote controller 90 or the like.
  • the above processing is performed when the operation of starting the running by automatic running is performed by the remote controller 90, the notification screen is displayed, the notification that the seedlings have run out or the medicine has run out, and the seedlings or the medicines have run out. At least one of the notifications to encourage replenishment is made. Further, abnormalities other than seedling shortage and drug shortage may be confirmed, and in addition to the indication that the abnormality has occurred, a notification prompting the elimination / avoidance of the abnormality or a procedure thereof may be notified. ..
  • a voice alarm or the like may be notified before the vehicle starts moving. After that, the aircraft 1 may start moving after the notification is completed, or the aircraft 1 may start moving together with the notification.
  • the aircraft 1 For automatic driving, it is possible to set a mode with seedling supply and a mode without seedling supply.
  • the aircraft 1 In the seedling replenishment mode, the aircraft 1 temporarily stops in order to select whether or not to replenish the seedlings in the terminal region of the internal reciprocating path IPL before the turning path.
  • the remote controller 90 When it is not necessary to replenish the seedlings, the remote controller 90 is artificially operated during the temporary stop to restart the traveling, and the aircraft 1 stands by in the stopped state until the remote controller 90 is operated.
  • an artificial operation is performed to the effect that the seedlings need to be replenished.
  • the aircraft 1 is automatically advanced straight toward the ridge for a predetermined distance and stopped.
  • the aircraft 1 can be brought to the edge of the seedling supply side SL by another artificial operation by the remote controller 90.
  • the seedling replenishment place may be a specific seedling replenishment point on the outer periphery of the field instead of the seedling replenishment side.
  • a route is generated toward the seedling supply side or the seedling supply point, and the vehicle may automatically travel along the route.
  • the aircraft 1 temporarily stops at the boundary between the turning path and the internal round-trip path IPL to switch the control. Even in the mode without seedling supply, it may be necessary to move the aircraft 1 to the edge of the seedling supply side SL due to unexpected need for seedling supply or other circumstances. be. At this time, while the machine 1 is temporarily stopped, the machine 1 can be brought to the edge of the seedling supply side SL by an artificial operation using the remote controller 90 or the like. Alternatively, the speed is gradually reduced before the machine 1 is temporarily stopped, and during that time, the machine 1 can be brought to the edge of the seedling supply side SL by an artificial operation by a remote controller 90 or the like.
  • the running may be automatically restarted after a predetermined time has elapsed, but an artificial operation may be required to restart the running.
  • the notification of mere forward movement and backward movement can be canceled by setting.
  • the operation of the voice alarm generator 100 or the like may be checked at the start of automatic driving. For example, when the automatic driving start / stop switch 7D is pressed, an operation check is performed depending on whether or not the current value flowing through the voice alarm generator 100 or the like is appropriate.
  • manned automatic driving driving is started by the driver operating the main speed change lever 7A, and a certain manual operation may be required even when turning or performing work.
  • the driver receives the guidance performed under the control of the control unit 30, and by performing an operation according to the guidance, the driving is started, and the turning traveling and the work are performed.
  • guidance is given to operate the main speed change lever 7A in the traveling direction with respect to the traveling direction of the path.
  • the guidance is given by voice guidance, display on the information terminal 5, or the like, and includes guidance for prompting the operation of the main speed change lever 7A and the operation of the work device 1C.
  • a notification to that effect is given at the start of driving, during reverse movement, and during turning.
  • the operation of setting the main speed change lever 7A to the neutral position is necessary for starting the automatic running, and the operation related to the operation of the working device 1C such as lowering of the seedling planting device 3 continues the automatic working running. It is necessary to do. For example, it is necessary to shift the working device 1C, which has been put into a non-working state during turning, to a working state after turning. Therefore, guidance by voice or the like prompting these operations is continuously performed unless these operations are performed. For example, in the outermost planting work by manned automatic traveling, the automatic traveling does not continue unless the seedling planting device 3 is lowered by a manual operation. Therefore, the guidance prompting the main shift lever 7A to be in the neutral position continues to be notified until the seedling planting device 3 is lowered.
  • Guidance to return the main speed change lever 7A to the neutral position guidance to lower the seedling planting device 3 raised by the operator during automatic work running, and seedling planting at the start of each side in the outermost planting work. It is preferable that the guidance for raising and lowering the device 3 continues to be notified until the operation according to the guidance is performed.
  • guidance for returning the main shifting lever 7A to the operating position when the main shifting lever 7A is operated to the neutral position during turning or reverse movement in manned automatic driving and guidance for returning the main shifting lever 7A to the operating position, and for the main shifting lever to move forward and backward during unmanned automatic control.
  • Guidance for returning the main speed change lever 7A to the neutral position when operated, and guidance for lowering the seedling planting device 3 raised by the operator during automatic work running are operations contrary to preset automatic running. When such an operation is performed, guidance (warning) is given so that an appropriate operation is performed for performing the set automatic driving.
  • the voice guidance may be notified a predetermined number of times for a predetermined time, and only the guidance displayed on the information terminal 5 may be continued until the above operation is performed.
  • the guidance for operating the main shift lever 7A to the neutral position determines whether or not the angle of the swash plate of the continuously variable transmission 9 is in the neutral position regardless of the operation position of the main shift lever 7A. This may be performed when it is determined that the angle of the swash plate of the continuously variable transmission 9 is not in the neutral position. Further, when the angle of the swash plate of the continuously variable transmission 9 is determined to be the neutral position and automatic traveling is started when the main speed change lever 7A is not in the neutral position, the angle of the swash plate of the continuously variable transmission 9 is started. May be displaced at an angle corresponding to the operating position of the main shift lever 7A. As a result, the vehicle travels at a traveling vehicle speed according to the operating position of the main speed change lever 7A, and the traveling vehicle speed can be adjusted to the operator's operation.
  • manned automatic driving guidance is given to the operation of the main speed change lever 7A, and driving is performed based on the corresponding operation.
  • the turning running (direction change) connecting each side of the outer peripheral path ORL switches forward and backward without the operation of the driver. Therefore, even in the case of manned automatic driving, it is preferable not to give guidance even if the driving is switched during the driving that does not require such an operation.
  • the operation of the work device 1C may require a manual operation, and in this case, the guidance for performing the operation related to the operation of the work device 1C may be provided. Be notified.
  • the main speed change lever 7A operated during manned automatic driving is maintained in the route traveling direction during automatic driving, and even if there is a reverse operation due to a change of direction (turning) during automatic driving, the main speed change lever 7A is the same. Maintained in position. Further, when an actuator such as a motor for moving the operation position of the main shift lever 7A is provided, the operation position of the main shift lever 7A is set according to the traveling direction of the machine body 1 (the angle of the swash plate of the continuously variable transmission 9). May be changed. Similarly, when the traveling vehicle speed is changed by the brake, the operating position of the main speed change lever 7A may be changed according to the operation of the brake or the traveling vehicle speed (angle of the swash plate of the continuously variable transmission 9). At this time, the operation status may be notified during the operation of the actuator and before and after the operation.
  • an actuator such as a motor for moving the operation position of the main shift lever 7A
  • the operation position of the main shift lever 7A is set according to the traveling direction of the machine
  • Guidance of the starting point in manned autonomous driving is performed by manual operation based on guidance. Therefore, when guiding the start point in manned automatic driving, a notification is first given to operate the main shift lever 7A to the reverse side for reverse movement, and then to move forward to the start point S in order to move forward. Notification is given to operate the main speed change lever 7A to the forward side.
  • the main speed change lever 7A is not in the neutral position. It may be in the position of. Therefore, when the start point guidance is started, when the round-trip planting (planting work running on the internal round-trip path IPL) is started, when the running is restarted after the seedling supply, the internal round-trip path IPL after the round-trip planting Before being automatically guided to the starting point of the above, the driver operates the main speed change lever 7A from the neutral position in a predetermined direction to restart the automatic traveling.
  • Manned automatic driving is started by pressing the automatic driving start / stop switch 7D after the predetermined conditions are met in a state where manned automatic driving is selected by the mode changeover switch 7E or the like, and the main shift lever 7A Is operated in the forward direction to start traveling. Further, the unmanned automatic traveling is started when a predetermined condition is satisfied, the traveling is started by the operation of the remote controller 90, and the traveling is not started by the operation other than the remote controller 90.
  • manned automatic driving In manned automatic driving, automatic driving is started by operating the main speed change lever 7A. Further, in the manned automatic traveling, the seedling planting device 3 is lowered by a manual operation after the turning is completed. Further, by operating the automatic driving start / stop switch 7D, the mode is shifted to the manned automatic driving mode.
  • the raising and lowering of the seedling planting device 3 at the time of turning at the time of planting the outermost circumference is operated according to the guidance. Even in this case, if it can be confirmed by image analysis using an imaging device that there is no problem in raising and lowering the seedling planting device 3, the seedling planting device 3 may also be raised and lowered by automatic control.
  • the above guidance may be notified by various means using a laminated light 71, a remote controller 90, or the like, in addition to the voice guidance given by a voice alarm or the like and the display by the information terminal 5.
  • Such guidance is controlled by a notification control unit or the like, and the notification control unit may be a control unit 30, may be built in the control unit 30, or may be provided separately from the control unit 30.
  • a route may be provided inside by a predetermined distance from the outer circumference of the field, and unmanned automatic traveling may not be performed at the same time. May be possible.
  • the travel route including the outer circuit route ORL is determined based on the first non-working travel along the outer circumference of the field.
  • the non-working run along the outer circumference of the field may be carried out close to the outer circumference of the field, or may be run along the outer circumference at a predetermined distance from the outer circumference of the field.
  • the outer circuit path ORL is set inward by a predetermined distance from the route where the non-working travel is performed, and the inner circuit path IRL and the inner circuit are set with reference to the outer circuit path ORL.
  • the round-trip path IPL is set.
  • the route on which the non-working travel is performed is set as the outer peripheral route ORL, and the inner peripheral route IRL and the internal round-trip route IPL are set based on the outer peripheral route ORL.
  • a front marker (corresponding to an "adjacent marker") is used when performing non-working running at a predetermined distance from the outer circumference of the field.
  • the non-working run so that the front marker is in contact with the outer circumference (for example, ridge) of the field, the run is separated from the outer circumference of the field by the length of the front marker and runs along the outer circumference.
  • the front marker has a configuration that can be switched in three stages.
  • the first stage is the stowed state.
  • the second stage is a state in which the plant protrudes by a normal length, and is a length protruding from the outermost end of the planting portion by the length of the inter-row length.
  • the third stage is a state in which the aircraft 1 protrudes by a predetermined distance from the outer circumference of the field when the front marker is not operated so as to be in contact with the outer circumference (for example, ridge) of the field. Is.
  • a predetermined distance can be arbitrarily set. When a predetermined distance can be arbitrarily set, the traveling vehicle speed for traveling on the outer circuit path ORL may be set according to the predetermined distance.
  • non-working running along the outer circumference of the field may be carried out away from the outer circumference of the field by a distance determined by the driver in consideration of manned automatic running on the outer circumference route ORL.
  • a distance determined by the driver in consideration of manned automatic running on the outer circumference route ORL.
  • the predetermined distance is set from the detection of the abnormality to the stop of the aircraft 1 when the abnormality including an obstacle is detected and the aircraft 1 is stopped while traveling at the predetermined traveling vehicle speed. It can be the minimum distance that the aircraft 1 travels or the distance to which a margin is added.
  • the position information related to the outer periphery of the field is acquired, and the outer shape map (field map) and the traveling route of the field are set based on the outer periphery.
  • the non-working run along the outer circumference of the field all the sides constituting the field may be continuously run, and the position information relating to the continuous outer periphery may be acquired, but the position information relating to each side constituting the field may be acquired. May be obtained individually to generate a field map.
  • the running can be restarted from the side where the running is stopped without restarting the non-working running from the beginning.
  • the outermost planting can be performed for each side.
  • the outer circuit route ORL is operated by manned automatic driving.
  • the work running is performed according to the control by the automatic running, and the turning running is performed during the work running of each side.
  • the seedling planting device 3 may be raised and lowered by automatic control, and the operator may select whether to perform manual operation or automatic control.
  • the automatic control for example, the seedling planting device 3 is raised before the start of the turning run, and the seedling planting device 3 is lowered after the end of the turning run.
  • the control unit 30 is used to generate an outer map (field map) of the field, set the inner area IA, set the outer area OA, set the traveling route, and adjust the distance from the outer periphery of the field to the outer orbital route ORL. Do.
  • a traveling route generation unit built in the control unit 30 or provided outside the control unit 30 may perform these processes.
  • a sensor that detects the remaining amount of each material (one of the sensor group 1A shown in FIG. 5) is used for a device that supplies various materials such as a seedling planting device 3, a fertilizer application device 4, a chemical spraying device 18, and a seeder. May be provided.
  • a seedling shortage sensor that detects the remaining amount of seedlings will be described as an example, but it can also be applied to various materials such as fertilizers, chemicals, and seed paddy.
  • control unit 30 may notify the information terminal 5, the voice alarm generator 100, or the like to that effect.
  • the control unit 30 does not run. It may be controlled as follows. If the planting work is carried out when the remaining amount of seedlings is insufficient, there is a possibility that a stock shortage will occur in the middle of the field. Therefore, the occurrence of stock deficiency can be suppressed by setting the configuration so that the stock does not run in such a possible state.
  • the aircraft 1 may be stopped, but with the seedling planting device 3 raised, the seedling supply side You may run to SL.
  • the seedling shortage sensor is configured to detect a predetermined amount within the range where the amount required to return to the seedling supply side SL remains, and when the seedling shortage sensor detects this amount, seedling supply is continued while working. It may be configured to run to the side SL.
  • the structure is not limited to the seedling supply side SL, and depending on the position detected by the seedling shortage sensor, it may be configured to travel to another side where seedling supply is possible. In the case of automatic traveling, the movement to the seedling supply side SL or other side may be an automatic traveling along the traveling route where a traveling route is generated from that place.
  • the work travels to the vicinity of the seedling supply side SL, for example, before the turning area of the internal reciprocating route IPL. May be continued.
  • a seedling shortage sensor (one of the sensor group 1A shown in FIG. 5) for detecting that the seedlings have run out is further provided for each row, and the remaining amount of seedlings is less than a predetermined amount in the middle of the traveling route. If the seedlings are cut by any of the articles in the work running after the detection of the above, the seedling planting device 3 may be raised and the running may be performed.
  • the seedling shortage sensor that detects that the seedlings have run out may have, for example, a configuration in which image analysis is performed to determine that the seedlings have run out because the number of seedlings has decreased to below the threshold value by the imaging device, or machine-learned learning. You may detect the shortage of seedlings by inputting the captured image into the finished model.
  • the seedling shortage sensor that detects that the seedlings have run out is a seedling shortage sensor (1 of the sensor group 1A shown in FIG. 5) that is provided at the end of the seedling feeding portion of the seedling loading table 21 and detects the presence or absence of seedlings. It may be one).
  • the choi gathering function can be used to move to the seedling supply side SL, but the choi gathering speed limit is released for the choi gathering running with the seedling planting device 3 raised (empty work).
  • the traveling vehicle speed may be faster than that of the chopping performed before and after the turning area.
  • the running is not started when it is detected that the remaining amount of seedlings is less than a predetermined amount. Further, on each side of the inner circuit path IRL and the outer circuit path ORL, even when the work running after turning is started, the running is not started when it is detected that the remaining amount of seedlings is less than a predetermined amount. Is also good.
  • At least one of the place where it was detected that the remaining amount of seedlings was less than a predetermined amount and the place where it was detected that the seedlings were cut for each row may be displayed on the information terminal 5 or the like.
  • the aircraft 1 may be temporarily stopped later. It is possible to determine whether or not to replenish the seedlings while the vehicle is stopped.
  • the material such as seedlings for example, clogging of side-row fertilizer, seed paddy, side-row medicine, etc., running out of fuel, remaining amount of battery 73, etc. may be detected.
  • the aircraft 1 may be stopped.
  • a sensor one of the sensor group 1A shown in FIG. 5 that detects clogging of side-row fertilizer, seed paddy, side-row medicine, etc. may be provided for each row.
  • the battery 73 can be charged by increasing the engine speed. Therefore, when it is detected that the remaining amount of the battery 73 is equal to or less than a predetermined amount, the engine speed may be automatically increased.
  • the machine body 1 may slip during running, and the wheels 12 (body body 1) may sink and work running may be delayed. Therefore, it is preferable to measure the slip ratio of the machine body 1.
  • the slip ratio is a state in which the aircraft 1 is trying to travel but the aircraft 1 is not traveling. Therefore, the slip ratio can be calculated from the state of the continuously variable transmission 9 and the position of the own vehicle calculated from the positioning unit 8. Further, instead of the state of the continuously variable transmission 9, a rotation speed sensor of the rotating shaft (one of the sensor group 1A shown in FIG. 5) provided on the wheel 12 may be used.
  • the aircraft 1 When it is determined that the wheel 12 is sunk, the aircraft 1 is temporarily stopped, and in the case of automatic driving, the automatic driving is terminated. Further, when it is determined that the wheel 12 is sunk, the return operation may be performed, or the aircraft 1 may be temporarily stopped when the sinking is not resolved even if the return operation is performed. In the return operation, for example, the differential may be locked to drive either the left or right wheel 12, the steering wheel may be returned and the side clutch may be engaged during turning, or slalom running may be performed.
  • the sunken place may be memorized on the traveling route, the sunken part may be recognized as an obstacle, and may be reflected in the setting of the traveling route.
  • the travel route is set so as to bypass the sunken place.
  • the seedling planting device 3 shown in FIGS. 1 and 2 is a specific example of the working device 1C.
  • the seedling planting device 3 performs work in a paddy field. More specifically, the seedling planting device 3 performs the seedling planting work along a predetermined row direction.
  • the present invention is not limited to this, and as a specific example of the working device 1C, a sowing device that performs sowing work along a predetermined row direction may be provided. That is, the work device 1C may be a planting system work device that performs seedling planting work or sowing work along a predetermined row direction.
  • the rice transplanter in the present embodiment includes a first clutch C1, a second clutch C2, a third clutch C3, and a fourth clutch C4.
  • Each section clutch EC is composed of the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4.
  • Each line clutch EC is an example of a work clutch that switches the drive state of the work device 1C by turning on / off the power transmission from the engine 2.
  • each row clutch EC is configured so that work start and work stop by the seedling planting device 3 can be selected for each predetermined number of rows. More specifically, each row clutch EC is configured so that the start and stop of work by the seedling planting device 3 can be selected every two rows.
  • each row clutch EC may be configured so that the start and stop of work by the seedling planting device 3 can be selected for each row or every three or more rows.
  • the eight planting mechanisms 22 are provided in a state of being divided into four sets. Further, the control unit 30 controls the on / off state of the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4. That is, the control unit 30 controls the on / off state of each clutch EC.
  • the control unit 30 is an example of a clutch control unit that controls the on / off state of the work clutch.
  • the rice transplanter in the present embodiment includes a planting clutch C5.
  • the planting clutch C5 is an example of a work clutch that switches the drive state of the work device 1C by turning on / off the power transmission from the engine 2.
  • the power from the engine 2 is distributed to each planting mechanism 22 via the planting clutch C5.
  • the planting clutch C5 switches the driving state of the seedling planting device 3 by turning on / off the power transmission from the engine 2.
  • control unit 30 controls the on / off state of the planting clutch C5.
  • the planting clutch C5 When the planting clutch C5 is in the engaged state, the power from the engine 2 is transmitted to the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4.
  • the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4 are in the engaged state, the four sets of planting mechanisms 22 are driven. As a result, the seedling planting device 3 is driven.
  • the planting clutch C5 when the planting clutch C5 is in the disengaged state, the power from the engine 2 is not transmitted to any of the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4. As a result, the four sets of planting mechanisms 22 are stopped. As a result, the seedling planting device 3 is stopped.
  • the planting clutch C5 is switched from the off state to the on state to start driving the seedling planting device 3, and the planting clutch C5 is off from the on state.
  • the drive of the seedling planting device 3 is stopped by switching to the state.
  • the elevating link 13a shown in FIG. 1 is a specific example of the working device 1C.
  • the control unit 30 controls the drive of the elevating link 13a.
  • the seedling planting device 3 moves up and down by driving the elevating link 13a. That is, the control unit 30 controls the raising and lowering of the seedling planting device 3.
  • the control unit 30 is an example of an elevating control unit that controls the elevating and lowering of the seedling planting device 3.
  • the control unit 30 is configured to raise the seedling planting device 3 when the driving of the seedling planting device 3 is stopped. As a result, even if the rice transplanter is located at the ridge, the rice transplanter can turn smoothly.
  • control unit 30 is configured to lower the seedling planting device 3 when the driving of the seedling planting device 3 is started. As a result, the seedling planting work by the seedling planting device 3 is surely performed.
  • control unit 30 can execute deceleration control and speed increase control by controlling the traveling device 1D.
  • Deceleration control is control that reduces the vehicle speed.
  • speed increase control is a control for increasing the vehicle speed. That is, the control unit 30 controls the vehicle speed.
  • the control unit 30 is an example of a vehicle speed control unit that controls the vehicle speed.
  • the rice transplanter in this embodiment is an example of a working machine capable of automatically traveling.
  • the first clutch C1, the second clutch C2, the third clutch C3, the fourth clutch C4, and the planting clutch C5 are automatically controlled by the control unit 30.
  • the traveling vehicle speed is reduced when the each row clutch EC or the planting clutch C5 is turned on and off. For example, when the clutch EC or the planting clutch C5 is turned on and off, the traveling vehicle speed is reduced to a predetermined vehicle speed.
  • each line clutch EC or the planting clutch C5 it is preferable to recover the traveling speed after the on / off operation of each line clutch EC or the planting clutch C5 is completed. Thereby, the planting work or the subsequent running can be efficiently performed while appropriately starting or ending the planting work.
  • the traveling vehicle speed is repeatedly switched in a short period of time, the work may not be performed properly, and smooth traveling may be hindered. Therefore, when the distance traveled by the aircraft 1 after each line clutch EC or planting clutch C5 is turned off and before each line clutch EC or planting clutch C5 is turned on is less than or equal to a predetermined distance. , The configuration may be such that the traveling vehicle speed is not recovered. Alternatively, when the time from when each line clutch EC or the planting clutch C5 is turned off to when each line clutch EC or the planting clutch C5 is switched to the on state is less than a predetermined time, the traveling vehicle speed It may be configured without recovery.
  • these predetermined distances and times can be set arbitrarily and can be changed according to the working conditions.
  • the predetermined distance and time can be set for each article. Further, when decelerating and accelerating, it is preferable that the speed is not changed suddenly and is performed slowly.
  • the function of decelerating the traveling vehicle speed when the clutch EC or the planting clutch C5 is turned on and off may be arbitrarily disabled.
  • switching control the vehicle speed control when the on / off state of each clutch EC is switched will be described by taking the automatic driving shown in FIG. 16 as an example.
  • switching control the control for switching the on / off state of each clutch EC will be referred to as "switching control”.
  • the rice transplanter first performs seedling planting work while traveling along the internal round-trip route IPL. Next, the rice transplanter performs the seedling planting work while traveling along the inner circuit path IRL. Finally, the rice transplanter performs the seedling planting work while traveling along the outer circuit path ORL.
  • the obstacle OB is located on the outer periphery of the field. Therefore, the outer circuit path ORL is generated in a state of bypassing the obstacle OB. As a result, a part of the outer circuit path ORL projects toward the inner circuit path IRL.
  • control unit 30 executes the switching control
  • the control unit 30 executes the deceleration control before the on / off state of each clutch EC is switched. Further, after the aircraft 1 has passed the switching point, the control unit 30 executes the speed-up control.
  • the switching point is the position of the aircraft at the time when the switching control is executed by the control unit 30.
  • control unit 30 executes switching control that switches the on / off state of each clutch EC
  • the control unit 30 controls to reduce the vehicle speed before the on / off state of each clutch EC is switched.
  • the deceleration control is executed.
  • the control unit 30 executes the speed-up control which is the control for increasing the vehicle speed.
  • the aircraft 1 first passes through the position P1.
  • the time at this time is set to time t1.
  • the aircraft 1 reaches the position P3 after passing through the position P2.
  • the first clutch C1 and the second clutch C2 are switched from the on state to the off state by the control of the control unit 30.
  • the left two sets of the four sets of planting mechanisms 22 are stopped.
  • the aircraft 1 reaches the position P8 after passing through the positions P4, P5, P6, and P7.
  • the first clutch C1 and the second clutch C2 are switched from the disengaged state to the on state by the control of the control unit 30.
  • the driving of the left two sets of the four sets of planting mechanisms 22 is restarted.
  • the rice transplanter plants only four seedlings on the right side while running.
  • FIG. 17 shows the transition of the vehicle speed of the rice transplanter when the rice transplanter travels along the inner circuit path IRL in the example shown in FIG.
  • the times when the aircraft 1 reaches the positions P2, P3, P4, P5, P6, P7, P8, P9, and P10 are the times t2, t3, t4, t5, t6, t7, t8, t9, respectively. Let it be t10.
  • the vehicle speed of the rice transplanter is the first vehicle speed V1.
  • the aircraft 1 reaches the position P1.
  • the switching control is scheduled to be executed when the aircraft 1 reaches the position P3. Therefore, the control unit 30 executes the deceleration control from the time t1 to the time t2.
  • the deceleration control is executed until the vehicle speed of the rice transplanter reaches a predetermined second vehicle speed V2.
  • the second vehicle speed V2 is lower than the first vehicle speed V1.
  • the vehicle speed of the rice transplanter reaches the second vehicle speed V2. That is, at time t2, the vehicle speed reaches the second vehicle speed V2.
  • the aircraft 1 reaches the position P3.
  • the first clutch C1 and the second clutch C2 are switched from the on state to the off state by the control of the control unit 30. That is, at this time, the control unit 30 executes the switching control.
  • the deceleration control has already been executed in the period from time t1 to time t2. That is, the control unit 30 has already executed the deceleration control before the on / off state of each clutch EC is switched.
  • position P3 is a switching point. Therefore, the control unit 30 executes the speed-up control from the time t4 to the time t5 after the aircraft 1 has passed the position P3. In the present embodiment, the speed increase control is executed until the vehicle speed of the rice transplanter reaches the vehicle speed before the execution of the deceleration control.
  • the vehicle speed of the rice transplanter reaches the first vehicle speed V1. After that, until time t6, the vehicle speed of the rice transplanter is maintained at the first vehicle speed V1.
  • the switching control is scheduled to be executed when the aircraft 1 reaches the position P8. Therefore, the control unit 30 executes the deceleration control from the time t6 to the time t7.
  • the vehicle speed of the rice transplanter reaches the second vehicle speed V2. That is, at time t7, the vehicle speed reaches the second vehicle speed V2.
  • the aircraft 1 reaches the position P8.
  • the first clutch C1 and the second clutch C2 are switched from the disengaged state to the on state by the control of the control unit 30. That is, at this time, the control unit 30 executes the switching control.
  • the deceleration control has already been executed in the period from time t6 to time t7. That is, the control unit 30 has already executed the deceleration control before the on / off state of each clutch EC is switched.
  • position P8 is a switching point. Therefore, the control unit 30 executes the speed-up control from the time t9 to the time t10 after the aircraft 1 has passed the position P8.
  • the vehicle speed of the rice transplanter reaches the first vehicle speed V1. After that, the vehicle speed of the rice transplanter is maintained at the first vehicle speed V1.
  • control unit 30 executes the speed-up control after the aircraft 1 has passed the position P3.
  • the first point which is the switching point and the second point which is the switching point are located on the traveling path of the aircraft 1, and the aircraft 1 passes through the first point. If it is planned to pass the second point after the operation and the distance between the first point and the second point is less than or equal to a predetermined reference distance, the control unit 30 has the first body 1 of the control unit 30. The speed increase control is not executed from the time when the point is passed until the time when the second point is reached.
  • the position P3 which is the switching point and the position P8 which is the switching point are located on the inner circuit path IRL which is the traveling path of the aircraft 1. Further, it is planned that the aircraft 1 will pass through the position P8 after passing through the position P3.
  • the control unit 30 reaches the position P8 after the aircraft 1 passes through the position P3, unlike the above example.
  • the speed increase control is not executed until the speed is increased.
  • the deceleration control may or may not be executed between the time when the aircraft 1 passes the position P3 and the time when the aircraft 1 reaches the position P8.
  • the vehicle speed of the rice transplanter may be lower than the second vehicle speed V2.
  • the deceleration may be continuously decelerated from the position P1 to the position P5, the speed may be continuously increased from the position P5 to the position P10, and the speed may be returned to the normal working speed V1.
  • the on / off state of each clutch EC is switched while the rice transplanter is traveling along the inner circuit path IRL.
  • the present invention is not limited to this, and the on / off state of the planting clutch C5 may be switched while the rice transplanter is traveling along the inner circuit path IRL.
  • the control unit 30 executes switching control which is a control for switching the on / off state of the planting clutch C5
  • the control unit 30 controls to reduce the vehicle speed before the on / off state of the planting clutch C5 is switched.
  • the deceleration control is may be executed.
  • the present invention is not limited to this, and the first clutch C1 may be switched from the on state to the off state first, and then the second clutch C2 may be switched from the on state to the off state.
  • the present invention is not limited to this, and the second clutch C2 may be switched from the disengaged state to the on state first, and then the first clutch C1 may be switched from the disengaged state to the on state.
  • the present invention is not limited to this, and when the rice transplanter travels along the inner circuit path IRL, the on / off state of any of the clutches EC may be switched.
  • the internal reciprocating path IPL is a repeating path of a straight path and a swivel path, but the planting clutch C5 is switched from the on state to the off state by the control unit 30 at the end point position of the straight path, and then the seedling planting device 3 rises. ..
  • the seedling planting device 3 is maintained in a lowered state while the machine 1 travels a predetermined distance D1 from the machine position at the time of switching the on / off state of the planting clutch C5. It is configured. With this configuration, it is possible to prevent the seedling planting device 3 from rising and the floating seedlings from being generated while the seedlings are held by the planting claws in each planting mechanism 22.
  • control unit 30 is in a state in which the seedling planting device 3 is lowered while the machine 1 travels a predetermined distance D1 from the machine position at the time when the planting clutch C5 is switched from the on state to the off state by the control unit 30. It is configured to be maintained at.
  • the planting clutch C5 may be configured to be switched from the on state to the off state by a predetermined distance D1 before the end point position of the straight path.
  • the predetermined distance D1 is equal to or longer than the seedling planting interval along the traveling direction of the aircraft 1. That is, the predetermined distance D1 is equal to or greater than the distance between stocks.
  • the rice transplanter performs seedling planting work while traveling along the internal round-trip route IPL in the internal region IA. Then, the aircraft 1 reaches the position P11. The position P11 is located at the boundary between the inner region IA and the outer peripheral region OA.
  • the control unit 30 switches the planting clutch C5 from the on state to the off state. That is, the position P11 is the position of the machine body at the time when the planting clutch C5 is switched from the on state to the off state by the control unit 30.
  • the control unit 30 keeps the seedling planting device 3 in the lowered state until the machine body 1 reaches the position P12.
  • control unit 30 raises the seedling planting device 3.
  • the control unit 30 may be configured in a state of being divided for each function.
  • a functional unit for controlling each line clutch EC and a functional unit for controlling the traveling device 1D may be separately provided, and the control unit 30 may be composed of these functional units.
  • the control unit 30 controls the driving state of the seedling planting device 3, the vehicle speed, and the raising and lowering of the seedling planting device 3 based on the position of the machine body 1.
  • the position of any part of the rice transplanter may be treated as the position of the machine 1. That is, the control by the control unit 30 may be performed based on the position of any part of the rice transplanter.
  • the vehicle speed control by the control unit 30 may be performed based on the position of the positioning unit 8 or may be performed based on the position of the seedling planting device 3.
  • the fertilizer application device 4 conveys a hopper 25 (storage unit) for storing fertilizer (drugs and other agricultural materials), a feeding mechanism 26 for feeding fertilizer from the hopper 25, and a fertilizer fed by the feeding mechanism 26. It also has a fertilizer hose 28 (hose) that discharges fertilizer to the field.
  • the fertilizer stored in the hopper 25 is fed out in a predetermined amount by the feeding mechanism 26 and sent to the fertilizer application hose 28, transported in the fertilizer application hose 28 by the transport wind of the blower 27, and discharged from the groove grooving device 29 to the field. NS. In this way, the fertilizer application device 4 supplies fertilizer to the field.
  • the hopper 25 and the feeding mechanism 26 are mounted and supported on the machine frame 1E, and the groove making device 29 is provided at the lower end of the seedling planting device 3.
  • the fertilizer application hose 28 extends over the feeding mechanism 26 and the groove making device 29, and when the fertilizer is supplied from the hopper 25 to the field, the fertilizer passes through the fertilizer application hose 28.
  • the fertilizer application work by the fertilizer application device 4 is performed in conjunction with the planting work.
  • an internal reciprocating path IPL is set in the internal region IA, and a turning path is set in the outer peripheral region OA.
  • the internal round-trip path IPL is a plurality of parallel paths, and the turning path is a path connecting adjacent internal round-trip path IPLs.
  • the planting work by the seedling planting device 3 is performed along the internal reciprocating path IPL, and the fertilizing work by the fertilizer applying device 4 is also performed along the internal reciprocating path IPL.
  • the planting work is not performed in the swivel path of the outer peripheral region OA, and the fertilizer application work by the fertilizer application device 4 is not performed in the swirl path of the outer peripheral region OA.
  • the rice transplanter When the rice transplanter travels while planting the internal area IA along the internal reciprocating path IPL, the rice transplanter reaches the boundary area between the internal area IA and the outer peripheral area OA.
  • the boundary region in the internal region IA is the "end position", at which the planting mechanism 22 stops and the seedling planting device 3 rises.
  • the feeding mechanism 26 is stopped and the fertilizer application work by the fertilizer application device 4 is stopped. This completes the planting and fertilizing operations along one internal reciprocating path IPL in the internal region IA.
  • the rice transplanter moves to the outer peripheral region OA and makes a turning run in the outer peripheral region OA in order to shift to the adjacent internal reciprocating path IPL.
  • the rice transplanter moves to the inner area IA again and starts the planting work and the fertilizer application work along the adjacent internal reciprocating path IPL.
  • the boundary region between the inner region IA and the outer peripheral region OA of the inner region IA is the "start position", and the seedling planting device 3 is lowered at this start position, and the planting mechanism 22 is operated again.
  • the feeding mechanism 26 starts to move and the fertilizer application operation by the fertilizer application device 4 is started.
  • the start timing of the actual supply of fertilizer to the field may be later than the start timing of the planting work, and the fertilizer may not be sufficiently applied at the start position.
  • the timing of stopping the supply of fertilizer to the actual field may be delayed from the timing of stopping the planting work.
  • the fertilizer remaining on the fertilizer hose 28 may be discharged to the end position as it is, and the fertilizer may be excessively supplied at the end position. In order to eliminate such inconvenience, the following control for the fertilizer application device 4 is performed in the present embodiment.
  • the control unit 30, which is the core of the control system of the rice transplanter, controls the running of the rice transplanter and the operation of various work devices 1C.
  • a fertilizer application device 4 is included as a part of the work device 1C.
  • the positioning unit 8 acquires the position information of the aircraft 1, that is, the position of the own vehicle based on the positioning signal of the navigation satellite.
  • the control unit 30 can control the fertilizer application device 4 based on the position of the own vehicle calculated by the positioning unit 8 while the machine body 1 is traveling. Then, the control unit 30 operates the fertilizer application device 4 before the start of the work run when the work run starts from the preset start position, and ends the work run at the preset end position. It is configured to stop the fertilizer application device 4 before the end.
  • the time required from the time when fertilizer is fed from the hopper 25 by the feeding mechanism 26 until it is actually discharged to the field depends on the wind speed of the transport wind and the length of the fertilizer application hose 28. Change. Therefore, the operator may be able to set the time required for fertilizer transfer while operating the information terminal 5. Further, the control unit 30 may automatically calculate the fertilizer transport time required by the operator setting the length of the fertilizer hose 28 and the wind speed of the transport wind on the information terminal 5. The control unit 30 may calculate the distance traveled by the rice transplanter (hereinafter, “fertilizer transport required distance”) from the time when fertilizer is fed from the hopper 25 by the feeding mechanism 26 until it is actually discharged to the field. .. In this case, the required distance for fertilizer transportation is calculated by multiplying the above-mentioned time required for fertilizer transportation by the traveling vehicle speed of the rice transplanter.
  • the starting position after turning is known, and the position of the rice transplanter's own vehicle is calculated by the positioning unit 8.
  • the traveling vehicle speed is calculated from the amount of change in the position of the own vehicle per unit time. That is, the positioning unit 8 corresponds to a "speed detection unit” capable of detecting the traveling vehicle speed (speed) of the aircraft 1.
  • the speed detection unit may be a rotation speed sensor (not shown) provided on the wheel 12 or a rotation speed sensor (not shown) provided on the continuously variable transmission 9.
  • the rice transplanter is moving from the outer peripheral area OA to the inner area IA while the rice transplanter is turning toward the next internal round-trip path IPL in the outer peripheral area OA, or after the turning is completed. In the meantime, it is calculated periodically.
  • the first distance is calculated by multiplying the first hour by the traveling vehicle speed. The first distance is the distance until the position of the groove-growing device 29 in the machine body 1 reaches the start position (see FIGS. 19 and 20).
  • second time the time until the position of the groove making device 29 in the machine body 1 reaches the end position.
  • the second time is calculated periodically while the rice transplanter travels through the internal region IA while planting along the internal round-trip path IPL.
  • the second distance is calculated by multiplying the second time by the traveling vehicle speed.
  • the second distance is the distance until the position of the groove-growing device 29 in the machine body 1 reaches the end position (see FIGS. 21 and 22).
  • the control unit 30 operates the feeding mechanism 26. Then, when the fertilizer conveyed along the fertilizer application hose 28 begins to be discharged, the groove making device 29 is located at the start position. That is, the fertilizer application operation by the fertilizer application device 4 is accurately started at the start position.
  • the control unit 30 calculates the first time, which is the time until the position of the groove making device 29 in the machine body 1 reaches the start position, based on the position (position information) of the own vehicle, and also calculates the first time.
  • the fertilizer application device 4 is configured to operate when one hour is less than or equal to the time required for fertilizer transportation (preset threshold value). Further, the control unit 30 operates the fertilizer application device 4 so that the fertilizer conveyed along the fertilizer application hose 28 starts to be discharged at the start position.
  • the control unit 30 calculates, based on the position of the own vehicle, a first distance, which is the distance from the position of the groove-growing device 29 in the machine body 1 to reach the start position after the turning run of the body body 1.
  • the fertilizer application device 4 may be operated when the first distance is equal to or less than the required fertilizer transport distance (preset threshold value).
  • the second time is calculated periodically.
  • the control unit 30 stops the feeding mechanism 26.
  • the groove making device 29 is located at the end position. That is, the fertilizer application work by the fertilizer application device 4 is accurately completed at the end position. That is, the control unit 30 calculates the second time, which is the time until the position of the groove making device 29 in the machine body 1 reaches the end position, based on the position of the own vehicle, and the second time is fertilizer.
  • the fertilizer application device 4 is configured to be stopped when the time required for transportation (a preset threshold value) or less is reached. Further, the control unit 30 stops the fertilizer application device 4 so that the fertilizer conveyed along the fertilizer application hose 28 is completely discharged at the end position. Alternatively, the control unit 30 calculates a second distance, which is the distance until the position of the groove making device 29 in the machine body 1 reaches the end position, based on the position of the own vehicle, and the second distance is fertilizer. The fertilizer application device 4 may be stopped when it is equal to or less than the required transport distance (preset threshold value).
  • the field shown in FIG. 4 has a rectangular shape, but the field is not always rectangular, and may have a trapezoidal shape or an unequal side shape, for example.
  • the boundary line between the outer peripheral region OA and the inner region IA is inclined with respect to the internal reciprocating path IPL. It is not preferable that the seedlings are planted in a state of protruding into the outer peripheral region OA during the planting work for the inner region IA. Therefore, in a state where the seedling planting device 3 straddles the boundary between the outer peripheral region OA and the inner region IA, the planting clutch provided for each row of the seedling planting device 3 is used to cover the inner region IA. Only planting work is done.
  • the seedling planting device 3 as a working device is configured so that seedlings can be planted in each row in the field.
  • the feeding mechanism 26 is provided every two articles in the fertilizer application device 4, it may be provided every two articles, or it may be provided every three or more articles.
  • the right side portion of the seedling planting device 3 is located in the internal region IA, and the portion located in the internal region IA of the seedling planting device 3 as the machine body 1 advances.
  • the ratio increases. Therefore, when the right end of the seedling planting device 3 enters the inside of the internal region IA, only the planting clutch at the right end of the seedling planting device 3 is in the transmission state, and as the aircraft 1 moves forward, the left side is left. Each planting clutch is sequentially switched to the transmission state.
  • the control unit 30 calculates the first time, which is the time required to reach the start position, for each planting row, and when the first time for each planting row is less than or equal to the time required for fertilizer transport, the fertilizer application device.
  • the first time which is the time required to reach the start position, for each planting row, and when the first time for each planting row is less than or equal to the time required for fertilizer transport, the fertilizer application device.
  • Each of the feeding mechanisms 26 in No. 4 is operated separately for each planting line.
  • the end position of the planting work may differ from row to row.
  • the control unit 30 calculates the second time, which is the time required to reach the end position, for each planting row, and when the second time for each planting row is less than or equal to the time required for fertilizer transport, the fertilizer application device.
  • Each of the feeding mechanisms 26 in No. 4 is stopped separately for each planting line. That is, the control unit 30 is configured so that the seedling planting device 3 operates or stops the fertilizer application device 4 for each row in conjunction with the row for planting
  • the end position where the rice transplanter has performed the planting work along the internal round-trip path IPL and the start position after the rice transplanter has made a turning run toward the next internal round-trip path IPL in the outer peripheral region OA The start timing and end timing of the fertilizer application work have been described based on the above, but the present invention is not limited to this embodiment.
  • the end position is the end of one inner circuit path IRL in the outer peripheral region OA (the end before the rice transplanter turns toward the next inner circuit path IRL) or the end of the outer circuit path ORL (rice transplanter). May be the front end) that turns toward the next outer circuit path ORL.
  • the control unit 30 may stop the feeding mechanism 26. Further, when the start position is the start end of the next inner circuit path IRL and the rice transplanter is turning toward the next inner circuit path IRL (or outer circuit path ORL) in the outer peripheral region OA, the first The time may be calculated periodically. Then, when the rice transplanter approaches the start position of the next inner circuit path IRL (or outer circuit path ORL) and the second time becomes less than the fertilizer transport time required, the control unit 30 may operate the feeding mechanism 26. ..
  • the control unit 30 decelerates the machine body 1 before operating or stopping the fertilizer application device 4 when the traveling vehicle speed is faster than a preset set speed. At this time, the control unit 30 may be decelerated to the set speed or may be decelerated to less than the set speed.
  • control unit 30 may allow the machine body 1 to travel at the traveling vehicle speed until the operation or stop of the fertilizer application device 4 is started. Further, the control unit 30 may accelerate the machine body 1 to an arbitrary speed that is easy to match with the stop timing of the fertilizer application device 4 before operating or stopping the fertilizer application device 4 when the traveling vehicle speed is equal to or lower than the set speed. ..
  • the drive rotation speed of the feeding mechanism 26 and the drive rotation speed of the blower 27 may be changed in conjunction with the traveling vehicle speed.
  • the fertilizer transfer required time is periodically calculated by the control unit 30. May be configured.
  • the control unit 30 may start operating the feeding mechanism 26 at a position closer to the start position as the traveling vehicle speed increases, or the end position as the traveling vehicle speed increases in order to supply a little more fertilizer near the end position.
  • the feeding mechanism 26 may be stopped at a position closer to. That is, the control unit 30 may be configured so that the timing at which the fertilizer application device 4 is operated or stopped can be changed based on the traveling vehicle speed.
  • fertilizer is shown as an agricultural material, but the agricultural material may be a liquid or powdery chemical, or may be a liquid or powdery fertilizer.
  • the fertilizer application device 4 is shown as the supply device, but the supply device may be a drug spraying device for spraying the drug in the field.
  • the seedling planting device 3 is shown as the working device in the above-described embodiment, the working device may be, for example, a sowing device (including pinpoint direct sowing in the field). That is, it suffices if the working device can plant seedlings in the field for each row. "Seeds" include seeds before germination and seedlings after germination.
  • Plant is a general term for the work of sowing pre-germination seeds in a field and transplanting post-germination seedlings to a field. Further, as an embodiment different from the above-described configuration, a receiving portion for temporarily receiving fertilizer is provided in a portion of the fertilizer hose 28 near the field, and fertilizer is intermittently supplied based on the position information of the machine body 1. It may be configured.
  • a brake detection unit 80 As shown in FIG. 24, a brake detection unit 80, a key switch 81, a neutral sensor 82, a notification device 83, and the like are connected to the control unit 30.
  • the brake detection unit 80 detects that the brake pedal 84 has been depressed.
  • the brake pedal 84 brakes the brake device 85 that brakes the wheels 12.
  • the brake pedal 84 is provided in the driving unit 14.
  • the brake pedal 84 is configured to be depressable from the initial position Pini to the maximum depressing position Pmax, and is linked to the brake device 85 via a link mechanism (not shown).
  • the brake device 85 is provided in the mission case 86 in which the auxiliary transmission (not shown), the inter-stock transmission (not shown), and the like are built.
  • the brake device 85 includes a brake pad (not shown) and a swing-type operation arm 85a that presses and operates the brake pad.
  • the brake detection unit 80 is provided with a stepping start sensor 80a, a stepping end sensor 80b, and a stepping sensor 80c.
  • the stepping start sensor 80a detects that the brake pedal 84 is stepped on from the initial position Pini.
  • the stepping start sensor 80a is composed of a magnet sensor.
  • the stepping start sensor 80a may be composed of a sensor other than the magnetic sensor.
  • the depressing end sensor 80b detects that the brake pedal 84 has been depressed to the maximum depressing position Pmax.
  • the stepping end sensor 80b is configured by a limit switch.
  • the stepping end sensor 80b may be composed of a sensor other than the limit switch.
  • the stepping sensor 80c detects that the brake pedal 84 is stepped on to the intermediate position Pmid located between the initial position Pini and the maximum stepping position Pmax.
  • the stepping sensor 80c is composed of a magnet sensor.
  • the stepping sensor 80c may be composed of a sensor other than the magnetic sensor.
  • the intermediate position Pmid is located between the initial position Pini and the maximum stepping position Pmax as described above, but is not limited to the central position between the initial position Pini and the maximum stepping position Pmax. do not have.
  • the intermediate position Pmid can be set to a position where a predetermined stepping stroke is secured from the initial position Pini.
  • the key switch 81 is for starting and operating the engine 2.
  • the key switch 81 is provided in the operation unit 14.
  • the neutral sensor 82 detects that the speed change position of the continuously variable transmission 9 is the neutral position.
  • the neutral sensor 82 may, for example, detect that the main speed change lever 7A is in the neutral position, or may detect that the swash plate 9a of the continuously variable transmission 9 is in the neutral position.
  • the control unit 30 presses the swash plate 9a of the continuously variable transmission 9 at a stage before the brake pedal 84 reaches the maximum depression position Pmax. Start returning to the neutral position.
  • the depression sensor 80c detects that the brake pedal 84 has been depressed to the intermediate position Pmid
  • the control unit 30 starts returning the swash plate 9a of the continuously variable transmission 9 to the neutral position, and the brake pedal.
  • the stepping end sensor 80b detects that the 84 has been stepped on to the maximum stepping position Pmax, the swash plate 9a of the continuously variable transmission 9 is returned to the neutral position.
  • the control unit 30 sets the swash plate 9a of the continuously variable transmission 9 in a neutral position when the sensor 80a detects that the brake pedal 84 has been depressed from the initial position Pini.
  • the swash plate 9a of the continuously variable transmission 9 may be returned to the neutral position.
  • the brake detection unit 80 is provided with a depression amount sensor (not shown) for detecting the depression amount of the brake pedal 84, and the control unit 30 is a brake pedal detected by the depression amount sensor.
  • the swash plate 9a of the continuously variable transmission 9 may be returned to the neutral position side.
  • the stepping amount sensor can be configured by a potentiometer.
  • a swing angle sensor for detecting the swing angle of the operation arm 85a is provided, and the control unit 30 has a large swing angle of the operation arm 85a detected by the swing angle sensor. Therefore, the swash plate 9a of the continuously variable transmission 9 may be returned to the neutral position side.
  • the control unit 30 when the brake detection unit 80 detects that the brake pedal 84 has been depressed, the control unit 30 returns the main shift lever 7A to the neutral position, and based on this, the continuously variable transmission The swash plate 9a of the device 9 may be returned to the neutral position side.
  • the control unit 30 detects that the brake pedal 84 has been depressed to the maximum depression position Pmax by the depression end sensor 80b, and shifts the continuously variable transmission 9.
  • the neutral sensor 82 detects that the position is the neutral position, the engine 2 is started based on the start operation of the key switch 81.
  • the notification device 83 notifies that the engine 2 will not be started.
  • the engine 2 is started by the key switch 81, it is not detected by the stepping end sensor 80b that the brake pedal 84 is stepped on to the maximum stepping position Pmax, or the speed of the continuously variable transmission 9 is changed.
  • the neutral sensor 82 does not detect that the position is the neutral position, the engine 2 is not started even if the engine 2 is started by the key switch 81. Therefore, when the engine 2 is not started, the notification device 83 notifies the method of solving the situation where the engine 2 is not started and the engine 2 is not started.
  • the notification by the notification device 83 is performed by voice, an image (image display of the information terminal 5 or the like), or a combination thereof.
  • the control unit 30 estimates the amount of wear of the brake device 85 (the brake pad) based on the traveling information when the brake device 85 brakes the wheels 12.
  • the traveling information is, for example, the rotation speed of the rear wheel 12B, the position information of the positioning unit 8, and the rotation speed of the output shaft of the continuously variable transmission 9.
  • the rice transplanter may be configured so that the engine 2 can be started and operated by using a remote controller. By starting and operating the engine 2 with the remote controller, it is possible to prepare for the operation of the positioning unit 8 and the like and to charge the battery 73.
  • the rice transplanter may be provided with a direct connection circuit or mode (control mode) capable of only starting the engine 2 even if an abnormality occurs in the electrical system.
  • the engine 2 and the driving unit 2A having the engine bonnet 2B covering the engine 2 are located in the front region of the airframe 1 capable of driving the front wheels 12A and the rear wheels 12B.
  • a driving unit 14 is provided in the rear side region of the airframe 1 to form a self-propelled vehicle.
  • the self-propelled vehicle has spare seedling storage devices 17A provided on both lateral sides of the driving unit 2A, and is provided on the rear side of the driver's seat 16 and constitutes a fertilizer application device 4 and a hopper 25 and a feeding mechanism 26. And so on.
  • the left and right spare seedling storage devices 17A are supported by the spare seedling support frame 17 as a support frame erected on the engine frame 1F of the machine frame 1E. Specifically, the left and right spare seedling storage devices 17A are in a state of extending in the vertical direction of the vehicle body toward the spare seedling support frame 17 side with respect to the spare seedling stand 70 having four stages above and below and the spare seedling stand 70. It has a storage device frame 70a that is provided and supports the spare seedling loading table 70 in four upper and lower stages. As shown in FIG. 1, the spare seedling support frame 17 is laid horizontally on the left and right lower end side portions 17a extending upward from both lateral sides of the engine frame 1F and on the left and right lower end side portions 17a.
  • the left and right lower end side portions 17a are located at positions lower than the upper end side portions 17b.
  • the storage device frame 70a of the left spare seedling storage device 17A is supported by the left lower end side portion 17a.
  • the storage device frame 70a of the right spare seedling storage device 17A is supported by the right lower end side portion 17a.
  • the upper and lower four-stage spare seedling mounting stands 70 in the left and right spare seedling storage devices 17A are supported by the spare seedling support frame 17 via the storage device frame 70a.
  • the left and right spare seedling storage devices 17A have four upper and lower spare seedling mounting stands 70, but the present invention is not limited to this.
  • it may have a spare seedling stand 70 having three or more steps above and below, or five or more steps above and below.
  • a front sonar ECU 64A as a sonar control device, a laminated light 71 for displaying the control mode of the control unit 30 on the outside of the self-propelled vehicle, and a radio command signal from the remote control 90 (remote control device). Is received, the received radio command signal is converted into an electric signal, and the receiving device 72 is transmitted to the control unit 30.
  • the receiving device 72 is provided on the right side of both side portions of the self-propelled vehicle.
  • the battery 73 that supplies electric power to the sonar ECU 64, the laminated light 71, and the receiving device 72 is located on the side of both side portions of the self-propelled vehicle on which the front sonar ECU 64A, the laminated light 71, and the receiving device 72 are provided. It is provided on a portion, that is, a lateral portion on the right side.
  • the front sonar ECU 64A, the laminated light 71, the receiving device 72, and the battery 73 are provided on the lateral side portion on the right side of the self-propelled vehicle, but are provided on the lateral side portion on the left side of the self-propelled vehicle. It may be.
  • the front sonar ECU 64A and the laminated lamp 71 are provided above the spare seedling storage device 17A on the right, as shown in FIGS. 2 and 3.
  • the receiving device 72 is provided at a position near the right end of the vehicle body in the front upper region of the driving unit 14.
  • the battery 73 is provided below the spare seedling storage device 17A on the right.
  • the laminated light 71 is provided at a position closer to the inside in the lateral direction of the vehicle body in the upper region of the right spare seedling storage device 17A as the outer peripheral portion of the self-propelled vehicle.
  • the laminated lamp 71 is provided at a position higher than the uppermost preliminary seedling loading stand 70 among the upper and lower four-tiered preliminary seedling loading stands 70 in the right spare seedling storage device 17A.
  • the laminated light 71 is provided at a position lower than the antenna 8p of the positioning unit 8 so as not to interfere with the reception of the positioning unit 8, and is provided from the antenna 72p of the receiving device 72 so as not to interfere with the reception of the receiving device 72. Is also provided at a low position.
  • the laminated light 71 is tilted with respect to the usage posture in which the longitudinal direction is along the vertical direction of the vehicle body as shown by the solid line in FIG. 1 and the usage posture in the side view of the vehicle body as shown by the chain double-dashed line in FIG. It is supported so that the upper part is located at a lower position than the retracted posture and the posture can be changed.
  • the laminated lamp support member 74 is supported on the upper part of the right lower end side portion 17a of the preliminary seedling support frame 17.
  • the connecting portion 71a formed in the lower part of the laminated lamp 71 is provided with a support shaft 71b and a posture determining arm 71c.
  • the laminated light 71 is supported by the laminated light support member 74 via the support shaft 71b by mounting the support shaft 71b in the support hole 74a of the laminated light support member 74 from the lateral outer side of the laminated light support member 74. ..
  • the laminated lamp 71 is used by being swung with the support shaft 71b as a swing fulcrum so as to stand upright with respect to the laminated light support member 74.
  • the laminated lamp 71 is swung with the support shaft 71b as a swing fulcrum so as to be tilted toward the front of the vehicle body with respect to the usage posture. As a result, it becomes a retracted posture.
  • the set bolt 74b is attached to the bolt hole of the posture determining arm 71c from the lateral inner side of the laminated light support member 74 through the bolt hole 74c of the laminated light support member 74.
  • the 71 is held in the working posture by the set bolt 74b.
  • the receiving portion 75a formed on the cover 75 supported by the laminated lamp supporting member 74 receives and supports the free end side portion of the laminated lamp 71 from below, and the laminated lamp 71 receives and supports the laminated lamp 71.
  • the cover 75 holds it in the retracted position.
  • the cover 75 is supported by the laminated light support member 74, and is configured to cover the support portion of the laminated light 71 and the front sonar ECU 64A from the lateral outside.
  • the laminated light 71 is provided on the outer peripheral portion of the spare seedling storage device 17A on the right as the outer peripheral portion of the self-propelled vehicle, but is not limited to this.
  • it may be provided above the hopper 25 of the fertilizer application device 4.
  • it may be provided on both lateral outer sides of the driving unit 14 and supported by a handrail 76 (see FIGS. 1 and 2) located at the outer peripheral portion of the rear portion of the self-propelled vehicle via a support. In this case, it may be supported on each of the left and right handrails 76.
  • the laminated lamp 71 is supported by the spare seedling support frame 17, but the present invention is not limited to this, and a dedicated support frame for supporting the laminated lamp 71 may be provided. It is preferable that the mounting height of the laminated lamp 71 can be changed.
  • the laminated lamp 71 is laminated with indicator lamps of pink 71P, green 71G, and blue 71B.
  • the indicator lights of pink 71P, green 71G, and blue 71B are laminated in the order in which green 71G is located under pink 71P and blue 71B is located under green 71G, but the present invention is not limited to this.
  • the pink 71P may be located between the green 71G and the blue 71B, and may be laminated in any order.
  • the present invention is not limited to the three-color indicator light unit, and may be provided with a two-color indicator light unit or a display unit having four or more colors.
  • a center mascot 20 is provided in front of the driving unit 14.
  • An indicator light unit 20A for displaying the control mode of the control unit 30 is formed in the upper part of the center mascot 20 which is easily visible from the operation unit 14.
  • the indicator light unit 20A is provided with red, green, amber right, and amber left indicator lights (not shown).
  • the indicator light unit 20A is formed on the center mascot 20, but the indicator light unit 20A may not be formed.
  • the laminated light 71 and the indicator light unit 20A of the center mascot 20 are controlled by the control unit 30 to the display state shown in FIG. “ ⁇ ” mark shown in FIG. 30 indicates lighting in the laminated light 71 and the indicator light unit 20A, “-” indicates lighting in the laminated light 71 and the indicator light unit 20A, and “ ⁇ (blinking)” indicates lighting in the laminated light 71 and the indicator light unit 20A.
  • the blinking in the laminated lamp 71 is shown.
  • the automatic operation is restarted when the control unit 30 is selected for the manned automatic mode and the automatic operation can be started, and when the control unit 30 is selected for the manned automatic mode.
  • red, green, amber right and amber left are all lit.
  • the laminated light 71 when the control unit 30 is selected for the unmanned automatic mode and the automatic operation start condition is not satisfied, all the indicator lights of pink 71P, green 71G and blue 71B are turned off.
  • the control unit 30 is selected for the unmanned automatic mode and automatic operation can be started, and when the control unit 30 is selected for the unmanned automatic mode and the automatic operation can be restarted, pink 71P, green All indicator lights of 71G and blue 71B are turned on.
  • the pink 71P is displayed. Only the light section is lit.
  • the laminated light 71 is used only in the unmanned automatic mode. During the condition adjustment for starting the automatic operation, none of the indicator lights are lit. During automatic operation, only the bottom indicator light is lit, and if the automatic operation is permitted (pause during automatic operation or before guidance to the start point), the three-color indicator is lit and automatic. If the vehicle is inoperable (obstacle detection, machine error), only the top indicator light is lit. Since the information that automatic driving is not possible is the most important, when automatic driving is not possible, the indicator light unit located at the highest position is turned on. The laminated light 71 may be turned on when the control unit 30 is selected for the manned automatic mode.
  • the combination of the indicator lights that are turned on in correspondence with the control mode and the combination of the indicator lights that are turned off in correspondence with the control mode can be changed to a combination other than that shown in FIG. be. Other than the automatic operation mode, it may not be displayed by the laminated lamp 71.
  • Various displays by the laminated light 71 may be performed in combination with voice notification, virtual screen notification, and the like.
  • an abnormality of the laminated lamp 71 can be detected by detecting the current (voltage) of the laminated lamp 71.
  • An antenna 72p for receiving a radio command signal from the remote control 90 (remote control device) is linked to the receiving device 72.
  • the reception of the radio command signal by the receiving device 72 is performed via the antenna 72p.
  • the positioning unit 8, the antenna 72p and the receiving device 72 are supported by the upper end side portion 17b of the preliminary seedling support frame 17.
  • the upper end side portion 17b is from the frame portion 17y extending in the lateral width direction of the vehicle body at the front upper portion of the driving portion 14 and from both lateral end portions of the frame portion 17y. It has an arm portion 17t that extends toward the lower end side portion 17a of the preliminary seedling support frame 17 and is supported on the upper end of the lower end side portion 17a.
  • the mounting base 77 is supported by the frame portion 17y, and the positioning unit 8 and the receiving device 72 are mounted on the mounting base 77 in a state of being lined up in the width direction of the vehicle body, and are mounted on the mounting base 77 by connecting bolts. It is configured to be tightened and fixed. As shown in FIGS.
  • the positioning unit 8 and the receiving device 72 are placed and fixed side by side in which the receiving device 72 is located laterally outside the vehicle body with respect to the positioning unit 8.
  • the antenna 72p of the receiving device 72 is configured to be supported by the antenna supporting portion 77a provided on the mounting table 77 in a state of being located in front of the receiving device 72.
  • the antenna 72p is supported on the antenna support portion 77a so as to be detachable by adsorption of a magnet (not shown) provided on the base portion of the antenna 72p.
  • a magnet is adopted, but the present invention is not limited to this.
  • a suction cup can be used.
  • the extended end portion of the right arm portion 17t on the upper end side portion 17b of the preliminary seedling support frame 17 was formed on the right lower end side portion 17a of the preliminary seedling support frame 17. It is configured to be supported by the support portion 78 via the pivot shaft 78a.
  • the left arm portion 17t in the upper end side portion 17b is configured to be supported by the lower end side portion 17a by the same configuration in which the right arm portion 17t is supported by the right lower end side portion 17a.
  • the upper end side portion 17b is configured to be supported by the left and right lower end side portions 17a in a swingable state with the pivot shaft 78a as a swing fulcrum.
  • the upper end side portion 17b is rocked with the pivot shaft 78a as the swing fulcrum, so that the frame portion 17y is located above the lower end side portion 17a as shown by the solid line in FIG.
  • the posture of the frame portion 17y is changed to a descending posture in which the frame portion 17y is located behind the lower end side portion 17a as shown by the alternate long and short dash line in 1.
  • the upper end side portion 17b is changed to the ascending posture, so that the antenna 72p, the receiving device 72 and the positioning unit 8 are located at the ascending use position, and the lower end side portion 17a It will be located at a higher position than.
  • the upper end side portion 17b is changed to the descending posture, so that the receiving device 72 and the positioning unit 8 are located at the descending storage position and are located at the lower end side portion 17a. It will be in a state where it is lower than the upper end and lower than the ascending use position.
  • the vertical orientation of the receiving device 72 and the positioning unit 8 is opposite to the vertical orientation when the receiving device 72 and the positioning unit 8 are located in the ascending use position.
  • the antenna 72p is removed from the antenna support portion 77a so that the antenna 72p does not hit the peripheral members and interfere with the downward swing of the upper end side portion 17b. be able to.
  • the set bolt 79 is mounted over the arm portion 17t and the first bolt hole 78b of the support portion 78.
  • the upper end side portion 17b is held in the ascending posture by the set bolt 79, and the antenna 72p, the receiving device 72, and the positioning unit 8 can be held in the ascending use position.
  • the set bolt 79 is mounted over the arm portion 17t and the second bolt hole 78c of the support portion 78, thereby mounting the upper end side portion.
  • the 17b is held in the lowered posture by the set bolt 79, and the receiving device 72 and the positioning unit 8 can be held in the lowered storage position.
  • the voice alarm generator 100 as a notification device for notifying the control executed by the control unit 30 is in front of and above the driving unit 14 with the sounding unit 100a facing the driving unit 14. It is provided in a place.
  • the lower end of the voice alarm generator 100 is located above the upper end of the driver's seat 16, the upper end of the steering wheel 10, and the upper end of the engine bonnet 2B.
  • the voice alarm generator 100 is adopted as the notification device, but the present invention is not limited to this.
  • it is possible to adopt various notification devices such as a device that notifies by sound or light, or a device that notifies by images or characters.
  • the voice alarm generator 100 is provided below the positioning unit 8 in a state of being covered from above by the positioning unit 8.
  • the positioning unit 8 prevents rainwater, car wash water, or the like from being applied to the voice alarm generator 100 from above.
  • the voice alarm generator 100 is supported by the spare seedling support frame 17 as shown in FIG. Specifically, as shown in FIGS. 1 and 31, a mounting table on which the positioning unit 8 is mounted and fixed on the upper end side portion 17b of the preliminary seedling support frame 17 and supported by the frame portion 17y of the upper end side portion 17b. 77 is provided.
  • the support member 101 extends downward from the mounting table 77.
  • the voice alarm generator 100 is supported inside the box portion 101a formed in the lower part of the support member 101.
  • the voice alarm generator 100 is supported by the upper end side portion 17b of the spare seedling support frame 17 via the support member 101 and the mounting table 77.
  • the voice alarm generator 100 is controlled by the control unit 30 to generate the voice alarm shown in FIG. 32.
  • the voice alarm generator 100 generates a voice alarm for notifying the control executed by the control unit 30, and also a voice alarm for notifying the traveling of the self-propelled vehicle.
  • a voice alarm for notifying the seedling planting device 3 is generated.
  • [CH] shown in FIG. 32 is a channel.
  • Main speed change lever (neutral operation, forward / backward operation), planting part down (when the operator raises during automatic operation, the start end of each side of the outermost circumference) during turning, reverse movement, and unmanned automatic control
  • a voice alarm is issued to operate the shift lever in the traveling direction with respect to the traveling direction of the route.
  • a voice alarm is used to request the operation of the main shift lever accordingly. do not have.
  • a voice alarm prompts the operation to the main shift lever neutral by an unexpected operation other than the main shift lever neutral.
  • automatic operation remains disabled.
  • the voice alarm generator 100 notifies the situation. Encourage workers to respond.
  • the voice alarm generator 100 is checked for any abnormality when the automatic operation start switch is turned on and operated. If there is an abnormality, it will be restrained so that it will not enter automatic operation, and the method of resolving the abnormality and the avoidance method (prompting manual work) will be notified.
  • a voice alarm is used to notify the vehicle before it starts moving. After that, the notification is stopped and it starts to move. Or, it works with the notification.
  • the notification means in addition to adopting the voice alarm generator 100, the laminated lamp 71, and the center mascot 20, it is possible to adopt a remote controller, a smartphone, a mobile device, a virtual, a work machine light, a notification sound, and a vibration.
  • a voice alarm generator 100 is provided above the hopper 25, above the seedling stand 21, a handrail 76, etc. behind the driving unit 14, and the front voice alarm generator 100 operates when moving forward and backward when moving backward.
  • the voice alarm generator 100 may be configured to operate. Further, the voice alarm generator 100 may be provided in a total of four directions, front, rear, left, and right of the driving unit 14.
  • the voice alarm generator 100 may be provided in the case of the positioning unit 8. Further, the voice alarm generator 100 may be surrounded by a special case, and a cavity may be provided in the special case so that the voice is sufficiently transmitted to the surroundings at that time. Further, in consideration of ease of wiring, the voice alarm generator 100 may be provided between the battery side in the left-right direction of the machine body. It is preferable to configure the remote controller to be notified when the voice alarm generator 100 fails.
  • the rice transplanter is provided with a remote controller 90 shown in FIG. 33, and the rice transplanter can be remotely controlled using the remote controller 90.
  • the remote controller 90 has seven buttons and two indicators.
  • the button should be interpreted in a broad sense, and includes various operating bodies such as switches and keys, and further includes software buttons and hardware buttons.
  • the first button 90a is a power ON / OFF button.
  • the second button 90b temporarily stops the machine body 1 in a state where the automatic traveling mode is maintained by a single push operation. Further, the second button 90b is operated by pressing the function button 90g at the same time to stop the machine body 1 and end the automatic traveling mode. At that time, the engine is not stopped.
  • the third button 90c accelerates the machine body 1 by a single push operation, and advances the machine body 1 at a slight speed by a simultaneous push operation with the function button 90g.
  • the fourth button 90d decelerates the machine body 1 by a single push operation, and moves the machine body 1 backward at a very slow speed by a simultaneous push operation with the function button 90g.
  • the fifth button 90e starts automatic traveling by simultaneously pressing the function button 90g.
  • the sixth button 90f starts the planting work by simultaneously pressing the function button 90g.
  • the first indicator 90x indicates the remaining battery level, and when the remaining battery level is low, the display color changes from green to red.
  • the second indicator 90y indicates ON / OFF of communication. That is, the second indicator 90y indicates that the remote controller 90 has been operated.
  • the second indicator 90y can also display that the operation by the remote controller 90 has been accepted by the control system of the rice transplanter.
  • each button realized by pressing the function button 90g at the same time may be realized by pressing and holding each button or pressing it twice.
  • the machine body 1 may be stopped by the first button 90a, which is a power button.
  • the second button 90b is pressed once.
  • the second button 90b may be pressed and held for a long time or twice to stop the machine body 1 and end the automatic traveling mode.
  • the engine may be restarted by operating a button on the remote controller 90.
  • the function realized by pressing the function button 90g and each button at the same time, the function of each button, and the function of each button realized by a single pressing operation of each button may be interchanged.
  • the remote controller 90 includes seven buttons and two indicators, but the number of each may be changed arbitrarily.
  • the remote controller 90 can exchange data with the information terminal 5 and the control unit 30. If the battery of the remote controller 90 can be charged, it can be charged via the cradle. At that time, if the cradle is provided with a cover that can be waterproofed both when the remote controller 90 is attached and when it is not attached, the rice transplanter will not be damaged by water when it is washed.
  • the operation guidance and operation results of the remote controller 90 can be displayed on the touch panel 50.
  • At least one of the information terminal 5, the control unit 30, and the remote controller 90 may be provided with a function of managing the distance between the remote controller 90 and the aircraft 1 and notifying the user when the distance exceeds a predetermined value.
  • at least one of the information terminal 5, the control unit 30, and the remote controller 90 is provided with a function of notifying attention when a communication failure occurs between the information terminal 5 or the control unit 30 and the remote controller 90. It is also possible to adopt a configuration in which the rice transplanter autonomously performs preset sequential operations by a specific operation (demonstration mode operation, etc.) on the remote controller 90.
  • the remote controller 90 can be configured in various forms. For example, it can be used as a remote controller 90 by installing a program suitable for a mobile phone or a tablet computer.
  • the information terminal 5 is provided in the driver unit 14 so that an operator (including a driver, a monitor, etc.) seated in the driver's seat 16 can perform manual operation, visual confirmation, and voice confirmation.
  • the information terminal 5 has a network computer function.
  • the housing 5A incorporates a touch panel 50 and a hardware button group 5a composed of a plurality of operation keys. Further, substantially the same operation keys are displayed on the touch panel 50 as the software button group 50a.
  • the display content of the touch panel 50 for example, the map screen or the route screen is enlarged by operating the enlargement key, the software button group 50a is deleted, but the operation for the software button group 50a is replaced by the hardware button group 5a. It is possible.
  • the positions of the operation keys in the software button group 50a and the hardware button group 5a correspond to each other.
  • the corresponding operation key in the software button group 50a is alerted by blinking or lighting.
  • the operation keys of the hardware button group 5a are also valid, the corresponding operation keys of the hardware button group 5a are blinked or lit. Since the rice transplanter is basically used outdoors, the characters displayed on the touch panel 50 are displayed in black characters on a white background as much as possible.
  • This rice transplanter can automatically carry out seedling planting work in the field.
  • the information required for that purpose is displayed on the touch panel 50 of the information terminal 5.
  • the information terminal 5 is provided with a graphic interface for displaying information to the operator and inputting operations by the operator through the touch panel 50.
  • an icon imitating the rice transplanter is displayed on the touch panel 50 to indicate the running state of the rice transplanter. Since this rice transplanter can perform manned automatic driving and unmanned automatic driving, the shape and / or color of the rice transplanter icon is changed in each case.
  • the operator inputs various commands while being guided by the information displayed on the screen of the touch panel 50.
  • This rice transplanter is equipped with four front sonars 61, two rear sonars 62, and two horizontal sonars 63 (simply sonar SU is used as a general term for these) as object detection sensors.
  • a sensor check is performed in a timely manner to check whether or not the sonar SU is malfunctioning.
  • the worker walks around the rice transplanter with a reflector that acts as a pseudo-obstacle.
  • the sonar check here is to find out a malfunction due to foreign matter such as mud or water droplets adhering to the sonar SU, and if there is a malfunctioning sonar SU, the operator removes the adhering foreign matter.
  • the object detection sensor includes a laser sensor, an electromagnetic wave sensor, a camera sensor, and the like in addition to the sonar SU. Alternatively, two types of object detection sensors may be combined. Further, in the object detection using these object detection sensors, particularly using the camera sensor, it is convenient to use machine learning as the object detection algorithm. Therefore, the following description is not limited to sonar SU, and can be applied to other object detection sensors.
  • the sensor check control system that controls this sensor check is shown in FIG. 35.
  • the functional elements used for this sensor check are the machine body position calculation unit 311 incorporated in the control unit 30, the obstacle detection unit 641 incorporated in the sonar ECU 64, the touch panel 50 of the information terminal 5 as a graphic display, and the information terminal 5. It is a sonar management unit 51 as a built-in sensor management unit.
  • the aircraft position calculation unit 311 calculates the aircraft position using satellite positioning.
  • the obstacle detection unit 641 detects an obstacle based on the detection signal from the sonar SU.
  • the sonar management unit 51 manages the operation check of the sonar.
  • the sonar management unit 51 includes a sonar check execution unit 51a and an effectiveness determination unit 51b as sensor check execution units.
  • the sonar check execution unit 51a executes the sonar check process when a predetermined condition is satisfied.
  • the validity determination unit 51b records (validates) an operation confirmation flag indicating that the operation of all sonar SUs has been confirmed through the sonar check process. Further, the validity determination unit 51b determines (validity determination) the maintenance (validation) and cancellation (invalidation) of the recorded operation confirmation flag.
  • FIG. 1 An example of the control flow in the sonar check is shown in FIG.
  • the rice transplanter heads for the field by manual running and in the field, the seedling planting work is automatically run, and when the work is completed, the rice transplanter leaves the field by manual running.
  • the main switch is turned on to start the rice transplanter (# S01).
  • the initial processing of the control system is performed, and the validity determination unit 51b sets "0" in the operation confirmation flag (simply described as a flag in FIG. 36) (# S02).
  • the sonar management unit 51 outputs an initial sonar check request command (initial sensor check request command) (# S03), and asks the operator whether to perform the sonar check through the screen of the touch panel 50 (# S04).
  • the sonar check process is executed (# S05).
  • the flow of the sonar check process is shown in FIG. 37.
  • the sonar management unit 51 displays a screen as shown in FIG. 38 on the screen of the touch panel 50, and requests the operator to sequentially arrange the pseudo reflectors within the detection range of each sonar SU (# C1). ..
  • the mounting position of each sonar and the detection range of each sonar are actually shown, so that the operator can easily grasp the mounting position of each sonar and the detection range of each sonar. Can be done.
  • the operator reflects ultrasonic waves from each sonar SU with a pseudo-reflector, and starts positioning the pseudo-reflector so that the reflected wave is received by the sonar SU (# C2).
  • the sonar SU receives (confirms) the reflected wave from the pseudo reflector (# C3Yes branch), the first visual symbol is displayed at the sonar position of the operation target on the check screen.
  • a small check symbol CI1 is displayed as (# C4).
  • the operation confirmation may be notified through the notification device by sound, light or vibration.
  • a laminated lamp or an information terminal 5 can be used.
  • the vibration function of the remote controller or the mobile phone can be used to notify the operation confirmation.
  • Such operation confirmation work is sequentially performed for each sonar SU.
  • a large check symbol CI2 as the second visual symbol is displayed in the illustration showing the aircraft on the check screen (# C6).
  • the operator knows that the sonar check process has been completed. Notification of the completion of this sonar check process can also be performed by sound, light, or vibration.
  • the validity determination unit 51b sets "1" to the operation confirmation flag (simply described as a flag in FIG. 37) (# C7).
  • the operation confirmation may be notified when the operation of all the sonar SUs is confirmed, instead of being notified for each operation confirmation of each individual sonar SU.
  • the operator may hold the pseudo-reflector and go around the rice transplanter, or the operator in the driving unit 14 operates like a fishing rod to which the pseudo-reflector is attached. You may manipulate the rod to make the pseudo-reflector go around.
  • a pseudo-reflector may be attached to the drone, and the drone may be flown so that the pseudo-reflector goes around the rice transplanter.
  • the sonar management unit 51 again displays the screen of the touch panel 50. Ask the worker whether to carry out the sonar check through (# S08). When the worker instructs to perform the sonar check (# S08Yes branch), the sonar check process is executed (# S09). When the sonar check process is completed, it waits for the driving mode to be switched from the manual driving mode to the automatic driving mode (# S10). If "1" is set in the operation check flag in the check of step # S07, or if the operator cancels the implementation of the sonar check this time in step # S08 (# S08No branch), the sonar check process. Is not performed and jumps to step # S10.
  • the operation confirmation flag is reset (disabled) in addition to the above, when the set expiration date expires. You may. Alternatively, other than the automatic driving in the middle of the night, the operation confirmation flag may be invalidated at the timing when the date for enabling the operation confirmation flag is advanced (the timing when the date is changed). In addition, if automatic driving is performed in one field as long as the field is not separated, the operation confirmation flag is not invalidated, or automatic driving is performed in a plurality of predetermined fields. If so, it is convenient to prepare a setting that does not invalidate the operation confirmation flag.
  • the operation confirmation flag is canceled (invalidated), but a work stop command for work interruption is given. If so, the operation confirmation flag is maintained.
  • the operation check of the remote controller 90 is also performed. If the non-use of the remote controller 90 is selected, this remote controller check can be omitted.
  • the touch panel 50 of the information terminal 5 sequentially displays the buttons to be operated by the remote control 90.
  • the operation check proceeds by operating the corresponding button.
  • the operation check ends. At that time, it is convenient that the visual symbol of the completion of the operation of each button and the visual symbol of the completion of the operation of all the buttons are displayed on the touch panel 50 as in the sonar check.
  • the invalidation of the operation confirmation flag indicating that the operation check of the remote controller 90 is completed, the invalidation of the operation confirmation flag in the above-mentioned sonar check can be diverted.
  • the check process (sonar check, remote control check, laminated light check, voice alarm check, etc.) performed before the start of automatic driving may be canceled after confirming the worker's intention. Further, the cancellation of such a check process may be limited to manned automatic driving.
  • the screen (a) is a warning screen for prohibiting automatic traveling along a cliff or a waterway in a posture in which the aircraft 1 is tilted beyond an allowable range.
  • the screen (b) is a warning screen for requesting that the worker always get into the driving unit 14 and perform manned automatic running when the seedling planting work along the outermost circumference of the field is automatically run. ..
  • the screen (c) is a warning screen requesting that a new map be created without diverting the previous map.
  • the screen (d) is a warning screen for prohibiting automatic driving when the field is deformed more than allowed or there is a running obstacle inside the field.
  • a "confirmation” button is arranged on each screen, and the next screen is displayed by pressing the "confirmation” button.
  • warning screens as preparations before automatic driving are displayed every time the automatic driving mode is selected, but may be displayed at predetermined time intervals or every time the date changes. Further, when the same worker performs automatic driving, the warning screen may be configured to be continuously displayed in an animation without pressing the "confirmation" button.
  • FIG. 40 four warning screens individually displayed on the touch panel 50 are shown, but these warning screens can be arbitrarily integrated. For example, the screen (a) and the screen (b) may be integrated into one alert screen.
  • FIG. 41 is a functional block diagram showing a functional unit in the map selection process.
  • the control unit 30 is provided with the machine body position calculation unit 311, and the information terminal 5 includes a display device 551 (touch panel 50), a map information storage unit 552, a map information display unit 553, and an input area determination unit 554.
  • the input position information calculation unit 555, the thumbnail display unit 556, the operation determination unit 557, the area calculation unit 558, and the notification unit 559 are provided.
  • Each functional unit is constructed by hardware, software, or both with a CPU as a core member in order to perform processing related to map selection.
  • the aircraft position calculation unit 311 calculates the aircraft position using satellite positioning.
  • the positioning unit 8 is used for satellite positioning, and GPS information including latitude information, longitude information, and altitude information is transmitted from the positioning unit 8 to the aircraft position calculation unit 311.
  • the altitude information corresponds to the height of the aircraft 1 (height of the positioning unit 8), which is the sum of the geoid height and the altitude.
  • the aircraft position is the position of the aircraft 1 in the real space, and is indicated by latitude information, longitude information, and altitude information.
  • the aircraft position calculation unit 311 calculates the position of the aircraft 1 in the real space based on such GPS information.
  • the map information storage unit 552 stores map information indicating the shape of the work site based on the position information indicating the position of the work area and the time information indicating the time when the map information was created.
  • the shape of the work site is the shape of the field where the rice transplanter performs the planting work, and corresponds to the shape of the outer shape of the field.
  • the information indicating the shape of the outer shape of such a field is treated as map information.
  • the position of the work site is the position of the field, which may be the position of the outer peripheral portion of the field, or the position of the entrance / exit where the rice transplanter enters and exits the field. Furthermore, it may be the position of the central portion of the field.
  • the time information indicating the time when the map information is created may be a time stamp indicating the time when the above-mentioned position information is acquired, or the time when the map information is stored in the map information storage unit 552. It may be a time stamp indicating.
  • the map information includes position information that defines the position of the field described above by latitude information, longitude information, altitude information, and the like, as well as time information that defines the time when the map information was created.
  • the display device 551 has a display screen.
  • the display device 551 corresponds to the touch panel 50 of the information terminal 5.
  • the touch panel 50 also serves as a display screen. Therefore, when no particular distinction is made, the display screen will be described as the touch panel 50.
  • the map information display unit 553 causes the touch panel 50 to display the map information extracted based on the aircraft position, the position information, and the time information among the map information stored in the map information storage unit 552.
  • the map information storage unit 552 stores the map information, and the map information includes the position information and the time information.
  • the machine body position is the position of the machine body 1 in the real space calculated by the machine body position calculation unit 311 and specifically, the current position of the rice transplanter.
  • the map information display unit 553 is map information indicating the shape of the outer shape of the field including the current position of the rice planting machine from the map information stored in the map information storage unit 552, and is the latest time based on the time information. Map information having a stamp is extracted, and the extracted map information is displayed on the touch panel 50. As a result, when the rice transplanter is in the field, the latest map information indicating the shape of the field can be automatically displayed on the touch panel 50.
  • FIG. 42 shows map information related to the field in which the rice transplanter currently exists, which is displayed on the touch panel 50.
  • the map information displayed by the map information display unit 553 is shown as map information 5531.
  • FIG. 42 also shows an image image 560 of the rice transplanter at a position corresponding to the current position of the rice transplanter in the map information 5531.
  • FIG. 42 also shows map information 5532 showing the shape of the field within a predetermined distance from the field corresponding to the map information 5531. It is preferable that the map information 5532 is also extracted from the map information storage unit 552 by the map information display unit 553 and displayed on the touch panel 50.
  • map information indicating the shape of the field adjacent to or near the current position of the rice transplanter May be displayed on the touch panel 50.
  • the map information 5531 is displayed in the lower layer (rear surface) of the image image 560. That is, the rice transplanter exists in the field corresponding to the map information 5531. In such a case, it is preferable to provide the index 5533 so as to surround the map information 5531 along the outer edge portion. Further, although not shown in FIG. 42, information indicating the date and time when the map information 5531 was created and the area of the field corresponding to the map information 5531 may be displayed on the touch panel 50.
  • the input area determination unit 554 determines the input area in which the operation input by the user has been performed in the map information displayed on the display screen.
  • the map information is displayed on the touch panel 50.
  • a user is a worker.
  • the operation input corresponds to the input performed by the operator by touching the touch panel 50 with a finger. Therefore, the input area corresponds to the area touched by the operator's finger on the touch panel 50. Therefore, the input area determination unit 554 determines the area touched by the operator's finger on the touch panel 50 when the operator touches the touch panel 50 with a finger in the map information displayed on the touch panel 50.
  • the input position information calculation unit 555 calculates the position information in the map information corresponding to the input area determined by the input area determination unit 554 as the input position information.
  • the input area determined by the input area determination unit 554 is an area touched by the operator's finger on the touch panel 50 when the operator touches the touch panel 50 on which the map information is displayed with a finger to input. be.
  • the map information is information indicating the shape of the field, and there is a correlation between the coordinates on the map information and the position information of the field. Therefore, the input position information calculation unit 555 calculates the position of the field corresponding to the area touched by the operator's finger in the map information displayed on the touch panel 50.
  • the position information which is the information indicating this position, corresponds to the input position information.
  • the thumbnail display unit 556 extracts the map information stored in the map information storage unit 552 based on the input position information and displays it on the touch panel 50 as a thumbnail.
  • the input position information is calculated and transmitted by the input position information calculation unit 555.
  • the thumbnail display unit 556 extracts the map information of the field including the position indicated by the transmitted input position information from the map information stored in the map information storage unit 552. Displaying thumbnails on the touch panel 50 means reducing the display on the touch panel 50.
  • the map information is displayed in a smaller size than the map information displayed by the map information display unit 553. Therefore, the thumbnail display unit 556 reduces the map information extracted from the map information storage unit 552 to the map information displayed by the map information display unit 553 and displays it on the touch panel 50.
  • a plurality of map information extracted by the thumbnail display unit 556 and having different time information from each other is displayed.
  • the map information storage unit 552 stores a plurality of map information in a stacked state (layer storage) for each time information
  • the thumbnail display unit 556 stores the input position information calculated by the input position information calculation unit 555.
  • the map information (multiple map information) stored in the layer is displayed as a thumbnail based on.
  • FIG. 43 shows an example in which the worker selects map information 5532 showing the shape of the field different from the field in which the rice transplanter exists.
  • the outer peripheral portion of the selected map information 5532 is surrounded by the index 5533, and it is clearly shown that the map information 5532 has been selected.
  • the map information 5534, 5535, 5536 stored in layers for the map information 5532 is displayed as thumbnails.
  • the thumbnail display unit 556 also displays work information indicating information on the work performed at the work site based on the map information displayed as thumbnails.
  • the information on the work performed at the work site based on the map information is information indicating the contents of the planting work performed in the past by the rice transplanter in the field corresponding to the map information displayed on the touch panel 50.
  • the thumbnail display unit 556 displays the date and time, work conditions, and the like of the planting work performed in the past in the field corresponding to the map information together with the map information reduced and displayed on the touch panel 50.
  • the map information extracted from the map information storage unit 552 is replaced with the map information touched by the worker by touching the map information. It becomes possible to display it in a large size.
  • FIG. 43 also shows an example of displaying the work information of the map information displayed as such thumbnails. That is, when the cursor 5537 is operated with the map information displayed as thumbnails and the map information 5534 is selected, the information indicating the date and time when the map information 5534 was created and the area of the field corresponding to the map information 5534 are displayed. It is displayed on the touch panel 50 (not shown in FIG. 43). Of course, instead of the operation by the cursor 5537, the map information 5534 may be directly touched and operated.
  • thumbnail display unit 556 may display the field name, the field area (using a unit unique to each country such as the shakkanho method), and the image around the field together with the map information reduced and displayed on the touch panel 50. Further, the name of the worker who performed the previous work, the working time, and the like may be displayed.
  • the operator's finger may touch a plurality of map information 5538, 5539.
  • it is configured so that it is possible to appropriately determine which map information is selected and display it on the touch panel 50. This will be described below.
  • the operation determination unit 557 determines whether or not the input area covers at least two or more map information in a state where a plurality of map information is displayed on the touch panel 50.
  • the case where a plurality of map information is displayed on the touch panel 50 is, for example, as shown in FIG. 44.
  • the input area is an area determined by the input area determination unit 554 described above, and the operation input by the operator is performed on the touch panel 50.
  • the operation determination unit 557 determines whether or not such an operation input covers at least two or more map information, that is, whether or not the area touched by the operator on the touch panel 50 overlaps with the plurality of map information. Is determined.
  • the area calculation unit 558 calculates the area of the input area in each map information when the input area covers at least two or more map information.
  • the fact that the input area covers at least two or more map information can be specified by transmitting the determination result of the operation determination unit 557 described above to the area calculation unit 558.
  • the input area in each map information corresponds to the area touched by the worker for each map information when the area touched by the worker on the touch panel 50 overlaps with a plurality of map information. Therefore, when the area touched by the worker on the touch panel 50 overlaps with a plurality of map information, the area calculation unit 558 calculates the area of the area touched by the worker for each map information.
  • the area of the area 5541 in which the input area 5540 related to the operation input by the operator and the map information 5538 in the lower layer (rear surface) of the input area 5540 overlap each other is calculated.
  • the area of the area 5542 where the input area 5540 related to the operation input by the operator and the map information 5339 in the lower layer (back surface) of the input area 5540 overlap each other is calculated.
  • the input area determination unit 554 determines that the map information of the input area having the largest area among at least two or more map information is the map information for which the operation input has been performed. That is, in each area of the plurality of map information calculated by the area calculation unit 558, it is determined that the operator has input the operation to the map information having the maximum area. In the example of FIG. 44, the area of the area 5541 and the area of the area 5542 are compared, and it is determined that the operation input has been performed for the map information 5538 having the area 5541 having the wider area. As a result, even if the operator mistakenly inputs an operation input over a plurality of map information, it is possible to appropriately detect the operation input by the operator.
  • the touch panel 50 may display the map information by the map information display unit 553 and the reduced map information by the thumbnail display unit 556. Further, as shown in FIG. 44, a plurality of map information by the map information display unit 553 may be displayed. In such a case, if there is map information created much earlier than the present among multiple map information, it would be a problem if the worker refers to such map information during planting work because the information is too old. May cause.
  • the notification unit 559 calculates the elapsed time since the map information was created based on the time information related to the map information displayed on the touch panel 50, and recreates the map information according to the elapsed time. It is preferable to configure it to notify.
  • the time information related to the map information is a time stamp indicating the date and time when the map information was created.
  • the elapsed time since the map information was created is the time from the time the map information was created to the present. Recreating map information means recreating map information. Therefore, the notification unit 559 refers to the time stamp indicating the date and time when the map information displayed on the touch panel 50 is created, and calculates the time from the creation of the map information to the present.
  • the notification unit 559 may notify the user to recreate the map information.
  • This notification may be displayed on the touch panel 50 or may be performed by voice. This makes it possible to notify the risk of changes in the field.
  • a time longer than a preset time eg 3 months
  • the risk of field change is stronger than in the case of a preset time (eg 3 months). It is preferable to notify (warn) and urge the re-creation of map information more strongly.
  • the notification unit 559 acquires disaster information indicating disasters that have occurred so far at the work site, and after creating the map information, the notification unit 559 acquires the disaster information and the time information related to the map information displayed on the touch panel 50. If it is determined that the work site is damaged based on the map information, it may be configured to notify the re-creation of the map information.
  • the disasters that have occurred so far at the work site are disasters that have occurred after the previous work, such as earthquakes, typhoons, and storms and floods.
  • the notification unit 559 refers to the disaster information and the time stamp indicating the date and time when the map information displayed on the touch panel 50 is created, and indicates the map information from the time when the map information is created to the present. It is determined whether or not a disaster has occurred in the work area, that is, whether or not the work area has been damaged. If a disaster has occurred at the work site between the time the map information is created and the present, the notification unit 559 may notify the user to recreate the map information. This notification may be displayed on the touch panel 50 or may be performed by voice.
  • the notification unit 559 May be configured to notify the user to recreate the map information.
  • the map information may include information that can identify the manager of the map information, the manager of the work site, the manager of the worker, and the like.
  • the display screen is described as the touch panel 50, but the display screen does not have to be the touch panel 50.
  • the operation input by the operator can be input by operating the cursor with a touch pad or the like, for example.
  • the input area determination unit 554 assumes that the map information of the input area having the largest area when the input area by the operator extends over a plurality of input areas is the map information in which the operation input by the operator is performed.
  • the map information of the area (position) touched first may be configured as the map information in which the operation input by the operator is performed, or the latest map information among the plurality of map information may be used.
  • the map information may be configured as map information for which an operation input has been made by an operator. Further, the operator may be configured to select all the work areas within a predetermined range as selection candidates centering on the input area. Further, the map information may include the usage frequency information indicating the usage frequency of the map information, and the frequently used map information may be displayed so as to be located at the top of the map information displayed as thumbnails. ..
  • the thumbnail display unit 556 has been described as displaying work information indicating information on work performed at the work site based on the map information displayed as thumbnails, but the work information is not displayed. You may.
  • the notification unit 559 has been described as notifying the re-creation of the map information according to the elapsed time since the map information was created, but the notification unit 559 does not notify the re-creation of the map information. It is also possible to configure in. Further, the calculation of the elapsed time can be configured to be performed by a functional unit different from the notification unit 559.
  • the notification unit 559 will notify the re-creation of the map information when it is determined that the work site is damaged based on the map information. However, when the work site is damaged. Even if there is, the notification unit 559 can be configured not to notify the re-creation of the map information.
  • the field information may be added to the map information displayed on the touch panel 50.
  • the addition of the field information can be configured to be performed by, for example, a smartphone, an information terminal 5, a management server, a remote controller, or voice input. Further, it is preferable to rearrange the map information so that each item of the field information (date and time, field area, field name, user key, etc.) can be used.
  • the map information is stored in the map information storage unit 552, but the map information can be configured so that the operator can delete it via the touch panel 50.
  • the detection accuracy GPS sensitivity
  • map information storage unit 552 it is preferable to configure the plurality of map information stored in the map information storage unit 552 so that they can be integrated as one map information. This makes it possible to integrate duplicate map information and easily handle it. Further, even if the field shape is changed due to land readjustment or the like, it is not necessary to reacquire the map information. Furthermore, even when it is necessary to manage the fields as one field when the supply points of the materials used for the work are limited, it can be easily dealt with.
  • FIG. 45 is a block diagram showing a functional unit in the field shape acquisition process.
  • the control unit 30 is provided with an airframe position calculation unit 311
  • the information terminal 5 is provided with a display device 551 (touch panel 50), a position information calculation unit 571, a map information creation unit 572, and a travel route generation unit 573.
  • Each functional unit is constructed with hardware, software, or both with a CPU as a core member in order to perform processing related to field shape acquisition.
  • the aircraft position calculation unit 311 calculates the aircraft position using satellite positioning.
  • the positioning unit 8 is used for satellite positioning, and GPS information including latitude information, longitude information, and altitude information is transmitted from the positioning unit 8 to the aircraft position calculation unit 311.
  • the altitude information corresponds to the height of the aircraft 1 (height of the positioning unit 8), which is the sum of the geoid height and the altitude.
  • the aircraft position is the position of the aircraft 1 in the real space, and is indicated by latitude information, longitude information, and altitude information.
  • the aircraft position calculation unit 311 calculates the position of the aircraft 1 in the real space based on such GPS information.
  • the position information calculation unit 571 travels in each of a plurality of regions divided along the outer circumference of the work site, at the start of traveling in one region, the position of the machine and the rear end of the outer circumference of the machine 1
  • the position information is calculated based on the position of.
  • the outer circumference of the work site is the outer peripheral portion of the field where the rice transplanter performs the planting work, and corresponds to the inner peripheral portion of the ridge that divides the field.
  • the plurality of regions divided along the outer circumference of the work area correspond to each side of the polygon, for example, when the outer shape of the field is a polygon.
  • the arcuate portion may be used as one region and divided into a plurality of regions.
  • one side may be divided into a plurality of areas.
  • the outer shape of the field as shown in FIG. 46 is a quadrangle and each side constitutes one area. Therefore, the plurality of areas divided along the outer circumference of the work area correspond to the four sides of the field having a quadrangular outer shape. In the following, these four sides will be described as outer peripheral portions 591-594, respectively.
  • the time when the rice transplanter starts running in one area is the time when the rice transplanter starts running in each of the outer peripheral portions 591-594.
  • the machine body position is the position of the rice transplanter, and is calculated by the machine body position calculation unit 311 described above.
  • the position of the rear end portion on the outer peripheral side of the machine body 1 corresponds to the sliding plate guard 3B on the right side when traveling counterclockwise on each of the outer peripheral portions 591-594 of the field in FIG.
  • the sliding plate guard 3B on the left side corresponds to this. Therefore, when the position information calculation unit 571 starts traveling in each of the outer peripheral portions 591-594 of the field, the position of the rice transplanter calculated by the machine body position calculation unit 311 and the position of the sliding plate guard 3B The location information is calculated based on.
  • the position information calculation unit 571 stores in advance the deviation between the position of the positioning unit 8 and the position of the sliding plate guard 3B, and the direction in which the rice transplanter travels in the field (counterclockwise or clockwise). ), The deviation from the positioning unit 8 to the sliding plate guard 3B corresponding to the traveling direction may be added or subtracted from the aircraft position to calculate the position information.
  • the position information calculation unit 571 calculates the position information based on the position of the machine body and the position of the front end portion on the outer peripheral side of the machine body 1 at the end of traveling in one area.
  • the end of traveling in one area is the time when the rice transplanter ends traveling in each of the outer peripheral portions 591-594.
  • the position of the front end on the outer peripheral side of the machine 1 is the reserve seedling storage device 17A on the right side (spare on the right side) when traveling counterclockwise on each of the outer peripheral portions 591-594 of the field in FIG.
  • the right end of the seedling storage device 17A corresponds to it, and when traveling clockwise, the spare seedling storage device 17A on the left side (the left end of the spare seedling storage device 17A on the left side) corresponds to this. Therefore, when the position information calculation unit 571 finishes running in each of the outer peripheral portions 591-594 of the field, the position of the rice transplanter calculated by the machine body position calculation unit 311 and the position of the spare seedling storage device 17A The location information is calculated based on.
  • the position information calculation unit 571 stores in advance the deviation between the position of the positioning unit 8 and the position of the spare seedling storage device 17A, and the direction in which the rice transplanter travels in the field (counterclockwise or clockwise). ), The position information may be calculated by adding or subtracting the deviation from the positioning unit 8 to the spare seedling storage device 17A corresponding to the traveling direction with respect to the machine position.
  • the rice transplanter is provided with a work unit that can move up and down with respect to the machine 1 to perform ground work.
  • the work unit that performs ground work is the seedling planting device 3.
  • the position information calculation unit 571 sets the time when the seedling planting device 3 in the ascending position is in the descending state as the start of traveling, and the time when the seedling planting device 3 in the descending state is returned to the ascending position. It is preferable to set it at the end of running.
  • the planting mechanism 22 of the seedling planting device 3 can plant seedlings on the planting surface (field scene) of the field.
  • ground leveling float 15 touches the ground when it is brought close to the planting surface.
  • Such lowering of the seedling planting device 3 can be detected by providing a sensor on the ground leveling float 15, and the position of the work operation lever 11 for raising and lowering the seedling planting device 3 is detected. It is also possible.
  • the planting mechanism 22 of the seedling planting device 3 is moved away from the planting surface of the field, and the ground leveling float 15 is moved from the planting surface. It is the time when they are separated.
  • Such an ascent of the seedling planting device 3 can also be detected by providing a sensor on the ground leveling float 15, and detecting the position of the work operation lever 11 for raising and lowering the seedling planting device 3. It is also possible.
  • the position information calculation unit 571 is brought close to the planting surface so that the planting mechanism 22 of the seedling planting device 3 can plant seedlings with respect to the planting surface of the field, and the ground leveling float 15 touches the ground.
  • the time when the planting mechanism 22 of the seedling planting device 3 is separated from the planting surface of the field is set as the start of traveling, and the time when the ground leveling float 15 is separated from the planting surface is set as the end of traveling. Can be calculated appropriately.
  • the position information calculation unit 571 it is also possible to configure the position information calculation unit 571 so that the position information cannot be calculated unless the planting mechanism 22 is lowered (the ground leveling float 15 is in contact with the ground). Further, the start and end of the calculation by the position information calculation unit 571 may be determined by combining other conditions and a plurality of conditions in addition to the grounding of the ground leveling float 15 (for example, on / off of the planting clutch). , Marker action position, link sensor, rotor on / off, etc.).
  • the aircraft 1 travels while repeating traveling and stopping (fine adjustment of the aircraft position). While driving).
  • the planting mechanism 22 of the seedling planting device 3 may also be repeatedly raised and lowered.
  • the position information calculation unit 571 sets the time when the seedling planting device 3 in the ascending position is in the descending state as the start of traveling, and the seedling planting device 3 in the descending state is returned to the ascending position.
  • the time point is the end of running.
  • traveling while making fine adjustments as described above for example, there is a possibility that a plurality of unintended positions at the start of travel and positions at the end of travel may be detected during travel of the outer peripheral portion 591.
  • the position information calculation unit 571 makes the previous run. It is good to invalidate the starting position. That is, the rice transplanter ran between the time when the seedling planting device 3 in the ascending position was put into the lowered state, the time when it was returned to the ascending position, and the time when the seedling planting device 3 in the ascending position was put into the descending state.
  • a preset distance for example, several tens of cm
  • a preset distance for example, several tens of cm
  • the position information calculation unit 571 virtually extends from the center of gravity position 595 of the machine 1 along the width direction of the machine 1 from the start to the end of running in one area, the first line 596. And, when the position information is calculated based on the position where the second line 597, which is virtually extended along the length direction of the machine 1 from the protruding portion most protruding along the width direction of the machine 1 in the machine 1, intersects. good.
  • the period from the start to the end of the running in one area is the period from the start to the end of the running for each of the outer peripheral portions 591-594 of the field.
  • the first line 596 which is virtually extended from the center of gravity position 595 of the airframe 1 along the width direction of the airframe 1, is the width direction of the airframe 1 from the position (center of gravity position 595) which is the center of gravity of the airframe 1 in FIG. Corresponds to a line extending parallel to the left-right direction.
  • the most protruding portion of the machine body 1 along the width direction of the machine body 1 corresponds to the most protruding portion of the machine body 1 along the left-right direction which is the width direction of the machine body 1.
  • the sliding plate guard 3B corresponds. Therefore, in FIG.
  • the second line 597 which is virtually extended along the length direction of the machine body 1 from the most protruding portion of the machine body 1 along the width direction of the machine body 1, is the sliding plate guard 3B. Therefore, a line extending parallel to the front-rear direction, which is the length direction of the machine body 1, corresponds to the line.
  • the position information calculation unit 571 intersects with the first line 596 and the second line 597 set based on the sliding plate guard 3B on the right side.
  • the position information calculation unit 571 refers to the first line 596 and the sliding plate guard 3B on the left side.
  • the position information is calculated based on the position of the intersection 598L with the second line 597 set in.
  • the second line 597 is set based on the sliding plate guard 3B, but instead of the sliding plate guard 3B, the left and right ends may be set as a reference from the GPS antenna. However, it may be set based on the front and rear wheels and the like.
  • the map information creation unit 572 creates map information indicating the shape of the work site based on the position information.
  • the position information is calculated by the above-mentioned position information calculation unit 571 and transmitted to the map information creation unit 572.
  • the map information showing the shape of the work site corresponds to a map showing the shape of the field in which the coordinates consisting of the latitude information and the longitude information indicated by the position information acquired by the rice transplanter traveling around the field are continuously connected. Therefore, the map information creation unit 572 creates a map showing the shape of the field in which the coordinates consisting of the latitude information and the longitude information indicated by the position information calculated by the position information calculation unit 571 are continuously connected. Since such map information can be created by using a known method, the description thereof will be omitted. Here, the map information being created is also simply described as map information.
  • the map information creation unit 572 creates map information
  • the touch panel 50 can be configured to clearly indicate the shape of the field indicated by the map information using a plurality of indexes.
  • the index is a marker displayed on the display screen. Therefore, the map information creation unit 572 can be configured to attach a marker on the touch panel 50 so as to correspond to the coordinates indicated by the position information calculated by the position information calculation unit 571.
  • the display screen it is preferable to configure the display screen so that the position at the start of running and the position at the end of running are displayed with an index different from the index indicating a position other than the position at the start of running and the position at the end of running. Is.
  • the operator who sees the display screen can intuitively grasp both the positions at the start and end of the run and the positions between the start of the run and the end of the run. It will be possible.
  • the display screen so that the position at the start of running and the position at the end of running are displayed with different indexes. This makes it possible for the operator who sees the display screen to intuitively grasp the position at the start of running and the position at the end of running.
  • the map information creation unit 572 creates map information using the position information calculated by the position information calculation unit 571, and the position information calculation unit 571 is calculated by the aircraft position calculation unit 311. Calculate position information based on the aircraft position.
  • the aircraft position is transmitted from the aircraft position calculation unit 311 to the map information creation unit 572 and the position information calculation unit 571, but the map information creation unit 572 and the position information calculation unit 571 each set all the aircraft positions. Creating map information and location information using it may increase the amount of data.
  • the map information creation unit 572 creates map information using only the position information transmitted to the map information creation unit 572 among the position information calculated by the position information calculation unit 571.
  • the position information calculation unit 571 thins out the aircraft position from the aircraft position calculation unit 311 to calculate the position information, and the map information can be created from the position information created by the thinning out, so that the increase in the amount of data is suppressed. It becomes possible to do.
  • the map information creation unit 572 deletes the data corresponding to the portion where the amount of change in the shape of the work area is small, and displays the data on the display screen. It is preferable to clearly indicate the index corresponding to the deleted data so that it can be distinguished from other indexes.
  • the case where the amount of data related to the map information exceeds the preset value means the case where the amount of data of the map information created by the map information creation unit 572 exceeds the preset value.
  • the portion where the amount of change in the shape of the work site is small is a portion in the outer shape of the field that is linear, an arc-shaped portion having a constant curvature, or a portion that changes at a constant rate of change.
  • the map information creation unit 572 may have a linear portion or a constant shape in the outer shape of the field. Delete the data showing the arc-shaped part having the curvature of and the part that changes at a constant rate of change. This makes it possible to suppress an increase in the amount of data. Further, even when the data is deleted, the index itself indicating the outer shape of the field displayed on the touch panel 50 may not be deleted, and the shape may be indicated by an index different from the index in which the data is not deleted. As a result, when the operator looks at the shape of the field on the touch panel 50, it is possible to intuitively grasp whether or not the data has been deleted. When deleting data, it may be configured to delete the acquired data in order from the one with the smallest change in distance or angle.
  • the traveling route generation unit 573 performs the seedling planting work based on the position offset to the center side of the field with respect to the outer peripheral portion of the field indicated by the map information. It is good to generate a traveling route when doing so. That is, it is preferable that the traveling route traveled by the rice transplanter when performing the seedling planting work in the field is performed with the outer shape offset to the center side by a predetermined distance from the outer shape defined by the map information. ..
  • the travel route generation unit 573 includes a round-trip route creation unit 522 and a circuit route creation unit 524, which will be described later.
  • the rice transplanter travels at the same speed as the aircraft speed when creating the map information. Therefore, when creating the map information, it is preferable to memorize the aircraft speed at the time of the creation. As a result, the aircraft speed can be set to the same speed when creating map information (when running idle) and when planting seedlings in the outer peripheral part of the field (for example, when planting around the field at the final stage). It is possible to properly plant seedlings without deviating from the position (route) of the stage.
  • map information is created according to the running, as shown in FIG. 51.
  • an index is attached based on the intersection 598L between the first line 596 and the second line 597, and when the positioning of one side of the field is completed, the spare on the left side is used.
  • An index is attached based on the position of the seedling storage device 17A (the left end of the spare seedling storage device 17A on the left side).
  • an index is attached with reference to the rear left end portion. As shown in FIG. 53, it is preferable to assign an index different from other indexes to each of the position at the end of the outer peripheral portion that has traveled first and the position at the start of the outer peripheral portion that has traveled next.
  • FIG. 54 shows a display when the vehicle continues to travel and an index is attached. Map information showing the shape of the field is created by continuously connecting such indexes.
  • the map information is created by traveling on the outer peripheral portion of the field, but the map information may be created while planting the outer peripheral portion of the field. In such a case, some seedlings may be trampled, but it is possible to efficiently perform seedling planting work and map information creation.
  • the position information calculation unit 571 has been described as traveling for each of a plurality of areas divided along the outer circumference of the field to calculate the position information.
  • the position information may be calculated only at the center of the turn, and the intersection point where the position information before the start of the turn and after the end of the turn is virtually connected may be regarded as the corner of the field. This makes it possible to easily create map information.
  • the position information it is possible to calculate both the left and right sides of the aircraft 1 and to switch between the left and right position information. Further, among the position information calculated based on the plurality of positions of the machine body 1 (GPS antenna, front and rear wheels, left and right ends from the center of gravity, etc.), the one with the least blur (small error) may be adopted.
  • position information may be calculated even during the so-called copy running, or the copy control may be performed when shifting from one area to another (when turning back).
  • map information If there is an unclosed area in the created map information, it is possible to complete the map information by connecting the end points. Further, when there is an unclosed area, it is possible to estimate the shape of the field from the information (size, position, orientation, etc.) of the aircraft 1 and configure the field map to be completed. It is also possible to supplement and complete the shape of the field between the position at the start of running and the position at the end of running in the map information.
  • the travel route (route) that is the target of automatic driving is an internal reciprocating route IPL for planting seedlings in the inner area IA of the field and a circuit route for planting seedlings in the outer peripheral area OA of the field.
  • the start point guidance path for moving from the guidance startable area GA set in the vicinity of the entrance / exit E to the start point (work start point) S of the internal round-trip path IPL.
  • the outer peripheral area OA of the field is an area where the seedling planting work is performed by traveling along the circumferential path
  • the inner area IA is an area left inside the outer peripheral area OA.
  • the route creation process includes a round-trip route creation process, a seedling supply route creation process, a circuit route creation process, and a start point guidance route creation process.
  • the functional unit required for various processes related to route creation is built in the information terminal 5.
  • the information terminal 5 is connected to a control unit 30 that constructs functional units such as an airframe position calculation unit 311, a travel control unit 312, and a work control unit 313 through a communication line such as an in-vehicle LAN.
  • the control unit 30 is also connected to the traveling device 1D and the working device 1C.
  • the functional units built in the information terminal 5 include a reference side setting unit 521, a reciprocating route creation unit 522, a traveling direction determination unit 523, a supply side setting unit 531, a supply control management unit 532, a circuit route creation unit 524, and an operation mode.
  • the reference side setting unit 521 sets one side of the outer shape of the farm (field, etc.), which is the work place of the work machine, as the reference side.
  • the round-trip route creation unit 522 creates an internal round-trip path IPL including a plurality of straight paths extending in a predetermined direction with respect to the reference side.
  • the traveling direction determination unit 523 sets the traveling direction in the internal reciprocating path IPL.
  • the supply side setting unit 531 sets a specific side of the outer shape of the farm as a material supply side of the material consumed by the work machine.
  • the replenishment control management unit 532 uses the work equipment from the end region of the straight path of the internal reciprocating path IPL traveling toward the material supply side, the start region of the straight path traveling next, or both regions.
  • the replenishment running control for attracting the material to the material replenishment side is managed in cooperation with the running control unit 312.
  • the orbital route creation unit 524 creates at least one or more orbital routes in the outer peripheral region of the farm based on the travel locus in the outer shape calculation run that runs along the boundary line of the field to calculate the outer shape of the farm.
  • the driving mode management unit 525 enables selection from manned automatic driving, unmanned automatic driving, and manual driving as the driving mode of the circuit route.
  • the start point setting unit 541 sets the start point S of the work run using the internal reciprocating path IPL.
  • the start point guidance route creation unit 542 creates a start point guidance route SGL for automatically guiding the work machine satisfying the guidance condition to the start point S.
  • the program that realizes the functional part related to route creation is installed in the information terminal 5.
  • the various processes proceed according to the contents displayed on the screen of the touch panel 50 of the information terminal 5 and the operation on the touch panel 50.
  • the reference side for planting and the planting direction are selected.
  • the outer shape of the field obtained by the map creation process is a quadrangle, and each side thereof and the entrance / exit side of the entrance / exit E are candidates for the planting reference side. Numerical values are given to the sides that are candidates for the planting reference side.
  • the operator selects a desired side as a reference side, and further selects whether the planting direction is parallel to or perpendicular to the reference side.
  • This planting direction is the direction of the straight path in the reciprocating travel in the internal region IA. In the round-trip travel, a route that combines a straight route and a turning route is used, but the straight route is not limited to a straight line, and may be a large curved shape or a meandering shape.
  • the planting direction in which the number of round trips in the reciprocating travel is reduced may be automatically selected.
  • the planting direction is set as the default so that it is parallel to the longest side of the field, and when the subsequent planting direction is selected, the previous selection result is displayed. It may be configured to be set as the default.
  • the field shape is not limited to a rectangle, but may be a quadrangle such as a trapezoid or a rhombus, and may be a triangle or a polygon of a pentagon or more. Therefore, the reference side is not limited to the four sides of the rectangle, and a side in which the opposite sides are non-parallel may be selected. Further, when a curved side is selected as a reference side, a traveling route along the side may be set, or a route gradually acclimatized to a straight line may be set. On the other hand, in such a case, since the error becomes large, it may not be possible to select the reference side.
  • FIG. 57 shows a selection screen for this seedling supply.
  • the rice transplanter In seedling replenishment, the rice transplanter must interrupt the round-trip travel and approach the ridges, but the rice transplanter can be automatically stopped at a position where the ridges can be approached for this seedling replenishment. Through this screen, it is possible to select whether or not to automatically stop (automatically stop the seedling supply side) for this ridge approaching run.
  • the side for supplying seedlings is a field side that intersects the straight path in the round-trip travel, and this side can also be selected through this screen.
  • the selectable side may be one side or two sides. Also, in a deformed field, two adjacent sides may be candidates for supply sides.
  • the candidate for the material supply side needs to be selectable from all the field sides. Therefore, when such a special field is considered, the material supply side is configured so that it can be selected from all the field sides.
  • the machine 1 is automatically stopped at the field side. At that time, if the machine 1 is separated from the field side by a predetermined distance or more, the machine 1 is moved sideways to the field side and then automatically stopped. When automatically stopped, a notification prompting replenishment is performed.
  • the seedling supply side it may be configured so that the reference side is selected, preferably the seedling supply side in the surrounding planting run is automatically determined, or after the seedling supply side is selected. , Preferably configured so that the reference edge is automatically determined.
  • the turning start position is set to a position farther from the ridge and the turning radius is changed as compared with the usual turning.
  • the material supply route includes a straight route
  • the ridge approaching run for material supply is performed by automatic driving with this supply point as the target point.
  • the vehicle will automatically drive straight to the outer peripheral area (also called headland) OA on the replenishment side.
  • the outer peripheral area also called headland
  • an extension route generated by extending the straight path of the internal round-trip path IPL is used. While traveling on the extension route, operations such as planting, sowing, and fertilizing are not performed, and the machine body 1 automatically stops at a processing position close to the ridge.
  • a control mode that automatically pauses and resumes running is provided to give the operator time to decide whether to replenish materials during the pause. There may be. With this stop, the remaining amount of replenishment material can be visually checked.
  • the remaining amount check of the replenishment material is performed by using the remaining amount sensor instead of the visual inspection by the operator, and the detection result or the material shortage is transmitted to the remote controller 90.
  • a configuration may be adopted in which the surroundings are notified by voice.
  • the remaining amount sensor detects that the material is out (insufficient material)
  • it can be automatically stopped.
  • Such automatic stop and notification of material shortage can be performed not only in the work run in the inner region IA but also in the work run in the outer peripheral region OA. At that time, the material supply route to the material supply position may be created.
  • the remaining amount sensor can be configured with a machine learning model that outputs the remaining amount of materials such as seedlings by inputting the image taken by the camera.
  • the position where the material is automatically stopped to replenish the material can also be estimated. Based on this estimated position, an automatic stop for material supply can be reserved. This reservation can be made automatically or manually, and the reservation can be canceled manually.
  • the aircraft 1 is stopped to reinforce the material, and the predicted position for starting the material replenishment run is notified.
  • the work run (surrounding planting run) in the outer peripheral region OA includes an inner orbital path IRL located inside the outer peripheral region (headland) OA and an outer side located outside the outer peripheral region OA. It is performed along the circuit path ORL. Traveling along the inner orbital path IRL is referred to as inner orbital or inner peripheral travel, and travel along the outer orbital path ORL is referred to as outer or outer orbital travel.
  • the inner orbital path IRL is a path between the inner reciprocating path IPL and the outer orbital path ORL.
  • the inner lap and the outer lap can be manned, unmanned or manually performed.
  • FIG. 58 is a screen for selecting whether to run the inner or outer lap running automatically or manually.
  • An automatic / manual selection area is displayed on the right side of the screen, and a schematic traveling route is displayed on the left side of the screen.
  • the inner orbital route IRL and the outer orbital route ORL are displayed as the orbital route.
  • the inner circuit path IRL and the outer circuit path ORL which are similar to those in FIG. 58, are displayed.
  • the circuit route for which manual driving is selected is deleted from the screen.
  • the worked area is filled with the working width as a planting mark.
  • the corresponding circuit route may be deleted from the screen and the planting trace may not be displayed.
  • both may be identifiable by changing the display form of the manually traveled circuit route and its planting trace, and the automatically traveled circuit route and its planting trace.
  • the display form of the route and the planting mark on the screen includes the display color and the display line type. Routes and planting traces with different attribute values can be identified by changing the display color and display line type. Therefore, in the present invention, the expression of changing the color on the screen includes changing the line type, and conversely, changing the line type on the screen also includes changing the color.
  • the outer circuit route ORL When the inner circuit route IRL is set to manual travel, the outer circuit route ORL also switches to manual travel, and the travel route is not displayed. However, since the travel route can play a role of guidance in manual travel, at least the outer circuit route ORL may be left displayed for use as guidance even in manual travel.
  • the outer orbital route ORL is defined to be manned automatic traveling even if it is an automatic traveling, but the outer orbital route ORL is based on the traveling locus of the teaching traveling of map creation, and the traveling is performed. Since the seedling planting device 3 is running in a lowered state, it is unlikely that a problem will occur even in unmanned automatic running. For this reason, unmanned automatic driving may be selected for the outer circuit route ORL. Further, since the inner circuit path IRL and the outer circuit path ORL are set as separate routes, the algorithm tends to be complicated, but a connecting route of the two routes may be provided from the beginning. Alternatively, a path may be provided to guide the inner circuit path IRL from its end point to the start position of the outer circuit path ORL at the end point.
  • the orbital path formed in the outer peripheral region OA is defined as a two-lap orbital path in order to secure sufficient space for turning in the reciprocating run.
  • the configuration may be such that the orbital path can be selected to be formed by one orbital path.
  • the turning path used for the reciprocating run includes a turning path using reverse movement or two angle-shaped turning paths with a connecting straight-ahead path exceeding the working width. It is preferable to adopt a connecting turning path.
  • FIGS. 59 and 60 exemplify the above-mentioned special turning run (turning path).
  • FIG. 59 shows an example of a connecting turn.
  • This connecting turn is a transitional run for shifting from one straight path to an adjacent straight path, not to the next straight path.
  • This joint turn consists of a first turn path (which is given the code Q1 in FIG. 59), a straight path (which is given the code Q3 in FIG. 59), and a second turn, which makes a direction change of about 90 degrees. It consists of a route (in FIG. 59, the reference numeral Q2 is assigned). The length of the straight route is calculated according to the position of the straight route of the transition destination.
  • FIG. 60 shows an example of a turning turn using reverse movement.
  • the turning turn is used when the space for the turning running (distance to the ridge: width of the outer peripheral region OA) is small when shifting from the running straight path to the adjacent path by the turning run.
  • the turn-back turn shown in FIG. 60 includes a first turn path (reference numeral R1 is assigned in FIG. 60), a reverse reverse turn path (reference numeral R2 is assigned in FIG. 60), and a second turn path (reference numeral R2 is assigned in FIG. 60). In FIG. 60, the reference numeral R3 is assigned).
  • the first turning path and the reverse reverse turning path realize a running called turning, and by increasing this turning, the space required for turning can be reduced.
  • the turning locus of the aircraft 1 is estimated at the time of turning, and the working machine turns within a limited space or at a predetermined interval to the ridge based on the estimated turning locus. It is determined whether it is possible. If the determination result is that the turning is possible, the turning is continued as it is, but if the judgment result is that the turning is not possible, the turning run using the reverse movement is performed until the judgment result can be turned. At that time, if the determination result is that the vehicle cannot turn, the operator may be notified to shift from automatic driving to manual driving, or automatic turning-back driving may be performed.
  • the notification that calls attention to the operator is notified that the manned operation is performed. It is convenient to give a warning based on the results of the round-trip running before the surrounding planting run. At that time, it is preferable that at least the notification that calls attention is performed on the screen of the information terminal 5. As another form, it may be possible to select whether the outer lap running is performed manned or unmanned. Further, the notification may use voice, a laminated light, or the like.
  • the inner orbital route IRL and the outer orbital route ORL are a combination of a straight route and a direction change route.
  • the internal area is already planted because the seedling planting of the internal area IA has already been completed. Therefore, by setting the planting end position on one straight path to be aligned with the planted area, the same non-planting space between the planted area and the ridge is provided between the planting end position and the ridge. Occurs. Since this non-planting space can be used as a space for turning (turning back) for running using the next straight route, the turning running becomes easy.
  • the inner circular path In the area where the end position of the straight path in the reciprocating travel of the internal area IA is different from the end position of the other straight path, that is, the area where the corner area of the internal area IA has a concave portion or a convex portion, the inner circular path
  • the IRL will bend like a crank. Therefore, the seedling planting trace by running on the outer orbital path ORL extending so as to cover the outside of the inner orbital path IRL overhangs the seedling planting mark by running along the inner orbital path IRL.
  • each row clutch control for turning off each row clutch corresponding to the overhanging planting claw is performed.
  • FIG. 61A the planting work running accompanied by the clutch control of each row will be described.
  • all of the eight-row planting mechanism (planting claw) 22 are in the operating state (all of the eight-row clutches are on), and eight-row planting marks are formed.
  • the planting mechanism 22 for the two rows on the left side is inactive (the clutch for each row is off), and the planting marks for the six rows are formed.
  • the planting mechanism 22 for the four rows on the left side is inactive (the clutch for each row is off), and the planting marks for the four rows are formed.
  • various planting marks can be formed. For example, in FIG.
  • a triangular planting mark is formed by sequentially deactivating the planting mechanism 22 from the left side. Further, as shown in FIG. 61 (e), the planting mechanism 22 is sequentially deactivated from the left side and then sequentially actuated to form a planting mark having a curved side surface. Alternatively, although not shown, it is possible to form planting marks with stepped, convex or concave sides.
  • the inner circuit route IRL is created along each end position of the straight route in reciprocating travel, and during the automatic travel, the inner circuit route IRL is used as the target route and control is performed to minimize the deviation from the target route. Will be.
  • the outer orbital route ORL is created based on the traveling locus in the teaching traveling for creating the map, and the control of the automatic traveling using the outer orbital route ORL is a control following the teaching traveling.
  • the outer circuit path ORL in which this copying control is adopted can surely prevent contact with the ridges.
  • the vehicle is set back further inward from the traveling locus in the teaching operation. There is a function to select to reduce or reduce this setback amount to zero.
  • the control of the outer outer circumference running does not target the outer orbital path ORL created based on the running locus in the teaching run, but the field outer shape (boundary between the ridge and the field scene). It may be configured to target the line).
  • the route creation process includes a round-trip route creation process, an inner circuit route IRL creation process, an outer circuit route ORL creation process, and a start point guidance route creation process. All of these processes are performed at once, but a configuration may be adopted in which each process is performed individually.
  • the starting point guidance is to guide the rice transplanter to the starting point S, which is the starting point of the internal round-trip path IPL, which is the start of the seedling planting work in the field.
  • the rice transplanter performs the seedling planting work by the automatic run.
  • the planting work in the automatic running starts from the start point S of the internal round-trip path IPL.
  • the start point guidance route SGL which is a travel route for automatically traveling the rice transplanter to the start point S, is set in the route creation process, and the automatic travel start enable condition for permitting automatic travel using this start point guidance route SGL is It is set.
  • the condition for starting automatic driving is that the position of the rice transplanter and its orientation are within the permissible range. Simply, it may be a condition that the rice transplanter is in the guidance startable area GA as an automatic driving startable condition.
  • the guidance startable area GA is also displayed on the screen displayed on the touch panel 50.
  • Guidance if the rice transplanter is located within the guidance startable area GA (or if the position of the rice transplanter and its orientation are within the permissible range) when the operation for starting automatic driving is performed.
  • the display color of the guidance startable area GA displayed on the touch panel 50 is displayed. different. Whether or not the rice transplanter is located in the guidance startable area GA is also notified by lamp lighting or voice.
  • the rice transplanter has its front part butted against the ridge to replenish the seedlings, and from this posture, the starting point guidance in the turning back running FL using the predetermined reverse turning and forward movement is performed. By capturing the route SGL, the starting point guided run is performed.
  • the start point guidance path SGL can be captured, so that the start point guidance run along the start point guidance path SGL is performed as it is after entering the farm.
  • the induction startable area GA may extend outside the field (outside the field boundary line).
  • the entrance / exit E, the start point S of the internal round-trip route IPL, and the seedling supply side (seedling supply ridge) are related as shown in FIG. It is set near the side or the entrance / exit E of the field.
  • the guidance startable area GA can be set outside the field when automatic traveling from outside the field through the doorway E to the start point S is possible.
  • the start point guidance path SGL is substantially composed of a turning path connected to the starting point S and a straight path connected to the turning path.
  • the guidance startable area GA Does not cover all straight routes. This is a predetermined distance (number) from the center point of the guidance startable area GA to the start point S in order to smoothly capture and enter the start point guidance path SGL as a condition for starting automatic driving (start point guidance condition). This is because it is desirable to secure a straight route only (m or more).
  • This predetermined condition is based on the turning radius of a general rice transplanter and the half wheelbase distance, and the predetermined distance is changed for rice transplanters having different specifications.
  • Start point guidance route At least a part of the straight route of the SGL is in the guidance startable area GA.
  • the start point of the guidance startable area GA It is preferable that the length of the guidance route SGL along the straight path is longer because the conditions for the start area of automatic driving are relaxed.
  • the starting point guidance route SGL is set parallel to the seedling supply side. When there are multiple candidates for the seedling supply side, the seedling supply side near the doorway becomes the first candidate, and the guidance startable area GA is set in the seedling supply side.
  • the start point guidance route SGL is the outer circuit route ORL.
  • the starting point guidance path SGL may be provided across a plurality of ridges.
  • two guidance startable areas GA may be set corresponding to these a plurality of ridges, or these may be connected to form one area.
  • assistance is provided from the guidance startable area GA farther from the start point S to the guidance startable area GA closer to the start point S.
  • a starting point guidance pathway is formed.
  • the work machine that has entered the guidance startable area GA farther from the start point S moves to the guidance startable area GA closer to the start point S using the auxiliary start point guidance path, and then moves to the guidance startable area GA closer to the start point S, and then the start point guidance path SGL.
  • the starting point guidance path SGL set in the outer peripheral area OA may be moved closer to the inner area IA. ..
  • the outer circuit path ORL or the inner circuit path IRL may be diverted (also used) as it is and set as the start point guidance path SGL.
  • the start point guidance path SGL is set in the outer peripheral region OA, but when only one circuit path is generated and the width of the outer peripheral region OA is narrow, the start point guidance path SGL is set. It may enter the internal region IA at least partially.
  • the outer orbital path ORL is generated as a full-row planting, there is a planting mark by the inner orbital path IRL between the planting mark by the outer orbital path ORL and the planting mark by the inner reciprocating path IPL. Will occupy. Therefore, the working width of the working machine in the inner circuit path IRL is adjusted.
  • the straight path in the internal round-trip path IPL may be extended to the outer peripheral region OA to enlarge the planting trace due to the straight running. Further, when it is necessary to partially adjust the planting trace, the traveling using the clutch control of each row described with reference to FIG. 61 is executed.
  • FIGS. 64 and 65 An example of the guidance screen is shown in FIGS. 64 and 65.
  • FIG. 64 shows that the position of the rice transplanter is outside the guidance startable area GA, and the orientation of the rice transplanter is also out of the permissible range.
  • the recommended aircraft orientation is shown as a guide arrow. It should be noted that a guide arrow in which the direction of the aircraft 1 facing the start point S is the direction of the start point guidance path SGL can also be illustrated.
  • FIG. 65 shows that the position of the rice transplanter is within the guidance startable area GA, and the orientation of the rice transplanter is also within the permissible range. In this posture, it is possible to shift to the screen for starting automatic driving.
  • FIG. 64 shows that the position of the rice transplanter is outside the guidance startable area GA, and the orientation of the rice transplanter is also out of the permissible range.
  • the recommended aircraft orientation seedling supply orientation
  • FIG. 65 shows that the position of the rice transplanter is within the guidance startable area GA, and the orientation of the rice
  • the guidance startable area GA is drawn in a color indicating that the aircraft position is unacceptable, for example, red.
  • the guidance startable area GA is changed to a color indicating that the aircraft position is within the permissible range, for example, blue.
  • FIGS. 66, 67 and 68 Other examples of the guidance screen are shown in FIGS. 66, 67 and 68.
  • a plurality of induction startable areas GA are set and are indicated by thick arrows perpendicular to the seedling supply side. The direction of this arrow indicates the reference direction.
  • FIG. 66 shows that the position of the rice transplanter is outside the guidance startable area GA, and the orientation of the rice transplanter is also out of the permissible range.
  • FIG. 67 shows that the airframe orientation is within the permissible range, but the airframe position of the rice transplanter is outside the guidance startable area GA.
  • FIG. 68 shows that the position of the rice transplanter is within the guidance startable area GA, and the orientation of the rice transplanter is also within the permissible range.
  • the aircraft position is drawn in a color indicating that the aircraft position is unacceptable, for example, red, but in FIG. 68, the guidance startable area GA has the aircraft position within the allowable range. It has changed to a color indicating, for example, blue.
  • the condition items used for this determination are communication, sensor, motor, and the like.
  • the condition that is not satisfied is displayed on the touch panel 50.
  • the recovery method of the unsatisfied condition may be displayed.
  • the satisfied conditions may also be displayed in the determination result.
  • the basic setting confirmation screen (inter-strain, seedling amount, number of lateral feeds, fertilizer application amount, chemical spray amount, etc.) for seedling planting work is displayed. ..
  • a work simulation is performed with the contents set on this basic setting confirmation screen, and if it is estimated that material replenishment work is required at a position away from the seedling replenishment side, a guidance screen recommending manned automatic driving appears.
  • This guidance screen is also displayed during actual work driving. Specifically, in the round-trip travel, if it is estimated that one seedling is not enough before returning to the next seedling supply side, this guidance screen will be displayed, and in pairs, manned automatic driving or unmanned A screen for selecting automatic driving is displayed.
  • the material loading amount detecting means is a seedling cutting sensor (for example, a pressing type seedling cutting sensor), a hopper weight sensor or an optical sensor, and a seedling consumption detection encoder (for example, a seedling that detects the amount of movement of the seedling mat by the amount of rotation). It can be configured with a consumption detection encoder), a camera (for example, a sensor that analyzes an image to see if the remaining amount of seedlings is below a predetermined value).
  • the replenishment material is fuel, the operator is notified of the minimum required refueling calculated based on the remaining amount of fuel and the distance that must be traveled thereafter.
  • the fuel consumption per run estimated before the start of the work run is often different from the fuel consumption per run calculated after the actual start of the work run. Therefore, it is preferable that the guidance timing of refueling is sequentially corrected.
  • the restart instruction can be given on the touch panel in a state where the aircraft overlaps on the line.
  • the set travel route is postponed (called line feed) using the travel route displayed on the touch panel 50, and the aircraft 1 travels to the current position.
  • Match routes When such line feed is performed on the screen of the touch panel 50 in which the display area is limited, it becomes difficult to identify each route, especially in an area where the circuit path and the internal round-trip path IPL are densely packed or overlapped. Therefore, it is preferable to identify each traveling route by a color, a line pattern, or the like.
  • the items to be added regarding the screen display of the traveling route on the touch panel 50 are as follows.
  • the traveling route where the automatic driving is interrupted is drawn in a characteristic color such as red.
  • the route section whose color is changed is preferably a straight route unit, but may be a part of the straight route including the interruption point.
  • the operator selects the traveling route to be processed.
  • the color of the traveling route is changed according to the work attribute of the traveling route. For example, the route where the seedling planting work was completed along the traveling route, the route where the seedling planting work was performed, the route to be performed, and the route where the seedling planting work called the idle running route was not performed.
  • the routes and the like are colored so that they can be identified. Further, the periphery of the route where the seedling planting work is completed may be colored according to the work width (each row unit). (4) Even in manual travel, the travel locus and the travel route map are matched, and the work traces traveled by manual travel are also displayed as an existing work area. (5) In order to facilitate the postponement of the driving route when the automatic driving is interrupted and the automatic driving is restarted after the manual driving along a plurality of traveling routes, the traveling route fast forward and fast rewind functions are provided. It is prepared. (6) When resuming automatic driving, it is necessary to select a traveling line to be restarted. In order to facilitate the selection work, when resuming automatic driving, one of the interrupted driving route, the driving route next to the interrupted driving route, and the driving route immediately before the interrupted driving route is set as the default restarting driving route. Set.
  • the end of the automatic operation it is confirmed that the end is selected through the selection screen for selecting the interruption or the end of the automatic operation.
  • the items to be added regarding the end of this automatic driving are as follows. (1) It is impossible to restart the automatic operation after pressing the end button. This is because it is assumed that the end button is pressed before and after the start of the outer lap running, even though the work is generally not completed, and if the outermost circumference is slightly deviated, it may go out of the field. It is impossible to restart the automatic operation at. However, the automatic operation may be restarted by pressing the end button until the vehicle enters the outer driving route.
  • the selection of the traveling route when resuming the automatic traveling can be selected not only in the traveling route unit but also in one point in the traveling route, in the unit of a plurality of lines, or in the internal round-trip route IPL or the circuit route unit.
  • the travel routes for actually restarting the automatic driving can be narrowed down and selected.
  • the work machine moves from the interruption point where the work in the automatic driving is interrupted to supply materials, etc., it moves from the moving place to the interruption point by the automatic driving and restarts the work in the automatic driving. It is also possible to adopt. At that time, the control technology of the start point guided driving can be diverted to the automatic driving to the point where the automatic driving is restarted.
  • the notification is given including the countermeasures.
  • the configuration may be such that the options of interruption of automatic driving or new automatic driving (regeneration of traveling route) remain.
  • the automatic driving of the outer circuit route ORL if the automatic driving is interrupted, the automatic driving cannot be restarted and only manned manual driving is permitted, but the automatic driving is restarted. A configuration capable of the above may be adopted.
  • a straight path other than the final straight path (in FIG. 69, the symbol Ln is assigned), for example, a straight path in which the symbol Ln-1 is assigned in FIG. 69.
  • the seedling planting work is performed on the idle route. While driving.
  • the end point G of the final straight path is reversed to the entrance / exit side.
  • the position of the end point G moves by the planting width.
  • another straight route may be selected as the free running straight route. In this way, traveling on a traveling route (straight route) other than the turning route without seedling planting work is referred to as idling.
  • the idle running becomes unnecessary by setting the start point S of the internal round-trip route IPL to the side opposite to the end point G of the internal round-trip route IPL.
  • the start point S of the internal round-trip path IPL is far away from the entrance / exit E, and the start point guidance path SGL becomes long.
  • the extension of the starting point guidance route SGL can be regarded as the distance of idling.
  • Inter-row adjustment is to narrow the working width (sapling planting width). For example, the work area created when traveling on one straight path with a predetermined work width is the same as the work area created when traveling on two straight paths with the work width halved from the predetermined work width. It becomes.
  • Running with all the row clutches off is different in terms of control from idling in which the seedling planting device 3 is raised to a non-working position without controlling each row clutch, but the work result is the same. Is.
  • the number of straight routes in the internal area IA becomes an even number.
  • the inter-row adjustment (adjustment of the working width) using the inter-row clutch control as described with reference to FIG. 61 involves changing the travel path interval, turning off the inter-row clutch, and the like. Before entering the travel route that is the target of the above, and while traveling on the travel route, a notification to that effect (voice, message display, lamp, etc.) is performed.
  • the work width is changed in units of rows by turning off the clutch of each row, so adjustments that are not possible in idling are possible. That is, when the width of the internal area IA in which the internal round-trip path IPL is set is not an integral multiple of the working width, the straight path is set so that the interval of the straight path is shortened and becomes an integral multiple by using the inter-row adjustment. Will be done. At that time, in general, the intervals of the straight paths are adjusted evenly, but the adjustment range of each path is changed, for example, the part near the entrance / exit E is set to the interval close to the standard, and the distance is toward the side far from the entrance / exit. It may be narrowed gradually.
  • the distance from the doorway E to a predetermined distance may be adjusted evenly at intervals close to the standard, and after the predetermined distance, the distance may be slightly shorter than that on the doorway E side and adjusted evenly.
  • the interval of one of the straight paths may be adjusted.
  • the yield it is preferable to adjust the inter-row adjustment in the dense planting direction as much as possible (up to about 3 cm).
  • the touch panel 50 When the touch panel 50 is identifiable on a route to which idling or inter-row adjustment is applied, the screen may be difficult to see depending on the screen resolution. Therefore, only the orbital route or the internal round-trip route IPL may be displayed. If the reciprocating process is completed in a short time, the current position may be determined and only the orbital route as the traveling line to be worked on may be displayed. Further, when the automatic traveling is interrupted and resumed, only the traveling route that has already been worked may be deleted. It is preferable that the work history immediately before the interruption is stored at the time of resumption, and the work is performed based on the same work history at the time of resumption so that the continuity of the work is ensured.
  • the traveling route is displayed on the screen of the touch panel 50 so that it can be identified by changing the display color or the like.
  • a message such as "The next traveling route is idling (inter-row adjusted traveling)" is displayed on the screen of the touch panel 50. Will be done.
  • the running traces of the empty running route or the traveling route adjusted between the rows are filled with the corresponding working width. Of course, in the case of idling, only the traveling route is displayed without filling.
  • inter-row adjustment and idling can be carried out on all work traveling routes, but the inter-row adjustment accompanied by the control of each inter-row clutch may be limited to the lap route only.
  • the zero-row planting route is a route for surely planting the seedlings held by the planting claws at that time during the running of this short route, whereby floating seedlings are suppressed.
  • the inner circuit path IRL may also be matched with the outer circuit path ORL by a route along the field shape.
  • the internal reciprocating path IPL is generated assuming that the internal reciprocating path IA is rectangular
  • the work trace when the internal reciprocating path IPL is used the area where the seedlings are planted in the straight path of the internal reciprocating path IPL
  • the orbital path IRL is used, a deformed unworked area or an overlapping work area having an inclined side as shown in FIGS. 70 and 71 is generated between the work trace and the work mark.
  • One is the generation of an internal reciprocating path IPL such that each end of the straight path of the internal reciprocating path IPL is sequentially lengthened, and the other is by controlling each clutch while traveling straight. be.
  • each of the strip clutches is turned on or off in sequence as the vehicle travels, so that one or both sides of the work mark (pre-planted area) becomes an inclined side. Further, if each row clutch is finely controlled, a curved work mark is possible.
  • FIGS. 70 and 71 Examples of a traveling method of a straight path having different lengths at each end are shown in FIGS. 70 and 71.
  • FIG. 70 shows an example in which the end of the straight path is gradually shortened, and the illustrated internal round-trip path IPL is composed of the forward straight path Y1, the turning path Y2, and the next straight path Y3, and is next.
  • the straight path Y3 is divided into a first path portion Y31 and a second path portion Y32.
  • the forward straight path Y1 and the second path portion Y32 are the seedling planting run, and the turning path Y2 and the first path portion Y31 are the non-seedling planting run.
  • FIG. 70 shows an example in which the end of the straight path is gradually shortened, and the illustrated internal round-trip path IPL is composed of the forward straight path Y1, the turning path Y2, and the next straight path Y3, and is next.
  • the straight path Y3 is divided into a first path portion Y31 and a
  • the straight path W3 includes a first path portion W31 and a second path portion W32.
  • the first path portion W31 and the second path portion W32 overlap with the final portion of the turning path W2.
  • the first route portion W31 is a reverse route.
  • the forward straight route Y1, the second route portion W32, and the next straight route W3 are seedling planting trips, and the turning route W2 and the first route portion W31 are non-sapling planting trips.
  • the turning path is a path performed with a predetermined turning radius
  • the straight path enters the turning path and requires reverse movement, but a smaller turning radius is used.
  • the distance of the swivel path is shortened, so that the first path portion W31 and the second path portion W32 are unnecessary.
  • the special turning here is turning back turning, turning using the difference in speed between the left and right wheels, and the like, and can be realized by turning control based on GPS coordinates, steering angle, wheel rotation speed, and the like.
  • the number of connecting points (hereinafter referred to as plot points) between the straight path and the next linear path increases.
  • the number of plots of the inner orbital path IRL is set to be less than the number of plots of the outer orbital path ORL, but in the inner region IA of a normal rectangle. It is larger than the number of plots of the inner orbital path IRL generated along the outer shape.
  • the traveling route is set by performing non-working traveling along the outer circumference of the field.
  • the traveling route can be generated by the information terminal 5 or the control unit 30.
  • the information terminal 5 or the control unit 30 may be provided with a route setting unit as an independent functional block.
  • both the information terminal 5 and the control unit 30 may be provided with a route setting unit, and the information terminal 5 or the control unit 30 may be configured to selectively determine whether to set the route.
  • the travel route may be generated by an external server or the like, and the information terminal 5 or the control unit 30 may receive the generated travel route.
  • Various data obtained during the work running of the work machine may be uploaded to an external central computer or cloud service computer.
  • data created by map shape acquisition processing, route creation processing, etc., obstacle data related to detected obstacles during running, running state data obtained during running, Work status data, field status data, etc. may be uploaded to an external central computer or cloud service computer.
  • such registered data may be downloaded prior to work.
  • the control unit 30 can be subdivided into arbitrary functional blocks. For example, with an automatic driving control unit that controls driving during automatic driving, a manual driving control unit that controls driving during manual driving, a working device control unit that controls various working devices, an information terminal 5, and other devices. Obstacle control that controls the communication unit that sends and receives information between the two, the sonar sensor 60, and detects obstacles, and issues commands to the automatic driving control unit and manual driving control unit according to the obstacle detection result.
  • a unit, a laminated light control unit that controls the laminated light 71, a transmission operating unit that controls the main speed change lever 7A, the motor 45, and the like may be individually provided as functional blocks of the control unit 30.
  • the notification device for performing various notifications performed by the rice transplanter is not limited to the information terminal 5 and the voice alarm generator 100, and can be performed using various notification devices.
  • the remote controller 90 may be provided with an LED to notify various information according to the lighting pattern, or the remote controller 90 may be provided with a monitor to display various information.
  • it is possible to notify by the lighting pattern of the laminated light 71, the center mascot 20, the light, and other light emitters, the display and vibration on the smartphone, mobile terminal, personal computer, etc. possessed by the worker, and the vibration of the remote controller 90, etc. can.
  • various notifications performed by the notification device are detected by the control unit 30, the notification control unit built in the control unit 30, or the notification control unit provided outside the control unit 30 to detect the traveling state, the working state, and various sensors. It is controlled according to the state and the like.
  • the outer peripheral contour line LL0 of the field indicated by the map information of the field acquired by the field shape acquisition process is offset to the center side of the field by a predetermined offset amount to the modified outer peripheral contour line LL1. Based on this, a travel path is formed.
  • the modified outer peripheral contour line LL1 is substantially the same as the outer peripheral path OL, which is the outermost peripheral path.
  • An inner orbital path IRL and an internal reciprocating path IPL are created inside the outer orbital path ORL.
  • the outer orbital path ORL and the inner orbital path IRL also show a bent shape following the shape of the convex portion ZA.
  • the inner circular path IRL may replace the bent shape with a straight line.
  • the region to be replaced with a straight line in this way is referred to as a special planting region SNA here.
  • the field shape having a plurality of special planting area SNAs becomes a complicated polygon, but if the path portion of the bent shape in the special planting area SNA can be replaced with a straight line, the field shape becomes a simple shape.
  • the inner circular path IRL can be formed linearly, and the envelope of the internal reciprocating path IPL is also linear.
  • the traveling on the outer orbital path ORL may be an idle run or a layered planting.
  • Such special planting area SNA often occurs in the corner area of the field, particularly at the entrance / exit E, but by straightening the route in the special planting area SNA, the route design becomes simple. However, it is preferable that the linearization of the route in the special planting area SNA can be selected by the operator.
  • the linear inner circuit path IRL enters the outer circuit path ORL, and the special planting area SNA becomes an overlapping special planting area included in both the outer circuit path ORL and the inner circuit path IRL.
  • the planting work for this overlapping special planting area is performed by traveling on the inner circuit path IRL.
  • the traveling of this overlapping special planting area on the outer circuit path ORL travels by empty planting and passes through the overlapping special planting area. If the overlapping special planting area occurs around the entrance / exit E, the planting is performed by traveling using the inner circuit path IRL, and the outer circuit path ORL passes through this overlapping special planting area. Without doing so, it passes through the doorway E as it is and escapes from the field.
  • the position of the material shortage (material shortage) may be displayed on the touch panel 50, preferably on the traveling route.
  • a rice transplanter has been described as an example, but the present invention includes a rice transplanter, a direct sowing machine, a management machine (spraying chemicals, fertilizers, etc.), a tractor, a harvester, and the like. It can be applied to agricultural work machines and various work machines that work on the work site.
  • the present invention can be applied to a traveling route management system for agricultural work machines such as rice transplanters and other work machines.
  • Aircraft 5 Information terminal 50: Touch panel 522: Round-trip route creation unit 524: Circular route creation unit 525: Operation mode management unit E: Doorway OA: Outer peripheral area IA: Internal area IPL: Round-trip route (internal round-trip route) IRL: Inner circuit path ORL: Outer circuit path

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Guiding Agricultural Machines (AREA)
  • Sowing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

This traveling path management system is for a work vehicle capable of autonomous travel in a farm and is provided with: a circulating path generation unit (524) for generating at least one or more circulating paths in an outer circumferential region of the farm on the basis of a travel trajectory of outer shape calculation travel along the boundary of the farm to calculate the outer shape of the farm field; and a reciprocating path generation unit (522) for generating a reciprocating path including a plurality of straight paths in an internal region positioned inside the outer circumferential region. The number of circulating paths is determined on the basis of the area necessary for turning travel from a straight path on which the work vehicle is running to the next straight path.

Description

作業機の走行経路管理システムTravel route management system for work equipment
 圃場等の作業地に対して、自動走行しながら作業を行う作業機のための走行経路管理システムに関する。 Regarding a travel route management system for work machines that work while automatically traveling to work areas such as fields.
 特許文献1に開示されるように、作業車両(作業機)は、圃場(作業地)を走行しながら、植付作業等の作業を行う。また、作業車両(作業機)は、自動走行により、作業走行を行う。作業車両(作業機)は、走行経路を算出し、GNSS(Global Navigation Satellite System)等を用いて算出した自機位置に基づいて走行経路に沿った自動走行を行う。 As disclosed in Patent Document 1, the work vehicle (working machine) performs work such as planting work while traveling in the field (working area). In addition, the work vehicle (working machine) performs work traveling by automatic traveling. The work vehicle (working machine) calculates a traveling route and automatically travels along the traveling route based on the position of the own machine calculated using GNSS (Global Navigation Satellite System) or the like.
日本国特開2019-154394号公報Japanese Patent Application Laid-Open No. 2019-154394
 このような作業機の自動作業走行における利便性をさらに向上させるための走行経路管理システムが求められている。 There is a demand for a travel route management system to further improve the convenience of such work equipment in automatic work travel.
 (1)本発明による、農場を自動走行可能な作業機のための走行経路管理システムは、前記農場の外形を算出するために前記農場の境界線に沿って走行する外形算出走行における走行軌跡に基づいて、前記農場の外周領域に少なくとも1本以上の周回経路を作成する周回経路作成部と、前記外周領域の内側に位置する内部領域に複数の直進経路を含む往復経路を作成する往復経路作成部とを備え、前記周回経路の本数は、走行している前記直進経路から次に走行する前記直進経路への旋回走行に必要な面積によって決定される。 (1) The travel route management system for a work machine capable of automatically traveling on a farm according to the present invention has a travel locus in an outer shape calculation run that travels along the boundary line of the farm in order to calculate the outer shape of the farm. Based on this, a round-trip route creation unit that creates at least one or more round-trip routes in the outer peripheral area of the farm, and a round-trip route creation that creates a round-trip route including a plurality of straight routes in the internal region located inside the outer peripheral area. The number of the circuit paths is determined by the area required for turning from the traveling straight path to the next traveling straight path.
 この構成では、周回走行の本数は、往復経路における直進経路から直進経路へ移行する際の旋回走行に必要な面積が確保されることを条件に、できるだけ少ない本数に限定することができる。周回走行での圃場のコーナ領域で行われる方向転換が複雑な経路となること、及び、複数の直進経路を旋回走行でつないでいく往復経路を用いた走行が簡単な経路となることを考慮すれば、周回走行の本数を少なくすることは好都合である。 In this configuration, the number of laps can be limited to as small as possible on the condition that the area required for turning when shifting from the straight path to the straight path in the round-trip route is secured. Consider that the direction change performed in the corner area of the field in the orbital travel becomes a complicated route, and that the travel using the round-trip route connecting multiple straight routes by the turning route becomes an easy route. For example, it is convenient to reduce the number of laps.
 本発明の好適な実施形態の1つでは、前記往復経路は、前記農場の境界線に沿って走行する外形算出走行における走行軌跡に基づいて作成される。この構成では、農場の外形形状を算出するために手動で走行することによって得られた走行軌跡は、農場の現状の外形を示している。したがって、この農場外形に基づいて、できるだけ広い範囲で往復経路が作成されると、効率の良い作業が可能となる。 In one of the preferred embodiments of the present invention, the round-trip route is created based on a travel locus in the outer shape calculation travel traveling along the boundary line of the farm. In this configuration, the running locus obtained by manually running to calculate the outer shape of the farm shows the current outer shape of the farm. Therefore, if a round-trip route is created in the widest possible range based on this farm outline, efficient work becomes possible.
 本発明の好適な実施形態の1つでは、前記周回経路の運転形態として、有人自動走行、無人自動走行からの選択を可能にする運転形態管理部を備えている。この構成では、畦などの圃場の境界線に最も接近した走行となる周回経路は、有人自動走行と無人自動走行とのうちの適正な運転形態で走行可能である。無人自動走行において、作業機が先に行われた外形算出走行で実績のある周回経路に倣って走行できれば、所望通りの自動走行となるが、その倣い走行の正確さは、自動走行制御技術に依存することになる。作業機が、周回経路から前もって設定された許容範囲から外れないように、自動走行されるなら、省力化の点で成果が得られる。但し、天候や農場面の悪化などによる不測の事態および侵入者や侵入物との接触危険事態に対処するためには、作業機に作業者が乗り込んでも有人自動走行が好ましい。作業機に乗り込んだ作業者は、実際に運転は行わずに、不測の事態や接触危険事態が生じた際に、作業機を停止させるなどの緊急処理を行う。このような運転形態、つまり、有人自動走行と無人自動走行とを状況に応じて選択することで、どのような状況下での周回経路を用いた走行であっても、効果的な走行が可能となる。自動走行が中止されると、手動走行となる。もちろん、熟練した作業者が運転する場合には、周回経路を手動走行することも可能である。 One of the preferred embodiments of the present invention includes a driving mode management unit that enables selection from manned automatic driving and unmanned automatic driving as the driving mode of the circuit route. In this configuration, the orbital route, which is the closest to the boundary line of the field such as ridges, can be driven in the appropriate driving mode of manned automatic driving and unmanned automatic driving. In unmanned automatic driving, if the work machine can run according to the orbital route that has been proven in the outer shape calculation running that was performed earlier, the automatic running will be as desired, but the accuracy of the following running is based on the automatic running control technology. Will depend on it. If the work equipment is automatically driven so that it does not deviate from the tolerance set in advance from the circuit path, the result will be obtained in terms of labor saving. However, in order to deal with unforeseen circumstances such as weather and deterioration of the farm surface and danger of contact with intruders and intruders, manned automatic driving is preferable even if a worker gets on the work machine. The worker who gets into the work machine does not actually operate the work machine, but performs emergency processing such as stopping the work machine in the event of an unexpected situation or a contact danger situation. By selecting such a driving mode, that is, manned automatic driving and unmanned automatic driving according to the situation, effective driving is possible regardless of the driving using the lap route under any situation. It becomes. When the automatic driving is stopped, the manual driving is started. Of course, when a skilled worker drives the vehicle, it is possible to manually drive the circuit route.
 畦などの圃場の境界線に最も接近した走行となる外側周回経路は、畦などの障害物あるいは畔から身を乗り出した人や物との接触の可能性が最も高い。そのような緊急事態の発生に対する処理や緊急事態の予測は作業機に乗り込んでいる作業者によって行われることが合理的である。このことから、本発明の好適な実施形態の1つでは、前記周回経路は、前記外形算出走行における走行軌跡に合わせた外側周回経路と、前記外側周回経路の内側に位置する内側周回経路とを含み、前記外側周回経路の運転形態は、前記有人自動走行または手動走行に限定されている。 The outer orbital route, which is the closest to the boundary of the field such as ridges, is most likely to come into contact with obstacles such as ridges or people or objects leaning out from the shore. It is rational that the processing for the occurrence of such an emergency and the prediction of the emergency are performed by the workers who are on board the work machine. From this, in one of the preferred embodiments of the present invention, the orbital path includes an outer orbital path that matches the traveling locus in the outer shape calculation run and an inner orbital path that is located inside the outer orbital path. Including, the operation mode of the outer circuit route is limited to the manned automatic traveling or the manual traveling.
 周回経路が内側周回経路と外側周回経路とから構成される場合、内側周回経路は、往復経路の直進経路の端部輪郭線(端部包絡線)と外側周回経路との間に位置することになる。端部輪郭線と外側周回経路による作業領域との間に位置する圃場領域は内側周回経路を用いた作業走行で作業されるので、内側周回経路は、直進経路の端部輪郭線と外側周回経路とに沿うように作成されることで、スムーズな作業が可能となる。このことから、本発明の好適な実施形態の1つでは、前記内側周回経路は、前記外周領域の内側に位置する内部領域に作成される複数の直進経路の端部輪郭線(端部包絡線)と前記外側周回経路とに沿うように作成される。なお、往復経路が農場の内部領域に作成されるので、往復経路は、内部往復経路とも称せられる。 When the orbital path is composed of an inner orbital path and an outer orbital path, the inner orbital path shall be located between the end contour line (end envelope) of the straight path of the reciprocating path and the outer orbital path. Become. Since the field area located between the end contour line and the work area by the outer orbital route is worked by the work run using the inner orbital route, the inner orbital route is the end contour line and the outer orbital route of the straight route. By creating along with, smooth work becomes possible. From this, in one of the preferred embodiments of the present invention, the inner circumferential path is an end contour line (end envelope) of a plurality of straight paths created in an inner region located inside the outer peripheral region. ) And the outer circuit path. Since the round-trip route is created in the internal area of the farm, the round-trip route is also referred to as an internal round-trip route.
 端部輪郭線と外側周回経路による作業領域との間に位置する圃場領域に対する作業幅が変動する場合には、作業幅の調節(田植機の場合は各条クラッチ制御)や重複作業が行われる。このことから、本発明の好適な実施形態の1つでは、前記端部輪郭線と前記外側周回経路との間隔が変動する場合(作業幅が走行とともに変化する場合)、前記内側周回経路に、作業制御情報として、前記間隔の変動に合わせて作業幅を変更するための各条クラッチのオン・オフ(入り切り)が割り当てられる。 When the work width for the field area located between the end contour line and the work area by the outer circuit path fluctuates, the work width is adjusted (in the case of a rice transplanter, each line clutch is controlled) and overlapping work is performed. .. From this, in one of the preferred embodiments of the present invention, when the distance between the end contour line and the outer circuit path fluctuates (when the working width changes with traveling), the inner circuit path is used. As work control information, on / off (on / off) of each clutch for changing the work width according to the fluctuation of the interval is assigned.
 周回経路作成における各種設定や周回経路に対して運転形態を割り当て設定などは、作業者による操作入力に基づいて行われる。このような作業機に対する作業者の操作入力を容易するためには、グラフィックインターフェースが用いられると好都合である。このことから、本発明の好適な実施形態の1つでは、前記作業機の車載LANに接続されたタッチパネル付き情報端末に、前記周回経路作成部と前記往復経路作成部と前記運転形態管理部とが、グラフィックユーザインターフェースを通じて操作可能に構築されており、前記周回経路は、前記運転形態に応じて識別可能に前記タッチパネルの画面に表示される。 Various settings in the orbital route creation and settings for assigning the operation mode to the orbital route are performed based on the operation input by the operator. It is convenient to use a graphic interface in order to facilitate the operator's operation input to such a work machine. From this, in one of the preferred embodiments of the present invention, the information terminal with a touch panel connected to the in-vehicle LAN of the work machine is provided with the circuit route creation unit, the reciprocating route creation unit, and the operation mode management unit. However, the circuit path is constructed so as to be operable through the graphic user interface, and the circuit path is identifiablely displayed on the screen of the touch panel according to the operation mode.
 運転形態として、手動走行が実行される経路は、タッチパネルなどの画面に表示する必要はないでの、画面から消去することで、画面を別な目的で好適に使用することができる。ただし、手動走行が実行される経路であっても、画面に表示することで、手動走行を支援する案内経路として好適に利用することができる。 As a driving mode, the route on which manual driving is executed does not need to be displayed on a screen such as a touch panel, but the screen can be suitably used for another purpose by deleting it from the screen. However, even if the route is a route on which manual travel is executed, it can be suitably used as a guide route to support manual travel by displaying it on the screen.
 往復経路において、走行している直進経路から次に走行する前記直進経路に移行するための旋回走行において周回走行に沿った直線状の経路が用いられる場合がある。このような場合には、周回経路の一部を旋回走行における直線状の経路として利用すると、当該経路を新たに作成する必要がなくなる。このことから、本発明の好適な実施形態の1つでは、走行している前記直進経路から次に走行する前記直進経路への旋回走行を行うための旋回経路の一部として、前記周回経路の一部が用いられる。 In the round-trip route, a straight route along the lap travel may be used in the turning travel to shift from the traveling straight route to the next traveling straight route. In such a case, if a part of the orbital route is used as a linear route in the turning run, it is not necessary to newly create the route. From this, in one of the preferred embodiments of the present invention, as a part of the turning path for performing the turning traveling from the traveling straight path to the next traveling straight path, the circuit path Some are used.
 (2)本発明に係る作業機の特徴構成は、自動走行可能な作業機であって、衛星測位を用いて機体位置を算出する機体位置算出部と、作業地の形状を示すマップ情報を、前記作業地の位置を示す位置情報と前記マップ情報が作成された時間を示す時間情報とに基づいて記憶するマップ情報記憶部と、表示画面を有する表示装置と、前記マップ情報記憶部に記憶された前記マップ情報のうち、前記機体位置と前記位置情報と前記時間情報とに基づいて抽出した前記マップ情報を、前記表示画面に表示させるマップ情報表示部と、前記表示画面に表示された前記マップ情報において、利用者による操作入力が行われた入力領域を判定する入力領域判定部と、判定された前記入力領域に応じた前記マップ情報における位置情報を入力位置情報として算定する入力位置情報算定部と、前記入力位置情報に基づいて、前記マップ情報記憶部に記憶されたマップ情報を抽出して前記表示画面にサムネイルで表示させるサムネイル表示部と、を備えている点にある。 (2) The characteristic configuration of the work machine according to the present invention is a work machine capable of automatically traveling, and a machine position calculation unit that calculates the machine position using satellite positioning and map information indicating the shape of the work site are provided. A map information storage unit that stores the location information indicating the position of the work site and the time information indicating the time when the map information was created, a display device having a display screen, and the map information storage unit store the map information. Of the map information, the map information display unit that displays the map information extracted based on the aircraft position, the position information, and the time information on the display screen, and the map displayed on the display screen. In the information, an input area determination unit that determines the input area in which the operation input by the user has been performed, and an input position information calculation unit that calculates the position information in the map information corresponding to the determined input area as input position information. And, based on the input position information, the map information stored in the map information storage unit is extracted and displayed as a thumbnail on the display screen.
 このような特徴構成とすれば、作業機の機体位置に応じたマップ情報を自動的に表示画面に表示させることができると共に、当該表示されたマップ情報に対する利用者の入力操作に応じたマップ情報もサムネイルで表示画面に表示させることができる。したがって、マップ情報記憶部に記憶されたマップ情報を簡便に利用することができるので、例えば自動作業走行において、利用者がマップ情報を把握し易くなり、利便性を向上することが可能となる。 With such a feature configuration, map information according to the machine body position of the work machine can be automatically displayed on the display screen, and map information according to the user's input operation for the displayed map information. Can also be displayed on the display screen as thumbnails. Therefore, since the map information stored in the map information storage unit can be easily used, for example, in automatic work running, it becomes easier for the user to grasp the map information, and the convenience can be improved.
 また、前記表示画面がタッチパネルであって、前記表示画面に複数のマップ情報が表示されている状態において、前記入力領域が少なくとも2以上のマップ情報に亘っているか否かを判定する操作判定部と、前記入力領域が前記少なくとも2以上のマップ情報に亘っていた場合に、夫々の前記マップ情報における前記入力領域の面積を算出する面積算出部と、を備え、前記入力領域判定部は、前記少なくとも2以上のマップ情報のうち、前記面積が最も広い入力領域のマップ情報を、前記操作入力が行われたマップ情報であるとすると好適である。 Further, in a state where the display screen is a touch panel and a plurality of map information is displayed on the display screen, an operation determination unit for determining whether or not the input area covers at least two or more map information. The input area determination unit includes an area calculation unit that calculates the area of the input area in each of the map information when the input area covers at least two or more map information. Of the two or more map information, it is preferable that the map information of the input area having the largest area is the map information on which the operation input is performed.
 このような構成とすれば、利用者による入力領域が複数のマップ情報に亘っている場合には、利用者による操作入力が最も広い入力領域のマップ情報に対するものとして自動的に扱うことが可能となる。したがって、利便性を向上することができる。 With such a configuration, when the input area by the user covers a plurality of map information, it is possible to automatically handle the operation input by the user as the map information of the widest input area. Become. Therefore, convenience can be improved.
 また、前記サムネイル表示部は、前記サムネイルで表示される前記マップ情報に基づく作業地において行われた作業の情報を示す作業情報も表示すると好適である。 It is also preferable that the thumbnail display unit also displays work information indicating information on work performed at the work site based on the map information displayed by the thumbnail.
 このような構成とすれば、利用者に対して、サムネイルで表示されたマップ情報と共に、当該マップ情報に基づく作業地において行われた過去の作業情報も、把握させ易くすることが可能となる。 With such a configuration, it is possible for the user to easily grasp the map information displayed as thumbnails as well as the past work information performed at the work site based on the map information.
 また、前記表示画面に表示される前記マップ情報に関する前記時間情報に基づいて、当該マップ情報が作成されてからの経過時間を算定し、当該経過時間に応じて当該マップ情報の再作成を報知すると好適である。 Further, when the elapsed time from the creation of the map information is calculated based on the time information related to the map information displayed on the display screen, and the re-creation of the map information is notified according to the elapsed time. Suitable.
 このような構成とすれば、マップ情報が作成されてから所期の時間が経過していれば、利用者にマップ情報の再作成を促すことができる。したがって、利用者自身がマップ情報の作成後の経過時間を把握しておく必要がないので、利便性を向上できる。 With such a configuration, if the desired time has passed since the map information was created, the user can be prompted to recreate the map information. Therefore, it is not necessary for the user himself / herself to know the elapsed time after the map information is created, so that the convenience can be improved.
 また、前記作業地においてこれまでに起こった災害を示す災害情報を取得し、前記災害情報と前記表示画面に表示される前記マップ情報に関する前記時間情報とに基づいて、当該マップ情報の作成後に当該マップ情報に基づく前記作業地において被災していると判定された場合には、当該マップ情報の再作成を報知すると好適である。 In addition, after acquiring the disaster information indicating the disasters that have occurred so far in the work site and creating the map information based on the disaster information and the time information related to the map information displayed on the display screen, the said When it is determined that the work site is damaged based on the map information, it is preferable to notify the re-creation of the map information.
 マップ情報の作成後、当該マップ情報に応じた作業地において災害が生じている場合には、マップ情報が実際の作業地の形状や状況と異なっている可能性がある。そこで、このような構成とすれば、災害の発生状況に応じて利用者にマップ情報の再作成を促すことができる。したがって、利用者自身が災害の発生状況を把握しておく必要がないので、利便性を向上できる。 After creating the map information, if a disaster occurs in the work area according to the map information, the map information may differ from the actual shape and situation of the work area. Therefore, with such a configuration, it is possible to encourage the user to recreate the map information according to the occurrence situation of the disaster. Therefore, it is not necessary for the user himself / herself to know the occurrence situation of the disaster, so that the convenience can be improved.
 (3)本発明による、農場を自動走行可能な作業機のための走行経路管理システムは、前記農場の外形の一辺を基準辺として設定する基準辺設定部と、前記基準辺に対して所定の方向で延びる複数の直進経路を含む往復経路を作成する往復経路作成部と、前記往復経路における走行方向を設定する走行方向設定部とを備える。 (3) The travel route management system for a work machine capable of automatically traveling on a farm according to the present invention has a reference edge setting unit that sets one side of the outer shape of the farm as a reference edge, and a predetermined reference edge with respect to the reference edge. It includes a reciprocating route creating unit that creates a reciprocating route including a plurality of straight routes extending in a direction, and a traveling direction setting unit that sets a traveling direction in the reciprocating route.
 この構成では、基準辺として設定された農場の一辺に対して所定の方向で延びる複数の直進経路が農場の内部領域に張り巡らされる。結果的に、複数の直進経路は互いに平行であり、同じ方位で延びているので、その形成及び管理が容易である。同時に、そのような直進経路に沿った自動走行は、一般道路のような曲がりくねった経路の走行に比べて容易である。しかも、複数の直進経路を機体の方向転換走行により順次つなげることで、効率的な作業走行が実現する。その際、走行方向設定部によって設定される走行方向に応じて、作業走行開始点や作業走行終了点が決まる。作業走行開始点や作業走行終了点の位置は、農場の出入口と関係づける必要があるので、往復経路における走行方向を設定する機能は利点がある。なお、走行方向設定部は、走行方向を設定するように構成してもよいし、走行方向を決定するように構成してもよいので、走行方向設定部は走行方向決定部とも称せられる。 In this configuration, a plurality of straight routes extending in a predetermined direction with respect to one side of the farm set as the reference side are stretched in the inner area of the farm. As a result, the plurality of straight paths are parallel to each other and extend in the same direction, so that their formation and management are easy. At the same time, autonomous driving along such straight routes is easier than traveling on winding routes such as ordinary roads. Moreover, efficient work travel is realized by sequentially connecting a plurality of straight routes by turning the aircraft. At that time, the work running start point and the work running end point are determined according to the running direction set by the running direction setting unit. Since the positions of the work running start point and the work running end point need to be related to the entrance and exit of the farm, the function of setting the running direction in the round-trip route is advantageous. Since the traveling direction setting unit may be configured to set the traveling direction or determine the traveling direction, the traveling direction setting unit is also referred to as a traveling direction determining unit.
 農場の多くは、四角形、ほぼ矩形である。一般に、地図等では、農道を基準としては農場が区画されているので、農場に接している農道を基準にした方が、農場の形状や大きさの想定が容易となる。このため、基準辺として農道に接している辺を選択した場合、農場の長辺は、基準辺に平行な辺または基準辺に垂直な辺のいずれかとなる。本発明の実施形態の1つでは、前記直進経路は、前記基準辺に対し平行または垂直に延びるように作成される。これにより、長い直進経路の形成が可能となる。もちろん、作業方向性のある農場では、短い直進経路が形成されてもよい。 Most of the farms are square, almost rectangular. In general, in maps and the like, farms are divided based on agricultural roads, so it is easier to estimate the shape and size of farms based on the agricultural roads in contact with the farms. Therefore, when a side adjacent to the farm road is selected as the reference side, the long side of the farm is either a side parallel to the reference side or a side perpendicular to the reference side. In one of the embodiments of the present invention, the straight path is created so as to extend parallel or perpendicular to the reference side. This makes it possible to form a long straight path. Of course, on farms with work directions, short straight paths may be formed.
 田植機、施肥機、薬剤散布機などの作業機は、農場に投与する資材を補給するために、農場の外形の一辺、例えば農道に接した一辺を資材補給辺とし、資材補給時には、作業機はこの資材補給辺に接近する。なお、上記のような作業機では、通常、機体の前端または後端を資材補給辺に寄せ付けた姿勢で、資材補給される。直進経路の先に資材補給辺が位置すると、直進経路での走行姿勢から、直接、前進または後進によって、資材補給辺への寄せ付けが可能となるので好都合である。このことから、本発明の好適な実施形態の1つでは、前記農場の外形の一辺を前記作業機が消費する資材の資材補給辺として設定する補給辺設定部が備えられ、前記資材補給辺は、前記直進経路の延び方向に対向するように設定される。 Working machines such as rice transplanters, fertilizers, and chemical sprayers use one side of the outer shape of the farm, for example, the side in contact with the farm road, as the material supply side in order to replenish the materials to be administered to the farm. Approaches this material supply side. In the above-mentioned working machine, the material is usually replenished in a posture in which the front end or the rear end of the machine is brought close to the material replenishment side. If the material supply side is located ahead of the straight route, it is convenient because it is possible to approach the material supply side directly, forward or backward from the traveling posture on the straight route. From this, in one of the preferred embodiments of the present invention, a supply side setting unit for setting one side of the outer shape of the farm as a material supply side of the material consumed by the work machine is provided, and the material supply side is provided. , It is set to face the extending direction of the straight path.
 田植機などの作業機では、往復経路を用いた作業走行後に、直進経路から次の直進経路に移行するための旋回走行のためのスペースとして用いられた農場の外周領域が未作業地として残される。このため、最終的な作業として、往復経路の終了点を起点として外周領域を周回する作業走行が行われる。この周回作業走行が終了すると、作業機は、そのまま、農場の出入口を通じて農場外に出る。このことから、前記往復経路の終了点が、前記農場の出入口に近いと、好都合である。したがって、本発明の好適な実施形態の1つでは、前記往復経路の終了点は、前記農場の出入口に近接している前記直進経路の終端に設定される。 In a work machine such as a rice transplanter, after a work run using a round-trip route, the outer peripheral area of the farm used as a space for a turning run to shift from a straight route to the next straight route is left as unworked land. .. Therefore, as the final work, the work running around the outer peripheral region is performed starting from the end point of the reciprocating route. When this lap work run is completed, the work machine goes out of the farm as it is through the entrance and exit of the farm. For this reason, it is convenient if the end point of the round-trip route is close to the entrance / exit of the farm. Therefore, in one of the preferred embodiments of the present invention, the end point of the round-trip route is set at the end of the straight-ahead route that is close to the doorway of the farm.
 田植機などでは、機体の前端を資材補給辺に寄せ付けた姿勢で、資材補給としての苗補給が行われる。このため、苗補給を行う場合には、走行している直進経路から次の直進経路に移行せずに、走行している直進経路の先を走行することが好都合である。その際、走行している直進経路から次の直進経路に入るための旋回走行に入る前に、作業者に、資材補給を行うかどうかを考慮する時間を与えることが好ましい。また、薬剤補給などは、通常機体の後端を資材補給辺に寄せ付けた姿勢で行われる。この場合は、次の直進経路での作業走行に入る前の姿勢で、そのまま後進で資材補給辺への寄せ付け走行が行われるので、走行している直進経路から旋回走行を経て次の直進経路での作業走行に入る前に、作業者に、資材補給を行うかどうかを考慮する時間を与えることが好ましい。このことから、本発明の好適な実施形態の1つでは、前記資材補給辺に向かって走行している前記直進経路の終端領域またはその次に走行する前記直進経路の始端領域あるいはその両方の領域に、走行制御情報としての車体の一時停止が割り当てられる。なお、資材補給として、苗補給だけを行う田植機などでは、前記資材補給辺に向かって走行している前記直進経路の終端領域のみで、車体の一時停止が行われるだけでよい。 In rice transplanters, seedlings are replenished as material replenishment with the front end of the aircraft close to the material replenishment side. Therefore, when replenishing seedlings, it is convenient to travel ahead of the traveling straight route without shifting from the traveling straight route to the next straight route. At that time, it is preferable to give the operator time to consider whether or not to replenish the materials before entering the turning run for entering the next straight path from the running straight path. In addition, drug replenishment is usually performed with the rear end of the aircraft close to the material replenishment side. In this case, in the posture before starting the work run on the next straight path, the run is carried out as it is in the reverse direction toward the material supply side. It is preferable to give the worker time to consider whether or not to replenish the materials before starting the work run. From this, in one of the preferred embodiments of the present invention, the end region of the straight path traveling toward the material supply side, the start region of the straight path traveling next, or both regions. Is assigned a temporary stop of the vehicle body as travel control information. As a material supply, in a rice transplanter or the like that only supplies seedlings, the vehicle body need only be temporarily stopped only in the terminal region of the straight path traveling toward the material supply side.
 上述したように、田植機などの作業機では、往復経路を用いた作業走行後に、直進経路から次の直進経路に移行するための旋回走行のためのスペースとして用いられた農場の外周領域が未作業地として残される。このため、本発明の好適な実施形態の1つでは、前記農場は、前記農場の境界線に沿った周回走行が行われる外周領域と、前記外周領域の内側に位置する内部領域とに分けられ、前記内部領域に前記直進経路が形成され、前記外周領域において、走行している前記直進経路から次に走行する前記直進経路に移行するための旋回走行が行われる。このことから、往復経路は内部往復経路とも称せられる。 As described above, in a work machine such as a rice transplanter, the outer peripheral area of the farm used as a space for a turning run for shifting from a straight path to the next straight path after a work run using a round-trip route is not yet available. It is left as a work place. Therefore, in one of the preferred embodiments of the present invention, the farm is divided into an outer peripheral region where orbiting along the boundary line of the farm is performed and an inner region located inside the outer peripheral region. The straight path is formed in the internal region, and in the outer peripheral region, a turning run is performed to shift from the traveling straight path to the next traveling straight path. For this reason, the round-trip route is also referred to as an internal round-trip route.
 基準辺の設定や走行方向の設定などは、作業者による操作入力に基づいて行われる。このような作業機に対する作業者の操作入力を容易するためには、グラフィックインターフェースが用いられると好都合である。このことから、本発明の好適な実施形態の1つでは、前記作業機の車載LANに接続されたタッチパネル付き情報端末に、前記基準辺設定部と前記往復経路作成部と前記走行方向設定部(走行方向決定部)とが、グラフィックユーザインターフェースを通じて操作可能に構築されており、前記往復経路は、前記往復経路に対する運転形態が識別可能に前記タッチパネルの画面に表示される。 The setting of the reference side and the setting of the traveling direction are performed based on the operation input by the operator. It is convenient to use a graphic interface in order to facilitate the operator's operation input to such a work machine. From this, in one of the preferred embodiments of the present invention, the reference side setting unit, the reciprocating route creation unit, and the traveling direction setting unit ( The traveling direction determination unit) is constructed so as to be operable through the graphic user interface, and the reciprocating route is displayed on the screen of the touch panel so that the operation mode for the reciprocating route can be identified.
 (4)本発明に係る作業機の特徴構成は、自動走行可能な作業機であって、機体位置を算出する機体位置算出部と、作業地の外周に沿って区切られた複数の領域の夫々を走行する際に、一つの前記領域における走行開始時は、前記機体位置と機体における外周側の後方側端部の位置とに基づいて位置情報を算定し、当該一つの領域における走行終了時は、前記機体位置と前記機体における外周側の前方側端部の位置とに基づいて前記位置情報を算定する位置情報算定部と、前記位置情報に基づいて、前記作業地の形状を示すマップ情報を作成するマップ情報作成部と、を備えている点にある。 (4) The characteristic configuration of the work machine according to the present invention is a work machine capable of automatically traveling, and has a machine body position calculation unit for calculating the machine body position and a plurality of regions divided along the outer periphery of the work site, respectively. At the start of traveling in one of the regions, the position information is calculated based on the position of the aircraft and the position of the rear end on the outer peripheral side of the aircraft, and at the end of traveling in the one region. , A position information calculation unit that calculates the position information based on the position of the machine body and the position of the front end portion on the outer peripheral side of the machine body, and map information indicating the shape of the work site based on the position information. The point is that it has a map information creation unit to be created.
 このような特徴構成とすれば、作業地の外周に沿って区切られた複数の領域の夫々における走行開始時の位置と走行終了時の位置とを正確に検出し、これらの位置に基づいて夫々の領域の位置情報を正確に算定することができる。したがって、作業地の形状を示すマップ情報を適切に作成することができるので、例えば自動作業走行において、マップ情報を利用することで、利便性を向上することが可能となる。 With such a characteristic configuration, the position at the start of running and the position at the end of running in each of the plurality of areas divided along the outer circumference of the work site are accurately detected, and each of them is based on these positions. The position information of the area can be calculated accurately. Therefore, since the map information indicating the shape of the work site can be appropriately created, it is possible to improve the convenience by using the map information, for example, in the automatic work running.
 また、前記機体に対して昇降自在に、対地作業を行う作業ユニットが設けられ、前記位置情報算定部は、上昇位置にある前記作業ユニットが下降状態とされた時点を前記走行開始時とし、前記下降状態にある前記作業ユニットが前記上昇位置に戻された時点を前記走行終了時とすると好適である。 Further, a work unit for performing ground work is provided so as to be able to move up and down with respect to the machine body, and the position information calculation unit sets the time when the work unit in the ascending position is in the descending state as the start of traveling. It is preferable that the time when the working unit in the lowered state is returned to the raised position is the end of the traveling.
 このような構成とすれば、作業ユニットの上昇と下降とに応じて自動的に走行開始時と走行終了時とを設定できる。したがって、走行開始時の設定や走行終了時の設定に係る利用者(作業者)の操作を低減できるので、利便性を向上することが可能となる。 With such a configuration, it is possible to automatically set the start time and the end time of running according to the ascent and descent of the work unit. Therefore, it is possible to reduce the operations of the user (worker) related to the setting at the start of traveling and the setting at the end of traveling, so that the convenience can be improved.
 また、前記機体に対地作業を行う作業ユニットが設けられ、前記外周に沿って前記作業地を走行する際に、前記マップ情報により示される前記作業地の外周部に対して、前記作業地の中央側にオフセットした位置を基準として前記対地作業を行う際の走行経路を生成する走行経路生成部を備えると好適である。 Further, a work unit for performing ground work is provided on the machine body, and when traveling along the outer circumference of the work place, the center of the work place is relative to the outer peripheral portion of the work place indicated by the map information. It is preferable to include a travel route generation unit that generates a travel route when performing the ground work with the position offset to the side as a reference.
 このような構成とすれば、マップ情報により示される作業地の形状に対して、マージンを確保した上で、走行経路を生成することができる。したがって、作業地外への作業機の進入を防止することが可能となる。 With such a configuration, it is possible to generate a traveling route after securing a margin for the shape of the work area indicated by the map information. Therefore, it is possible to prevent the work machine from entering the outside of the work site.
 また、前記位置情報算定部は、前記一つの領域において走行を開始してから終了するまでの間は、前記機体の重心位置から前記機体の幅方向に沿って仮想的に延長した第1線と、前記機体における前記機体の幅方向に沿って最も突出した突出部から前記機体の長さ方向に沿って仮想的に延長した第2線とが交差する位置に基づいて前記位置情報を算定すると好適である。 In addition, the position information calculation unit is a first line that virtually extends from the position of the center of gravity of the aircraft along the width direction of the aircraft from the start to the end of traveling in the one region. It is preferable to calculate the position information based on the position where the most protruding portion of the airframe that protrudes along the width direction of the airframe intersects with the second line that is virtually extended along the length direction of the airframe. Is.
 例えば利用者が手動で作業機を走行させる場合には、作業機の機体の長さ方向の中央部を基準に走行させることが多い。そこで、このような構成とすれば、走行開始位置を出発してから走行終了位置に到達するまでの間は、第1線と第2線とが交差する位置に基づいて位置情報を算定するので、利用者による基準に合わせた位置情報を算定することが可能となる。 For example, when the user manually runs the work machine, it is often run based on the central portion of the work machine in the length direction. Therefore, with such a configuration, the position information is calculated based on the position where the first line and the second line intersect from the departure of the travel start position to the arrival of the travel end position. , It becomes possible to calculate the location information according to the standard by the user.
 また、表示画面を有する表示装置を備え、前記表示画面において、前記マップ情報により示される前記作業地の形状が複数の指標を用いて明示され、前記マップ情報作成部は、前記マップ情報に係るデータの量が予め設定された値以上になった場合に、前記作業地の形状の変化量が小さい部分に対応する前記データを削除し、前記表示画面に当該削除したデータに対応する前記指標を他の前記指標と識別可能に明示すると好適である。 Further, a display device having a display screen is provided, and the shape of the work area indicated by the map information is clearly indicated by using a plurality of indexes on the display screen, and the map information creation unit is responsible for data related to the map information. When the amount of the data exceeds a preset value, the data corresponding to the portion where the amount of change in the shape of the work site is small is deleted, and the index corresponding to the deleted data is displayed on the display screen. It is preferable to clearly indicate that the index is distinguishable from the above-mentioned index.
 このような構成とすれば、データ量の増大を抑制することができると共に、利用者にデータが削除したことを明示することができるので、利便性を向上することが可能となる。 With such a configuration, it is possible to suppress an increase in the amount of data and to clearly indicate to the user that the data has been deleted, so that convenience can be improved.
 また、前回の前記走行開始時の位置から次の前記走行開始時の位置までの間における前記機体の移動距離が、予め設定された距離以下である場合には、前記前回の走行開始時の位置を無効とすると好適である。 Further, when the moving distance of the aircraft from the position at the start of the previous run to the position at the start of the next run is less than or equal to a preset distance, the position at the start of the previous run. It is preferable to disable.
 例えば複数の領域の夫々を走行する際、機体の位置を所期の位置に調整するために、走行と停止とを繰り返すことがある。そこで、このような構成とすれば、機体の位置の調整時において走行開始時の位置として検出された結果を無効とすることができるので、適切にマップ情報を作成することが可能となる。 For example, when traveling in each of a plurality of areas, traveling and stopping may be repeated in order to adjust the position of the aircraft to the desired position. Therefore, with such a configuration, it is possible to invalidate the result detected as the position at the start of traveling when adjusting the position of the aircraft, so that it is possible to appropriately create map information.
 また、表示画面を有する表示装置を備え、前記表示画面において、前記マップ情報により示される前記作業地の形状が複数の指標を用いて明示され、前記表示画面において、前記走行開始時の位置と前記走行終了時の位置とが、前記走行開始時の位置及び前記走行終了時の位置以外の位置を示す前記指標と異なる指標で表示されると好適である。 Further, a display device having a display screen is provided, and on the display screen, the shape of the work area indicated by the map information is clearly indicated by using a plurality of indexes, and on the display screen, the position at the start of traveling and the said. It is preferable that the position at the end of running is displayed by an index different from the index indicating the position at the start of running and the position at the end of running.
 このような構成とすれば、表示画面を見た利用者に対して、直感的に走行開始時の位置及び走行終了時の位置と、これら以外の位置とを把握させることが可能となる。 With such a configuration, it is possible for the user who sees the display screen to intuitively grasp the position at the start of running, the position at the end of running, and the positions other than these.
 また、前記表示画面において、前記走行開始時の位置と前記走行終了時の位置とが互いに異なる指標で表示されると好適である。 Further, on the display screen, it is preferable that the position at the start of traveling and the position at the end of traveling are displayed with different indexes.
 このような構成とすれば、表示画面を見た利用者に対して、直感的に走行開始時の位置と走行終了時の位置とを把握させることが可能となる。 With such a configuration, it is possible for the user who sees the display screen to intuitively grasp the position at the start of running and the position at the end of running.
 また、前記機体に対地作業を行う作業ユニットが設けられ、前記作業地の外周領域において前記対地作業を行う場合は、前記マップ情報を作成する際における機体速度と同じ速度で走行すると好適である。 Further, when the machine is provided with a work unit for performing the ground work and the ground work is performed in the outer peripheral region of the work site, it is preferable to travel at the same speed as the machine speed when creating the map information.
 このような構成とすれば、マップ作成時に走行した経路に沿って走行し易くできる。 With such a configuration, it is possible to easily travel along the route traveled when creating the map.
 また、前記マップ情報作成部は、前記位置情報算定部により算定された位置情報のうち、前記マップ情報作成部に伝達された位置情報のみを用いて前記マップ情報を作成すると好適である。 Further, it is preferable that the map information creation unit creates the map information using only the position information transmitted to the map information creation unit among the position information calculated by the position information calculation unit.
 このような構成とすれば、機体位置算出部により算出された機体位置のデータ量が所期の量よりも多い場合であっても、マップ情報の作成時には間引いた状態で利用できるので、マップ情報のデータ量の増大を抑制できる。 With such a configuration, even if the amount of data of the aircraft position calculated by the aircraft position calculation unit is larger than the expected amount, it can be used in a thinned state when creating the map information, so that the map information can be used. The increase in the amount of data can be suppressed.
 (5)本発明による、農場を自動走行可能な作業機のための走行経路管理システムは、前記農場の外周領域に少なくとも1本以上の周回経路を作成する周回経路作成部と、前記外周領域の内側に位置する内部領域に、複数の直進経路と2つの前記直進経路を接続する旋回経路とからなる往復経路を作成する往復経路作成部と、前記往復経路を用いた作業走行の開始点を設定する開始点設定部と、誘導条件を満たした前記作業機を前記開始点へ自動的に誘導するための開始点誘導経路を作成する開始点誘導経路作成部とを備える。 (5) The travel route management system for a work machine capable of automatically traveling on a farm according to the present invention includes an orbital route creating unit that creates at least one or more orbital routes in the outer peripheral region of the farm, and the outer peripheral region. In the internal area located inside, a reciprocating route creation unit that creates a reciprocating route consisting of a plurality of straight routes and a turning path connecting the two straight routes and a start point of work running using the reciprocating route are set. It is provided with a start point setting unit for setting a start point and a start point guidance route creating unit for creating a start point guidance route for automatically guiding the work machine satisfying the guidance condition to the start point.
 この構成では、予め設定された誘導条件が満たされると、作業機は、開始点誘導経路を目標経路とする自動走行で、往復経路を用いた作業走行の開始点まで誘導されるので、作業機が手動で開始点まで移動する必要がなくなる。作業走行の開始点に正確に作業機を位置させることは、作業機の運転に熟練していない作業者にとっては難しい作業であるので、誘導条件を適切に選ぶことにより自動走行のための開始点誘導経路が作成されることは、作業員の負担を軽減させる。 In this configuration, when the preset guidance conditions are satisfied, the work machine is guided to the start point of the work run using the reciprocating route by automatic running with the start point guide route as the target route. Eliminates the need to manually move to the starting point. Positioning the work machine accurately at the start point of work running is a difficult task for a worker who is not skilled in operating the work machine, so the starting point for automatic running can be selected by appropriately selecting the guidance conditions. Creating a guidance route reduces the burden on workers.
 本発明の好適な実施形態の1つでは、前記誘導条件には、予め設定された誘導可能方位と前記作業機の進行方向の方位との差が許容範囲内であることが含まれる。この構成では、作業機がその進行先を予め設定された方向に向けて位置させるだけで、開始点誘導経路を目標経路とする自動走行で開始点まで誘導されるので、作業員の負担は軽減する。 In one of the preferred embodiments of the present invention, the guidance condition includes that the difference between the preset guideable direction and the direction of travel of the work machine is within an allowable range. In this configuration, the work machine is guided to the start point by automatic running with the start point guidance route as the target route only by positioning the traveling destination in a preset direction, so that the burden on the worker is reduced. do.
 本発明の好適な実施形態の1つでは、前記誘導条件には、予め設定された誘導可能エリアに前記作業機の少なくとも一部が入っていることが含まれる。この構成では、作業機の少なくとも一部を予め設定された誘導開始可能エリアである誘導可能エリアに位置させると、自動的に作業機は開始点まで、自動走行することができるので、作業員の負担は小さい。誘導可能エリアが農場の出入口付近とすれば、農場における作業走行が、実質的に完全自動化されることになる。 In one of the preferred embodiments of the present invention, the guidance condition includes that at least a part of the working machine is contained in a preset guideable area. In this configuration, when at least a part of the work machine is positioned in the guideable area which is a preset guide startable area, the work machine can automatically travel to the start point, so that the worker can move. The burden is small. If the navigable area is near the doorway of the farm, the work run on the farm will be virtually fully automated.
 本発明の好適な実施形態の1つでは、前記誘導可能エリアは複数設定されている。この構成では、作業走行を自動化するため必要となる、作業機を位置させる誘導可能エリアが複数であれば、その選択肢が増える。作業者はより簡単な誘導可能エリアを選択することができるので、作業者にとって好都合である。 In one of the preferred embodiments of the present invention, a plurality of the guideable areas are set. In this configuration, if there are a plurality of guideable areas for locating the work machine, which are required for automating the work run, the options are increased. It is convenient for the operator because the operator can select a simpler guideable area.
 本発明の好適な実施形態の1つでは、前記誘導可能エリアの中心点から前記開始点までの間に所定距離以上の直進経路が確保できるように、前記誘導可能エリアが設定される。
この構成では、開始点誘導経路を作成するための長さ(スペース)が必要なだけとれるので、無理のない自動走行が可能な開始点誘導経路が作成されるので、自動制御の負担が軽減される。
In one of the preferred embodiments of the present invention, the guideable area is set so that a straight path of a predetermined distance or more can be secured between the center point of the guideable area and the start point.
In this configuration, only the length (space) required to create the start point guidance route can be taken, so the start point guidance route that enables reasonable automatic driving is created, and the burden of automatic control is reduced. NS.
 本発明の好適な実施形態の1つでは、前記開始点誘導経路の少なくとも一部は、前記周回経路の一部を流用する。開始点は、内部領域に設定される往復経路の始点であるので、開始点誘導経路が、外周領域に形成される。このため、開始点誘導経路は周回経路の一部に沿って延びる。このため、開始点誘導経路の少なくとも一部として、簡単に、周回経路の一部を流用することができる。これにより、開始点誘導経路の作成負担が軽減される。 In one of the preferred embodiments of the present invention, at least a part of the starting point guidance path is diverted from a part of the circuit path. Since the starting point is the starting point of the round-trip path set in the internal region, the starting point guidance path is formed in the outer peripheral region. Therefore, the starting point guidance path extends along a part of the circuit path. Therefore, a part of the circuit path can be easily diverted as at least a part of the starting point guidance path. As a result, the burden of creating the starting point guidance route is reduced.
 周回経路の作成、往復経路の作成、開始点の設定、開始点誘導経路の作成などでは、作業者による種々の情報の入力が必要となる。このような情報の入力を容易にするためには、グラフィックインターフェースが用いられると好都合である。このことから、本発明の好適な実施形態の1つでは、前記作業機の車載LANに接続されたタッチパネル付き情報端末に、前記周回経路作成部と前記往復経路作成部と前記開始点設定部と前記開始点誘導経路作成部とが、グラフィックユーザインターフェースを通じて操作可能に構築されており、前記誘導条件を満たされていない場合、前記誘導条件を満たすための案内が前記タッチパネルの画面に表示される。 It is necessary for the operator to input various information in the creation of the circuit route, the creation of the round-trip route, the setting of the start point, the creation of the start point guidance route, and the like. In order to facilitate the input of such information, it is convenient to use a graphic interface. From this, in one of the preferred embodiments of the present invention, the information terminal with a touch panel connected to the in-vehicle LAN of the work machine is provided with the circuit route creation unit, the reciprocating route creation unit, and the start point setting unit. When the start point guidance route creation unit is constructed so as to be operable through a graphic user interface and the guidance conditions are not satisfied, guidance for satisfying the guidance conditions is displayed on the screen of the touch panel.
 実際の自動走行での作業走行の開始にあたって、誘導条件が満たされているかどうかを、作業者が把握することが重要である。特に、グラフィックインターフェースを有する情報端末の画面に、誘導条件が満たされたことが特徴的に表示されると、作業者にとって好都合である。このことから、本発明の好適な実施形態の1つでは、前記誘導条件が満たされていることを示す表象が前記タッチパネルの画面に表示される。表示される表象としては、文字でもよいが、イラストやさらには動画などを用いて、作業者が把握しやすくするとさらによい。 It is important for the operator to grasp whether or not the guidance conditions are satisfied when starting the actual automatic driving. In particular, it is convenient for the operator if it is characteristically displayed on the screen of the information terminal having the graphic interface that the guidance condition is satisfied. For this reason, in one of the preferred embodiments of the present invention, a representation indicating that the guidance condition is satisfied is displayed on the screen of the touch panel. The displayed representation may be characters, but it is better to use illustrations or even moving images to make it easier for the operator to understand.
 往復経路の直進経路の本数は、往復経路の開始点と終了点の位置を左右する。例えば、直進経路の本数が奇数であれば、開始点の位置と終了点の位置は、内部領域の反対側に、つまり対向する。直進経路の本数が偶数であれば、開始点の位置と終了点の位置は、内部領域の同じ側となる。言い換えると、直進経路の本数を変更することにより、全体的な経路作成にとって重要である開始点と終了点との位置関係を変更することができる。このことから、本発明の好適な実施形態の1つでは、前記直進経路の本数と、1本の前記直進経路を非作業で走行する空走り走行又は前記直進経路の本数調整によって、前記開始点と前記往復経路を用いた作業走行の終了点との位置関係が調整されるように構成されている。
この操作は、走行経路の作成中でも、実際の作業走行の途中においても、情報端末のタッチパネルの画面を通じて行うことができる。具体的には、前記開始点と前記終了点とが同じ側である場合、前記直進経路の本数が偶数に設定され、前記開始点と前記終了点とが異なる側である場合、前記直進経路の本数が奇数に設定されるように構成されると、経路設計にとって好都合である。
The number of straight routes of the round-trip route affects the positions of the start point and the end point of the round-trip route. For example, if the number of straight paths is odd, the start point position and the end point position are opposite to each other in the internal region, that is, opposite to each other. If the number of straight paths is even, the start point position and the end point position are on the same side of the internal area. In other words, by changing the number of straight routes, the positional relationship between the start point and the end point, which is important for overall route creation, can be changed. From this, in one of the preferred embodiments of the present invention, the starting point is determined by adjusting the number of the straight paths and the idle running or the number of the straight paths running on the straight path without work. The positional relationship between the vehicle and the end point of the work run using the reciprocating route is adjusted.
This operation can be performed through the touch panel screen of the information terminal both during the creation of the travel route and during the actual work travel. Specifically, when the start point and the end point are on the same side, the number of the straight paths is set to an even number, and when the start point and the end point are on different sides, the straight path It is convenient for route design if the number is configured to be set to an odd number.
 また、往復経路の直進経路の本数が同じでも、1つの直進経路に対して、作業を行わない走行(空走り走行あるいは空植付走行などと称せられる)と作業を行う走行とを重複して行うと、開始点と終了点との位置関係を逆にすることができる。このことから、本発明の好適な実施形態の1つでは、前記直進経路の本数が奇数の場合、前記開始点と前記終了点とが同じ側に位置するように、前記空走り走行が実行されるように構成することができる。この操作は、走行経路の作成中でも、実際の作業走行の途中においても、情報端末のタッチパネルの画面を通じて行うことができる。 Further, even if the number of straight routes of the round-trip route is the same, traveling without work (referred to as idle running or running with empty planting) and traveling with work are duplicated for one straight route. By doing so, the positional relationship between the start point and the end point can be reversed. From this, in one of the preferred embodiments of the present invention, when the number of straight paths is an odd number, the idle running is executed so that the start point and the end point are located on the same side. Can be configured to This operation can be performed through the touch panel screen of the information terminal both during the creation of the travel route and during the actual work travel.
 (6)本発明による自動走行可能な作業機は、衛星測位を用いて機体位置を算出する機体位置算出部と、機体に取り付けられて前記機体の周囲を走査する複数の物体検出センサと、前記物体検出センサからの検出信号に基づいて障害物を検知する障害物検知部と、前記物体検出センサの動作チェックを管理するセンサ管理部とを備え、前記センサ管理部は、所定条件が満たされた場合にセンサチェック処理を実行するセンサチェック実行部と、前記センサチェック処理を通じて全ての前記物体検出センサの動作が確認されたことを示す動作確認フラグを記録するとともに、前記動作確認フラグの有効性を判定する有効性判定部とを有する。なお、ここでの動作確認フラグは、プログラミングなどで用いられる狭義のフラグの意味だけでなく、物体検出センサが動作することが確認されたことを示すデータ(情報)などを含む広義の意味に解釈される。 (6) The automatically traveling work machine according to the present invention includes a machine body position calculation unit that calculates the machine body position using satellite positioning, a plurality of object detection sensors attached to the machine body and scanning around the machine body, and the above. The sensor management unit includes an obstacle detection unit that detects an obstacle based on a detection signal from the object detection sensor and a sensor management unit that manages an operation check of the object detection sensor, and the sensor management unit satisfies a predetermined condition. In addition to recording the sensor check execution unit that executes the sensor check process in the case and the operation check flag indicating that the operation of all the object detection sensors has been confirmed through the sensor check process, the effectiveness of the operation check flag is recorded. It has an effectiveness determination unit for determination. The operation confirmation flag here is interpreted not only in the narrow sense of the flag used in programming, but also in the broad sense including data (information) indicating that the object detection sensor has been confirmed to operate. Will be done.
 自動走行、特に無人での自動走行を行う場合、障害物を検知する機能は重要である。障害物の検知が物体検出センサからの検出信号に基づいて行われる場合、物体検出センサが泥や水滴などの付着により動作不良になっていないかどうか、センサ管理部は、作業者との共同作業でセンサチェック処理を行う必要がある。しかしながら、自動走行中に頻繁にセンサチェックを行うことは、作業者にとっても制御系にとっても負担が大きい。本発明の構成によれば、センサチェック実行部は、所定条件が満たされた場合にのみ、センサチェック処理を行うので、その負担は抑制される。さらに、全ての前記物体検出センサの動作が確認された時点で、そのことを示す動作確認フラグが記録される。この動作確認フラグが記録されている限り、物体検出センサの動作状態が良好であるとみなして、自動走行が行われる。但し、センサチェックは適時に行う必要があるので、一旦記録された動作確認フラグは、所定のタイミングで無効化される。この記録された動作確認フラグが無効化されるタイミング、つまり動作確認フラグがいつまで有効であるかどうかは、有効性判定部によって判定される。有効性判定部における判定条件は、作業の種類や作業の環境状態などによって異なるので、作業機の種別毎に、実際の経験や実験に基づいて、設定される。 The function to detect obstacles is important for automatic driving, especially for unmanned automatic driving. When obstacle detection is performed based on the detection signal from the object detection sensor, the sensor management unit collaborates with the operator to check whether the object detection sensor is malfunctioning due to the adhesion of mud or water droplets. It is necessary to perform the sensor check process at. However, frequently performing sensor checks during automatic driving imposes a heavy burden on both the operator and the control system. According to the configuration of the present invention, the sensor check execution unit performs the sensor check process only when a predetermined condition is satisfied, so that the burden is suppressed. Further, when the operation of all the object detection sensors is confirmed, an operation confirmation flag indicating that is recorded. As long as this operation confirmation flag is recorded, it is considered that the operating state of the object detection sensor is good, and automatic driving is performed. However, since the sensor check needs to be performed in a timely manner, the operation confirmation flag once recorded is invalidated at a predetermined timing. The timing at which the recorded operation confirmation flag is invalidated, that is, how long the operation confirmation flag is valid is determined by the validity determination unit. Since the judgment conditions in the effectiveness judgment unit differ depending on the type of work, the environmental condition of the work, etc., they are set based on actual experience and experiments for each type of work machine.
 作業者がセンサチェックを怠ることを避けるためには、作業機の運転開始時に、センサチェックが行われるように、習慣づけることも重要である。このため、本発明の好適な実施形態の1つでは、前記作業機の起動時に前記センサチェック処理の実行を要求する初期センサチェック要求指令が前記センサチェック実行部に与えられ、前記初期センサチェック要求指令に基づく前記センサチェック処理を通じて全ての前記物体検出センサの動作が確認された場合、前記動作確認フラグが記録(上書き記録)更新される。しかしながら、自動走行しないときでも、作業機の起動時(キースイッチON時)にいつもセンサチェックを行うのは煩わしいので、作業者の手動操作で、このセンサチェック処理が中止できるようにすることが好ましい。 In order to prevent workers from neglecting sensor checks, it is also important to make it a habit to perform sensor checks at the start of operation of the work equipment. Therefore, in one of the preferred embodiments of the present invention, an initial sensor check request command for requesting execution of the sensor check process is given to the sensor check execution unit when the working machine is started, and the initial sensor check request is made. When the operation of all the object detection sensors is confirmed through the sensor check process based on the command, the operation confirmation flag is recorded (overwritten) and updated. However, it is troublesome to always perform the sensor check when the work equipment is started (when the key switch is ON) even when the vehicle is not automatically driven. Therefore, it is preferable that the sensor check process can be stopped by the manual operation of the operator. ..
 この作業機は、基本的には、作業地での作業を自動走行によって行うので、作業機が作業地に進入しようとする前に、センサチェックが行われることが好ましい。このことから、本発明の好適な実施形態の1つでは、前記動作確認フラグが無効である状態で、前記機体が作業対象となる作業地に進入可能な領域に達した場合、前記センサチェック処理の実行を要求する作業前センサチェック要求指令が前記センサチェック実行部に与えられる。 Since this work machine basically performs work at the work place by automatic running, it is preferable that a sensor check is performed before the work machine tries to enter the work place. From this, in one of the preferred embodiments of the present invention, when the machine reaches an area where the machine can enter the work site to be worked on in a state where the operation confirmation flag is invalid, the sensor check process is performed. A pre-work sensor check request command for requesting execution of the above is given to the sensor check execution unit.
 作業機は作業地から出ると、基本的には、手動で走行するので、物体検出センサを用いた障害物検知は不要となるので、このタイミングで記録されている動作確認フラグを取り消し、次のセンサチェックの機会を待つことが好ましい。但し、作業機が一時的に作業地から出た後、すぐに作業地に戻って作業を再開することを考慮すると、作業機が作業地から出てすぐに、動作確認フラグを取り消すことは好ましくない。このことから、本発明の好適な実施形態の1つでは、前記作業機が作業地を出た時点または前記時点から所定時間の経過後に、あるいは作業地を出た地点から所定距離以上離れた場合に、前記動作確認フラグが取り消される。 When the work machine leaves the work area, it basically runs manually, so obstacle detection using the object detection sensor is unnecessary, so cancel the operation confirmation flag recorded at this timing and next It is preferable to wait for the opportunity of sensor check. However, considering that the work machine temporarily leaves the work area and then immediately returns to the work area to resume work, it is preferable to cancel the operation confirmation flag immediately after the work machine leaves the work area. do not have. From this, in one of the preferred embodiments of the present invention, when the work machine leaves the work site, after a predetermined time has elapsed from the time point, or when the work machine is separated from the work site by a predetermined distance or more. The operation confirmation flag is canceled.
 この作業機は、基本的には、作業地での作業が終了すると、自動走行から手動走行に移行する。したがって、作業終了に伴って、次の自動走行に備えて、記録されている動作確認フラグが取り消されることが好ましい。但し、作業の終了が一時的な場合では、次の作業再開時に、センサチェックが行わなければならない。このような不都合を回避するためには、完全な作業終了と一時的な作業終了(つまり作業中断)を分けて、センサチェック管理を行う必要がある。このことから、本発明の好適な実施形態の1つでは、作業終了のための作業終了指令が与えられると、前記動作確認フラグが取り消され、作業中断のための作業中断指令が与えられると、前記動作確認フラグが維持される。 This work machine basically shifts from automatic driving to manual driving when the work at the work site is completed. Therefore, it is preferable that the recorded operation confirmation flag is canceled in preparation for the next automatic driving at the end of the work. However, if the end of the work is temporary, the sensor check must be performed when the next work is resumed. In order to avoid such inconvenience, it is necessary to manage the sensor check by separating the complete work end and the temporary work end (that is, work interruption). From this, in one of the preferred embodiments of the present invention, when the work end command for work end is given, the operation confirmation flag is canceled, and when the work stop command for work stop is given, the work stop command is given. The operation confirmation flag is maintained.
 最も確実なセンサチェックは、作業者(監視員なども含まれる)によって、疑似的な障害物を物体検出センサの検出範囲に配置することによって行われる。センサチェックは作業機の制御系と人間との共同作業となることから、作業者がセンサチェックの開始を認識する必要がある。また、複数の物体検出センサが備えられているので、作業者は処理結果を把握して、動作不良の物体検出センサがあれば、それを特定して不良原因を調べなければならない。このことから、本発明の好適な実施形態の1つでは、前記センサチェック実行部は、報知デバイスを通じて、前記センサチェック処理の実行開始及び前記センサチェック処理の処理結果を報知する。 The most reliable sensor check is performed by an operator (including an observer) by arranging a pseudo obstacle within the detection range of the object detection sensor. Since the sensor check is a collaborative work between the control system of the work machine and a human being, it is necessary for the operator to recognize the start of the sensor check. Further, since a plurality of object detection sensors are provided, the operator must grasp the processing result, identify any malfunctioning object detection sensor, and investigate the cause of the defect. Therefore, in one of the preferred embodiments of the present invention, the sensor check execution unit notifies the start of execution of the sensor check process and the processing result of the sensor check process through the notification device.
 自動走行可能な作業機には、走行経路などを表示するためのタッチパネル方式のグラフィックディスプレイが装備されている。このため、報知デバイスとしてグラフィックディスプレイを利用することが好ましい。その際には、個別の物体検出センサの処理結果や物体検出センサ全体の処理結果が一瞥で把握できる表示形態が好都合である。このことから前記報知デバイスがグラフィックディスプレイ(例えば、タッチパネル)であり、前記物体検出センサの個別の処理結果を示す第1視覚記号と、全ての前記物体検出センサが良好であることを示す第2視覚記号とが表示される。 The work machine capable of automatic driving is equipped with a touch panel type graphic display for displaying the traveling route and the like. Therefore, it is preferable to use a graphic display as a notification device. In that case, it is convenient to have a display form in which the processing results of individual object detection sensors and the processing results of the entire object detection sensor can be grasped at a glance. From this, the notification device is a graphic display (for example, a touch panel), and the first visual symbol indicating the individual processing result of the object detection sensor and the second visual indicating that all the object detection sensors are good. The symbol and is displayed.
 適時にセンサチェックが行われていない場合、動作確認フラグが無効となるが、そのことを作業者に報知するだけでは、センサチェックなしで、自動走行が行われる可能性がある。これを回避するために、本発明の好適な実施形態の1つでは、前記動作確認フラグが無効であれば、自動走行が禁止される。実際に動作不良の物体検出センサがあるかないかにかかわらず、適時にセンサチェックが行われていないことで、自動走行を禁止することで、自動走行の信頼性が向上する。 If the sensor check is not performed in a timely manner, the operation confirmation flag will be invalid, but there is a possibility that automatic driving will be performed without the sensor check simply by notifying the operator of this. In order to avoid this, in one of the preferred embodiments of the present invention, if the operation confirmation flag is invalid, automatic driving is prohibited. Regardless of whether or not there is an object detection sensor that is actually malfunctioning, the reliability of automatic driving is improved by prohibiting automatic driving because the sensor check is not performed in a timely manner.
 物体検出センサとして、安価で構造が簡単なソナーが好適に用いられる。その際、センサ管理部はソナー管理部であり、センサチェック実行部はソナーチェック実行部である。 As an object detection sensor, an inexpensive sonar with a simple structure is preferably used. At that time, the sensor management unit is the sonar management unit, and the sensor check execution unit is the sonar check execution unit.
 (7)本発明による、農場を自動走行可能な作業機のための走行経路管理システムは、前記農場の外形の1つ以上の辺からなる特定辺を前記作業機が消費する資材の資材補給辺として設定する補給辺設定部と、前記資材補給辺に対して向かうように延びる複数の直進経路を含む往復経路を作成する往復経路作成部と、前記資材補給辺に向かって走行している前記直進経路の終端領域から、またはその次に走行する前記直進経路の始端領域から、あるいはその両方の領域から前記作業機を前記資材補給辺に寄せ付けるための補給走行制御を管理する補給制御管理部とを備える。なお、往復経路が農場の内部領域に作成される場合、往復経路は、内部往復経路とも称せられる。 (7) The travel route management system for a work machine capable of automatically traveling on a farm according to the present invention is a material supply side of a material whose work machine consumes a specific side consisting of one or more sides of the outer shape of the farm. A supply side setting unit set as, a round-trip route creation unit that creates a round-trip route including a plurality of straight routes extending toward the material supply side, and the straight-ahead traveling toward the material supply side. A replenishment control management unit that manages replenishment travel control for attracting the work machine to the material replenishment side from the end region of the route, the start region of the straight route traveling next to the route, or both regions. To be equipped. When a round-trip route is created in the internal area of the farm, the round-trip route is also referred to as an internal round-trip route.
 田植機、施肥機、薬剤散布機などの作業機は、農場に投与する資材を補給するために、農場の外形の辺、例えば農道に接した辺を資材補給辺とし、資材補給時には、作業機はこの資材補給辺に接近する。なお、上記のような作業機では、通常、機体の前端または後端を資材補給辺に寄せ付けた姿勢で、資材補給される。本発明における上記構成では、補給辺設定部によって設定された資材補給辺に、補給走行制御に基づいて、直進経路での走行姿勢から、前進または後進で向かうことができ、資材補給辺への寄せ付けが容易となる。 Working machines such as rice transplanters, fertilizers, and chemical sprayers use the outer edge of the farm, for example, the side in contact with the farm road as the material supply side in order to replenish the materials to be administered to the farm. Approaches this material supply side. In the above-mentioned work machine, the material is usually replenished in a posture in which the front end or the rear end of the machine is brought close to the material supply side. In the above configuration of the present invention, the material supply side set by the supply side setting unit can be moved forward or backward from the traveling posture on the straight route based on the supply travel control, and is brought closer to the material supply side. Becomes easier.
 田植機などの作業機では、機体の前端を資材補給辺に寄せ付けた姿勢で、資材補給としての苗補給が行われる。このことから、本発明の好適な実施形態の1つでは、前記補給走行制御には、前記作業機の前端を前記資材補給辺に寄せ付ける前寄せ付けモードが含まれており、前記前寄せ付けモードでは、走行している前記直進経路から次に走行する前記直進経路への移行走行が中止され、前記作業機はそのまま直進走行で前記資材補給辺に寄せ付け、資材補給後に、後進切り返し走行により、次に走行する前記直進経路に向かう。この構成では、前寄せ付けモードに設定されていると、走行している直進経路から、直接、資材補給辺にむかって走行して、資材補給辺への寄せ付けが行われるので、効率の良い資材補給が実現する。 For work machines such as rice transplanters, seedlings are replenished as material replenishment with the front end of the machine close to the material replenishment side. From this, in one of the preferred embodiments of the present invention, the replenishment traveling control includes a pre-alignment mode in which the front end of the work machine is brought closer to the material replenishment side. , The transition running from the running straight path to the next straight path is stopped, the working machine is brought to the material supply side by straight running as it is, and after the material is replenished, the reverse turning back run is performed next. Head toward the straight route to be traveled. In this configuration, when the front-alignment mode is set, the vehicle travels directly from the traveling straight route toward the material supply side and is brought to the material supply side, so that efficient material supply is performed. Is realized.
 さらに、本発明の好適な実施形態の1つでは、前記資材補給辺に向かって走行している前記直進経路の終端領域に、走行制御情報としての車体の一時停止が割り当てられている。この構成では、走行している直進経路から次の直進経路に入るための旋回走行に入る前に、この時点で、自動走行を中断して、資材補給を行うかどうかを考慮する時間を、作業者に与えることができる。 Further, in one of the preferred embodiments of the present invention, a temporary stop of the vehicle body as travel control information is assigned to the terminal region of the straight path traveling toward the material supply side. In this configuration, before starting a turning run to enter the next straight path from the running straight path, at this point, the automatic running is interrupted and the time to consider whether to replenish the materials is worked. Can be given to a person.
 往復経路の直進経路から離脱して、資材補給辺へ向かう寄せ付け走行が、自動走行で行われる場合、当該自動走行のための目標経路として、離脱する直進経路を延長して資材補給辺に達する延長経路を利用すると、特別な経路を算出する必要ないので、効率がよい。
このことから、本発明の好適な実施形態の1つでは、前記前寄せ付けモードにおける前記資材補給辺への寄せ付け走行は、前記直進経路を延長させた延長経路を目標経路とする自動走行によって行われる。もちろん、寄せ付け走行が手動走行で行われたとしても、そのような延長経路は、手動走行を支援する案内経路として利用可能である。
When the approaching run toward the material supply side by leaving the straight route of the round-trip route is performed by automatic driving, the extension of the straight route to leave is extended to reach the material supply side as the target route for the automatic running. Using a route is efficient because it is not necessary to calculate a special route.
From this, in one of the preferred embodiments of the present invention, the approaching travel to the material supply side in the front approaching mode is performed by automatic traveling with an extension route extending from the straight route as a target route. .. Of course, even if the approaching run is performed manually, such an extension route can be used as a guide route to support the manual run.
 田植機などの作業機における薬剤補給などでは、機体の後端を資材補給辺に寄せ付けた姿勢で、資材補給としての苗補給が行われる。このことから、本発明の好適な実施形態の1つでは、前記補給走行制御には、前記作業機の後端を前記資材補給辺に寄せ付ける後寄せ付けモードが含まれており、前記後寄せ付けモードでは、走行している前記直進経路から次に走行する前記直進経路への移行走行の終了後に、前記作業機はそのまま後進走行で前記資材補給辺に寄せ付け、資材補給後に、前進走行で次に走行する前記直進経路に向かう。この構成では、次の直進経路を走行しようとする機体姿勢において、そのまま後進することで、作業機の後端が資材補給辺に達するので、効率の良い資材補給が実現する。 When replenishing chemicals in a work machine such as a rice transplanter, seedlings are replenished as material replenishment with the rear end of the machine close to the material replenishment side. From this, in one of the preferred embodiments of the present invention, the replenishment traveling control includes a rear-rearrangement mode in which the rear end of the work machine is brought closer to the material replenishment side, and the replenishment mode. Then, after the transition running from the traveling straight path to the next traveling straight path is completed, the working machine is brought close to the material supply side by the reverse traveling as it is, and after the material is replenished, the next traveling by the forward traveling. Head toward the straight route. In this configuration, the rear end of the work machine reaches the material supply side by moving backward as it is in the attitude of the aircraft trying to travel on the next straight route, so that efficient material supply is realized.
 資材俸給のための寄せ付け走行において、前寄せ付けモードまたは後寄せ付けモードの選択は、補給すべき資材の種類に依存する。作業機には、通常搭載している補給資材の残量を検出する機構が備えられている。検出された補給資材の残量と、作業走行当たりの資材消費量とから、資材不足ないしは資材切れの算出が可能であるので、補給資材の補給タイミングの管理が可能となる。このことから、本発明の好適な実施形態の1つでは、算出した補給資材の残量に基づいて前記補給資材の補給タイミングを決定する資材補給管理部が備えられ、補給すべき資材の種類に応じて、前記作業機の前端を前記資材補給辺に寄せ付ける前寄せ付けモード、または前記作業機の後端を前記資材補給辺に寄せ付ける後寄せ付けモードのいずれかが選択される。これにより、資材補給のための寄せ付け走行の自動化が可能となる。なお、資材補給管理部は補給制御管理部が兼用してもよい。 In the approaching run for material salary, the selection of the front approaching mode or the rear approaching mode depends on the type of material to be replenished. The work machine is equipped with a mechanism for detecting the remaining amount of the replenishment material normally installed. Since it is possible to calculate a material shortage or a material shortage from the detected remaining amount of the replenishment material and the amount of material consumed per work run, it is possible to manage the replenishment timing of the replenishment material. Therefore, in one of the preferred embodiments of the present invention, a material supply management unit for determining the supply timing of the supply material based on the calculated remaining amount of the supply material is provided, and the type of material to be replenished can be selected. Depending on the situation, either a front-aligning mode in which the front end of the working machine is brought closer to the material supply side or a rear-moving mode in which the rear end of the working machine is brought closer to the material supply side is selected. This makes it possible to automate the approaching running for replenishing materials. The material supply management unit may also be used by the supply control management unit.
 資材補給のための寄せ付け走行において、作業機は資材補給後の走行先としての直進経路に向かうことになる。寄せ付け走行が手動で行われたとしても、次の走行経路である直進経路が捕捉されると、自動走行に移行することができる。このことから、本発明の好適な実施形態の1つでは、前記補給走行制御は、自動走行を中断して手動走行で行われ、資材補給後に次の前記直進経路が捕捉されると、自動走行が再開される。これにより、手動走行から自動走行への移行が簡単となり、作業者の負担が軽減される。 In the approaching run for replenishing materials, the work machine will head for the straight route as the destination after replenishing the materials. Even if the approaching driving is performed manually, it is possible to shift to the automatic driving when the straight route, which is the next traveling route, is captured. From this, in one of the preferred embodiments of the present invention, the replenishment travel control is performed manually by interrupting the automatic traveling, and when the next straight route is captured after replenishing the materials, the automatic traveling is performed automatically. Is restarted. This simplifies the transition from manual driving to automatic driving and reduces the burden on workers.
 本発明の好適な実施形態の1つでは、前記補給走行制御は、リモコンを用いた遠隔操作可能である。この構成では、資材補給の際に、寄せ付け走行がリモコン使って手動で行われる。このため、往復経路等を用いた走行が無人の自動走行であっても、作業機から離れた位置から、例えば畦から、作業者が寄せ付け走行を手動で行うことができ、好都合である。 In one of the preferred embodiments of the present invention, the replenishment running control can be remotely controlled using a remote controller. In this configuration, when replenishing materials, the close-up running is performed manually using a remote controller. For this reason, even if the traveling using the reciprocating route or the like is an unmanned automatic traveling, the operator can manually perform the traveling by approaching from a position away from the working machine, for example, from a ridge, which is convenient.
 補給辺の設定や経路作成における各種設定などは、作業者による操作入力に基づいて行われる。このような作業機に対する作業者の操作入力を容易するためには、グラフィックインターフェースが用いられると好都合である。このことから、本発明の好適な実施形態の1つでは、前記作業機の車載LANに接続されたタッチパネル付き情報端末に、前記補給辺設定部と前記往復経路作成部と前記補給制御管理部とが、グラフィックユーザインターフェースを通じて操作可能に構築されており、前記資材補給辺の選択及び前記補給走行制御の内容選択が前記タッチパネルを通じて行われる。 The setting of the supply side and various settings in route creation are performed based on the operation input by the operator. It is convenient to use a graphic interface in order to facilitate the operator's operation input to such a work machine. From this, in one of the preferred embodiments of the present invention, the information terminal with a touch panel connected to the in-vehicle LAN of the working machine is provided with the supply side setting unit, the reciprocating route creation unit, and the supply control management unit. However, it is constructed so that it can be operated through the graphic user interface, and the selection of the material supply side and the content selection of the supply travel control are performed through the touch panel.
 (8)上記目的を達成するために、本発明の一実施形態に係る作業機は、作業を行いながら、動力源から出力される駆動力により走行する作業機であって、斜板の角度が変更されることにより、前記駆動力を変速する無段変速装置と、前記斜板の角度を操作する車速操作具と、前記斜板の角度を検出する斜板角度検出器と、前記車速操作具の操作位置を検出する操作位置検出器と、前記操作位置検出器が検出した操作位置に応じて、前記斜板の角度を調整するアクチュエータとを備える。 (8) In order to achieve the above object, the work machine according to the embodiment of the present invention is a work machine that travels by the driving force output from the power source while performing the work, and the angle of the swash plate is set. A stepless speed changer that shifts the driving force by being changed, a vehicle speed control tool that controls the angle of the swash plate, a swash plate angle detector that detects the angle of the swash plate, and the vehicle speed control tool. It is provided with an operation position detector for detecting the operation position of the above and an actuator for adjusting the angle of the swash plate according to the operation position detected by the operation position detector.
 このような構成により、車速操作具と無段変速装置とが直接的には接続されない構成となる。このような場合でも、操作位置検出器が検出した車速操作具の操作位置に応じて、アクチュエータが無段変速装置の斜板の角度を調整する。そして、斜板角度検出器により斜板の角度が検出され、操作位置検出器が検出した車速操作具の操作位置と検出された斜板の角度とが比較されて、車速操作具の操作位置応じた斜板の角度となっているかが確認でき、車速操作具の操作位置応じた走行車速であるか否かが確認できる。 With such a configuration, the vehicle speed controller and the continuously variable transmission are not directly connected. Even in such a case, the actuator adjusts the angle of the swash plate of the continuously variable transmission according to the operating position of the vehicle speed operating tool detected by the operating position detector. Then, the angle of the swash plate is detected by the swash plate angle detector, the operation position of the vehicle speed control tool detected by the operation position detector is compared with the detected angle of the swash plate, and the operation position of the vehicle speed control tool is compared. It can be confirmed whether or not the angle of the swash plate is set, and whether or not the traveling vehicle speed is set according to the operation position of the vehicle speed control tool.
 また、前記動力源から出力される駆動力に対応する回転数を増減させるアクセルレバーと、前記アクセルレバーの操作位置を検出するアクセル検出器とを備えても良い。 Further, an accelerator lever that increases or decreases the number of rotations corresponding to the driving force output from the power source and an accelerator detector that detects the operating position of the accelerator lever may be provided.
 このような構成により、アクセルレバーの操作位置に応じた回転数を、精度良く出力することができる。 With such a configuration, it is possible to accurately output the number of revolutions according to the operating position of the accelerator lever.
 また、前記車速操作具は中立位置を挟んで前進方向および後進方向に操作され、操作経路は前記中立位置でクランクし、前記車速操作具はレバー保持部に固定され、前記レバー保持部はギアと一体に設けられ、前記車速操作具の操作に伴い前記ギアは軸を中心に搖動し、前記レバー保持部は前記前進方向または前記後進方向と交差する方向に前記車速操作具を付勢する中立保持機構を有し、前記ギアと軸との間に保持機構が設けられても良い。 Further, the vehicle speed control tool is operated in the forward direction and the reverse direction with the neutral position in between, the operation path is cranked at the neutral position, the vehicle speed control tool is fixed to the lever holding portion, and the lever holding portion is a gear. A neutral holding that is integrally provided, the gear swings around an axis with the operation of the vehicle speed control tool, and the lever holding portion urges the vehicle speed control tool in a direction intersecting the forward direction or the reverse direction. It may have a mechanism and a holding mechanism may be provided between the gear and the shaft.
 車速操作具は、所定の経路を移動されるだけであり、的確に所望の位置に車速操作具を位置決めすることは容易ではない。また、意図に反して車速操作具の操作位置が移動すると適切な走行車速の操作が行われなくなる。上述のように、中立保持機構が設けられることにより、車速操作具を中立位置に維持することが容易となる。また、保持機構を設けることにより、車速操作具の操作位置を移動させることについて、一定の抵抗力を与えることができる。これにより、車速操作具の操作位置を移動させる操作感が向上し、精度良く車速操作具を操作することができる。 The vehicle speed control tool is only moved on a predetermined route, and it is not easy to accurately position the vehicle speed control tool at a desired position. Further, if the operating position of the vehicle speed control tool moves unintentionally, the proper traveling vehicle speed cannot be operated. As described above, by providing the neutral holding mechanism, it becomes easy to maintain the vehicle speed control tool in the neutral position. Further, by providing the holding mechanism, a certain resistance force can be given to move the operating position of the vehicle speed control tool. As a result, the feeling of operation for moving the operation position of the vehicle speed control tool is improved, and the vehicle speed control tool can be operated with high accuracy.
 また、前記車速操作具の操作位置が変速段数に換算されて表示される情報端末を備えても良い。 Further, an information terminal may be provided in which the operating position of the vehicle speed operating tool is converted into the number of gears and displayed.
 車速操作具に対応する変速段数が表示されることにより、運転者は、走行車速を感覚的に把握することができ、走行車速の操作が容易となる。 By displaying the number of gears corresponding to the vehicle speed control tool, the driver can intuitively grasp the traveling vehicle speed and easily operate the traveling vehicle speed.
 さらに、本発明の一実施形態に係る作業機は、あらかじめ定められた走行経路に沿った自動走行により作業走行を行う作業機であって、自動走行を制御する自動走行制御部を備え、前記自動走行制御部は、直進状走行から旋回走行に移行する際に、直進状走行の終端部より所定の距離だけ手前から走行車速の減速を開始するように減速開始位置を制御し、かつ、前記距離を走行車速が速いほど長くなるように制御する。 Further, the work machine according to the embodiment of the present invention is a work machine that performs work travel by automatic travel along a predetermined travel route, and includes an automatic travel control unit that controls automatic travel, and the automatic travel control unit is provided. The traveling control unit controls the deceleration start position so as to start decelerating the traveling vehicle speed by a predetermined distance from the end of the straight traveling when shifting from the straight traveling to the turning traveling, and the distance Is controlled so that the faster the traveling vehicle speed, the longer the vehicle.
 旋回走行は直進状走行より低速で走行される。直進状走行の走行車速を旋回走行の走行車速に減速するために、直進状走行の途中から減速を開始する必要がある。このとき、減速の加速度が急峻であると、圃場を荒らし、あるいは、運転者が搭乗している場合は運転者に不快感を与える。走行車速に応じて減速開始位置を遠くにすることにより、減速の加速度が急峻となることを抑制することができる。 Turning running is slower than straight running. In order to reduce the traveling vehicle speed of straight-ahead traveling to the traveling vehicle speed of turning traveling, it is necessary to start deceleration from the middle of straight-ahead traveling. At this time, if the acceleration of deceleration is steep, the field is roughened, or if the driver is on board, the driver feels uncomfortable. By setting the deceleration start position farther according to the traveling vehicle speed, it is possible to prevent the deceleration acceleration from becoming steep.
 また、作業走行の最高車速が設定され、前記自動走行制御部は、前記距離を前記最高車速が速いほど長くなるように制御しても良い。 Further, the maximum vehicle speed of work travel is set, and the automatic travel control unit may control the distance so that the faster the maximum vehicle speed, the longer the distance.
 最高車速が設定されている場合、走行車速は最高車速以下となる。最高車速に応じて減速開始位置を遠くにすることにより、減速の加速度が急峻となることをより的確に抑制することができる。 If the maximum vehicle speed is set, the traveling vehicle speed will be less than or equal to the maximum vehicle speed. By making the deceleration start position farther according to the maximum vehicle speed, it is possible to more accurately suppress the deceleration acceleration from becoming steep.
 また、自動走行は、有人自動走行モードと無人自動走行モードとを含み、減速開始位置は、前記有人自動走行モードの際に調整されても良い。 Further, the automatic driving includes a manned automatic driving mode and an unmanned automatic driving mode, and the deceleration start position may be adjusted at the time of the manned automatic driving mode.
 無人自動走行モードでは運転者が搭乗しないことが多いのに対し、有人自動走行モードでは運転者が搭乗することが要求される。上記構成により、減速の加速度が急峻となることが無人自動走行モードでの走行より必要となる有人自動走行モードでの走行において、優先的に減速の加速度が急峻となることを抑制することができる。 In the unmanned automatic driving mode, the driver often does not board, whereas in the manned automatic driving mode, the driver is required to board. With the above configuration, it is possible to prevent the deceleration acceleration from becoming steep preferentially in the manned automatic driving mode in which the deceleration acceleration is required to be steeper than in the unmanned automatic driving mode. ..
 また、走行車速の減速における加速度が設定できても良い。 Also, the acceleration for deceleration of the traveling vehicle speed may be set.
 作業状況や圃場状況、搭乗する運転者によって、不適切と感じる減速の加速度が異なる。上記構成により、状況に適した適切な加速度で減速することができる。 The acceleration of deceleration that you feel is inappropriate differs depending on the work conditions, field conditions, and the driver on board. With the above configuration, it is possible to decelerate at an appropriate acceleration suitable for the situation.
 また、前記自動走行制御部は、減速を開始する際にその旨を報知しても良い。 Further, the automatic driving control unit may notify that fact when starting deceleration.
 このような構成により、運転者および監視者は、機体が減速されることを把握でき、適切な操作に資することができる。 With such a configuration, the driver and the observer can grasp that the aircraft is decelerating and can contribute to appropriate operation.
 また、走行車速を操作する車速操作具を備え、旋回走行の際の旋回車速があらかじめ定められており、前記自動走行制御部は、前記車速操作具の操作位置にかかわらず、前記旋回車速で旋回走行を行うように制御しても良い。 Further, a vehicle speed control tool for controlling the traveling vehicle speed is provided, and the turning vehicle speed at the time of turning is predetermined, and the automatic traveling control unit turns at the turning vehicle speed regardless of the operating position of the vehicle speed control tool. It may be controlled to run.
 このような構成により、車速操作具の操作を行うことなく、適切な走行車速で旋回走行を行うことができる。 With such a configuration, it is possible to perform turning at an appropriate traveling vehicle speed without operating the vehicle speed control tool.
 さらに、本発明の一実施形態に係る作業機は、あらかじめ定められた走行経路に沿った自動走行を行いながら作業を行う作業機であって、運転座席と、前記運転座席に着座されていることを検出する着座センサと、自動走行を制御する自動走行制御部とを備え、前記自動走行制御部は、自動走行において、前記着座センサが着座を検知しない場合は、所定の走行制限が行われるように制御する。 Further, the work machine according to the embodiment of the present invention is a work machine that performs work while automatically traveling along a predetermined travel path, and is seated in a driver's seat and the driver's seat. A seating sensor for detecting seating and an automatic driving control unit for controlling automatic driving are provided, and the automatic driving control unit performs a predetermined driving restriction when the seating sensor does not detect seating in automatic driving. To control.
 このような構成により、運転者が着座しているか否かに応じて、適切な自動走行を行うことができる。 With such a configuration, appropriate automatic driving can be performed depending on whether or not the driver is seated.
 また、前記走行制限は、自動走行中に前記着座センサが着座を検知しない場合は、着座を促す報知、走行車速の減速、走行の停止の少なくともいずれかが行われる制御であっても良い。 Further, the traveling restriction may be a control in which at least one of notification for prompting seating, deceleration of traveling vehicle speed, and stopping of traveling is performed when the seating sensor does not detect seating during automatic driving.
 このような構成により、運転者が着座していないことが許容される範囲で、適切な自動走行を行うことができる。 With such a configuration, appropriate automatic driving can be performed within a range in which the driver is not seated.
 また、前記走行制限は、自動走行開始時に前記着座センサが着座を検知しない場合は、自動走行を開始しない制御であっても良い。 Further, the traveling restriction may be a control that does not start automatic driving when the seating sensor does not detect seating at the start of automatic driving.
 このような構成により、より適切な自動走行を行うことができる。 With such a configuration, more appropriate automatic driving can be performed.
 また、旋回走行が開始される際および後進走行が開始される際の少なくともいずれかにおいて、前記自動走行制御部は、自動走行中に、前記着座センサが着座を検知しない場合は、所定の報知を行うように制御を行っても良い。 Further, at least when the turning running is started and when the reverse running is started, the automatic running control unit gives a predetermined notification when the seating sensor does not detect the seating during the automatic running. Control may be performed as it is.
 旋回走行の開始時や後進走行の開始時には、進行方向が変化すことになり、運転者に不快感を与える場合がある。上記構成により、運転者は進行方向が変化することをあらかじめ認知することができるため、不快感を感じることが抑制される。 At the start of turning or reverse driving, the direction of travel will change, which may cause discomfort to the driver. With the above configuration, the driver can recognize in advance that the traveling direction changes, so that discomfort is suppressed.
 また、前記運転座席は回動可能に構成され、前記運転座席の回動支点に沿って、前記着座センサに接続される配線類が配設されても良い。 Further, the driver's seat may be configured to be rotatable, and wirings connected to the seating sensor may be arranged along the rotation fulcrum of the driver's seat.
 このような構成により、配線類が破損することを抑制することができる。 With such a configuration, it is possible to prevent the wiring from being damaged.
 (9)上記目的を達成するために、本発明の一実施形態に係る作業機は、作業を行いながら、動力源から出力される駆動力により走行する作業機であって、前記動力源の動作中に充電されて、電力を供給するバッテリと、前記バッテリの充電量を検出するセンサと、前記動力源の動作が停止される操作が行われた際に、前記バッテリの充電量が所定の第1充電量以下であることを前記センサが検知した場合、前記動力源の動作を継続させる充電制御部とを備える。 (9) In order to achieve the above object, the working machine according to the embodiment of the present invention is a working machine that travels by a driving force output from a power source while performing work, and operates the power source. When an operation of stopping the operation of the battery charged inside and supplying electric power, the sensor for detecting the charge amount of the battery, and the power source is performed, the charge amount of the battery becomes a predetermined number. When the sensor detects that the amount of charge is 1 or less, it includes a charge control unit that continues the operation of the power source.
 このような構成により、バッテリの容量が低下している場合であっても、動力源の停止時に、バッテリの容量が回復するまで動力源の動作を継続させることができるため、バッテリの容量不足により作業走行が滞ることを抑制することができる。
 また、前記充電制御部は、前記バッテリの充電量が所定の前記第1充電量以上の第2充電量となることを前記センサが検知すると前記動力源の動作を停止させても良い。
With such a configuration, even when the capacity of the battery is low, when the power source is stopped, the operation of the power source can be continued until the capacity of the battery is restored. It is possible to prevent the work running from being delayed.
Further, the charge control unit may stop the operation of the power source when the sensor detects that the charge amount of the battery becomes a second charge amount equal to or more than the predetermined first charge amount.
 このような構成により、バッテリの容量を十分に回復させながら、適切に動力源を停止させることができる。 With such a configuration, the power source can be appropriately stopped while sufficiently recovering the capacity of the battery.
 また、前記充電制御部は、前記動力源の動作を所定の時間だけ継続させた後に停止させても良い。 Further, the charge control unit may be stopped after the operation of the power source is continued for a predetermined time.
 このような構成によっても、バッテリの容量を十分に回復させながら、適切に動力源を停止させることができる。 Even with such a configuration, the power source can be appropriately stopped while sufficiently recovering the capacity of the battery.
 また、前記充電制御部は、前記動力源の動作を継続させる際に、動作を継続することを報知させても良い。 Further, the charge control unit may notify that the operation is continued when the operation of the power source is continued.
 動力源の動作を継続させる制御を行うと、動力源を停止させる操作を行った運転者の意図に反して動力源の動作が継続する。この際、バッテリの容量不足のため動力源の動作を継続させる旨の報知がなされることにより、運転者は、バッテリを充電するために動力源の動作が継続されていることを認知することができ、操作不良でないことを理解できる。 When the control to continue the operation of the power source is performed, the operation of the power source continues contrary to the intention of the driver who performed the operation to stop the power source. At this time, the driver can recognize that the operation of the power source is continued in order to charge the battery by being notified that the operation of the power source is continued due to insufficient capacity of the battery. You can understand that it is not a malfunction.
 また、前記動力源の動作が継続されている間、走行および作業が停止されても良い。 Further, running and work may be stopped while the operation of the power source is continued.
 運転者が動力源を停止させる操作を行ったということは、作業走行を停止させる状態であることが前提である。そのため、例え動力源の動作が継続されているとしても、その間には、走行および作業が停止されることが適切である。 The fact that the driver has performed an operation to stop the power source is premised on the state of stopping the work running. Therefore, even if the operation of the power source is continued, it is appropriate that the traveling and the work are stopped during that time.
 また、前記充電制御部は、前記動力源の動作を継続させる際に、前記動力源の回転数を上げても良い。 Further, the charge control unit may increase the rotation speed of the power source when continuing the operation of the power source.
 動力源の回転数が高いほど、バッテリの充電率は向上する。そのため、バッテリの充電を行うために動力源の動作を継続させる際に、動力源の回転数を高めることにより、バッテリの充電効率が向上する。 The higher the rotation speed of the power source, the better the battery charge rate. Therefore, when the operation of the power source is continued to charge the battery, the charging efficiency of the battery is improved by increasing the rotation speed of the power source.
 また、走行車速を操作する車速操作具を備え、前記動力源の動作を継続される際に、前記車速操作具は中立位置とされても良い。 Further, the vehicle speed control tool for controlling the traveling vehicle speed may be provided, and the vehicle speed control tool may be set to the neutral position when the operation of the power source is continued.
 このような構成により、動力源の動作が継続されている間に、機体が走行することを抑制することができる。また、動力源を作動させた際に、車速操作具が中立位置以外に位置されていると、機体が意図せず発進してしまう。動力源の動作が継続中は車速操作具が中立位置にされ、動力源の停止の際もそのまま車速操作具が中立位置とされることにより、その後、動力源を作動させた際には車速操作具が中立位置のままとなり、意図せずに機体が発進することを抑制することができる。 With such a configuration, it is possible to suppress the aircraft from traveling while the operation of the power source is continued. Further, when the power source is operated, if the vehicle speed control tool is positioned at a position other than the neutral position, the aircraft will unintentionally start. The vehicle speed control tool is set to the neutral position while the power source is operating, and the vehicle speed control tool is set to the neutral position even when the power source is stopped. The tool remains in the neutral position, which can prevent the aircraft from unintentionally starting.
 また、前記動力源の動作を継続される際に、前記車速操作具を中立位置にするように報知されても良い。 Further, when the operation of the power source is continued, the vehicle speed control tool may be notified to be in the neutral position.
 このような構成により、車速操作具を中立位置にすることが促進され、より高い確率で機体が走行することを抑制することができる。 With such a configuration, it is promoted to put the vehicle speed control tool in the neutral position, and it is possible to suppress the aircraft from traveling with a higher probability.
 (10)上記目的を達成するために、本発明の一実施形態に係る作業機は、自動走行により作業走行を行う作業機であって、機体周辺の所定の領域を検知範囲として障害物を検知する障害物検知装置を備え、前記障害物検知装置として、機体前方を検知範囲とする1または複数の前障害物検知装置と、機体後方を検知範囲とする1または複数の後障害物検知装置と、機体横側方を検知範囲とする1または複数の横障害物検知装置を含む。 (10) In order to achieve the above object, the work machine according to the embodiment of the present invention is a work machine that performs work running by automatic running, and detects obstacles in a predetermined area around the machine body as a detection range. The obstacle detection device includes one or more front obstacle detection devices having a detection range in front of the machine, and one or more rear obstacle detection devices having a detection range in the rear of the machine. , Includes one or more lateral obstacle detection devices whose detection range is lateral to the side of the aircraft.
 圃場等の作業地を作業走行する場合、障害物が作業地に存在すると、機体が障害物に衝突して機体が損傷したり、適切な作業が行えなくなったりする場合がある。そのため、自動走行においては、障害物を検知し、障害物との衝突を回避する制御を行う必要がある。 When working on a work area such as a field, if an obstacle exists in the work area, the aircraft may collide with the obstacle and the aircraft may be damaged or it may not be possible to perform appropriate work. Therefore, in automatic driving, it is necessary to detect an obstacle and perform control to avoid a collision with the obstacle.
 上記構成により、機体の四方の必要な領域の障害物を検知することができ、障害物の存在に考慮した適切な自動走行を行うことができる。 With the above configuration, obstacles in the required areas on all four sides of the aircraft can be detected, and appropriate automatic driving can be performed in consideration of the existence of obstacles.
 また、前記前障害物検知装置の数は、前記後障害物検知装置の数と同数以下だけ設けられても良い。 Further, the number of the front obstacle detection devices may be the same as or less than the number of the rear obstacle detection devices.
 このような構成により、作業装置の存在等により、適切な検知範囲を確保しにくい機体後方の障害物を精度良く検知することができる。 With such a configuration, it is possible to accurately detect obstacles behind the machine body where it is difficult to secure an appropriate detection range due to the presence of work equipment and the like.
 さらに、本発明の一実施形態に係る作業機は、自動走行により作業走行を行う作業機であって、機体周辺の所定の領域を検知範囲として障害物を検知する障害物検知装置を備え、前記障害物検知装置として、機体前方を検知範囲とする複数の前障害物検知装置と、機体後方を検知範囲とする1または複数の後障害物検知装置と、機体横側方を検知範囲とする1または複数の横障害物検知装置を含み、前記前障害物検知装置は、前記後障害物検知装置の数より多く設けられ、かつ、前記横障害物検知装置の数より多く設けられても良い。 Further, the work machine according to the embodiment of the present invention is a work machine that performs work running by automatic running, and includes an obstacle detection device that detects an obstacle with a predetermined area around the machine body as a detection range. As the obstacle detection device, a plurality of front obstacle detection devices having a detection range in front of the machine, one or more rear obstacle detection devices having a detection range in the rear of the machine, and a detection range in the lateral side of the machine 1 Alternatively, the number of the front obstacle detection devices may be larger than the number of the rear obstacle detection devices, and the number of the front obstacle detection devices may be larger than the number of the lateral obstacle detection devices.
 作業走行は前進走行により行われることが一般的である。前進走行での機体前方の障害物を検知する前障害物検知装置の数を多く設けることにより、作業走行における障害物の検知をより精度良く行うことができる。 Work running is generally done by forward running. By providing a large number of pre-obstacle detection devices for detecting obstacles in front of the machine body in forward traveling, it is possible to more accurately detect obstacles in working traveling.
 また、前記障害物検知装置を制御する検知制御装置を備え、前記検知制御装置は、平面視で機体の中央部近傍に配置されても良い。 Further, a detection control device for controlling the obstacle detection device may be provided, and the detection control device may be arranged in the vicinity of the central portion of the machine body in a plan view.
 このような構成により、障害物検知装置と制御する検知制御装置とをつなぐ配線を効率的に配設することができる。 With such a configuration, the wiring connecting the obstacle detection device and the detection control device to be controlled can be efficiently arranged.
 また、前記障害物検知装置を制御する検知制御装置を備え、前記検知制御装置は所定の数以内の前記障害物検知装置を制御し、前記障害物検知装置の数は、前記検知制御装置が制御できる数の整数倍であっても良い。 Further, the detection control device for controlling the obstacle detection device is provided, the detection control device controls the obstacle detection device within a predetermined number, and the number of the obstacle detection devices is controlled by the detection control device. It may be an integral multiple of the number that can be created.
 このような構成により、制御できる障害物検知装置の数が制限される検知制御装置を用いたとしても、効率的に障害物検知装置と検知制御装置とを設けることができる。 With such a configuration, even if a detection control device is used in which the number of obstacle detection devices that can be controlled is limited, the obstacle detection device and the detection control device can be efficiently provided.
 また、前記前障害物検知装置を制御する前記検知制御装置は、平面視で機体の前部領域に配置され、前記後障害物検知装置を制御する前記検知制御装置は、平面視で機体の後部領域に配置されても良い。 Further, the detection control device that controls the front obstacle detection device is arranged in the front region of the airframe in a plan view, and the detection control device that controls the rear obstacle detection device is a rear portion of the airframe in a plan view. It may be arranged in the area.
 このような構成により、精度良く障害物を検知できる数の障害物検知装置を設けながら、障害物検知装置と制御する検知制御装置とをつなぐ配線を効率的に配設することができる。 With such a configuration, it is possible to efficiently arrange the wiring connecting the obstacle detection device and the detection control device to be controlled while providing the number of obstacle detection devices capable of detecting obstacles with high accuracy.
 また、前記横障害物検知装置と前記後障害物検知装置とは共通の前記検知制御装置によって制御されても良い。 Further, the lateral obstacle detection device and the rear obstacle detection device may be controlled by the common detection control device.
 このような構成により、効率的に検知制御装置を設けることができる。 With such a configuration, the detection control device can be efficiently provided.
 また、前記横障害物検知装置と前記後障害物検知装置とを制御する前記検知制御装置は、前記横障害物検知装置および前記後障害物検知装置に囲まれる領域に配置されても良い。 Further, the detection control device that controls the lateral obstacle detection device and the rear obstacle detection device may be arranged in an area surrounded by the lateral obstacle detection device and the rear obstacle detection device.
 このような構成により、効率的に検知制御装置を設けることができ、障害物検知装置と検知制御装置とをつなぐ配線の長さを短くして、効率的に配設することができる。 With such a configuration, the detection control device can be efficiently provided, and the length of the wiring connecting the obstacle detection device and the detection control device can be shortened so that the detection control device can be efficiently arranged.
 また、前記後障害物検知装置を制御する前記検知制御装置は、前記機体の外側から着脱可能であっても良い。 Further, the detection control device that controls the post-obstacle detection device may be detachable from the outside of the machine body.
 このような構成により、検知制御装置のメンテナンスが容易となると共に、後障害物検知装置を後付けすることができる。 With such a configuration, maintenance of the detection control device can be facilitated, and a post-obstacle detection device can be retrofitted.
 また、前記後障害物検知装置を制御する前記検知制御装置は、前記機体に配設される油圧ホースから離れた位置に設けられても良い。 Further, the detection control device that controls the rear obstacle detection device may be provided at a position away from the hydraulic hose arranged on the machine body.
 油圧ホースは動作に伴って動くため、配線が油圧ホースに近接して配設されると、配線が損傷する場合がある。上記構成により、油圧ホースにより配線が損傷することを抑制することができる。 Since the hydraulic hose moves with the operation, if the wiring is placed close to the hydraulic hose, the wiring may be damaged. With the above configuration, it is possible to prevent the wiring from being damaged by the hydraulic hose.
 また、機体を走行させる動力源と、前記動力源を支持するエンジンフレームとを備え、前記前障害物検知装置は4以上設けられ、前記前障害物検知装置のうちの機体中央よりの2つは、前記エンジンフレームから延伸される部材に支持されても良い。 Further, a power source for traveling the aircraft and an engine frame supporting the power source are provided, four or more front obstacle detection devices are provided, and two of the front obstacle detection devices from the center of the aircraft are provided. , May be supported by a member extending from the engine frame.
 このような構成により、作業走行の際に最も必要な進行方向で機体前方中央領域の障害物を、より精度良く検知することができる。 With such a configuration, it is possible to more accurately detect obstacles in the front central region of the machine in the direction of travel most necessary for work driving.
 また、機体を走行させる動力源と、前記動力源が収納されるエンジンボンネットとを備え、前記前障害物検知装置のうちの少なくとも1つは、前記エンジンボンネットに支持されても良い。 Further, a power source for traveling the aircraft and an engine bonnet in which the power source is housed may be provided, and at least one of the front obstacle detection devices may be supported by the engine bonnet.
 このような構成によっても、作業走行の際に最も必要な進行方向で機体前方中央領域の障害物を、より精度良く検知することができる。 Even with such a configuration, it is possible to more accurately detect obstacles in the front central region of the machine in the direction of travel most necessary for work driving.
 また、前記前障害物検知装置は、前記後障害物検知装置および前記横障害物検知装置が設置される向きより、機体の水平方向に対して上向きに設置されても良い。 Further, the front obstacle detection device may be installed upward with respect to the horizontal direction of the airframe from the direction in which the rear obstacle detection device and the lateral obstacle detection device are installed.
 機体が前進走行する際には、旋回領域での旋回に伴って発生する泥塊や泥面を障害物と誤検知することがある。上記構成により、このような泥塊や泥面の誤検知を抑制することができる。さらに、前障害物検知装置を上に向けることにより、走行に伴って飛散する泥の付着を抑制することができる。 When the aircraft travels forward, mud lumps and mud surfaces generated by turning in the turning area may be erroneously detected as obstacles. With the above configuration, it is possible to suppress such false detection of mud lumps and mud surfaces. Further, by pointing the front obstacle detection device upward, it is possible to suppress the adhesion of mud scattered with traveling.
 また、前記横障害物検知装置は、機体の後部領域に設けられる後部ステップに支持されても良い。 Further, the lateral obstacle detection device may be supported by a rear step provided in the rear region of the airframe.
 このような構成により、機体の横側方の障害物を精度良く検知することができる。 With such a configuration, obstacles on the side of the aircraft can be detected with high accuracy.
 また、前記横障害物検知装置は、機体に設けられる予備苗収納装置が支持される予備苗支持フレーム、または機体の位置を算出するために衛星からの電波を受信する測位ユニットの近傍に支持されても良い。 Further, the lateral obstacle detection device is supported in the vicinity of a spare seedling support frame on which a spare seedling storage device provided in the aircraft is supported, or a positioning unit that receives radio waves from a satellite to calculate the position of the aircraft. You may.
 このような構成によっても、機体の横側方の障害物を精度良く検知することができる。 Even with such a configuration, obstacles on the side of the aircraft can be detected with high accuracy.
 また、前記後障害物検知装置は、機体の後部領域の非稼働部分に設けられても良い。 Further, the rear obstacle detection device may be provided in a non-operating portion in the rear region of the airframe.
 稼働部分に障害物検知装置を設けると、その部分の稼働時に適切に障害物を検知することが困難となる。また、機体の後部には、作業装置等の稼働する装置が多い。上記構成により、機体の後方の障害物を精度良く検知することができる。 If an obstacle detection device is installed in the moving part, it becomes difficult to properly detect the obstacle when the part is in operation. Further, in the rear part of the machine body, there are many working devices such as working devices. With the above configuration, obstacles behind the aircraft can be detected with high accuracy.
 また、前記後障害物検知装置は、機体に設けられる苗載せ台の上部、または薬剤散布装置に設けられる泥除けカバーより上方に設けられても良い。 Further, the post-obstacle detection device may be provided above the seedling stand provided on the machine body or above the mudguard cover provided on the chemical spraying device.
 このような構成により、後障害物検知装置に泥が付着することを抑制することができ、機体の後方の障害物を精度良く検知することができる。 With such a configuration, it is possible to prevent mud from adhering to the rear obstacle detection device, and it is possible to accurately detect obstacles behind the aircraft.
 また、前記後障害物検知装置は複数設けられ、前記後障害物検知装置は機体の前後方向より外向きに設けられても良い。 Further, a plurality of the rear obstacle detection devices may be provided, and the rear obstacle detection devices may be provided outward from the front-rear direction of the aircraft.
 このような構成により、配置位置が制限されて、後障害物検知装置が十分な数だけ設けられなかったとしても、機体後方の障害物を検知するために必要な検知範囲を容易に確保することができる。 With such a configuration, even if the arrangement position is limited and a sufficient number of rear obstacle detection devices are not provided, the detection range required for detecting obstacles behind the aircraft can be easily secured. Can be done.
 また、前記後障害物検知装置は機体に設けられる苗載せ台の上部に並んで3以上設けられ、それぞれの前記後障害物検知装置は機体の前後方向と平行な後向きに設けられても良い。 Further, the rear obstacle detection device may be provided in three or more side by side on the upper part of the seedling stand provided on the machine body, and each of the rear obstacle detection devices may be provided in the rear direction parallel to the front-rear direction of the machine body.
 このような構成により、必要な数の後障害物検知装置を設けることができ、機体の後方の障害物を精度良く検知することができる。 With such a configuration, a required number of rear obstacle detection devices can be provided, and obstacles behind the aircraft can be detected with high accuracy.
 また、前記後障害物検知装置は複数設けられ、機体に設けられる薬剤散布装置を挟んで、機体の前後進方向に交差する左右方向に並んで設けられても良い。 Further, a plurality of the rear obstacle detection devices may be provided, and may be provided side by side in the left-right direction intersecting the front-back direction of the machine body with the drug spraying device provided on the machine body interposed therebetween.
 薬剤散布装置は機体後方に突出した位置に設けられ、後障害物検知装置の検知範囲を確保する際の障害となる。上記構成により、薬剤散布装置を挟んで設けられる後障害物検知装置の検知範囲が、薬剤散布装置により生じる死角を互いに補うことができ、機体後方の障害物を検知するための検知範囲を容易に確保することができる。 The chemical spraying device is installed at a position protruding to the rear of the machine, which is an obstacle when securing the detection range of the rear obstacle detection device. With the above configuration, the detection range of the rear obstacle detection device provided across the drug spray device can complement each other's blind spots caused by the drug spray device, and the detection range for detecting obstacles behind the machine body can be easily set. Can be secured.
 また、前記障害物検知装置は、機体の設けられるステップより上方領域に設けられても良い。 Further, the obstacle detection device may be provided in an area above the step where the aircraft is provided.
 このような構成により、機体の周囲の障害物を精度良く検知することができる。 With such a configuration, obstacles around the aircraft can be detected with high accuracy.
 また、前記障害物検知装置は、平面視で、機体に設けられるステップと重複する位置に設けられても良い。 Further, the obstacle detection device may be provided at a position overlapping the steps provided on the machine body in a plan view.
 障害物検知装置が機体から突出する位置に設けられると、泥等が付着しやすくなり、十分な障害物検知ができなくなる場合がある。上記構成により、障害物検知装置に泥が付着することが抑制され、自動走行中に継続して障害物の検知を行うことができる。 If the obstacle detection device is installed at a position where it protrudes from the machine, mud or the like tends to adhere, and sufficient obstacle detection may not be possible. With the above configuration, it is possible to prevent mud from adhering to the obstacle detection device, and to continuously detect obstacles during automatic driving.
 (11)上記目的を達成するために、本発明の一実施形態に係る作業機は、自動走行を行いながら作業を行うことにより作業走行を行う作業機であって、機体周辺の所定の領域を検知範囲として障害物を検知する障害物検知装置と、前記障害物検知装置の検知結果に応じて走行を制御する自動走行制御部とを備え、前記自動走行制御部は、自動走行の開始時に走行の開始の可否を前記障害物の検知結果から判断する発進抑制モードと、自動走行中に前記障害物の検知結果に応じて自動走行を制御する障害物検知モードとを含んで自動走行を制御する。 (11) In order to achieve the above object, the work machine according to the embodiment of the present invention is a work machine that performs work running by performing work while performing automatic running, and covers a predetermined area around the machine body. The detection range includes an obstacle detection device that detects an obstacle and an automatic driving control unit that controls driving according to the detection result of the obstacle detecting device. The automatic driving control unit travels at the start of automatic driving. Automatic driving is controlled including a start suppression mode in which whether or not the vehicle can be started is determined from the obstacle detection result, and an obstacle detection mode in which automatic driving is controlled according to the obstacle detection result during automatic driving. ..
 圃場等の作業地を作業走行する場合、障害物が作業地に存在すると、機体が障害物に衝突して機体が損傷したり、適切な作業が行えなくなったりする場合がある。そのため、自動走行においては、障害物を検知し、障害物との衝突を回避する制御を行うことが適切ある。 When working on a work area such as a field, if an obstacle exists in the work area, the aircraft may collide with the obstacle and the aircraft may be damaged or it may not be possible to perform appropriate work. Therefore, in automatic driving, it is appropriate to detect an obstacle and perform control to avoid a collision with the obstacle.
 また、自動走行中は、障害物の存在に応じて、走行経路の変更や走行の停止等が行われる必要があるのに対し、自動走行による走行の開始時には、障害物が存在する場合、走行を開始しないことが適切である。 In addition, during automatic driving, it is necessary to change the traveling route or stop the traveling according to the presence of obstacles, whereas at the start of traveling by automatic driving, if there are obstacles, the vehicle travels. It is appropriate not to start.
 そのため、障害物の検知結果に応じて自動走行を制御する際には、自動走行の開始時に制御を行う発進抑制モードと、自動走行中に制御を行う障害物検知モードとに、制御状態を分けることが適切である。これにより、走行状態に応じた適切な自動走行の制御を行うことができる。 Therefore, when controlling automatic driving according to the detection result of an obstacle, the control state is divided into a start suppression mode in which control is performed at the start of automatic driving and an obstacle detection mode in which control is performed during automatic driving. Is appropriate. As a result, it is possible to appropriately control automatic driving according to the traveling state.
 また、前記障害物検知装置として、機体前方を検知範囲とする1または複数の前障害物検知装置と、機体後方を検知範囲とする1または複数の後障害物検知装置と、機体横側方を検知範囲とする1または複数の横障害物検知装置とを備えても良い。 Further, as the obstacle detection device, one or a plurality of front obstacle detection devices having a detection range in front of the machine, one or a plurality of rear obstacle detection devices having a detection range in the rear of the machine, and lateral sides of the machine are used. It may be provided with one or a plurality of lateral obstacle detection devices as a detection range.
 このような構成により、走行状態に応じた適切な範囲の障害物を検知することができ、走行状態に応じた適切な自動走行の制御を行うことができる。 With such a configuration, obstacles in an appropriate range according to the driving condition can be detected, and appropriate automatic driving control can be performed according to the driving condition.
 また、前記横障害物検知装置は、運転者が搭乗する際に通過する乗降ステップの周辺を検知範囲に含んでも良い。 Further, the lateral obstacle detection device may include the vicinity of the boarding / alighting step that the driver passes when boarding in the detection range.
 運転者等は、一般的に、乗降ステップを用いて機体に搭乗する。特に、走行を開始する際に、運転者等が機体に乗降しようとしていると、走行を開始することが不適切である。
上記構成により、機体に乗降しようとしている運転者等を精度良く検知することができる。
Drivers and the like generally board the aircraft using the boarding / alighting steps. In particular, when the driver or the like is trying to get on and off the aircraft at the time of starting the traveling, it is inappropriate to start the traveling.
With the above configuration, it is possible to accurately detect a driver or the like who is about to get on and off the aircraft.
 また、前記自動走行制御部は、前記発進抑制モードにおいて、前記機体が進行する方向の前方および前記機体の横側方の前記障害物を検知しても良い。 Further, the automatic traveling control unit may detect the obstacles in front of the direction in which the aircraft travels and on the lateral sides of the aircraft in the start suppression mode.
 走行が開始される際には、機体の進行方向の前方の障害物を検知する必要がある。また、上述のように、機体に乗降しようとしている運転者等を検知することが好ましい。上記構成により、走行が開始される際に必要な範囲の障害物が適切に検知される。 When starting to run, it is necessary to detect obstacles in front of the aircraft in the direction of travel. Further, as described above, it is preferable to detect a driver or the like who is about to get on and off the aircraft. With the above configuration, obstacles in a range required when traveling is started are appropriately detected.
 また、前記障害物検知装置が検知した前記障害物が泥面であるか否かを判定する障害物判定部を備え、前記自動走行制御部は、前記発進抑制モードにおいて、前記障害物判定部が泥面であると判定した前記障害物を前記障害物ではないと認定して自動走行を制御しても良い。 Further, the automatic driving control unit includes an obstacle determination unit that determines whether or not the obstacle detected by the obstacle detection device is a muddy surface, and the automatic driving control unit is operated by the obstacle determination unit in the start suppression mode. The obstacle determined to be a muddy surface may be recognized as not the obstacle and automatic driving may be controlled.
 適切な自動走行を行うためには、障害物の検知範囲を広くする必要がある。一方、機体は圃場等の作業地の上面を走行するため、泥面等の作業地表面を検知してしまうことも考えられる。泥面等を検知すると適切な自動走行の妨げとなる。上記構成により、泥面等が検知されたとしても、これを障害物とは認定しないように制御することができるため、適切に走行の開始を行うことができる。 It is necessary to widen the detection range of obstacles in order to perform appropriate automatic driving. On the other hand, since the airframe runs on the upper surface of a work area such as a field, it is possible that the surface of the work area such as a mud surface may be detected. Detecting a mud surface or the like hinders proper automatic driving. With the above configuration, even if a mud surface or the like is detected, it can be controlled so as not to be recognized as an obstacle, so that the running can be started appropriately.
 また、前記障害物検知装置が検知した前記障害物が移動する人物であるか否かを判定する障害物判定部を備え、前記自動走行制御部は、前記発進抑制モードにおいて、移動する人物のみを前記障害物と認定して自動走行を制御しても良い。 In addition, the automatic driving control unit includes an obstacle determination unit that determines whether or not the obstacle detected by the obstacle detection device is a moving person, and the automatic driving control unit determines only a moving person in the start suppression mode. It may be recognized as the obstacle and the automatic running may be controlled.
 走行の開始時に、最も問題となる障害物は移動する人物である。上記構成により、障害物に応じた走行の開始の制御が適切に行われ、より適切に走行の開始を行うことができる。 At the start of driving, the most problematic obstacle is the moving person. With the above configuration, the start of running is appropriately controlled according to the obstacle, and the start of running can be started more appropriately.
 また、前記障害物検知装置として、機体前方を検知範囲とする1または複数の前障害物検知装置と、機体後方を検知範囲とする1または複数の後障害物検知装置とを備え、前記自動走行制御部は、前記障害物検知モードにおいて、前進走行時には前記前障害物検知装置を用いて自動走行を制御し、後進走行時には前記後障害物検知装置を用いて自動走行を制御しても良い。 Further, as the obstacle detection device, one or a plurality of front obstacle detection devices having a detection range in front of the aircraft and one or a plurality of rear obstacle detection devices having a detection range in the rear of the aircraft are provided, and the automatic traveling is performed. In the obstacle detection mode, the control unit may control automatic driving by using the front obstacle detection device when traveling forward, and may control automatic driving by using the rear obstacle detection device when traveling backward.
 走行中は、機体の進行方向の前方の障害物が検知されることが最も適切である。上記構成により、走行状態に応じた適切な障害物の検知が行われ、適切に自動走行が継続される。 While driving, it is most appropriate to detect obstacles in front of the aircraft in the direction of travel. With the above configuration, appropriate obstacles are detected according to the traveling state, and automatic driving is appropriately continued.
 また、障害物検知装置として、機体横側方を検知範囲とする1または複数の横障害物検知装置を備え、前記自動走行制御部は、前記障害物検知モードにおいて、前進走行時および後進走行時に前記横障害物検知装置を用いて自動走行を制御しても良い。 Further, as the obstacle detection device, one or a plurality of lateral obstacle detection devices having a detection range on the lateral side of the machine body are provided, and the automatic driving control unit is in the obstacle detection mode during forward traveling and reverse traveling. The automatic traveling may be controlled by using the lateral obstacle detection device.
 自動走行中に障害物が機体に接近してくる場合がある。障害物は、機体の側方から接近してくる場合もある。上記構成により、走行に支障をきたす障害物をより確実に検知することができ、より適切に自動走行が継続される。 Obstacles may approach the aircraft during automatic driving. Obstacles may approach from the side of the aircraft. With the above configuration, obstacles that hinder driving can be detected more reliably, and automatic driving can be continued more appropriately.
 また、前記走行制御部は、前記障害物検知モードにおいて、前進走行時および後進走行時に全ての前記障害物検知装置を用いて自動走行を制御しても良い。 Further, the traveling control unit may control automatic traveling by using all the obstacle detecting devices during forward traveling and reverse traveling in the obstacle detection mode.
 このような構成により、より精度良く障害物を検知することができ、より適切に自動走行を継続することができる。 With such a configuration, obstacles can be detected more accurately, and automatic driving can be continued more appropriately.
 また、前記障害物検知装置が検知した前記障害物が接近しているか否かを判定する障害物判定部を備え、前記自動走行制御部は、前記障害物検知モードにおいて、後進走行時に、接近している前記障害物に基づいて自動走行を制御しても良い。 Further, the vehicle includes an obstacle determination unit that determines whether or not the obstacle detected by the obstacle detection device is approaching, and the automatic driving control unit approaches when traveling backward in the obstacle detection mode. The automatic driving may be controlled based on the obstacle.
 このような構成により、必要最低限の障害物を検知しながら、作業走行の効率を維持することができる。 With such a configuration, it is possible to maintain the efficiency of work running while detecting the minimum necessary obstacles.
 また、前記障害物検知装置として、機体前方を検知範囲とする1または複数の前障害物検知装置と、機体後方を検知範囲とする1または複数の後障害物検知装置と、機体横側方を検知範囲とする1または複数の横障害物検知装置とを備え、前記横障害物検知装置の検知範囲は、前記前障害物検知装置の検知範囲および前記後障害物検知装置の検知範囲より狭くても良い。 Further, as the obstacle detection device, one or a plurality of front obstacle detection devices having a detection range in front of the machine, one or a plurality of rear obstacle detection devices having a detection range in the rear of the machine, and lateral sides of the machine are used. It is provided with one or a plurality of lateral obstacle detection devices as a detection range, and the detection range of the lateral obstacle detection device is narrower than the detection range of the front obstacle detection device and the detection range of the rear obstacle detection device. Is also good.
 機体の側部領域には、種々の装置が突出している。障害物検知装置がこれらの装置を障害物として検出してしまうと、作業走行に支障をきたす。上記構成により、これらの装置を障害物として誤検知する可能性を抑制することができ、適切な作業走行を行うことができる。 Various devices project from the side area of the aircraft. If the obstacle detection device detects these devices as obstacles, it will hinder work driving. With the above configuration, the possibility of erroneously detecting these devices as obstacles can be suppressed, and appropriate work running can be performed.
 また、障害物検知モードの際の前記障害物検知装置の検知範囲は、発進抑制モードの際の前記障害物検知装置の検知範囲より狭くても良い。 Further, the detection range of the obstacle detection device in the obstacle detection mode may be narrower than the detection range of the obstacle detection device in the start suppression mode.
 走行の開始時は、より広範囲で障害物を検知することが適切であるのに対し、作業走行の継続性の観点から、走行中は誤検知を抑制することも必要である。上記構成により、走行状態に応じた適切な検知範囲で障害物を検知することができる。 While it is appropriate to detect obstacles in a wider range at the start of running, it is also necessary to suppress false detections during running from the viewpoint of continuity of work running. With the above configuration, obstacles can be detected within an appropriate detection range according to the traveling state.
 また、障害物検知モードの際の前記障害物検知装置の検知範囲は、畦からの距離が長くなる程広くなっても良い。 Further, the detection range of the obstacle detection device in the obstacle detection mode may be widened as the distance from the ridge increases.
 作業走行中は圃場の内部を走行するため、圃場の外周部分に設けられる畦との距離が常に変化する。一般的に、畦が障害物の検知範囲に入ると畦を障害物として検知してしまう。走行経路は畦を考慮して生成されている。そのため、障害物の検知範囲の長さとの関係で、畦が検知されたとしても、作業走行には支障がないはずである。上記構成により、畦からの距離に応じて障害物の検知範囲の長さを最適化することにより、畦を障害物として検知する可能性が低減する。その結果、適切に作業走行を継続することができる。 Because it travels inside the field during work, the distance to the ridges provided on the outer periphery of the field constantly changes. Generally, when a ridge enters the detection range of an obstacle, the ridge is detected as an obstacle. The travel route is generated in consideration of the ridges. Therefore, even if the ridge is detected in relation to the length of the detection range of the obstacle, there should be no hindrance to the work running. With the above configuration, the possibility of detecting the ridge as an obstacle is reduced by optimizing the length of the detection range of the obstacle according to the distance from the ridge. As a result, the work running can be continued appropriately.
 また、前記障害物検知装置として、機体前方を検知範囲とする複数の前障害物検知装置を備え、旋回時には、障害物検知モードの際の前記前障害物検知装置は旋回内側の前記前障害物検知装置である程、検知範囲が広くなっても良い。 Further, as the obstacle detection device, a plurality of front obstacle detection devices having a detection range in front of the aircraft are provided, and when turning, the front obstacle detection device in the obstacle detection mode is the front obstacle inside the turn. The detection device may have a wider detection range.
 旋回走行においては、走行に伴って機体は旋回方向に移動していく。上記構成により、より適切に機体の進行方向の前方の障害物を検知することができ、より適切に、作業走行に支障をきたす障害物を検知することができる。 In turning, the aircraft moves in the turning direction as it runs. With the above configuration, it is possible to more appropriately detect obstacles in front of the aircraft in the traveling direction, and more appropriately detect obstacles that hinder work traveling.
 また、前記障害物検知装置として、機体後方を検知範囲とする1または複数の後障害物検知装置を備え、前記前障害物検知装置の検知範囲は、前記機体に設けられる予備苗収納装置の前側最外端部が描く軌跡の外側までとし、前記後障害物検知装置の検知範囲は、前記機体に設けられる摺動板ガードの後側最外端部が描く軌跡の外側までとしても良い。 Further, as the obstacle detection device, one or a plurality of rear obstacle detection devices having a detection range behind the machine body are provided, and the detection range of the front obstacle detection device is the front side of the spare seedling storage device provided in the machine body. It may be outside the locus drawn by the outermost end portion, and the detection range of the rear obstacle detection device may be outside the locus drawn by the outermost rear end portion of the sliding plate guard provided on the aircraft.
 上記構成により、検知範囲は誤検知を抑制しながら、最大限の広さを確保することができる。 With the above configuration, the maximum detection range can be secured while suppressing false detection.
 また、自動走行は、圃場の内部領域に対して行われる往復作業走行と、圃場の外周領域に対して行われる周回作業走行とを含み、前記周回作業走行は最外周作業走行を含み、前記自動走行制御部は、前記障害物検知モードにおいて、前記往復作業走行時に前記障害物に基づいて自動走行を制御しても良い。 Further, the automatic running includes a reciprocating work run performed on the inner region of the field and a lap work run performed on the outer peripheral region of the field, and the lap work run includes the outermost work run and is said to be automatic. In the obstacle detection mode, the traveling control unit may control automatic traveling based on the obstacle during the reciprocating work traveling.
 このような構成により、往復作業走行において、障害物を考慮した自動走行を行うことができる。 With such a configuration, it is possible to perform automatic traveling in consideration of obstacles in reciprocating work traveling.
 また、前記自動走行制御部は、前記障害物検知モードでの前記最外周作業走行においても前記障害物に基づいて自動走行を制御しても良い。 Further, the automatic traveling control unit may control automatic traveling based on the obstacle even in the outermost working traveling in the obstacle detection mode.
 このような構成により、最外周作業走行においても、障害物を考慮した自動走行を行うことができる。 With such a configuration, it is possible to perform automatic traveling in consideration of obstacles even in the outermost working traveling.
 また、自動走行が開始される前には、前記障害物検知装置は検知結果を用いた自動走行の制御が行われず、自動走行が開始される際に、告知と共に検知結果を用いた自動走行の制御が開始されても良い。 Further, before the automatic driving is started, the obstacle detection device does not control the automatic driving using the detection result, and when the automatic driving is started, the automatic driving using the detection result together with the notification is performed. Control may be initiated.
 自動制御による走行が開始される前は、障害物が検知されたとしても、検知結果に応じた制御が行われず、走行が開始される際から検知結果に応じた制御が行われる。そして、制御が開始される際にはその旨が報知される。その結果、必要な場合にのみ制御動作が行われて、自動走行制御部が効率的に動作し、運転者等は、検知結果に応じた制御が行われることを的確に認知することができる。 Before the start of running by automatic control, even if an obstacle is detected, the control according to the detection result is not performed, and the control according to the detection result is performed from the time when the running is started. Then, when the control is started, a notification to that effect is given. As a result, the control operation is performed only when necessary, the automatic driving control unit operates efficiently, and the driver or the like can accurately recognize that the control is performed according to the detection result.
 また、前記障害物が検知されると、自動走行制御部は、走行車速を制御する主変速装置を中立位置とし、かつ、エンジン回転数を維持させても良い。 Further, when the obstacle is detected, the automatic driving control unit may set the main transmission for controlling the traveling vehicle speed to the neutral position and maintain the engine speed.
 このような構成により、障害物が検知されるのに伴って機体は停止されるが、障害が排除されるとすぐに作業走行を再開できる状態を維持することができ、効率的な作業走行を継続することができる。 With such a configuration, the aircraft is stopped when an obstacle is detected, but it is possible to maintain a state in which work running can be resumed as soon as the obstacle is eliminated, and efficient work running can be performed. You can continue.
 また、前記障害物検知装置は、ソナーセンサ、レーザーセンサ、画像解析装置、および機械学習された学習済みモデルを用いた解析のうちの少なくとも1つを含んでも良い。 Further, the obstacle detection device may include at least one of a sonar sensor, a laser sensor, an image analysis device, and an analysis using a machine-learned trained model.
 このような構成により、最適な障害物検知装置を用いて障害物の検知を行うことができる。 With such a configuration, obstacles can be detected using the optimum obstacle detection device.
 (12)本発明の作業機は、自走車と、前記自走車の後方に位置する作業装置と、自動作業走行を司る制御ユニットと、前記制御ユニットの制御モードを前記自走車の外部に表示する積層灯と、が備えられ、前記積層灯は、前記自走車の外周部に設けられている。 (12) The working machine of the present invention has a self-propelled vehicle, a work device located behind the self-propelled vehicle, a control unit that controls automatic work traveling, and a control mode of the control unit outside the self-propelled vehicle. The laminated light is provided on the outer peripheral portion of the self-propelled vehicle.
 本構成によると、作業機から離れた箇所において、作業者が作業機の自動作業走行を監視する場合でも、積層灯を見やすいので、積層灯による表示を基に自動作業走行する作業機の走行状況や作業状況を知りやすい。 According to this configuration, even when the worker monitors the automatic work running of the work machine at a place away from the work machine, it is easy to see the laminated light, so that the running state of the work machine that automatically runs based on the display by the laminated light. And work status is easy to know.
 本発明においては、前記作業装置は、苗載せ台、前記苗載せ台から苗を取り出し、取り出した苗を圃場に植え付ける植付機構を有し、前記自走車に、上下複数段に並ぶ予備苗載せ台が備えられ、前記積層灯は、前記上下複数段の予備苗載せ台のうちの最上段の予備苗載せ台よりも高い位置に設けられていると好適である。 In the present invention, the working device has a seedling stand, a planting mechanism for taking out seedlings from the seedling stand and planting the taken out seedlings in a field, and spare seedlings arranged in a plurality of upper and lower stages on the self-propelled vehicle. It is preferable that the stacking lamp is provided at a position higher than the uppermost preliminary seedling loading platform among the upper and lower plurality of preliminary seedling loading platforms.
 本構成によると、一般に最上段の予備苗載せ台は高い位置に設けられ、積層灯が最上段の予備苗載せ台よりも高い位置に位置するので、積層灯の表示をより見やすくて作業機の走行状況や作業状況をより知りやすい。 According to this configuration, the uppermost spare seedling stand is generally provided at a high position, and the laminated light is located at a higher position than the uppermost spare seedling stand, so that the display of the laminated light is easier to see and the work equipment can be used. It is easier to know the driving situation and work situation.
 本発明においては、前記自走車に、全地球航法衛星システムの衛星からの電波を受信して前記自走車の位置情報を取得する測位ユニットが備えられ、前記自走車に、車体上下方向に沿う方向に延びる支持フレームが備えられ、前記測位ユニットは、前記支持フレームのうちの上端側部に支持されており、前記積層灯は、前記支持フレームのうち、前記上端側部よりも低い下端側部に支持されており、前記支持フレームは、前記上端側部が前記下端側部に対して上昇揺動されて、前記測位ユニットを上昇使用位置に位置させる状態と、前記上端側部が前記下端側部に対して下降揺動されて、前記測位ユニットを下降格納位置に位置させる状態とに状態変更可能に構成されていると好適である。 In the present invention, the self-propelled vehicle is provided with a positioning unit that receives radio waves from satellites of the global navigation satellite system to acquire position information of the self-propelled vehicle, and the self-propelled vehicle is provided with a vehicle body vertical direction. The positioning unit is supported by the upper end side portion of the support frame, and the laminated lamp is the lower end portion of the support frame lower than the upper end side portion. The support frame is supported by a side portion, and the support frame is in a state in which the upper end side portion is lifted and swung with respect to the lower end side portion to position the positioning unit in an ascending use position, and the upper end side portion is said. It is preferable that the positioning unit can be changed to a state in which the positioning unit is positioned in the descending storage position by being swung downward with respect to the lower end side portion.
 本構成によると、測位ユニットを上昇使用位置から下降格納位置に切り換えても、積層灯は、支持フレームの下端側部に支持されていて使用時のままの姿勢になっているので、積層灯の支持と測位ユニットの支持とに同じ支持フレームを採用して支持構造を簡素にできながら、測位ユニットを使用時よりも低い位置に格納しても、たとえば積層灯を洗車水や雨水が入り込み難い状態に維持できる。 According to this configuration, even if the positioning unit is switched from the ascending use position to the descending storage position, the laminated lamp is supported by the lower end side of the support frame and remains in the same posture as when used. The same support frame is used for the support and the support of the positioning unit to simplify the support structure, but even if the positioning unit is stored at a lower position than when it is used, for example, it is difficult for car wash water or rainwater to enter the laminated light. Can be maintained.
 本発明においては、前記自走車に、遠隔操縦装置からの無線指令信号を受信するアンテナが備えられ、前記アンテナは、前記上端側部に脱着可能に支持されていると好適である。 In the present invention, it is preferable that the self-propelled vehicle is provided with an antenna for receiving a radio command signal from the remote control device, and the antenna is detachably supported on the upper end side portion.
 本構成によると、使用するときのアンテナは、支持フレームのうち、上昇揺動させた上端側部に支持されて高い位置に位置しても、測位ユニットを格納するとき、アンテナを上端側部から取り外すことができ、たとえばアンテナが上端側部に付いて下降して周辺の部材に当たることを回避できる。 According to this configuration, even if the antenna when used is supported by the upper end side of the support frame that is swung up and down and is located at a high position, when the positioning unit is stored, the antenna is moved from the upper end side. It can be removed, for example, to prevent the antenna from sticking to the upper end side and descending to hit surrounding members.
 本発明においては、前記自走車に、当該自走車の走行に対する障害物を検出するソナーセンサ、前記ソナーセンサを制御するソナー制御装置が備えられ、前記積層灯、前記ソナー制御装置、及び、前記アンテナが連係される受信装置は、前記自走車の両横側部のうちの一方の横側部に設けられていると好適である。 In the present invention, the self-propelled vehicle is provided with a sonar sensor for detecting obstacles to the running of the self-propelled vehicle, a sonar control device for controlling the sonar sensor, the laminated lamp, the sonar control device, and the antenna. It is preferable that the receiving device linked with the above is provided on one of the lateral sides of the self-propelled vehicle.
 本構成によると、積層灯、ソナー制御装置及び受信装置が自走車の一方の横側部に片寄って位置するので、たとえば積層灯を点検や修理する際、ソナー制御装置の点検、及び受信装置の点検を併せて行い易い。 According to this configuration, the laminated light, the sonar control device, and the receiving device are located on one side of the self-propelled vehicle, so that, for example, when inspecting or repairing the laminated light, the sonar control device is inspected and the receiving device is inspected. It is easy to perform the inspection together.
 本発明において、前記自走車の両横側部のうち、前記積層灯、前記ソナー制御装置及び前記受信装置が設けられている方の横側部に、バッテリが設けられていると好適である。 In the present invention, it is preferable that a battery is provided on both side portions of the self-propelled vehicle on the side portion on which the laminated light, the sonar control device, and the receiving device are provided. ..
 本構成によると、積層灯、ソナー制御装置、受信装置及びバッテリが自走車の一方の横側部に片寄って位置するので、積層灯、ソナー制御装置及び受信装置にバッテリから電力を供給する配線を短く済ませられる。 According to this configuration, since the laminated light, the sonar control device, the receiving device, and the battery are located on one side of the self-propelled vehicle, the wiring for supplying power from the battery to the laminated light, the sonar control device, and the receiving device. Can be shortened.
 本発明において、前記自走車に、上下複数段に並ぶ予備苗載せ台が備えられ、前記上下複数段の予備苗載せ台は、前記支持フレームに支持されていると好適である。 In the present invention, it is preferable that the self-propelled vehicle is provided with spare seedling stands arranged in a plurality of upper and lower stages, and the upper and lower multiple stages of spare seedling stands are supported by the support frame.
 本構成によると、測位ユニットの支持と予備苗載台の支持とに同じ支持フレームを採用するので、測位ユニット及び予備苗載台の支持構造を簡素に済ませられる。 According to this configuration, the same support frame is used for the support of the positioning unit and the support of the spare seedling stand, so the support structure of the positioning unit and the spare seedling stand can be simplified.
 (13)上記目的を達成するために本発明の一実施形態に係る作業機は、自動走行により作業走行を行う作業機であって、警告を報知する報知装置を備え、前記報知装置は、自動走行での後進中、自動走行での旋回中、および自動走行の開始時のうちの少なくともいずれかで警告を報知する。 (13) In order to achieve the above object, the work machine according to the embodiment of the present invention is a work machine that performs work running by automatic running, and includes a notification device for notifying a warning, and the notification device is automatically. A warning is issued at least at least during reverse driving during driving, turning during automatic driving, and at the start of automatic driving.
 自動走行中は、運転者が機体に搭乗していたとしても、機体の走行に対する意識が低くなりがちである。特に、通常の作業走行である直進走行以外の走行や、機体が停止状態から走行を開始する際には、意識が低いと運転者が違和感を感じることがある。このような場合でも、その旨が報知されることにより、運転者が意識しやすくなり、運転者が感じる違和感を緩和することができる。また、機体の周囲に人物がいたとしても、機体の動きを容易に察知することができ、周囲の人物が機体に注意を向ける契機となる。 During automatic driving, even if the driver is on board the aircraft, the awareness of the aircraft's driving tends to be low. In particular, when traveling other than straight-ahead driving, which is normal work driving, or when the aircraft starts traveling from a stopped state, the driver may feel uncomfortable if the consciousness is low. Even in such a case, the notification to that effect makes it easier for the driver to be aware of it, and the discomfort felt by the driver can be alleviated. In addition, even if there is a person around the aircraft, the movement of the aircraft can be easily detected, which is an opportunity for the surrounding people to pay attention to the aircraft.
 また、警告は音声による警告であっても良い。 Also, the warning may be a voice warning.
 このような構成により、運転者の状態にかかわらず、運転者は警告に気づきやすくなり、運転者が違和感を感じることが少なくなる。 With such a configuration, the driver can easily notice the warning regardless of the driver's condition, and the driver is less likely to feel discomfort.
 また、車速を操作する車速操作具を備え、自動走行は、運転者が搭乗することを要する有人自動走行と、運転者が搭乗することが不要である無人自動走行とを有し、有人自動走行による作業走行は、前記車速操作具が中立位置以外の位置に操作されることにより開始または再開され、無人自動走行による作業走行は、前記車速操作具が中立位置にあることが開始または再開の条件となっても良い。 In addition, it is equipped with a vehicle speed control tool that controls the vehicle speed, and automatic driving includes manned automatic driving that requires the driver to board and unmanned automatic driving that does not require the driver to board. The work running by the unmanned automatic running is started or restarted by operating the vehicle speed control tool at a position other than the neutral position, and the work running by the unmanned automatic running is a condition for starting or restarting when the vehicle speed control tool is in the neutral position. It may be.
 このような構成により、有人自動走行の際の走行の開始を運転者が容易に操作することができる。また、無人自動走行は走行の開始を自動的に制御するため、車速操作具の操作が不要である反面、車速操作具が中立位置以外に操作された状態で、自動走行が解除されると、その瞬間に機体が走行を始めてしまう。上記構成により、無人自動走行の際には車速操作具が中立位置に操作されることにより、自動走行の解除後に意図せず機体が走行することを抑制することができる。 With such a configuration, the driver can easily operate the start of running during manned automatic running. In addition, since unmanned automatic driving automatically controls the start of driving, it is not necessary to operate the vehicle speed control tool, but when the vehicle speed control tool is operated to a position other than the neutral position and the automatic driving is canceled, At that moment, the aircraft starts running. With the above configuration, the vehicle speed control tool is operated to the neutral position during unmanned automatic driving, so that it is possible to prevent the aircraft from unintentionally traveling after the automatic driving is canceled.
 また、機体から離れた位置から遠隔操作を行うことができるリモコンと、機体に設けられて、自動走行による作業走行の開始と停止とを操作する自動走行起動・停止スイッチとを備え、無人自動走行の場合は、前記リモコンが操作された場合のみ作業走行が開始または再開され、有人自動走行の場合は、前記自動走行起動・停止スイッチが操作された場合のみ作業走行が開始または再開されても良い。 In addition, it is equipped with a remote controller that can be remotely controlled from a position away from the aircraft, and an automatic travel start / stop switch that is installed on the aircraft to operate the start and stop of work travel by automatic driving, and is equipped with unmanned automatic driving. In the case of, the work running may be started or restarted only when the remote controller is operated, and in the case of manned automatic running, the work running may be started or restarted only when the automatic running start / stop switch is operated. ..
 無人自動走行の場合は、運転者が搭乗することを要しないので、リモコンにより、機体から離れた位置から走行の開始指示を行い得ることが適切である。有人自動走行の場合は、運転者が搭乗しているため、機体に走行の開始指示を行う操作具が設けられることが適切である。上記のような構成により、自動走行における運転者の要否に応じた作業走行の開始操作を行うことができる。 In the case of unmanned automatic driving, it is not necessary for the driver to board, so it is appropriate to be able to give instructions to start driving from a position away from the aircraft using the remote control. In the case of manned automatic driving, since the driver is on board, it is appropriate that the aircraft is provided with an operating tool for instructing the start of driving. With the above configuration, it is possible to perform a work running start operation according to the necessity of the driver in the automatic running.
 また、作業装置を操作する作業操作具を備え、有人自動走行は、前記車速操作具の移動操作と前記作業操作具の操作とが音声ガイダンスによるガイダンスに伴って行われる手動操作を要し、前記車速操作具の中立位置への移動操作が必要な場合または前記作業装置の作業状態への移行操作が必要な場合には、前記報知装置は音声ガイダンスに対応する操作が実施されるまで音声ガイダンスを報知しても良い。 Further, a work operation tool for operating the work device is provided, and the manned automatic driving requires a manual operation in which the movement operation of the vehicle speed operation tool and the operation of the work operation tool are performed with guidance by voice guidance. When it is necessary to move the vehicle speed control tool to the neutral position or to shift the work device to the working state, the notification device provides voice guidance until the operation corresponding to the voice guidance is performed. You may notify.
 このような構成により、運転者が必要な操作を容易に把握でき、所定の有人自動走行における誤操作が抑制されて、効率的に作業走行を行うことができる。 With such a configuration, the driver can easily grasp the necessary operation, erroneous operation in the predetermined manned automatic driving is suppressed, and the work driving can be performed efficiently.
 また、作業装置を操作する作業操作具と、情報を表示する情報端末とを備え、有人自動走行は、前記車速操作具の移動操作と前記作業操作具の操作とがガイダンスに伴って行われる手動操作を要し、前記車速操作具の中立位置への移動操作が必要な場合または前記作業装置の作業状態への移行操作が必要な場合には、ガイダンスは、所定の回数の音声ガイダンスが前記報知装置によって行われた後、対応する操作が実施されるまで前記情報端末に表示されることにより行われても良い。 Further, a work operation tool for operating the work device and an information terminal for displaying information are provided, and in manned automatic driving, the movement operation of the vehicle speed operation tool and the operation of the work operation tool are performed manually with guidance. When an operation is required and an operation for moving the vehicle speed control tool to a neutral position is required or an operation for shifting to a working state of the work device is required, the guidance is provided by a predetermined number of voice guidances. After being performed by the device, it may be performed by displaying it on the information terminal until the corresponding operation is performed.
 運転者が必要な操作を把握していたとしても、機体の状態や作業地の状態等の状況により、すぐに操作できない場合もある。このような場合、音声によるガイダンスが報知され続けると、運転者は煩わしく感じることがある。上記構成により、このような煩わしさを抑制しながら、不快感を抑えて必要なガイダンスを継続することができる。 Even if the driver knows the necessary operations, it may not be possible to operate immediately depending on the conditions of the aircraft and the work area. In such a case, if the voice guidance is continuously transmitted, the driver may feel annoyed. With the above configuration, it is possible to suppress discomfort and continue necessary guidance while suppressing such annoyance.
 また、有人自動走行による作業走行の開始時および再開時に、前記車速操作具を中立位置から進行方向に操作することを促すガイダンスが行われても良い。 In addition, guidance may be given to encourage the vehicle speed control tool to be operated from the neutral position in the traveling direction at the start and restart of the work running by manned automatic running.
 このような構成により、作業走行の開始を精度良く行うことができる。 With such a configuration, it is possible to start work running with high accuracy.
 また、有人自動走行の開始および再開時に、前記車速操作具を中立位置から進行方向とは反対の方向に操作されても走行が開始されない構成としても良い。 Further, when the manned automatic driving is started and restarted, even if the vehicle speed control tool is operated from the neutral position in the direction opposite to the traveling direction, the traveling may not be started.
 このような構成により、誤った操作が行われたとしても、誤った走行が行われず、適切に所定の作業走行を行うことができる。 With such a configuration, even if an erroneous operation is performed, the erroneous running is not performed, and a predetermined work running can be appropriately performed.
 また、方向転換の際には、前後進が切り替わる場合であっても前記車速操作具の操作を要しなくても良い。 Further, when changing the direction, it is not necessary to operate the vehicle speed control tool even when the forward / backward movement is switched.
 有人自動走行においては所定の操作を要する。走行経路に沿った方向転換の場合は、方向転換における機体の動作は一定であり、自動走行の流れの中で行うことが可能である。
上記構成により、継続的かつスムーズに作業走行を継続することができる。
A predetermined operation is required for manned automatic driving. In the case of a change of direction along a travel route, the operation of the aircraft in the change of direction is constant and can be performed in the flow of automatic driving.
With the above configuration, work running can be continued continuously and smoothly.
 また、走行車速を調整する無段変速装置を備え、前記車速操作具を中立位置へ移動操作する必要がある場合で、かつ、前記無段変速装置が中立位置にない場合に、前記車速操作具の中立位置への移動操作を促すガイダンスが行われても良い。 Further, the continuously variable transmission for adjusting the traveling vehicle speed is provided, and when it is necessary to move the vehicle speed control tool to the neutral position and the continuously variable transmission is not in the neutral position, the vehicle speed control tool is provided. Guidance may be given to encourage the movement operation to the neutral position.
 このような構成により、実際の走行に直接対応する無段変速装置の斜板の角度が中立位置(駆動力が伝達されない状態)にない場合にガイダンスが行われ、より実際の走行に則したガイダンスが行われる。 With such a configuration, guidance is given when the angle of the swash plate of the continuously variable transmission that directly corresponds to actual driving is not in the neutral position (state in which driving force is not transmitted), and guidance that is more in line with actual driving is provided. Is done.
 また、あらかじめ設定された自動走行に反する操作が行われた場合、自動走行に沿った操作が行われるまで、自動走行に沿った操作を行う旨のガイダンスが報知されても良い。 Further, when an operation contrary to the preset automatic driving is performed, guidance to perform the operation according to the automatic driving may be notified until the operation according to the automatic driving is performed.
 このような構成により、より確実に所定の自動走行に則した操作を促すことができ、適切な自動走行を継続することができる。 With such a configuration, it is possible to more reliably promote an operation in accordance with a predetermined automatic driving, and it is possible to continue an appropriate automatic driving.
 また、前記作業走行は、作業地の内部領域の内部往復経路の自動走行、外周領域の内側周回経路の自動走行、および、前記外周領域の外側周回経路の各辺での有人自動走行であり、前記作業地には誘導開始エリアが設けられ、機体が前記誘導開始エリアに停止されると前記内部往復経路の開始点に有人自動走行で誘導され、自動走行の開始は、前記内部往復経路の自動走行の開始、前記内側周回経路の自動走行の開始、前記外側周回経路の各辺での有人自動走行の開始、前記誘導開始エリアからの誘導の開始、および、資材を補給した際の走行経路への復帰であっても良い。 Further, the work traveling is automatic traveling of the internal reciprocating route in the inner region of the work site, automatic traveling of the inner peripheral route of the outer peripheral region, and manned automatic traveling on each side of the outer peripheral route of the outer peripheral region. A guidance start area is provided in the work area, and when the aircraft is stopped in the guidance start area, it is guided by manned automatic traveling to the start point of the internal round-trip route, and the start of automatic traveling is automatically started by the internal round-trip route. Start of running, start of automatic running of the inner orbital route, start of manned automatic running on each side of the outer orbital route, start of guidance from the guidance start area, and to the running route when materials are replenished. It may be the return of.
 このような構成により、適切な状態で自動走行を開始することができる。特に、外側周回経路の各辺が独立した自動走行として設定されることにより、外側周回経路の旋回走行中に不測の事態が生じたとしても、より容易に作業走行を再開することができる。 With such a configuration, automatic driving can be started in an appropriate state. In particular, by setting each side of the outer peripheral route as an independent automatic traveling, even if an unexpected situation occurs during the turning traveling of the outer peripheral route, the working traveling can be resumed more easily.
 また、前記誘導開始エリアからの誘導における有人自動走行は、後進後に前進して行われ、前記車速操作具を後進位置へ操作することを促すガイダンスが行われ、所定の後進走行が行われた後、前記車速操作具を前進位置へ操作することを促すガイダンスが行われることにより、前記誘導開始エリアからの誘導における有人自動走行が行われても良い。 In addition, the manned automatic driving in the guidance from the guidance start area is performed forward after the vehicle moves backward, guidance is given to encourage the vehicle speed control tool to be operated to the reverse position, and after the predetermined reverse travel is performed. , Manned automatic driving in the guidance from the guidance start area may be performed by providing guidance for urging the vehicle speed control tool to be operated to the forward position.
 このような構成により、内部往復経路の開始点への誘導が適切に行われる。 With such a configuration, guidance to the starting point of the internal round-trip route is appropriately performed.
 また、作業装置を操作する作業操作具を備え、前記外側周回経路の最初の辺における有人自動走行の開始時には前記車速操作具を前進方向に操作することを要し、他の辺における有人自動走行の開始時には前記車速操作具の操作は不要であり、各辺間の旋回の前には前記作業操作具を非作動状態に操作することを要しても良い。 Further, a work operating tool for operating the work device is provided, and it is necessary to operate the vehicle speed operating tool in the forward direction at the start of manned automatic traveling on the first side of the outer circuit path, and manned automatic traveling on other sides. It is not necessary to operate the vehicle speed operating tool at the start of the operation, and it may be necessary to operate the working operating tool in a non-operating state before turning between the sides.
 このような構成により、走行に関しては最初に車速操作具を操作するだけで走行が継続され、作業装置を非作動状態にする操作のみを行うだけで良いので、簡単な操作で作業走行を継続することができる。 With such a configuration, with regard to running, the running is continued only by first operating the vehicle speed control tool, and it is only necessary to perform the operation of deactivating the work device, so that the work running can be continued with a simple operation. be able to.
 また、旋回の終了後、次の辺の作業走行開始時には前記作業操作具を作動状態に操作することを要しても良い。 Further, after the end of turning, it may be necessary to operate the work operating tool in the operating state at the start of work running on the next side.
 このような構成により、作業装置の操作を行うのみで、走行開始後の作業走行をより簡単に継続させることができる。 With such a configuration, it is possible to more easily continue the work running after the start of running only by operating the work device.
 また、各辺間の旋回時、および旋回の終了後に次の辺の作業走行を開始する際に行う前記作業操作具の状態変位を自動的に行うか否かを設定可能であっても良い。 Further, it may be possible to set whether or not to automatically perform the state displacement of the work operating tool that is performed when turning between each side and when starting work running on the next side after the end of turning.
 旋回走行は一定の動作が行われるため、比較的自動制御を行いやすい。自動制御での旋回走行が可能な構成とした場合、旋回を自動制御で行うか否かを運転者が選択できる構成とすることにより、作業状態に適した自動走行を行うことができる。 Since a certain movement is performed during turning, it is relatively easy to perform automatic control. When the configuration is such that the turning can be performed by automatic control, the driver can select whether or not to perform the turning by automatic control, so that the automatic traveling suitable for the working state can be performed.
 さらに、本発明の一実施形態に係る作業機は、自動走行により作業走行を行う作業機であって、車速を操作する車速操作具と、走行状態に応じて前記車速操作具を変位させる第1アクチュエータと、前記車速操作具と前記第1アクチュエータとを接続状態と切断状態とに切り替えるクラッチとを備え、前記車速操作具は、中立位置を介して前進位置と後進位置とに変位され、中立位置では、前記クラッチは切断状態となる。 Further, the work machine according to the embodiment of the present invention is a work machine that performs work running by automatic running, and is a vehicle speed control tool that controls the vehicle speed and a first vehicle speed control tool that displaces the vehicle speed control tool according to a running state. It includes an actuator and a clutch that switches the vehicle speed controller and the first actuator between a connected state and a disconnected state. The vehicle speed controller is displaced to a forward position and a reverse position via a neutral position, and is in a neutral position. Then, the clutch is in the disengaged state.
 車速操作具の前進位置と後進位置とが直線状に並ばない場合、前進位置と後進位置との間の変位を、1つのアクチュエータで行うことが不可能である。前進位置と後進位置との間をつなぐ中立位置においては、クラッチにより車速操作具とアクチュエータとを切断状態とすることにより、前進位置と後進位置との間の変位を行うことが可能となる。 If the forward position and the reverse position of the vehicle speed controller are not aligned in a straight line, it is impossible to perform the displacement between the forward position and the reverse position with one actuator. In the neutral position connecting the forward position and the reverse position, the vehicle speed controller and the actuator are disconnected by the clutch, so that the displacement between the forward position and the reverse position can be performed.
 また、中立位置において前記車速操作具を変位させる第2アクチュエータを備えても良い。 Further, a second actuator that displaces the vehicle speed control tool in the neutral position may be provided.
 このような構成により、車速操作具と第1アクチュエータとの接続が切断された状態で、第2アクチュエータにより、前進位置と後進位置との間で車速操作具を変位させることができ、車速操作具を2つのアクチュエータにより前進位置から後進位置にわたって自動的に変位させることが可能となる。 With such a configuration, the vehicle speed control tool can be displaced between the forward position and the reverse position by the second actuator in a state where the connection between the vehicle speed control tool and the first actuator is disconnected, and the vehicle speed control tool can be displaced. Can be automatically displaced from the forward position to the reverse position by two actuators.
 また、警告を報知する報知装置を備え、前記車速操作具が変位される際に、前記報知装置は前記車速操作具の作動状況を報知しても良い。 Further, a notification device for notifying a warning may be provided, and when the vehicle speed control tool is displaced, the notification device may notify the operating status of the vehicle speed control tool.
 このような構成により、運転者が関知せずに車速操作具が変位されたとしても、運転者はその変位を認識することができ、機体の走行状態を容易に把握することができる。 With such a configuration, even if the vehicle speed control tool is displaced without the driver's knowledge, the driver can recognize the displacement and can easily grasp the traveling state of the aircraft.
 また、方向転換に伴う後進の際には、前記車速操作具は前進位置に維持されても良い。 Further, the vehicle speed control tool may be maintained in the forward position when moving backward due to a change of direction.
 走行経路に沿った方向転換の場合は、方向転換における機体の動作は一定であり、自動走行の流れの中で行われる。そのため、この場合は運転者が機体の走行状態に関心を抱く必要性が少なく、必要以上の報知を抑制することができる。 In the case of a change of direction along the travel route, the movement of the aircraft during the change of direction is constant and is performed in the flow of automatic driving. Therefore, in this case, it is less necessary for the driver to be interested in the running state of the aircraft, and it is possible to suppress unnecessary notification.
 また、走行車速を減速させる際に用いられるブレーキを備え、前記車速操作具は、前記ブレーキの操作に応じて変位されても良い。 Further, a brake used for decelerating the traveling vehicle speed is provided, and the vehicle speed controller may be displaced according to the operation of the brake.
 このような構成により、ブレーキの操作に応じて変わる走行車速に応じて車速操作具が変位し、運転者は車速操作具の位置から走行車速をイメージすることができる。 With such a configuration, the vehicle speed controller is displaced according to the traveling vehicle speed that changes according to the operation of the brake, and the driver can imagine the traveling vehicle speed from the position of the vehicle speed controller.
 (14)本発明の作業機は、自走車と、前記自走車に設けられた運転部と、前記自走車の後方に位置する作業装置と、自動作業走行を司る制御ユニットと、前記制御ユニットが実行する制御を報知する報知装置と、が備えられ、前記報知装置は、前記運転部の前上方箇所に設けられている。 (14) The working machine of the present invention includes a self-propelled vehicle, a driving unit provided in the self-propelled vehicle, a working device located behind the self-propelled vehicle, a control unit for controlling automatic work traveling, and the above. A notification device for notifying the control executed by the control unit is provided, and the notification device is provided at a front upper portion of the operation unit.
 本構成によると、報知装置によって自動作業走行の状況を報知されるので、報知装置による報知は、運転部の前上方箇所から行われて知りやすいので、自動作業走行の状況を認識し易い。また、行われる制御に対する変更などの対応策を取りやすい。 According to this configuration, since the notification device notifies the status of the automatic work running, the notification by the notification device is performed from the front upper part of the driving unit and is easy to know, so that the status of the automatic work running can be easily recognized. In addition, it is easy to take countermeasures such as changes to the controls to be performed.
 本発明においては、前記運転部の前上方箇所に設けられ、全地球航法衛星システムの衛星からの電波を受信して前記自走車の位置情報を取得する測位ユニットが備えられ、前記報知装置は、前記測位ユニットによって上方から覆われる状態で前記測位ユニットの下方に設けられていると好適である。 In the present invention, a positioning unit is provided at a position in front of and above the driving unit to receive radio waves from satellites of the global navigation satellite system and acquire position information of the self-propelled vehicle, and the notification device is provided. It is preferable that the positioning unit is provided below the positioning unit so as to be covered from above.
 本構成によると、測位ユニットを報知装置に対する覆い部材に活用するので、報知装置の雨水や洗車水による水濡れ防止などを安価にできる。 According to this configuration, since the positioning unit is used as a covering member for the notification device, it is possible to inexpensively prevent the notification device from getting wet due to rainwater or car wash water.
 本発明においては、前記運転部の前上方箇所において、車体横幅方向に延びる状態で設けられたフレーム部と、前記フレーム部に支持され、前記測位ユニットが載置固定される載置台と、前記載置台から下向きに延ばされた支持部材と、が備えられ、前記報知装置は、前記支持部材に支持されていると好適である。 In the present invention, a frame portion provided in a state extending in the lateral width direction of the vehicle body at a front upper portion of the driving portion, a mounting table supported by the frame portion and on which the positioning unit is mounted and fixed, and the above description. A support member extending downward from the pedestal is provided, and it is preferable that the notification device is supported by the support member.
 本構成によると、支持部材を載置台を介してフレーム部に支持させるので、支持部材をフレーム部に直接に支持させるのに比べ、支持部材の構造を簡素な構造に済ませながら、報知装置を測位ユニットの下方に位置させることができる。 According to this configuration, since the support member is supported by the frame portion via the mounting table, the notification device is positioned while the structure of the support member is simplified as compared with the case where the support member is directly supported by the frame portion. It can be located below the unit.
 本発明においては、前記運転部には、運転座席が備えられており、前記報知装置の下端は、前記運転座席の上端よりも上方に位置していると好適である。 In the present invention, it is preferable that the driver's seat is provided with a driver's seat, and the lower end of the notification device is located above the upper end of the driver's seat.
 本構成によると、報知装置は、運転座席から前方を見通ことに対する障害にならず、運転し易い。 According to this configuration, the notification device does not hinder the ability to see ahead from the driver's seat and is easy to drive.
 本発明においては、前記運転部には、ステアリングホィールが備えられており、前記報知装置の下端は、前記ステアリングホィールの上端よりも上方に位置していると好適である。 In the present invention, it is preferable that the driving unit is provided with a steering wheel, and the lower end of the notification device is located above the upper end of the steering wheel.
 本構成によると、報知装置は、運転部から前方を見通ことに対する障害にならず、運転し易い。 According to this configuration, the notification device does not hinder the ability to see ahead from the driving unit and is easy to drive.
 本発明においては、前記自走車の前部側領域に、エンジン及びエンジンボンネットを有する原動部が備えられており、前記報知装置の下端は、前記エンジンボンネットの上端よりも上方に位置していると好適である。 In the present invention, a driving portion having an engine and an engine bonnet is provided in the front side region of the self-propelled vehicle, and the lower end of the notification device is located above the upper end of the engine bonnet. Is suitable.
 本構成によると、報知装置は、運転部から前方を見通ことに対する障害にならず、運転し易い。 According to this configuration, the notification device does not hinder the ability to see ahead from the driving unit and is easy to drive.
 本発明においては、前記報知装置は、ボイスアラーム発生装置であり、前記ボイスアラーム発生装置は、発音部が前記運転部に向かう状態で設けられていると好適である。 In the present invention, the notification device is a voice alarm generator, and it is preferable that the voice alarm generator is provided with the sounding unit facing the driving unit.
 本構成によると、報知される内容を認識しやすい。 According to this configuration, it is easy to recognize the content to be notified.
 (15)上記目的を達成するために、本発明の一実施形態に係る作業機は、自動走行により作業走行を行う作業機であって、自動走行は、運転者が搭乗することを要する有人自動走行と、運転者が搭乗することが不要である無人自動走行とを有し、運転者が着座する運転座席と、運転者が前記運転座席に着座していることを検知する着座センサとを備え、運転者が前記運転座席に着座していることを前記着座センサが検知していることが、有人自動走行の開始条件である。 (15) In order to achieve the above object, the working machine according to the embodiment of the present invention is a working machine that performs work running by automatic running, and the automatic running is a manned automatic driving that requires the driver to board. It has driving and unmanned automatic driving that does not require the driver to board, and is equipped with a driver's seat in which the driver is seated and a seating sensor that detects that the driver is seated in the driver's seat. It is a condition for starting manned automatic driving that the seating sensor detects that the driver is seated in the driver's seat.
 有人自動走行は、運転者が搭乗していることが必須である。機体に運転者が搭乗している場合、運転者は運転座席に着座していることが適切である。上記構成により、運転者が運転座席に着座している場合にのみ有人自動走行が開始されるため、不適切な状態で有人自動走行を行うことが抑制される。 For manned autonomous driving, it is essential that the driver is on board. If the driver is on board the aircraft, it is appropriate that the driver is seated in the driver's seat. With the above configuration, manned automatic driving is started only when the driver is seated in the driver's seat, so that manned automatic driving is suppressed in an inappropriate state.
 また、警告を報知する報知装置を備え、運転者が前記運転座席に着座していることを前記着座センサが検知しない場合、前記報知装置によって警告が報知されても良い。 Further, if the seating sensor does not detect that the driver is seated in the driver's seat, the warning device may notify the warning.
 このような構成により、運転者が搭乗しているにもかかわらず、運転者が運転座席に着座していない場合、運転者に着座を促すことができ、不適切な状態で作業走行が行われることが抑制される。 With such a configuration, when the driver is not seated in the driver's seat even though the driver is on board, the driver can be prompted to sit down, and the work driving is performed in an inappropriate state. Is suppressed.
 また、警告を報知する報知装置を備え、無人自動走行において、運転者が前記運転座席に着座していることを前記着座センサが検知した後、運転者が前記運転座席に着座していることを前記着座センサが検知しなくなった場合、前記報知装置によって警告が報知され、その後、運転者が前記運転座席に着座していることを前記着座センサが検知するまで無人自動走行での作業走行が開始されない構成としても良い。 Further, it is equipped with a notification device for notifying a warning, and in unmanned automatic driving, after the seating sensor detects that the driver is seated in the driver's seat, the driver is seated in the driver's seat. When the seating sensor no longer detects, the warning device notifies the warning, and then the unmanned automatic driving starts until the seating sensor detects that the driver is seated in the driver's seat. The configuration may not be performed.
 無人自動走行では運転者が搭乗することを要さないが、運転者が搭乗することが妨げられるものではない。無人自動走行であっても、運転者が搭乗する場合は、運転者が運転座席に着座することが適切である。上記構成によると、着座センサにより運転者が搭乗(着座)していることが検知された後、運転者が着座していることを着座センサが検知しなくなると、運転者が搭乗しているにもかかわらず着座していない状態であることを推認することができる。そして、そのような場合には、作業走行を開始しない構成とすることにより、運転者が着座した状態で適切な自動走行を行うことができるようになる。 Unmanned autonomous driving does not require the driver to board, but it does not prevent the driver from boarding. Even in unmanned autonomous driving, it is appropriate for the driver to sit in the driver's seat when the driver is on board. According to the above configuration, after the seating sensor detects that the driver is boarding (seating), when the seating sensor does not detect that the driver is seated, the driver is boarding. Nevertheless, it can be inferred that he is not seated. Then, in such a case, by configuring the configuration so that the work driving is not started, it becomes possible to perform appropriate automatic driving while the driver is seated.
 また、情報を表示する情報端末を備え、運転者が前記運転座席に着座していることを前記着座センサが検知しない場合、前記情報端末に警告が表示されても良い。 Further, if an information terminal for displaying information is provided and the seating sensor does not detect that the driver is seated in the driver's seat, a warning may be displayed on the information terminal.
 このような構成により、運転者が搭乗している場合で、運転者が着座していない場合に、運転者に着座を促すことができ、不適切な状態で作業走行が行われることが抑制される。 With such a configuration, when the driver is on board and the driver is not seated, the driver can be urged to sit down, and the work running in an inappropriate state is suppressed. NS.
 また、警告を報知する報知装置と、情報を表示する情報端末とを備え、旋回走行の開始時および後進走行の開始時に、運転者が前記運転座席に着座していることを前記着座センサが検知しない場合、前記報知装置によって警告が報知されると共に、前記情報端末に警告が表示されても良い。 Further, the seating sensor is provided with a notification device for notifying a warning and an information terminal for displaying information, and the seating sensor detects that the driver is seated in the driver's seat at the start of turning and reverse driving. If not, the warning device may notify the warning and the information terminal may display the warning.
 旋回走行や後進走行に切り替わる際には、走行方向が切り替わることとなり、搭乗している運転者が着座していることが適切である。上記構成により、旋回走行や後進走行に切り替わる際に、搭乗している運転者が着座していない場合には運転者に着座を促すことができ、不適切な状態で作業走行が行われることが抑制される。 When switching to turning or reverse driving, the driving direction will be switched, and it is appropriate that the driver on board is seated. With the above configuration, when switching to turning or reverse driving, if the driver on board is not seated, the driver can be urged to sit down, and the work driving can be performed in an inappropriate state. It is suppressed.
 また、旋回走行の開始時および後進走行の開始時に、運転者が前記運転座席に着座していることを前記着座センサが検知しない場合、走行車速を減速させても良い。 Further, if the seating sensor does not detect that the driver is seated in the driver's seat at the start of turning or reverse driving, the traveling vehicle speed may be reduced.
 このような構成により、運転者が着座していなくても、不適切な状況が緩和され、不適切な状態で作業走行が行われることが抑制される。 With such a configuration, even if the driver is not seated, the inappropriate situation is alleviated and the work running in the inappropriate state is suppressed.
 また、前記着座センサは、前記運転座席に設けられる圧力センサであっても良い。 Further, the seating sensor may be a pressure sensor provided in the driver's seat.
 このような構成により、効率的に運転者が着座していることを検知することができる。 With such a configuration, it is possible to efficiently detect that the driver is seated.
 また、前記運転座席は回動可能な構成であり、前記着座センサの配線は前記運転座席の回動軸に沿って配設されても良い。 Further, the driver's seat has a rotatable configuration, and the wiring of the seating sensor may be arranged along the rotation axis of the driver's seat.
 圧力センサ等の着座センサは、電源や信号等の配線が接続される。運転座席が回動する場合、このような配線が運転座席の回動に伴って破損する場合がある。上記構成により、配線の破損を抑制することができる。 Wiring such as power supply and signal is connected to the seating sensor such as pressure sensor. When the driver's seat rotates, such wiring may be damaged as the driver's seat rotates. With the above configuration, damage to the wiring can be suppressed.
 (16)本発明の作業機は、圃場で作業走行する機体と、航法衛星の測位信号に基づいて前記機体の位置情報を取得する測位ユニットと、圃場に農用資材を供給する供給装置と、前記機体の走行中に前記位置情報に基づいて前記供給装置に対する制御が可能な制御ユニットと、が備えられ、前記制御ユニットは、予め設定された開始位置から作業走行を開始する場合に前記作業走行の開始前に前記供給装置を動作させ、予め設定された終了位置で作業走行を終了する場合に前記作業走行の終了前に前記供給装置を停止させるように構成されていることを特徴とする。 (16) The working machine of the present invention includes a machine that works and travels in a field, a positioning unit that acquires position information of the machine based on a positioning signal of a navigation satellite, a supply device that supplies agricultural materials to the field, and the above. A control unit capable of controlling the supply device based on the position information while the machine is running is provided, and the control unit is used when the work running is started from a preset start position. It is characterized in that the supply device is operated before the start, and when the work run is finished at a preset end position, the supply device is stopped before the end of the work run.
 従来技術では、制御ユニットから供給装置の動作開始や停止の指示が出力されてから、実際に農用資材の圃場に対する供給が開始または停止するのにタイムラグが生じがちである。供給装置が圃場に農用資材を供給する際に、開始されるべき位置で農用資材の供給が精度よく開始し、終了されるべき位置で農用資材の供給が精度よく停止すると、精密農業を実現する上で好適である。本発明によると、位置情報に基づいて圃場に開始位置と終了位置とが設定される。開始位置は、農用資材の供給が開始されるべき位置であって、終了位置は、農用資材の供給が終了されるべき位置である。そして、制御ユニットは、作業走行の開始前に供給装置を動作させ、作業走行の終了前に供給装置を停止させる。このため、供給装置が動作開始してから実際に農用資材の圃場に対する供給が開始するまでにタイムラグが生じる場合であっても、開始位置で農用資材の供給が精度よく開始する。また、供給装置が停止してから実際に農用資材の圃場に対する供給が停止するまでにタイムラグが生じる場合であっても、終了位置で農用資材の供給が精度よく停止する。また、本発明では、制御ユニットが供給装置の動作開始と停止との夫々のタイミングの調整を行う構成であるため、供給装置における搬送方向末端部分に特殊な弁機構等を取り付ける必要がなく、当該特殊な弁機構等を取り付ける構成と比較してコスト面で有利である。これにより、自動作業走行において利便性がさらに向上する。 In the prior art, there tends to be a time lag between actually starting or stopping the supply of agricultural materials to the field after the control unit outputs an instruction to start or stop the operation of the supply device. When the supply device supplies agricultural materials to the field, precision agriculture is realized when the supply of agricultural materials starts accurately at the position where it should be started and the supply of agricultural materials stops accurately at the position where it should end. Suitable for the above. According to the present invention, a start position and an end position are set in the field based on the position information. The start position is the position where the supply of agricultural materials should be started, and the end position is the position where the supply of agricultural materials should be ended. Then, the control unit operates the supply device before the start of the work run and stops the supply device before the end of the work run. Therefore, even if there is a time lag between the start of operation of the supply device and the actual start of supply of agricultural materials to the field, the supply of agricultural materials starts accurately at the start position. Further, even if there is a time lag between the stop of the supply device and the actual stop of the supply of the agricultural material to the field, the supply of the agricultural material is stopped accurately at the end position. Further, in the present invention, since the control unit adjusts the timings of starting and stopping the operation of the supply device, it is not necessary to attach a special valve mechanism or the like to the end portion of the supply device in the transport direction. It is advantageous in terms of cost as compared with a configuration in which a special valve mechanism or the like is attached. This further improves convenience in automatic work driving.
 本発明において、前記供給装置は、農用資材を貯留する貯留部と、前記貯留部から農用資材を繰り出す繰出機構と、前記繰出機構によって繰出された農用資材を搬送するとともに農用資材を圃場に排出するホースと、を有し、前記制御ユニットは、前記ホースに沿って搬送される農用資材が前記開始位置で排出され始めるように前記供給装置を動作させ、前記ホースに沿って搬送される農用資材が前記終了位置で排出され尽くすように前記供給装置を停止させるように構成されていると好適である。 In the present invention, the supply device conveys a storage unit for storing agricultural materials, a feeding mechanism for feeding agricultural materials from the storage unit, and agricultural materials fed by the feeding mechanism, and discharges agricultural materials to a field. The control unit has a hose, and the control unit operates the supply device so that the agricultural material conveyed along the hose starts to be discharged at the starting position, and the agricultural material conveyed along the hose is operated. It is preferable that the supply device is configured to stop so as to be exhausted at the end position.
 供給装置の動作が開始または停止してから、実際に農用資材の圃場に対する供給が開始または停止するまでのタイムラグは、ホースの長さに比例して長くなる。本構成であれば、開始位置でホースから農用資材が排出され始め、終了位置でホースからの農用資材が排出され尽くすため、供給装置は農用資材を圃場へ精度よく供給可能となる。 The time lag from the start or stop of the operation of the supply device to the actual start or stop of the supply of agricultural materials to the field increases in proportion to the length of the hose. With this configuration, the agricultural material starts to be discharged from the hose at the start position, and the agricultural material from the hose is exhausted at the end position, so that the supply device can accurately supply the agricultural material to the field.
 本発明において、前記機体の速度を検出可能な速度検出部が備えられ、前記制御ユニットは、前記速度に基づいて前記供給装置を動作または停止させるタイミングを変更可能に構成されていると好適である。 In the present invention, it is preferable that a speed detection unit capable of detecting the speed of the machine body is provided, and the control unit is configured to be able to change the timing of operating or stopping the supply device based on the speed. ..
 本構成であれば、制御ユニットが供給装置を動作または停止させるタイミングを速度に応じて可変制御可能に構成されているため、供給装置が機体の速度に応じて高速または低速で動作する場合であっても、制御ユニットは柔軟に供給装置を制御できる。 In this configuration, the timing at which the control unit operates or stops the supply device can be variably controlled according to the speed, so that the supply device may operate at high speed or low speed according to the speed of the aircraft. However, the control unit can flexibly control the supply device.
 本発明において、前記制御ユニットは、前記速度が予め設定された設定速度よりも速い場合に、前記供給装置を動作または停止させる前に前記機体を減速させると好適である。 In the present invention, it is preferable that the control unit decelerates the airframe before operating or stopping the supply device when the speed is faster than a preset set speed.
 機体の速度が速すぎると、農用資材の供給が開始位置で精度よく開始せず、農用資材の供給が終了位置で精度よく終了しない虞がある。本構成であれば、制御ユニットは供給装置の動作前または停止前に機体を減速させるため、開始位置で農用資材の供給が精度よく開始し、終了位置で農用資材の供給が精度よく終了する。 If the speed of the aircraft is too fast, the supply of agricultural materials may not start accurately at the start position, and the supply of agricultural materials may not end accurately at the end position. In this configuration, since the control unit decelerates the airframe before the supply device operates or stops, the supply of agricultural materials starts accurately at the start position and ends accurately at the end position.
 本発明において、前記制御ユニットは、前記速度が予め設定された設定速度よりも遅い場合に、前記供給装置を動作または停止させる前に前記機体を増速させると好適である。 In the present invention, it is preferable that the control unit accelerates the airframe before operating or stopping the supply device when the speed is slower than a preset set speed.
 本構成であれば、制御ユニットは、機体が予め設定された設定速度で走行した状態で、供給装置に対する動作開始と動作停止との夫々の指示を出力できるため、供給装置は圃場に対して農用資材を一層精度よく供給可能となる。 With this configuration, the control unit can output instructions to start and stop the operation of the supply device while the aircraft is running at a preset speed, so the supply device can be used for farming in the field. Materials can be supplied more accurately.
 本発明において、前記制御ユニットは、前記速度が予め設定された設定速度よりも遅い場合に、前記供給装置の動作または停止を開始するまで前記機体を前記速度のまま走行させると好適である。 In the present invention, when the speed is slower than the preset set speed, it is preferable that the control unit runs the machine at the speed until the operation or stop of the supply device is started.
 本構成であれば、制御ユニットは、機体の速度を保持したまま供給装置に対する動作開始と動作停止との夫々の指示を出力できるため、供給装置は圃場に対して農用資材を一層精度よく供給可能となる。 With this configuration, the control unit can output instructions to start and stop the operation of the supply device while maintaining the speed of the aircraft, so the supply device can supply agricultural materials to the field more accurately. It becomes.
 本発明において、前記制御ユニットは、前記位置情報に基づいて、前記機体が前記開始位置に到達するまでの時間である第1時間と、前記機体が前記終了位置に到達するまでの時間である第2時間と、を算出するとともに、前記第1時間が予め設定された閾値以下である場合に前記供給装置を動作させ、前記第2時間が予め設定された閾値以下である場合に前記供給装置を停止させるように構成されていると好適である。 In the present invention, the control unit has a first time, which is the time until the airframe reaches the start position, and a time, which is the time until the airframe reaches the end position, based on the position information. 2 hours is calculated, and when the first time is equal to or less than a preset threshold value, the supply device is operated, and when the second time is equal to or less than a preset threshold value, the supply device is operated. It is preferable that it is configured to stop.
 本構成によると、機体が開始位置に到達するまでの時間として第1時間が算出され、機体が終了位置に到達するまでの時間として第2時間が算出される。このことから、制御ユニットは、供給装置の動作を開始させるタイミングを第1時間で管理でき、供給装置の動作を停止させるタイミングを第2時間で管理できるようになる。これにより、供給装置は圃場に対して農用資材を一層精度よく供給可能となる。 According to this configuration, the first time is calculated as the time until the aircraft reaches the start position, and the second time is calculated as the time until the aircraft reaches the end position. From this, the control unit can manage the timing of starting the operation of the supply device in the first time and the timing of stopping the operation of the supply device in the second time. As a result, the supply device can supply agricultural materials to the field with higher accuracy.
 本発明において、前記制御ユニットは、前記位置情報に基づいて、前記機体が前記開始位置に到達するまでの距離である第1距離と、前記機体が前記終了位置に到達するまでの距離である第2距離と、を算出するとともに、前記第1距離が予め設定された閾値以下である場合に前記供給装置を動作させ、前記第2距離が予め設定された閾値以下である場合に前記供給装置を停止させるように構成されていると好適である。 In the present invention, the control unit has a first distance, which is the distance until the aircraft reaches the start position, and a distance, which is the distance until the aircraft reaches the end position, based on the position information. The two distances are calculated, and when the first distance is equal to or less than a preset threshold value, the supply device is operated, and when the second distance is equal to or less than a preset threshold value, the supply device is operated. It is preferable that it is configured to stop.
 本構成によると、機体が開始位置に到達するまでの距離として第1距離が算出され、機体が終了位置に到達するまでの距離として第2距離が算出される。このことから、制御ユニットは、供給装置の動作を開始させる位置を第1距離で管理でき、供給装置の動作を停止させる位置を第2距離で管理できるようになる。これにより、供給装置は圃場に対して農用資材を一層精度よく供給可能となる。 According to this configuration, the first distance is calculated as the distance until the aircraft reaches the start position, and the second distance is calculated as the distance until the aircraft reaches the end position. From this, the control unit can manage the position where the operation of the supply device is started at the first distance, and can manage the position where the operation of the supply device is stopped at the second distance. As a result, the supply device can supply agricultural materials to the field with higher accuracy.
 本発明において、圃場に対して種苗を条ごとに植播可能な作業装置が備えられ、前記制御ユニットは、前記作業装置が種苗を植播する条と連動して、前記供給装置を条ごとに動作または停止させるように構成されていると好適である。 In the present invention, a working device capable of planting seedlings for each row in a field is provided, and the control unit interlocks with the row in which the working device sows seedlings, and the supply device is provided for each row. It is preferable that it is configured to operate or stop.
 本構成であれば、作業装置が種苗を植播する条と連動して、供給装置が条ごとに動作可能な構成であるため、供給装置は、実際に種苗が植播されている位置に応じて農用資材を精度よく供給できる。なお、本発明において、『種苗』は、発芽前の種子と発芽後の苗とを含むものである。また、『植播』は、圃場に対して発芽前の種子を種蒔きしたり、圃場に対して発芽後の苗を移植したりする作業の総称を意味する。 In this configuration, the work device is linked to the row for planting seedlings, and the supply device can operate for each row. Therefore, the supply device depends on the position where the seedlings are actually planted. Agricultural materials can be supplied accurately. In the present invention, the "seedling" includes seeds before germination and seedlings after germination. In addition, "planting" is a general term for the work of sowing seeds before germination in a field and transplanting seedlings after germination to a field.
 (17)本発明の特徴は、自動走行可能な作業機であって、水田における作業を行う作業装置と、エンジンからの動力伝達を入切することによって前記作業装置の駆動状態を切り替える作業クラッチと、前記作業クラッチの入切状態を制御するクラッチ制御部と、車速を制御する車速制御部と、を備え、前記クラッチ制御部が、前記作業クラッチの入切状態を切り替える制御である切替制御を実行する場合、前記作業クラッチの入切状態が切り替わる前に、前記車速制御部は、車速を低下させる制御である減速制御を実行することにある。 (17) The feature of the present invention is a work machine capable of automatically traveling, a work device for performing work in a paddy field, and a work clutch for switching the drive state of the work device by turning on / off the power transmission from the engine. A clutch control unit that controls the on / off state of the work clutch and a vehicle speed control unit that controls the vehicle speed are provided, and the clutch control unit executes switching control that is a control for switching the on / off state of the work clutch. In this case, the vehicle speed control unit executes deceleration control, which is a control for lowering the vehicle speed, before the on / off state of the work clutch is switched.
 本発明であれば、車速が比較的低速である状態で、作業クラッチの入切状態が切り替わることとなる。そのため、予め決められた位置で作業クラッチの入切状態が切り替わるように作業クラッチが制御される場合、作業クラッチの入切状態が切り替わる時点での実際の機体の位置が、予め決められた位置からずれにくい。 According to the present invention, the on / off state of the work clutch is switched in a state where the vehicle speed is relatively low. Therefore, when the work clutch is controlled so that the on / off state of the work clutch is switched at a predetermined position, the actual position of the machine at the time when the on / off state of the work clutch is switched is from the predetermined position. Hard to slip.
 従って、本発明であれば、作業装置の駆動状態の切り替わる位置の精度が良好となる。
これにより、作業機の自動作業走行における、さらなる利便性の向上を実現できる。
Therefore, according to the present invention, the accuracy of the position where the driving state of the working device is switched is good.
As a result, it is possible to further improve the convenience in the automatic work running of the work machine.
 さらに、本発明において、前記作業装置は、予め決められた条方向に沿って苗植付作業または播種作業を行う植播系作業装置であり、前記作業クラッチは、前記作業装置による作業開始及び作業停止を所定条数毎に選択可能に構成された各条クラッチであると好適である。 Further, in the present invention, the work device is a planting system work device that performs seedling planting work or sowing work along a predetermined row direction, and the work clutch is a work start and work by the work device. It is preferable that the clutch is configured so that the stop can be selected for each predetermined number of rows.
 この構成によれば、作業機が走行しながら苗植付作業または播種作業を行う際、苗植付の条数または播種の条数の切り替わる位置の精度が良好となる。これにより、例えば、水田の形状が比較的複雑であっても、水田の形状に合わせて苗植付または播種を行いやすい。その結果、水田の全体を効率良く利用することが可能となる。 According to this configuration, when the seedling planting work or the sowing work is performed while the working machine is running, the accuracy of the switching position of the number of seedling planting rows or the seeding row number is improved. As a result, for example, even if the shape of the paddy field is relatively complicated, it is easy to plant or sow seedlings according to the shape of the paddy field. As a result, the entire paddy field can be used efficiently.
 さらに、本発明において、前記作業装置は、予め決められた条方向に沿って苗植付作業または播種作業を行う植播系作業装置であり、前記作業クラッチが入状態である場合には前記作業装置が駆動し、前記作業クラッチが切状態である場合には前記作業装置が停止すると好適である。 Further, in the present invention, the work device is a planting system work device that performs seedling planting work or sowing work along a predetermined row direction, and when the work clutch is in the engaged state, the work. When the device is driven and the work clutch is in the disengaged state, it is preferable that the work device is stopped.
 この構成によれば、作業機が走行しながら苗植付作業または播種作業を行う際、苗植付または播種の開始位置及び終了位置の精度が良好となる。 According to this configuration, when the seedling planting work or sowing work is performed while the working machine is running, the accuracy of the seedling planting or sowing start position and the sowing end position becomes good.
 さらに、本発明において、前記クラッチ制御部によって前記切替制御が実行される時点における機体位置である切替地点を機体が通過した後、前記車速制御部は、車速を上昇させる制御である増速制御を実行すると好適である。 Further, in the present invention, after the airframe has passed the switching point which is the position of the airframe at the time when the switching control is executed by the clutch control unit, the vehicle speed control unit performs speed-up control which is a control for increasing the vehicle speed. It is suitable to carry out.
 この構成によれば、切替地点を機体が通過した後に増速制御が実行されない場合に比べて、作業を迅速に進めやすい。その結果、作業装置の駆動状態の切り替わる位置の精度が良好でありながら、作業効率の良好な作業機を実現できる。 According to this configuration, it is easier to proceed with the work more quickly than when the speed increase control is not executed after the aircraft has passed the switching point. As a result, it is possible to realize a work machine having good work efficiency while having good accuracy of the position where the drive state of the work device is switched.
 さらに、本発明において、前記機体の走行経路上に、前記切替地点である第1地点と、前記切替地点である第2地点と、が位置しており、且つ、前記機体が前記第1地点を通過した後で前記第2地点を通過することが予定されており、且つ、前記第1地点と前記第2地点との間の距離が所定の基準距離以下である場合、前記車速制御部は、前記機体が前記第1地点を通過してから前記第2地点に到達するまでの間、前記増速制御を実行しないと好適である。 Further, in the present invention, the first point which is the switching point and the second point which is the switching point are located on the traveling path of the aircraft, and the aircraft is located at the first point. When it is planned to pass through the second point after passing and the distance between the first point and the second point is equal to or less than a predetermined reference distance, the vehicle speed control unit may perform the vehicle speed control unit. It is preferable that the speed-up control is not executed from the time when the aircraft passes through the first point until it reaches the second point.
 この構成によれば、減速制御と増速制御とが短時間で繰り返し切り替わる事態を回避しやすい。これにより、作業機の走行がスムーズ且つ安定的となる。 According to this configuration, it is easy to avoid a situation in which deceleration control and speed increase control are repeatedly switched in a short time. As a result, the running of the working machine becomes smooth and stable.
 本発明の別の特徴は、自動走行可能な作業機であって、苗植付作業を行う苗植付装置と、エンジンからの動力伝達を入切することによって前記苗植付装置の駆動状態を切り替える植付クラッチと、前記植付クラッチの入切状態を制御するクラッチ制御部と、前記苗植付装置の昇降を制御する昇降制御部と、を備え、前記植付クラッチが切状態から入状態に切り替えられることによって前記苗植付装置の駆動が開始し、且つ、前記植付クラッチが入状態から切状態に切り替えられることによって前記苗植付装置の駆動が停止するように構成されており、前記昇降制御部は、前記苗植付装置の駆動が開始される際に前記苗植付装置を下降させると共に、前記苗植付装置の駆動が停止される際に前記苗植付装置を上昇させるように構成されており、前記昇降制御部は、前記クラッチ制御部によって前記植付クラッチが入状態から切状態に切り替えられた時点における機体位置から機体が所定距離を走行する間、前記苗植付装置を下降した状態で維持することにある。 Another feature of the present invention is a working machine capable of automatically traveling, which controls the driving state of the seedling planting device for performing seedling planting work and the seedling planting device by turning on / off the power transmission from the engine. A planting clutch for switching, a clutch control unit for controlling the on / off state of the planting clutch, and an elevating control unit for controlling the elevating / lowering of the seedling planting device are provided, and the planting clutch is in the on / off state from the off state. The driving of the seedling planting device is started by switching to, and the driving of the seedling planting device is stopped by switching the planting clutch from the on state to the off state. The elevating control unit lowers the seedling planting device when the driving of the seedling planting device is started, and raises the seedling planting device when the driving of the seedling planting device is stopped. The elevating control unit is configured to plant seedlings while the aircraft travels a predetermined distance from the aircraft position at the time when the planting clutch is switched from the on state to the off state by the clutch control unit. The purpose is to keep the device down.
 植付クラッチが入状態から切状態に切り替えられた後、すぐに苗植付装置が上昇すると、植え付け直前の状態であった苗が、植え付けられることなく苗植付装置から脱落しがちである。これにより、植付用の苗が無駄に消費されてしまう。 If the seedling planting device rises immediately after the planting clutch is switched from the on state to the off state, the seedlings that were in the state immediately before planting tend to fall out of the seedling planting device without being planted. As a result, seedlings for planting are wasted.
 ここで、本発明であれば、植付クラッチが入状態から切状態に切り替えられた後、機体が所定距離を走行する間、苗植付装置は下降した状態で維持される。そのため、上述のように、植え付け直前の状態であった苗が植え付けられることなく苗植付装置から脱落してしまう事態を回避しやすい。従って、植付用の苗が無駄に消費されてしまう事態を回避しやすい。これにより、作業機の自動作業走行における、さらなる利便性の向上を実現できる。 Here, in the present invention, after the planting clutch is switched from the on state to the off state, the seedling planting device is maintained in the lowered state while the aircraft travels a predetermined distance. Therefore, as described above, it is easy to avoid a situation in which the seedlings that were in the state immediately before planting are not planted and fall off from the seedling planting device. Therefore, it is easy to avoid a situation in which seedlings for planting are wasted. As a result, it is possible to further improve the convenience in the automatic work running of the work machine.
 さらに、本発明において、前記所定距離は、機体の走行方向に沿った苗の植付間隔以上であると好適である。 Further, in the present invention, it is preferable that the predetermined distance is equal to or greater than the seedling planting interval along the traveling direction of the machine body.
 一般に、苗植付装置は、ロータリ式の植付機構を備えている。そして、この植付機構は、駆動停止する際、所定の停止姿勢で停止するように構成されている。そのため、植付機構が駆動しているときに植付クラッチが入状態から切状態に切り替えられた場合、植付クラッチが入状態から切状態に切り替えられた時点から植付機構が所定の停止姿勢となるまでの間、植付機構は駆動し続けることとなる。 Generally, the seedling planting device is equipped with a rotary planting mechanism. The planting mechanism is configured to stop in a predetermined stop posture when the drive is stopped. Therefore, when the planting clutch is switched from the on state to the off state while the planting mechanism is being driven, the planting mechanism is in a predetermined stop posture from the time when the planting clutch is switched from the on state to the off state. Until, the planting mechanism will continue to drive.
 そして、植付クラッチが入状態から切状態に切り替えられた時点から植付機構が所定の停止姿勢となるまでの時間の長さは、植付クラッチが入状態から切状態に切り替えられた時点における植付機構の姿勢によって異なる。この時間の長さは、最も長い場合で、株間に相当する距離を機体が走行するのに要する時間の長さに等しい。尚、株間とは、機体の走行方向に沿った苗の植付間隔である。 The length of time from the time when the planting clutch is switched from the on state to the off state until the planting mechanism is in the predetermined stop posture is the time when the planting clutch is switched from the on state to the off state. It depends on the posture of the planting mechanism. The length of this time, in the longest case, is equal to the length of time it takes for the aircraft to travel the equivalent distance between the stocks. The interval between stocks is the planting interval of seedlings along the traveling direction of the aircraft.
 ここで、上記の構成によれば、植付クラッチが入状態から切状態に切り替えられた時点から、株間に相当する距離を機体が走行し終えるまでの間、苗植付装置は下降した状態で維持される。そして、この間に、植付機構は所定の停止姿勢となる。これにより、苗植付装置が下降した状態で維持されている間に、植付機構が確実に停止しやすい。 Here, according to the above configuration, the seedling planting device is in a lowered state from the time when the planting clutch is switched from the on state to the off state until the aircraft finishes traveling a distance corresponding to the distance between the plants. Be maintained. During this period, the planting mechanism is in a predetermined stop posture. This makes it easy for the planting mechanism to reliably stop while the seedling planting device is maintained in a lowered state.
 従って、上記の構成によれば、植え付け直前の状態であった苗が植え付けられることなく苗植付装置から脱落してしまう事態を確実に回避しやすい。 Therefore, according to the above configuration, it is easy to surely avoid the situation where the seedlings that were in the state immediately before planting are not planted and fall off from the seedling planting device.
 (18)本発明の特徴は、エンジンからの動力によって駆動される走行装置と、角度変更可能な斜板を有し、前記エンジンからの動力を変速して前記走行装置側に伝達する油圧式の無段変速装置と、前記走行装置を制動するブレーキ装置と、初期位置から最大踏み込み位置まで踏み込み可能に構成され、前記ブレーキ装置を制動操作するブレーキペダルと、前記ブレーキペダルが踏み込まれたことを検出するブレーキ検出部と、前記無段変速装置を制御する制御ユニットと、を備え、前記制御ユニットは、前記ブレーキペダルが踏み込まれたことが前記ブレーキ検出部によって検出されると、前記ブレーキペダルが前記最大踏み込み位置に達するよりも手前の段階で前記斜板を中立位置に戻し始めることにある。 (18) The feature of the present invention is a hydraulic type traveling device driven by power from the engine and a swash plate whose angle can be changed, and the power from the engine is changed and transmitted to the traveling device side. A stepless speed changer, a brake device that brakes the traveling device, a brake pedal that is configured to be able to depress from an initial position to a maximum depressing position, and a brake pedal that brakes the brake device, and detects that the brake pedal is depressed. The brake detection unit includes a brake detection unit for controlling the stepless speed change device, and the control unit detects that the brake pedal has been depressed by the brake detection unit. The purpose is to start returning the swash plate to the neutral position before reaching the maximum stepping position.
 本特徴構成によれば、ブレーキペダルが踏み込まれると、ブレーキペダルが最大踏み込み位置に達するよりも手前の段階で斜板が中立位置に戻り始めることになる。これにより、ブレーキペダルが踏み込まれた際にブレーキ等の各部にかかる負荷を低減することができる。すなわち、本特徴構成によれば、作業機において、自動作業走行における、さらなる利便性の向上を実現することができる。 According to this feature configuration, when the brake pedal is depressed, the swash plate begins to return to the neutral position before the brake pedal reaches the maximum depression position. As a result, it is possible to reduce the load applied to each part such as the brake when the brake pedal is depressed. That is, according to this feature configuration, it is possible to further improve the convenience in automatic work running in the work machine.
 さらに、本発明において、前記ブレーキ検出部は、前記ブレーキペダルが前記初期位置と前記最大踏み込み位置との間に位置する途中位置まで踏み込まれたことを検出する踏み込みセンサを有し、前記制御ユニットは、前記ブレーキペダルが前記途中位置まで踏み込まれたことが前記踏み込みセンサによって検出されると、前記斜板を中立位置に戻し始めると好適である。 Further, in the present invention, the brake detection unit has a depression sensor that detects that the brake pedal has been depressed to an intermediate position located between the initial position and the maximum depression position, and the control unit has a depression sensor. When the depression sensor detects that the brake pedal has been depressed to the intermediate position, it is preferable to start returning the swash plate to the neutral position.
 本特徴構成によれば、ブレーキペダルが途中位置まで踏み込まれると、斜板が中立位置に戻り始めることになる。 According to this feature configuration, when the brake pedal is depressed halfway, the swash plate will start to return to the neutral position.
 ここで、ブレーキペダルが初期位置から踏み込まれると、斜板が中立位置に戻り始める構成の場合、機体の振動によってブレーキペダルが初期位置から踏み込み側に僅かに変動すると、その度毎に斜板が中立位置に戻り始めることになって、作業効率が低下してしまう虞がある。 Here, in the case of a configuration in which the swash plate starts to return to the neutral position when the brake pedal is depressed from the initial position, if the brake pedal slightly fluctuates from the initial position to the depressed side due to the vibration of the aircraft, the swash plate will move each time. There is a risk that the work efficiency will decrease as it begins to return to the neutral position.
 この点、本特徴構成によれば、ブレーキペダルが途中位置まで踏み込まれなければ、斜板が中立位置に戻り始めることがないため、ブレーキペダルの誤検出に起因する斜板の誤作動を防止しながら、ブレーキペダルが途中位置以上まで踏み込まれた際にブレーキ等の各部にかかる負荷を低減することができる。 In this regard, according to this feature configuration, the swash plate does not start to return to the neutral position unless the brake pedal is depressed halfway, thus preventing malfunction of the swash plate due to erroneous detection of the brake pedal. However, when the brake pedal is depressed to a position higher than the middle position, the load applied to each part such as the brake can be reduced.
 さらに、本発明において、前記ブレーキ検出部は、前記ブレーキペダルが前記最大踏み込み位置まで踏み込まれたことを検出する踏み終わりセンサを有し、前記制御ユニットは、前記ブレーキペダルが前記途中位置まで踏み込まれたことが前記踏み込みセンサによって検出されると、前記斜板を中立位置に戻し始め、前記ブレーキペダルが前記最大踏み込み位置まで踏み込まれたことが前記踏み終わりセンサによって検出されると、前記斜板を中立位置に戻し終えると好適である。 Further, in the present invention, the brake detection unit has a stepping end sensor that detects that the brake pedal has been depressed to the maximum depression position, and the control unit has the brake pedal depressed to the intermediate position. When the depression sensor detects that the brake pedal has been depressed to the maximum depression position, the swash plate begins to be returned to the neutral position, and when the depression end sensor detects that the brake pedal has been depressed to the maximum depression position, the swash plate is pressed. It is preferable to finish returning to the neutral position.
 本特徴構成によれば、ブレーキペダルが途中位置から最大踏み込み位置まで踏み込まれる間で斜板が中立位置に戻ることになる。これにより、ブレーキペダルの誤検出に起因する斜板の誤作動を防止しながら、ブレーキペダルが最大踏み込み位置まで踏み込まれた際にブレーキ等の各部にかかる負荷を低減することができる。 According to this feature configuration, the swash plate returns to the neutral position while the brake pedal is depressed from the middle position to the maximum depression position. As a result, it is possible to reduce the load applied to each part such as the brake when the brake pedal is depressed to the maximum depression position while preventing malfunction of the swash plate due to erroneous detection of the brake pedal.
 さらに、本発明において、前記ブレーキ検出部は、前記ブレーキペダルが前記初期位置から踏み込まれたことを検出する踏み始めセンサと、前記ブレーキペダルが前記初期位置と前記最大踏み込み位置との間に位置する途中位置まで踏み込まれたことを検出する踏み込みセンサと、を有し、前記制御ユニットは、前記ブレーキペダルが前記初期位置から踏み込まれたことが前記踏み始めセンサによって検出されると、前記斜板を中立位置に戻し始め、前記ブレーキペダルが前記途中位置まで踏み込まれたことが前記踏み込みセンサによって検出されると、前記斜板を中立位置に戻し終えると好適である。 Further, in the present invention, the brake detection unit is located between the stepping start sensor that detects that the brake pedal is depressed from the initial position and the brake pedal between the initial position and the maximum depression position. The control unit has a stepping sensor that detects that the brake pedal has been stepped on to an intermediate position, and when the stepping start sensor detects that the brake pedal has been stepped on from the initial position, the control unit presses the swash plate. When it starts to return to the neutral position and the depression sensor detects that the brake pedal has been depressed to the intermediate position, it is preferable to finish returning the swash plate to the neutral position.
 本特徴構成によれば、ブレーキペダルが初期位置から途中位置まで踏み込まれる間で斜板が中立位置に戻ることになる。これにより、ブレーキペダルの踏み込みの程度が途中位置以下の比較的早期の段階から、ブレーキペダルが踏み込まれた際にブレーキ等の各部にかかる負荷を低減することができる。 According to this feature configuration, the swash plate returns to the neutral position while the brake pedal is depressed from the initial position to the intermediate position. As a result, it is possible to reduce the load applied to each part such as the brake when the brake pedal is depressed from a relatively early stage when the degree of depression of the brake pedal is less than or equal to the intermediate position.
 さらに、本発明において、前記ブレーキ検出部は、前記ブレーキペダルの踏み込み量を検出する踏み込み量センサを有し、前記制御ユニットは、前記踏み込み量センサによって検出された前記ブレーキペダルの踏み込み量が増加するのに応じて、前記斜板を中立位置側に戻すと好適である。 Further, in the present invention, the brake detection unit has a depression amount sensor that detects the depression amount of the brake pedal, and the control unit increases the depression amount of the brake pedal detected by the depression amount sensor. Therefore, it is preferable to return the swash plate to the neutral position side.
 本特徴構成によれば、踏み込み量センサによって検出されたブレーキペダルの踏み込み量が増加するのに応じて、斜板が中立位置側に戻ることになる。これにより、ブレーキ装置の制動力に適した形態で、ブレーキペダルが踏み込まれた際にブレーキ等の各部にかかる負荷を低減することができる。 According to this feature configuration, the swash plate returns to the neutral position side as the amount of depression of the brake pedal detected by the depression amount sensor increases. As a result, it is possible to reduce the load applied to each part such as the brake when the brake pedal is depressed in a form suitable for the braking force of the brake device.
 さらに、本発明において、前記エンジンを始動操作する始動操作具と、前記無段変速装置の変速位置が中立位置であることを検出する中立センサと、前記エンジンを制御する前記制御ユニットと、を備え、前記制御ユニットは、前記始動操作具によって前記エンジンが始動操作された際に、前記ブレーキペダルが前記最大踏み込み位置まで踏み込まれたことが前記ブレーキ検出部によって検出され、かつ、前記無段変速装置の変速位置が中立位置であることが前記中立センサによって検出された場合に、前記始動操作具の始動操作に基づいて前記エンジンを始動すると好適である。 Further, in the present invention, a starting operation tool for starting the engine, a neutral sensor for detecting that the shifting position of the stepless speed changer is in the neutral position, and the control unit for controlling the engine are provided. When the engine is started by the starting operation tool, the control unit detects that the brake pedal has been depressed to the maximum depression position by the brake detecting unit, and the stepless transmission device. It is preferable to start the engine based on the starting operation of the starting operation tool when the neutral sensor detects that the shifting position of the engine is the neutral position.
 本特徴構成によれば、走行装置がブレーキ装置によって制動され、かつ、無段変速装置からの動力が走行装置に伝達されない状態でしか、エンジンを始動することができないことになる。これにより、機体が安定した状態でエンジンを始動することができる。 According to this feature configuration, the engine can be started only when the traveling device is braked by the braking device and the power from the continuously variable transmission is not transmitted to the traveling device. As a result, the engine can be started in a stable state of the airframe.
 さらに、本発明において、前記エンジンが始動されないことを報知する報知装置を備えていると好適である。 Further, in the present invention, it is preferable to include a notification device for notifying that the engine will not be started.
 本特徴構成によれば、エンジンが始動されない場合、エンジンが始動されないことが報知装置によって報知されることになる。これにより、エンジンが始動されないことを運転者に確実に気付かせることができる。 According to this feature configuration, if the engine is not started, the notification device will notify that the engine will not be started. This makes it possible to ensure that the driver is aware that the engine will not start.
 さらに、本発明において、前記制御ユニットは、前記ブレーキ装置が前記走行装置を制動した時の走行情報に基づいて、前記ブレーキ装置の損耗量を推定すると好適である。 Further, in the present invention, it is preferable that the control unit estimates the amount of wear of the brake device based on the travel information when the brake device brakes the traveling device.
 ここで、ブレーキ装置が走行装置を制動した時の走行情報とブレーキ装置の損耗量との間には、相関関係が認められる。本特徴構成によれば、ブレーキ装置の損耗量を精度良く推定することができる。 Here, a correlation is recognized between the traveling information when the braking device brakes the traveling device and the amount of wear of the braking device. According to this feature configuration, the amount of wear of the braking device can be estimated with high accuracy.
自動走行可能な田植機の側面図である。It is a side view of the rice transplanter which can run automatically. 自動走行可能な田植機の平面図である。It is a top view of the rice transplanter which can run automatically. 自動走行可能な田植機の正面図である。It is a front view of the rice transplanter which can run automatically. 田植機の作業走行を説明する概略図である。It is a schematic diagram explaining the work running of a rice transplanter. 田植機の制御系を示す機能ブロック図である。It is a functional block diagram which shows the control system of a rice transplanter. 無段変速装置の操作構成を例示する概略図である。It is the schematic which illustrates the operation structure of the continuously variable transmission. 無段変速装置の操作構成を例示する拡大概略図である。It is an enlarged schematic diagram which illustrates the operation structure of a continuously variable transmission. 無段変速装置の操作構成を例示する分解斜視図である。It is an exploded perspective view which illustrates the operation structure of a continuously variable transmission. レバーガイドの構成を例示する概略図である。It is the schematic which illustrates the structure of the lever guide. 中立保持機構の構成を例示する概略図である。It is the schematic which illustrates the structure of the neutral holding mechanism. 走行車速を制御するための無段変速装置とエンジン回転数との関係を説明する図である。It is a figure explaining the relationship between the continuously variable transmission for controlling a traveling vehicle speed, and the engine speed. 後ソナーの配置を説明する概略図である。It is the schematic explaining the arrangement of the rear sonar. ソナーセンサの水平方向の検知範囲を説明する概念図である。It is a conceptual diagram explaining the horizontal detection range of a sonar sensor. ソナーセンサの垂直方向の検知範囲を説明する概念図である。It is a conceptual diagram explaining the detection range in the vertical direction of a sonar sensor. エンジンから植付機構への動力伝達構造の模式図である。It is a schematic diagram of the power transmission structure from an engine to a planting mechanism. 田植機の走行を示す図である。It is a figure which shows the running of a rice transplanter. 車速の推移を示す図である。It is a figure which shows the transition of a vehicle speed. 田植機の走行を示す図である。It is a figure which shows the running of a rice transplanter. 開始位置における施肥装置の動作開始を示す側面説明図である。It is a side explanatory view which shows the operation start of a fertilizer application device at a start position. 開始位置における施肥装置の動作開始を示す側面説明図である。It is a side explanatory view which shows the operation start of a fertilizer application device at a start position. 終了位置における施肥装置の停止を示す側面説明図である。It is a side explanatory view which shows the stop | stop of the fertilizer application apparatus at the end position. 終了位置における施肥装置の停止を示す側面説明図である。It is a side explanatory view which shows the stop | stop of the fertilizer application apparatus at the end position. 苗植付装置が外周領域と内部領域との境界に跨る状態で植播作業が行われる状態を示す圃場の平面図である。It is a top view of the field which shows the state which the planting work is performed with the seedling planting apparatus straddling the boundary between the outer peripheral area and the inner area area. 田植機の制御系を示す機能ブロック図であって、無段変速装置の斜板の中立戻し制御及びエンジンの始動制御に係る図である。It is a functional block diagram which shows the control system of a rice transplanter, and is the figure which concerns on the neutral return control of the swash plate of a continuously variable transmission, and the start control of an engine. 取り外し状態の測位ユニット、ボイスアラーム発生装置及び上端側部を示し、かつ、取付け状態の受信装置を示す斜視図である。It is a perspective view which shows the positioning unit in the detached state, the voice alarm generator and the upper end side part, and shows the receiving device in the attached state. 上端側部の支持構造を示す側面図である。It is a side view which shows the support structure of the upper end side part. 上端側部の支持構造を示す側面図であるIt is a side view which shows the support structure of the upper end side part. 取り外し状態の積層灯およびカバーを示す斜視図である。It is a perspective view which shows the laminated lamp and a cover in a detached state. 積層灯の使用姿勢及び格納姿勢を示す側面図である。It is a side view which shows the use posture and the storage posture of a laminated lamp. 積層灯の表示状態、センターマスコットの表示灯部の表示状態を示す説明図である。It is explanatory drawing which shows the display state of the laminated light, and the display state of the indicator light part of a center mascot. ボイスアラーム発生装置の支持構造を示す後面図である。It is a rear view which shows the support structure of the voice alarm generator. ボイスアラームを示す説明図である。It is explanatory drawing which shows the voice alarm. リモコンの平面図である。It is a top view of a remote controller. 情報端末の平面図である。It is a top view of an information terminal. ソナーチェック制御における機能部を示す機能ブロック図である。It is a functional block diagram which shows the functional part in a sonar check control. ソナーチェック制御全体のフローチャートである。It is a flowchart of the whole sonar check control. ソナーチェック処理のフローチャートである。It is a flowchart of a sonar check process. ソナーチェック処理における画面図である。It is a screen view in the sonar check process. ソナーチェック処理における画面図である。It is a screen view in the sonar check process. 自動走行モードの起動時にタッチパネルに表示される注意喚起画面である。This is a warning screen displayed on the touch panel when the automatic driving mode is activated. マップ選択処理における機能部を示す機能ブロック図である。It is a functional block diagram which shows the functional part in a map selection process. マップ選択処理における画面図である。It is a screen view in the map selection process. マップ選択処理における画面図である。It is a screen view in the map selection process. マップ選択処理における画面図である。It is a screen view in the map selection process. 圃場形状取得処理における機能部を示す機能ブロック図である。It is a functional block diagram which shows the functional part in the field shape acquisition processing. 圃場の外周に沿って区切られた複数の領域を示す図である。It is a figure which shows a plurality of regions divided along the outer circumference of a field. 苗植付装置の上昇と下降とを繰り返した場合の処理を説明する図である。It is a figure explaining the process when the raising and lowering of a seedling planting apparatus are repeated. 第1線と第2線とを説明する図である。It is a figure explaining the 1st line and the 2nd line. 圃場形状取得処理における画面図である。It is a screen view in the field shape acquisition processing. 圃場形状取得処理における画面図である。It is a screen view in the field shape acquisition process. 圃場形状取得処理における画面図である。It is a screen view in the field shape acquisition process. 圃場形状取得処理における画面図である。It is a screen view in the field shape acquisition process. 圃場形状取得処理における画面図である。It is a screen view in the field shape acquisition processing. 圃場形状取得処理における画面図である。It is a screen view in the field shape acquisition process. ルート作成に関する機能部を示す機能ブロック図である。It is a functional block diagram which shows the functional part about route creation. ルート作成時にタッチパネルに表示される画面である。This is the screen displayed on the touch panel when creating a route. ルート作成時にタッチパネルに表示される画面である。This is the screen displayed on the touch panel when creating a route. ルート作成時にタッチパネルに表示される画面である。This is the screen displayed on the touch panel when creating a route. つなぎ旋回を説明する模式図である。It is a schematic diagram explaining the connecting turn. 切り返し旋回を説明する模式図である。It is a schematic diagram explaining the turning turn. 各条クラッチ制御を伴う植付作業走行を説明する図である。It is a figure explaining planting work running with each line clutch control. 基本的な開始点誘導を説明する模式図である。It is a schematic diagram explaining the basic start point guidance. 基本的な開始点誘導を説明する模式図である。It is a schematic diagram explaining the basic start point guidance. 開始点誘導における画面図である。It is a screen view in the start point guidance. 開始点誘導における画面図である。It is a screen view in the start point guidance. 開始点誘導における別形態での画面図である。It is a screen view in another form in the start point guidance. 開始点誘導における別形態での画面図である。It is a screen view in another form in the start point guidance. 開始点誘導における別形態での画面図である。It is a screen view in another form in the start point guidance. 基本的な開始点誘導を説明する模式図である。It is a schematic diagram explaining the basic start point guidance. 直進経路の終端が順次に短くなっている作業走行を示す模式図である。It is a schematic diagram which shows the work running which the end of a straight path is shortened sequentially. 直進経路の終端が順次に長くなっている作業走行を示す模式図である。It is a schematic diagram which shows the work running which the end of a straight path is gradually lengthened. 特別植付領域における走行経路を示す図である。It is a figure which shows the traveling route in a special planting area.
 以下、圃場を作業走行する田植機について説明する。 The rice transplanter that runs on the field will be described below.
 ここで、理解を容易にするために、本実施形態では、特に断りがない限り、「前」(図1に示す矢印Fの方向)は機体前後方向(走行方向)における前方を意味し、「後」(図1に示す矢印Bの方向)は機体前後方向(走行方向)における後方を意味するものとする。また、左右方向または横方向は、機体前後方向に直交する機体横断方向(機体幅方向)、すなわち、「左」(図2に示す矢印Lの方向)および「右」(図2に示す矢印Rの方向)は、それぞれ、機体の左方向および右方向を意味するものとする。 Here, in order to facilitate understanding, in the present embodiment, unless otherwise specified, "front" (direction of arrow F shown in FIG. 1) means front in the front-rear direction (traveling direction) of the aircraft, and " "Rear" (direction of arrow B shown in FIG. 1) means rearward in the front-rear direction (traveling direction) of the aircraft. Further, the left-right direction or the lateral direction is the aircraft crossing direction (aircraft width direction) orthogonal to the aircraft front-rear direction, that is, "left" (direction of arrow L shown in FIG. 2) and "right" (arrow R shown in FIG. 2). Direction) shall mean the left and right directions of the aircraft, respectively.
〔全体構造〕
 図1~図3に示すように、田植機は、乗用型で四輪駆動形式の機体を備える。機体1は、機体1の後部に昇降揺動可能に連結された平行四連リンク形式のリンク機構13、リンク機構13を揺動駆動する油圧式の昇降リンク13a、リンク機構13の後端部領域にローリング可能に連結される苗植付装置3、機体1の後端部領域から苗植付装置3にわたって架設されている施肥装置4、および、苗植付装置3の後端部領域に設けられる薬剤散布装置18等を備える。苗植付装置3、施肥装置4および薬剤散布装置18は、作業装置の一例である。
[Overall structure]
As shown in FIGS. 1 to 3, the rice transplanter is a passenger type and has a four-wheel drive type body. The machine body 1 includes a parallel quadruple link type link mechanism 13 oscillatingly connected to the rear portion of the machine body 1, a hydraulic lifting link 13a for swinging the link mechanism 13, and a rear end region of the link mechanism 13. The seedling planting device 3 is rotatably connected to the seedling planting device 3, the fertilizer application device 4 installed from the rear end region of the machine body 1 to the seedling planting device 3, and the rear end region of the seedling planting device 3. A chemical spraying device 18 and the like are provided. The seedling planting device 3, the fertilizer application device 4, and the chemical spraying device 18 are examples of working devices.
 機体1は、走行のための機構として車輪12、エンジン2(「動力源」に相当)、および主変速装置である油圧式の無段変速装置9を備える。無段変速装置9は、例えばHST(Hydro-Static Transmission)であり、モータ斜板およびポンプ斜板の角度を調節することにより、エンジン2から出力される駆動力(回転数)を変速する。車輪12は、操舵可能な左右の前輪12Aと、操舵不能な左右の後輪12Bとを有する。エンジン2および無段変速装置9は、機体1の前部に搭載される。エンジン2からの動力は、無段変速装置9等を介して前輪12A、後輪12B、作業装置等に供給される。 The airframe 1 includes wheels 12, an engine 2 (corresponding to a "power source"), and a hydraulic continuously variable transmission 9 as a main transmission as a mechanism for traveling. The continuously variable transmission 9 is, for example, an HST (Hydro-Static Transmission), and shifts the driving force (rotation speed) output from the engine 2 by adjusting the angles of the motor swash plate and the pump swash plate. The wheels 12 have left and right front wheels 12A that can be steered and left and right rear wheels 12B that cannot be steered. The engine 2 and the continuously variable transmission 9 are mounted on the front portion of the airframe 1. The power from the engine 2 is supplied to the front wheels 12A, the rear wheels 12B, the working device, and the like via the continuously variable transmission 9 and the like.
 苗植付装置3は、一例として8条植え形式に構成される。苗植付装置3は、苗載せ台21、8条分の植付機構22等を備える。なお、この苗植付装置3は、図示されていない各条クラッチの制御により、2条植え、4条植え、6条植え等の形式に変更可能である。 The seedling planting device 3 is configured as an 8-row planting type as an example. The seedling planting device 3 includes a seedling stand 21, a planting mechanism 22 for eight rows, and the like. The seedling planting device 3 can be changed to a type such as 2-row planting, 4-row planting, 6-row planting, etc. by controlling each row clutch (not shown).
 苗載せ台21は、8条分のマット状苗を載置する台座である。苗載せ台21は、マット状苗の左右幅に対応する一定ストロークで左右方向に往復移動し、縦送り機構23は、苗載せ台21が左右のストローク端に達するごとに、苗載せ台21上の各マット状苗を苗載せ台21の下端に向けて所定ピッチで縦送りする。8個の植付機構22は、ロータリ式で、植え付け条間に対応する一定間隔で左右方向に配置される。そして、各植付機構22は、植付クラッチ(後述の図15のC5参照)が伝動状態に移行されることによりエンジン2から駆動力が伝達され、苗載せ台21に載置された各マット状苗の下端から一株分の苗(植付苗とも称す)を切り取って、整地後の泥土部に植え付ける。これにより、苗植付装置3の作動状態では、苗載せ台21に載置されたマット状苗から苗を取り出して水田の泥土部に植え付けることができる。 The seedling pedestal 21 is a pedestal on which eight mat-shaped seedlings are placed. The seedling stand 21 reciprocates in the left-right direction with a constant stroke corresponding to the left-right width of the mat-shaped seedling, and the vertical feed mechanism 23 is placed on the seedling stand 21 each time the seedling stand 21 reaches the left and right stroke ends. Each mat-shaped seedling is vertically fed at a predetermined pitch toward the lower end of the seedling stand 21. The eight planting mechanisms 22 are rotary type and are arranged in the left-right direction at regular intervals corresponding to the planting rows. Then, in each planting mechanism 22, the driving force is transmitted from the engine 2 by shifting the planting clutch (see C5 in FIG. 15 described later) to the transmission state, and each mat placed on the seedling loading table 21. Cut one seedling (also called planted seedling) from the lower end of the seedling and plant it in the mud part after leveling. As a result, in the operating state of the seedling planting device 3, seedlings can be taken out from the mat-shaped seedlings placed on the seedling stand 21 and planted in the mud portion of the paddy field.
 図1~図3に示すように、施肥装置4は、横長のホッパ25、繰出機構26、電動式のブロワ27、複数の施肥ホース28、および、条毎に備えられた作溝器29を備える。ホッパ25は、粒状または粉状の肥料を貯留する。繰出機構26は、モータ(図示せず)から伝達される動力で作動し、ホッパ25から2条分の肥料を所定量ずつ繰り出す。 As shown in FIGS. 1 to 3, the fertilizer application device 4 includes a horizontally long hopper 25, a feeding mechanism 26, an electric blower 27, a plurality of fertilizer hoses 28, and a groove making device 29 provided for each row. .. The hopper 25 stores granular or powdery fertilizer. The feeding mechanism 26 is operated by power transmitted from a motor (not shown), and feeds two rows of fertilizer from the hopper 25 in predetermined amounts.
 ブロワ27は、機体1に搭載されたバッテリ73からの電力で作動し、各繰出機構26により繰り出された肥料を圃場の泥面に向けて搬送する搬送風を発生させる。施肥装置4は、ブロワ27等の断続操作により、ホッパ25に貯留した肥料を所定量ずつ圃場に供給する作動状態と、供給を停止する非作動状態とに切り換えることができる。 The blower 27 is operated by electric power from the battery 73 mounted on the machine body 1, and generates a transport wind for transporting the fertilizer delivered by each feeding mechanism 26 toward the mud surface of the field. The fertilizer application device 4 can switch between an operating state in which a predetermined amount of fertilizer stored in the hopper 25 is supplied to the field and a non-operating state in which the supply is stopped by an intermittent operation of the blower 27 or the like.
 各施肥ホース28は、搬送風で搬送される肥料を各作溝器29に案内する。各作溝器29は、各整地フロート15に配備される。そして、各作溝器29は、各整地フロート15と共に昇降し、各整地フロート15が接地する作業走行時に、水田の泥土部に施肥溝を形成して肥料を施肥溝内に案内する。 Each fertilizer hose 28 guides the fertilizer transported by the transport wind to each groove making device 29. Each groover 29 is deployed on each leveling float 15. Then, each groove-growing device 29 moves up and down together with each leveling float 15 to form a fertilizer-applying groove in the mud portion of the paddy field and guide the fertilizer into the fertilizer-applying groove during the work running when each leveling float 15 touches the ground.
 図1~図3に示すように、機体1は、その後部側領域に運転部14を備える。運転部14は、前輪操舵用のステアリングホイール10、無段変速装置9の変速操作を行うことで車速を調節する主変速レバー7A(「車速操作具」に相当)、副変速装置の変速操作を可能にする副変速レバー7B(「車速操作具」に相当)、苗植付装置3の昇降操作と作動状態の切り換え等を可能にする作業操作レバー11(「作業操作具」に相当)、各種の情報を表示(報知)してオペレータに報知(出力)すると共に、各種の情報の入力を受け付けるタッチパネルを有する情報端末5、および、オペレータ(運転者・作業者)用の運転座席16等を備える。さらに、運転部14の前方に、予備苗を収容する予備苗収納装置17Aが予備苗支持フレーム17に支持される。 As shown in FIGS. 1 to 3, the airframe 1 includes a driving unit 14 in the rear region. The driver unit 14 controls the steering wheel 10 for steering the front wheels, the main speed change lever 7A (corresponding to the "vehicle speed control tool") that adjusts the vehicle speed by shifting the speed of the continuously variable transmission 9, and the speed change operation of the auxiliary transmission. Auxiliary speed change lever 7B (corresponding to "vehicle speed control tool"), work operation lever 11 (corresponding to "work control tool") that enables raising and lowering operation of the seedling planting device 3 and switching of the operating state, etc. Information terminal 5 having a touch panel for displaying (notifying) the information of the above and notifying (outputting) to the operator and receiving input of various information, a driver's seat 16 for the operator (driver / worker), and the like are provided. .. Further, in front of the driving unit 14, a spare seedling storage device 17A for accommodating spare seedlings is supported by the spare seedling support frame 17.
 ステアリングホイール10は、非図示の操舵機構を介して前輪12Aと連結され、ステアリングホイール10の回転操作を通じて、前輪12Aの操舵角が調節される。 The steering wheel 10 is connected to the front wheels 12A via a steering mechanism (not shown), and the steering angle of the front wheels 12A is adjusted through the rotation operation of the steering wheel 10.
〔自動走行〕
 自動走行により、田植機が圃場を田植作業する作業走行について図1~図3を参照しながら、図4を用いて説明する。
[Automatic driving]
A work run in which a rice transplanter plantes rice in a field by automatic running will be described with reference to FIGS. 1 to 3 with reference to FIGS.
 本実施形態における田植機は、手動走行および自動走行を選択的に行うことができる。
手動走行と自動走行とは、自動・手動切替スイッチ7Cを切り替えることにより選択される。手動走行は、運転者が手動で、ステアリングホイール10、主変速レバー7A、副変速レバー7B、作業操作レバー11等の操作具を操作して作業走行を行うものである。自動走行は、あらかじめ設定された走行経路に沿って、田植機が自動制御で走行および作業を行うものである。また、自動走行は、運転者の搭乗を要する有人自動走行(有人自動走行モード)と、運転者の搭乗を要しない無人自動走行(無人自動走行モード)とを行うことができる。有人自動走行は、田植機から提供されるガイダンスに沿って一部の操作を運転者が行いながら、その他の走行および作業に伴う動作を田植機が自動制御するものである。無人自動走行では、運転者が搭乗することは要しないが、無人自動走行中に運転者が搭乗していても良い。また、無人自動走行は、運転者が自動走行の開始操作、例えば後述されるリモコン90(図33参照)による開始操作を行うことにより、自動制御で作業走行を開始し、あらかじめ設定された作業走行を自動制御で行うものである。有人自動走行が行われる有人自動モードと無人自動走行が行われる無人自動モードとは、情報端末5を用いて設定される。
The rice transplanter in the present embodiment can selectively perform manual traveling and automatic traveling.
Manual running and automatic running are selected by switching the automatic / manual changeover switch 7C. In the manual running, the driver manually operates the operating tools such as the steering wheel 10, the main shift lever 7A, the auxiliary shift lever 7B, and the work operation lever 11 to perform the work run. In automatic driving, the rice transplanter automatically controls driving and working along a preset traveling route. Further, the automatic driving can be performed as a manned automatic driving that requires the driver's boarding (manned automatic driving mode) and an unmanned automatic driving that does not require the driver's boarding (unmanned automatic driving mode). In manned automatic driving, the rice transplanter automatically controls other driving and operations associated with the work while the driver performs some operations according to the guidance provided by the rice transplanter. In unmanned autonomous driving, it is not necessary for the driver to board, but the driver may be on board during unmanned automatic driving. Further, in the unmanned automatic driving, the driver performs an automatic driving start operation, for example, a start operation by a remote controller 90 (see FIG. 33) described later, so that the work driving is automatically controlled and the work driving is set in advance. Is automatically controlled. The manned automatic mode in which manned automatic driving is performed and the unmanned automatic mode in which unmanned automatic driving is performed are set by using the information terminal 5.
 田植機が植え付け作業を行う際には、まず、圃場の外周に沿って、運転者が手動操作で、作業を行わずに田植機を走行させる。この外周走行によって、圃場の外周形状(圃場マップ)が生成され、圃場が外周領域OAと内部領域IAに区分けされる。また、この際、田植機が圃場に侵入する出入口Eが設定されると共に、圃場の外周辺のうちの一辺または指定された複数辺が、田植機にマット状苗や肥料、薬剤、燃料等を補給するための苗補給辺SLとして設定される。 When the rice transplanter performs the planting work, the driver first manually runs the rice transplanter along the outer circumference of the field without performing the work. By this outer peripheral running, the outer peripheral shape (field map) of the field is generated, and the field is divided into the outer peripheral region OA and the inner region IA. At this time, the entrance / exit E for the rice transplanter to enter the field is set, and one side or a plurality of designated sides of the outer periphery of the field puts mat-like seedlings, fertilizers, chemicals, fuel, etc. on the rice transplanter. It is set as a seedling supply side SL for replenishment.
 圃場マップが生成される際には、田植機が作業走行を行う走行経路が設定される。内部領域IAでは、圃場の一つの辺に略平行な複数の経路を旋回経路で繋ぐ内部往復経路IPLが生成される。内部往復経路IPLは、開始点Sから終了点Gまで、内部領域IAの全体をくまなく走行する走行経路である。内部往復経路IPLが生成される際には、出入口Eの近傍に、誘導開始可能エリアGAが生成される。この誘導開始可能エリアGA内に田植機が停止されることにより、田植機は内部往復経路IPLの開始点Sまで自動走行により移行することが可能となる。なお、誘導開始可能エリアGAから行われる開始点誘導は専用の走行経路が設定されるが、この走行経路は複数設定されても良い。圃場の形状によっては、停車位置からの開始点誘導が困難な場合がある。複数の走行経路を設定しておくことにより、停車位置にかかわらず適切に開始点誘導される可能性が高まり好ましい。 When the field map is generated, the travel route for the rice transplanter to carry out the work is set. In the inner region IA, an internal reciprocating path IPL connecting a plurality of paths substantially parallel to one side of the field with a swirling path is generated. The internal round-trip route IPL is a travel route that travels all over the entire internal region IA from the start point S to the end point G. When the internal round-trip path IPL is generated, the guidance startable area GA is generated in the vicinity of the entrance / exit E. By stopping the rice transplanter in the guidance startable area GA, the rice transplanter can automatically travel to the start point S of the internal round-trip route IPL. A dedicated travel route is set for the start point guidance performed from the guidance startable area GA, but a plurality of these travel routes may be set. Depending on the shape of the field, it may be difficult to guide the starting point from the stop position. By setting a plurality of travel routes, it is preferable that the starting point is appropriately guided regardless of the stop position.
 外周領域OAでは、圃場の外周に沿って外周領域OA内を周回する、内側周回経路IRLと外側周回経路ORLの2つの走行経路が生成される。内側周回経路IRLと外側周回経路ORLとを作業走行することにより、外周領域OAの全体の作業走行が行われる。内部往復経路IPLの作業走行(往復作業走行)が終了した後、内側周回経路IRLの作業走行開始位置までの移動は、別途設定された走行経路を走行して行われる。圃場の外形が複雑な場合、内部往復経路IPLの終点と内側周回経路IRLの開始点を離す必要がある場合がある。このような際には、内部往復経路IPLの終点から内側周回経路IRLの開始点に移動する走行経路として、圃場の任意の一辺に平行な経路を含む走行経路が設けられても良い。 In the outer peripheral region OA, two traveling routes, an inner peripheral route IRL and an outer peripheral route ORL, which orbit the outer peripheral region OA along the outer peripheral region of the field, are generated. By working on the inner circuit path IRL and the outer circuit path ORL, the entire work travel of the outer peripheral region OA is performed. After the work travel (reciprocating work travel) of the internal round-trip route IPL is completed, the movement to the work travel start position of the inner circuit route IRL is performed by traveling on a separately set travel route. When the outer shape of the field is complicated, it may be necessary to separate the end point of the internal round-trip path IPL from the start point of the inner round-trip path IRL. In such a case, a travel route including a route parallel to any one side of the field may be provided as a travel route for moving from the end point of the internal round-trip route IPL to the start point of the inner circuit route IRL.
 自動走行を行う場合には、このように走行経路が生成された状態で、田植機は、まず、出入口Eから圃場に侵入し、誘導開始可能エリアGAに移動して停止する。誘導開始可能エリアGAで、自動走行が開始されると、田植機はいったん後進した後開始点Sに移動し(開始点誘導)、終了点Gに至るまで内部領域IAの内部往復経路IPLの自動走行が行われる。無人自動走行における走行車速は、あらかじめ設定された走行車速の最高速度に応じて制御される。 In the case of automatic driving, the rice transplanter first invades the field from the entrance / exit E, moves to the guidance startable area GA, and stops in the state where the traveling route is generated in this way. When automatic driving is started in the guidance startable area GA, the rice transplanter moves backward once and then moves to the start point S (start point guidance), and automatically of the internal round-trip route IPL of the internal area IA until the end point G is reached. The run is done. The traveling vehicle speed in unmanned automatic driving is controlled according to the maximum speed of the traveling vehicle speed set in advance.
 圃場の形状が複雑な場合、旋回に必要な領域が、内側周回経路IRLと外側周回経路ORLとの作業走行では作業しきれない場合がある。このような場合、内部往復経路IPLの一部を延長して作業走行する必要が生じる。この際、内部往復経路IPLの旋回の後、必要な距離だけ後進してから、前進による作業走行が開始されても良い。この時の後進走行は自動走行で行われ、特定の操作を要さない。ただし、前進時と異なり前輪による操向が困難なことから、後進時のみ手動操作に切り替えられるようにしても良い。 When the shape of the field is complicated, the area required for turning may not be able to be fully worked by the work running between the inner circuit path IRL and the outer circuit path ORL. In such a case, it becomes necessary to extend a part of the internal round-trip path IPL for work running. At this time, after turning the internal reciprocating path IPL, the vehicle may move backward by a required distance and then start the work traveling by moving forward. The reverse running at this time is performed automatically and does not require a specific operation. However, unlike when moving forward, it is difficult to steer with the front wheels, so it may be possible to switch to manual operation only when moving backward.
 内部領域IAの作業走行が終了すると、外周領域OAの作業走行が行われる。まず、田植機は、内側周回経路IRLの開始点まで手動で移動され、その後、無人自動走行により、内側周回経路IRLの作業走行を行う。次に、田植機は、外側周回経路ORLの開始点まで手動で移動され、その後、有人自動走行により、外側周回経路ORLの作業走行を行う(周回作業走行)。有人自動走行においては、手動操作された走行車速で、走行経路に沿った自動走行が行われ、作業装置はガイダンス(運転アシスト)に応じて手動で操作される。また、旋回時には、所定の位置で自動的に機体1が一時停止され、ガイダンスに応じて手動で必要な作業装置の操作が行われると、自動走行で旋回走行が行われる。以上の作業走行により、圃場全体の植え付け作業が終了する。 When the work run of the inner region IA is completed, the work run of the outer region OA is performed. First, the rice transplanter is manually moved to the start point of the inner circuit route IRL, and then the rice transplanter is subjected to the work operation of the inner circuit route IRL by unmanned automatic traveling. Next, the rice transplanter is manually moved to the start point of the outer orbital route ORL, and then the work traveling of the outer orbital route ORL is performed by manned automatic traveling (orbiting work traveling). In manned automatic driving, automatic driving is performed along a traveling route at a manually operated traveling vehicle speed, and the working device is manually operated according to guidance (driving assist). Further, at the time of turning, the machine body 1 is automatically temporarily stopped at a predetermined position, and when the necessary work device is manually operated according to the guidance, the turning running is automatically performed. By the above work running, the planting work of the entire field is completed.
 なお、内部往復経路IPLおよび内側周回経路IRLは、無人の自動走行に限らず、有人の自動走行または手動走行で作業走行が行われても良い。また、外側周回経路ORLは、有人自動走行に限らず、手動走行で作業走行が行われても良く、無人自動走行で作業走行が行われても良い。さらに、内部往復経路IPLの終了点Gから内側周回経路IRLへの移動は、手動走行に限らず、有人または無人の自動走行で行われても良い。同様に内側周回経路IRLの終点から外側周回経路ORLへの移動も、手動走行に限らず、有人または無人の自動走行で行われても良い。 Note that the internal round-trip route IPL and the inner circuit route IRL are not limited to unmanned automatic traveling, and work traveling may be performed by manned automatic traveling or manual traveling. Further, the outer circuit path ORL is not limited to manned automatic traveling, and work traveling may be performed by manual traveling, or work traveling may be performed by unmanned automatic traveling. Further, the movement from the end point G of the internal round-trip route IPL to the inner circuit route IRL is not limited to manual traveling, and may be performed by manned or unmanned automatic traveling. Similarly, the movement from the end point of the inner circuit route IRL to the outer circuit route ORL is not limited to manual driving, and may be performed by manned or unmanned automatic driving.
 なお、有人自動走行は、少なくとも運転者が搭乗していることと、主変速レバー7Aが中立位置にあることとが自動走行の開始条件である。開始条件を満たした状態において、主変速レバー7Aが進行方向に移動されると自動走行が開始される。上記圃場の走行経路おいて、有人自動走行は、外側周回経路ORLでの作業走行の際に行われるが、その他の走行経路において行われても良い。また、有人自動走行において、苗植付装置3の昇降は自動制御により行われる。例えば、内部往復経路IPLや内側周回経路IRLでの有人自動走行における作業走行では、苗植付装置3の昇降は自動制御により行われる。ただし、外側周回経路ORLでの作業走行の際には、苗植付装置3の下降は手動操作により行われる。具体的には、外側周回経路ORLの旋回位置に機体1が到達すると、苗植付装置3は自動制御で上昇される。その状態で旋回が完了すると、機体1は停止し、手動操作により苗植付装置3を下降させることにより、自動走行による作業走行が継続される。外側周回経路ORLでは周囲に障害物が存在する可能性が他の走行経路より高い。円滑な作業走行を行うために、外側周回経路ORLでの作業走行では、障害物等が存在しないことが確認されたうえで、苗植付装置3の下降は手動操作により行われる。 For manned automatic driving, at least the driver is on board and the main shift lever 7A is in the neutral position, which are the conditions for starting automatic driving. When the main shift lever 7A is moved in the traveling direction in a state where the start condition is satisfied, automatic traveling is started. In the traveling route of the field, the manned automatic traveling is performed during the work traveling on the outer circuit route ORL, but may be performed on other traveling routes. Further, in the manned automatic traveling, the raising and lowering of the seedling planting device 3 is performed by automatic control. For example, in the work running in the manned automatic running on the internal round-trip route IPL or the inner round-trip route IRL, the raising and lowering of the seedling planting device 3 is performed by automatic control. However, when working on the outer circuit path ORL, the seedling planting device 3 is lowered by a manual operation. Specifically, when the machine body 1 reaches the turning position of the outer circuit path ORL, the seedling planting device 3 is automatically controlled and raised. When the turning is completed in that state, the machine body 1 is stopped, and the seedling planting device 3 is lowered by a manual operation to continue the work running by the automatic running. Obstacles are more likely to be present in the outer orbital route ORL than in other travel routes. In order to carry out smooth work running, the seedling planting device 3 is lowered by a manual operation after confirming that there are no obstacles or the like in the work running on the outer circuit path ORL.
 また、無人自動走行は、リモコン90が操作されることにより自動走行が開始され、あらかじめ設定された走行経路で自動制御により作業走行が行われる。上記圃場の走行経路において、無人自動走行は、内部往復経路IPLおよび内側周回経路IRLでの作業走行の際に行うことができる。無人自動走行においても、苗植付装置3の昇降は自動制御により行われる。 Further, in the unmanned automatic running, the automatic running is started by operating the remote controller 90, and the work running is performed by the automatic control on the preset running route. In the traveling route of the field, the unmanned automatic traveling can be performed during the working traveling on the internal round-trip route IPL and the inner circuit route IRL. Even in unmanned automatic traveling, the seedling planting device 3 is raised and lowered by automatic control.
〔制御系〕
 次に、図1~図3を参照しながら図5を用いて、田植機の制御系について説明する。
[Control system]
Next, the control system of the rice transplanter will be described with reference to FIGS. 1 to 3 with reference to FIG.
 田植機の制御系の中核をなす制御ユニット30は、田植機の走行制御や各種作業装置1Cの動作制御を行う。制御ユニット30は、手動走行の際には運転者が行う各種操作具1Bの操作に応じて制御を行い、自動走行の際には自車位置を取得しながら、自車位置に応じた制御を行う。 The control unit 30, which forms the core of the control system of the rice transplanter, controls the traveling of the rice transplanter and controls the operation of various work devices 1C. The control unit 30 controls according to the operation of various operating tools 1B performed by the driver during manual driving, and controls according to the position of the own vehicle while acquiring the position of the own vehicle during automatic driving. conduct.
 そのため、自動走行用マイコン6等を含む制御ユニット30は、自車位置を算出するための測位ユニット8、各種設定や操作を行うと共に各種情報を表示する情報端末5、田植機の各種状態を検出するセンサ群1A、各種操作具1B、各種作業装置1C、操舵に係る前輪12Aや無段変速装置9等を含む走行機器1D等と接続される。なお、操作具1Bの1つであるモード切替スイッチ7Eは、手動走行を行う手動走行モード、有人で自動走行を行う有人自動走行モード、無人で自動走行を行う無人自動走行モードのいずれかを選択ためのスイッチである。 Therefore, the control unit 30 including the automatic traveling microcomputer 6 and the like detects the positioning unit 8 for calculating the position of the own vehicle, the information terminal 5 for performing various settings and operations and displaying various information, and various states of the rice transplanter. It is connected to a traveling device 1D including a sensor group 1A, various operating tools 1B, various working devices 1C, front wheels 12A related to steering, and a continuously variable transmission 9. The mode changeover switch 7E, which is one of the operating tools 1B, selects one of a manual driving mode for manual driving, a manned automatic driving mode for manned automatic driving, and an unmanned automatic driving mode for unmanned automatic driving. It is a switch for.
 測位ユニット8は、機体1の位置および方位を算出するための測位データを出力する。
測位ユニット8には、全地球航法衛星システム(GNSS)の衛星からの電波を受信する衛星測位モジュール8Aと、機体1の三軸の傾きや加速度を検出する慣性計測モジュール8Bが含まれている。
The positioning unit 8 outputs positioning data for calculating the position and orientation of the aircraft 1.
The positioning unit 8 includes a satellite positioning module 8A that receives radio waves from satellites of the Global Navigation Satellite System (GNSS) and an inertial measurement unit 8B that detects the tilt and acceleration of the three axes of the aircraft 1.
 手動走行モードにおいて、制御ユニット30は、操作具1Bの操作や情報端末5の設定状態に応じて走行機器1Dを制御し、車速や操舵量を制御することにより、走行を制御する。また、制御ユニット30は、操作具1Bの操作や情報端末5の設定状態に応じて作業装置1Cの動作を制御する。 In the manual driving mode, the control unit 30 controls the traveling device 1D according to the operation of the operating tool 1B and the setting state of the information terminal 5, and controls the traveling by controlling the vehicle speed and the steering amount. Further, the control unit 30 controls the operation of the work device 1C according to the operation of the operation tool 1B and the setting state of the information terminal 5.
 有人自動走行モードまたは無人自動走行モードにおいて、制御ユニット30は、測位ユニット8から逐次送られてくる衛星測位データに基づいて、機体1の地図座標(自車位置)を算出する。また、制御ユニット30は、圃場マップを取得し、圃場マップおよび情報端末5の設定や操作に応じて走行経路を設定する。同時に、制御ユニット30は、走行経路中の位置に応じた作業装置1Cの動作を決定する。そして、制御ユニット30は、自車位置に基づいて走行経路中の走行位置を算出し、走行経路中の走行位置および情報端末5の設定状態に応じて、走行機器1Dおよび作業装置1Cを制御する。このようにして、制御ユニット30は、自動走行モードでの作業走行を制御する。 In the manned automatic driving mode or the unmanned automatic driving mode, the control unit 30 calculates the map coordinates (own vehicle position) of the aircraft 1 based on the satellite positioning data sequentially sent from the positioning unit 8. Further, the control unit 30 acquires the field map and sets the traveling route according to the setting and operation of the field map and the information terminal 5. At the same time, the control unit 30 determines the operation of the work device 1C according to the position in the traveling path. Then, the control unit 30 calculates the traveling position in the traveling path based on the own vehicle position, and controls the traveling device 1D and the working device 1C according to the traveling position in the traveling path and the set state of the information terminal 5. .. In this way, the control unit 30 controls the work traveling in the automatic traveling mode.
 また、制御ユニット30は、無人自動走行モードに比べて有人自動走行モードにおいて、車速を低減させ、加減速が緩やかに行われるように制御する。これにより、無人自動走行モードでは効率的に作業走行が行われ、有人自動走行モードでは搭乗する運転者の乗り心地を損なわないようにすることができる。 Further, the control unit 30 reduces the vehicle speed in the manned automatic driving mode as compared with the unmanned automatic driving mode, and controls so that acceleration / deceleration is performed slowly. As a result, the work can be efficiently performed in the unmanned automatic driving mode, and the riding comfort of the driver can be prevented from being impaired in the manned automatic driving mode.
 なお、制御ユニット30は、上述の機能を実現できれば任意の構成とすることができ、複数の機能ブロックから構成されても良い。また、制御ユニット30の機能の一部または全部は、ソフトウエアで構成されても良い。ソフトウエアに係るプログラムは、任意の記憶部に記憶され、制御ユニット30が備えるECUやCPU等のプロセッサ、あるいは別に設けられたプロセッサにより実行される。 The control unit 30 can have an arbitrary configuration as long as the above functions can be realized, and may be composed of a plurality of functional blocks. Further, a part or all of the functions of the control unit 30 may be configured by software. The software-related program is stored in an arbitrary storage unit, and is executed by a processor such as an ECU or CPU included in the control unit 30, or a processor provided separately.
〔無段変速装置の操作構成〕
 次に、図1~図3を参照しながら、図6~図10を用いて、HST等の無段変速装置9のモータおよびポンプの斜板(以下、単に「斜板」と称す)の角度を操作する構成について説明する。
[Operating configuration of continuously variable transmission]
Next, with reference to FIGS. 1 to 3, the angle of the swash plate (hereinafter, simply referred to as “swash plate”) of the motor and pump of the continuously variable transmission 9 such as HST is used with reference to FIGS. 6 to 10. The configuration for operating the is described.
 無段変速装置9は、主変速レバー7Aが操作されるのに伴って斜板の角度が調整され、前後進の切り替えや走行車速の調整を行う。主変速レバー7Aの操作領域は、ニュートラル位置を挟んで、直線状にあるいはクランク状に、前進操作領域および後進操作領域が配置される。前進操作領域および後進操作領域において、ニュートラル位置から離れる位置に主変速レバー7Aが操作されることにより、前進あるいは後進時の走行車速が早くなる。 In the continuously variable transmission 9, the angle of the swash plate is adjusted as the main speed change lever 7A is operated, and the forward / backward movement is switched and the traveling vehicle speed is adjusted. In the operation area of the main speed change lever 7A, the forward operation area and the reverse operation area are arranged linearly or in a crank shape with the neutral position in between. By operating the main speed change lever 7A at a position away from the neutral position in the forward operation region and the reverse operation region, the traveling vehicle speed at the time of forward movement or reverse movement becomes faster.
 主変速レバー7Aの操作位置は、ポテンショメータ40等の操作位置検出器により検出される。主変速レバー7Aの下端はレバー保持部42Aに固定される。ポテンショメータ40は、ステアリングシャフト(図示せず)を保護するシャフトカバー等に支持される。
ポテンショメータ40は軸40Aを備える。ギア42は、機体1に保持された軸41に沿って揺動可能な構成で支持される。ギア42は、主変速レバー7Aの操作位置に応じて軸41を中心に揺動する。
The operating position of the main speed change lever 7A is detected by an operating position detector such as a potentiometer 40. The lower end of the main speed change lever 7A is fixed to the lever holding portion 42A. The potentiometer 40 is supported by a shaft cover or the like that protects the steering shaft (not shown).
The potentiometer 40 includes a shaft 40A. The gear 42 is supported in a configuration capable of swinging along a shaft 41 held by the machine body 1. The gear 42 swings around the shaft 41 according to the operating position of the main speed change lever 7A.
 ポテンショメータ40の軸40Aには回転伝達部40Bの一端が固定され、回転伝達部40Bの回動に伴って軸40Aが回転する。回転伝達部40Bの他端部にはピン40Cが設けられる。また、ギア42は回転伝達部42Bを備える。回転伝達部42Bの先端部分には穴42Cが設けられる。回転伝達部40Bは、ピン40Cが穴42Cを貫通するように配置される。主変速レバー7Aの操作位置が変位すると、ギア42が揺動する。回転伝達部42Bおよび回転伝達部40Bを介して、ギア42の揺動に応じてポテンショメータ40の軸40Aが回転する。ポテンショメータ40は、この角度を検出することにより、主変速レバー7Aの操作位置を検出する。 One end of the rotation transmission unit 40B is fixed to the shaft 40A of the potentiometer 40, and the shaft 40A rotates as the rotation transmission unit 40B rotates. A pin 40C is provided at the other end of the rotation transmission portion 40B. Further, the gear 42 includes a rotation transmission unit 42B. A hole 42C is provided at the tip of the rotation transmission portion 42B. The rotation transmission unit 40B is arranged so that the pin 40C penetrates the hole 42C. When the operating position of the main speed change lever 7A is displaced, the gear 42 swings. The shaft 40A of the potentiometer 40 rotates in response to the swing of the gear 42 via the rotation transmission unit 42B and the rotation transmission unit 40B. The potentiometer 40 detects the operating position of the main speed change lever 7A by detecting this angle.
 また、主変速レバー7Aの操作範囲を規定するレバーガイド43がパワーステアリングユニット44に支持される。レバーガイド43には、主変速レバー7Aの操作範囲を規定する形状の穴部43Bが設けられる。レバー保持部42Aにはロッド43Aが固定される。ロッド43Aは穴部43Bを貫通する。以上の構成により、主変速レバー7Aは、レバーガイド43の穴部43Bにより、操作範囲が規定される。 Further, a lever guide 43 that defines the operating range of the main shifting lever 7A is supported by the power steering unit 44. The lever guide 43 is provided with a hole 43B having a shape that defines the operating range of the main speed change lever 7A. A rod 43A is fixed to the lever holding portion 42A. The rod 43A penetrates the hole 43B. With the above configuration, the operating range of the main speed change lever 7A is defined by the hole portion 43B of the lever guide 43.
 ギア42の一端の外周縁には、ギア42の揺動方向に沿って並ぶ複数の切欠き42Hが形成される。ギア42の揺動に伴って、いずれかの切欠き42Hが、パワーステアリングユニット44に支持される保持ピン42Iと係合する。切欠き42Hは、主変速レバー7Aが中立位置に操作されたときに保持ピン42Iと係合するものを挟んで、ギア42の揺動方向の両方にそれぞれ形成される。これらの切欠き42Hは、それぞれ、主変速レバー7Aが前進側に位置したときに保持ピン42Iと係合するものと、主変速レバー7Aが後進側に位置したときに保持ピン42Iと係合するものとに区別される。したがって、切欠き42Hは、中立位置に対応するものをはさんで、前進操作領域に対応するものと後進操作領域に対応するものが並んで配置される。 A plurality of notches 42H arranged along the swing direction of the gear 42 are formed on the outer peripheral edge of one end of the gear 42. As the gear 42 swings, one of the notches 42H engages the holding pin 42I supported by the power steering unit 44. The notch 42H is formed in both the swing directions of the gear 42, sandwiching the one that engages with the holding pin 42I when the main speed change lever 7A is operated to the neutral position. These notches 42H engage with the holding pin 42I when the main speed change lever 7A is located on the forward side and engage with the holding pin 42I when the main speed change lever 7A is located on the reverse side, respectively. Distinguished from things. Therefore, the notch 42H is arranged side by side with the one corresponding to the neutral position and the one corresponding to the forward operation area and the one corresponding to the reverse operation area side by side.
 いずれかの切欠き42Hと保持ピン42Iが係合することにより、主変速レバー7Aを操作する運転者は、操作位置に応じて一定の手ごたえを感じることができる。これにより、運転者が主変速レバー7Aを操作する際の目安となり、主変速レバー7Aの操作性が向上する。 By engaging any of the notches 42H and the holding pin 42I, the driver who operates the main speed change lever 7A can feel a certain response depending on the operation position. This serves as a guide when the driver operates the main shift lever 7A, and the operability of the main shift lever 7A is improved.
 従来から、運転者は走行車速を、主変速レバー7Aの段数で認識していた。段数は、例えば、1速、2速・・・のように変速段数として表現される。本実施形態では無段変速装置9を採用しているため段数という概念は存在しないが、上記のような手ごたえの有無から、運転者は疑似的に段数を認識することができ、従来からの操作性と比べて違和感を感じ難くなる。 Conventionally, the driver has recognized the traveling vehicle speed by the number of stages of the main speed change lever 7A. The number of gears is expressed as the number of gears, for example, 1st gear, 2nd gear, and so on. In this embodiment, since the continuously variable transmission 9 is adopted, the concept of the number of stages does not exist, but the driver can recognize the number of stages in a pseudo manner from the presence or absence of the above-mentioned response, and the conventional operation. It is harder to feel a sense of discomfort compared to sex.
 また、中立位置に対応する切欠き42Hは、他の切欠き42Hに比べて開口幅が広く形成されても良い。主変速レバー7Aの組付けや使用劣化により、主変速レバー7Aの中立位置が多少ずれたとしても、ある程度の幅を持って中立位置を規定することができ、主変速レバー7Aの操作性が向上する。 Further, the notch 42H corresponding to the neutral position may be formed with a wider opening width than the other notches 42H. Even if the neutral position of the main shift lever 7A deviates slightly due to the assembly or deterioration of use of the main shift lever 7A, the neutral position can be defined with a certain width, and the operability of the main shift lever 7A is improved. do.
 主変速レバー7Aの操作感を向上させるために、摩擦保持機構42D(「保持機構」に相当)や中立保持機構42Eが設けられても良い。摩擦保持機構42Dは、軸40Aの周囲の、軸40Aとギア42との間に設けられ、その摩擦力により、軸40Aに対してギア42が揺動する際の抵抗を生じさせる。摩擦保持機構42Dにより、主変速レバー7Aを操作する際に適度な抵抗が生じ、主変速レバー7Aを所望の操作位置に操作することが容易となる。なお、摩擦保持機構42Dはこのような構成に限らず、主変速レバー7Aの操作性を確保できる程度に、主変速レバー7Aの操作位置の移動に抵抗力を与えることができれば、任意の構成とすることができる。 In order to improve the operability of the main shift lever 7A, a friction holding mechanism 42D (corresponding to a "holding mechanism") or a neutral holding mechanism 42E may be provided. The friction holding mechanism 42D is provided between the shaft 40A and the gear 42 around the shaft 40A, and the frictional force causes resistance when the gear 42 swings with respect to the shaft 40A. The friction holding mechanism 42D generates an appropriate resistance when operating the main speed change lever 7A, and makes it easy to operate the main speed change lever 7A to a desired operation position. The friction holding mechanism 42D is not limited to such a configuration, and any configuration can be used as long as it can provide resistance to the movement of the operating position of the main shifting lever 7A to the extent that the operability of the main shifting lever 7A can be ensured. can do.
 中立保持機構42Eは、ギア42に固定されたロッド42Fと、ロッド42Fが挿通されるねじりコイルバネ42Gを備える。ねじりコイルバネ42Gは、一端がギア42に接し、他端がレバー保持部42Aの側部に接するように設けられ、ギア42が揺動する方向(主変速レバー7Aが前進操作領域または後進操作領域を移動する方向)と交差する方向にレバー保持部42Aを付勢する。ここで、レバーガイド43の穴部43Bがクランク状に形成されている場合、例えば、中立位置から前進位置に主変速レバー7Aが操作されるためには、主変速レバー7Aが中立位置からクランクに沿って横方向(ギア42が揺動する方向と交差する方向)に操作された後、前進位置に移動される必要がある。主変速レバー7Aが中立位置から前進領域に移動することを抑制する方向に、主変速レバー7Aが中立保持機構42Eによって付勢されるため、中立位置から前進領域に主変速レバー7Aを移動させるためには一定以上の力が必要になる。その結果、適切に主変速レバー7Aが中立位置に保持される。 The neutral holding mechanism 42E includes a rod 42F fixed to the gear 42 and a torsion coil spring 42G through which the rod 42F is inserted. The torsion coil spring 42G is provided so that one end is in contact with the gear 42 and the other end is in contact with the side portion of the lever holding portion 42A. The lever holding portion 42A is urged in the direction intersecting the moving direction). Here, when the hole 43B of the lever guide 43 is formed in a crank shape, for example, in order to operate the main shift lever 7A from the neutral position to the forward position, the main shift lever 7A moves from the neutral position to the crank. After being operated in the lateral direction (the direction in which the gear 42 intersects the swinging direction) along the line, it is necessary to move to the forward position. Since the main shift lever 7A is urged by the neutral holding mechanism 42E in the direction of suppressing the movement of the main shift lever 7A from the neutral position to the forward region, the main shift lever 7A is moved from the neutral position to the forward region. Requires a certain amount of force. As a result, the main shift lever 7A is properly held in the neutral position.
 無段変速装置9の斜板の角度は、主変速レバー7Aの操作位置に応じて変更される。主変速レバー7Aは機械的に無段変速装置9と接続されず、無段変速装置9の斜板の角度は、モータ45等から構成されるアクチュエータにより変更される。具体的には、無段変速装置9の斜板の角度を変更するためのアクチュエータは、モータ45、ギア48、およびリンク49を含んで構成される。モータ45によりギア48が駆動され、ギア48と無段変速装置9とに接続されるリンク49により、無段変速装置9の斜板の角度が変更される。無段変速装置9の斜板の角度は、ポテンショメータ46等の斜板角度検出器により検出され、ポテンショメータ40で検出した主変速レバー7Aの操作位置と無段変速装置9の斜板の角度との整合性が、上述の制御ユニット30等で確認される。つまり、制御ユニット30は、主変速レバー7Aの操作位置に対応する無段変速装置9の斜板の角度となるように、ポテンショメータ40およびポテンショメータ46の検出結果に基づいて、モータ45を制御する。 The angle of the swash plate of the continuously variable transmission 9 is changed according to the operating position of the main speed change lever 7A. The main shift lever 7A is not mechanically connected to the continuously variable transmission 9, and the angle of the swash plate of the continuously variable transmission 9 is changed by an actuator composed of a motor 45 or the like. Specifically, the actuator for changing the angle of the swash plate of the continuously variable transmission 9 includes a motor 45, a gear 48, and a link 49. The gear 48 is driven by the motor 45, and the angle of the swash plate of the continuously variable transmission 9 is changed by the link 49 connected to the gear 48 and the continuously variable transmission 9. The angle of the swash plate of the continuously variable transmission 9 is detected by a swash plate angle detector such as a potentiometer 46, and the operating position of the main speed change lever 7A detected by the potentiometer 40 and the angle of the swash plate of the continuously variable transmission 9 Consistency is confirmed by the control unit 30 and the like described above. That is, the control unit 30 controls the motor 45 based on the detection results of the potentiometer 40 and the potentiometer 46 so as to be the angle of the swash plate of the continuously variable transmission 9 corresponding to the operation position of the main shift lever 7A.
 ポテンショメータ46およびモータ45は、ステー47を介してパワーステアリングユニット44に支持される。ポテンショメータ46は軸46Aを備え、軸46Aの回転角度を検出することができる。 The potentiometer 46 and the motor 45 are supported by the power steering unit 44 via the stay 47. The potentiometer 46 includes a shaft 46A and can detect the rotation angle of the shaft 46A.
 ギア48は、軸46Aの回転に伴って搖動する構成で、軸46Aに固定される。モータ45は、ギア48を駆動して揺動させる。ギア48の揺動に伴ってポテンショメータ46の軸46Aが回転する。そのため、ポテンショメータ46はギア48の揺動角度を検出する。 The gear 48 has a configuration in which it swings as the shaft 46A rotates, and is fixed to the shaft 46A. The motor 45 drives the gear 48 to swing. The shaft 46A of the potentiometer 46 rotates as the gear 48 swings. Therefore, the potentiometer 46 detects the swing angle of the gear 48.
 ギア48の端部領域には、リンク49の一端が支持される。リンク49の他端は、無段変速装置9の斜板に接続される。そのため、ギア48の揺動に応じて、無段変速装置9の斜板の角度が変更される。より詳細には、リンク49は、ロッド49Aと操作部49Bとを備える。ロッド49Aの一端はギア48に支持される。操作部49Bの一端はロッド49Aの他端に支持され、操作部49Bの他端は無段変速装置9の斜板に接続される。 One end of the link 49 is supported in the end region of the gear 48. The other end of the link 49 is connected to the swash plate of the continuously variable transmission 9. Therefore, the angle of the swash plate of the continuously variable transmission 9 is changed according to the swing of the gear 48. More specifically, the link 49 includes a rod 49A and an operating portion 49B. One end of the rod 49A is supported by the gear 48. One end of the operation unit 49B is supported by the other end of the rod 49A, and the other end of the operation unit 49B is connected to the swash plate of the continuously variable transmission 9.
 以上の構成により、ポテンショメータ40の検出値に応じてモータ45が駆動し、ギア48が搖動し、リンク49により無段変速装置9の斜板の角度が変更される。 With the above configuration, the motor 45 is driven according to the detection value of the potentiometer 40, the gear 48 is oscillated, and the angle of the swash plate of the continuously variable transmission 9 is changed by the link 49.
 なお、上記構成例では、主変速レバー7Aとモータ45とが非連結とされ、主変速レバー7Aの操作位置をポテンショメータ40で検出し、ポテンショメータ40の検出値に応じてモータ45が駆動される構成である。しかし、このような構成に限らず、主変速レバー7Aとモータ45が直接接続され、主変速レバー7Aの操作位置に応じて、直接モータ45が駆動される構成としても良い。 In the above configuration example, the main speed change lever 7A and the motor 45 are not connected, the operating position of the main speed change lever 7A is detected by the potentiometer 40, and the motor 45 is driven according to the detected value of the potentiometer 40. Is. However, the configuration is not limited to such a configuration, and the main shift lever 7A and the motor 45 may be directly connected, and the motor 45 may be directly driven according to the operating position of the main shift lever 7A.
 また、主変速レバー7Aとモータ45とが非連結である構成において、自動走行において、主変速レバー7Aの操作位置にかかわらず、モータ45を駆動して無段変速装置9の斜板の角度を変更することができる。機体1は無段変速装置9の斜板の角度に応じた走行状態で走行する。この際、主変速レバー7Aにもモータ等のアクチュエータが設けられ、無段変速装置9の斜板の角度に応じて、主変速レバー7Aの操作位置が変更されても良い。主変速レバー7Aは、中立位置においてクランク状に操作される。つまり、主変速レバー7Aの操作経路はクランク状に規制され、主変速レバー7Aは、前後進の切り替えの際に、中立位置で前後進方向と交差される方向に移動する。そのため、このアクチュエータが主変速レバー7Aと接続されていると、主変速レバー7Aが中立位置をまたいで前進側と後進側との間を移動できない。そのため主変速レバー7Aとこのアクチュエータとの間にクラッチが設けられ、中立位置ではクラッチが切れて、主変速レバー7Aを左右方向に操作できる機構にしても良い。さらに、主変速レバー7Aを左右方向に移動させる別のアクチュエータが設けられ、中立位置でのみクラッチの切替で左右方向に主変速レバー7Aを移動させる構成としても良い。また、主変速レバー7Aを中立位置から前進側に移動させるアクチュエータと、主変速レバー7Aを中立位置から後進側に移動させるアクチュエータとが、別々に設けられても良い。なお、これらのアクチュエータおよびクラッチは、制御ユニット30または、制御ユニット30に内蔵された主変速レバー制御部、あるいは、制御ユニット30の外部に設けられる主変速レバー制御部により、ポテンショメータ46にて検知される無段変速装置9の斜板の角度に応じて制御される。 Further, in the configuration in which the main speed change lever 7A and the motor 45 are not connected, the motor 45 is driven to adjust the angle of the swash plate of the continuously variable transmission 9 in automatic traveling regardless of the operating position of the main speed change lever 7A. Can be changed. The machine body 1 travels in a traveling state according to the angle of the swash plate of the continuously variable transmission 9. At this time, an actuator such as a motor may be provided on the main speed change lever 7A, and the operation position of the main speed change lever 7A may be changed according to the angle of the swash plate of the continuously variable transmission device 9. The main speed change lever 7A is operated in a crank shape in the neutral position. That is, the operation path of the main speed change lever 7A is regulated in a crank shape, and the main speed change lever 7A moves in a neutral position in a direction intersecting the forward / backward movement direction when switching between forward / backward movement. Therefore, when this actuator is connected to the main speed change lever 7A, the main speed change lever 7A cannot move between the forward side and the reverse side across the neutral position. Therefore, a clutch may be provided between the main shift lever 7A and this actuator, and the clutch may be disengaged at the neutral position so that the main shift lever 7A can be operated in the left-right direction. Further, another actuator for moving the main shift lever 7A in the left-right direction may be provided, and the main shift lever 7A may be moved in the left-right direction by switching the clutch only in the neutral position. Further, an actuator for moving the main shift lever 7A from the neutral position to the forward side and an actuator for moving the main shift lever 7A from the neutral position to the reverse side may be provided separately. These actuators and clutches are detected by the potentiometer 46 by the control unit 30, the main shift lever control unit built in the control unit 30, or the main shift lever control unit provided outside the control unit 30. It is controlled according to the angle of the swash plate of the continuously variable transmission 9.
 上述のように、主変速レバー7Aとモータ45とが非連結であり、無段変速装置9の斜板の角度がモータ45の駆動によって変更される構成であると、モータ45が故障した際、無段変速装置9の斜板の角度を変更する術がなく、機体1を移動させることができなくなる。例えば、圃場の途中でモータ45が故障したとしても、機体1を移動させることができないと、修理を圃場内で行うことになり、非常に困難である。 As described above, if the main speed change lever 7A and the motor 45 are not connected and the angle of the swash plate of the continuously variable transmission 9 is changed by driving the motor 45, when the motor 45 fails, There is no way to change the angle of the swash plate of the continuously variable transmission 9, and the machine body 1 cannot be moved. For example, even if the motor 45 breaks down in the middle of the field, if the machine 1 cannot be moved, repairs will be performed in the field, which is very difficult.
 そのため、所定のロッドを応急器具(図示せず)としてあらかじめ用意しておき、主変速レバー7Aと無段変速装置9の斜板とを直結できるようにすることが好ましい。例えば、応急器具は、ロッド43Fとギア48とを直結できる構成とし、好ましくは、機体1に常時装備する。応急器具でロッド43Fとギア48とを直結することにより、主変速レバー7Aの操作位置に応じてギア48が駆動し、無段変速装置9の斜板の角度を変更することが可能となる。 Therefore, it is preferable to prepare a predetermined rod as an emergency device (not shown) in advance so that the main shift lever 7A and the swash plate of the continuously variable transmission 9 can be directly connected. For example, the emergency equipment has a configuration in which the rod 43F and the gear 48 can be directly connected, and is preferably always equipped on the airframe 1. By directly connecting the rod 43F and the gear 48 with an emergency device, the gear 48 is driven according to the operating position of the main transmission lever 7A, and the angle of the swash plate of the continuously variable transmission 9 can be changed.
 また、上記構成例では、モータ45、ギア48、およびリンク49を含んで構成される、斜板の角度を変更するためのアクチュエータは、主変速レバー7Aと無段変速装置9との間に配置される構成である。しかし、このアクチュエータの配置位置は任意であり、機体1内のステップ14Aより下方の領域に配置されても良い。 Further, in the above configuration example, the actuator for changing the angle of the swash plate, which includes the motor 45, the gear 48, and the link 49, is arranged between the main transmission lever 7A and the continuously variable transmission 9. It is a configuration to be done. However, the position of the actuator is arbitrary, and the actuator may be placed in a region below step 14A in the machine body 1.
 走行車速は、メインモニタ14Bや情報端末5等の表示装置に表示されても良い。この場合、走行車速が変速段数で表示されても良い。また、自動走行において、情報端末5等を用いて、あらかじめ作業時の走行車速を運転者が選択して設定されるが、この際の走行車速が変速段数により設定されても良い。これにより、運転者や監視者は、走行車速を感覚的に認識することができ、効率的に作業または設定を行うことができる。 The traveling vehicle speed may be displayed on a display device such as the main monitor 14B or the information terminal 5. In this case, the traveling vehicle speed may be displayed by the number of gears. Further, in automatic driving, the driver selects and sets the traveling vehicle speed at the time of work in advance by using the information terminal 5 or the like, but the traveling vehicle speed at this time may be set by the number of gears. As a result, the driver and the observer can intuitively recognize the traveling vehicle speed, and can efficiently perform work or setting.
 また、手動走行あるいは有人の自動走行において、作業走行中に作業内容に応じた推奨走行車速が情報端末5等の表示装置に表示されても良い。作業内容として、畔越え時の走行、植付中の走行、旋回前の走行、旋回中の走行、旋回後の走行には、それぞれ適した走行車速がある。このような作業走行中、あるいは直前に、作業内容に応じた推奨走行車速が表示されることにより、運転者は、容易に作業内容に適した走行車速で作業走行を行うことができる。 Further, in manual driving or manned automatic driving, the recommended traveling vehicle speed according to the work content may be displayed on a display device such as the information terminal 5 during the work driving. As the work contents, there are suitable traveling vehicle speeds for traveling over the shore, traveling during planting, traveling before turning, traveling during turning, and traveling after turning. By displaying the recommended traveling vehicle speed according to the work content during or immediately before such work traveling, the driver can easily perform the work traveling at a traveling vehicle speed suitable for the work content.
 推奨走行車速に限らず、作業内容に応じた推奨エンジン回転数が表示されても良い。エンジン回転数は、メインモニタ14B等の表示装置に表示される。作業内容によってエンジン負荷が異なり、エンジン負荷はエンジン回転数に依存する。運転者は、表示された推奨エンジン回転数となるように、メインモニタ14Bに表示されたエンジン回転数を確認しながら、主変速レバー7A等を操作する。これにより、運転者は、容易に作業内容に適したエンジン回転数で作業走行を行うことができる。 Not limited to the recommended running vehicle speed, the recommended engine speed may be displayed according to the work content. The engine speed is displayed on a display device such as the main monitor 14B. The engine load differs depending on the work content, and the engine load depends on the engine speed. The driver operates the main speed change lever 7A and the like while checking the engine speed displayed on the main monitor 14B so that the recommended engine speed is displayed. As a result, the driver can easily perform the work running at the engine speed suitable for the work content.
 上述のように、植付作業は、植付クラッチ(図示せず)が伝動状態に移行されることにより植付機構22が作動して行われる。植付機構22の動作速度は走行車速に応じて決まり、株間が一定になるように植付作業が行われる。そのため、植付作業中に植付クラッチが停止しているにもかかわらず、走行が継続されると、その間に植え付けられるべき苗が植え付けられず、欠株が生じる。欠株の発生を抑制するため、植付作業中に植付クラッチが遮断状態になると、無段変速装置9の斜板の角度を中立位置に移行させ、作業走行を停止する構成としても良い。機体1を停止させる際には、あらかじめ機体1を停止させる旨の警告が行われても良い。また、機体1を停車させる際には、急激に減速せず、機体が停車するまで徐々に減速が行われることが好ましい。 As described above, the planting operation is performed by operating the planting mechanism 22 when the planting clutch (not shown) is shifted to the transmission state. The operating speed of the planting mechanism 22 is determined according to the traveling vehicle speed, and the planting work is performed so that the distance between the stocks is constant. Therefore, if the running is continued even though the planting clutch is stopped during the planting work, the seedlings to be planted during that period are not planted, resulting in a stock shortage. In order to suppress the occurrence of stock shortage, when the planting clutch is engaged during the planting work, the angle of the swash plate of the continuously variable transmission 9 may be shifted to the neutral position to stop the work running. When stopping the aircraft 1, a warning to stop the aircraft 1 may be given in advance. Further, when the airframe 1 is stopped, it is preferable that the airframe 1 is not suddenly decelerated, but is gradually decelerated until the airframe is stopped.
 車速を操作する操作具として、さらに、アクセルレバー7Fが設けられても良い。走行車速は、主に主変速レバー7Aの操作位置に応じて、無段変速装置9の斜板の角度とエンジン回転数とでスケジュールされるマップに即して制御される。ここで、圃場の状態や作業状況により、走行車速を維持しながらエンジン回転数のみを上げたい場合や、燃費等を考慮してエンジン回転数を下げたい場合がある。このような場合、アクセルレバー7Fによりエンジン回転数が増減される。具体的には、アクセルレバー7Fの操作位置を変更することにより、無段変速装置9の斜板の角度が維持されながら、エンジン回転数のみを現在のエンジン回転数から増減させることができる。さらに、アクセルレバー7Fの操作位置を検知するポテンショメータ(「アクセル検出器」に相当)が設けられても良い。 An accelerator lever 7F may be further provided as an operating tool for controlling the vehicle speed. The traveling vehicle speed is mainly controlled according to the operating position of the main speed change lever 7A according to the map scheduled by the angle of the swash plate of the continuously variable transmission 9 and the engine speed. Here, depending on the state of the field and the working conditions, there are cases where it is desired to increase only the engine speed while maintaining the traveling vehicle speed, or there are cases where it is desired to decrease the engine speed in consideration of fuel efficiency and the like. In such a case, the engine speed is increased or decreased by the accelerator lever 7F. Specifically, by changing the operating position of the accelerator lever 7F, only the engine speed can be increased or decreased from the current engine speed while maintaining the angle of the swash plate of the continuously variable transmission 9. Further, a potentiometer (corresponding to "accelerator detector") for detecting the operating position of the accelerator lever 7F may be provided.
 上述のように、基本的には、主変速レバー7Aのポテンショメータ40の検出値に応じてエンジン回転数が決定される。ただし、このように決定されたエンジン回転数にかかわらず、アクセルレバー7Fのポテンショメータの検出値に応じて、このエンジン回転数は増減する。例えば、主変速レバー7Aのポテンショメータ40の検出値に応じて決定されたエンジン回転数で走行している際に、アクセルレバー7Fがエンジン回転数を上昇させる方向に操作されるとエンジン回転数は増大し、このエンジン回転数がアクセルレバー7Fで指示された最低限必要な指示回転数となる。 As described above, basically, the engine speed is determined according to the detection value of the potentiometer 40 of the main speed change lever 7A. However, regardless of the engine speed determined in this way, the engine speed increases or decreases according to the detection value of the potentiometer on the accelerator lever 7F. For example, when the engine speed is determined according to the detection value of the potentiometer 40 of the main speed change lever 7A and the accelerator lever 7F is operated in the direction of increasing the engine speed, the engine speed increases. Then, this engine speed becomes the minimum required speed indicated by the accelerator lever 7F.
〔旋回時の走行車速制御〕
 内部往復経路IPL(図4参照)の旋回走行を自動走行で行う際には、旋回走行時には、直進状経路での作業走行時(直進状走行)より走行車速が減速される。つまり、旋回走行は直進状走行より低速で走行される。旋回走行における走行車速はあらかじめ定められており(旋回車速)、主変速レバー7Aの操作位置にかかわらず旋回車速で走行する。
[Traveling vehicle speed control when turning]
When the internal reciprocating route IPL (see FIG. 4) is automatically turned, the traveling vehicle speed is reduced during the turning run than during the work running on the straight path (straight running). That is, the turning running is slower than the straight running. The traveling vehicle speed in the turning vehicle is predetermined (turning vehicle speed), and the vehicle travels at the turning vehicle speed regardless of the operating position of the main speed change lever 7A.
 そのため、旋回経路に侵入する位置(旋回開始位置)から所定の距離だけ手前の位置で減速が開始される。ここで、直進状経路での作業走行における走行車速は、情報端末5等により設定される。例えば、自動走行の設定において、情報端末5を用いて、自動走行中の最大走行車速である最高車速が設定される。最高車速が設定されると、自動走行中の主変速レバー7A(図1参照)の操作位置にかかわらず、設定された最高車速より低速で走行が行われる。減速開始位置は、旋回開始位置よりあらかじめ定められた所定の距離だけ手前の位置でも良いが、走行車速に応じて異なる位置となっても良い。つまり、旋回経路の手前に設けられる減速区間の長さは、走行車速に応じて可変であっても良い。また、有人自動モードでは、情報端末5による設定車速を主変速レバー7Aで変更可能にし、変更された設定車速に基づき旋回車速が設定されても良い。 Therefore, deceleration is started at a position in front of the position where the vehicle enters the turning path (turning start position) by a predetermined distance. Here, the traveling vehicle speed in the work traveling on the straight route is set by the information terminal 5 or the like. For example, in the setting of automatic driving, the maximum vehicle speed, which is the maximum traveling vehicle speed during automatic driving, is set by using the information terminal 5. When the maximum vehicle speed is set, the vehicle travels at a speed lower than the set maximum vehicle speed regardless of the operating position of the main speed change lever 7A (see FIG. 1) during automatic traveling. The deceleration start position may be a position in front of the turning start position by a predetermined distance, but may be a different position depending on the traveling vehicle speed. That is, the length of the deceleration section provided in front of the turning path may be variable according to the traveling vehicle speed. Further, in the manned automatic mode, the vehicle speed set by the information terminal 5 may be changed by the main speed change lever 7A, and the turning vehicle speed may be set based on the changed set vehicle speed.
 例えば、走行車速が速いほど減速区間が長く設定され、旋回開始位置より離れた位置から減速が開始される。走行車速は、実際に測定された走行車速を用いても良いし、情報端末5等により設定された走行車速を用いても良い。 For example, the faster the traveling vehicle speed, the longer the deceleration section is set, and the deceleration starts from a position farther from the turning start position. As the traveling vehicle speed, the actually measured traveling vehicle speed may be used, or the traveling vehicle speed set by the information terminal 5 or the like may be used.
 自動走行として、有人自動走行と無人自動走行とが設定可能である。有人自動走行は必ず運転者が搭乗するが、無人自動走行では運転者が搭乗する必要がなく、実際、運転者が搭乗しない状態で作業走行が行われることがある。運転者が搭乗している場合、急激な減速が行われると、運転者の不快感が大きくなり、不適切である。他方、走行速度の加減速を、作業走行に支障がない範囲で急激に行う方が、作業効率の観点では有効である。そのため、減速開始位置を、有人自動走行の際と無人自動走行の際とで異ならせることが好ましい。なお、この際の減速は主変速レバー7A(図6参照)の操作位置にかかわらず行われる。そのため、走行車速が変更されても、主変速レバー7Aの操作位置は変更されない構成であっても良い。 As automatic driving, manned automatic driving and unmanned automatic driving can be set. In manned automatic driving, the driver is always on board, but in unmanned automatic driving, the driver does not need to be on board, and in fact, work driving may be performed without the driver on board. When the driver is on board, sudden deceleration increases the driver's discomfort and is inappropriate. On the other hand, it is more effective from the viewpoint of work efficiency to rapidly accelerate or decelerate the running speed within a range that does not interfere with the working running. Therefore, it is preferable that the deceleration start position is different between the manned automatic driving and the unmanned automatic driving. The deceleration at this time is performed regardless of the operating position of the main speed change lever 7A (see FIG. 6). Therefore, the operating position of the main speed change lever 7A may not be changed even if the traveling vehicle speed is changed.
 有人自動走行の際には、減速区間が長く設定されて旋回開始位置より離れた位置から減速が開始されることが好ましい。これに加えて、無人自動走行の際には、減速区間が短く設定されて旋回開始位置に近い位置から減速が開始されることが好ましい。このような制御により、無人自動走行時には効率的に作業走行を行うことができ、有人自動走行時には運転者にとっても適切な作業走行を行うことができる。なお、減速開始位置の調整は、有人自動走行の際にのみ行い、無人自動走行の際には、あらかじめ定められた減速開始位置から減速を行う構成とすることもできる。また、苗補給辺SL側では減速区間が余裕をもって確保され、苗補給辺SL以外の辺での旋回時の減速開始位置を苗補給辺SL側より旋回開始位置に近い位置としても良い。 During manned automatic driving, it is preferable that the deceleration section is set long and deceleration is started from a position far from the turning start position. In addition to this, in the case of unmanned automatic driving, it is preferable that the deceleration section is set short and deceleration is started from a position close to the turning start position. With such control, it is possible to efficiently perform work driving during unmanned automatic driving, and it is possible for the driver to perform appropriate work driving during manned automatic driving. The deceleration start position may be adjusted only during manned automatic driving, and deceleration may be performed from a predetermined deceleration start position during unmanned automatic driving. Further, a deceleration section is secured with a margin on the seedling supply side SL side, and the deceleration start position at the time of turning on a side other than the seedling supply side SL may be a position closer to the turning start position than the seedling supply side SL side.
 減速開始位置の調整を行う際に、調整効率を設定することが可能な構成としても良い。
つまり、減速度を設定可能な構成とし、急激な減速を許容する設定にされた場合は減速区間が短くなるように減速開始位置が調整され、緩やかに減速するように設定にされた場合は減速区間が長くなるように減速開始位置が調整されても良い。これにより、状況に応じた適切な自動走行を選択することができる。
The adjustment efficiency may be set when adjusting the deceleration start position.
In other words, the deceleration can be set, and the deceleration start position is adjusted so that the deceleration section becomes shorter when it is set to allow sudden deceleration, and when it is set to decelerate slowly, it decelerates. The deceleration start position may be adjusted so that the section becomes longer. As a result, it is possible to select an appropriate automatic driving according to the situation.
 減速開始位置に近づいた際に、運転者に減速が開始されることが報知されても良い。例えば、情報端末5にその旨の表示が行われたり、音声により報知されたりすることができる。報知が行われることにより、運転者は減速に備えることができる。 When approaching the deceleration start position, the driver may be notified that deceleration will start. For example, the information terminal 5 can be displayed to that effect or can be notified by voice. By providing the notification, the driver can prepare for deceleration.
 上記のような減速開始位置の調整を行うか否かは、有人自動走行に設定されているか無人自動走行に設定されているかにより判断される場合に限らず、運転者が実際に搭乗しているか否かを判断して行っても良い。無人自動走行でも運転者が搭乗している場合には運転者の不快感を考慮することが適切であり、実際に運転者が搭乗していない場合に限り作業効率に重点を置くことが好ましい。 Whether or not to adjust the deceleration start position as described above is not limited to the case where it is determined by whether it is set to manned automatic driving or unmanned automatic driving, and whether the driver is actually on board. You may decide whether or not to do so. Even in unmanned autonomous driving, it is appropriate to consider the driver's discomfort when the driver is on board, and it is preferable to focus on work efficiency only when the driver is not actually on board.
 そのため、運転者が実際に搭乗しているか否かが判断され、搭乗していない場合には所定の位置から減速を開始し、搭乗している場合にのみ減速開始位置の調整が行われても良い。例えば、運転者が実際に搭乗しているか否かの判断は、運転座席16(図1参照)に設けられる着座センサ16A(図1)や人感センサ等(図5に示すセンサ群1Aの1つ)により行うことができる。他にも、運転者が保持するウェアラブル端末やスマートフォンの位置情報を検出し、この位置情報から検出された運転者の位置と機体1の位置とが所定の範囲内にあるか否かにより、運転者が実際に搭乗しているか否かが判断されても良い。 Therefore, it is determined whether or not the driver is actually on board, and if the driver is not on board, deceleration is started from a predetermined position, and even if the deceleration start position is adjusted only when the driver is on board. good. For example, it is determined whether or not the driver is actually on board, such as a seating sensor 16A (FIG. 1) provided in the driver's seat 16 (see FIG. 1), a motion sensor, or the like (one of the sensor group 1A shown in FIG. 5). It can be done by one). In addition, the position information of the wearable terminal or smartphone held by the driver is detected, and the driver's position and the position of the aircraft 1 detected from the position information are within a predetermined range for driving. It may be determined whether or not the person is actually on board.
 なお、有人自動走行においては、運転者が搭乗する必要がある。そのため、着座センサ16A等を備えて運転者が搭乗しているか否かを判断する。そして、運転者が搭乗していることが検知されることが、有人自動走行の開始条件とされる。また、有人自動走行において、運転者が搭乗していることが検知されない場合、運転者に着座(搭乗)をうながす警報が報知されても良い。この際、情報端末5にも警告が表示されても良い。また、これらの警告は、無人自動走行においても行われても良い。無人自動走行において行われる警告は、着座を促すことは要さず、単に運転者が着座していないことを報知するだけでも良い。また、運転者が着座いていないことを検知した場合、走行車速を減速したり、走行を停止したりする構成としても良い。機体1を減速・停車させる際には、あらかじめその旨の警告が報知されても良い。また、機体1を停車させる際には、急激に停車させず、徐々に減速して機体1を停車させることが好ましい。その後、運転者が着座したことを検出すると、走行を開始したり、走行車速を戻したりしても良い。これらの制御は、自動走行の際に限らず、手動走行の際に行われても良い。 In addition, in manned autonomous driving, it is necessary for the driver to board. Therefore, it is determined whether or not the driver is on board by providing the seating sensor 16A and the like. Then, it is a condition for starting manned automatic driving that it is detected that the driver is on board. Further, in manned automatic driving, when it is not detected that the driver is on board, an alarm prompting the driver to sit down (boarding) may be notified. At this time, a warning may also be displayed on the information terminal 5. Further, these warnings may be given even in unmanned automatic driving. The warning given in unmanned autonomous driving does not need to prompt the driver to sit down, but may merely notify that the driver is not seated. Further, when it is detected that the driver is not seated, the traveling vehicle speed may be reduced or the traveling may be stopped. When decelerating or stopping the aircraft 1, a warning to that effect may be notified in advance. Further, when stopping the airframe 1, it is preferable that the airframe 1 is stopped by gradually decelerating without stopping suddenly. After that, when it is detected that the driver is seated, the driving may be started or the traveling vehicle speed may be returned. These controls are not limited to automatic driving, but may be performed during manual driving.
 また、運転者が着座いていないことを検知した場合、自動走行の開始や、一時停止後の自動走行の再開を行わない構成としても良い。例えば、有人自動走行の開始条件として着座センサ16Aが着座を検出していることを規定しても良い。この場合、有人自動走行の開始時に、着座センサ16Aが着座を検出していない場合、着座を求める報知を行っても良い。報知は音声や情報端末5への表示等により行う。さらに、作業走行における最高車速が設定されている場合、着座が確認できないと設定された最高車速を低減することもでき、着座が確認されている場合には、設定された最高車速を超えて作業走行を行うことが可能な構成にすることもできる。 Further, when it is detected that the driver is not seated, the automatic driving may not be started or the automatic driving may not be restarted after the temporary stop. For example, it may be specified that the seating sensor 16A detects seating as a condition for starting manned automatic driving. In this case, if the seating sensor 16A does not detect seating at the start of manned automatic driving, a notification requesting seating may be performed. The notification is performed by voice, display on the information terminal 5, or the like. Furthermore, when the maximum vehicle speed in work driving is set, the maximum vehicle speed set when seating cannot be confirmed can be reduced, and when seating is confirmed, the work exceeds the set maximum vehicle speed. It can also be configured so that it can run.
 また、無人自動走行において、運転者が搭乗する必要はないが、運転者が搭乗してはいけない訳ではない。ただし、無人自動走行は有人自動走行に比べて、走行車速が速く制御され、また、加減速も急峻に行われる。そのため、無人自動走行において、着座センサ16A等により運転者が運転座席16に着座していることが検知された後、運転者が立ち上がる等して着座が検知されなくなった場合、着座を促す報知が行われても良い。さらに、離席が検知されると自動走行が一時停止され、着座が確認されるまで、自動走行が再開されないように制御されても良い。 Also, in unmanned autonomous driving, it is not necessary for the driver to board, but this does not mean that the driver should not board. However, in unmanned automatic driving, the traveling vehicle speed is controlled faster than in manned automatic driving, and acceleration / deceleration is also performed steeply. Therefore, in unmanned automatic driving, after the driver is detected to be seated in the driver's seat 16 by the seating sensor 16A or the like, if the driver stands up and the seating is not detected, a notification prompting the driver to sit is issued. It may be done. Further, when the departure from the seat is detected, the automatic driving is temporarily stopped, and the automatic driving may be controlled so as not to be restarted until the seating is confirmed.
 この他、有人自動走行あるいは無人自動走行において、旋回や後進が開始される際にも、運転者が着座しているか否かが確認され、着座していない際には、情報端末5への表示、ブザー等の発報、その他の警告により、着座が促されても良い。この際、機体1が減速あるいは停止されても良いが、作業者の利便性を考慮して、必ずしも機体1が減速あるいは停止されなくても良い。 In addition, in manned automatic driving or unmanned automatic driving, it is confirmed whether or not the driver is seated even when turning or reverse movement is started, and when not seated, a display is displayed on the information terminal 5. , A buzzer, or other warning may prompt you to sit down. At this time, the machine body 1 may be decelerated or stopped, but the machine body 1 does not necessarily have to be decelerated or stopped in consideration of the convenience of the operator.
 上述のように、旋回開始位置において、主変速レバー7A(図1参照)の操作位置や、情報端末5等で設定された走行車速にかかわらず、旋回開始位置にて減速するように走行速度が調整される。このような、走行状況に応じた走行車速の制御は、旋回開始位置に限らず、畦際等の圃場の外周辺の近傍を走行する際等にも行われて良い。 As described above, at the turning start position, the traveling speed is set so as to decelerate at the turning start position regardless of the operating position of the main speed change lever 7A (see FIG. 1) and the traveling vehicle speed set by the information terminal 5 or the like. It will be adjusted. Such control of the traveling vehicle speed according to the traveling condition may be performed not only at the turning start position but also when traveling in the vicinity of the outer periphery of the field such as a ridge.
 圃場の耕盤が荒れている場合、走行経路を適切に走行できず、作業が適切に行われない場合がある。例えば、植付作業の場合、適切な走行経路上に、適切な条間で植え付けを行うことができず、植付不良が生じる場合がある。このような作業不良を抑制するため、耕盤が荒れている場合には、制御ユニット30は、植付不良が生じる可能性があることを報知させても良いし、走行車速を抑制するように制御しても良い。耕盤の荒れは機体1の移動等から検出することができ、例えば、作業リンクから作業装置のロールまたはピッチング方向の挙動を検出して判断できるし、フロートの揺動を検出して判断できるし、慣性計測モジュール8Bから機体1の傾きの変化を検出して判断することもできる。 If the cultivated board in the field is rough, it may not be possible to drive properly on the travel route and the work may not be performed properly. For example, in the case of planting work, it may not be possible to plant between appropriate rows on an appropriate traveling route, resulting in poor planting. In order to suppress such work defects, when the tillage board is rough, the control unit 30 may notify that a planting defect may occur, or suppress the traveling vehicle speed. You may control it. Roughness of the tillage board can be detected from the movement of the machine body 1, for example, the behavior of the work device in the roll or pitching direction can be detected and determined from the work link, and the swing of the float can be detected and determined. , It is also possible to detect and judge the change in the inclination of the airframe 1 from the inertial measurement module 8B.
 自動走行においては、自動制御で旋回が行われ、自動制御で前進と後進との切り替えが行われる。旋回や進行方向の切り替えの際には、機体1が揺れ、運転者にショックが伝わり、ショックに備えることが適切である。そこで、旋回や進行方向の切り替えの際に、その旨を注意喚起したり、着座を促したりする報知が行われても良い。なお、報知は、情報端末5に表示されたり、リモコン90に表示されたり、メインモニタ14B(図2参照)に表示されたり、後述されるボイスアラーム発生装置100(図1参照)により報知されたり、積層灯71が点灯されたり、種々の方法で行われることができる。 In automatic driving, turning is performed by automatic control, and switching between forward and reverse is performed by automatic control. When turning or switching the traveling direction, it is appropriate to prepare for the shock by shaking the aircraft 1 and transmitting the shock to the driver. Therefore, when turning or switching the direction of travel, a notification to that effect or a reminder to sit down may be given. The notification may be displayed on the information terminal 5, the remote controller 90, the main monitor 14B (see FIG. 2), or the voice alarm generator 100 (see FIG. 1) described later. , The laminated lamp 71 can be turned on, or can be performed by various methods.
 着座センサ16Aは運転座席16(図1参照)内に設けられても良い。着座センサ16Aは、制御ユニット30等の制御用ECUとの間で信号の送受信が行われるため、信号配線や電源配線等の配線類が接続される場合がある。また、運転座席16は、座面に交差する方向の軸を中心に回動可能に構成されることがある。運転座席16が回動する場合、着座センサ16Aに接続される配線類が、運転座席16の回転軸等と接触し、あるいは絡み、破損する場合がある。配線類の破損を抑制するために、配線類は、運転座席16の回動支点である回転軸付近に沿って配置され、回動部付近にクランプされることが好ましい。
また、着座センサ16Aは、例えば、圧力センサ等が用いられ、着座が確認できれば任意の構成であっても良い。
The seating sensor 16A may be provided in the driver's seat 16 (see FIG. 1). Since the seating sensor 16A transmits and receives signals to and from the control ECU such as the control unit 30, wirings such as signal wiring and power supply wiring may be connected. Further, the driver's seat 16 may be configured to be rotatable about an axis in a direction intersecting the seat surface. When the driver's seat 16 rotates, the wirings connected to the seating sensor 16A may come into contact with, get entangled with, or be damaged by the rotation shaft or the like of the driver's seat 16. In order to suppress damage to the wirings, it is preferable that the wirings are arranged along the vicinity of the rotation axis, which is the rotation fulcrum of the driver's seat 16, and are clamped in the vicinity of the rotation portion.
Further, the seating sensor 16A may have an arbitrary configuration as long as a pressure sensor or the like is used and the seating can be confirmed.
〔エンジン回転数制御〕
 エンジン回転数は、手動走行においては主変速レバー7A(図1参照)の操作位置に応じ、自動走行においては自動走行ECU(図5の制御ユニット30等に相当または内蔵)の制御に応じて、エンジン回転数制御用マイコン(図5の制御ユニット30等に相当または内蔵)が、モータ45(図6参照)を駆動することにより制御される。
[Engine speed control]
The engine speed is determined according to the operating position of the main speed change lever 7A (see FIG. 1) in manual driving, and according to the control of the automatic driving ECU (corresponding to or built in the control unit 30 in FIG. 5) in automatic driving. The engine speed control microcomputer (corresponding to or built in the control unit 30 of FIG. 5) is controlled by driving the motor 45 (see FIG. 6).
 さらに、エンジン回転数制御用マイコンは、燃料タンク中の燃料の残量が所定の量以下になった場合、エンジン回転数または無段変速装置9(図6参照)の斜板の角度の少なくともいずれかを制御し、燃費効率の向上を図っても良い。例えば、燃費効率の向上を図るために、エンジン回転数制御用マイコンは、無段変速装置9の斜板の角度を高速側に変位させると共に、エンジン回転数を低減させる。燃料の残量は、例えば、燃料タンク中にセンサ等(図5に示すセンサ群1Aの1つ)を設け、このセンサ等により検出することができる。なお、無段変速装置9の斜板の角度は、専用の変速装置制御用マイコン(図5の制御ユニット30等に相当または内蔵)により制御されても良い。 Further, when the remaining amount of fuel in the fuel tank becomes equal to or less than a predetermined amount, the engine speed control microcomputer has at least one of the engine speed and the angle of the swash plate of the stepless transmission 9 (see FIG. 6). It may be controlled to improve the fuel efficiency. For example, in order to improve fuel efficiency, the engine speed control microcomputer shifts the angle of the swash plate of the continuously variable transmission 9 to the high speed side and reduces the engine speed. The remaining amount of fuel can be detected by, for example, providing a sensor or the like (one of the sensor group 1A shown in FIG. 5) in the fuel tank and using the sensor or the like. The angle of the swash plate of the continuously variable transmission 9 may be controlled by a dedicated transmission control microcomputer (corresponding to or built in the control unit 30 or the like in FIG. 5).
 田植機が畦越えを行うときやトラックの荷台に移動する際には、走行車速は低速でありながら、エンジン回転数を維持するために大きな駆動力が必要となる。そのため、田植機が畦越えを行うときやトラックの荷台に移動する際には、主変速レバー7A(図1参照)の操作位置や、アクセルレバー7F(図2参照)の操作位置、情報端末5等で設定された走行車速にかかわらず、無段変速装置9(図1参照)を低速側に変位させ、エンジン回転数を高めに設定することが好ましい。この際、主変速レバー7A等の操作位置にかかわらず、無段変速装置9の斜板の角度やエンジン回転数が調整されても良い。なお、田植機が畦越えを行うときやトラックの荷台に移動する状態であることの検出は、機体1の傾斜等を検出して判断することもでき、あるいは、操作具の一つとして畦越えモードスイッチ(図示せず)を設けて、手動で畦越えモードスイッチを操作して、田植機が畦越えを行うときやトラックの荷台に移動する状態であるとの設定を行っても良い。または、搭載した測位ユニット8が検出する機体1の高さ位置の変化から状態検出を行っても良い。 When the rice transplanter crosses the ridge or moves to the truck bed, a large driving force is required to maintain the engine speed while the traveling vehicle speed is low. Therefore, when the rice transplanter crosses the ridge or moves to the truck bed, the operation position of the main shift lever 7A (see FIG. 1), the operation position of the accelerator lever 7F (see FIG. 2), and the information terminal 5 Regardless of the traveling vehicle speed set by the above, it is preferable to displace the continuously variable transmission 9 (see FIG. 1) to the low speed side and set the engine speed higher. At this time, the angle of the swash plate of the continuously variable transmission 9 and the engine speed may be adjusted regardless of the operating position of the main speed change lever 7A or the like. It should be noted that when the rice transplanter crosses the ridge or is in a state of moving to the truck bed, it can be determined by detecting the inclination of the machine 1 or the like, or as one of the operating tools, the rice transplanter crosses the ridge. A mode switch (not shown) may be provided and the ridge-crossing mode switch may be manually operated to set the rice transplanter to move over the ridge or to the truck bed. Alternatively, the state may be detected from the change in the height position of the aircraft 1 detected by the mounted positioning unit 8.
 また、圃場が強湿田である場合も、エンジン2(図1参照)に負荷がかかり、大きな動力が必要となり、最悪の場合エンジン2が停止して作業が中断される。そのため、強湿田を作業走行する際には、エンジン回転数が引き上げられると共に、無段変速装置9の斜板の角度が低速側になるように自動制御されても良い。これにより、適切な作業走行を継続して行うことが可能となる。 Also, when the field is a wet field, the engine 2 (see FIG. 1) is loaded and requires a large amount of power, and in the worst case, the engine 2 is stopped and the work is interrupted. Therefore, when working in a strong wet field, the engine speed may be increased and the angle of the swash plate of the continuously variable transmission 9 may be automatically controlled to be on the low speed side. This makes it possible to continue appropriate work running.
 このような作業負荷はエンジン回転数で判断され、作業負荷が大きい場合はエンジン回転数が引き上げられることが好ましい。これと同時に、無段変速装置9の斜板の角度が低速側になるように制御されても良い。これにより、作業負荷が大きくなっても、エンジン2が停止することが抑制され、作業走行を継続することができる。作業負荷が小さい場合はエンジン回転数が引き下げられることが好ましい。これと同時に、無段変速装置9の斜板の角度が高速側になるように制御されても良い。これにより、燃費効率の向上を図ることができる。以上により、適切なエンジン回転数で作業走行を継続することができる。 Such a work load is judged by the engine speed, and when the work load is large, it is preferable that the engine speed is increased. At the same time, the angle of the swash plate of the continuously variable transmission 9 may be controlled to be on the low speed side. As a result, even if the work load becomes large, the engine 2 is suppressed from stopping, and the work running can be continued. When the workload is small, it is preferable that the engine speed is reduced. At the same time, the angle of the swash plate of the continuously variable transmission 9 may be controlled to be on the high speed side. As a result, fuel efficiency can be improved. As described above, the work running can be continued at an appropriate engine speed.
 後進走行は、前進走行に比べて低速で行われる。そのため、後進走行時には、エンジン回転数の最大値が前進走行時に比べて低く抑えられても良い。 Reverse running is performed at a lower speed than forward running. Therefore, the maximum value of the engine speed may be kept lower during reverse travel than during forward travel.
 また、エンジン回転数制御用マイコンは、上述の制御ユニット30に内蔵されても良いが、別個設けられても良い。例えば、エンジン回転数制御用マイコンは、ステアリングシャフトの近傍に配置しても良い。エンジン回転数制御用マイコンや変速装置制御用マイコンは、エンジン2および無段変速装置9を制御する。そのため、エンジン回転数制御用マイコンや変速装置制御用マイコンは、エンジン2および無段変速装置9の近傍に配置されることが好ましい。 Further, the engine speed control microcomputer may be built in the above-mentioned control unit 30, but may be provided separately. For example, the engine speed control microcomputer may be arranged in the vicinity of the steering shaft. The engine speed control microcomputer and the transmission control microcomputer control the engine 2 and the continuously variable transmission 9. Therefore, it is preferable that the engine speed control microcomputer and the transmission control microcomputer are arranged in the vicinity of the engine 2 and the continuously variable transmission 9.
〔走行車速制御〕
 次に、図1を参照しながら図11を用いて、走行車速の制御構成について説明する。
[Traveling vehicle speed control]
Next, the control configuration of the traveling vehicle speed will be described with reference to FIG. 11 with reference to FIG. 11.
 走行車速は主変速レバー7Aの操作位置に応じて操作され、無段変速装置9の斜板の角度とエンジン回転数とが制御されて、主変速レバー7Aの操作位置に応じた速度(操作速度)で機体1が走行する。無段変速装置9の斜板の角度が大きくなる程、つまり無段変速装置9の斜板の開度が大きくなる程、走行車速は速くなる。また、エンジン回転数が高くなる程走行車速は早くなる。 The traveling vehicle speed is operated according to the operation position of the main speed change lever 7A, the angle of the swash plate of the continuously variable transmission 9 and the engine speed are controlled, and the speed (operation speed) according to the operation position of the main speed change lever 7A. ), The aircraft 1 runs. The larger the angle of the swash plate of the continuously variable transmission 9, that is, the larger the opening degree of the swash plate of the continuously variable transmission 9, the faster the traveling vehicle speed. In addition, the higher the engine speed, the faster the traveling vehicle speed.
 従来の走行車速の制御では、主変速レバー7Aにより操作された操作速度が速い程、操作速度に比例して、エンジン回転数を高くし、無段変速装置9の斜板の開度を大きくする。ここでは、このような制御を通常モードでの制御と称し、この関係は、図11の通常モードのグラフAで示される。例えば、通常モードでは、エンジン回転数は3000[rpm]が限度であり、このとき無段変速装置9の斜板の開度が100[%]に制御され、走行車速は、最大走行車速である1.8[m/s]となる。そして、通常モードのグラフAに則して、設定速度ES[m/s]を出力するために、制御ユニット30(図5参照)は、エンジン回転数をRo[rpm]、無段変速装置9の斜板の開度をr[%]に制御する。 In the conventional control of the traveling vehicle speed, the faster the operation speed operated by the main speed change lever 7A, the higher the engine speed is proportional to the operation speed, and the opening degree of the swash plate of the continuously variable transmission 9 is increased. .. Here, such control is referred to as control in the normal mode, and this relationship is shown in the graph A of the normal mode in FIG. For example, in the normal mode, the engine speed is limited to 3000 [rpm], and at this time, the opening degree of the swash plate of the continuously variable transmission 9 is controlled to 100 [%], and the traveling vehicle speed is the maximum traveling vehicle speed. It becomes 1.8 [m / s]. Then, in order to output the set speed ES [m / s] according to the graph A in the normal mode, the control unit 30 (see FIG. 5) sets the engine speed to Ro [rpm] and the continuously variable transmission 9 The opening degree of the swash plate is controlled to r [%].
 本実施形態においては、通常モードではなく、燃費効率を優先させたエコモードにて走行車速の制御が行われる。エコモードは、無段変速装置9の斜板の開度を優先的に大きくし、その分エンジン回転数を低くしても設定速度を確保する制御であり、エンジン回転数を低く抑えることにより燃費効率の向上を図る制御である。 In the present embodiment, the traveling vehicle speed is controlled not in the normal mode but in the eco mode that prioritizes fuel efficiency. The eco mode is a control that preferentially increases the opening degree of the swash plate of the continuously variable transmission 9 and secures the set speed even if the engine speed is lowered by that amount. It is a control to improve efficiency.
 具体的には、ある速度O[m/s]から設定速度ES[m/s]に加速する場合、制御ユニット30(図5参照)は、無段変速装置9の斜板の開度をr[%]より大きなrE[%]とし、エンジン回転数を目標エンジン回転数RE[rpm]に向けて高めていく。無段変速装置9の斜板の開度がrE[%]である状態で、エンジン回転数がRE[rpm]となることにより、設定速度ES[m/s]で走行することが可能となる。 Specifically, when accelerating from a certain speed O [m / s] to a set speed ES [m / s], the control unit 30 (see FIG. 5) sets the opening degree of the swash plate of the continuously variable transmission 9 to r. The rE [%] is set to be larger than [%], and the engine speed is increased toward the target engine speed RE [rpm]. When the opening degree of the swash plate of the continuously variable transmission 9 is rE [%] and the engine speed is RE [rpm], it becomes possible to travel at the set speed ES [m / s]. ..
 ただし、作業走行におけるエンジン負荷が大きい場合、エンジン回転数を上げようとしても、目標エンジン回転数REに到達しないことがある。この場合、目標エンジン回転数REを高く設定して、エンジン回転数がREに到達するように制御する。さらに、目標エンジン回転数REをエンジン回転数の限度である3000[rpm]に設定しても、エンジン回転数がREに到達しない場合、無段変速装置9の斜板の開度rEを小さくし、目標エンジン回転数REを高く設定することにより、走行車速が設定速度ESに到達できるように制御する。このような制御を行うことにより、設定速度ESで作業する際に、燃費効率の向上を図ることができる。 However, if the engine load during work driving is large, the target engine speed RE may not be reached even if the engine speed is increased. In this case, the target engine speed RE is set high and controlled so that the engine speed reaches RE. Further, if the engine speed does not reach RE even if the target engine speed RE is set to 3000 [rpm], which is the limit of the engine speed, the opening rE of the swash plate of the continuously variable transmission 9 is reduced. By setting the target engine speed RE high, the traveling vehicle speed is controlled so as to reach the set speed ES. By performing such control, it is possible to improve fuel efficiency when working at the set speed ES.
 エンジン2は、ある限界以上の負荷がかかると、エンジン回転数を上げることができなくなり、エンジン2が停止してしまう場合がある。そのため、目標エンジン回転数REをエンジン回転数の限度である3000[rpm]に設定する以前であっても、所定の負荷以上の負荷がエンジン2にかかると、無段変速装置9の斜板の開度rEを小さく設定する制御が行われても良い。これにより、エンジン2が停止してしまうことを抑制して、継続的に作業走行を行うことが可能となる。 If a load exceeding a certain limit is applied to the engine 2, the engine speed cannot be increased and the engine 2 may stop. Therefore, even before the target engine speed RE is set to the limit of the engine speed of 3000 [rpm], if a load exceeding a predetermined load is applied to the engine 2, the swash plate of the continuously variable transmission 9 Control may be performed to set the opening rE to a small value. As a result, it is possible to prevent the engine 2 from stopping and to continuously perform the work running.
 さらに、このように無段変速装置9の斜板の開度rEを小さく設定する制御が行われた際に、エンジン回転数を上げる状態になっても、無段変速装置9の斜板の開度を戻さないことが好ましい。これにより、走行車速の過度の増減を抑制して、スムーズな作業走行を維持することができる。 Further, when the control for setting the opening rE of the swash plate of the continuously variable transmission 9 to be small is performed in this way, even if the engine speed is increased, the swash plate of the continuously variable transmission 9 is opened. It is preferable not to return the degree. As a result, it is possible to suppress an excessive increase or decrease in the traveling vehicle speed and maintain smooth work traveling.
 なお、本実施形態では、走行車速の制御をエコモードのみで行う構成を例に説明したが、エコモードと通常モードとを選択的に実施することができる構成としても良い。このような構成により、エコモードで作業走行を行うことにより、燃費効率の向上をさせることができ、通常モードで作業走行を行うことにより、機体1の性能を最大限発揮させて安定的な作業走行を行うことができ、状況に応じた最適な走行車速の制御を行うことができる。 In the present embodiment, the configuration in which the traveling vehicle speed is controlled only in the eco mode has been described as an example, but the configuration in which the eco mode and the normal mode can be selectively implemented may be used. With such a configuration, it is possible to improve fuel efficiency by performing work driving in the eco mode, and by performing work driving in the normal mode, the performance of the machine 1 is maximized and stable work is performed. It is possible to drive and control the optimum traveling vehicle speed according to the situation.
〔エラー検知時等の走行制御〕
 図示しないが、苗植付装置3(図1参照)や無段変速装置9(図1参照)、測位ユニット8等の各種装置には、必要に応じて動作状態を検出するセンサ(図5に示すセンサ群1A)が設けられる。自動走行において、これらのセンサがエラー状態を検知したり、センサ自身に不具合が生じていると判断される場合には、制御ユニット30は、自動走行を終了させて機体1を停止させても良いが、自動走行を維持しつつ、機体1を一時的に停止させても良い。
[Running control when error is detected]
Although not shown, various devices such as the seedling planting device 3 (see FIG. 1), the continuously variable transmission 9 (see FIG. 1), and the positioning unit 8 have sensors that detect the operating state as necessary (see FIG. 5). The sensor group 1A) shown is provided. In automatic driving, if these sensors detect an error state or if it is determined that the sensor itself has a problem, the control unit 30 may end the automatic driving and stop the aircraft 1. However, the aircraft 1 may be temporarily stopped while maintaining the automatic driving.
 エラー等の不具合が生じた際には、不適切な作業が行われることを抑制するために、走行が停止されることが好ましい。自動走行を終了させて、不具合を解消した後に、自動走行の設定からやり直して走行を再開することが適切な場合もある。しかし、一時的な不具合の場合、自動走行の設定からやり直すことが効率的でない場合もある。 When a problem such as an error occurs, it is preferable that the running is stopped in order to prevent inappropriate work from being performed. In some cases, it may be appropriate to end the automatic driving, resolve the problem, and then restart the driving from the automatic driving setting. However, in the case of a temporary malfunction, it may not be efficient to start over from the automatic driving setting.
 例えば、測位ユニット8が取得する衛星からの信号が一時的に微弱になることがあるが、これは一時的に電波の受信状態が低下しただけである場合も多く、すぐに状態が回復することも少なくない。このような状態になる度に自動走行を終了させていると、作業効率が悪くなる恐れがある。したがって、このような場合、自動走行は一時停止されて、走行のみを停止することが好ましい。しばらく待って、状況が改善されない場合に初めて自動走行を終了させて、必要な修理等が行われることが好ましい。 For example, the signal from the satellite acquired by the positioning unit 8 may be temporarily weakened, but in many cases, the reception state of radio waves is only temporarily lowered, and the state is restored immediately. Not a few. If the automatic running is terminated every time such a state occurs, the work efficiency may deteriorate. Therefore, in such a case, it is preferable that the automatic driving is temporarily stopped and only the driving is stopped. It is preferable to wait for a while and stop the automatic driving for the first time when the situation is not improved, and perform necessary repairs and the like.
 なお、機体1を停止させる際には、あらかじめ機体1を停止させる旨や不具合が生じたこと、不具合の内容等の警告を行っても良い。また、機体1を停車させる際には、急激に減速せず、機体が停車するまで徐々に減速が行われることが好ましい。 When stopping the machine 1, a warning may be given in advance to the effect that the machine 1 is stopped, that a problem has occurred, the content of the problem, or the like. Further, when the airframe 1 is stopped, it is preferable that the airframe 1 is not suddenly decelerated, but is gradually decelerated until the airframe is stopped.
 圃場の出入口等の傾斜地で機体1が停止した場合、機体1が傾斜を滑り落ちる場合がある。このような場合、無段変速装置9の斜板の角度を中立位置にするのではなく、傾斜を上る方向に無段変速装置9の斜板の角度が調整されても良い。例えば、圃場に侵入するために傾斜を下る途中で機体1を停止させた場合、制御ユニット30は、無段変速装置9の斜板の角度を後進方向に移動させる。これにより、機体1が滑り落ちる方向と逆向きに駆動されるため、機体1が滑り落ちることを抑制して、機体1を停止させることができる。 If the aircraft 1 stops on a slope such as a field entrance / exit, the aircraft 1 may slide down the slope. In such a case, the angle of the swash plate of the continuously variable transmission 9 may be adjusted in the direction of going up the inclination instead of setting the angle of the swash plate of the continuously variable transmission 9 to the neutral position. For example, when the machine body 1 is stopped in the middle of going down the slope to enter the field, the control unit 30 moves the angle of the swash plate of the continuously variable transmission 9 in the reverse direction. As a result, the airframe 1 is driven in the direction opposite to the sliding down direction, so that the airframe 1 can be suppressed from sliding down and the airframe 1 can be stopped.
 なお、機体1が停止されて無段変速装置9の斜板の角度が中立位置に操作されている場合、測位ユニット8を用いて算出された自車位置が移動していると、自車位置に応じて無段変速装置9の斜板の角度が調整され、停車状態が維持されるように制御されても良い。 When the aircraft 1 is stopped and the angle of the swash plate of the continuously variable transmission 9 is operated to the neutral position, if the own vehicle position calculated by using the positioning unit 8 is moving, the own vehicle position The angle of the swash plate of the continuously variable transmission 9 may be adjusted according to the above, and may be controlled so that the stopped state is maintained.
 さらに、傾斜地等での機体1の停止を維持するために、無段変速装置9の斜板の角度に加えて、エンジン回転数が合わせて制御されても良い。 Further, in order to keep the machine body 1 stopped on a slope or the like, the engine speed may be controlled in addition to the angle of the swash plate of the continuously variable transmission 9.
〔バッテリ容量制御〕
 田植機に搭載された各種装置には、バッテリ73(図2参照)から供給される電力で動作するものがある。これらの装置はそれぞれ動作に際し使用する電力量が異なる。例えば、施肥装置4(図1参照)のブロアは大量の電力を消費する。バッテリ73はエンジン2(図1参照)の動作中に充電される。しかし、消費電力の大きな装置が動作されている作業走行では、バッテリ73の充電量を超えて電力が消費される場合があり、バッテリ73の残量が少なくなることがある。このため、バッテリ73の残量が所定量より少なくなっている場合、エンジン2を停止する操作がなされても、バッテリ73を充電するために、しばらくの間エンジン2を動作させておくことが好ましい。
[Battery capacity control]
Some of the various devices mounted on the rice transplanter operate on the electric power supplied from the battery 73 (see FIG. 2). Each of these devices uses a different amount of electric power for operation. For example, the blower of the fertilizer application device 4 (see FIG. 1) consumes a large amount of electric power. The battery 73 is charged during the operation of the engine 2 (see FIG. 1). However, in a work run in which a device having a large power consumption is operated, power may be consumed in excess of the charge amount of the battery 73, and the remaining amount of the battery 73 may be low. Therefore, when the remaining amount of the battery 73 is less than a predetermined amount, it is preferable to operate the engine 2 for a while in order to charge the battery 73 even if the operation of stopping the engine 2 is performed. ..
 バッテリ73は充電量を測定するセンサ(図5に示すセンサ群1Aの1つ)を備える。エンジン2の停止と始動は、キー等の操作によって行われる。エンジン2を停止する操作が行われた際に、バッテリ73が備えるセンサにより充電量が所定の値以下の場合、制御ユニット30は、直ちにエンジン2を停止させず、エンジン2の動作を継続させてバッテリ73を充電し、その後エンジン2を停止させる。エンジン2の停止操作後、バッテリ73を充電している間(エンジン動作継続期間)は、エンジン2が動作しているとしても、走行および作業は停止する。つまり、この間、無段変速装置9の斜板は中立位置を維持し、植付クラッチ等は遮断され、ブレーキは制動状態とされる。また、主変速レバー7Aおよび副変速レバー7Bのうちの少なくとも一方が中立位置に維持されても良い。 The battery 73 includes a sensor for measuring the amount of charge (one of the sensor group 1A shown in FIG. 5). The engine 2 is stopped and started by operating a key or the like. When the operation to stop the engine 2 is performed, if the charge amount is equal to or less than a predetermined value by the sensor provided in the battery 73, the control unit 30 does not immediately stop the engine 2 but continues the operation of the engine 2. The battery 73 is charged, and then the engine 2 is stopped. After the stop operation of the engine 2, while the battery 73 is being charged (engine operation continuation period), even if the engine 2 is operating, the running and the work are stopped. That is, during this period, the swash plate of the continuously variable transmission 9 maintains a neutral position, the planting clutch and the like are shut off, and the brake is put into a braking state. Further, at least one of the main shift lever 7A and the auxiliary shift lever 7B may be maintained in the neutral position.
 エンジン動作継続期間は、所定の時間でも良いが、バッテリ73が備えるセンサにより充電量が所定の値以上になる期間でも良い。また、エンジン2を停止する操作が行われてもエンジン2を停止させない際には、その旨が報知れることが好ましい。 The engine operation continuation period may be a predetermined time, but may be a period in which the charge amount becomes equal to or higher than a predetermined value by the sensor provided in the battery 73. Further, when the engine 2 is not stopped even if the operation of stopping the engine 2 is performed, it is preferable to be notified to that effect.
 また、エンジン2の動作中に消費電力の大きな装置が使用された場合、あるいはバッテリ73の残量が低下した場合、エンジン回転数を上げる制御が行われても良い。エンジン回転数が上げられることにより、バッテリ73の充電が促進される。 Further, when a device having a large power consumption is used during the operation of the engine 2, or when the remaining amount of the battery 73 is low, the control to increase the engine speed may be performed. By increasing the engine speed, charging of the battery 73 is promoted.
 なお、上述のバッテリ73の充電とエンジン2の操作に関する制御は、制御ユニット30が行っても良いが、制御ユニット30に内蔵され、または制御ユニット30とは別に設けられる、充電制御部(図示せず)等の機能ブロックが行っても良い。 The control unit 30 may perform the control related to the charging of the battery 73 and the operation of the engine 2, but the charge control unit (shown) is built in the control unit 30 or provided separately from the control unit 30. A functional block such as (1) may be performed.
〔副変速レバー〕
 副変速レバー7B(図1参照)は、走行車速を、作業中の作業速と移動中の移動速とに切り替える操作に用いられる。例えば、圃場間の移動は移動速で行われ、植付作業等は作業速で行われる。
[Secondary shift lever]
The auxiliary shift lever 7B (see FIG. 1) is used for an operation of switching the traveling vehicle speed between the working speed during work and the moving speed during movement. For example, movement between fields is performed at a moving speed, and planting work and the like are performed at a working speed.
 通常、移動速は作業速に比べて走行車速が速い。また、苗植付装置3は、作業速において、圃場に植え付けられる株間が一定となるように制御される。その結果、移動速で植付作業が行われると所定の株間で植え付けが行われず、適切な植付作業ができないおそれがある。そのため、制御ユニット30は、副変速レバー7Bが作業速側に操作されていないと、作業が開始されないように制御されることが好ましい。例えば、制御ユニット30は、副変速レバー7Bが作業速側に操作されていないと、植付クラッチを接続しないように制御する。これにより、作業に適した走行車速で走行され、適切な作業を行うことができる。なお、副変速レバー7Bの操作位置を確認するために、副変速レバー7Bにもポテンショメータが設けられることが好ましい。 Normally, the moving speed is faster than the working speed. In addition, the seedling planting device 3 is controlled so that the distance between the plants planted in the field is constant at the working speed. As a result, if the planting work is performed at a moving speed, the planting may not be performed between the predetermined stocks, and the proper planting work may not be performed. Therefore, it is preferable that the control unit 30 is controlled so that the work is not started unless the auxiliary transmission lever 7B is operated on the working speed side. For example, the control unit 30 controls so that the planting clutch is not connected unless the auxiliary transmission lever 7B is operated on the working speed side. As a result, the vehicle can be driven at a traveling vehicle speed suitable for the work, and the appropriate work can be performed. It is preferable that the auxiliary shift lever 7B is also provided with a potentiometer in order to confirm the operating position of the auxiliary shift lever 7B.
 さらに、圃場間を移動した後、作業走行を開始する際には、副変速レバー7Bが中立位置に操作されていることがより好ましい。つまり、植付作業等の作業の開始操作は、副変速レバー7Bが中立位置に操作された状態でのみ有効となることが好ましい。具体的には、副変速レバー7Bが中立位置に操作された後、作業開始操作が行われ、その後、副変速レバー7Bが作業速に操作されることにより作業が開始される。また、作業開始の操作が行われた際に、副変速レバー7Bが中立位置にない場合、副変速レバー7Bを中立位置に操作することを促す報知が行われても良い。 Further, it is more preferable that the auxiliary shift lever 7B is operated to the neutral position when starting the work running after moving between the fields. That is, it is preferable that the start operation of the work such as the planting work is effective only in the state where the auxiliary shift lever 7B is operated in the neutral position. Specifically, after the auxiliary shift lever 7B is operated to the neutral position, the work start operation is performed, and then the auxiliary shift lever 7B is operated at the working speed to start the work. Further, when the work start operation is performed, if the auxiliary transmission lever 7B is not in the neutral position, a notification prompting the operation of the auxiliary transmission lever 7B in the neutral position may be performed.
 なお、上述の、バッテリ73を充電するためにエンジン2の動作を継続させる際にも、副変速レバー7Bが中立位置をとるようにすることが好ましい。これにより、エンジン2の動作を継続中、およびその後のエンジン2の再起動の際に、副変速レバー7Bが中立位置となっているため、不用意に機体1が走行することが抑制される。他の実施形態として、主変速レバー7A、斜板が中立に位置されていたり、ブレーキ操作がなされたりした場合に副変速レバー7Bが自動的に中立に戻っても良い。 It is preferable that the auxiliary shift lever 7B takes a neutral position even when the operation of the engine 2 is continued in order to charge the battery 73 described above. As a result, since the auxiliary shift lever 7B is in the neutral position during the continuous operation of the engine 2 and the subsequent restart of the engine 2, it is possible to prevent the aircraft 1 from inadvertently traveling. As another embodiment, the main shift lever 7A and the auxiliary shift lever 7B may automatically return to the neutral position when the main shift lever 7A and the swash plate are positioned in the neutral position or the brake operation is performed.
 また、検査・メンテナンスの際に機体1が走行すると問題がある。そのため、検査・メンテナンスは、副変速レバー7Bが中立位置に操作されている場合に限り行うことができる構成とすることが好ましい。検査・メンテナンスを行う際に副変速レバー7Bが中立位置にないときは、副変速レバー7Bを中立位置に操作することを促す報知が行われても良い。 In addition, there is a problem if the aircraft 1 runs during inspection and maintenance. Therefore, it is preferable that the inspection / maintenance can be performed only when the auxiliary transmission lever 7B is operated in the neutral position. When the auxiliary shift lever 7B is not in the neutral position during inspection / maintenance, a notification prompting the operation of the auxiliary shift lever 7B in the neutral position may be performed.
 マット状苗を補給する際や薬剤を補給する際等には、機体1は、圃場の端部である畦に近接される。自動走行田植機は障害物検知を行っており、障害物を検知すると走行が停止する。そのため、圃場の端部に近接させようとしても、障害物として畦を検知してしまい、通常は走行できない。そこで、本実施形態の田植機は、圃場の端部に機体1を移動させる際に、一時的に障害物検知を停止させ、畦が障害物として検知されない状態で、圃場の端部に近接させることができる機能を備える。 When replenishing mat-shaped seedlings, replenishing chemicals, etc., the aircraft 1 is brought close to the ridges at the edge of the field. The automatic traveling rice transplanter detects obstacles, and when it detects an obstacle, it stops traveling. Therefore, even if you try to bring it closer to the edge of the field, the ridges will be detected as obstacles and you will not be able to drive normally. Therefore, the rice transplanter of the present embodiment temporarily stops obstacle detection when moving the machine 1 to the edge of the field, and brings the rice transplanter closer to the edge of the field in a state where the ridges are not detected as obstacles. It has a function that can be used.
〔ソナーの配置構成〕
 図1~図3、図12~図14を用いて、ソナーの配置構成について説明する。
[Sonar layout]
The arrangement configuration of the sonar will be described with reference to FIGS. 1 to 3 and 12 to 14.
 本実施形態の田植機は自動走行を行うことができる。自動走行による走行開始時や自動走行中に、進行方向の前方や機体1の周囲に障害物があると、走行や作業に問題が生じる場合がある。そのため、本実施形態の田植機は、機体1の周囲の障害物を検知する障害物検知装置(図5に示すセンサ群1Aの1つ)の一例としてソナーセンサ60を備える。障害物の検知は、基本的には自動走行中に行われるが、手動走行中に障害物の検知が行われる構成とすることもできる。 The rice transplanter of this embodiment can run automatically. If there is an obstacle in front of the traveling direction or around the aircraft 1 at the start of traveling by automatic traveling or during automatic traveling, problems may occur in traveling or work. Therefore, the rice transplanter of the present embodiment includes a sonar sensor 60 as an example of an obstacle detection device (one of the sensor groups 1A shown in FIG. 5) that detects obstacles around the machine body 1. Obstacles are basically detected during automatic driving, but obstacles can also be detected during manual driving.
 具体的には、例えば、ソナーセンサ60は、機体1の前方の領域の障害物を検知する4つの前ソナー61と、機体1の後方の領域の障害物を検知する2つの後ソナー62と、機体1の側方の領域の障害物を検知する2つの横ソナー63とから構成される。機体1が前進で直進走行する際の走行車速は、後進走行時および旋回走行時の走行車速より早い場合が多い。そのため、機体1の前方の領域の障害物を検知する前ソナー61の数が、後ソナー62や横ソナー63より多く設けられる。これにより、走行車速が速い前進直進走行の際にも、精度良く障害物を検知することができる。 Specifically, for example, the sonar sensor 60 includes four front sonars 61 that detect obstacles in the area in front of the aircraft 1, two rear sonars 62 that detect obstacles in the area behind the aircraft 1, and the aircraft. It is composed of two horizontal sonars 63 that detect obstacles in the area on the side of 1. In many cases, the traveling vehicle speed when the aircraft 1 travels straight ahead is faster than the traveling vehicle speed during reverse travel and turning travel. Therefore, the number of front sonars 61 for detecting obstacles in the area in front of the aircraft 1 is larger than that of the rear sonar 62 and the lateral sonar 63. As a result, obstacles can be detected with high accuracy even when the vehicle is traveling straight ahead at a high speed.
 前ソナー61のうちの2つは、ステップ14Aの前端部の側面に、機体1の左右方向に並んで設けられる。前ソナー61のうちの他の2つは、それぞれ、左右の予備苗支持フレーム17から前方に突出するステー61Aに支持される。4つの前ソナー61の対地高さは、略同じである。 Two of the front sonar 61s are provided side by side in the left-right direction of the machine body 1 on the side surface of the front end portion of step 14A. The other two of the front sonar 61s are supported by stays 61A projecting forward from the left and right reserve seedling support frames 17, respectively. The ground heights of the four front sonars 61 are substantially the same.
 図13に示すように、それぞれの前ソナー61の平面方向の検知範囲(平面視した検知範囲)は、前ソナー61から扇状に広がる。前ソナー61の前方方向の検知範囲は、最大の走行車速で走行した場合に、障害物を検知してから機体1が障害物の手前で停止できる長さが確保できるように調整される。隣り合う前ソナー61の水平方向の検知範囲の少なくとも一部が互いに重複するように、前ソナー61は配置される。これにより、障害物の検知精度が高められる。別の実施形態として、車速に応じてセンサの検知範囲が自動調節されても良い。これによって低速で走行する際に検知範囲を必要以上大きくせず、最適な検知範囲で障害物の検知を行うことができる。 As shown in FIG. 13, the detection range in the plane direction (detection range in a plan view) of each front sonar 61 extends in a fan shape from the front sonar 61. The detection range of the front sonar 61 in the forward direction is adjusted so that when traveling at the maximum traveling vehicle speed, the length that allows the aircraft 1 to stop in front of the obstacle after detecting the obstacle can be secured. The front sonar 61 is arranged so that at least a part of the horizontal detection range of the adjacent front sonar 61 overlaps with each other. As a result, the accuracy of detecting obstacles is improved. As another embodiment, the detection range of the sensor may be automatically adjusted according to the vehicle speed. As a result, when traveling at a low speed, the detection range is not increased more than necessary, and obstacles can be detected in the optimum detection range.
 図12に示すように、後ソナー62は、薬剤散布装置18を支持するために苗植付装置3等に支持された支持構造体62Aに支持される。2つの後ソナー62は、薬剤散布装置18より左右方向の側方のそれぞれに配置され、後ソナー62の対地高さは、薬剤散布装置18の上端部と略同じ高さである。 As shown in FIG. 12, the rear sonar 62 is supported by a support structure 62A supported by a seedling planting device 3 or the like in order to support the drug spraying device 18. The two rear sonars 62 are arranged on each side of the chemical spraying device 18 in the left-right direction, and the height of the rear sonar 62 to the ground is substantially the same as the upper end of the chemical spraying device 18.
 後ソナー62は、主に後進時の障害物を検知する。図13に示すように、それぞれの後ソナー62の平面方向の検知範囲は、後ソナー62から扇状に広がる。それぞれの後ソナー62は真後ろよりやや外向きに配置され、それぞれの後ソナー62の検知範囲はやや外向きに偏っている。これにより、機体1の後方において、機体1の左右方向に広い検知範囲を確保することができる。2つの後ソナー62の水平方向の検知範囲の少なくとも一部が互いに重複するように、後ソナー62は配置される。これにより、障害物の検知精度が高められる。 The rear sonar 62 mainly detects obstacles when moving backward. As shown in FIG. 13, the detection range of each rear sonar 62 in the plane direction extends in a fan shape from the rear sonar 62. Each rear sonar 62 is arranged slightly outward from directly behind, and the detection range of each rear sonar 62 is slightly biased outward. As a result, it is possible to secure a wide detection range in the left-right direction of the airframe 1 behind the airframe 1. The rear sonar 62 is arranged so that at least a portion of the horizontal detection ranges of the two rear sonar 62s overlap each other. As a result, the accuracy of detecting obstacles is improved.
 横ソナー63は、運転座席16の側方における、ステップ14Aより後方の機体1の両側端部(後部ステップ14C)の側面に設けられる。後部ステップ14Cはステップ14Aより高い位置に配置される。そのため、後輪等からの泥はねの影響を抑制することができる。その他の取付位置として、横ソナー63は、ステップ14Aの対面に位置する予備苗支持フレーム17に取り付けられても良い。 The horizontal sonar 63 is provided on the side surface of both side ends (rear step 14C) of the aircraft 1 behind step 14A on the side of the driver's seat 16. The rear step 14C is located higher than step 14A. Therefore, the influence of mud splash from the rear wheels and the like can be suppressed. As another mounting position, the horizontal sonar 63 may be mounted on the spare seedling support frame 17 located opposite to the step 14A.
 横ソナー63は、ステップ14Aの乗降領域周辺を検知し、機体1の側方の障害物を検出する。自動走行の開始時に、人物が運転部14に乗り降りしようとしていると問題がある。横ソナー63は、特に、運転部14に乗り降りしようとしている人物等を検出する。
図12に示すように、それぞれの横ソナー63の平面方向の検知範囲は、前ソナー61から扇状に広がる。運転部14に乗り降りする人物は、主に運転座席16の側方およびそれより前方から乗り降りする。また、運転座席16より後方には施肥装置4等が設けられており、その方向から人物が乗り降りすることは考えにくい。そのため、横ソナー63の平面方向の検知範囲は、機体1の側方からやや前方寄りに傾く。また、機体1の前方には予備苗支持フレーム17が左右方向に突出している。横ソナー63が予備苗支持フレーム17または予備苗収納装置17Aを検知することがないように、横ソナー63の平面方向の検知範囲の前端は、予備苗支持フレーム17より後方になるように設定される。
The horizontal sonar 63 detects the vicinity of the boarding / alighting area in step 14A, and detects an obstacle on the side of the aircraft 1. There is a problem when a person is trying to get on and off the driving unit 14 at the start of automatic driving. The horizontal sonar 63 detects, in particular, a person who is about to get on and off the driving unit 14.
As shown in FIG. 12, the detection range of each lateral sonar 63 in the plane direction extends in a fan shape from the front sonar 61. A person who gets on and off the driving unit 14 mainly gets on and off from the side of the driver's seat 16 and the front of the driver's seat 16. Further, a fertilizer application device 4 or the like is provided behind the driver's seat 16, and it is unlikely that a person gets on and off from that direction. Therefore, the detection range of the horizontal sonar 63 in the plane direction is slightly inclined forward from the side of the machine body 1. Further, a spare seedling support frame 17 projects in the left-right direction in front of the machine body 1. The front end of the detection range in the plane direction of the horizontal sonar 63 is set to be behind the spare seedling support frame 17 so that the horizontal sonar 63 does not detect the spare seedling support frame 17 or the spare seedling storage device 17A. NS.
 ソナーセンサ60は、上述のように特定の検知範囲内に存在する物体を検知する。また、圃場の泥面が検知範囲に存在すると、ソナーセンサ60は泥面を障害物として検知してしまう。泥面が障害物として検知されると、自動走行が開始されず、走行が継続されない。そのため、ソナーセンサ60の検知範囲は、泥面を検知しないように調整される。 The sonar sensor 60 detects an object existing within a specific detection range as described above. Further, if the mud surface of the field is within the detection range, the sonar sensor 60 detects the mud surface as an obstacle. When the mud surface is detected as an obstacle, the automatic running is not started and the running is not continued. Therefore, the detection range of the sonar sensor 60 is adjusted so as not to detect the mud surface.
 図14に示すように、ソナーセンサ60はやや上向きに支持されて、所定の検知距離を確保しながら、泥面を検知しないように調整される。つまり、所定の検知距離において、検知範囲の下端は、泥面に到達しないように、ソナーセンサ60は調整される。さらに、走行に伴い機体1は上下に揺れ動くため、上下動に伴い泥面を検知しやすくなる。また、枕地等には旋回時に発生した泥塊が存在し、泥面から突出した泥塊を誤検知する場合もある。そのため、泥面から検知範囲の下端までの距離は、ある程度のマージンが考慮されても良い。このように、ソナーセンサ60の垂直方向の検知範囲(側面視した検知範囲)は、必要な検知距離と、泥面等を検知しないこととを考慮して調整され、これにより、適切な検知範囲が確保される。 As shown in FIG. 14, the sonar sensor 60 is supported slightly upward and is adjusted so as not to detect the mud surface while securing a predetermined detection distance. That is, the sonar sensor 60 is adjusted so that the lower end of the detection range does not reach the mud surface at a predetermined detection distance. Further, since the airframe 1 swings up and down as it travels, it becomes easier to detect the mud surface as it moves up and down. In addition, mud lumps generated during turning exist in headland and the like, and mud lumps protruding from the mud surface may be erroneously detected. Therefore, a certain margin may be taken into consideration for the distance from the mud surface to the lower end of the detection range. In this way, the vertical detection range (side view detection range) of the sonar sensor 60 is adjusted in consideration of the required detection distance and the fact that it does not detect mud surfaces, etc., thereby providing an appropriate detection range. Secured.
 逆に、ソナーセンサ60は、やや下向きに支持されても良い。例えば、高さ方向の障害物が存在する可能性が低い状況や、しゃがんでいる人物等の比較的泥面からの高さが低い障害物の検出を優先させたい状況が考慮される場合、できるだけ機体1に近い位置の、高さの低い障害物を検知できるように、検知範囲が調整されることが好ましい。このような場合、ソナーセンサ60はやや下向きに支持され、機体1の近傍の下方領域を検知範囲に含めるように調整される。なお、この際、泥面等が必要以上に検知されることになる。そのため、泥面の検知パターンを解析して、検知した障害物が泥面であるか否かを判定し、泥面を検知しても障害物として認識しないように制御されることが好ましい。 On the contrary, the sonar sensor 60 may be supported slightly downward. For example, when considering situations where it is unlikely that there are obstacles in the height direction, or where you want to prioritize the detection of obstacles that are relatively low from the mud surface, such as a crouching person, as much as possible. It is preferable that the detection range is adjusted so that an obstacle having a low height near the aircraft 1 can be detected. In such a case, the sonar sensor 60 is supported slightly downward and adjusted so as to include the lower region in the vicinity of the airframe 1 in the detection range. At this time, the mud surface and the like will be detected more than necessary. Therefore, it is preferable to analyze the detection pattern of the mud surface, determine whether or not the detected obstacle is the mud surface, and control the mud surface so that it is not recognized as an obstacle even if it is detected.
 なお、前ソナー61は、ステップ14Aや予備苗支持フレーム17に支持される構成に限らず、適切な検知範囲が確保できれば、任意の位置に配置できる。例えば、前ソナー61は、エンジンボンネット2Bに支持されても良く、機体1に支持された延長部材に支持されても良い。さらに、前ソナー61は測位ユニット8の近傍に設けられても良く、4つの前ソナー61に代えて、または4つの前ソナー61に加えて、測位ユニット8の近傍に設けられても良い。 The front sonar 61 is not limited to the configuration supported by step 14A or the preliminary seedling support frame 17, and can be arranged at any position as long as an appropriate detection range can be secured. For example, the front sonar 61 may be supported by the engine bonnet 2B or may be supported by an extension member supported by the airframe 1. Further, the front sonar 61 may be provided in the vicinity of the positioning unit 8 or may be provided in the vicinity of the positioning unit 8 in place of the four front sonars 61 or in addition to the four front sonars 61.
 また、ソナーセンサ60は、検知状態を安定させるために、障害物の検知中、配置位置が移動しないような位置に支持されることが好ましい。後ソナー62も配置位置が移動しない位置(非稼働部分)に配置されることが好ましいが、適切な検知範囲を確保できれば、任意の位置に配置することができる。例えば、後ソナー62は、作業装置を支持するツールバーや、苗植付装置3の植え付けケース、摺動板3A、摺動板ガード3B、苗載せ台21の支柱等に設けられても良い。 Further, in order to stabilize the detection state, the sonar sensor 60 is preferably supported at a position where the arrangement position does not move during the detection of an obstacle. The rear sonar 62 is also preferably arranged at a position where the arrangement position does not move (non-operating portion), but can be arranged at an arbitrary position as long as an appropriate detection range can be secured. For example, the rear sonar 62 may be provided on a toolbar that supports the work device, a planting case of the seedling planting device 3, a sliding plate 3A, a sliding plate guard 3B, a support column of the seedling loading platform 21, and the like.
 また、後ソナー62は後輪12Bからも近く、泥はねの影響を受けやすい。そのため、後ソナー62は、泥面から離れた対地高さの高い位置に設けられることが好ましい。例えば、後ソナー62は、苗載せ台21の上端部に設けられても良い。苗載せ台21は上に向かう程前方に傾く傾斜を有する。また、上述のように、後ソナー62は扇状の検知範囲を備える。そのため、後ソナー62を苗載せ台21の上端部に設けることにより、後ソナー62が苗載せ台21を誤検知することが抑制されながら、適切な検知範囲を効率的に確保することができる。 Also, the rear sonar 62 is close to the rear wheel 12B and is easily affected by mud splashes. Therefore, the rear sonar 62 is preferably provided at a position having a high ground height away from the mud surface. For example, the rear sonar 62 may be provided at the upper end of the seedling stand 21. The seedling stand 21 has an inclination that inclines forward as it goes upward. Further, as described above, the rear sonar 62 has a fan-shaped detection range. Therefore, by providing the rear sonar 62 at the upper end of the seedling loading table 21, it is possible to efficiently secure an appropriate detection range while suppressing the rear sonar 62 from erroneously detecting the seedling loading table 21.
 また、後ソナー62は、薬剤散布装置18に設けられる泥除けカバー18Aよりも上方の領域に設けられても良い。薬剤散布装置18は泥除けカバーを備える場合があり、後ソナー62が泥除けカバーよりも上方の領域に設けられることにより、後ソナー62に泥が付着することが抑制される。同様に、後ソナー62は、苗植付装置3の植付伝動ケース3Dの上端よりも上方の領域に設けられても良く、苗植付装置3が備える泥飛散防止カバー3Eよりも上方の領域に設けられるとより良い。また、後ソナー62の下方領域に専用のカバーが設けられても良い。さらに、施肥装置4や、殺虫殺菌剤・除草剤等の粉粒体供給機、あるいは直播機の上部あるいはこれらよりも上方の領域に後ソナー62が設けられても良い。 Further, the rear sonar 62 may be provided in an area above the mudguard cover 18A provided in the chemical spraying device 18. The chemical spraying device 18 may include a mud protection cover, and by providing the rear sonar 62 in a region above the mud protection cover, mud adhesion to the rear sonar 62 is suppressed. Similarly, the rear sonar 62 may be provided in an area above the upper end of the planting transmission case 3D of the seedling planting device 3, and is an area above the mud scattering prevention cover 3E included in the seedling planting device 3. It is better if it is provided in. Further, a dedicated cover may be provided in the lower region of the rear sonar 62. Further, the post-sonar 62 may be provided in the fertilizer application device 4, the powder or granular material feeder for insecticides, fungicides, herbicides, etc., or in the upper part of the direct sowing machine or in the region above these.
 また、2つの後ソナー62は、それぞれ機体1のやや外向きに向けて配置される。そのため、2つの後ソナー62の水平方向の検知範囲は、互いに一部で重複しながら、広範囲に設けられる。また、3以上の後ソナー62が設けられ、互いの検知範囲が一部で重複されながら、広範囲の検知範囲が確保されても良い。この場合、それぞれの後ソナー62は機体1のやや外向きに向けて配置されることを要さず、それぞれの後ソナー62の配置方向は任意であり、一部または全部の後ソナー62は機体1のやや内向き、あるいは真後ろに向けて配置されても良い。例えば、複数の後ソナー62は、苗載せ台21に沿って並べて配置されても良い。 In addition, the two rear sonars 62 are arranged so as to face slightly outward of the aircraft 1. Therefore, the horizontal detection ranges of the two rear sonars 62 are provided over a wide range while partially overlapping each other. Further, a wide range of detection ranges may be secured while three or more rear sonars 62 are provided and their detection ranges partially overlap each other. In this case, each rear sonar 62 does not need to be arranged slightly outward of the aircraft 1, the arrangement direction of each rear sonar 62 is arbitrary, and some or all of the rear sonar 62 is the aircraft. It may be arranged slightly inward of 1 or directly behind. For example, the plurality of rear sonars 62 may be arranged side by side along the seedling stand 21.
 また、2つの後ソナー62は、薬剤散布装置18を挟む位置関係で配置される。これにより、薬剤散布装置18の周辺の人物等の障害物を適切に検知することができる。これらの後ソナー62の検知範囲は、薬剤散布装置18を誤検知しないようにするため、検知範囲に薬剤散布装置18を含まない領域に設定される。また、薬剤散布装置18は必ずしも田植機に備えられない。この場合、薬剤散布装置18が配置される領域は後ソナー62の検知範囲に入らない。少なくとも人がその領域に入ることを抑制するために、この領域に特定の部材が設けられても良い。 Further, the two rear sonars 62 are arranged so as to sandwich the drug spraying device 18. As a result, obstacles such as people around the drug spraying device 18 can be appropriately detected. The detection range of the sonar 62 is set to a region that does not include the drug spraying device 18 in the detection range in order to prevent the drug spraying device 18 from being erroneously detected. Further, the chemical spraying device 18 is not always provided in the rice transplanter. In this case, the area where the drug spraying device 18 is arranged does not fall within the detection range of the rear sonar 62. Specific members may be provided in this area, at least to prevent a person from entering the area.
 各ソナーセンサ60は、機体1の端部より機体1の内側に設けられても良い。各ソナーセンサ60の検知範囲は扇状に広がるため、機体1の端部より内側にソナーセンサ60が設けられることにより、機体1の周囲の検知範囲の死角が減少し、機体1の周囲のより近い領域の障害物の検知が容易となる。また、各ソナーセンサ60に泥が付着することを抑制するため、各ソナーセンサ60は、機体1の内側、つまり平面視で機体1、例えばステップ14Aと重複する位置に配置されることが好ましい。 Each sonar sensor 60 may be provided inside the machine body 1 from the end portion of the body body 1. Since the detection range of each sonar sensor 60 expands in a fan shape, the blind spot of the detection range around the machine 1 is reduced by providing the sonar sensor 60 inside the end of the machine 1, and the area closer to the periphery of the machine 1 is reduced. Obstacles can be easily detected. Further, in order to prevent mud from adhering to each sonar sensor 60, it is preferable that each sonar sensor 60 is arranged inside the machine body 1, that is, at a position overlapping the machine body 1, for example, step 14A in a plan view.
 逆に、各ソナーセンサ60は、機体1の先端部分に設けられても良い。各ソナーセンサ60が機体1の内側に設けられると、機体1自身を障害物と誤検知してしまう可能性がある。各ソナーセンサ60が機体1の先端部分に設けられると、機体1自身を障害物と誤検知してしまう可能性が低減される。この場合、各ソナーセンサ60の下部に泥除け部材が設けられることが好ましい。 On the contrary, each sonar sensor 60 may be provided at the tip end portion of the machine body 1. If each sonar sensor 60 is provided inside the machine body 1, there is a possibility that the machine body 1 itself may be erroneously detected as an obstacle. When each sonar sensor 60 is provided at the tip end portion of the airframe 1, the possibility that the airframe 1 itself is erroneously detected as an obstacle is reduced. In this case, it is preferable that a mudguard member is provided below each sonar sensor 60.
 また、前ソナー61は、機体1の車軸よりも上方に設けられても良く、好ましくは車軸の上端よりも上方、より好ましくはステップ14Aの下端よりも上方に配置されても良い。また、前ソナー61は、測位ユニット8の上端よりも下方に設けられても良く、好ましくはステアリングホイール10の上端よりも下方、より好ましくはステップ14Aの上端よりも下方に設けられても良い。また、前ソナー61は予備苗支持フレーム17に設けられても良い。このように前ソナー61を泥面から離れた位置に配置することにより、泥面の検知を抑制しながら、想定される障害物をより精度良く検知できる検知範囲が設定しやすくなる。また、前ソナー61がエンジンフレーム1Fあるいはステップフレーム1Gに設けられても良い。 Further, the front sonar 61 may be provided above the axle of the airframe 1, preferably above the upper end of the axle, and more preferably above the lower end of step 14A. Further, the front sonar 61 may be provided below the upper end of the positioning unit 8, preferably below the upper end of the steering wheel 10, and more preferably below the upper end of step 14A. Further, the front sonar 61 may be provided on the preliminary seedling support frame 17. By arranging the front sonar 61 at a position away from the mud surface in this way, it becomes easy to set a detection range capable of more accurately detecting an assumed obstacle while suppressing the detection of the mud surface. Further, the front sonar 61 may be provided on the engine frame 1F or the step frame 1G.
 さらに、前ソナー61は、配置位置が調整可能な構成で設けられても良い。例えば、前ソナー61はステーを介して支持され、ステーの前ソナー61を支持する位置が選択できる構成や、前ソナー61を支持したステーが、前ソナー61の配置位置を変更可能なように変形できる構成とされても良い。 Further, the front sonar 61 may be provided in a configuration in which the arrangement position can be adjusted. For example, the front sonar 61 is supported via a stay, and the position for supporting the front sonar 61 of the stay can be selected, or the stay supporting the front sonar 61 is deformed so that the arrangement position of the front sonar 61 can be changed. It may be configured to be possible.
 また、ソナーセンサ60は、障害物検知状態では使用状態に姿勢変更され、障害物を検知していない状態では収納状態に姿勢変更される構成であっても良い。例えば、収納状態では、ソナーセンサ60の検知部が他の部材の裏に隠れたり、検知部が上を向いたりする構成とする。これにより、障害物を検知してない状態ではソナーセンサ60に泥等の汚れが付着することが抑制され、障害物検知状態において、適切に障害物の検知が行われる状態に維持しやすい。 Further, the sonar sensor 60 may be configured so that the posture is changed to the used state in the obstacle detection state and the posture is changed to the retracted state in the state where the obstacle is not detected. For example, in the stored state, the detection unit of the sonar sensor 60 is hidden behind other members, or the detection unit faces upward. As a result, dirt such as mud is suppressed from adhering to the sonar sensor 60 in a state where no obstacle is detected, and it is easy to maintain a state in which obstacle detection is appropriately performed in the obstacle detection state.
 また、隣り合う各ソナーセンサ60は、互いの検知範囲の少なくとも一部が重複する構成に限らず、検知範囲を適切に確保できれば、重複領域がない構成であっても良い。 Further, the adjacent sonar sensors 60 are not limited to a configuration in which at least a part of each other's detection range overlaps, and may have a configuration in which there is no overlapping region as long as the detection range can be appropriately secured.
 機体1の前後方向において、機体1の左右方向の中央部分の領域の検知精度を高めたい場合がある。このような場合には、前ソナー61および後ソナー62の少なくともいずれかは、機体1の左右方向の中央寄りに寄せて配置されても良い。 In the front-rear direction of the machine 1, there is a case where it is desired to improve the detection accuracy of the region of the central part in the left-right direction of the machine 1. In such a case, at least one of the front sonar 61 and the rear sonar 62 may be arranged closer to the center in the left-right direction of the aircraft 1.
 また、各ソナーセンサ60の検知範囲は、機体1の位置や走行車速、操作状況に応じて変更されても良い。機体1の位置は、機体1の位置情報と圃場マップから判断され、畦との距離や、圃場の外周部からの距離、外側周回経路ORLであるか否か等である。圃場の外周部は、圃場の境界部分として圃場マップに規定された電子境界等である。また、各ソナーセンサ60の検知範囲は、あらかじめ定めた走行経路と圃場マップとから、次に走行する位置を求め、その走行経路の状況、または作業内容に応じて変更されても良い。 Further, the detection range of each sonar sensor 60 may be changed according to the position of the aircraft 1, the traveling vehicle speed, and the operating condition. The position of the machine 1 is determined from the position information of the machine 1 and the field map, and is the distance to the ridge, the distance from the outer peripheral portion of the field, whether or not the outer circuit path is ORL, and the like. The outer peripheral portion of the field is an electronic boundary or the like defined in the field map as the boundary portion of the field. Further, the detection range of each sonar sensor 60 may be changed according to the situation of the traveling route or the work content by obtaining the position to travel next from the predetermined traveling route and the field map.
〔ソナーECU〕
 図1~図3を用いてソナーECUについて説明する。
[Sonar ECU]
The sonar ECU will be described with reference to FIGS. 1 to 3.
 ソナーセンサ60は、ソナーECU64(検知制御装置に相当)によって制御される。
ソナーECU64は、ソナーセンサ60の動作を制御すると共に、検知結果を取得して制御ユニット30(図5参照)に送信する。本実施形態では、ソナーECU64として、前ソナーECU64Aと後ソナーECU64Bとが設けられる。4つの前ソナー61は、前ソナーECU64Aによって制御され、2つの後ソナー62および2つの横ソナー63は後ソナーECU64Bによって制御される。機体1の前側領域と後側領域との間には、多数の信号配線や電源配線等が配設されている。そのため、機体1の前寄りに配置されたソナーセンサ60(前ソナー61)に接続される前ソナーECU64Aと、機体1の後寄りよりに配置されたソナーセンサ60(後ソナー62および横ソナー63)に接続される後ソナーECU64Bとが、前後に振り分けて配置される。これにより、ソナーセンサ60とソナーECU64とに接続される信号配線や電源配線等の配線類が、機体1の前後にわたって配設されることが抑制され、機体1の配線効率が向上される。
The sonar sensor 60 is controlled by a sonar ECU 64 (corresponding to a detection control device).
The sonar ECU 64 controls the operation of the sonar sensor 60, acquires the detection result, and transmits the detection result to the control unit 30 (see FIG. 5). In the present embodiment, the front sonar ECU 64A and the rear sonar ECU 64B are provided as the sonar ECU 64. The four front sonars 61 are controlled by the front sonar ECU 64A, and the two rear sonars 62 and the two lateral sonars 63 are controlled by the rear sonar ECU 64B. A large number of signal wirings, power supply wirings, and the like are arranged between the front side region and the rear side region of the airframe 1. Therefore, it is connected to the front sonar ECU 64A connected to the sonar sensor 60 (front sonar 61) arranged near the front of the aircraft 1 and the sonar sensor 60 (rear sonar 62 and the horizontal sonar 63) arranged near the rear of the aircraft 1. After that, the sonar ECU 64B and the sonar ECU 64B are arranged in front and behind. As a result, wirings such as signal wiring and power supply wiring connected to the sonar sensor 60 and the sonar ECU 64 are suppressed from being arranged in front of and behind the machine body 1, and the wiring efficiency of the machine body 1 is improved.
 前ソナーECU64Aは、機体1の前側領域に設けられ、例えば、予備苗支持フレーム17に支持される積層灯支持部材74の左横側面に支持される。前ソナーECU64Aと各前ソナー61とのデータ通信を行う通信配線や電源配線等の配線類は、各前ソナー61と接続される配線類を前ソナー61の近傍で1本にまとめ、まとめられた1本の配線類が前ソナーECU64Aと接続される。 The front sonar ECU 64A is provided in the front region of the machine body 1, and is supported, for example, on the left lateral side surface of the laminated lamp support member 74 supported by the spare seedling support frame 17. Wiring such as communication wiring and power supply wiring for data communication between the front sonar ECU 64A and each front sonar 61 are grouped together in the vicinity of the front sonar 61. One wire is connected to the front sonar ECU 64A.
 また、前ソナーECU64Aは積層灯支持部材74の左横側面に支持されるため、機体1の外部から容易に着脱することが可能である。このため、前ソナー61を後付けすることが可能であり、さらに、前ソナーECU64Aの修理・交換も容易となる。 Further, since the front sonar ECU 64A is supported on the left lateral side surface of the laminated light support member 74, it can be easily attached to and detached from the outside of the machine body 1. Therefore, the front sonar 61 can be retrofitted, and the front sonar ECU 64A can be easily repaired or replaced.
 後ソナーECU64Bは、機体1の後側領域に設けられ、例えば、各後ソナー62および各横ソナー63に囲まれた領域に配置される。後ソナーECU64Bは、左側の横ソナー63の近傍である、運転座席16の下方領域の機体フレーム1Eの左横側面に支持される。また、後ソナーECU64Bと各後ソナー62および各横ソナー63とのデータ通信を行う通信配線や電源配線等の配線類は、各後ソナー62および各横ソナー63と接続される通信配線を1本にまとめ、まとめられた1本の配線類が前ソナーECU64Aと接続される。これらにより、各後ソナー62および各横ソナー63と後ソナーECU64Bとの配線が効率的に行われる。 The rear sonar ECU 64B is provided in the rear region of the airframe 1, and is arranged in, for example, an region surrounded by each rear sonar 62 and each lateral sonar 63. The rear sonar ECU 64B is supported on the left lateral side surface of the fuselage frame 1E in the lower region of the driver's seat 16 in the vicinity of the left lateral sonar 63. Further, the wiring such as the communication wiring and the power supply wiring for data communication between the rear sonar ECU 64B and each rear sonar 62 and each horizontal sonar 63 includes one communication wiring connected to each rear sonar 62 and each horizontal sonar 63. One piece of wiring is connected to the front sonar ECU 64A. As a result, wiring between each rear sonar 62 and each lateral sonar 63 and the rear sonar ECU 64B is efficiently performed.
 また、機体1の右側領域には、油圧ホース等が配置される。そのため、後ソナーECU64Bが機体の左側領域に設けられることにより、後ソナーECU64Bおよび後ソナーECU64Bに接続される配線類が油圧ホース等と干渉せず、配線類の損傷を抑制し、加えて、配線類の着脱が容易となる。 In addition, a hydraulic hose or the like is arranged in the right area of the machine body 1. Therefore, by providing the rear sonar ECU 64B in the left side region of the machine body, the wirings connected to the rear sonar ECU 64B and the rear sonar ECU 64B do not interfere with the hydraulic hose or the like, and damage to the wirings is suppressed. Easy to put on and take off.
 また、後ソナーECU64Bは機体フレーム1Eの左横側面に支持されるため、機体1の外部から容易に着脱することが可能である。このため、後ソナー62および横ソナー63を後付けすることが可能であり、さらに、後ソナーECU64Bの修理・交換も容易となる。 Further, since the rear sonar ECU 64B is supported on the left lateral side surface of the airframe frame 1E, it can be easily attached to and detached from the outside of the airframe 1. Therefore, the rear sonar 62 and the horizontal sonar 63 can be retrofitted, and the rear sonar ECU 64B can be easily repaired or replaced.
 ソナーECU64に接続可能なソナーセンサ60の数には制限がる。そのため、本実施形態ではソナーECU64が2つ設けられる。1つのソナーECU64で全てのソナーセンサ60の制御が可能である場合、1つのソナーECU64は、機体1の中央部に設けられることが好ましい。これにより、配線効率を最適化することができる。 There is a limit to the number of sonar sensors 60 that can be connected to the sonar ECU 64. Therefore, in this embodiment, two sonar ECUs 64 are provided. When all the sonar sensors 60 can be controlled by one sonar ECU 64, it is preferable that one sonar ECU 64 is provided in the central portion of the airframe 1. Thereby, the wiring efficiency can be optimized.
 また、搭載されるソナーセンサ60の総数は、ソナーECU64に接続可能なソナーセンサ60の制限数の整数倍とすることが好ましい。つまり、ソナーECU64の制限に対して最大限多くのソナーセンサ60を設けることが好ましい。これにより、障害物の検知精度を向上させることができる。 Further, the total number of sonar sensors 60 mounted is preferably an integral multiple of the limit number of sonar sensors 60 that can be connected to the sonar ECU 64. That is, it is preferable to provide as many sonar sensors 60 as possible with respect to the limitation of the sonar ECU 64. As a result, the accuracy of detecting obstacles can be improved.
 また、ソナーセンサ60の搭載可能数に余裕があれば、前ソナー61の数を後ソナー62の数より多くする必要がなく、同じ数とすることもできる。これにより、後ソナー62の障害物検知精度を向上させることができる。 Further, if the number of sonar sensors 60 that can be mounted is sufficient, the number of front sonars 61 does not need to be larger than the number of rear sonars 62, and the same number can be used. As a result, the obstacle detection accuracy of the rear sonar 62 can be improved.
 なお、上記説明では、障害物検知装置としてソナーセンサ60を用いる構成例を説明したが、障害物検知装置はソナーセンサ60に限らず、障害物を検知できれば、任意の装置を用いることができる。 In the above description, a configuration example in which the sonar sensor 60 is used as the obstacle detection device has been described, but the obstacle detection device is not limited to the sonar sensor 60, and any device can be used as long as it can detect an obstacle.
 例えば、障害物検知装置として、レーザーセンサや接触センサを用いることができる。
また、撮像装置にて機体1の周辺が撮影され、画像解析により障害物が検知される構成とされても良い。画像解析は、機械学習により生成した学習済みモデルを用いて行うこともでき、人工知能を用いた任意の手段で行うことができる。
For example, a laser sensor or a contact sensor can be used as the obstacle detection device.
Further, the periphery of the machine body 1 may be photographed by an image pickup device, and an obstacle may be detected by image analysis. Image analysis can also be performed using a trained model generated by machine learning, or can be performed by any means using artificial intelligence.
〔ソナーセンサによる検知〕
 図1~図3、図12~図14を用いて、ソナーセンサによる障害物を検知する構成および検知内容に応じた走行制御について説明する。
[Detection by sonar sensor]
A configuration for detecting an obstacle by a sonar sensor and a traveling control according to the detection content will be described with reference to FIGS. 1 to 3 and 12 to 14.
 ソナーセンサ60は機体1の周囲の障害物を検知し、自動走行において、制御ユニット30(図5参照)は障害物の検知内容に応じて自動走行を制御する。具体的には、このような制御は、自動走行用マイコン6等を含む制御ユニット30に内蔵される自動走行制御部または障害物対応部等の機能ブロックが行うことができ、さらに、これらの機能ブロックは、制御ユニット30とは別に設けられても良い。 The sonar sensor 60 detects obstacles around the aircraft 1, and in automatic driving, the control unit 30 (see FIG. 5) controls automatic driving according to the detection content of the obstacles. Specifically, such control can be performed by a functional block such as an automatic driving control unit or an obstacle handling unit built in the control unit 30 including the automatic driving microcomputer 6 and the like, and further, these functions. The block may be provided separately from the control unit 30.
 無人自動走行により機体1が発進する際(無人自動走行開始時)に、障害物が検知されると、発進が抑制されて走行は開始されない(発進抑制モード)。例えば、前進での無人自動走行開始時には、ソナーセンサ60のうち、前ソナー61および横ソナー63の検知結果が用いられ、前ソナー61および横ソナー63が障害物を検知すると、発進が抑制されて走行は開始されない。また、後進での無人自動走行開始時には、ソナーセンサ60のうち、後ソナー62および横ソナー63の検知結果が用いられ、後ソナー62および横ソナー63が障害物を検知すると、発進が抑制されて走行は開始されない。この際、横ソナー63は、運転者が搭乗する際に通過する搭乗領域である乗降ステップ(ステップ14A)の周囲が検知され、特に、運転部14に乗り降りしようとしている人物が検知される。 If an obstacle is detected when the aircraft 1 starts by unmanned automatic driving (at the start of unmanned automatic driving), the start is suppressed and the vehicle does not start (start suppression mode). For example, at the start of unmanned automatic driving in forward movement, the detection results of the front sonar 61 and the lateral sonar 63 are used among the sonar sensors 60, and when the front sonar 61 and the lateral sonar 63 detect an obstacle, the start is suppressed and the vehicle travels. Will not start. Further, at the start of unmanned automatic driving in reverse, the detection results of the rear sonar 62 and the lateral sonar 63 are used among the sonar sensors 60, and when the rear sonar 62 and the lateral sonar 63 detect an obstacle, the start is suppressed and the vehicle travels. Will not start. At this time, the horizontal sonar 63 detects the surroundings of the boarding / alighting step (step 14A), which is the boarding area that the driver passes through when boarding, and in particular, detects a person who is about to get on / off the driving unit 14.
 無人自動走行による走行中は障害物の検知が行われ、障害物が検知されると、自動走行の停止等の制御が行われる(障害物検知モード)。具体的には、無人自動走行による走行中にソナーセンサ60が障害物を検知すると、走行が停止され、あるいは走行車速が減速される。例えば、無人自動走行により機体1が直進走行する際には前ソナー61の検知結果が用いられ、無人自動走行により機体1が後進走行する際には後ソナー62の検知結果が用いられる。また、無人自動走行により旋回する際には、これらに加えて横ソナー63の検知結果が用いられても良く、旋回方向の横ソナー63のみの検知結果が用いられても良い。なお、走行が停止される際には、走行車速が徐々に減速されて、最終的に機体1が停止されても良い。なお、内部往復経路IPLを走行する往復作業走行の際に障害物検知が行われても良く、さらに、最外周植付時(最外周作業走行)にも障害物検知が行われても良い。 Obstacles are detected during driving by unmanned automatic driving, and when an obstacle is detected, control such as stopping automatic driving is performed (obstacle detection mode). Specifically, when the sonar sensor 60 detects an obstacle during traveling by unmanned automatic traveling, the traveling is stopped or the traveling vehicle speed is decelerated. For example, the detection result of the front sonar 61 is used when the aircraft 1 travels straight by unmanned automatic traveling, and the detection result of the rear sonar 62 is used when the aircraft 1 travels backward by unmanned automatic traveling. Further, when turning by unmanned automatic traveling, the detection result of the horizontal sonar 63 may be used in addition to these, or the detection result of only the horizontal sonar 63 in the turning direction may be used. When the traveling is stopped, the traveling vehicle speed may be gradually reduced, and the aircraft 1 may be finally stopped. Obstacles may be detected during the reciprocating work traveling on the internal reciprocating path IPL, and further, obstacle detection may be performed during the outermost planting (outermost peripheral work traveling).
 また、発進抑制モードおよび障害物検知モードにおいて、障害物が検知された場合、無段変速装置9の斜板の角度は中立状態に維持される。この際、エンジン回転数は低下されずに維持されることが好ましい。これにより、検知した障害物が走行に支障がないことが確認された場合や、障害物が排除された場合、速やかに走行を開始・再開することができる。また、ソナーセンサ60によって障害物が検知された場合、障害物が検知された旨が報知されても良い。例えば、制御ユニット30は、ボイスアラーム発生装置100を制御して、ボイスアラーム発生装置100に報知させる。また、障害物が検知された旨の報知は、後述される積層灯71やセンターマスコット20に所定の表示パターンで報知されても良く、作業車が保持するリモコン90やモバイル端末に報知されても、情報端末5等に報知されても良い。 Further, when an obstacle is detected in the start suppression mode and the obstacle detection mode, the angle of the swash plate of the continuously variable transmission 9 is maintained in the neutral state. At this time, it is preferable that the engine speed is maintained without being reduced. As a result, when it is confirmed that the detected obstacle does not hinder the running, or when the obstacle is eliminated, the running can be started / restarted promptly. Further, when an obstacle is detected by the sonar sensor 60, it may be notified that the obstacle has been detected. For example, the control unit 30 controls the voice alarm generator 100 to notify the voice alarm generator 100. Further, the notification that an obstacle has been detected may be notified to the laminated light 71 or the center mascot 20, which will be described later, in a predetermined display pattern, or may be notified to the remote controller 90 or the mobile terminal held by the work vehicle. , The information terminal 5 or the like may be notified.
 また、ソナーセンサ60の検知結果を用いた走行の制御は、無人自動走行の場合に限らず、有人自動走行、あるいは手動走行の際に行われても良い。特に、外側周回経路ORL(図4参照)は、有人自動走行あるいは手動走行で作業走行が行われる。圃場の最外周には水口等の障害物が多くある。そのため、有人自動走行あるいは手動走行による最外周作業走行においても、ソナーセンサ60を用いた障害物検知が行われても良い。また、有人自動走行あるいは手動走行の際に、水口等の障害物が多くある領域のみで、ソナーセンサ60の検知結果を用いた走行の制御が行われても良い。また、運転部14に運転者が搭乗しているか否かを検知できる構成とし、有人自動走行あるいは手動走行であっても、運転部14に運転者が搭乗していることが検知できない場合には、ソナーセンサ60の検知結果を用いた走行の制御が行われても良い。なお、運転部14に運転者が搭乗しているか否かの検知は、着座センサ16A等により行うことができる。 Further, the running control using the detection result of the sonar sensor 60 is not limited to the case of unmanned automatic running, but may be performed during manned automatic running or manual running. In particular, the outer circuit path ORL (see FIG. 4) is subjected to work traveling by manned automatic traveling or manual traveling. There are many obstacles such as water outlets on the outermost circumference of the field. Therefore, obstacle detection using the sonar sensor 60 may be performed even in the outermost working running by manned automatic running or manual running. Further, during manned automatic driving or manual driving, driving may be controlled using the detection result of the sonar sensor 60 only in an area where there are many obstacles such as a water outlet. Further, the configuration is such that it is possible to detect whether or not the driver is on the driver's unit 14, and if it cannot be detected that the driver is on the driver's unit 14 even in the case of manned automatic driving or manual driving. , Travel control may be performed using the detection result of the sonar sensor 60. It should be noted that the seating sensor 16A or the like can be used to detect whether or not the driver is on board the driving unit 14.
 上述のように、ソナーセンサ60は泥面を検知しないように検知範囲が設定される。圃場の状態は様々であるため、このように設定しても泥面を検知しやすい状況になる場合もある。ここで、無人自動走行開始時は機体1が静止しているため、検知された障害物が泥面であるか否かの判断は容易である。これを踏まえ、無人自動走行開始時において、制御ユニット30は、障害物を検知した場合、それが泥面であるか否かを判定し、泥面であると判定された場合には、障害物を検知していないと検知結果を修正(無視)しても良い。
これにより、制御ユニット30は、泥面を検知しても障害物ではないと認定して自動走行を制御することができ、必要以上に障害物を検知して発進が抑制されることが少なくなり、スムーズな自動走行を行うことが可能となる。なお、泥面であるかの判定は障害物判定部が行っても良い。障害物判定部は、制御ユニット30に内蔵されても良いが、制御ユニット30の外部に設けられても良い。
As described above, the detection range of the sonar sensor 60 is set so as not to detect the mud surface. Since the condition of the field varies, it may be easy to detect the mud surface even if it is set in this way. Here, since the aircraft 1 is stationary at the start of unmanned automatic driving, it is easy to determine whether or not the detected obstacle is a muddy surface. Based on this, at the start of unmanned automatic driving, when the control unit 30 detects an obstacle, it determines whether or not it is a muddy surface, and if it is determined to be a muddy surface, the obstacle surface. If is not detected, the detection result may be corrected (ignored).
As a result, the control unit 30 can recognize that it is not an obstacle even if it detects the mud surface and control the automatic driving, and it is less likely that the control unit 30 detects an obstacle more than necessary and suppresses the start. , Smooth automatic driving becomes possible. The obstacle determination unit may determine whether the surface is mud. The obstacle determination unit may be built in the control unit 30, but may be provided outside the control unit 30.
 また、無人自動走行開始時においては(発進抑制モード)、ソナーセンサ60が動いている人物等の変動物のみを検知した際に障害物を検知したとして制御されても良い。無人自動走行開始時において発進を抑制する必要がある状態は、人物が運転部14に乗降しようとしている状態が多い。そのため、人物等の移動物のみを検知対象(自動走行の際に考慮する障害物)とすることにより、誤検知が抑制されて、無人自動走行開始時の適切な制御を行うことができる。人物等の移動物であるか否かの判定は、障害物判定部が行う。障害物判定部は、障害物の判定を画像解析等によって行い、あるいは、機械学習された学習済みデータに、撮像画像を入力することによっても行うことができる。 Further, at the start of unmanned automatic driving (start suppression mode), it may be controlled as if an obstacle is detected when the sonar sensor 60 detects only a moving object such as a moving person. In many cases where it is necessary to suppress the start at the start of unmanned automatic driving, a person is trying to get on and off the driving unit 14. Therefore, by setting only moving objects such as people as detection targets (obstacles to be considered during automatic driving), erroneous detection can be suppressed and appropriate control at the start of unmanned automatic driving can be performed. The obstacle determination unit determines whether or not the object is a moving object such as a person. The obstacle determination unit can determine an obstacle by image analysis or the like, or can also perform an obstacle determination by inputting an captured image into the machine-learned learned data.
 また、走行状態に応じて検知結果が用いられないソナーセンサ60は、障害物の検知自体は継続されても良く、電源がOFFされる等の不使用状態にされても良い。 Further, the sonar sensor 60, whose detection result is not used depending on the traveling state, may continue to detect obstacles, or may be put into an unused state such as turning off the power.
 後ソナー62は苗植付装置3に支持され、苗植付装置3は植付作業走行に応じて昇降する。その結果、植付作業中は苗植付装置3が下降状態であり、後ソナー62は泥面を検知しやすい位置にある。また、植付作業中は前進状態であり、後方の障害物を検知する必要性は少ない。以上のことから、前進作業走行において、苗植付装置3が下降していることを条件として、後ソナー62が不使用状態にされても良い。苗植付装置3が下降している状態は、昇降リンク13aの状態を検知するセンサ(図5に示すセンサ群1Aの1つ)により検知することもでき、マーカ19の姿勢、整地フロート15が接地しているか否かで判断することもできる。 The rear sonar 62 is supported by the seedling planting device 3, and the seedling planting device 3 moves up and down according to the running of the planting work. As a result, the seedling planting device 3 is in a lowered state during the planting operation, and the rear sonar 62 is in a position where it is easy to detect the mud surface. In addition, it is in a forward state during the planting work, and there is little need to detect obstacles behind it. From the above, the rear sonar 62 may be in an unused state on condition that the seedling planting device 3 is lowered in the forward work traveling. The state in which the seedling planting device 3 is lowered can also be detected by a sensor (one of the sensor groups 1A shown in FIG. 5) that detects the state of the elevating link 13a, and the posture of the marker 19 and the ground leveling float 15 can be detected. It can also be judged by whether or not it is grounded.
 また、後ソナー62は、後進時には、近づいてくる物体のみを障害物と認識するように制御されても良い。この際、苗植付装置3が上昇位置にあると、泥面からの高さが高い位置にある障害物が検出されやすく、機体1の後方に侵入してくる障害物を検出しやすい。
なお、障害物が近付いているか否かは、障害物判定部により判定することができる。
Further, the rear sonar 62 may be controlled so as to recognize only an approaching object as an obstacle when moving backward. At this time, when the seedling planting device 3 is in the ascending position, it is easy to detect an obstacle at a position high from the mud surface, and it is easy to detect an obstacle invading the rear of the machine body 1.
Whether or not an obstacle is approaching can be determined by the obstacle determination unit.
 また、上述のように、横ソナー63は、予備苗支持フレーム17を障害物として誤検知しないように、他のソナーセンサ60に比べて、平面方向の検知範囲が狭く設定される。
ただし、予備苗支持フレーム17の配置位置や横ソナー63の配置位置等に応じて、誤検知のおそれが少ない場合、横ソナー63の検知範囲は他のソナーセンサ60と同様以上であっても良い。
Further, as described above, the horizontal sonar 63 is set to have a narrower detection range in the plane direction than the other sonar sensors 60 so that the preliminary seedling support frame 17 is not erroneously detected as an obstacle.
However, if there is little risk of erroneous detection depending on the arrangement position of the preliminary seedling support frame 17 and the arrangement position of the horizontal sonar 63, the detection range of the horizontal sonar 63 may be the same as or greater than that of the other sonar sensors 60.
 また、ソナーセンサ60の検知範囲の大きさは、発進抑制モードと障害物検知モードとで異なっても良い。例えば、ソナーセンサ60の検知範囲の大きさは、発進抑制モードの方が障害物検知モードより大きい。ソナーセンサ60の検知範囲が大きくなると垂直方向の検知範囲も大きくなり、泥面を検出しやすい。上述のように、発進抑制モードでは機体1が静止しているので、検知後の制御により泥面であるかを判断して、泥面を検知してもその後の制御において検知結果を無視することができる。これに対して障害物検知モードでは、機体1は走行状態であり、泥面を検知しやすく、検知した障害物が泥面であるか否の判断も困難である。よって、障害物検知モードでは、泥面を検知することを抑制するために、検知範囲を小さくすることが好ましい。 Further, the size of the detection range of the sonar sensor 60 may be different between the start suppression mode and the obstacle detection mode. For example, the size of the detection range of the sonar sensor 60 is larger in the start suppression mode than in the obstacle detection mode. As the detection range of the sonar sensor 60 increases, the detection range in the vertical direction also increases, making it easier to detect the mud surface. As described above, since the aircraft 1 is stationary in the start suppression mode, it is determined by the control after the detection whether it is a mud surface, and even if the mud surface is detected, the detection result is ignored in the subsequent control. Can be done. On the other hand, in the obstacle detection mode, the aircraft 1 is in a running state, it is easy to detect the mud surface, and it is difficult to determine whether or not the detected obstacle is the mud surface. Therefore, in the obstacle detection mode, it is preferable to reduce the detection range in order to suppress the detection of the mud surface.
 内部往復経路IPL(図4参照)における作業走行では、機体1は走行に伴って畦に近づくことになる。畦は泥面より高さが高くソナーセンサ60によって検知されやすい。自動走行においては畦を考慮して生成された旋回経路で旋回を行い、ソナーセンサ60が必要以上に畦を検知する必要はない。そのため、ソナーセンサ60の検知範囲の大きさは、任意に変更可能であっても良い。例えば、内部往復経路IPLでの作業走行において、機体1から畦までの距離が所定の距離以内に近づくと、畦までの距離が近くなる程、ソナーセンサ60の検知範囲の長さが短なるように制御される。 In the work run on the internal round-trip route IPL (see FIG. 4), the aircraft 1 approaches the ridge as it runs. The ridges are higher than the mud surface and are easily detected by the sonar sensor 60. In automatic driving, it is not necessary for the sonar sensor 60 to detect ridges more than necessary by turning on a turning path generated in consideration of ridges. Therefore, the size of the detection range of the sonar sensor 60 may be arbitrarily changed. For example, in work traveling on the internal round-trip path IPL, when the distance from the aircraft 1 to the ridge approaches within a predetermined distance, the shorter the distance to the ridge, the shorter the length of the detection range of the sonar sensor 60. Be controlled.
 また、旋回走行時には旋回の内側に位置するソナーセンサ60の検知範囲が大きくされても良い。例えば、前進走行において、前ソナー61のうち、旋回の内側に位置する1または複数の前ソナー61の検知範囲が大きくされても良い。前ソナー61は、旋回走行によって機体1が通過する領域の障害物を検知できれば機体1が障害物と接触するリスクを十分に軽減できる。そのため、前ソナー61は、旋回に沿って描かれる機体1の前側最外端部の軌跡を検知できる構成であれば良い。例えば、機体1における前側最外端部が予備苗収納装置17Aの前側最外端部であった場合、予備苗収納装置17Aの前側最外端部が描く軌跡が検知範囲に含まれれば良い。これにより、検知漏れのリスクが低減される。 Further, the detection range of the sonar sensor 60 located inside the turn may be increased during the turn. For example, in forward traveling, the detection range of one or more of the front sonar 61s located inside the turn may be increased. If the front sonar 61 can detect an obstacle in the area through which the aircraft 1 passes by turning, the risk of the aircraft 1 coming into contact with the obstacle can be sufficiently reduced. Therefore, the front sonar 61 may have a configuration that can detect the locus of the outermost front end portion of the airframe 1 drawn along the turn. For example, when the outermost front end portion of the machine body 1 is the outermost front end portion of the spare seedling storage device 17A, the locus drawn by the outermost front end portion of the spare seedling storage device 17A may be included in the detection range. This reduces the risk of missed detection.
 同様に、後進走行において、後ソナー62のうち、旋回の内側に位置する後ソナー62の検知範囲が大きくされても良い。機体1の後側最外端部は、摺動板ガード3Bの後側最外端部である。したがって、摺動板ガード3Bの後側最外端部が描く軌跡が検知範囲に含まれれば良い。畦での旋回時に補助作業者等が旋回方向と反対側の圃場内で待機することがしばしばある。このようなケースで前記構成を採用することで、検知範囲は補助作業者が待機する位置に対して機体1の反対側に広がることになり、補助作業者を障害物と誤検知して機体停止するおそれが少なくなる。 Similarly, in reverse travel, the detection range of the rear sonar 62 located inside the turn may be increased among the rear sonar 62. The rearmost outermost portion of the machine body 1 is the rearmost outermost portion of the sliding plate guard 3B. Therefore, the locus drawn by the rearmost outermost portion of the sliding plate guard 3B may be included in the detection range. When turning on a ridge, an auxiliary worker or the like often waits in the field on the opposite side of the turning direction. By adopting the above configuration in such a case, the detection range is extended to the opposite side of the machine 1 with respect to the position where the auxiliary worker is waiting, and the auxiliary worker is erroneously detected as an obstacle and the machine is stopped. There is less risk of doing so.
 また、ソナーセンサ60は、使用時、例えば無人走行開始時に作動させる構成であっても良いが、エンジン2が始動されるとソナーセンサ60も作動して障害物が検知されるが、無人走行開始されるまで(使用時となるまで)検知結果を使用しない構成としても良い。検知結果を使用して自動走行が制御される際には、ボイスアラーム発生装置100等によりその旨の告知が報知される。 Further, the sonar sensor 60 may be configured to operate at the time of use, for example, at the start of unmanned running, but when the engine 2 is started, the sonar sensor 60 also operates and an obstacle is detected, but the unmanned running is started. The configuration may be such that the detection result is not used until (until it is used). When automatic driving is controlled using the detection result, a voice alarm generator 100 or the like notifies a notification to that effect.
 上述のように、ソナーセンサ60は、作業走行に支障のない物体でも障害物であると誤検知する場合がある。作業走行に支障のない物体であるか否かを監視者が確認できる場合、走行を開始し、あるいは走行を継続することが好ましい。そのため、監視者が、作業走行に支障のない物体であると判断できた場合、検知した障害物を一時的に考慮しないように操作できる構成としても良い。例えば、リモコン90に、検知した障害物を一時的に考慮しない(無視する)ようにできるボタン操作が用意される。検知した障害物を無視する期間は、あらかじめ定めた所定の時間であっても良いし、検知した障害物の考慮を再開するボタン操作が別途用意されても良いし、ボタン操作が継続されている間(ボタンの長押し状態)だけ無視する構成であっても良い。あるいは、検知した障害物を無視する期間は、あらかじめ定めた所定の距離だけ走行する期間であっても良い。これらのボタン操作は、通常のリモコン90の操作としては開示されない、隠しコマンドとしても良い。また、ボタン操作は、操作ミスを抑制するために、複雑な操作としても良い。例えば、頻繁に操作され、誤操作してもすぐにやり直すことができるような操作はリモコン90の1つのボタンで操作可能とし、自動走行開始等の一度誤操作してしまうと簡単にやり直すことのできない操作は2つ以上のボタンを同時に操作するようにしても良い。なお、2つ以上のボタンの一つはファンクションボタンとしても良い。 As described above, the sonar sensor 60 may erroneously detect an object that does not interfere with work running as an obstacle. When the observer can confirm whether or not the object does not interfere with the work running, it is preferable to start the running or continue the running. Therefore, if the observer can determine that the object does not interfere with the work running, the operator may be able to operate the object so as not to temporarily consider the detected obstacle. For example, the remote controller 90 is provided with a button operation that can temporarily not consider (ignore) the detected obstacle. The period for ignoring the detected obstacle may be a predetermined time, a button operation for resuming consideration of the detected obstacle may be separately prepared, or the button operation is continued. It may be configured to ignore only the interval (the state where the button is pressed and held). Alternatively, the period for ignoring the detected obstacle may be a period during which the vehicle travels for a predetermined distance. These button operations may be hidden commands that are not disclosed as normal remote control 90 operations. Further, the button operation may be a complicated operation in order to suppress an operation error. For example, operations that are frequently operated and that can be redone immediately even if they are erroneously operated can be operated with one button on the remote controller 90, and operations that cannot be easily redoed once they are erroneously operated, such as starting automatic driving. May operate two or more buttons at the same time. One of the two or more buttons may be a function button.
 このような操作は、音声によるアナウンスが行われ、アナウンスを参照しながら行われる構成であっても良い。また、アナウンスがあった後にこのような操作が行われて初めて、操作が有効になる構成であっても良い。 Such an operation may be configured such that an announcement is made by voice and is performed while referring to the announcement. Further, the operation may be effective only after such an operation is performed after the announcement.
 ソナーセンサ60以外のセンサ(図5に示すセンサ群1Aの1つ)を別途設け、このセンサは障害物の大きさを検知することができるものとしても良い。このセンサは、撮像装置で撮影した画像を解析する構成であっても良いし、障害物に照射するレーザーセンサであっても良く、大きさを検知できれば任意である。そして、ソナーセンサ60が障害物を検知したとき、このセンサが障害物の大きさを検知し、所定の大きさ以下の場合には、障害物と認識しない構成とすることもできる。 A sensor other than the sonar sensor 60 (one of the sensor group 1A shown in FIG. 5) may be separately provided, and this sensor may be capable of detecting the size of an obstacle. This sensor may be configured to analyze an image taken by an imaging device, or may be a laser sensor that irradiates an obstacle, and is arbitrary as long as it can detect the size. Then, when the sonar sensor 60 detects an obstacle, the sensor detects the size of the obstacle, and if the size is less than a predetermined size, the sensor may not recognize the obstacle.
 また、リモコン90または情報端末5の操作により、ソナーセンサ60の動作を停止・開始させ、障害物の検知に伴った制御を行うか否かの開始・停止が選択される構成としても良い。 Further, the operation of the sonar sensor 60 may be stopped / started by the operation of the remote controller 90 or the information terminal 5, and the start / stop of whether or not to perform the control according to the detection of the obstacle may be selected.
 また、障害物が検出された際には、無段変速装置9の斜板の角度は中立に変位されるか、または中立を維持されるが、この状態では、ソナーセンサ60が障害物を検知しない、または検知しても無視する構成としても良い。さらに、その後所定の期間が経過した後に、ソナーセンサ60を用いた障害物の検知および処理が再開されても良い。このとき、畦際を走行しているような検出すべき障害物が多い状態では、検知および処理が再開されない構成であっても良い。障害物が多い状態であるか否かは、位置情報と圃場マップとから判断しても良いし、撮像装置を用いた画像解析により判断しても良い。 Further, when an obstacle is detected, the angle of the swash plate of the continuously variable transmission 9 is displaced to neutral or maintained neutral, but in this state, the sonar sensor 60 does not detect the obstacle. , Or it may be configured to be detected or ignored. Further, after a predetermined period of time has elapsed, the detection and processing of the obstacle using the sonar sensor 60 may be restarted. At this time, if there are many obstacles to be detected, such as traveling on a ridge, the detection and processing may not be restarted. Whether or not there are many obstacles may be determined from the position information and the field map, or may be determined by image analysis using an imaging device.
 障害物の検知および処理は、自動的に再開されず、特定の人為的操作が行われて初めて再開されても良い。また、撮像装置を用いた画像解析によって適切に自動走行が開始しているか否かを判断し、適切に自動走行が開始されていると判断された場合に、障害物の検知および処理が再開されても良い。 Obstacle detection and processing may not be restarted automatically, but may be restarted only after a specific human operation is performed. In addition, it is determined by image analysis using an image pickup device whether or not automatic driving has started properly, and if it is determined that automatic driving has started properly, obstacle detection and processing are restarted. You may.
〔苗補給時のソナー制御〕
 図1~図4、図12~図14を用いて、苗補給時のソナーセンサ60の制御について説明する。
[Sonar control when replenishing seedlings]
The control of the sonar sensor 60 at the time of seedling replenishment will be described with reference to FIGS. 1 to 4 and 12 to 14.
 田植機は、苗切れが生じると苗補給を行う。苗補給時には、前進走行で、苗補給辺SLの畦際に機体1が寄せられる。苗補給が終了すると、機体1は後進し、走行経路に復帰する。 The rice transplanter replenishes seedlings when the seedlings run out. At the time of seedling replenishment, the aircraft 1 is brought to the edge of the seedling replenishment side SL by traveling forward. When the seedling supply is completed, the aircraft 1 moves backward and returns to the traveling route.
 苗補給中は機体1の周囲を作業車が行き来する。そのため、苗補給中はソナーセンサ60に動作を停止させることが好ましい。あるいは、苗補給中はソナーセンサ60が障害物を検知しても無視することが好ましい。また、自動走行中に障害物が検知されたとしても、自動走行が終了されて、自動走行の設定情報等は消去される。苗補給中に障害物が検知された場合は、自動走行が終了せず、自動走行が一時停止状態に移行しても良い。これにより、迅速に作業走行を再開することができる。 While replenishing seedlings, work vehicles move around the aircraft 1. Therefore, it is preferable to stop the operation of the sonar sensor 60 during the seedling supply. Alternatively, even if the sonar sensor 60 detects an obstacle during seedling supply, it is preferable to ignore it. Further, even if an obstacle is detected during the automatic driving, the automatic driving is terminated and the setting information of the automatic driving is deleted. If an obstacle is detected during seedling replenishment, the automatic running may not end and the automatic running may shift to the paused state. As a result, the work running can be resumed quickly.
 そして、苗補給が終了し、走行経路に復帰する際には、ソナーセンサ60うちの少なくとも後ソナー62の動作を再開させ、あるいは検知した障害物を考慮した処理を行わせることが好ましい。さらに、苗補給が終了した直後は、機体1に作業車が近付く可能性が高い。そのため、苗補給が終了した後の後進時には、横ソナー63を動作させても良い。また、この後進時には、機体1の前方の近い位置に畦があることになる。そのため、少なくとも圃場の内部領域IAに到達するまでは、後進時であっても前ソナー61を動作させることが好ましい。なお、苗補給に限らず、その他の資材の補給の際にも同様の制御が行われても良い。 Then, when the seedling supply is completed and the vehicle returns to the traveling path, it is preferable to restart the operation of at least the rear sonar 62 of the sonar sensors 60, or to perform processing in consideration of the detected obstacle. Further, immediately after the seedling supply is completed, there is a high possibility that the work vehicle will approach the aircraft 1. Therefore, the horizontal sonar 63 may be operated at the time of reverse movement after the seedling supply is completed. Further, at the time of this reverse movement, there is a ridge near the front of the aircraft 1. Therefore, it is preferable to operate the front sonar 61 even when moving backward, at least until it reaches the inner region IA of the field. It should be noted that the same control may be performed not only when replenishing seedlings but also when replenishing other materials.
〔ソナーセンサの不具合検知〕
 図1~図5、図12~図14を用いて、ソナーセンサ60の不具合を検知する構成について説明する。
[Detection of sonar sensor defects]
A configuration for detecting a defect in the sonar sensor 60 will be described with reference to FIGS. 1 to 5 and 12 to 14.
 ソナーセンサ60は、泥等が付着して、適切に障害物の検知が行えなくなる場合がある。走行の開始時には、ソナーセンサ60の動作確認が行われるが、走行中にソナーセンサ60に不具合が生じても、それを検出することは困難である。 The sonar sensor 60 may not be able to properly detect obstacles due to mud or the like adhering to it. At the start of running, the operation of the sonar sensor 60 is confirmed, but even if a problem occurs in the sonar sensor 60 during running, it is difficult to detect it.
 そのため、後進時に、前ソナー61が泥面を検知しない場合、ソナーECU64または制御ユニット30は、前ソナー61に不具合が生じていると判断しても良い。後進時には前ソナー61が障害物を検知したとしても、障害物と認識しない制御が行われる。また、前ソナー61は、検知範囲に泥面を含み、障害物が泥面であるか否かを判断して、泥面である場合には障害物と認識しない制御が行われる。そのため、後進走行中に、前ソナー61が泥面を所定の期間検知しない場合、前ソナー61に不具合が生じていると判断することができる。 Therefore, if the front sonar 61 does not detect the mud surface when moving backward, the sonar ECU 64 or the control unit 30 may determine that the front sonar 61 has a problem. Even if the front sonar 61 detects an obstacle when moving backward, the control is performed so that the front sonar 61 does not recognize the obstacle. Further, the front sonar 61 includes a mud surface in the detection range, determines whether or not the obstacle is a mud surface, and if it is a mud surface, the control is performed so that the obstacle is not recognized as an obstacle. Therefore, if the front sonar 61 does not detect the mud surface for a predetermined period during reverse travel, it can be determined that the front sonar 61 has a problem.
 位置情報により畦際に接近していることがわかる場合、畦がソナーセンサ60の検知範囲に入ったとしても、進行方向前方の障害物を検知しているソナーセンサ60が障害物を検知しない場合、そのソナーセンサ60には不具合が生じていると判断することができる。 If the position information indicates that the ridge is approaching, even if the ridge is within the detection range of the sonar sensor 60, if the sonar sensor 60 that detects an obstacle in front of the traveling direction does not detect an obstacle, that is the case. It can be determined that the sonar sensor 60 has a problem.
 4つの前ソナー61の検知範囲の少なくとも一部が重複している場合、前ソナー61のうちの1つしか障害物を検知しない場合、いずれかの前ソナー61には不具合が生じていると判断することができる。 If at least a part of the detection range of the four front sonars 61 overlaps, or if only one of the front sonars 61 detects an obstacle, it is determined that one of the front sonars 61 has a problem. can do.
 隣り合うソナーセンサ60が近接配置させ、一方のソナーセンサ60のみが障害物を検知した場合、他方のソナーセンサ60には不具合が生じていると判断しても良い。 When adjacent sonar sensors 60 are arranged close to each other and only one sonar sensor 60 detects an obstacle, it may be determined that the other sonar sensor 60 has a problem.
〔薬剤補給時の走行制御〕
 図1~図5を用いて、薬剤補給時の走行制御について説明する。
[Running control during drug replenishment]
The running control at the time of drug replenishment will be described with reference to FIGS. 1 to 5.
 田植機は、搭載された薬剤がなくなると薬剤の補給を行う。薬剤補給時には、後進走行で、苗補給辺SLの畦際に機体1が寄せられる。薬剤補給が終了すると、機体1は前進し、走行経路に復帰する。 The rice transplanter replenishes the medicine when the loaded medicine runs out. At the time of drug replenishment, the aircraft 1 is brought to the edge of the seedling replenishment side SL in the reverse running. When the drug supply is completed, the aircraft 1 moves forward and returns to the traveling path.
 薬剤補給時は有人自動走行では、自動状態を維持しながら、人の操作により旋回し、後進走行して苗補給辺SLの畦際に機体1が寄せられる。 At the time of drug replenishment, in manned automatic driving, while maintaining the automatic state, it turns by human operation, runs backward, and the aircraft 1 is brought to the edge of the seedling replenishment side SL.
 無人自動走行では、旋回経路から内部往復経路IPLに移行する際に機体1が一時的に停止され、その間に人為的な操作を行うことにより、機体1が所定の速度で後進し(チョイ寄せ)、苗補給辺SLの畦際に機体1が寄せられる。この人為的な操作は、リモコン90等で行うことができる。なお、このような人為的な操作は、旋回の途中を走行している際に受け付けることができ、旋回が終了してから、機体1は所定の速度で後進する。 In unmanned automatic driving, the aircraft 1 is temporarily stopped when shifting from the turning path to the internal reciprocating path IPL, and by performing an artificial operation during that time, the aircraft 1 moves backward at a predetermined speed (choice). , Aircraft 1 is brought to the edge of the seedling supply side SL. This artificial operation can be performed by the remote controller 90 or the like. It should be noted that such an artificial operation can be accepted while traveling in the middle of the turn, and after the turn is completed, the aircraft 1 moves backward at a predetermined speed.
〔自動走行中の報知〕
 図1~図5を用いて、自動走行中の報知を制御する構成について説明する。
[Notification during automatic driving]
A configuration for controlling notification during automatic driving will be described with reference to FIGS. 1 to 5.
 無人自動走行の自動運転開始直前には、苗切れや薬剤切れが生じていないかを確認することを、作業者に促す報知画面が情報端末5に表示される。また、苗や薬剤の残量を検出するセンサ(図5に示すセンサ群1Aの1つ)が設けられ、苗切れや薬剤切れが生じている場合、自動走行は開始されず、苗切れや薬剤切れが生じている旨、および苗や薬剤の補給を促す旨の少なくともいずれかが報知されても良い。このような報知は、情報端末5に表示されても良いし、ボイスアラーム発生装置100によって音声により報知されても良く、または積層灯71の点灯による報知やリモコン90等への報知でも良い。以上のような処理は、リモコン90により自動走行による走行を開始する操作が行われたときに行われ、報知画面の表示、苗切れや薬剤切れが生じている旨の報知、および苗や薬剤の補給を促す旨の報知の少なくともいずれかが行われる。さらに、苗切れや薬剤切れ以外の異常についても確認されても良く、異常が生じている旨の表示に加えて、異常を解消・回避することを促す報知、あるいはその手順が報知されても良い。 Immediately before the start of automatic operation of unmanned automatic driving, a notification screen is displayed on the information terminal 5 to prompt the operator to confirm whether the seedlings have run out or the drug has run out. In addition, a sensor (one of the sensor group 1A shown in FIG. 5) for detecting the remaining amount of seedlings and chemicals is provided, and when seedlings or chemicals run out, automatic running is not started and seedlings or chemicals run out. At least one of the fact that the cut has occurred and the fact that the seedlings and the medicine are urged to be replenished may be notified. Such a notification may be displayed on the information terminal 5, may be notified by voice by the voice alarm generator 100, may be notified by lighting the laminated light 71, or may be notified to the remote controller 90 or the like. The above processing is performed when the operation of starting the running by automatic running is performed by the remote controller 90, the notification screen is displayed, the notification that the seedlings have run out or the medicine has run out, and the seedlings or the medicines have run out. At least one of the notifications to encourage replenishment is made. Further, abnormalities other than seedling shortage and drug shortage may be confirmed, and in addition to the indication that the abnormality has occurred, a notification prompting the elimination / avoidance of the abnormality or a procedure thereof may be notified. ..
 また、自動走行の開始時は、動き出す前にボイスアラーム等によって報知されても良い。その後、報知の終了後に機体1が動き出しても良いし、報知と共に機体1が動き出しても良い。 Further, at the start of automatic driving, a voice alarm or the like may be notified before the vehicle starts moving. After that, the aircraft 1 may start moving after the notification is completed, or the aircraft 1 may start moving together with the notification.
 自動走行は、苗補給ありモードと苗補給なしモードが設定可能である。苗補給ありモードでは、旋回経路の手前の内部往復経路IPLの終端領域で、苗補給を行うか否かを選択するために、機体1は一時停車する。苗の補給が不要なときは、一時停車中にリモコン90が人為的に操作されることにより走行が再開され、リモコン90が操作されるまで停車状態で機体1は待機する。苗の補給が必要なときは、苗補給が必要である状態である旨の人為的な操作を行い、まずは機体1を畦に向かって所定距離だけ自動的に直進させて停止させる。その後、リモコン90による別の人為的な操作により機体1を苗補給辺SLの畦際に寄せることができる。別実施形態として、苗補給場所は苗補給辺ではなく、圃場の外周辺上の特定の苗補給ポイントであっても良い。また、苗補給ありモードでは、苗補給辺や苗補給ポイントに向かって経路が生成され、経路に沿って自動走行されても良い。 For automatic driving, it is possible to set a mode with seedling supply and a mode without seedling supply. In the seedling replenishment mode, the aircraft 1 temporarily stops in order to select whether or not to replenish the seedlings in the terminal region of the internal reciprocating path IPL before the turning path. When it is not necessary to replenish the seedlings, the remote controller 90 is artificially operated during the temporary stop to restart the traveling, and the aircraft 1 stands by in the stopped state until the remote controller 90 is operated. When it is necessary to replenish the seedlings, an artificial operation is performed to the effect that the seedlings need to be replenished. First, the aircraft 1 is automatically advanced straight toward the ridge for a predetermined distance and stopped. After that, the aircraft 1 can be brought to the edge of the seedling supply side SL by another artificial operation by the remote controller 90. As another embodiment, the seedling replenishment place may be a specific seedling replenishment point on the outer periphery of the field instead of the seedling replenishment side. Further, in the mode with seedling supply, a route is generated toward the seedling supply side or the seedling supply point, and the vehicle may automatically travel along the route.
 また、苗補給なしモードでも、旋回経路と内部往復経路IPLとの境界で、制御の切り替えのために機体1は一時的に停車する。苗補給なしモードであっても、予期せぬ苗の補給が必要になったり、その他の事情が生じたりすることにより、機体1を苗補給辺SLの畦際に寄せることが必要となる場合がある。この際、機体1が一時的に停車している間に、リモコン90等による人為的な操作により、機体1を苗補給辺SLの畦際に寄せることができる。あるいは、機体1が一時的に停車する前に徐々に減速され、その間に、リモコン90等による人為的な操作により、機体1を苗補給辺SLの畦際に寄せることができる。 Also, even in the mode without seedling replenishment, the aircraft 1 temporarily stops at the boundary between the turning path and the internal round-trip path IPL to switch the control. Even in the mode without seedling supply, it may be necessary to move the aircraft 1 to the edge of the seedling supply side SL due to unexpected need for seedling supply or other circumstances. be. At this time, while the machine 1 is temporarily stopped, the machine 1 can be brought to the edge of the seedling supply side SL by an artificial operation using the remote controller 90 or the like. Alternatively, the speed is gradually reduced before the machine 1 is temporarily stopped, and during that time, the machine 1 can be brought to the edge of the seedling supply side SL by an artificial operation by a remote controller 90 or the like.
 なお、機体1が一時停車した後、所定の時間が経過することにより、走行が自動的に再開されても良いが、走行の再開に人為的な操作が要されても良い。 Note that, after the aircraft 1 is temporarily stopped, the running may be automatically restarted after a predetermined time has elapsed, but an artificial operation may be required to restart the running.
 また、異常を報知する以外の、単なる前進する旨、後進する旨の報知は、設定により解除することもできる。 In addition to notifying the abnormality, the notification of mere forward movement and backward movement can be canceled by setting.
 また、自動走行開始時に、ボイスアラーム発生装置100等の動作チェックが行われても良い。例えば、自動走行起動・停止スイッチ7Dが押下された際に、ボイスアラーム発生装置100等を流れる電流値が適正であるか否かにより、動作チェックが行われる。 Further, the operation of the voice alarm generator 100 or the like may be checked at the start of automatic driving. For example, when the automatic driving start / stop switch 7D is pressed, an operation check is performed depending on whether or not the current value flowing through the voice alarm generator 100 or the like is appropriate.
〔自動走行中の制御における操作具の操作〕
 図1~図5を用いて、自動走行中の制御における操作具の操作について説明する。
[Operation of operating tools in control during automatic driving]
The operation of the operating tool in the control during automatic driving will be described with reference to FIGS. 1 to 5.
 無人自動走行においては、走行が開始された後は、基本的に作業者の操作は介入されず、主変速レバー7Aは中立位置のまま、走行および作業は制御ユニット30により制御される。 In the unmanned automatic running, after the running is started, the operation of the operator is basically not intervened, the main shift lever 7A remains in the neutral position, and the running and the work are controlled by the control unit 30.
 有人自動走行においては、運転者が主変速レバー7Aの操作を行うことにより走行が開始され、旋回走行や作業を行う際にも一定の手動操作が必要な場合がある。この際、運転者は、制御ユニット30の制御により行われるガイダンスを受け、ガイダンスに応じた操作を行うことにより、走行が開始され、旋回走行や作業が行われる。例えば、経路の進行方向に対して、主変速レバー7Aを進行方向に操作させるガイダンスが行われる。ガイダンスは、音声ガイダンスや情報端末5への表示等により行われ、主変速レバー7Aの操作や作業装置1Cの操作を促すガイダンスも含まれる。さらに、有人自動走行においては、走行の開始時や後進中、旋回中にその旨の報知が行われる。 In manned automatic driving, driving is started by the driver operating the main speed change lever 7A, and a certain manual operation may be required even when turning or performing work. At this time, the driver receives the guidance performed under the control of the control unit 30, and by performing an operation according to the guidance, the driving is started, and the turning traveling and the work are performed. For example, guidance is given to operate the main speed change lever 7A in the traveling direction with respect to the traveling direction of the path. The guidance is given by voice guidance, display on the information terminal 5, or the like, and includes guidance for prompting the operation of the main speed change lever 7A and the operation of the work device 1C. Further, in manned automatic driving, a notification to that effect is given at the start of driving, during reverse movement, and during turning.
 有人自動走行において、主変速レバー7Aを中立位置にする操作は自動走行の開始のために必要であり、苗植付装置3の下降等の作業装置1Cの動作に係る操作は自動作業走行を継続するために必要である。例えば、旋回時に非作業状態にされた作業装置1Cは、旋回後に作業状態に移行させることが必要である。そのため、これらの操作を促す音声等によるガイダンスは、これら操作が行われない限り継続して行われる。例えば、有人自動走行による最外周植付作業において、手動操作により苗植付装置3が下降されないと自動走行は継続しない。そのため、主変速レバー7Aを中立位置にすることを促すガイダンスは、苗植付装置3が下降されるまで報知され続ける。 In manned automatic running, the operation of setting the main speed change lever 7A to the neutral position is necessary for starting the automatic running, and the operation related to the operation of the working device 1C such as lowering of the seedling planting device 3 continues the automatic working running. It is necessary to do. For example, it is necessary to shift the working device 1C, which has been put into a non-working state during turning, to a working state after turning. Therefore, guidance by voice or the like prompting these operations is continuously performed unless these operations are performed. For example, in the outermost planting work by manned automatic traveling, the automatic traveling does not continue unless the seedling planting device 3 is lowered by a manual operation. Therefore, the guidance prompting the main shift lever 7A to be in the neutral position continues to be notified until the seedling planting device 3 is lowered.
 有人自動走行における旋回中または後進中に主変速レバー7Aが中立位置に操作された場合に主変速レバー7Aを操作位置に戻すガイダンスや、無人自動制御中に主変速レバーが前後進方向に操作された場合に主変速レバー7Aを中立位置に戻すガイダンス、自動作業走行中に作業者により上昇された苗植付装置3を下降させるガイダンス、最外周植付作業における各辺の始端部で苗植付装置3を昇降するガイダンスは、ガイダンスに沿った操作が行われるまで報知され続けることが好ましい。なお、有人自動走行における旋回中または後進中に主変速レバー7Aが中立位置に操作された場合に主変速レバー7Aを操作位置に戻すガイダンスや、無人自動制御中に主変速レバーが前後進方向に操作された場合に主変速レバー7Aを中立位置に戻すガイダンス、自動作業走行中に作業者により上昇された苗植付装置3を下降させるガイダンスは、あらかじめ設定された自動走行に反する操作であり、このような操作がされた場合は、設定された自動走行を行うのに適切な操作が行われるようにガイダンス(警告)されることになる。 Guidance to return the main shift lever 7A to the operating position when the main shift lever 7A is operated to the neutral position during turning or reverse movement in manned automatic driving, and the main shift lever is operated in the forward / backward direction during unmanned automatic control. Guidance to return the main speed change lever 7A to the neutral position, guidance to lower the seedling planting device 3 raised by the operator during automatic work running, and seedling planting at the start of each side in the outermost planting work. It is preferable that the guidance for raising and lowering the device 3 continues to be notified until the operation according to the guidance is performed. It should be noted that guidance for returning the main shifting lever 7A to the operating position when the main shifting lever 7A is operated to the neutral position during turning or reverse movement in manned automatic driving, and guidance for returning the main shifting lever 7A to the operating position, and for the main shifting lever to move forward and backward during unmanned automatic control. Guidance for returning the main speed change lever 7A to the neutral position when operated, and guidance for lowering the seedling planting device 3 raised by the operator during automatic work running are operations contrary to preset automatic running. When such an operation is performed, guidance (warning) is given so that an appropriate operation is performed for performing the set automatic driving.
 この時、音声ガイダンスは所定回数、所定時間報知され、情報端末5への表示によるガイダンスのみが、上記操作が行われるまで継続される構成であっても良い。 At this time, the voice guidance may be notified a predetermined number of times for a predetermined time, and only the guidance displayed on the information terminal 5 may be continued until the above operation is performed.
 なお、主変速レバー7Aを中立位置に操作する旨のガイダンスは、主変速レバー7Aの操作位置にかかわらず、無段変速装置9の斜板の角度が中立位置であるか否かを判断し、無段変速装置9の斜板の角度が中立位置にないと判断された場合に行われても良い。また、主変速レバー7Aが中立位置でない状態で、無段変速装置9の斜板の角度が中立位置と判断されて自動走行が開始された際には、無段変速装置9の斜板の角度が主変速レバー7Aの操作位置に対応する角度に変位されても良い。これにより、主変速レバー7Aの操作位置に応じた走行車速で走行され、走行車速を作業者の操作に沿わせることができる。 The guidance for operating the main shift lever 7A to the neutral position determines whether or not the angle of the swash plate of the continuously variable transmission 9 is in the neutral position regardless of the operation position of the main shift lever 7A. This may be performed when it is determined that the angle of the swash plate of the continuously variable transmission 9 is not in the neutral position. Further, when the angle of the swash plate of the continuously variable transmission 9 is determined to be the neutral position and automatic traveling is started when the main speed change lever 7A is not in the neutral position, the angle of the swash plate of the continuously variable transmission 9 is started. May be displaced at an angle corresponding to the operating position of the main shift lever 7A. As a result, the vehicle travels at a traveling vehicle speed according to the operating position of the main speed change lever 7A, and the traveling vehicle speed can be adjusted to the operator's operation.
 有人自動走行中は、主変速レバー7Aの操作等をガイダンスし、これに応じた操作に基づいた走行が行われる。ただし、最外周植付作業において、外側周回経路ORLの各辺をつなぐ旋回走行(方向転換)は、運転者の操作を要さずに前後進が切り替わる。そのため、有人自動走行であっても、このような操作を要さない走行時には、走行が切り替わるとしてもガイダンスを行わないことが好ましい。ただし、外側周回経路ORLの各辺をつなぐ旋回走行においても、作業装置1Cの動作には手動操作を要する構成としても良く、この際は、作業装置1Cの動作にかかる操作を行う旨のガイダンスが報知される。 During manned automatic driving, guidance is given to the operation of the main speed change lever 7A, and driving is performed based on the corresponding operation. However, in the outermost peripheral planting work, the turning running (direction change) connecting each side of the outer peripheral path ORL switches forward and backward without the operation of the driver. Therefore, even in the case of manned automatic driving, it is preferable not to give guidance even if the driving is switched during the driving that does not require such an operation. However, even in a turning run connecting each side of the outer circuit path ORL, the operation of the work device 1C may require a manual operation, and in this case, the guidance for performing the operation related to the operation of the work device 1C may be provided. Be notified.
 有人自動走行中に操作された主変速レバー7Aは、自動走行中経路進行方向に維持され、途中で自動走行での方向転換(旋回)に伴う後進動作があったとしても主変速レバー7Aはその位置で維持される。また、主変速レバー7Aの操作位置を移動させるモータ等のアクチュエータを備える場合は、機体1の進行方向(無段変速装置9の斜板の角度)に応じて、主変速レバー7Aの操作位置が変化されても良い。同様に、ブレーキにより走行車速が変化する場合、ブレーキの操作あるいは走行車速(無段変速装置9の斜板の角度)に応じて、主変速レバー7Aの操作位置が変化されても良い。この際、アクチュエータの動作中およびに動作の前後に、動作状況が報知されても良い。 The main speed change lever 7A operated during manned automatic driving is maintained in the route traveling direction during automatic driving, and even if there is a reverse operation due to a change of direction (turning) during automatic driving, the main speed change lever 7A is the same. Maintained in position. Further, when an actuator such as a motor for moving the operation position of the main shift lever 7A is provided, the operation position of the main shift lever 7A is set according to the traveling direction of the machine body 1 (the angle of the swash plate of the continuously variable transmission 9). May be changed. Similarly, when the traveling vehicle speed is changed by the brake, the operating position of the main speed change lever 7A may be changed according to the operation of the brake or the traveling vehicle speed (angle of the swash plate of the continuously variable transmission 9). At this time, the operation status may be notified during the operation of the actuator and before and after the operation.
 なお、自動走行の開始時は、開始点誘導を開始する場合、往復植付を開始する場合、資材補給から復帰する場合、内側周回経路IRLでの無人自動走行を開始する場合、有人自動走行で最外周植付を行う場合の各辺(旋回領域とつながり、圃場の外周辺と略平行な走行経路)の自動走行を開始する場合等である。 At the start of automatic driving, when starting point guidance, starting reciprocating planting, returning from material supply, starting unmanned automatic driving on the inner circuit route IRL, manned automatic driving This is the case of starting automatic running of each side (a running path connected to a turning area and substantially parallel to the outer periphery of the field) when planting the outermost circumference.
 また、無人自動走行において、誤って主変速レバー7Aが中立位置から操作された場合、主変速レバー7Aを中立位置に戻すように促す報知・ガイダンスが行われる。 In addition, in unmanned automatic driving, if the main shift lever 7A is accidentally operated from the neutral position, notification / guidance is provided to urge the main shift lever 7A to return to the neutral position.
 有人自動走行を開始する際に、自動走行を行うために必要な条件が整うと、自動運転許可状態に制御状態が変位する。この自動運転許可状態で主変速レバー7Aを所定の方向に操作された場合のみ自動走行が開始される。そのため、自動運転許可状態で主変速レバー7Aが、所定の方向と異なる方向に操作されても、機体1は動かない。 When starting manned automatic driving, if the conditions necessary for automatic driving are met, the control state will be displaced to the automatic driving permission state. Automatic driving is started only when the main speed change lever 7A is operated in a predetermined direction in this automatic driving permission state. Therefore, even if the main speed change lever 7A is operated in a direction different from the predetermined direction in the automatic operation permission state, the machine body 1 does not move.
 有人自動走行における開始点誘導は、ガイダンスに基づく手動操作により行われる。そのため、有人自動走行における開始点誘導の際には、まず後進のために主変速レバー7Aを後進側に操作するように報知が行われ、次に開始点Sまで前進走行で移動するために、主変速レバー7Aを前進側に操作するように報知が行われる。 Guidance of the starting point in manned autonomous driving is performed by manual operation based on guidance. Therefore, when guiding the start point in manned automatic driving, a notification is first given to operate the main shift lever 7A to the reverse side for reverse movement, and then to move forward to the start point S in order to move forward. Notification is given to operate the main speed change lever 7A to the forward side.
 有人自動走行が開始または継続される条件として、自動運転許可状態から自動走行が開始される際、または、自動走行中の一時停止状態から走行が再開する場合は、主変速レバー7Aが中立位置以外の位置にあるとしても良い。そのため、開始点誘導が開始される際、往復植付(内部往復経路IPLでの植付作業走行)が開始される際、苗補給後に走行が再開される際、往復植付後に内部往復経路IPLの開始点に自動誘導される前等には、運転者が主変速レバー7Aを中立位置から所定の方向に操作して自動走行が再開される。 As a condition for starting or continuing manned automatic driving, when automatic driving is started from the automatic driving permitted state, or when driving is restarted from the paused state during automatic driving, the main speed change lever 7A is not in the neutral position. It may be in the position of. Therefore, when the start point guidance is started, when the round-trip planting (planting work running on the internal round-trip path IPL) is started, when the running is restarted after the seedling supply, the internal round-trip path IPL after the round-trip planting Before being automatically guided to the starting point of the above, the driver operates the main speed change lever 7A from the neutral position in a predetermined direction to restart the automatic traveling.
 有人自動走行である場合も、無人自動走行である場合も、自動走行開始前には、主変速レバー7Aが中立位置にあることを要しても良い。 In both the manned automatic driving and the unmanned automatic driving, it may be necessary that the main shift lever 7A is in the neutral position before the automatic driving starts.
 有人自動走行は、モード切替スイッチ7E等により有人自動走行が選択された状態で、所定の条件が整ったうえで、自動走行起動・停止スイッチ7Dが押下されることにより開始され、主変速レバー7Aが前進方向に操作されることにより走行が開始される。また、無人自動走行は、所定の条件が整ったことにより開始され、リモコン90の操作で走行が開始され、リモコン90以外の操作では走行が開始されない。 Manned automatic driving is started by pressing the automatic driving start / stop switch 7D after the predetermined conditions are met in a state where manned automatic driving is selected by the mode changeover switch 7E or the like, and the main shift lever 7A Is operated in the forward direction to start traveling. Further, the unmanned automatic traveling is started when a predetermined condition is satisfied, the traveling is started by the operation of the remote controller 90, and the traveling is not started by the operation other than the remote controller 90.
 有人自動走行において、自動走行は主変速レバー7Aを操作することにより開始される。また、有人自動走行では、旋回の終了後に手動操作により苗植付装置3が下降される。
また、自動走行起動・停止スイッチ7Dの操作により、有人自動走行モードに移行される。
In manned automatic driving, automatic driving is started by operating the main speed change lever 7A. Further, in the manned automatic traveling, the seedling planting device 3 is lowered by a manual operation after the turning is completed.
Further, by operating the automatic driving start / stop switch 7D, the mode is shifted to the manned automatic driving mode.
 ただし、最外周植付時の旋回時の苗植付装置3の昇降は、ガイダンスに従って操作される。この場合でも、撮像装置を用いた画像解析等により、苗植付装置3を昇降しても問題ないことが確認できる場合は、苗植付装置3の昇降も自動制御で行われても良い。 However, the raising and lowering of the seedling planting device 3 at the time of turning at the time of planting the outermost circumference is operated according to the guidance. Even in this case, if it can be confirmed by image analysis using an imaging device that there is no problem in raising and lowering the seedling planting device 3, the seedling planting device 3 may also be raised and lowered by automatic control.
 なお、以上のガイダンスは、ボイスアラーム等によって行われる音声ガイダンスや、情報端末5による表示の他にも、積層灯71やリモコン90等を用いた様々な手段により報知されても良い。このようなガイダンスは、報知制御部等によって制御され、報知制御部は制御ユニット30であっても良いし、制御ユニット30に内蔵されても良く、制御ユニット30とは別に設けられても良い。 The above guidance may be notified by various means using a laminated light 71, a remote controller 90, or the like, in addition to the voice guidance given by a voice alarm or the like and the display by the information terminal 5. Such guidance is controlled by a notification control unit or the like, and the notification control unit may be a control unit 30, may be built in the control unit 30, or may be provided separately from the control unit 30.
 外側周回経路ORLは、畦等の周辺を走行することになるため、圃場の外周から所定の距離だけ内側に経路が設けられ、合わせて無人自動走行は行わない構成としても良いが、無人自動走行を可能としても良い。この場合、圃場の外周からの距離を、無人自動走行を行わない制限が付された場合より十分に大きく取り、無人自動走行を行ったとしても不測の事態が生じることを抑制することが好ましい。このように、外側周回経路ORLにおいても無人自動走行を可能とすることにより、内側周回経路IRLおよび外側周回経路ORLを、無人自動走行を続けて作業走行することができる。 Since the outer circuit route ORL travels around ridges and the like, a route may be provided inside by a predetermined distance from the outer circumference of the field, and unmanned automatic traveling may not be performed at the same time. May be possible. In this case, it is preferable to set the distance from the outer periphery of the field sufficiently larger than that in the case where the unmanned automatic running is not performed, and to prevent an unexpected situation from occurring even if the unmanned automatic running is performed. In this way, by enabling unmanned automatic traveling even on the outer orbital route ORL, it is possible to continue the unmanned automatic traveling on the inner orbital route IRL and the outer orbital route ORL.
 ここで、外側周回経路ORLを含む走行経路は、最初に行われる圃場の外周に沿った非作業走行に基づいて決定される。圃場の外周に沿った非作業走行は、圃場の外周に近接させて走行しても良いし、圃場の外周から所定の距離離れて外周に沿って走行しても良い。
圃場の外周に近接させて非作業走行を行った場合、外側周回経路ORLは非作業走行を行った経路より所定の距離だけ内側に設定され、外側周回経路ORLを基準として内側周回経路IRLおよび内部往復経路IPLが設定される。圃場の外周から所定の距離離れて非作業走行を行った場合、非作業走行を行った経路が外側周回経路ORLとして設定され、外側周回経路ORLを基準として内側周回経路IRLおよび内部往復経路IPLが設定される。
Here, the travel route including the outer circuit route ORL is determined based on the first non-working travel along the outer circumference of the field. The non-working run along the outer circumference of the field may be carried out close to the outer circumference of the field, or may be run along the outer circumference at a predetermined distance from the outer circumference of the field.
When non-working travel is performed close to the outer circumference of the field, the outer circuit path ORL is set inward by a predetermined distance from the route where the non-working travel is performed, and the inner circuit path IRL and the inner circuit are set with reference to the outer circuit path ORL. The round-trip path IPL is set. When non-working travel is performed at a predetermined distance from the outer circumference of the field, the route on which the non-working travel is performed is set as the outer peripheral route ORL, and the inner peripheral route IRL and the internal round-trip route IPL are set based on the outer peripheral route ORL. Set.
 例えば、圃場の外周から所定の距離だけ離れて非作業走行を行う際には前マーカ(「隣接マーカ」に相当)が用いられる。前マーカが圃場の外周(例えば畦)と接するように非作業走行を行うことにより、前マーカの長さの分だけ、圃場の外周から離れて外周に沿って走行することとなる。 For example, a front marker (corresponding to an "adjacent marker") is used when performing non-working running at a predetermined distance from the outer circumference of the field. By performing the non-working run so that the front marker is in contact with the outer circumference (for example, ridge) of the field, the run is separated from the outer circumference of the field by the length of the front marker and runs along the outer circumference.
 例えば、前マーカは3段階に切り替えられる構成とさる。1つめの段階は収納状態である。2つめの段階は通常の長さだけ突出する状態であり、植付部の最外端から条間分の長さだけ突出する長さである。3つ目の段階は、前マーカを圃場の外周(例えば畦)と接するように非作業走行を行った際に、機体1が圃場の外周から所定の距離離れて走行する長さだけ突出する状態である。また、3つ目の段階における前マーカの長さを可変とすることにより、所定の距離を任意に設定することもできる。所定の距離を任意に設定できる場合、外側周回経路ORLを走行することの走行車速が、所定の距離に応じて設定されても良い。 For example, the front marker has a configuration that can be switched in three stages. The first stage is the stowed state. The second stage is a state in which the plant protrudes by a normal length, and is a length protruding from the outermost end of the planting portion by the length of the inter-row length. The third stage is a state in which the aircraft 1 protrudes by a predetermined distance from the outer circumference of the field when the front marker is not operated so as to be in contact with the outer circumference (for example, ridge) of the field. Is. Further, by making the length of the front marker variable in the third stage, a predetermined distance can be arbitrarily set. When a predetermined distance can be arbitrarily set, the traveling vehicle speed for traveling on the outer circuit path ORL may be set according to the predetermined distance.
 また、圃場の外周に沿った非作業走行は、外側周回経路ORLでの有人自動走行を考慮して、運転者が判断する距離だけ圃場の外周から離れて行われても良い。これにより、圃場中に必要な植付領域を確保すると共に、運転者の技量に応じて所定の距離を設定することができる。 Further, the non-working running along the outer circumference of the field may be carried out away from the outer circumference of the field by a distance determined by the driver in consideration of manned automatic running on the outer circumference route ORL. As a result, it is possible to secure a necessary planting area in the field and set a predetermined distance according to the skill of the driver.
 なお、所定の距離は、所定の走行車速で走行している際に、障害物を含む異常が検知されて機体1を停止させる際に、異常を検知してから機体1が停止されるまでに機体1が走行する最低の距離またはそれにマージンを加えた距離とすることができる。 It should be noted that the predetermined distance is set from the detection of the abnormality to the stop of the aircraft 1 when the abnormality including an obstacle is detected and the aircraft 1 is stopped while traveling at the predetermined traveling vehicle speed. It can be the minimum distance that the aircraft 1 travels or the distance to which a margin is added.
 圃場の外周に沿った非作業走行が行われることにより、圃場の外周辺に係る位置情報が取得され、外周辺に基づいて圃場の外形マップ(圃場マップ)および走行経路が設定される。圃場の外周に沿った非作業走行は、圃場を構成する全辺を連続して走行し、連続した外周辺に係る位置情報が取得されても良いが、圃場を構成する各辺に係る位置情報が個別に取得されて圃場マップが生成されても良い。これにより、圃場の外周に沿った非作業走行の途中で走行を停止されたとしても、初めから非作業走行をやり直すことなく、走行を停止した辺から走行をやり直すことができる。辺毎に圃場マップが生成された場合、最外周植付は辺毎に行うことができる。 By performing non-working running along the outer circumference of the field, the position information related to the outer periphery of the field is acquired, and the outer shape map (field map) and the traveling route of the field are set based on the outer periphery. In the non-working run along the outer circumference of the field, all the sides constituting the field may be continuously run, and the position information relating to the continuous outer periphery may be acquired, but the position information relating to each side constituting the field may be acquired. May be obtained individually to generate a field map. As a result, even if the running is stopped in the middle of the non-working running along the outer periphery of the field, the running can be restarted from the side where the running is stopped without restarting the non-working running from the beginning. When a field map is generated for each side, the outermost planting can be performed for each side.
 外側周回経路ORLは有人自動走行で作業走行が行われる。外側周回経路ORLの有人自動走行においては、自動走行による制御に従って作業走行が行われ、各辺の作業走行の間に旋回走行が行われる。旋回の際には、苗植付装置3の昇降等が必要となり、これはガイダンスに応じて手動で操作される。このような構成に限らず、苗植付装置3の昇降等も自動制御で行えるようにし、作業者が、手動操作を行うか自動制御で行うかを選択できる構成としても良い。自動制御は、例えば、旋回走行の開始前に苗植付装置3を上昇させ、旋回走行の終了後に苗植付装置3を下降させるようにする。 The outer circuit route ORL is operated by manned automatic driving. In the manned automatic running of the outer circuit path ORL, the work running is performed according to the control by the automatic running, and the turning running is performed during the work running of each side. When turning, it is necessary to raise and lower the seedling planting device 3, which is manually operated according to the guidance. Not limited to such a configuration, the seedling planting device 3 may be raised and lowered by automatic control, and the operator may select whether to perform manual operation or automatic control. In the automatic control, for example, the seedling planting device 3 is raised before the start of the turning run, and the seedling planting device 3 is lowered after the end of the turning run.
 なお、圃場の外形マップ(圃場マップ)の生成、内部領域IAの設定、外周領域OAの設定、走行経路の設定、および圃場の外周辺から外側周回経路ORLまでの距離の調整は、制御ユニット30が行う。あるいは、制御ユニット30に内蔵され、または、制御ユニット30の外部に設けられる、走行経路生成部がこれらの処理を行っても良い。 The control unit 30 is used to generate an outer map (field map) of the field, set the inner area IA, set the outer area OA, set the traveling route, and adjust the distance from the outer periphery of the field to the outer orbital route ORL. Do. Alternatively, a traveling route generation unit built in the control unit 30 or provided outside the control unit 30 may perform these processes.
〔苗切れ・肥料切れ等の際の制御〕
 図1~図5を用いて、苗切れ・肥料切れ等の際の制御について説明する。
[Control when seedlings run out, fertilizer runs out, etc.]
The control when seedlings run out, fertilizer runs out, etc. will be described with reference to FIGS. 1 to 5.
 苗植付装置3や施肥装置4、薬剤散布装置18、播種機等の各種資材を供給する装置には、それぞれの資材の残量を検出するセンサ(図5に示すセンサ群1Aの1つ)が設けられても良い。以下、苗の残量を検出する苗切れセンサを例に説明するが、肥料、薬剤、種籾等の各種資材にも適用できる。 A sensor that detects the remaining amount of each material (one of the sensor group 1A shown in FIG. 5) is used for a device that supplies various materials such as a seedling planting device 3, a fertilizer application device 4, a chemical spraying device 18, and a seeder. May be provided. Hereinafter, a seedling shortage sensor that detects the remaining amount of seedlings will be described as an example, but it can also be applied to various materials such as fertilizers, chemicals, and seed paddy.
 苗切れセンサが、苗の残量が所定の量以下になっていることを検知すると、制御ユニット30は、情報端末5やボイスアラーム発生装置100等にその旨を報知させても良い。 When the seedling shortage sensor detects that the remaining amount of seedlings is equal to or less than a predetermined amount, the control unit 30 may notify the information terminal 5, the voice alarm generator 100, or the like to that effect.
 また、作業走行の開始時、あるいは停車後の作業走行の再開時に、苗切れセンサが苗の残量が所定の量以下になっていることを検知すると、制御ユニット30は、走行が行われないように制御しても良い。苗の残量が不足する状態で植付作業が行われると、圃場の途中で欠株が生じる可能性がある。そのため、このような可能性がある状態では走行を行わない構成とすることにより、欠株の発生が抑制される。 Further, when the seedling shortage sensor detects that the remaining amount of seedlings is less than a predetermined amount at the start of the work running or when the work running is resumed after the vehicle is stopped, the control unit 30 does not run. It may be controlled as follows. If the planting work is carried out when the remaining amount of seedlings is insufficient, there is a possibility that a stock shortage will occur in the middle of the field. Therefore, the occurrence of stock deficiency can be suppressed by setting the configuration so that the stock does not run in such a possible state.
 走行経路の途中で苗の残量が所定の量以下になっていることが検知された場合、機体1が停止されても良いが、苗植付装置3を上昇させた状態で、苗補給辺SLまで走行させても良い。また、苗切れセンサが、苗補給辺SLに戻るのに必要な量が残る範囲の所定の量を検知する構成とし、苗切れセンサがこの量を検知した場合、作業走行を継続しながら苗補給辺SLまで走行する構成としても良い。また、苗補給辺SLに限らず、苗切れセンサが検知した位置によっては、苗補給が可能なその他の辺まで走行する構成としても良い。
自動走行の際の、苗補給辺SLまたはその他の辺までの移動は、その場所からの走行経路が生成され、その走行経路に沿った自動走行であっても良い。
If it is detected that the remaining amount of seedlings is less than a predetermined amount in the middle of the traveling route, the aircraft 1 may be stopped, but with the seedling planting device 3 raised, the seedling supply side You may run to SL. In addition, the seedling shortage sensor is configured to detect a predetermined amount within the range where the amount required to return to the seedling supply side SL remains, and when the seedling shortage sensor detects this amount, seedling supply is continued while working. It may be configured to run to the side SL. Further, the structure is not limited to the seedling supply side SL, and depending on the position detected by the seedling shortage sensor, it may be configured to travel to another side where seedling supply is possible.
In the case of automatic traveling, the movement to the seedling supply side SL or other side may be an automatic traveling along the traveling route where a traveling route is generated from that place.
 また、圃場の途中で苗がなくなったとしても、いずれにせよ、苗補給のために苗補給辺SLまで走行する必要がある。そのため、走行経路の途中で苗の残量が所定の量以下になっていることが検知されても、苗補給辺SLの近傍、例えば、内部往復経路IPLの旋回領域の手前までは、作業走行が継続されても良い。 Also, even if the seedlings run out in the middle of the field, in any case, it is necessary to drive to the seedling supply side SL for seedling supply. Therefore, even if it is detected that the remaining amount of seedlings is less than a predetermined amount in the middle of the traveling route, the work travels to the vicinity of the seedling supply side SL, for example, before the turning area of the internal reciprocating route IPL. May be continued.
 条毎に苗が切れたことを検知する苗切れセンサ(図5に示すセンサ群1Aの1つ)がさらに設けられ、走行経路の途中で苗の残量が所定の量以下になっていることが検知された後の作業走行において、いずれかの条にて苗が切れた場合、苗植付装置3を上昇されて走行が行われても良い。苗が切れたことを検知する苗切れセンサは、例えば、撮像装置で閾値以下まで苗が減った事もって苗切れと判断する画像解析が行われる構成であっても良いし、機械学習された学習済みモデルに撮像画像を入力して苗切れを検知しても良い。また、苗が切れたことを検知する苗切れセンサは、苗載せ台21の苗送り部の終端部分に設けられた、苗の有無を検知する苗切れセンサ(図5に示すセンサ群1Aの1つ)であっても良い。 A seedling shortage sensor (one of the sensor group 1A shown in FIG. 5) for detecting that the seedlings have run out is further provided for each row, and the remaining amount of seedlings is less than a predetermined amount in the middle of the traveling route. If the seedlings are cut by any of the articles in the work running after the detection of the above, the seedling planting device 3 may be raised and the running may be performed. The seedling shortage sensor that detects that the seedlings have run out may have, for example, a configuration in which image analysis is performed to determine that the seedlings have run out because the number of seedlings has decreased to below the threshold value by the imaging device, or machine-learned learning. You may detect the shortage of seedlings by inputting the captured image into the finished model. The seedling shortage sensor that detects that the seedlings have run out is a seedling shortage sensor (1 of the sensor group 1A shown in FIG. 5) that is provided at the end of the seedling feeding portion of the seedling loading table 21 and detects the presence or absence of seedlings. It may be one).
 苗補給辺SLへの移動は、チョイ寄せ機能を用いることができるが、苗植付装置3を上昇させた状態(空作業)でのチョイ寄せ走行は、チョイ寄せの速度制限が解除されて、旋回領域の前後に行われるチョイ寄せに比較して、走行車速が速くても良い。これにより、苗補給辺SLから遠い位置で苗残量の低下が検知されたとしても、速やかに苗補給辺SLまで移動することができる。 The choi gathering function can be used to move to the seedling supply side SL, but the choi gathering speed limit is released for the choi gathering running with the seedling planting device 3 raised (empty work). The traveling vehicle speed may be faster than that of the chopping performed before and after the turning area. As a result, even if a decrease in the remaining amount of seedlings is detected at a position far from the seedling supply side SL, it is possible to quickly move to the seedling supply side SL.
 内側周回経路IRLおよび外側周回経路ORLにおける自動走行の開始時には、苗の残量が所定の量以下であることが検知されると走行が開始されない。さらに、内側周回経路IRLおよび外側周回経路ORLの各辺において、旋回後の作業走行開始時にも、苗の残量が所定の量以下であることが検知されると走行が開始されない構成とされても良い。 At the start of automatic running on the inner circuit path IRL and the outer circuit path ORL, the running is not started when it is detected that the remaining amount of seedlings is less than a predetermined amount. Further, on each side of the inner circuit path IRL and the outer circuit path ORL, even when the work running after turning is started, the running is not started when it is detected that the remaining amount of seedlings is less than a predetermined amount. Is also good.
 苗の残量が所定の量以下になっていることが検知された箇所、条毎に苗が切れたことが検知された箇所の少なくともいずれかが、情報端末5等に表示されても良い。 At least one of the place where it was detected that the remaining amount of seedlings was less than a predetermined amount and the place where it was detected that the seedlings were cut for each row may be displayed on the information terminal 5 or the like.
 内側周回経路IRLおよび外側周回経路ORLでの自動走行において、苗の残量が所定の量以下になっていることが検知された場合、各辺に沿った作業走行が終了後、旋回走行の前または後に機体1が一旦停車されても良い。この停車中に苗の補給を行うか否かを判断することができる。 When it is detected that the remaining amount of seedlings is less than a predetermined amount in the automatic running on the inner orbital route IRL and the outer orbital route ORL, after the work running along each side is completed and before the turning running. Alternatively, the aircraft 1 may be temporarily stopped later. It is possible to determine whether or not to replenish the seedlings while the vehicle is stopped.
 苗等の資材、例えば、側条肥料・種籾・側条施薬等の詰まりや、燃料切れ、バッテリ73の残量等が検知される構成としても良い。これらが検出されると、機体1が停止される構成としても良い。例えば、肥料等の資材詰まりは、どの条で側条施薬が詰まっているのか判別することが困難であるため、条毎の施肥を停止することができず、機体1を停車させることが適切である。ただし、可能であれば、側条肥料・種籾・側条施薬等の詰まりを条毎に検知するセンサ(図5に示すセンサ群1Aの1つ)が設けられても良い。また、バッテリ73は、エンジン回転数を上げることによって充電することができる。そのため、バッテリ73の残量が所定量以下であることが検知されると、自動的にエンジン回転数が上昇される構成としても良い。 The material such as seedlings, for example, clogging of side-row fertilizer, seed paddy, side-row medicine, etc., running out of fuel, remaining amount of battery 73, etc. may be detected. When these are detected, the aircraft 1 may be stopped. For example, in the case of clogging of materials such as fertilizer, it is difficult to determine which line is clogged with side-row medicine, so it is not possible to stop fertilizer application for each line, and it is appropriate to stop the aircraft 1. be. However, if possible, a sensor (one of the sensor group 1A shown in FIG. 5) that detects clogging of side-row fertilizer, seed paddy, side-row medicine, etc. may be provided for each row. Further, the battery 73 can be charged by increasing the engine speed. Therefore, when it is detected that the remaining amount of the battery 73 is equal to or less than a predetermined amount, the engine speed may be automatically increased.
〔スリップ判定〕
 図1~図5を用いて、スリップを判定し、走行を制御する構成について説明する。
[Slip judgment]
A configuration for determining slip and controlling traveling will be described with reference to FIGS. 1 to 5.
 圃場の状態によって機体1が走行中にスリップし、車輪12(機体1)が沈没して作業走行が滞ることがある。そのため、機体1のスリップ率を測定することが好ましい。 Depending on the condition of the field, the machine body 1 may slip during running, and the wheels 12 (body body 1) may sink and work running may be delayed. Therefore, it is preferable to measure the slip ratio of the machine body 1.
 スリップ率は、機体1が走行しようとしているのに機体1が走行していない状態である。そのため、スリップ率は、無段変速装置9の状態と、測位ユニット8から算出される自車位置とから算出することができる。また、無段変速装置9の状態に代えて、車輪12に設けられた、回転軸の回転数センサ(図5に示すセンサ群1Aの1つ)が用いられても良い。 The slip ratio is a state in which the aircraft 1 is trying to travel but the aircraft 1 is not traveling. Therefore, the slip ratio can be calculated from the state of the continuously variable transmission 9 and the position of the own vehicle calculated from the positioning unit 8. Further, instead of the state of the continuously variable transmission 9, a rotation speed sensor of the rotating shaft (one of the sensor group 1A shown in FIG. 5) provided on the wheel 12 may be used.
 このように算出されたスリップ率が所定の値以上であり、この状態が所定時間以上継続した場合、車輪12が沈没していると判定する。 If the slip ratio calculated in this way is equal to or greater than a predetermined value and this state continues for a predetermined time or longer, it is determined that the wheel 12 is sunk.
 車輪12が沈没していると判定された場合、機体1を一時停止させ、自動走行の場合は自動走行を終了させる。また、車輪12が沈没していると判定された場合、復帰動作を行っても良く、復帰動作をしても沈没が解消されない場合に機体1を一時停止させても良い。復帰動作は、例えば、デフをロックさせて左右いずれかの車輪12を駆動させても良いし、旋回中ならハンドルを戻してサイドクラッチを入れても良く、スラローム走行を行っても良い。 When it is determined that the wheel 12 is sunk, the aircraft 1 is temporarily stopped, and in the case of automatic driving, the automatic driving is terminated. Further, when it is determined that the wheel 12 is sunk, the return operation may be performed, or the aircraft 1 may be temporarily stopped when the sinking is not resolved even if the return operation is performed. In the return operation, for example, the differential may be locked to drive either the left or right wheel 12, the steering wheel may be returned and the side clutch may be engaged during turning, or slalom running may be performed.
 また、走行経路上で沈没個所が記憶され、沈没個所が障害物と認定され、走行経路の設定に反映されても良い。例えば、沈没個所を迂回するように走行経路が設定される。 Further, the sunken place may be memorized on the traveling route, the sunken part may be recognized as an obstacle, and may be reflected in the setting of the traveling route. For example, the travel route is set so as to bypass the sunken place.
〔作業クラッチ切り替え時の車速制御について〕
 図1及び図2に示された苗植付装置3は、作業装置1Cの具体例である。苗植付装置3は、水田における作業を行う。より具体的には、苗植付装置3は、予め決められた条方向に沿って苗植付作業を行う。
[Vehicle speed control when switching work clutch]
The seedling planting device 3 shown in FIGS. 1 and 2 is a specific example of the working device 1C. The seedling planting device 3 performs work in a paddy field. More specifically, the seedling planting device 3 performs the seedling planting work along a predetermined row direction.
 尚、本発明はこれに限定されず、作業装置1Cの具体例として、予め決められた条方向に沿って播種作業を行う播種装置が備えられていても良い。即ち、作業装置1Cは、予め決められた条方向に沿って苗植付作業または播種作業を行う植播系作業装置であっても良い。 The present invention is not limited to this, and as a specific example of the working device 1C, a sowing device that performs sowing work along a predetermined row direction may be provided. That is, the work device 1C may be a planting system work device that performs seedling planting work or sowing work along a predetermined row direction.
 図15に示すように、本実施形態における田植機は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4を備えている。第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4により、各条クラッチECが構成されている。尚、各条クラッチECは、エンジン2からの動力伝達を入切することによって作業装置1Cの駆動状態を切り替える作業クラッチの一例である。 As shown in FIG. 15, the rice transplanter in the present embodiment includes a first clutch C1, a second clutch C2, a third clutch C3, and a fourth clutch C4. Each section clutch EC is composed of the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4. Each line clutch EC is an example of a work clutch that switches the drive state of the work device 1C by turning on / off the power transmission from the engine 2.
 図15に示すように、エンジン2からの動力は、各条クラッチECを介して各植付機構22に分配される。各条クラッチECは、苗植付装置3による作業開始及び作業停止を所定条数毎に選択可能に構成されている。より具体的には、各条クラッチECは、苗植付装置3による作業開始及び作業停止を2条毎に選択可能に構成されている。 As shown in FIG. 15, the power from the engine 2 is distributed to each planting mechanism 22 via each line clutch EC. Each row clutch EC is configured so that work start and work stop by the seedling planting device 3 can be selected for each predetermined number of rows. More specifically, each row clutch EC is configured so that the start and stop of work by the seedling planting device 3 can be selected every two rows.
 尚、本発明はこれに限定されず、各条クラッチECは、苗植付装置3による作業開始及び作業停止を、1条毎、又は3条以上毎に選択可能に構成されていてもよい。 The present invention is not limited to this, and each row clutch EC may be configured so that the start and stop of work by the seedling planting device 3 can be selected for each row or every three or more rows.
 以下では、各条クラッチECについて詳述する。8つの植付機構22は、4組に分かれた状態で設けられている。また、制御ユニット30は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4の入切状態を制御する。即ち、制御ユニット30は、各条クラッチECの入切状態を制御する。尚、制御ユニット30は、作業クラッチの入切状態を制御するクラッチ制御部の一例である。 Below, each article clutch EC will be described in detail. The eight planting mechanisms 22 are provided in a state of being divided into four sets. Further, the control unit 30 controls the on / off state of the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4. That is, the control unit 30 controls the on / off state of each clutch EC. The control unit 30 is an example of a clutch control unit that controls the on / off state of the work clutch.
 第1クラッチC1が入状態である場合、4組の植付機構22のうち、左端の1組が駆動する。また、第1クラッチC1が切状態である場合、4組の植付機構22のうち、左端の1組が停止する。 When the first clutch C1 is engaged, the leftmost set of the four sets of planting mechanisms 22 is driven. When the first clutch C1 is in the disengaged state, one of the four sets of planting mechanisms 22 at the left end is stopped.
 第2クラッチC2が入状態である場合、4組の植付機構22のうち、左から2番目の1組が駆動する。また、第2クラッチC2が切状態である場合、4組の植付機構22のうち、左から2番目の1組が停止する。 When the second clutch C2 is engaged, one of the four sets of planting mechanisms 22 is driven, which is the second from the left. Further, when the second clutch C2 is in the disengaged state, one of the four sets of planting mechanisms 22 is stopped, which is the second from the left.
 第3クラッチC3が入状態である場合、4組の植付機構22のうち、右から2番目の1組が駆動する。また、第3クラッチC3が切状態である場合、4組の植付機構22のうち、右から2番目の1組が停止する。 When the third clutch C3 is engaged, one of the four sets of planting mechanisms 22 is driven, which is the second from the right. When the third clutch C3 is in the disengaged state, one of the four sets of planting mechanisms 22 is stopped, which is the second from the right.
 第4クラッチC4が入状態である場合、4組の植付機構22のうち、右端の1組が駆動する。また、第4クラッチC4が切状態である場合、4組の植付機構22のうち、右端の1組が停止する。 When the fourth clutch C4 is engaged, one of the four sets of planting mechanisms 22 at the right end is driven. When the fourth clutch C4 is in the disengaged state, one of the four sets of planting mechanisms 22 at the right end is stopped.
 また、図15に示すように、本実施形態における田植機は、植付クラッチC5を備えている。植付クラッチC5は、エンジン2からの動力伝達を入切することによって作業装置1Cの駆動状態を切り替える作業クラッチの一例である。 Further, as shown in FIG. 15, the rice transplanter in the present embodiment includes a planting clutch C5. The planting clutch C5 is an example of a work clutch that switches the drive state of the work device 1C by turning on / off the power transmission from the engine 2.
 図15に示すように、エンジン2からの動力は、植付クラッチC5を介して各植付機構22に分配される。植付クラッチC5は、エンジン2からの動力伝達を入切することによって苗植付装置3の駆動状態を切り替える。 As shown in FIG. 15, the power from the engine 2 is distributed to each planting mechanism 22 via the planting clutch C5. The planting clutch C5 switches the driving state of the seedling planting device 3 by turning on / off the power transmission from the engine 2.
 詳述すると、制御ユニット30は、植付クラッチC5の入切状態を制御する。植付クラッチC5が入状態である場合、エンジン2からの動力は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4へ伝達される。そして、このとき、第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4が入状態であれば、4組の植付機構22が駆動する。これにより、苗植付装置3が駆動する。 More specifically, the control unit 30 controls the on / off state of the planting clutch C5. When the planting clutch C5 is in the engaged state, the power from the engine 2 is transmitted to the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4. At this time, if the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4 are in the engaged state, the four sets of planting mechanisms 22 are driven. As a result, the seedling planting device 3 is driven.
 また、植付クラッチC5が切状態である場合、エンジン2からの動力は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4の何れにも伝達されない。その結果、4組の植付機構22が停止する。これにより、苗植付装置3が停止する。 Further, when the planting clutch C5 is in the disengaged state, the power from the engine 2 is not transmitted to any of the first clutch C1, the second clutch C2, the third clutch C3, and the fourth clutch C4. As a result, the four sets of planting mechanisms 22 are stopped. As a result, the seedling planting device 3 is stopped.
 即ち、植付クラッチC5が入状態である場合には苗植付装置3が駆動し、植付クラッチC5が切状態である場合には苗植付装置3が停止する。 That is, when the planting clutch C5 is in the on state, the seedling planting device 3 is driven, and when the planting clutch C5 is in the off state, the seedling planting device 3 is stopped.
 以上の構成により、本実施形態における田植機は、植付クラッチC5が切状態から入状態に切り替えられることによって苗植付装置3の駆動が開始し、且つ、植付クラッチC5が入状態から切状態に切り替えられることによって苗植付装置3の駆動が停止するように構成されている。 With the above configuration, in the rice transplanter in the present embodiment, the planting clutch C5 is switched from the off state to the on state to start driving the seedling planting device 3, and the planting clutch C5 is off from the on state. The drive of the seedling planting device 3 is stopped by switching to the state.
 また、図1に示された昇降リンク13aは、作業装置1Cの具体例である。制御ユニット30は、昇降リンク13aの駆動を制御する。昇降リンク13aが駆動することにより、苗植付装置3は昇降する。即ち、制御ユニット30は、苗植付装置3の昇降を制御する。尚、制御ユニット30は、苗植付装置3の昇降を制御する昇降制御部の一例である。 Further, the elevating link 13a shown in FIG. 1 is a specific example of the working device 1C. The control unit 30 controls the drive of the elevating link 13a. The seedling planting device 3 moves up and down by driving the elevating link 13a. That is, the control unit 30 controls the raising and lowering of the seedling planting device 3. The control unit 30 is an example of an elevating control unit that controls the elevating and lowering of the seedling planting device 3.
 制御ユニット30は、苗植付装置3の駆動が停止される際に苗植付装置3を上昇させるように構成されている。これにより、田植機が畦際に位置していても、田植機はスムーズに旋回できる。 The control unit 30 is configured to raise the seedling planting device 3 when the driving of the seedling planting device 3 is stopped. As a result, even if the rice transplanter is located at the ridge, the rice transplanter can turn smoothly.
 また、制御ユニット30は、苗植付装置3の駆動が開始される際に苗植付装置3を下降させるように構成されている。これにより、苗植付装置3による苗植付作業が確実に行われる。 Further, the control unit 30 is configured to lower the seedling planting device 3 when the driving of the seedling planting device 3 is started. As a result, the seedling planting work by the seedling planting device 3 is surely performed.
 また、制御ユニット30は、走行機器1Dを制御することにより、減速制御、及び、増速制御を実行することができる。減速制御とは、車速を低下させる制御である。また、増速制御とは、車速を上昇させる制御である。即ち、制御ユニット30は、車速を制御する。尚、制御ユニット30は、車速を制御する車速制御部の一例である。 Further, the control unit 30 can execute deceleration control and speed increase control by controlling the traveling device 1D. Deceleration control is control that reduces the vehicle speed. Further, the speed increase control is a control for increasing the vehicle speed. That is, the control unit 30 controls the vehicle speed. The control unit 30 is an example of a vehicle speed control unit that controls the vehicle speed.
 ここで、本実施形態における田植機は、自動走行可能な作業機の一例である。この田植機が自動走行するとき、第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4、植付クラッチC5は、制御ユニット30によって自動的に制御される。 Here, the rice transplanter in this embodiment is an example of a working machine capable of automatically traveling. When the rice transplanter automatically travels, the first clutch C1, the second clutch C2, the third clutch C3, the fourth clutch C4, and the planting clutch C5 are automatically controlled by the control unit 30.
 各条クラッチEC及び植付クラッチC5の入切のための制御が開始されてから、苗植付装置3の駆動状態が実際に切り替わるまでに、タイムラグがある。そのため、走行速度が速すぎると適切な位置で植付動作の開始及び終了が行われない場合がある。適切に植付作業を行うために、各条クラッチECまたは植付クラッチC5を入切する際に、走行車速が減速されることが好ましい。例えば、各条クラッチECまたは植付クラッチC5を入切する際に、あらかじめ定めた車速に走行車速が減速される。 There is a time lag between the start of control for turning on and off the clutch EC and the planting clutch C5 and the actual switching of the drive state of the seedling planting device 3. Therefore, if the traveling speed is too fast, the planting operation may not be started or ended at an appropriate position. In order to properly perform the planting work, it is preferable that the traveling vehicle speed is reduced when the each row clutch EC or the planting clutch C5 is turned on and off. For example, when the clutch EC or the planting clutch C5 is turned on and off, the traveling vehicle speed is reduced to a predetermined vehicle speed.
 また、各条クラッチECまたは植付クラッチC5の入切動作が終了した後、走行速度を回復させることが好ましい。これにより、植付作業の開始あるいは終了を適切に行いながら、植付作業またはその後の走行を効率的に行うことができる。 Further, it is preferable to recover the traveling speed after the on / off operation of each line clutch EC or the planting clutch C5 is completed. Thereby, the planting work or the subsequent running can be efficiently performed while appropriately starting or ending the planting work.
 しかしながら、走行車速が短時間に繰り返し切り替わると、逆に作業が適切に行われない場合があり、また、スムーズな走行の妨げになる場合がある。そのため、各条クラッチECまたは植付クラッチC5が切状態となった後、各条クラッチECまたは植付クラッチC5が入状態となるまでに機体1が走行する距離が、所定の距離以下の時は、走行車速の回復を行わない構成としても良い。あるいは、各条クラッチECまたは植付クラッチC5が切状態となった後、各条クラッチECまたは植付クラッチC5が入状態に切り替えられるまでの時間が、所定の時間以下の時は、走行車速の回復を行わない構成としても良い。 However, if the traveling vehicle speed is repeatedly switched in a short period of time, the work may not be performed properly, and smooth traveling may be hindered. Therefore, when the distance traveled by the aircraft 1 after each line clutch EC or planting clutch C5 is turned off and before each line clutch EC or planting clutch C5 is turned on is less than or equal to a predetermined distance. , The configuration may be such that the traveling vehicle speed is not recovered. Alternatively, when the time from when each line clutch EC or the planting clutch C5 is turned off to when each line clutch EC or the planting clutch C5 is switched to the on state is less than a predetermined time, the traveling vehicle speed It may be configured without recovery.
 なお、これらの所定の距離および時間は、任意に設定でき、作業条件に応じて変更することもできる。また、所定の距離および時間は、条毎に設定することもできる。また、減速および加速の際は、急激な速度の変更が行われず、緩やかに行われることが好ましい。 Note that these predetermined distances and times can be set arbitrarily and can be changed according to the working conditions. In addition, the predetermined distance and time can be set for each article. Further, when decelerating and accelerating, it is preferable that the speed is not changed suddenly and is performed slowly.
 また、各条クラッチECまたは植付クラッチC5を入切する際に走行車速が減速される機能が、任意に無効とできるように構成されていても良い。 Further, the function of decelerating the traveling vehicle speed when the clutch EC or the planting clutch C5 is turned on and off may be arbitrarily disabled.
 以下では、各条クラッチECの入切状態が切り替えられる場合における車速制御について、図16で示す自動走行を例に挙げて説明する。尚、以下では、各条クラッチECの入切状態を切り替える制御を「切替制御」と呼称する。 In the following, the vehicle speed control when the on / off state of each clutch EC is switched will be described by taking the automatic driving shown in FIG. 16 as an example. In the following, the control for switching the on / off state of each clutch EC will be referred to as "switching control".
 図16で示す例では、田植機は、まず、内部往復経路IPLに沿って走行しながら苗植付作業を行う。次に、田植機は、内側周回経路IRLに沿って走行しながら苗植付作業を行う。最後に、田植機は、外側周回経路ORLに沿って走行しながら苗植付作業を行う。 In the example shown in FIG. 16, the rice transplanter first performs seedling planting work while traveling along the internal round-trip route IPL. Next, the rice transplanter performs the seedling planting work while traveling along the inner circuit path IRL. Finally, the rice transplanter performs the seedling planting work while traveling along the outer circuit path ORL.
 この例では、圃場における外周部に、障害物OBが位置している。そのため、外側周回経路ORLは、障害物OBを迂回する状態で生成されている。これにより、外側周回経路ORLの一部は、内側周回経路IRLへ向かって張り出している。 In this example, the obstacle OB is located on the outer periphery of the field. Therefore, the outer circuit path ORL is generated in a state of bypassing the obstacle OB. As a result, a part of the outer circuit path ORL projects toward the inner circuit path IRL.
 その結果、田植機が内側周回経路IRLに沿って走行するとき、4組の植付機構22のうちの左側の2組は、田植機が外側周回経路ORLに沿って走行する際に苗植付作業が行われる予定の領域を通過することとなる。そのため、4組の植付機構22のうちの左側の2組は、この領域を通過する間、停止される。 As a result, when the rice transplanter travels along the inner circuit path IRL, the two sets on the left side of the four sets of planting mechanisms 22 plant seedlings when the rice transplanter travels along the outer circuit path ORL. You will pass through the area where the work will be done. Therefore, the left two sets of the four sets of planting mechanisms 22 are stopped while passing through this region.
 そして、制御ユニット30が切替制御を実行する場合、各条クラッチECの入切状態が切り替わる前に、制御ユニット30は、減速制御を実行する。また、切替地点を機体1が通過した後、制御ユニット30は、増速制御を実行する。尚、切替地点とは、制御ユニット30によって切替制御が実行される時点における機体位置である。 Then, when the control unit 30 executes the switching control, the control unit 30 executes the deceleration control before the on / off state of each clutch EC is switched. Further, after the aircraft 1 has passed the switching point, the control unit 30 executes the speed-up control. The switching point is the position of the aircraft at the time when the switching control is executed by the control unit 30.
 即ち、制御ユニット30が、各条クラッチECの入切状態を切り替える制御である切替制御を実行する場合、各条クラッチECの入切状態が切り替わる前に、制御ユニット30は、車速を低下させる制御である減速制御を実行する。 That is, when the control unit 30 executes switching control that switches the on / off state of each clutch EC, the control unit 30 controls to reduce the vehicle speed before the on / off state of each clutch EC is switched. The deceleration control is executed.
 また、制御ユニット30によって切替制御が実行される時点における機体位置である切替地点を機体1が通過した後、制御ユニット30は、車速を上昇させる制御である増速制御を実行する。 Further, after the aircraft 1 passes the switching point which is the aircraft position at the time when the switching control is executed by the control unit 30, the control unit 30 executes the speed-up control which is the control for increasing the vehicle speed.
 詳述すると、田植機が図16に示す内側周回経路IRLに沿って走行するとき、まず、機体1は位置P1を通過する。このときの時刻を、時刻t1とする。 More specifically, when the rice transplanter travels along the inner circuit path IRL shown in FIG. 16, the aircraft 1 first passes through the position P1. The time at this time is set to time t1.
 次に、機体1は、位置P2を通過した後、位置P3に到達する。このとき、制御ユニット30の制御により、第1クラッチC1及び第2クラッチC2が、入状態から切状態に切り替えられる。その結果、4組の植付機構22のうちの左側の2組は停止する。 Next, the aircraft 1 reaches the position P3 after passing through the position P2. At this time, the first clutch C1 and the second clutch C2 are switched from the on state to the off state by the control of the control unit 30. As a result, the left two sets of the four sets of planting mechanisms 22 are stopped.
 次に、機体1は、位置P4、P5、P6、P7を通過した後、位置P8に到達する。このとき、制御ユニット30の制御により、第1クラッチC1及び第2クラッチC2が、切状態から入状態に切り替えられる。その結果、4組の植付機構22のうちの左側の2組の駆動が再開する。 Next, the aircraft 1 reaches the position P8 after passing through the positions P4, P5, P6, and P7. At this time, the first clutch C1 and the second clutch C2 are switched from the disengaged state to the on state by the control of the control unit 30. As a result, the driving of the left two sets of the four sets of planting mechanisms 22 is restarted.
 その後、機体1は、位置P9、位置P10を通過する。 After that, the aircraft 1 passes through the positions P9 and P10.
 即ち、この例では、機体1が位置P3に到達するまで、4組の植付機構22は全て駆動する。そのため、機体1が位置P3に到達するまで、田植機は、走行しながら8条分の苗を植え付ける。 That is, in this example, all four sets of planting mechanisms 22 are driven until the machine 1 reaches the position P3. Therefore, the rice transplanter plants eight seedlings while traveling until the aircraft 1 reaches the position P3.
 また、機体1が位置P3から位置P8の間に位置しているとき、田植機は、走行しながら右側の4条分のみの苗を植え付ける。 Also, when the aircraft 1 is located between the position P3 and the position P8, the rice transplanter plants only four seedlings on the right side while running.
 そして、機体1が位置P8を通過した後、田植機は、走行しながら8条分の苗を植え付ける。 Then, after the aircraft 1 passes the position P8, the rice transplanter plants eight seedlings while running.
 図17では、図16に示す例において田植機が内側周回経路IRLに沿って走行する際の田植機の車速の推移が示されている。 FIG. 17 shows the transition of the vehicle speed of the rice transplanter when the rice transplanter travels along the inner circuit path IRL in the example shown in FIG.
 尚、機体1が位置P2、P3、P4、P5、P6、P7、P8、P9、P10に到達したときの時刻を、それぞれ、時刻t2、t3、t4、t5、t6、t7、t8、t9、t10とする。 The times when the aircraft 1 reaches the positions P2, P3, P4, P5, P6, P7, P8, P9, and P10 are the times t2, t3, t4, t5, t6, t7, t8, t9, respectively. Let it be t10.
 時刻t1まで、田植機の車速は第1車速V1である。そして、時刻t1に、機体1は位置P1に到達する。この例では、機体1が位置P3に到達した時点で切替制御が実行されることが予定されている。そのため、制御ユニット30は、時刻t1から時刻t2まで、減速制御を実行する。尚、本実施形態において、減速制御は、田植機の車速が所定の第2車速V2に達するまで実行される。尚、第2車速V2は、第1車速V1よりも低い。 Until time t1, the vehicle speed of the rice transplanter is the first vehicle speed V1. Then, at time t1, the aircraft 1 reaches the position P1. In this example, the switching control is scheduled to be executed when the aircraft 1 reaches the position P3. Therefore, the control unit 30 executes the deceleration control from the time t1 to the time t2. In the present embodiment, the deceleration control is executed until the vehicle speed of the rice transplanter reaches a predetermined second vehicle speed V2. The second vehicle speed V2 is lower than the first vehicle speed V1.
 これにより、機体1が位置P2に到達した時点で、田植機の車速は第2車速V2に達する。即ち、時刻t2に、車速は第2車速V2に達する。 As a result, when the aircraft 1 reaches the position P2, the vehicle speed of the rice transplanter reaches the second vehicle speed V2. That is, at time t2, the vehicle speed reaches the second vehicle speed V2.
 時刻t3に、機体1は位置P3に到達する。このとき、上述の通り、制御ユニット30の制御により、第1クラッチC1及び第2クラッチC2が、入状態から切状態に切り替えられる。即ち、このとき、制御ユニット30が切替制御を実行する。 At time t3, the aircraft 1 reaches the position P3. At this time, as described above, the first clutch C1 and the second clutch C2 are switched from the on state to the off state by the control of the control unit 30. That is, at this time, the control unit 30 executes the switching control.
 ここで、上述の通り、減速制御は、時刻t1から時刻t2までの期間で既に実行されている。即ち、制御ユニット30は、各条クラッチECの入切状態が切り替わる前に、減速制御を既に実行している。 Here, as described above, the deceleration control has already been executed in the period from time t1 to time t2. That is, the control unit 30 has already executed the deceleration control before the on / off state of each clutch EC is switched.
 また、位置P3は切替地点である。そのため、制御ユニット30は、機体1が位置P3を通過した後、時刻t4から時刻t5まで、増速制御を実行する。尚、本実施形態において、増速制御は、田植機の車速が減速制御の実行前の車速に達するまで実行される。 Also, position P3 is a switching point. Therefore, the control unit 30 executes the speed-up control from the time t4 to the time t5 after the aircraft 1 has passed the position P3. In the present embodiment, the speed increase control is executed until the vehicle speed of the rice transplanter reaches the vehicle speed before the execution of the deceleration control.
 これにより、機体1が位置P5に到達した時点で、田植機の車速は第1車速V1に達する。その後、時刻t6まで、田植機の車速は第1車速V1のままで維持される。 As a result, when the aircraft 1 reaches the position P5, the vehicle speed of the rice transplanter reaches the first vehicle speed V1. After that, until time t6, the vehicle speed of the rice transplanter is maintained at the first vehicle speed V1.
 この例では、機体1が位置P8に到達した時点で切替制御が実行されることが予定されている。そのため、制御ユニット30は、時刻t6から時刻t7まで、減速制御を実行する。 In this example, the switching control is scheduled to be executed when the aircraft 1 reaches the position P8. Therefore, the control unit 30 executes the deceleration control from the time t6 to the time t7.
 これにより、機体1が位置P7に到達した時点で、田植機の車速は第2車速V2に達する。即ち、時刻t7に、車速は第2車速V2に達する。 As a result, when the aircraft 1 reaches the position P7, the vehicle speed of the rice transplanter reaches the second vehicle speed V2. That is, at time t7, the vehicle speed reaches the second vehicle speed V2.
 時刻t8に、機体1は位置P8に到達する。このとき、上述の通り、制御ユニット30の制御により、第1クラッチC1及び第2クラッチC2が、切状態から入状態に切り替えられる。即ち、このとき、制御ユニット30が切替制御を実行する。 At time t8, the aircraft 1 reaches the position P8. At this time, as described above, the first clutch C1 and the second clutch C2 are switched from the disengaged state to the on state by the control of the control unit 30. That is, at this time, the control unit 30 executes the switching control.
 ここで、上述の通り、減速制御は、時刻t6から時刻t7までの期間で既に実行されている。即ち、制御ユニット30は、各条クラッチECの入切状態が切り替わる前に、減速制御を既に実行している。 Here, as described above, the deceleration control has already been executed in the period from time t6 to time t7. That is, the control unit 30 has already executed the deceleration control before the on / off state of each clutch EC is switched.
 また、位置P8は切替地点である。そのため、制御ユニット30は、機体1が位置P8を通過した後、時刻t9から時刻t10まで、増速制御を実行する。 Also, position P8 is a switching point. Therefore, the control unit 30 executes the speed-up control from the time t9 to the time t10 after the aircraft 1 has passed the position P8.
 これにより、機体1が位置P10に到達した時点で、田植機の車速は第1車速V1に達する。その後、田植機の車速は第1車速V1のままで維持される。 As a result, when the aircraft 1 reaches the position P10, the vehicle speed of the rice transplanter reaches the first vehicle speed V1. After that, the vehicle speed of the rice transplanter is maintained at the first vehicle speed V1.
 尚、以上で説明した例では、機体1が位置P3を通過した後、制御ユニット30は増速制御を実行する。 In the example described above, the control unit 30 executes the speed-up control after the aircraft 1 has passed the position P3.
 しかしながら、本実施形態においては、機体1の走行経路上に、切替地点である第1地点と、切替地点である第2地点と、が位置しており、且つ、機体1が第1地点を通過した後で第2地点を通過することが予定されており、且つ、第1地点と第2地点との間の距離が所定の基準距離以下である場合、制御ユニット30は、機体1が第1地点を通過してから第2地点に到達するまでの間、増速制御を実行しない。 However, in the present embodiment, the first point which is the switching point and the second point which is the switching point are located on the traveling path of the aircraft 1, and the aircraft 1 passes through the first point. If it is planned to pass the second point after the operation and the distance between the first point and the second point is less than or equal to a predetermined reference distance, the control unit 30 has the first body 1 of the control unit 30. The speed increase control is not executed from the time when the point is passed until the time when the second point is reached.
 例えば、図16に示した例では、機体1の走行経路である内側周回経路IRL上に、切替地点である位置P3と、切替地点である位置P8と、が位置している。また、機体1が位置P3を通過した後で位置P8を通過することが予定されている。 For example, in the example shown in FIG. 16, the position P3 which is the switching point and the position P8 which is the switching point are located on the inner circuit path IRL which is the traveling path of the aircraft 1. Further, it is planned that the aircraft 1 will pass through the position P8 after passing through the position P3.
 従って、仮に、位置P3と位置P8との間の距離が所定の基準距離以下であれば、上述の例とは異なり、制御ユニット30は、機体1が位置P3を通過してから位置P8に到達するまでの間、増速制御を実行しない。この場合、機体1が位置P3を通過してから位置P8に到達するまでの間に、減速制御が実行されても良いし、減速制御が実行されなくても良い。減速制御が実行される場合、田植機の車速は第2車速V2よりも低くなっても良い。また、減速制御が実行される場合、位置P1から位置P5まで減速し続け、位置P5から位置P10まで増速し続けて、通常の作業速度である第1車速V1に戻る構成でも良い。 Therefore, if the distance between the position P3 and the position P8 is equal to or less than the predetermined reference distance, the control unit 30 reaches the position P8 after the aircraft 1 passes through the position P3, unlike the above example. The speed increase control is not executed until the speed is increased. In this case, the deceleration control may or may not be executed between the time when the aircraft 1 passes the position P3 and the time when the aircraft 1 reaches the position P8. When the deceleration control is executed, the vehicle speed of the rice transplanter may be lower than the second vehicle speed V2. Further, when the deceleration control is executed, the deceleration may be continuously decelerated from the position P1 to the position P5, the speed may be continuously increased from the position P5 to the position P10, and the speed may be returned to the normal working speed V1.
 また、上述の例では、田植機が内側周回経路IRLに沿って走行している途中で、各条クラッチECの入切状態が切り替えられる。しかしながら、本発明はこれに限定されず、田植機が内側周回経路IRLに沿って走行している途中で、植付クラッチC5の入切状態が切り替えられても良い。そして、制御ユニット30が、植付クラッチC5の入切状態を切り替える制御である切替制御を実行する場合、植付クラッチC5の入切状態が切り替わる前に、制御ユニット30は、車速を低下させる制御である減速制御を実行しても良い。 Further, in the above example, the on / off state of each clutch EC is switched while the rice transplanter is traveling along the inner circuit path IRL. However, the present invention is not limited to this, and the on / off state of the planting clutch C5 may be switched while the rice transplanter is traveling along the inner circuit path IRL. Then, when the control unit 30 executes switching control which is a control for switching the on / off state of the planting clutch C5, the control unit 30 controls to reduce the vehicle speed before the on / off state of the planting clutch C5 is switched. The deceleration control is may be executed.
 また、上述の例では、機体1が位置P3に到達した時点で、第1クラッチC1及び第2クラッチC2が同時に入状態から切状態に切り替えられる。しかしながら、本発明はこれに限定されず、まず第1クラッチC1が入状態から切状態に切り替えられ、その後、第2クラッチC2が入状態から切状態に切り替えられても良い。 Further, in the above example, when the aircraft 1 reaches the position P3, the first clutch C1 and the second clutch C2 are simultaneously switched from the on state to the off state. However, the present invention is not limited to this, and the first clutch C1 may be switched from the on state to the off state first, and then the second clutch C2 may be switched from the on state to the off state.
 また、上述の例では、機体1が位置P8に到達した時点で、第1クラッチC1及び第2クラッチC2が同時に切状態から入状態に切り替えられる。しかしながら、本発明はこれに限定されず、まず第2クラッチC2が切状態から入状態に切り替えられ、その後、第1クラッチC1が切状態から入状態に切り替えられても良い。 Further, in the above example, when the aircraft 1 reaches the position P8, the first clutch C1 and the second clutch C2 are simultaneously switched from the disengaged state to the on state. However, the present invention is not limited to this, and the second clutch C2 may be switched from the disengaged state to the on state first, and then the first clutch C1 may be switched from the disengaged state to the on state.
 また、上述の例では、田植機が内側周回経路IRLに沿って走行する際に、第1クラッチC1及び第2クラッチC2の入切状態が切り替えられ、第3クラッチC3及び第4クラッチC4は入状態のまま維持される。しかしながら、本発明はこれに限定されず、田植機が内側周回経路IRLに沿って走行する際に、各条クラッチECのうちの何れのクラッチの入切状態が切り替えられても良い。 Further, in the above example, when the rice transplanter travels along the inner circuit path IRL, the on / off states of the first clutch C1 and the second clutch C2 are switched, and the third clutch C3 and the fourth clutch C4 are engaged. It is maintained in that state. However, the present invention is not limited to this, and when the rice transplanter travels along the inner circuit path IRL, the on / off state of any of the clutches EC may be switched.
〔苗植付装置の昇降制御について〕
 内部往復経路IPLは直進経路と旋回経路の繰り返し経路だが、直進経路の終点位置で制御ユニット30によって、植付クラッチC5が入状態から切状態に切り替えられ、その後、苗植付装置3が上昇する。ここで、本実施形態においては、植付クラッチC5の入切状態の切替時点における機体位置から、機体1が所定距離D1を走行する間、苗植付装置3を下降した状態で維持するように構成されている。この構成により、各植付機構22における植付爪に苗が保持された状態で苗植付装置3が上昇し浮き苗が発生することを防止できる。
[About elevating control of seedling planting device]
The internal reciprocating path IPL is a repeating path of a straight path and a swivel path, but the planting clutch C5 is switched from the on state to the off state by the control unit 30 at the end point position of the straight path, and then the seedling planting device 3 rises. .. Here, in the present embodiment, the seedling planting device 3 is maintained in a lowered state while the machine 1 travels a predetermined distance D1 from the machine position at the time of switching the on / off state of the planting clutch C5. It is configured. With this configuration, it is possible to prevent the seedling planting device 3 from rising and the floating seedlings from being generated while the seedlings are held by the planting claws in each planting mechanism 22.
 即ち、制御ユニット30は、制御ユニット30によって植付クラッチC5が入状態から切状態に切り替えられた時点における機体位置から機体1が所定距離D1を走行する間、苗植付装置3を下降した状態で維持するように構成されている。 That is, the control unit 30 is in a state in which the seedling planting device 3 is lowered while the machine 1 travels a predetermined distance D1 from the machine position at the time when the planting clutch C5 is switched from the on state to the off state by the control unit 30. It is configured to be maintained at.
 尚、別の実施形態として、直進経路の終点位置より所定距離D1だけ手前で植付クラッチC5が入状態から切状態に切り替えられるように構成されていても良い。 As another embodiment, the planting clutch C5 may be configured to be switched from the on state to the off state by a predetermined distance D1 before the end point position of the straight path.
 また、所定距離D1は、機体1の走行方向に沿った苗の植付間隔以上である。即ち、所定距離D1は、株間以上である。 Further, the predetermined distance D1 is equal to or longer than the seedling planting interval along the traveling direction of the aircraft 1. That is, the predetermined distance D1 is equal to or greater than the distance between stocks.
 以下では、植付クラッチC5が入状態から切状態に切り替えられる場合における苗植付装置3の昇降制御について、図18で示す自動走行を例に挙げて説明する。 In the following, the elevating control of the seedling planting device 3 when the planting clutch C5 is switched from the on state to the off state will be described by taking the automatic traveling shown in FIG. 18 as an example.
 図18で示す例では、田植機は、内部領域IAにおいて、内部往復経路IPLに沿って走行しながら苗植付作業を行う。そして、機体1は、位置P11に到達する。位置P11は、内部領域IAと外周領域OAとの境目に位置している。 In the example shown in FIG. 18, the rice transplanter performs seedling planting work while traveling along the internal round-trip route IPL in the internal region IA. Then, the aircraft 1 reaches the position P11. The position P11 is located at the boundary between the inner region IA and the outer peripheral region OA.
 機体1が位置P11に到達したとき、制御ユニット30は、植付クラッチC5を入状態から切状態に切り替える。即ち、位置P11は、制御ユニット30によって植付クラッチC5が入状態から切状態に切り替えられた時点における機体位置である。 When the machine body 1 reaches the position P11, the control unit 30 switches the planting clutch C5 from the on state to the off state. That is, the position P11 is the position of the machine body at the time when the planting clutch C5 is switched from the on state to the off state by the control unit 30.
 その後、機体1は外周領域OAに進入し、位置P12に到達する。位置P11から位置P12までの機体1の走行距離は、所定距離D1である。そのため、機体1が位置P12に到達するまで、制御ユニット30は、苗植付装置3を下降した状態で維持する。 After that, the aircraft 1 enters the outer peripheral region OA and reaches the position P12. The mileage of the aircraft 1 from the position P11 to the position P12 is a predetermined distance D1. Therefore, the control unit 30 keeps the seedling planting device 3 in the lowered state until the machine body 1 reaches the position P12.
 そして、機体1が位置P12を通過した後、制御ユニット30は、苗植付装置3を上昇させる。 Then, after the machine body 1 has passed the position P12, the control unit 30 raises the seedling planting device 3.
 尚、制御ユニット30は、機能毎に分割された状態で構成されていても良い。例えば、各条クラッチECを制御する機能部と、走行機器1Dを制御する機能部と、が各別に設けられると共に、制御ユニット30が、これらの機能部により構成されていても良い。 The control unit 30 may be configured in a state of being divided for each function. For example, a functional unit for controlling each line clutch EC and a functional unit for controlling the traveling device 1D may be separately provided, and the control unit 30 may be composed of these functional units.
 また、以上で説明した通り、制御ユニット30は、機体1の位置に基づいて、苗植付装置3の駆動状態と、車速と、苗植付装置3の昇降と、を制御する。ここで、制御ユニット30による制御においては、田植機のいかなる部位の位置が機体1の位置として取り扱われても良い。即ち、制御ユニット30による制御は、田植機のいかなる部位の位置に基づいて行われても良い。例えば、制御ユニット30による車速制御は、測位ユニット8の位置に基づいて行われても良いし、苗植付装置3の位置に基づいて行われても良い。 Further, as described above, the control unit 30 controls the driving state of the seedling planting device 3, the vehicle speed, and the raising and lowering of the seedling planting device 3 based on the position of the machine body 1. Here, in the control by the control unit 30, the position of any part of the rice transplanter may be treated as the position of the machine 1. That is, the control by the control unit 30 may be performed based on the position of any part of the rice transplanter. For example, the vehicle speed control by the control unit 30 may be performed based on the position of the positioning unit 8 or may be performed based on the position of the seedling planting device 3.
〔施肥作業の開始タイミング及び終了タイミング〕
 施肥装置4(供給装置)は、肥料(薬剤やその他の農用資材)を貯留するホッパ25(貯留部)と、ホッパ25から肥料を繰り出す繰出機構26と、繰出機構26によって繰出された肥料を搬送するとともに肥料を圃場に排出する施肥ホース28(ホース)と、を有する。ホッパ25に貯留された肥料が、繰出機構26によって所定量ずつ繰り出されて施肥ホース28へ送られて、ブロワ27の搬送風によって施肥ホース28内を搬送され、作溝器29から圃場へ排出される。このように、施肥装置4は圃場に肥料を供給する。ホッパ25及び繰出機構26は機体フレーム1Eに載置支持され、作溝器29は苗植付装置3の下端部に設けられている。施肥ホース28は繰出機構26と作溝器29とに亘って延び、肥料がホッパ25から圃場へ供給される際に、肥料は施肥ホース28を経由する。
[Start timing and end timing of fertilizer application work]
The fertilizer application device 4 (supply device) conveys a hopper 25 (storage unit) for storing fertilizer (drugs and other agricultural materials), a feeding mechanism 26 for feeding fertilizer from the hopper 25, and a fertilizer fed by the feeding mechanism 26. It also has a fertilizer hose 28 (hose) that discharges fertilizer to the field. The fertilizer stored in the hopper 25 is fed out in a predetermined amount by the feeding mechanism 26 and sent to the fertilizer application hose 28, transported in the fertilizer application hose 28 by the transport wind of the blower 27, and discharged from the groove grooving device 29 to the field. NS. In this way, the fertilizer application device 4 supplies fertilizer to the field. The hopper 25 and the feeding mechanism 26 are mounted and supported on the machine frame 1E, and the groove making device 29 is provided at the lower end of the seedling planting device 3. The fertilizer application hose 28 extends over the feeding mechanism 26 and the groove making device 29, and when the fertilizer is supplied from the hopper 25 to the field, the fertilizer passes through the fertilizer application hose 28.
 施肥装置4による施肥作業は、植え付け作業と連動して行われる。例えば、図4に示されるように、内部領域IAに内部往復経路IPLが設定され、外周領域OAに旋回経路が設定されている。内部往復経路IPLは複数の平行経路であって、旋回経路は隣接の内部往復経路IPL同士を繋ぐ経路である。苗植付装置3による植え付け作業は内部往復経路IPLに沿って行われ、施肥装置4による施肥作業も内部往復経路IPLに沿って行われる。一方、外周領域OAの当該旋回経路では植え付け作業は行われず、施肥装置4による施肥作業も外周領域OAの当該旋回経路では行われない。 The fertilizer application work by the fertilizer application device 4 is performed in conjunction with the planting work. For example, as shown in FIG. 4, an internal reciprocating path IPL is set in the internal region IA, and a turning path is set in the outer peripheral region OA. The internal round-trip path IPL is a plurality of parallel paths, and the turning path is a path connecting adjacent internal round-trip path IPLs. The planting work by the seedling planting device 3 is performed along the internal reciprocating path IPL, and the fertilizing work by the fertilizer applying device 4 is also performed along the internal reciprocating path IPL. On the other hand, the planting work is not performed in the swivel path of the outer peripheral region OA, and the fertilizer application work by the fertilizer application device 4 is not performed in the swirl path of the outer peripheral region OA.
 田植機が内部往復経路IPLに沿って内部領域IAを植え付け作業しながら走行すると、田植機は内部領域IAと外周領域OAとの境界領域に到達する。内部領域IAにおける当該境界領域が『終了位置』であって、この終了位置で植付機構22が停止し、苗植付装置3が上昇する。一般的には、植付機構22の停止または苗植付装置3の上昇と同時に繰出機構26が停止して施肥装置4による施肥作業が停止する。これにより、内部領域IAにおける一つの内部往復経路IPLに沿った植え付け作業及び施肥作業が完了する。この後、田植機は、外周領域OAへ移動して、隣接の内部往復経路IPLに移行するために外周領域OAで旋回走行する。 When the rice transplanter travels while planting the internal area IA along the internal reciprocating path IPL, the rice transplanter reaches the boundary area between the internal area IA and the outer peripheral area OA. The boundary region in the internal region IA is the "end position", at which the planting mechanism 22 stops and the seedling planting device 3 rises. Generally, at the same time as the planting mechanism 22 is stopped or the seedling planting device 3 is raised, the feeding mechanism 26 is stopped and the fertilizer application work by the fertilizer application device 4 is stopped. This completes the planting and fertilizing operations along one internal reciprocating path IPL in the internal region IA. After that, the rice transplanter moves to the outer peripheral region OA and makes a turning run in the outer peripheral region OA in order to shift to the adjacent internal reciprocating path IPL.
 外周領域OAで旋回走行が完了すると、田植機は、再び内部領域IAに移動して、隣接の内部往復経路IPLに沿って植え付け作業及び施肥作業を開始する。内部領域IAのうちの内部領域IAと外周領域OAとの境界領域が『開始位置』であって、この開始位置で苗植付装置3が下降し、植付機構22が再び作動する。一般的には、苗植付装置3の下降または植付機構22の作動開始と同時に繰出機構26が動き始めて施肥装置4による施肥作業が開始される。 When the turning run is completed in the outer peripheral area OA, the rice transplanter moves to the inner area IA again and starts the planting work and the fertilizer application work along the adjacent internal reciprocating path IPL. The boundary region between the inner region IA and the outer peripheral region OA of the inner region IA is the "start position", and the seedling planting device 3 is lowered at this start position, and the planting mechanism 22 is operated again. Generally, at the same time as the seedling planting device 3 is lowered or the planting mechanism 22 is started to operate, the feeding mechanism 26 starts to move and the fertilizer application operation by the fertilizer application device 4 is started.
 しかし、肥料がホッパ25から繰出機構26によって繰り出されてから実際に圃場に届くまでに、施肥ホース28の長さの分だけ遅れが生じる。このため、開始位置では、実際の圃場への肥料の供給の開始タイミングが植え付け作業の開始タイミングよりも遅れ、開始位置で施肥が十分に行われない虞がある。また、終了位置では、実際の圃場への肥料の供給の停止タイミングが植え付け作業の停止タイミングよりも遅れる虞がある。加えて、この終了位置で田植機が一旦停車すると、施肥ホース28に残留した肥料がそのまま終了位置に排出され、終了位置において肥料が過剰に供給されてしまう虞がある。このような不都合を解消するべく、本実施形態では、施肥装置4に対する以下の制御が行われる。 However, there is a delay by the length of the fertilizer application hose 28 from the time when the fertilizer is fed from the hopper 25 by the feeding mechanism 26 until it actually reaches the field. Therefore, at the start position, the start timing of the actual supply of fertilizer to the field may be later than the start timing of the planting work, and the fertilizer may not be sufficiently applied at the start position. Further, at the end position, the timing of stopping the supply of fertilizer to the actual field may be delayed from the timing of stopping the planting work. In addition, once the rice transplanter is stopped at this end position, the fertilizer remaining on the fertilizer hose 28 may be discharged to the end position as it is, and the fertilizer may be excessively supplied at the end position. In order to eliminate such inconvenience, the following control for the fertilizer application device 4 is performed in the present embodiment.
 田植機の制御系の中核である制御ユニット30は、田植機の走行制御や各種作業装置1Cの動作制御を行う。作業装置1Cの一部に施肥装置4が含まれる。測位ユニット8は、航法衛星の測位信号に基づいて機体1の位置情報、即ち自車位置を取得する。制御ユニット30は、機体1の走行中に、測位ユニット8によって算出された自車位置に基づいて施肥装置4に対する制御を可能である。そして制御ユニット30は、予め設定された開始位置から作業走行を開始する場合に作業走行の開始前に施肥装置4を動作させ、予め設定された終了位置で作業走行を終了する場合に作業走行の終了前に施肥装置4を停止させるように構成されている。 The control unit 30, which is the core of the control system of the rice transplanter, controls the running of the rice transplanter and the operation of various work devices 1C. A fertilizer application device 4 is included as a part of the work device 1C. The positioning unit 8 acquires the position information of the aircraft 1, that is, the position of the own vehicle based on the positioning signal of the navigation satellite. The control unit 30 can control the fertilizer application device 4 based on the position of the own vehicle calculated by the positioning unit 8 while the machine body 1 is traveling. Then, the control unit 30 operates the fertilizer application device 4 before the start of the work run when the work run starts from the preset start position, and ends the work run at the preset end position. It is configured to stop the fertilizer application device 4 before the end.
 肥料がホッパ25から繰出機構26によって繰り出されてから実際に圃場に排出されるまでに要する時間(以下、『肥料搬送所要時間』と称する)は、搬送風の風速や施肥ホース28の長さによって変化する。このため、オペレータが情報端末5を操作しながら肥料搬送所要時間を設定可能な構成であっても良い。また、オペレータが施肥ホース28の長さと、搬送風の風速と、を情報端末5で設定することによって、肥料搬送所要時間が制御ユニット30によって自動的に算出される構成であっても良い。なお、制御ユニット30は、肥料がホッパ25から繰出機構26によって繰り出されてから実際に圃場に排出されるまで田植機が走行する距離(以下、『肥料搬送所要距離』)を算出しても良い。
この場合、上述の肥料搬送所要時間に田植機の走行車速を掛け算することによって、肥料搬送所要距離が算出される。
The time required from the time when fertilizer is fed from the hopper 25 by the feeding mechanism 26 until it is actually discharged to the field (hereinafter referred to as "fertilizer transport time") depends on the wind speed of the transport wind and the length of the fertilizer application hose 28. Change. Therefore, the operator may be able to set the time required for fertilizer transfer while operating the information terminal 5. Further, the control unit 30 may automatically calculate the fertilizer transport time required by the operator setting the length of the fertilizer hose 28 and the wind speed of the transport wind on the information terminal 5. The control unit 30 may calculate the distance traveled by the rice transplanter (hereinafter, “fertilizer transport required distance”) from the time when fertilizer is fed from the hopper 25 by the feeding mechanism 26 until it is actually discharged to the field. ..
In this case, the required distance for fertilizer transportation is calculated by multiplying the above-mentioned time required for fertilizer transportation by the traveling vehicle speed of the rice transplanter.
 旋回走行後の開始位置は既知であって、田植機の自車位置は測位ユニット8によって算出される。また、単位時間当たりの自車位置の変化量から走行車速が算出される。つまり、測位ユニット8は、機体1の走行車速(速度)を検出可能な『速度検出部』に相当する。なお、速度検出部は、車輪12に設けられた回転数センサ(図示しない)であっても良いし、無段変速装置9に設けられた回転数センサ(図示しない)であっても良い。開始位置と自車位置との距離を走行車速で割り算することによって、機体1のうち作溝器29の位置する箇所が開始位置に到達するまでの時間(以下、『第1時間』と称する)が算出される。第1時間は、田植機が外周領域OAで次の内部往復経路IPLに向けて旋回走行している間や、当該旋回走行の完了後に田植機が外周領域OAから内部領域IAへ移動している間に、周期的に算出される。なお、第1時間に走行車速を掛け算することによって第1距離が算出される。第1距離は、機体1のうちの作溝器29の位置する箇所が開始位置に到達するまでの距離である(図19及び図20参照)。 The starting position after turning is known, and the position of the rice transplanter's own vehicle is calculated by the positioning unit 8. In addition, the traveling vehicle speed is calculated from the amount of change in the position of the own vehicle per unit time. That is, the positioning unit 8 corresponds to a "speed detection unit" capable of detecting the traveling vehicle speed (speed) of the aircraft 1. The speed detection unit may be a rotation speed sensor (not shown) provided on the wheel 12 or a rotation speed sensor (not shown) provided on the continuously variable transmission 9. By dividing the distance between the start position and the own vehicle position by the traveling vehicle speed, the time until the position of the groove making device 29 in the aircraft 1 reaches the start position (hereinafter referred to as "first time"). Is calculated. During the first hour, the rice transplanter is moving from the outer peripheral area OA to the inner area IA while the rice transplanter is turning toward the next internal round-trip path IPL in the outer peripheral area OA, or after the turning is completed. In the meantime, it is calculated periodically. The first distance is calculated by multiplying the first hour by the traveling vehicle speed. The first distance is the distance until the position of the groove-growing device 29 in the machine body 1 reaches the start position (see FIGS. 19 and 20).
 また、終了位置は既知であるため、終了位置と自車位置との距離を走行車速で割り算することによって、機体1のうち作溝器29の位置する箇所が終了位置に到達するまでの時間(以下、『第2時間』と称する)が算出される。第2時間は、田植機が内部領域IAを内部往復経路IPLに沿って植え付け作業しながら走行している間に、周期的に算出される。なお、第2時間に走行車速を掛け算することによって第2距離が算出される。第2距離は、機体1のうちの作溝器29の位置する箇所が終了位置に到達するまでの距離である(図21及び図22参照)。 Further, since the end position is known, by dividing the distance between the end position and the own vehicle position by the traveling vehicle speed, the time until the position of the groove making device 29 in the machine body 1 reaches the end position ( Hereinafter referred to as "second time") is calculated. The second time is calculated periodically while the rice transplanter travels through the internal region IA while planting along the internal round-trip path IPL. The second distance is calculated by multiplying the second time by the traveling vehicle speed. The second distance is the distance until the position of the groove-growing device 29 in the machine body 1 reaches the end position (see FIGS. 21 and 22).
 図19及び図20に示されるように、田植機が外周領域OAで次の内部往復経路IPLに向けて旋回走行しているとき、または、田植機が旋回走行を完了して外周領域OAから内部領域IAへ移動しているときに、第1時間が周期的に算出される。この第1時間が肥料搬送所要時間以下になると、制御ユニット30は繰出機構26を作動させる。そして、施肥ホース28に沿って搬送される肥料が排出され始めるときに、作溝器29が開始位置に位置する。つまり、施肥装置4による施肥作業が開始位置で精度よく開始される。即ち、制御ユニット30は、自車位置(位置情報)に基づいて、機体1のうち作溝器29の位置する箇所が開始位置に到達するまでの時間である第1時間を算出するとともに、第1時間が肥料搬送所要時間(予め設定された閾値)以下である場合に施肥装置4を動作させるように構成されている。また、制御ユニット30は、施肥ホース28沿って搬送される肥料が開始位置で排出され始めるように施肥装置4を動作させる。あるいは、制御ユニット30は、自車位置に基づいて、機体1のうち作溝器29の位置する箇所が、機体1の旋回走行後の開始位置に到達するまでの距離である第1距離を算出するとともに、第1距離が肥料搬送所要距離(予め設定された閾値)以下である場合に施肥装置4を動作させても良い。 As shown in FIGS. 19 and 20, when the rice transplanter is turning toward the next internal round-trip path IPL in the outer peripheral area OA, or when the rice transplanter completes the turning and runs inside from the outer peripheral area OA. The first time is calculated periodically while moving to region IA. When the first time is equal to or less than the time required for fertilizer transportation, the control unit 30 operates the feeding mechanism 26. Then, when the fertilizer conveyed along the fertilizer application hose 28 begins to be discharged, the groove making device 29 is located at the start position. That is, the fertilizer application operation by the fertilizer application device 4 is accurately started at the start position. That is, the control unit 30 calculates the first time, which is the time until the position of the groove making device 29 in the machine body 1 reaches the start position, based on the position (position information) of the own vehicle, and also calculates the first time. The fertilizer application device 4 is configured to operate when one hour is less than or equal to the time required for fertilizer transportation (preset threshold value). Further, the control unit 30 operates the fertilizer application device 4 so that the fertilizer conveyed along the fertilizer application hose 28 starts to be discharged at the start position. Alternatively, the control unit 30 calculates, based on the position of the own vehicle, a first distance, which is the distance from the position of the groove-growing device 29 in the machine body 1 to reach the start position after the turning run of the body body 1. At the same time, the fertilizer application device 4 may be operated when the first distance is equal to or less than the required fertilizer transport distance (preset threshold value).
 図21及び図22に示されるように、田植機が植え付け作業しながら内部領域IAを走行しているとき、第2時間が周期的に算出される。この第2時間が肥料搬送所要時間以下になると、制御ユニット30は繰出機構26を停止させる。そして、施肥ホース28に沿って搬送される肥料が排出され尽くすときに、作溝器29が終了位置に位置する。つまり、施肥装置4による施肥作業が終了位置で精度よく終了する。即ち、制御ユニット30は、自車位置に基づいて、機体1のうち作溝器29の位置する箇所が終了位置に到達するまでの時間である第2時間を算出するとともに、第2時間が肥料搬送所要時間(予め設定された閾値)以下である場合に施肥装置4を停止させるように構成されている。また、制御ユニット30は、施肥ホース28に沿って搬送される肥料が終了位置で排出され尽くすように施肥装置4を停止させる。あるいは、制御ユニット30は、自車位置に基づいて、機体1のうち作溝器29の位置する箇所が終了位置に到達するまでの距離である第2距離を算出するとともに、第2距離が肥料搬送所要距離(予め設定された閾値)以下である場合に施肥装置4を停止させても良い。 As shown in FIGS. 21 and 22, when the rice transplanter is traveling in the internal area IA while planting work, the second time is calculated periodically. When the second time becomes less than or equal to the time required for fertilizer transportation, the control unit 30 stops the feeding mechanism 26. Then, when the fertilizer conveyed along the fertilizer application hose 28 is exhausted, the groove making device 29 is located at the end position. That is, the fertilizer application work by the fertilizer application device 4 is accurately completed at the end position. That is, the control unit 30 calculates the second time, which is the time until the position of the groove making device 29 in the machine body 1 reaches the end position, based on the position of the own vehicle, and the second time is fertilizer. The fertilizer application device 4 is configured to be stopped when the time required for transportation (a preset threshold value) or less is reached. Further, the control unit 30 stops the fertilizer application device 4 so that the fertilizer conveyed along the fertilizer application hose 28 is completely discharged at the end position. Alternatively, the control unit 30 calculates a second distance, which is the distance until the position of the groove making device 29 in the machine body 1 reaches the end position, based on the position of the own vehicle, and the second distance is fertilizer. The fertilizer application device 4 may be stopped when it is equal to or less than the required transport distance (preset threshold value).
 図4に示された圃場は矩形の形状であるが、圃場は常に矩形の形状であるとは限らず、例えば台形形状であったり、不等辺の形状であったりする場合も考えられる。例えば図23に示されるように、外周領域OAと内部領域IAとの境界線が内部往復経路IPLに対して傾斜する場合も考えられる。内部領域IAに対する植え付け作業時に、外周領域OAにはみ出した状態で苗が植え付けられると好ましくない。このため、苗植付装置3が外周領域OAと内部領域IAとの境界に跨る状態では、苗植付装置3の条ごとに設けられた植付クラッチを用いることによって、内部領域IAに対してのみ植え付け作業が行われる。
作業装置としての苗植付装置3は、圃場に対して苗を条ごとに植え付け可能なように構成されている。また、施肥装置4において繰出機構26は2条ごとに設けられているが、条ごとに設けられても良いし、3条以上の条ごとに設けられても良い。
The field shown in FIG. 4 has a rectangular shape, but the field is not always rectangular, and may have a trapezoidal shape or an unequal side shape, for example. For example, as shown in FIG. 23, it is conceivable that the boundary line between the outer peripheral region OA and the inner region IA is inclined with respect to the internal reciprocating path IPL. It is not preferable that the seedlings are planted in a state of protruding into the outer peripheral region OA during the planting work for the inner region IA. Therefore, in a state where the seedling planting device 3 straddles the boundary between the outer peripheral region OA and the inner region IA, the planting clutch provided for each row of the seedling planting device 3 is used to cover the inner region IA. Only planting work is done.
The seedling planting device 3 as a working device is configured so that seedlings can be planted in each row in the field. Further, although the feeding mechanism 26 is provided every two articles in the fertilizer application device 4, it may be provided every two articles, or it may be provided every three or more articles.
 図23に示される実施形態では、苗植付装置3のうちの右側箇所が内部領域IAに位置し、機体1が前進するほど、苗植付装置3のうちの内部領域IAに位置する箇所の割合が大きくなる。このため、苗植付装置3の右端が内部領域IAの内側に進入した時点で苗植付装置3の右端の植付クラッチだけが伝達状態であって、機体1が前進に伴って、左側の各植付クラッチが順番に伝達状態に切換えられる。 In the embodiment shown in FIG. 23, the right side portion of the seedling planting device 3 is located in the internal region IA, and the portion located in the internal region IA of the seedling planting device 3 as the machine body 1 advances. The ratio increases. Therefore, when the right end of the seedling planting device 3 enters the inside of the internal region IA, only the planting clutch at the right end of the seedling planting device 3 is in the transmission state, and as the aircraft 1 moves forward, the left side is left. Each planting clutch is sequentially switched to the transmission state.
 図23に示される例では、植え付け作業の開始位置が条ごとに異なる。このため、制御ユニット30は、開始位置に到達するまでの時間である第1時間を植え付け条ごとに算出するとともに、植え付け条ごとの第1時間が肥料搬送所要時間以下である場合に、施肥装置4における繰出機構26の夫々を植え付け条ごとに各別に動作させる。また、植え付け作業の終了位置が条ごとに異なる場合も考えられる。この場合、制御ユニット30は、終了位置に到達するまでの時間である第2時間を植え付け条ごとに算出するとともに、植え付け条ごとの第2時間が肥料搬送所要時間以下である場合に、施肥装置4における繰出機構26の夫々を植え付け条ごとに各別に停止させる。即ち、制御ユニット30は、苗植付装置3が苗を植え付ける条と連動して、施肥装置4を条ごとに動作または停止させるように構成されている。 In the example shown in FIG. 23, the starting position of the planting work differs for each row. Therefore, the control unit 30 calculates the first time, which is the time required to reach the start position, for each planting row, and when the first time for each planting row is less than or equal to the time required for fertilizer transport, the fertilizer application device. Each of the feeding mechanisms 26 in No. 4 is operated separately for each planting line. In addition, the end position of the planting work may differ from row to row. In this case, the control unit 30 calculates the second time, which is the time required to reach the end position, for each planting row, and when the second time for each planting row is less than or equal to the time required for fertilizer transport, the fertilizer application device. Each of the feeding mechanisms 26 in No. 4 is stopped separately for each planting line. That is, the control unit 30 is configured so that the seedling planting device 3 operates or stops the fertilizer application device 4 for each row in conjunction with the row for planting seedlings.
 上述の実施形態では、内部往復経路IPLに沿って田植機が植え付け作業を行った終了位置と、田植機が外周領域OAで次の内部往復経路IPLに向けて旋回走行を行った後の開始位置と、に基づいて施肥作業の開始タイミング及び終了タイミングを説明したが、この実施形態に限定されない。例えば終了位置が、外周領域OAにおける一つの内側周回経路IRLの終端部(田植機が次の内側周回経路IRLに向けて旋回する手前の端部)、または外側周回経路ORLの終端部(田植機が次の外側周回経路ORLに向けて旋回する手前の端部)であっても良い。田植機が内側周回経路IRL(または外側周回経路ORL)に沿って植え付け作業しながら走行しているとき、第2時間が周期的に算出される。そして、田植機が内側周回経路IRL(または外側周回経路ORL)の終了位置に接近して第2時間が肥料搬送所要時間以下になると、制御ユニット30は繰出機構26を停止させても良い。また、開始位置が次の内側周回経路IRLの始端部であって、田植機が外周領域OAで次の内側周回経路IRL(または外側周回経路ORL)に向けて旋回走行しているとき、第1時間が周期的に算出されても良い。そして、田植機が次の内側周回経路IRL(または外側周回経路ORL)の開始位置に接近して第2時間が肥料搬送所要時間以下になると、制御ユニット30は繰出機構26を作動させても良い。 In the above-described embodiment, the end position where the rice transplanter has performed the planting work along the internal round-trip path IPL and the start position after the rice transplanter has made a turning run toward the next internal round-trip path IPL in the outer peripheral region OA. The start timing and end timing of the fertilizer application work have been described based on the above, but the present invention is not limited to this embodiment. For example, the end position is the end of one inner circuit path IRL in the outer peripheral region OA (the end before the rice transplanter turns toward the next inner circuit path IRL) or the end of the outer circuit path ORL (rice transplanter). May be the front end) that turns toward the next outer circuit path ORL. When the rice transplanter is traveling along the inner circuit path IRL (or the outer circuit path ORL) while performing the planting work, the second time is calculated periodically. Then, when the rice transplanter approaches the end position of the inner circuit path IRL (or the outer circuit path ORL) and the second time is equal to or less than the fertilizer transport time required, the control unit 30 may stop the feeding mechanism 26. Further, when the start position is the start end of the next inner circuit path IRL and the rice transplanter is turning toward the next inner circuit path IRL (or outer circuit path ORL) in the outer peripheral region OA, the first The time may be calculated periodically. Then, when the rice transplanter approaches the start position of the next inner circuit path IRL (or outer circuit path ORL) and the second time becomes less than the fertilizer transport time required, the control unit 30 may operate the feeding mechanism 26. ..
 上述したように、肥料がホッパ25から繰出機構26によって繰り出されてから実際に圃場に届くまでに、施肥ホース28の長さの分だけ遅れが生じる。このことから、走行速度が速すぎると適切な位置で圃場に対する施肥の開始または終了が行われない場合が考えられる。適切に施肥作業を行うために、制御ユニット30は、走行車速が予め設定された設定速度よりも速い場合に、施肥装置4を動作または停止させる前に機体1を減速させる。このとき、制御ユニット30は、設定速度に減速させても良いし、設定速度未満に減速させても良い。また、制御ユニット30は、走行車速が当該設定速度よりも遅い場合に、施肥装置4の動作または停止を開始するまで機体1をその走行車速のまま走行させても良い。さらに、制御ユニット30は、設定速度以下の走行車速の場合に、施肥装置4を動作または停止させる前に機体1を、施肥装置4の停止タイミングと合わせやすい任意の速度に増速させても良い。 As described above, there is a delay by the length of the fertilizer application hose 28 from the time when the fertilizer is fed from the hopper 25 by the feeding mechanism 26 until it actually reaches the field. From this, it is conceivable that if the traveling speed is too fast, the fertilization to the field may not be started or ended at an appropriate position. In order to properly perform the fertilizer application operation, the control unit 30 decelerates the machine body 1 before operating or stopping the fertilizer application device 4 when the traveling vehicle speed is faster than a preset set speed. At this time, the control unit 30 may be decelerated to the set speed or may be decelerated to less than the set speed. Further, when the traveling vehicle speed is slower than the set speed, the control unit 30 may allow the machine body 1 to travel at the traveling vehicle speed until the operation or stop of the fertilizer application device 4 is started. Further, the control unit 30 may accelerate the machine body 1 to an arbitrary speed that is easy to match with the stop timing of the fertilizer application device 4 before operating or stopping the fertilizer application device 4 when the traveling vehicle speed is equal to or lower than the set speed. ..
 上述の実施形態では、オペレータが情報端末5を操作することによって肥料搬送所要時間が設定される構成が示されているが、この実施形態に限定されない。例えば、繰出機構26の駆動回転速度やブロワ27の駆動回転速度が、走行車速と連動して変化する構成であっても良く、この場合、肥料搬送所要時間が制御ユニット30によって周期的に算出される構成であっても良い。この場合、走行車速が速くなるほど繰出機構26の駆動回転速度やブロワ27の駆動回転速度が速くなって、肥料搬送所要時間が短くなる構成であっても良い。制御ユニット30は、走行車速が速くなるほど開始位置に近づく側の位置で繰出機構26を動作させ始めても良いし、終了位置近くで肥料を少し多めに供給するために、走行車速が速くなるほど終了位置に近づく側の位置で繰出機構26を停止させても良い。
即ち、制御ユニット30は、走行車速に基づいて施肥装置4を動作または停止させるタイミングを変更可能に構成されても良い。
In the above-described embodiment, the configuration in which the fertilizer transport time is set by the operator operating the information terminal 5 is shown, but the present invention is not limited to this embodiment. For example, the drive rotation speed of the feeding mechanism 26 and the drive rotation speed of the blower 27 may be changed in conjunction with the traveling vehicle speed. In this case, the fertilizer transfer required time is periodically calculated by the control unit 30. May be configured. In this case, the faster the traveling vehicle speed, the faster the drive rotation speed of the feeding mechanism 26 and the drive rotation speed of the blower 27, and the fertilizer transport time may be shortened. The control unit 30 may start operating the feeding mechanism 26 at a position closer to the start position as the traveling vehicle speed increases, or the end position as the traveling vehicle speed increases in order to supply a little more fertilizer near the end position. The feeding mechanism 26 may be stopped at a position closer to.
That is, the control unit 30 may be configured so that the timing at which the fertilizer application device 4 is operated or stopped can be changed based on the traveling vehicle speed.
 なお、上述の実施形態では、農用資材として肥料が示されているが、農用資材は、液状や粉粒状の薬剤であっても良いし、液状や粉粒状の肥料であっても良い。また、上述の実施形態では、供給装置として施肥装置4が示されているが、供給装置は、圃場に薬剤を散布する薬剤散布装置であっても良い。また、上述の実施形態では作業装置として苗植付装置3が示されているが、作業装置は、例えば播種装置(圃場へのピンポイントの直播も含む)であっても良い。つまり、作業装置が圃場に対して種苗を条ごとに植播可能であれば良い。『種苗』は、発芽前の種子と発芽後の苗とを含むものである。『植播』は、圃場に対して発芽前の種子を種蒔きしたり、圃場に対して発芽後の苗を移植したりする作業の総称を意味する。また上述の構成とは別の実施形態として、施肥ホース28ののうちの圃場に近い部分に肥料を一時的に受け止める受け止め部が設けられ、機体1の位置情報に基づき間欠的に肥料を供給する構成であっても良い。 In the above-described embodiment, fertilizer is shown as an agricultural material, but the agricultural material may be a liquid or powdery chemical, or may be a liquid or powdery fertilizer. Further, in the above-described embodiment, the fertilizer application device 4 is shown as the supply device, but the supply device may be a drug spraying device for spraying the drug in the field. Further, although the seedling planting device 3 is shown as the working device in the above-described embodiment, the working device may be, for example, a sowing device (including pinpoint direct sowing in the field). That is, it suffices if the working device can plant seedlings in the field for each row. "Seeds" include seeds before germination and seedlings after germination. "Planting" is a general term for the work of sowing pre-germination seeds in a field and transplanting post-germination seedlings to a field. Further, as an embodiment different from the above-described configuration, a receiving portion for temporarily receiving fertilizer is provided in a portion of the fertilizer hose 28 near the field, and fertilizer is intermittently supplied based on the position information of the machine body 1. It may be configured.
〔無段変速装置の斜板の中立戻し制御及びエンジンの始動制御〕
 図24に示すように、制御ユニット30には、ブレーキ検出部80、キースイッチ81、中立センサ82、報知装置83等が接続されている。
[Control of neutral return of swash plate of continuously variable transmission and control of engine start]
As shown in FIG. 24, a brake detection unit 80, a key switch 81, a neutral sensor 82, a notification device 83, and the like are connected to the control unit 30.
 ブレーキ検出部80は、ブレーキペダル84が踏み込まれたことを検出するものである。ブレーキペダル84は、車輪12を制動するブレーキ装置85を制動操作するものである。ブレーキペダル84は、運転部14に備えられている。ブレーキペダル84は、初期位置Piniから最大踏み込み位置Pmaxまで踏み込み可能に構成され、リンク機構(図示省略)を介してブレーキ装置85と連係されている。 The brake detection unit 80 detects that the brake pedal 84 has been depressed. The brake pedal 84 brakes the brake device 85 that brakes the wheels 12. The brake pedal 84 is provided in the driving unit 14. The brake pedal 84 is configured to be depressable from the initial position Pini to the maximum depressing position Pmax, and is linked to the brake device 85 via a link mechanism (not shown).
 ブレーキ装置85は、副変速装置(図示省略)、株間変速装置(図示省略)等を内装するミッションケース86内に設けられている。ブレーキ装置85には、ブレーキパッド(図示省略)と、前記ブレーキパッドを押圧操作する揺動式の操作アーム85aと、が備えられている。 The brake device 85 is provided in the mission case 86 in which the auxiliary transmission (not shown), the inter-stock transmission (not shown), and the like are built. The brake device 85 includes a brake pad (not shown) and a swing-type operation arm 85a that presses and operates the brake pad.
 ブレーキ検出部80には、踏み始めセンサ80aと、踏み終わりセンサ80bと、踏み込みセンサ80cと、が備えられている。 The brake detection unit 80 is provided with a stepping start sensor 80a, a stepping end sensor 80b, and a stepping sensor 80c.
 踏み始めセンサ80aは、ブレーキペダル84が初期位置Piniから踏み込まれたことを検出するものである。本実施形態では、踏み始めセンサ80aは、磁石センサによって構成されている。なお、踏み始めセンサ80aは、磁気センサ以外のセンサによって構成されていてもよい。 The stepping start sensor 80a detects that the brake pedal 84 is stepped on from the initial position Pini. In the present embodiment, the stepping start sensor 80a is composed of a magnet sensor. The stepping start sensor 80a may be composed of a sensor other than the magnetic sensor.
 踏み終わりセンサ80bは、ブレーキペダル84が最大踏み込み位置Pmaxまで踏み込まれたことを検出するものである。本実施形態では、踏み終わりセンサ80bは、リミットスイッチによって構成されている。なお、踏み終わりセンサ80bは、リミットスイッチ以外のセンサによって構成されていてもよい。 The depressing end sensor 80b detects that the brake pedal 84 has been depressed to the maximum depressing position Pmax. In the present embodiment, the stepping end sensor 80b is configured by a limit switch. The stepping end sensor 80b may be composed of a sensor other than the limit switch.
 踏み込みセンサ80cは、ブレーキペダル84が初期位置Piniと最大踏み込み位置Pmaxとの間に位置する途中位置Pmidまで踏み込まれたことを検出するものである。本実施形態では、踏み込みセンサ80cは、磁石センサによって構成されている。なお、踏み込みセンサ80cは、磁気センサ以外のセンサによって構成されていてもよい。 The stepping sensor 80c detects that the brake pedal 84 is stepped on to the intermediate position Pmid located between the initial position Pini and the maximum stepping position Pmax. In the present embodiment, the stepping sensor 80c is composed of a magnet sensor. The stepping sensor 80c may be composed of a sensor other than the magnetic sensor.
 ここで、途中位置Pmidは、上述のように、初期位置Piniと最大踏み込み位置Pmaxとの間に位置するものであるが、初期位置Piniと最大踏み込み位置Pmaxとの間の中央位置に限るものではない。例えば、途中位置Pmidは、初期位置Piniから所定の踏み込みストロークを確保した位置に設定することができる。 Here, the intermediate position Pmid is located between the initial position Pini and the maximum stepping position Pmax as described above, but is not limited to the central position between the initial position Pini and the maximum stepping position Pmax. do not have. For example, the intermediate position Pmid can be set to a position where a predetermined stepping stroke is secured from the initial position Pini.
 キースイッチ81は、エンジン2を始動操作するものである。キースイッチ81は、運転部14に備えられている。 The key switch 81 is for starting and operating the engine 2. The key switch 81 is provided in the operation unit 14.
 中立センサ82は、無段変速装置9の変速位置が中立位置であることを検出するものである。中立センサ82は、例えば、主変速レバー7Aが中立位置であることを検出するものでもよいし、あるいは、無段変速装置9の斜板9aが中立位置であることを検出するものでもよい。 The neutral sensor 82 detects that the speed change position of the continuously variable transmission 9 is the neutral position. The neutral sensor 82 may, for example, detect that the main speed change lever 7A is in the neutral position, or may detect that the swash plate 9a of the continuously variable transmission 9 is in the neutral position.
 制御ユニット30は、ブレーキペダル84が踏み込まれたことがブレーキ検出部80によって検出されると、ブレーキペダル84が最大踏み込み位置Pmaxに達するよりも手前の段階で無段変速装置9の斜板9aを中立位置に戻し始める。本実施形態では、制御ユニット30は、ブレーキペダル84が途中位置Pmidまで踏み込まれたことが踏み込みセンサ80cによって検出されると、無段変速装置9の斜板9aを中立位置に戻し始め、ブレーキペダル84が最大踏み込み位置Pmaxまで踏み込まれたことが踏み終わりセンサ80bによって検出されると、無段変速装置9の斜板9aを中立位置に戻し終える。 When the brake detection unit 80 detects that the brake pedal 84 has been depressed, the control unit 30 presses the swash plate 9a of the continuously variable transmission 9 at a stage before the brake pedal 84 reaches the maximum depression position Pmax. Start returning to the neutral position. In the present embodiment, when the depression sensor 80c detects that the brake pedal 84 has been depressed to the intermediate position Pmid, the control unit 30 starts returning the swash plate 9a of the continuously variable transmission 9 to the neutral position, and the brake pedal. When the stepping end sensor 80b detects that the 84 has been stepped on to the maximum stepping position Pmax, the swash plate 9a of the continuously variable transmission 9 is returned to the neutral position.
 ここで、上述の構成に代えて、制御ユニット30は、ブレーキペダル84が初期位置Piniから踏み込まれたことが踏み始めセンサ80aによって検出されると、無段変速装置9の斜板9aを中立位置に戻し始め、ブレーキペダル84が途中位置Pmidまで踏み込まれたことが踏み込みセンサ80cによって検出されると、無段変速装置9の斜板9aを中立位置に戻し終えてもよい。 Here, instead of the above-described configuration, the control unit 30 sets the swash plate 9a of the continuously variable transmission 9 in a neutral position when the sensor 80a detects that the brake pedal 84 has been depressed from the initial position Pini. When the depression sensor 80c detects that the brake pedal 84 has been depressed to the intermediate position Pmid, the swash plate 9a of the continuously variable transmission 9 may be returned to the neutral position.
 あるいは、上述の構成に代えて、ブレーキ検出部80に、ブレーキペダル84の踏み込み量を検出する踏み込み量センサ(図示省略)が備えられ、制御ユニット30は、前記踏み込み量センサによって検出されたブレーキペダル84の踏み込み量が増加するのに応じて、無段変速装置9の斜板9aを中立位置側に戻してもよい。この場合、前記踏み込み量センサは、ポテンショメータによって構成することができる。 Alternatively, instead of the above configuration, the brake detection unit 80 is provided with a depression amount sensor (not shown) for detecting the depression amount of the brake pedal 84, and the control unit 30 is a brake pedal detected by the depression amount sensor. As the amount of depression of 84 increases, the swash plate 9a of the continuously variable transmission 9 may be returned to the neutral position side. In this case, the stepping amount sensor can be configured by a potentiometer.
 あるいは、上述の構成に代えて、操作アーム85aの揺動角度を検出する揺動角度センサが設けられ、制御ユニット30は、前記揺動角度センサによって検出された操作アーム85aの揺動角度が大きくなるのに応じて、無段変速装置9の斜板9aを中立位置側に戻してもよい。 Alternatively, instead of the above configuration, a swing angle sensor for detecting the swing angle of the operation arm 85a is provided, and the control unit 30 has a large swing angle of the operation arm 85a detected by the swing angle sensor. Therefore, the swash plate 9a of the continuously variable transmission 9 may be returned to the neutral position side.
 あるいは、上述の構成に代えて、制御ユニット30は、ブレーキペダル84が踏み込まれたことがブレーキ検出部80によって検出されると、主変速レバー7Aを中立位置に戻し、これに基づいて無段変速装置9の斜板9aを中立位置側に戻してもよい。 Alternatively, instead of the above configuration, when the brake detection unit 80 detects that the brake pedal 84 has been depressed, the control unit 30 returns the main shift lever 7A to the neutral position, and based on this, the continuously variable transmission The swash plate 9a of the device 9 may be returned to the neutral position side.
 制御ユニット30は、キースイッチ81によってエンジン2が始動操作された際に、ブレーキペダル84が最大踏み込み位置Pmaxまで踏み込まれたことが踏み終わりセンサ80bによって検出され、かつ、無段変速装置9の変速位置が中立位置であることが中立センサ82によって検出された場合に、キースイッチ81の始動操作に基づいてエンジン2を始動する。 When the engine 2 is started by the key switch 81, the control unit 30 detects that the brake pedal 84 has been depressed to the maximum depression position Pmax by the depression end sensor 80b, and shifts the continuously variable transmission 9. When the neutral sensor 82 detects that the position is the neutral position, the engine 2 is started based on the start operation of the key switch 81.
 報知装置83は、エンジン2が始動されないことを報知するものである。ここで、キースイッチ81によってエンジン2が始動操作された際に、ブレーキペダル84が最大踏み込み位置Pmaxまで踏み込まれたことが踏み終わりセンサ80bによって検出されていない、あるいは、無段変速装置9の変速位置が中立位置であることが中立センサ82によって検出されていない場合は、キースイッチ81によってエンジン2が始動操作されても、エンジン2が始動されない。そこで、エンジン2が始動されない場合、エンジン2が始動されないことや、エンジン2が始動されない状況を解消する方法が、報知装置83によって報知されることになる。報知装置83による報知は、音声、画像(情報端末5等の画像表示)又はこれらの組み合わせによって行われる。 The notification device 83 notifies that the engine 2 will not be started. Here, when the engine 2 is started by the key switch 81, it is not detected by the stepping end sensor 80b that the brake pedal 84 is stepped on to the maximum stepping position Pmax, or the speed of the continuously variable transmission 9 is changed. If the neutral sensor 82 does not detect that the position is the neutral position, the engine 2 is not started even if the engine 2 is started by the key switch 81. Therefore, when the engine 2 is not started, the notification device 83 notifies the method of solving the situation where the engine 2 is not started and the engine 2 is not started. The notification by the notification device 83 is performed by voice, an image (image display of the information terminal 5 or the like), or a combination thereof.
 制御ユニット30は、ブレーキ装置85が車輪12を制動した時の走行情報に基づいて、ブレーキ装置85(前記ブレーキパッド)の損耗量を推定する。ここで、前記走行情報とは、例えば、後輪12Bの回転数、測位ユニット8の位置情報、無段変速装置9の出力軸の回転数である。 The control unit 30 estimates the amount of wear of the brake device 85 (the brake pad) based on the traveling information when the brake device 85 brakes the wheels 12. Here, the traveling information is, for example, the rotation speed of the rear wheel 12B, the position information of the positioning unit 8, and the rotation speed of the output shaft of the continuously variable transmission 9.
 本田植機において、リモコンでもエンジン2を始動操作可能に構成されていてもよい。
前記リモコンによってエンジン2を始動操作することにより、測位ユニット8等の作動準備やバッテリ73の充電を行うことができる。本田植機において、電装系に異常が生じてもエンジン2の始動のみは可能な直結回路やモード(制御モード)が設けられていてもよい。
The rice transplanter may be configured so that the engine 2 can be started and operated by using a remote controller.
By starting and operating the engine 2 with the remote controller, it is possible to prepare for the operation of the positioning unit 8 and the like and to charge the battery 73. The rice transplanter may be provided with a direct connection circuit or mode (control mode) capable of only starting the engine 2 even if an abnormality occurs in the electrical system.
 図1,2,3に示されるように、前輪12A及び後輪12Bを駆動可能に有する機体1の前部側領域に、エンジン2、及び、エンジン2を覆うエンジンボンネット2Bを有する原動部2Aが備えられ、機体1の後部側領域に、運転部14が備えられて、自走車が構成されている。自走車は、原動部2Aの両横側方に設けられた予備苗収納装置17Aを有し、かつ、運転座席16の後側に設けられ、施肥装置4を構成するホッパ25及び繰出機構26などを有している。 As shown in FIGS. 1, 2 and 3, the engine 2 and the driving unit 2A having the engine bonnet 2B covering the engine 2 are located in the front region of the airframe 1 capable of driving the front wheels 12A and the rear wheels 12B. A driving unit 14 is provided in the rear side region of the airframe 1 to form a self-propelled vehicle. The self-propelled vehicle has spare seedling storage devices 17A provided on both lateral sides of the driving unit 2A, and is provided on the rear side of the driver's seat 16 and constitutes a fertilizer application device 4 and a hopper 25 and a feeding mechanism 26. And so on.
 左右の予備苗収納装置17Aは、機体フレーム1Eのうちのエンジンフレーム1Fに立設された支持フレームとしての予備苗支持フレーム17に支持されている。具体的には、左右の予備苗収納装置17Aは、上下4段の予備苗載せ台70と、予備苗載せ台70に対して予備苗支持フレーム17側に車体上下方向に沿う方向に延びる状態で設けられ、上下4段の予備苗載せ台70を支持する収納装置フレーム70aと、を有している。予備苗支持フレーム17は、図1に示されるように、エンジンフレーム1Fの両横側部から車体上方向きに延びる左右の下端側部17aと、左右の下端側部17aの上部に横架された上端側部17bとを有している。左右の下端側部17aは、上端側部17bよりも低い位置に位置している。左の予備苗収納装置17Aの収納装置フレーム70aが左の下端側部17aに支持されている。右の予備苗収納装置17Aの収納装置フレーム70aが右の下端側部17aに支持されている。左右の予備苗収納装置17Aにおける上下4段の予備苗載せ台70は、収納装置フレーム70aを介して予備苗支持フレーム17に支持されている。
本実施形態では、左右の予備苗収納装置17Aは、上下4段の予備苗載せ台70を有しているが、これに限らない。例えば、上下3段以下、あるいは、上下5段以上の予備苗載せ台70を有するものであってもよい。
The left and right spare seedling storage devices 17A are supported by the spare seedling support frame 17 as a support frame erected on the engine frame 1F of the machine frame 1E. Specifically, the left and right spare seedling storage devices 17A are in a state of extending in the vertical direction of the vehicle body toward the spare seedling support frame 17 side with respect to the spare seedling stand 70 having four stages above and below and the spare seedling stand 70. It has a storage device frame 70a that is provided and supports the spare seedling loading table 70 in four upper and lower stages. As shown in FIG. 1, the spare seedling support frame 17 is laid horizontally on the left and right lower end side portions 17a extending upward from both lateral sides of the engine frame 1F and on the left and right lower end side portions 17a. It has an upper end side portion 17b. The left and right lower end side portions 17a are located at positions lower than the upper end side portions 17b. The storage device frame 70a of the left spare seedling storage device 17A is supported by the left lower end side portion 17a. The storage device frame 70a of the right spare seedling storage device 17A is supported by the right lower end side portion 17a. The upper and lower four-stage spare seedling mounting stands 70 in the left and right spare seedling storage devices 17A are supported by the spare seedling support frame 17 via the storage device frame 70a.
In the present embodiment, the left and right spare seedling storage devices 17A have four upper and lower spare seedling mounting stands 70, but the present invention is not limited to this. For example, it may have a spare seedling stand 70 having three or more steps above and below, or five or more steps above and below.
〔ソナー制御装置、積層灯、受信装置、バッテリ〕
 図2,3に示されるように、ソナー制御装置としての前ソナーECU64A、制御ユニット30の制御モードを自走車の外部に表示する積層灯71、リモコン90(遠隔操縦装置)からの無線指令信号を受信し、受信した無線指令信号を電気信号に変換して制御ユニット30に送信する受信装置72は、自走車の両横側部のうち、右側の横側部に設けられている。ソナーECU64、積層灯71及び受信装置72に電力を供給するバッテリ73は、自走車の両横側部のうち、前ソナーECU64A、積層灯71及び受信装置72が設けられている方の横側部、すなわち、右側の横側部に設けられている。本実施形態では、前ソナーECU64A、積層灯71、受信装置72及びバッテリ73は、自走車の右側の横側部に設けられているが、自走車の左側の横側部に設けたものであってもよい。
[Sonar control device, laminated light, receiver, battery]
As shown in FIGS. 2 and 3, a front sonar ECU 64A as a sonar control device, a laminated light 71 for displaying the control mode of the control unit 30 on the outside of the self-propelled vehicle, and a radio command signal from the remote control 90 (remote control device). Is received, the received radio command signal is converted into an electric signal, and the receiving device 72 is transmitted to the control unit 30. The receiving device 72 is provided on the right side of both side portions of the self-propelled vehicle. The battery 73 that supplies electric power to the sonar ECU 64, the laminated light 71, and the receiving device 72 is located on the side of both side portions of the self-propelled vehicle on which the front sonar ECU 64A, the laminated light 71, and the receiving device 72 are provided. It is provided on a portion, that is, a lateral portion on the right side. In the present embodiment, the front sonar ECU 64A, the laminated light 71, the receiving device 72, and the battery 73 are provided on the lateral side portion on the right side of the self-propelled vehicle, but are provided on the lateral side portion on the left side of the self-propelled vehicle. It may be.
 詳述すると、前ソナーECU64A及び積層灯71は、図2,3に示されるように、右の予備苗収納装置17Aの上方箇所に設けられている。受信装置72は、図2,3に示されるように、運転部14の前上方領域における車体右端寄り箇所に設けられている。バッテリ73は、右の予備苗収納装置17Aの下方に設けられている。 More specifically, the front sonar ECU 64A and the laminated lamp 71 are provided above the spare seedling storage device 17A on the right, as shown in FIGS. 2 and 3. As shown in FIGS. 2 and 3, the receiving device 72 is provided at a position near the right end of the vehicle body in the front upper region of the driving unit 14. The battery 73 is provided below the spare seedling storage device 17A on the right.
〔積層灯の構成〕
 積層灯71は、図2,3に示されるように、自走車の外周部としての右の予備苗収納装置17Aの上方領域における車体横方向内側寄り箇所に設けられている。積層灯71は、右の予備苗収納装置17Aにおける上下4段の予備苗載せ台70のうちの最上段の予備苗載せ台70よりも高い位置に設けられている。積層灯71は、測位ユニット8の受信を妨害しないように、測位ユニット8のアンテナ8pよりも低い位置に設けられ、かつ、受信装置72の受信を妨害しないように、受信装置72のアンテナ72pよりも低い位置に設けられている。
[Structure of laminated lamp]
As shown in FIGS. 2 and 3, the laminated light 71 is provided at a position closer to the inside in the lateral direction of the vehicle body in the upper region of the right spare seedling storage device 17A as the outer peripheral portion of the self-propelled vehicle. The laminated lamp 71 is provided at a position higher than the uppermost preliminary seedling loading stand 70 among the upper and lower four-tiered preliminary seedling loading stands 70 in the right spare seedling storage device 17A. The laminated light 71 is provided at a position lower than the antenna 8p of the positioning unit 8 so as not to interfere with the reception of the positioning unit 8, and is provided from the antenna 72p of the receiving device 72 so as not to interfere with the reception of the receiving device 72. Is also provided at a low position.
 積層灯71は、図1に実線で示される如く長手方向が車体上下方向に沿った使用姿勢と、図1に二点鎖線で示される如く車体側面視で使用姿勢に対して傾斜し、使用姿勢に比して上部が低い位置に位置する格納姿勢と、に姿勢変更可能に支持されている。
 具体的には、図1、図28に示されるように、予備苗支持フレーム17における右の下端側部17aの上部に、積層灯支持部材74が支持されている。図28に示されるように、積層灯71の下部に形成された連結部71aに、支軸71b及び姿勢決めアーム71cが備えられている。積層灯71は、支軸71bが積層灯支持部材74の支持穴74aに積層灯支持部材74の横外側方から装着されることにより、支軸71bを介して積層灯支持部材74に支持される。積層灯71は、図1及び図29に実線で示されるように、支軸71bを揺動支点にして揺動操作されて積層灯支持部材74に対して起立した状態にされることにより、使用姿勢になる。積層灯71は、図1及び図29に二点鎖線で示されるように、支軸71bを揺動支点にして揺動操作されて使用姿勢に対して車体前方側に倒れた傾斜状態にされることにより、格納姿勢になる。積層灯71を使用姿勢にした場合、セットボルト74bが積層灯支持部材74の横内側方から積層灯支持部材74のボルト穴74cを通して姿勢決めアーム71cのボルト穴に装着されることにより、積層灯71は、セットボルト74bによって使用姿勢に保持される。積層灯71を格納姿勢にした場合、積層灯支持部材74に支持されるカバー75に形成されている受止め部75aが積層灯71の遊端側部を下方から受け止め支持し、積層灯71は、カバー75によって格納姿勢に保持される。カバー75は、積層灯支持部材74に支持され、積層灯71の支持部、前ソナーECU64Aを横外側方から覆うように構成されている。
The laminated light 71 is tilted with respect to the usage posture in which the longitudinal direction is along the vertical direction of the vehicle body as shown by the solid line in FIG. 1 and the usage posture in the side view of the vehicle body as shown by the chain double-dashed line in FIG. It is supported so that the upper part is located at a lower position than the retracted posture and the posture can be changed.
Specifically, as shown in FIGS. 1 and 28, the laminated lamp support member 74 is supported on the upper part of the right lower end side portion 17a of the preliminary seedling support frame 17. As shown in FIG. 28, the connecting portion 71a formed in the lower part of the laminated lamp 71 is provided with a support shaft 71b and a posture determining arm 71c. The laminated light 71 is supported by the laminated light support member 74 via the support shaft 71b by mounting the support shaft 71b in the support hole 74a of the laminated light support member 74 from the lateral outer side of the laminated light support member 74. .. As shown by the solid line in FIGS. 1 and 29, the laminated lamp 71 is used by being swung with the support shaft 71b as a swing fulcrum so as to stand upright with respect to the laminated light support member 74. Become a posture. As shown by the alternate long and short dash line in FIGS. 1 and 29, the laminated lamp 71 is swung with the support shaft 71b as a swing fulcrum so as to be tilted toward the front of the vehicle body with respect to the usage posture. As a result, it becomes a retracted posture. When the laminated light 71 is in the working posture, the set bolt 74b is attached to the bolt hole of the posture determining arm 71c from the lateral inner side of the laminated light support member 74 through the bolt hole 74c of the laminated light support member 74. The 71 is held in the working posture by the set bolt 74b. When the laminated lamp 71 is in the retracted posture, the receiving portion 75a formed on the cover 75 supported by the laminated lamp supporting member 74 receives and supports the free end side portion of the laminated lamp 71 from below, and the laminated lamp 71 receives and supports the laminated lamp 71. , The cover 75 holds it in the retracted position. The cover 75 is supported by the laminated light support member 74, and is configured to cover the support portion of the laminated light 71 and the front sonar ECU 64A from the lateral outside.
 積層灯71は、自走車の外周部としての右の予備苗収納装置17Aの外周部に設けられているが、これに限らない。例えば、施肥装置4のホッパ25の上方に設けたものであってもよい。また、運転部14の両横外側方に設けられ、自走車の後部における外周部に位置する手摺り76(図1,2参照)に支柱を介して支持するものであってもよい。この場合、左右の手摺り76のそれぞれに支持するものであってもよい。本実施形態では、積層灯71は、予備苗支持フレーム17に支持されているが、これに限らず、積層灯71を支持する専用の支持フレームを設けたものであってもよい。積層灯71の取付け高さの変更を可能に構成すると、好適である。 The laminated light 71 is provided on the outer peripheral portion of the spare seedling storage device 17A on the right as the outer peripheral portion of the self-propelled vehicle, but is not limited to this. For example, it may be provided above the hopper 25 of the fertilizer application device 4. Further, it may be provided on both lateral outer sides of the driving unit 14 and supported by a handrail 76 (see FIGS. 1 and 2) located at the outer peripheral portion of the rear portion of the self-propelled vehicle via a support. In this case, it may be supported on each of the left and right handrails 76. In the present embodiment, the laminated lamp 71 is supported by the spare seedling support frame 17, but the present invention is not limited to this, and a dedicated support frame for supporting the laminated lamp 71 may be provided. It is preferable that the mounting height of the laminated lamp 71 can be changed.
 本実施形態では、積層灯71には、図3、図28、図29に示されるように、桃色71P、緑色71G、青色71Bの表示灯部が積層されている。桃色71P、緑色71G、青色71Bの表示灯部は、桃色71Pの下に緑色71Gが位置し、緑色71Gの下に青色71Bが位置する順序で積層されているが、これに限らない。たとえば、桃色71Pが緑色71Gと青色71Bとの間に位置するなど、いかなる順序で積層するものであってもよい。また、3色の表示灯部に限らず、2色の表示灯部、あるいは、4色以上の表示部を備えるものであってもよい。 In the present embodiment, as shown in FIGS. 3, 28, and 29, the laminated lamp 71 is laminated with indicator lamps of pink 71P, green 71G, and blue 71B. The indicator lights of pink 71P, green 71G, and blue 71B are laminated in the order in which green 71G is located under pink 71P and blue 71B is located under green 71G, but the present invention is not limited to this. For example, the pink 71P may be located between the green 71G and the blue 71B, and may be laminated in any order. Further, the present invention is not limited to the three-color indicator light unit, and may be provided with a two-color indicator light unit or a display unit having four or more colors.
 図1,2,3に示されるように、運転部14の前方にセンターマスコット20が設けられている。センターマスコット20のうち、運転部14から見通しやすい上部に、制御ユニット30の制御モードを表示する表示灯部20Aが形成されている。本実施形態では、表示灯部20Aには、図示しない赤色、緑色、アンバー右、アンバー左の表示灯が備えられている。本実施形態では、センターマスコット20に表示灯部20Aが形成されているが、表示灯部20Aが形成されていないものであってもよい。 As shown in FIGS. 1, 2 and 3, a center mascot 20 is provided in front of the driving unit 14. An indicator light unit 20A for displaying the control mode of the control unit 30 is formed in the upper part of the center mascot 20 which is easily visible from the operation unit 14. In the present embodiment, the indicator light unit 20A is provided with red, green, amber right, and amber left indicator lights (not shown). In the present embodiment, the indicator light unit 20A is formed on the center mascot 20, but the indicator light unit 20A may not be formed.
 本実施形態では、積層灯71、及び、センターマスコット20の表示灯部20Aは、制御ユニット30によって図30に示される表示状態に制御される。図30に示される「●」印は、積層灯71及び表示灯部20Aにおける点灯を示し、「-」は、積層灯71及び表示灯部20Aにおける消灯を示し、「●(点滅)」は、積層灯71における点滅を示す。 In the present embodiment, the laminated light 71 and the indicator light unit 20A of the center mascot 20 are controlled by the control unit 30 to the display state shown in FIG. “●” mark shown in FIG. 30 indicates lighting in the laminated light 71 and the indicator light unit 20A, “-” indicates lighting in the laminated light 71 and the indicator light unit 20A, and “● (blinking)” indicates lighting in the laminated light 71 and the indicator light unit 20A. The blinking in the laminated lamp 71 is shown.
 図30に示される表示灯部20Aの表示状態の一部を次に説明する。
 表示灯部20Aにおいては、制御ユニット30が有人自動モードに選択された状態で、自動運転開始が可能であるとき、及び、制御ユニット30が有人自動モードに選択された状態で、自動運転再開が可能であるとき、赤色、緑色、アンバー右及びアンバー左の全てが点灯される。
A part of the display state of the indicator light unit 20A shown in FIG. 30 will be described below.
In the indicator light unit 20A, the automatic operation is restarted when the control unit 30 is selected for the manned automatic mode and the automatic operation can be started, and when the control unit 30 is selected for the manned automatic mode. When possible, red, green, amber right and amber left are all lit.
 表示灯部20Aにおいては、制御ユニット30が無人自動モードに選択された状態で、自動運転開始条件が未成立のとき、赤色、緑色、アンバー右及びアンバー左の全てが消灯される。 In the indicator light unit 20A, when the control unit 30 is selected for the unmanned automatic mode and the automatic operation start condition is not satisfied, all of red, green, amber right and amber left are turned off.
 図30に示される積層灯71の表示状態の一部を次に説明する。
 積層灯71においては、制御ユニット30が有人自動モードに選択された状態で、自動運転開始が可能であるとき、及び、制御ユニット30が有人自動モードに選択された状態で、自動運転再開が可能であるとき、桃色71P、緑色71G及び青色71Bの全ての表示灯部が消灯される。
A part of the display state of the laminated lamp 71 shown in FIG. 30 will be described below.
In the laminated light 71, automatic operation can be restarted when the control unit 30 is selected for the manned automatic mode and the automatic operation can be started, and when the control unit 30 is selected for the manned automatic mode. When is, all the indicator lights of pink 71P, green 71G and blue 71B are turned off.
 積層灯71においては、制御ユニット30が無人自動モードに選択された状態で、自動運転開始条件が未成立であるとき、桃色71P、緑色71G及び青色71Bの全ての表示灯部が消灯される。制御ユニット30が無人自動モードに選択された状態で、自動運転開始が可能なとき、及び、制御ユニット30が無人自動モードに選択された状態で、自動運転再開が可能なとき、桃色71P、緑色71G及び青色71Bの全ての表示灯部が点灯される。制御ユニット30が無人自動モードに選択された状態で、障害物が検知されたとき、及び、制御ユニット30が無人自動モードに選択された状態で、GPS測位が不可能なとき、桃色71Pの表示灯部のみが点灯される。 In the laminated light 71, when the control unit 30 is selected for the unmanned automatic mode and the automatic operation start condition is not satisfied, all the indicator lights of pink 71P, green 71G and blue 71B are turned off. When the control unit 30 is selected for the unmanned automatic mode and automatic operation can be started, and when the control unit 30 is selected for the unmanned automatic mode and the automatic operation can be restarted, pink 71P, green All indicator lights of 71G and blue 71B are turned on. When an obstacle is detected while the control unit 30 is selected for the unmanned automatic mode, and when GPS positioning is not possible when the control unit 30 is selected for the unmanned automatic mode, the pink 71P is displayed. Only the light section is lit.
 積層灯71は、無人自動モードでのみ使用される。自動運転開始のための条件調整の間は、いずれの表示灯部も点灯されない。自動運転中は、一番下の表示灯部のみが点灯され、自動運転許可状態(自動運転中の一時停止や、開始点誘導前状態)ならば、3色の表示灯部が点灯され、自動運転不可状態(障害物検知、機械エラー)ならば、一番上の表示灯部のみが点灯される。自動運転不可の情報が一番重要なため、自動運転不可のとき、一番高い位置に位置する表示灯部が点灯される。積層灯71は、制御ユニット30が有人自動モードに選択された状態において、点灯されるものであってもよい。積層灯71において、制御モードに対応させて点灯される表示灯部の組み合わせ、及び、制御モードに対応させて消灯される表示灯部の組み合わせは、図30に示される以外の組み合わせに変更可能である。自動運転モード以外では、積層灯71で表示されないようにしてもよい。積層灯71による各種の表示は、音声報知やバーチャル画面報知等と併せて行ってもよい。積層灯71においては、積層灯71の電流(電圧)を検知することによって積層灯71の異常を検知できる。 The laminated light 71 is used only in the unmanned automatic mode. During the condition adjustment for starting the automatic operation, none of the indicator lights are lit. During automatic operation, only the bottom indicator light is lit, and if the automatic operation is permitted (pause during automatic operation or before guidance to the start point), the three-color indicator is lit and automatic. If the vehicle is inoperable (obstacle detection, machine error), only the top indicator light is lit. Since the information that automatic driving is not possible is the most important, when automatic driving is not possible, the indicator light unit located at the highest position is turned on. The laminated light 71 may be turned on when the control unit 30 is selected for the manned automatic mode. In the laminated light 71, the combination of the indicator lights that are turned on in correspondence with the control mode and the combination of the indicator lights that are turned off in correspondence with the control mode can be changed to a combination other than that shown in FIG. be. Other than the automatic operation mode, it may not be displayed by the laminated lamp 71. Various displays by the laminated light 71 may be performed in combination with voice notification, virtual screen notification, and the like. In the laminated lamp 71, an abnormality of the laminated lamp 71 can be detected by detecting the current (voltage) of the laminated lamp 71.
〔測位ユニット、アンテナ及び受信装置の支持〕
 受信装置72には、リモコン90(遠隔操縦装置)からの無線指令信号を受信するアンテナ72pが連係されている。受信装置72による無線指令信号の受信は、アンテナ72pを介して行われる。測位ユニット8、アンテナ72p及び受信装置72は、図1,2,3に示されるように、予備苗支持フレーム17における上端側部17bに支持されている。
[Support for positioning unit, antenna and receiver]
An antenna 72p for receiving a radio command signal from the remote control 90 (remote control device) is linked to the receiving device 72. The reception of the radio command signal by the receiving device 72 is performed via the antenna 72p. As shown in FIGS. 1, 2 and 3, the positioning unit 8, the antenna 72p and the receiving device 72 are supported by the upper end side portion 17b of the preliminary seedling support frame 17.
 具体的には、上端側部17bは、図1,2,3に示されるように、運転部14の前上方箇所において車体横幅方向に延びるフレーム部17yと、フレーム部17yの両横端部から予備苗支持フレーム17における下端側部17aに向けて延ばされて下端側部17aの上部に支持されるアーム部17tと、を有している。図25に示されるように、フレーム部17yに載置台77が支持され、測位ユニット8及び受信装置72は、車体横幅方向に並ぶ状態で載置台77に載置され、載置台77に連結ボルトによって締め付け固定されるように構成されている。測位ユニット8及び受信装置72は、図2,3に示されるように、受信装置72が測位ユニット8よりも車体横外側方に位置する横並びで載置固定される。受信装置72のアンテナ72pは、図25に示されるように、受信装置72の前方に位置する状態で載置台77に備えられたアンテナ支持部77aに支持されるよう構成されている。アンテナ72pのアンテナ支持部77aへの支持は、アンテナ72pのベース部に備えられた磁石(図示せず)の吸着によって脱着可能に行われる。本実施形態では、磁石が採用されているが、これに限らない。たとえば、吸盤の採用が可能である。アンテナ72pが受信装置72から延びる場合、受信装置72の着脱を可能に構成することにより、アンテナ72pの脱着を可能にしてもよい。 Specifically, as shown in FIGS. 1, 2 and 3, the upper end side portion 17b is from the frame portion 17y extending in the lateral width direction of the vehicle body at the front upper portion of the driving portion 14 and from both lateral end portions of the frame portion 17y. It has an arm portion 17t that extends toward the lower end side portion 17a of the preliminary seedling support frame 17 and is supported on the upper end of the lower end side portion 17a. As shown in FIG. 25, the mounting base 77 is supported by the frame portion 17y, and the positioning unit 8 and the receiving device 72 are mounted on the mounting base 77 in a state of being lined up in the width direction of the vehicle body, and are mounted on the mounting base 77 by connecting bolts. It is configured to be tightened and fixed. As shown in FIGS. 2 and 3, the positioning unit 8 and the receiving device 72 are placed and fixed side by side in which the receiving device 72 is located laterally outside the vehicle body with respect to the positioning unit 8. As shown in FIG. 25, the antenna 72p of the receiving device 72 is configured to be supported by the antenna supporting portion 77a provided on the mounting table 77 in a state of being located in front of the receiving device 72. The antenna 72p is supported on the antenna support portion 77a so as to be detachable by adsorption of a magnet (not shown) provided on the base portion of the antenna 72p. In this embodiment, a magnet is adopted, but the present invention is not limited to this. For example, a suction cup can be used. When the antenna 72p extends from the receiving device 72, the antenna 72p may be attached / detached by allowing the receiving device 72 to be attached / detached.
 図25,26,28に示されるように、予備苗支持フレーム17の上端側部17bにおける右のアーム部17tの延伸端部は、予備苗支持フレーム17における右の下端側部17aに形成された支持部78に枢支軸78aを介して支持されるよう構成されている。上端側部17bにおける左のアーム部17tは、右のアーム部17tが右の下端側部17aに支持される構成と同じ構成により、下端側部17aに支持されるよう構成されている。
上端側部17bは、枢支軸78aを揺動支点にして揺動可能な状態で左右の下端側部17aに支持されるよう構成されている。上端側部17bは、枢支軸78aを揺動支点にして揺動操作されることにより、図1に実線に示される如くフレーム部17yが下端側部17aの上方に位置する上昇姿勢と、図1に二点鎖線で示される如くフレーム部17yが下端側部17aの後方に位置する下降姿勢と、に姿勢変更する。右のアーム部17tを持って上端側部17bを揺動操作するとき、右のアーム部17tが積層灯71よりも車体横方向内側を通り、積層灯71が障害にならない。
As shown in FIGS. 25, 26, 28, the extended end portion of the right arm portion 17t on the upper end side portion 17b of the preliminary seedling support frame 17 was formed on the right lower end side portion 17a of the preliminary seedling support frame 17. It is configured to be supported by the support portion 78 via the pivot shaft 78a. The left arm portion 17t in the upper end side portion 17b is configured to be supported by the lower end side portion 17a by the same configuration in which the right arm portion 17t is supported by the right lower end side portion 17a.
The upper end side portion 17b is configured to be supported by the left and right lower end side portions 17a in a swingable state with the pivot shaft 78a as a swing fulcrum. The upper end side portion 17b is rocked with the pivot shaft 78a as the swing fulcrum, so that the frame portion 17y is located above the lower end side portion 17a as shown by the solid line in FIG. The posture of the frame portion 17y is changed to a descending posture in which the frame portion 17y is located behind the lower end side portion 17a as shown by the alternate long and short dash line in 1. When the upper end side portion 17b is swung by holding the right arm portion 17t, the right arm portion 17t passes through the inside of the vehicle body lateral direction with respect to the laminated light 71, and the laminated light 71 does not become an obstacle.
 図1,3に実線に示されるように、上端側部17bが上昇姿勢に姿勢変更されることにより、アンテナ72p、受信装置72及び測位ユニット8は、上昇使用位置に位置し、下端側部17aよりも高い位置に位置する状態になる。図1,3に二点鎖線で示されるように、上端側部17bが下降姿勢に姿勢変更されることにより、受信装置72及び測位ユニット8は、下降格納位置に位置し、下端側部17aにおける上端部よりも低い、かつ、上昇使用位置よりも低い位置にする状態になる。受信装置72及び測位ユニット8が下降格納位置に位置すると、受信装置72及び測位ユニット8の上下向きが上昇使用位置に位置するときの上下向きと逆になる。受信装置72及び測位ユニット8を下降使用位置に下降させる際、アンテナ72pが周辺の部材に当って上端側部17bの下降揺動に対する障害などにならないように、アンテナ72pをアンテナ支持部77aから取り外すことができる。アンテナ72p、受信装置72及び測位ユニット8を上昇使用位置にした場合、図26に示されるように、アーム部17tと支持部78の第1ボルト穴78bとにわたってセットボルト79を装着することにより、上端側部17bがセットボルト79によって上昇姿勢に保持され、アンテナ72p、受信装置72及び測位ユニット8を上昇使用位置に保持できる。受信装置72及び測位ユニット8を下降格納位置にした場合、図27に示されるように、アーム部17tと支持部78の第2ボルト穴78cとにわたってセットボルト79を装着することにより、上端側部17bがセットボルト79によって下降姿勢に保持され、受信装置72及び測位ユニット8を下降格納位置に保持できる。 As shown by the solid line in FIGS. 1 and 3, the upper end side portion 17b is changed to the ascending posture, so that the antenna 72p, the receiving device 72 and the positioning unit 8 are located at the ascending use position, and the lower end side portion 17a It will be located at a higher position than. As shown by the alternate long and short dash line in FIGS. 1 and 3, the upper end side portion 17b is changed to the descending posture, so that the receiving device 72 and the positioning unit 8 are located at the descending storage position and are located at the lower end side portion 17a. It will be in a state where it is lower than the upper end and lower than the ascending use position. When the receiving device 72 and the positioning unit 8 are located in the descending storage position, the vertical orientation of the receiving device 72 and the positioning unit 8 is opposite to the vertical orientation when the receiving device 72 and the positioning unit 8 are located in the ascending use position. When the receiving device 72 and the positioning unit 8 are lowered to the lowering use position, the antenna 72p is removed from the antenna support portion 77a so that the antenna 72p does not hit the peripheral members and interfere with the downward swing of the upper end side portion 17b. be able to. When the antenna 72p, the receiving device 72, and the positioning unit 8 are in the ascending position, as shown in FIG. 26, the set bolt 79 is mounted over the arm portion 17t and the first bolt hole 78b of the support portion 78. The upper end side portion 17b is held in the ascending posture by the set bolt 79, and the antenna 72p, the receiving device 72, and the positioning unit 8 can be held in the ascending use position. When the receiving device 72 and the positioning unit 8 are in the lowered retracted position, as shown in FIG. 27, the set bolt 79 is mounted over the arm portion 17t and the second bolt hole 78c of the support portion 78, thereby mounting the upper end side portion. The 17b is held in the lowered posture by the set bolt 79, and the receiving device 72 and the positioning unit 8 can be held in the lowered storage position.
〔報知装置〕
 制御ユニット30が実行する制御を報知する報知装置としてのボイスアラーム発生装置100は、図1,3,31に示されるように、発音部100aが運転部14に向かう状態で運転部14の前上方箇所に設けられている。ボイスアラーム発生装置100の下端は、運転座席16の上端、ステアリングホイール10の上端、エンジンボンネット2Bの上端よりも上方に位置している。本実施形態では、報知装置としてボイスアラーム発生装置100を採用しているが、これに限らない。たとえば、音や光によって報知を行う装置、あるいは、画像や文字によって報知を行う装置、など各種の報知装置の採用が可能である。
[Notification device]
As shown in FIGS. 1, 3 and 31, the voice alarm generator 100 as a notification device for notifying the control executed by the control unit 30 is in front of and above the driving unit 14 with the sounding unit 100a facing the driving unit 14. It is provided in a place. The lower end of the voice alarm generator 100 is located above the upper end of the driver's seat 16, the upper end of the steering wheel 10, and the upper end of the engine bonnet 2B. In the present embodiment, the voice alarm generator 100 is adopted as the notification device, but the present invention is not limited to this. For example, it is possible to adopt various notification devices such as a device that notifies by sound or light, or a device that notifies by images or characters.
 ボイスアラーム発生装置100は、図1,3,31に示されるように、測位ユニット8によって上方から覆われる状態で測位ユニット8の下方に設けられている。雨水や洗車水などがボイスアラーム発生装置100に上方からかかることが測位ユニット8によって防止される。 As shown in FIGS. 1, 3 and 31, the voice alarm generator 100 is provided below the positioning unit 8 in a state of being covered from above by the positioning unit 8. The positioning unit 8 prevents rainwater, car wash water, or the like from being applied to the voice alarm generator 100 from above.
 ボイスアラーム発生装置100は、図1に示されるように、予備苗支持フレーム17に支持されている。
 具体的には、図1,31に示されるように、予備苗支持フレーム17における上端側部17bに、上端側部17bにおけるフレーム部17yに支持されて測位ユニット8が載置固定される載置台77が備えられている。載置台77から支持部材101が下向きに延ばされている。支持部材101の下部に形成されたボックス部101aの内部にボイスアラーム発生装置100が支持されている。ボイスアラーム発生装置100は、支持部材101及び載置台77を介し、予備苗支持フレーム17における上端側部17bに支持されている。
The voice alarm generator 100 is supported by the spare seedling support frame 17 as shown in FIG.
Specifically, as shown in FIGS. 1 and 31, a mounting table on which the positioning unit 8 is mounted and fixed on the upper end side portion 17b of the preliminary seedling support frame 17 and supported by the frame portion 17y of the upper end side portion 17b. 77 is provided. The support member 101 extends downward from the mounting table 77. The voice alarm generator 100 is supported inside the box portion 101a formed in the lower part of the support member 101. The voice alarm generator 100 is supported by the upper end side portion 17b of the spare seedling support frame 17 via the support member 101 and the mounting table 77.
 本実施形態では、ボイスアラーム発生装置100は、制御ユニット30によって制御され、図32に示されるボイスアラームを発生する。本実施形態では、ボイスアラーム発生装置100は、図32に示されるように、制御ユニット30が実行する制御を報知するボイスアラームを発生する他、自走車の走行に関する報知のためのボイスアラーム、苗植付装置3に関する報知のためのボイスアラームを発生する。尚、図32に示される[CH]は、チャンネルである。 In the present embodiment, the voice alarm generator 100 is controlled by the control unit 30 to generate the voice alarm shown in FIG. 32. In the present embodiment, as shown in FIG. 32, the voice alarm generator 100 generates a voice alarm for notifying the control executed by the control unit 30, and also a voice alarm for notifying the traveling of the self-propelled vehicle. A voice alarm for notifying the seedling planting device 3 is generated. [CH] shown in FIG. 32 is a channel.
 旋回中、後進中、無人自動制御中に主変速レバー(ニュートラルへの操作、前後進操作)、植付部ダウン(作業者が自動運転中にアップした場合、最外周の各辺の始端部)ボイスアラームで報知し続ける。有人自動の場合は、経路の進行方向に対して、変速レバーを進行方向に操作させるボイスアラームを流す。自動運転の開始後から次の自動運転の開始までの間で、流れ(切り返しなどで)で一時的に前後進が入れ替わる(バックする)ときは、それに応じた主変速レバー操作をボイスアラームで求めない。無人自動の場合は、不意の主変速レバー中立以外への操作で、主変速レバー中立への操作をボイスアラームによって促す。苗切れ、肥料切れ(資材切れ)のときは、自動運転不可のままとする。このとき、ボイスアラーム発生装置100において、その状況を報知する。作業者に対応を促す。ボイスアラーム発生装置100においては、自動運転開始スイッチが入り操作されたときに異常がないかどうかチェックされる。異常がある場合、自動運転に入らないように牽制され、かつ、異常の解消方法、回避方法(手動作業を促す)が報知される。自動運転時は、動き出す前にボイスアラームによって報知する。その後、報知をやめて動き出す。または、報知とともに動く。報知手段として、ボイスアラーム発生装置100、積層灯71、センターマスコット20を採用する他、リモコン、スマートフォン、モバイルディバイス、バーチャル、作業機ライト、報知音、振動、を採用することが可能である。 Main speed change lever (neutral operation, forward / backward operation), planting part down (when the operator raises during automatic operation, the start end of each side of the outermost circumference) during turning, reverse movement, and unmanned automatic control Continue to notify with voice alarm. In the case of manned automatic, a voice alarm is issued to operate the shift lever in the traveling direction with respect to the traveling direction of the route. When the forward / backward movement is temporarily switched (backed up) due to the flow (due to turning back, etc.) between the start of automatic operation and the start of the next automatic operation, a voice alarm is used to request the operation of the main shift lever accordingly. do not have. In the case of unmanned automatic operation, a voice alarm prompts the operation to the main shift lever neutral by an unexpected operation other than the main shift lever neutral. When seedlings run out or fertilizer runs out (material runs out), automatic operation remains disabled. At this time, the voice alarm generator 100 notifies the situation. Encourage workers to respond. The voice alarm generator 100 is checked for any abnormality when the automatic operation start switch is turned on and operated. If there is an abnormality, it will be restrained so that it will not enter automatic operation, and the method of resolving the abnormality and the avoidance method (prompting manual work) will be notified. During automatic operation, a voice alarm is used to notify the vehicle before it starts moving. After that, the notification is stopped and it starts to move. Or, it works with the notification. As the notification means, in addition to adopting the voice alarm generator 100, the laminated lamp 71, and the center mascot 20, it is possible to adopt a remote controller, a smartphone, a mobile device, a virtual, a work machine light, a notification sound, and a vibration.
 運転部14の後方において、ホッパ25の上方、苗載せ台21の上部、手摺り76などにボイスアラーム発生装置100を設け、前進時には、前方のボイスアラーム発生装置100が作動し、後進時には、後方のボイスアラーム発生装置100が作動するよう構成してもよい。また、運転部14の前方、後方、左方、右方の計四方にボイスアラーム発生装置100を設けてもよい。ボイスアラーム発生装置100を、測位ユニット8のケース内に設けてもよい。また、ボイスアラーム発生装置100を専用ケースで囲ってもよく、その際に音声が周囲に十分伝達されるよう専用ケースに空洞部を設けてもよい。また、配線のしやすさを考慮し、ボイスアラーム発生装置100は、機体左右方向でバッテリ側の間に設けられても良い。ボイスアラーム発生装置100が故障したとき、リモコンに通知されるよう構成すると、好適である。 A voice alarm generator 100 is provided above the hopper 25, above the seedling stand 21, a handrail 76, etc. behind the driving unit 14, and the front voice alarm generator 100 operates when moving forward and backward when moving backward. The voice alarm generator 100 may be configured to operate. Further, the voice alarm generator 100 may be provided in a total of four directions, front, rear, left, and right of the driving unit 14. The voice alarm generator 100 may be provided in the case of the positioning unit 8. Further, the voice alarm generator 100 may be surrounded by a special case, and a cavity may be provided in the special case so that the voice is sufficiently transmitted to the surroundings at that time. Further, in consideration of ease of wiring, the voice alarm generator 100 may be provided between the battery side in the left-right direction of the machine body. It is preferable to configure the remote controller to be notified when the voice alarm generator 100 fails.
〔リモコン〕
 この田植機には、図33に示されるリモコン90が備えられ、このリモコン90を用いて田植機を遠隔操縦することができる。このリモコン90は、7つのボタンと2つのインジケータを備えている。なお、本願明細書では、ボタンは広義に解釈されるべきであり、スイッチやキーなどの種々の操作体を含むものであり、さらにソフトウエアボタンやハードウエアボタンも含まれる。第1ボタン90aは、電源ON/OFFボタンである。第2ボタン90bは、単押し操作で自動走行モードを維持した状態で機体1を一時停止させる。さらに、第2ボタン90bは、ファンクションボタン90gとの同時押し操作で、機体1を停止させ、自動走行モードを終了させる。その際、エンジンは停止させない。第3ボタン90cは、単押し操作で、機体1を加速させ、ファンクションボタン90gとの同時押し操作で、機体1を微速前進させる。第4ボタン90dは、単押し操作で、機体1を減速させ、ファンクションボタン90gとの同時押し操作で、機体1を微速後進させる。第5ボタン90eは、ファンクションボタン90gとの同時押し操作で、自動走行を開始させる。第6ボタン90fは、ファンクションボタン90gとの同時押し操作で、植付作業を開始させる。第1インジケータ90xは、バッテリ残量を示し、バッテリ残量が少なくなれば、表示色が緑から赤に変化する。第2インジケータ90yは、通信のON/OFFを示す。つまり、第2インジケータ90yは、リモコン90が操作されたことを示す。また、第2インジケータ90yは、リモコン90による操作が、田植機の制御系に受け付けられたことを示す表示を行うことも可能である。
〔Remote controller〕
The rice transplanter is provided with a remote controller 90 shown in FIG. 33, and the rice transplanter can be remotely controlled using the remote controller 90. The remote controller 90 has seven buttons and two indicators. In the specification of the present application, the button should be interpreted in a broad sense, and includes various operating bodies such as switches and keys, and further includes software buttons and hardware buttons. The first button 90a is a power ON / OFF button. The second button 90b temporarily stops the machine body 1 in a state where the automatic traveling mode is maintained by a single push operation. Further, the second button 90b is operated by pressing the function button 90g at the same time to stop the machine body 1 and end the automatic traveling mode. At that time, the engine is not stopped. The third button 90c accelerates the machine body 1 by a single push operation, and advances the machine body 1 at a slight speed by a simultaneous push operation with the function button 90g. The fourth button 90d decelerates the machine body 1 by a single push operation, and moves the machine body 1 backward at a very slow speed by a simultaneous push operation with the function button 90g. The fifth button 90e starts automatic traveling by simultaneously pressing the function button 90g. The sixth button 90f starts the planting work by simultaneously pressing the function button 90g. The first indicator 90x indicates the remaining battery level, and when the remaining battery level is low, the display color changes from green to red. The second indicator 90y indicates ON / OFF of communication. That is, the second indicator 90y indicates that the remote controller 90 has been operated. The second indicator 90y can also display that the operation by the remote controller 90 has been accepted by the control system of the rice transplanter.
 ファンクションボタン90gとの同時押し操作で実現する各ボタンの機能は、各ボタンの長押し、あるいは2回押しでも実現するように構成してもよい。また、電源ボタンである第1ボタン90aによって機体1を停止させるように構成してもよい。機体1を自動走行モードのままで一時的に停止させる場合には、第2ボタン90bを単押し操作する。第2ボタン90bが長押しまたは2回押し操作で機体1を停止させ、自動走行モードを終了させてもよい。アイドリングストップのためのエンジン停止が行われ場合には、リモコン90のボタン操作でエンジンの再スタートが実現するようしてもよい。なお、ファンクションボタン90gと各ボタンとの同時押し操作で実現する機能と、各ボタンの機能と、各ボタンの単押し操作で実現する各ボタンの機能とは、入れ替えてもよい。なお、この実施形態では、リモコン90は7つのボタンと2つのインジケータとを備えていたが、それぞれの数は、任意に変更してもよい。 The function of each button realized by pressing the function button 90g at the same time may be realized by pressing and holding each button or pressing it twice. Further, the machine body 1 may be stopped by the first button 90a, which is a power button. When the aircraft 1 is to be temporarily stopped in the automatic traveling mode, the second button 90b is pressed once. The second button 90b may be pressed and held for a long time or twice to stop the machine body 1 and end the automatic traveling mode. When the engine is stopped for idling stop, the engine may be restarted by operating a button on the remote controller 90. The function realized by pressing the function button 90g and each button at the same time, the function of each button, and the function of each button realized by a single pressing operation of each button may be interchanged. In this embodiment, the remote controller 90 includes seven buttons and two indicators, but the number of each may be changed arbitrarily.
 リモコン90のクレードル、あるいはリモコン90とデータ通信可能なコネクタが運転部14に設置されると、リモコン90が情報端末5や制御ユニット30とデータ交換可能となる。リモコン90のバッテリが充電可能な場合、クレードルを介して、充電できる。
その際、クレードルが、リモコン90の装着時と非装着時とのいずれにおいても防水可能となるカバーを備えていると、田植機の洗車時に水被害を受けない。リモコン90と情報端末5との間でのデータ交換により、リモコン90の操作案内や操作結果をタッチパネル50に表示することができる。また、リモコン90と機体1との距離を管理し、当該距離が所定値を超えた場合、注意報知を行う機能を情報端末5、制御ユニット30、リモコン90の少なくとも1つに備えてもよい。同様に、情報端末5や制御ユニット30とリモコン90との間で通信不良が生じた場合に、注意報知を行う機能を情報端末5、制御ユニット30、リモコン90の少なくとも1つに備える。また、リモコン90に対する特定操作(実演モード操作など)により、田植機が予め設定されたシーケンシャルな動作を自律的に行うような構成を採用することも可能である。
When the cradle of the remote controller 90 or the connector capable of data communication with the remote controller 90 is installed in the operation unit 14, the remote controller 90 can exchange data with the information terminal 5 and the control unit 30. If the battery of the remote controller 90 can be charged, it can be charged via the cradle.
At that time, if the cradle is provided with a cover that can be waterproofed both when the remote controller 90 is attached and when it is not attached, the rice transplanter will not be damaged by water when it is washed. By exchanging data between the remote controller 90 and the information terminal 5, the operation guidance and operation results of the remote controller 90 can be displayed on the touch panel 50. Further, at least one of the information terminal 5, the control unit 30, and the remote controller 90 may be provided with a function of managing the distance between the remote controller 90 and the aircraft 1 and notifying the user when the distance exceeds a predetermined value. Similarly, at least one of the information terminal 5, the control unit 30, and the remote controller 90 is provided with a function of notifying attention when a communication failure occurs between the information terminal 5 or the control unit 30 and the remote controller 90. It is also possible to adopt a configuration in which the rice transplanter autonomously performs preset sequential operations by a specific operation (demonstration mode operation, etc.) on the remote controller 90.
 リモコン90は種々の形態で構成することができる。例えば、携帯電話やタブレットコンピュータに相応なプログラムをインストールすることで、リモコン90として利用することも可能である。 The remote controller 90 can be configured in various forms. For example, it can be used as a remote controller 90 by installing a program suitable for a mobile phone or a tablet computer.
〔情報端末〕
 情報端末5は、運転座席16に着座した作業者(運転者や監視者などを含む)によって手動操作、視覚確認、音声確認できるように、運転部14に備えられている。情報端末5は、ネットワークコンピュータ機能を有する。図34に示されるように、ハウジング5Aにはタッチパネル50と、複数の操作キーからなるハードウエアボタン群5aとが組み込まれている。さらに、タッチパネル50にも実質的に同一の操作キーがソフトウエアボタン群50aとして表示される。タッチパネル50の表示内容、例えばマップ画面やルート画面を拡大キーの操作等により拡大した場合、ソフトウエアボタン群50aは消去されるが、ソフトウエアボタン群50aに対する操作は、ハードウエアボタン群5aにより代替可能である。このため、ソフトウエアボタン群50aとハードウエアボタン群5aとにおける各操作キーの位置が互いに対応している。作業者によるキー操作が要求される場合には、ソフトウエアボタン群50aのうちの対応する操作キーが点滅または点灯等で注意喚起される。その際、ハードウエアボタン群5aの操作キーでも有効な場合は、ハードウエアボタン群5aの対応する操作キーが点滅または点灯される。田植機は、基本的には野外での使用となるので、タッチパネル50に表示される文字は、可能な限り、白地に黒文字で表示される。
[Information terminal]
The information terminal 5 is provided in the driver unit 14 so that an operator (including a driver, a monitor, etc.) seated in the driver's seat 16 can perform manual operation, visual confirmation, and voice confirmation. The information terminal 5 has a network computer function. As shown in FIG. 34, the housing 5A incorporates a touch panel 50 and a hardware button group 5a composed of a plurality of operation keys. Further, substantially the same operation keys are displayed on the touch panel 50 as the software button group 50a. When the display content of the touch panel 50, for example, the map screen or the route screen is enlarged by operating the enlargement key, the software button group 50a is deleted, but the operation for the software button group 50a is replaced by the hardware button group 5a. It is possible. Therefore, the positions of the operation keys in the software button group 50a and the hardware button group 5a correspond to each other. When a key operation by an operator is required, the corresponding operation key in the software button group 50a is alerted by blinking or lighting. At that time, if the operation keys of the hardware button group 5a are also valid, the corresponding operation keys of the hardware button group 5a are blinked or lit. Since the rice transplanter is basically used outdoors, the characters displayed on the touch panel 50 are displayed in black characters on a white background as much as possible.
〔情報端末のグラフィックインターフェース〕
 この田植機は、圃場における苗植付作業を自動走行で行うことができる。そのための必要となる情報は、情報端末5のタッチパネル50に表示される。この情報端末5には、タッチパネル50を通じて、作業者への情報表示及び作業者による操作入力を行うためのグラフィックインターフェースが備えられている。その際、タッチパネル50には田植機の走行状態を示すために田植機を模写したアイコンが表示される。この田植機は、有人での自動走行と無人での自動走行とを行うことができるので、それぞれの場合で、田植機アイコンの形状または色、あるいはその両方が変更される。作業者は、タッチパネル50の画面に表示される情報に案内されながら、種々の指令を入力する。自動作業走行では以下の処理、(1)センサ・リモコンチェック処理、(2)準備処理、(3)マップ作成処理、(4)ルート作成処理、(5)作業走行設定処理、(6)走行アシスト処理、などが実施され、各処理のために必要な情報が情報端末5に表示される。
[Graphic interface of information terminal]
This rice transplanter can automatically carry out seedling planting work in the field. The information required for that purpose is displayed on the touch panel 50 of the information terminal 5. The information terminal 5 is provided with a graphic interface for displaying information to the operator and inputting operations by the operator through the touch panel 50. At that time, an icon imitating the rice transplanter is displayed on the touch panel 50 to indicate the running state of the rice transplanter. Since this rice transplanter can perform manned automatic driving and unmanned automatic driving, the shape and / or color of the rice transplanter icon is changed in each case. The operator inputs various commands while being guided by the information displayed on the screen of the touch panel 50. In automatic work driving, the following processing, (1) sensor / remote control check processing, (2) preparation processing, (3) map creation processing, (4) route creation processing, (5) work driving setting processing, (6) driving assistance Processing, etc. are executed, and information necessary for each processing is displayed on the information terminal 5.
〔センサ・リモコンチェック処理〕
 この田植機は、物体検出センサとして、4つの前ソナー61、2つの後ソナー62、2つの横ソナー63(これらの総称として、単にソナーSUが用いられる)が備えられている。このソナーSUに動作不良が生じていないかどうかをチェックするセンサチェックが適時に行われる。センサチェックでは、作業者が田植機の周囲を、疑似障害物となる反射体を持って歩く。ここでのソナーチェックは、ソナーSUに泥や水滴などの異物が付着することによる動作不良を見つけ出すことで、もし動作不良のソナーSUがあれば、作業者は付着した異物を除去する。
[Sensor / remote control check process]
This rice transplanter is equipped with four front sonars 61, two rear sonars 62, and two horizontal sonars 63 (simply sonar SU is used as a general term for these) as object detection sensors. A sensor check is performed in a timely manner to check whether or not the sonar SU is malfunctioning. In the sensor check, the worker walks around the rice transplanter with a reflector that acts as a pseudo-obstacle. The sonar check here is to find out a malfunction due to foreign matter such as mud or water droplets adhering to the sonar SU, and if there is a malfunctioning sonar SU, the operator removes the adhering foreign matter.
 なお、物体検出センサには、ソナーSU以外に、レーザーセンサ、電磁波センサ、カメラセンサなどが含まれる。あるいは、2種類の物体検出センサを組み合わせてもよい。また、これらの物体検出センサを用いての、特にカメラセンサを用いての物体検出では、物体検出アルゴリズムとして機械学習を用いることが好都合である。従って、以下の説明は、ソナーSUに限定されるわけではなく、他の物体検出センサにも適用可能である。 The object detection sensor includes a laser sensor, an electromagnetic wave sensor, a camera sensor, and the like in addition to the sonar SU. Alternatively, two types of object detection sensors may be combined. Further, in the object detection using these object detection sensors, particularly using the camera sensor, it is convenient to use machine learning as the object detection algorithm. Therefore, the following description is not limited to sonar SU, and can be applied to other object detection sensors.
 このセンサチェックの制御を行うセンサチェック制御系が図35に示されている。このセンサチェックに用いられる機能要素は、制御ユニット30に組み込まれた機体位置算出部311、ソナーECU64に組み込まれた障害物検知部641、グラフィックディスプレイとしての情報端末5のタッチパネル50、情報端末5に組み込まれたセンサ管理部としてのソナー管理部51である。 The sensor check control system that controls this sensor check is shown in FIG. 35. The functional elements used for this sensor check are the machine body position calculation unit 311 incorporated in the control unit 30, the obstacle detection unit 641 incorporated in the sonar ECU 64, the touch panel 50 of the information terminal 5 as a graphic display, and the information terminal 5. It is a sonar management unit 51 as a built-in sensor management unit.
 機体位置算出部311は、衛星測位を用いて機体位置を算出する。障害物検知部641は、ソナーSUからの検出信号に基づいて障害物を検知する。ソナー管理部51はソナーの動作チェックを管理する。ソナー管理部51には、センサチェック実行部としてのソナーチェック実行部51aと有効性判定部51bが含まれている。ソナーチェック実行部51aは所定条件を満たした場合にソナーチェック処理を実行する。有効性判定部51bは、ソナーチェック処理を通じて全てのソナーSUの動作が確認されたことを示す動作確認フラグを記録(有効化)する。さらに、有効性判定部51bは、記録された動作確認フラグの維持(有効化)及び取り消し(無効化)を判定(有効性判定)する。 The aircraft position calculation unit 311 calculates the aircraft position using satellite positioning. The obstacle detection unit 641 detects an obstacle based on the detection signal from the sonar SU. The sonar management unit 51 manages the operation check of the sonar. The sonar management unit 51 includes a sonar check execution unit 51a and an effectiveness determination unit 51b as sensor check execution units. The sonar check execution unit 51a executes the sonar check process when a predetermined condition is satisfied. The validity determination unit 51b records (validates) an operation confirmation flag indicating that the operation of all sonar SUs has been confirmed through the sonar check process. Further, the validity determination unit 51b determines (validity determination) the maintenance (validation) and cancellation (invalidation) of the recorded operation confirmation flag.
 ソナーチェックにおける制御の流れの一例が、図36に示されている。この流れでは、田植機は、手動走行で圃場に向かい、圃場内では、自動走行で苗植付作業を行い、作業が終了すると、手動走行で圃場を離脱する。 An example of the control flow in the sonar check is shown in FIG. In this flow, the rice transplanter heads for the field by manual running, and in the field, the seedling planting work is automatically run, and when the work is completed, the rice transplanter leaves the field by manual running.
 最初に、田植機を起動させるため、メインスイッチがONにされる(#S01)。これにより、制御系の初期処理が行われ、有効性判定部51bは、動作確認フラグ(図36では単にフラグと記されている)に「0」をセットする(#S02)。ソナー管理部51は初期ソナーチェック要求指令(初期センサチェック要求指令)を出力し(#S03)、タッチパネル50の画面を通じて、ソナーチェックを実施するかどうかを、作業者に問う(#S04)。作業者がソナーチェックを行うことを指示すると(#S04Yes分岐)、ソナーチェック処理が実行される(#S05)。 First, the main switch is turned on to start the rice transplanter (# S01). As a result, the initial processing of the control system is performed, and the validity determination unit 51b sets "0" in the operation confirmation flag (simply described as a flag in FIG. 36) (# S02). The sonar management unit 51 outputs an initial sonar check request command (initial sensor check request command) (# S03), and asks the operator whether to perform the sonar check through the screen of the touch panel 50 (# S04). When the worker instructs to perform the sonar check (# S04Yes branch), the sonar check process is executed (# S05).
 ソナーチェック処理の流れは図37に示されている。まず、ソナー管理部51は、図38に示すような画面をタッチパネル50の画面に表示し、作業者が各ソナーSUの検出範囲内に疑似反射体を順次配置することを要請する(#C1)。この画面では、各ソナーの取付位置と各ソナーの検出範囲とが、実際に即して示されているので、作業者は、各ソナーの取付位置及び各ソナーの検出範囲を容易に把握することができる。作業者は、各ソナーSUから超音波を疑似反射体で反射させて、その反射波がソナーSUに受信されるように、疑似反射体の位置決め作業を始める(#C2)。図39に示すソナーチェック状態を示すチェック画面が表示され、ソナーSUが疑似反射体からの反射波を受信(確認)すると(#C3Yes分岐)、チェック画面における動作対象のソナー位置に第1視覚記号としての小さなチェック記号CI1が表示される(#C4)。同時に、音や光や振動で動作確認を報知デバイスを通じて報知してもよい。その際、音を用いる場合、ソナーSU毎に異なる音色を割り当てるとよい。光を用いる場合、積層灯や情報端末5を用いることができる。このソナーチェックの操作が、リモコン90や携帯電話によって行われる場合には、動作確認の報知のためにリモコンや携帯電話の振動機能を用いることができる。このような動作確認作業が各ソナーSUに対して順次行われる。 The flow of the sonar check process is shown in FIG. 37. First, the sonar management unit 51 displays a screen as shown in FIG. 38 on the screen of the touch panel 50, and requests the operator to sequentially arrange the pseudo reflectors within the detection range of each sonar SU (# C1). .. On this screen, the mounting position of each sonar and the detection range of each sonar are actually shown, so that the operator can easily grasp the mounting position of each sonar and the detection range of each sonar. Can be done. The operator reflects ultrasonic waves from each sonar SU with a pseudo-reflector, and starts positioning the pseudo-reflector so that the reflected wave is received by the sonar SU (# C2). When the check screen showing the sonar check state shown in FIG. 39 is displayed and the sonar SU receives (confirms) the reflected wave from the pseudo reflector (# C3Yes branch), the first visual symbol is displayed at the sonar position of the operation target on the check screen. A small check symbol CI1 is displayed as (# C4). At the same time, the operation confirmation may be notified through the notification device by sound, light or vibration. At that time, when using a sound, it is advisable to assign a different tone color to each sonar SU. When light is used, a laminated lamp or an information terminal 5 can be used. When this sonar check operation is performed by the remote controller 90 or the mobile phone, the vibration function of the remote controller or the mobile phone can be used to notify the operation confirmation. Such operation confirmation work is sequentially performed for each sonar SU.
 全てのソナーSUの動作が確認されると(#C5Yes分岐)、チェック画面における機体を示すイラスト内に第2視覚記号としての大きなチェック記号CI2が表示される(#C6)。このチェック記号CI2が表示されることで、作業者はソナーチェック処理が完了したことを把握する。このソナーチェック処理の完了の報知も、音や光や振動で行うことができる。全てのソナーSUの動作が確認されると、有効性判定部51bは、動作確認フラグ(図37では単にフラグと記されている)に「1」をセットする(#C7)。 When the operation of all sonar SUs is confirmed (# C5Yes branch), a large check symbol CI2 as the second visual symbol is displayed in the illustration showing the aircraft on the check screen (# C6). By displaying this check symbol CI2, the operator knows that the sonar check process has been completed. Notification of the completion of this sonar check process can also be performed by sound, light, or vibration. When the operation of all the sonar SUs is confirmed, the validity determination unit 51b sets "1" to the operation confirmation flag (simply described as a flag in FIG. 37) (# C7).
 個別のソナーSUの動作確認ごとに報知が行われるのではなく、全てのソナーSUの動作が確認されたときに、動作確認の報知が行われてもよい。 The operation confirmation may be notified when the operation of all the sonar SUs is confirmed, instead of being notified for each operation confirmation of each individual sonar SU.
 疑似反射体の位置決め作業として、作業者が疑似反射体を持って、田植機の周囲を一回りしてもよいし、運転部14で作業者が、疑似反射体を取り付けた釣り竿のような操作棒を操って、疑似反射体を一周させてもよい。また、ドローンに疑似反射体を取り付け、疑似反射体が田植機の周りを一周するように、ドローンを飛ばしてもよい。 As the positioning work of the pseudo-reflector, the operator may hold the pseudo-reflector and go around the rice transplanter, or the operator in the driving unit 14 operates like a fishing rod to which the pseudo-reflector is attached. You may manipulate the rod to make the pseudo-reflector go around. Alternatively, a pseudo-reflector may be attached to the drone, and the drone may be flown so that the pseudo-reflector goes around the rice transplanter.
 図36の流れに戻ると、田植機が圃場の出入口に向かって手動走行すると、田植機が圃場の近傍に達しているかどうか、機体位置算出部311によって算出された機体位置に基づいてチェックされる(#S06)。なお、ステップ#S04で、作業者によってソナーチェックの実施がキャンセルされると(#S04No分岐)、ソナーチェック処理は行われずに、ステップ#S06にジャンプされる。機体位置が圃場の近傍に達していれば(#C6Yes分岐)、作業前ソナーチェック要求指令(作業前センサチェック要求指令)が出るので、最初に動作確認フラグが無効であるかどうか、つまり動作確認フラグに「0」がセットされているかどうかチェックされる(#S07)。動作確認フラグに「0」がセットされていれば(#S07Yes分岐)、自動走行を行う前にソナーチェックを完了させる必要があるので、ここで、再度、ソナー管理部51は、タッチパネル50の画面を通じて、ソナーチェックを実施するかどうかを、作業者に問う(#S08)。作業者がソナーチェックを行うことを指示すると(#S08Yes分岐)、ソナーチェック処理が実行される(#S09)。ソナーチェック処理が終了すると、走行モードが手動走行モードから自動走行モードに切り替えられるのを待つ(#S10)。ステップ#S07のチェックで、動作確認フラグに「1」がセットされている場合、あるいはステップ#S08で、作業者によって今回のソナーチェックの実施もキャンセルされると(#S08No分岐)、ソナーチェック処理は行われずに、ステップ#S10にジャンプされる。 Returning to the flow of FIG. 36, when the rice transplanter manually travels toward the entrance / exit of the field, it is checked whether the rice transplanter has reached the vicinity of the field based on the machine position calculated by the machine position calculation unit 311. (# S06). If the sonar check is canceled by the operator in step # S04 (# S04No branch), the sonar check process is not performed and the process jumps to step # S06. If the aircraft position reaches the vicinity of the field (# C6Yes branch), a pre-work sonar check request command (pre-work sensor check request command) is issued, so first check whether the operation check flag is invalid, that is, check the operation. It is checked whether the flag is set to "0" (# S07). If "0" is set in the operation confirmation flag (# S07Yes branch), it is necessary to complete the sonar check before performing automatic driving. Therefore, the sonar management unit 51 again displays the screen of the touch panel 50. Ask the worker whether to carry out the sonar check through (# S08). When the worker instructs to perform the sonar check (# S08Yes branch), the sonar check process is executed (# S09). When the sonar check process is completed, it waits for the driving mode to be switched from the manual driving mode to the automatic driving mode (# S10). If "1" is set in the operation check flag in the check of step # S07, or if the operator cancels the implementation of the sonar check this time in step # S08 (# S08No branch), the sonar check process. Is not performed and jumps to step # S10.
 走行モードが自動走行モードに切り替えられると(#S10Yes分岐)、動作確認フラグに「0」がセットされているかどうかチェックされる(#S11)。動作確認フラグに「0」がセットされていれば(#S11Yes分岐)、強制的にソナーチェック処理が実施される(#S12)。ソナーチェック処理が完了すると、自動作業走行が可能となる(#S13)。すでに田植機が起動してからこれまでの間にソナーチェック処理が実行されており、動作確認フラグに「1」がセットされている場合(#S11No分岐)、直ちに自動作業走行が可能となる(#S13)。 When the driving mode is switched to the automatic driving mode (# S10Yes branch), it is checked whether "0" is set in the operation confirmation flag (# S11). If "0" is set in the operation confirmation flag (# S11Yes branch), sonar check processing is forcibly executed (# S12). When the sonar check process is completed, automatic work running becomes possible (# S13). If the sonar check process has already been executed since the rice transplanter was started and the operation check flag is set to "1" (# S11No branch), automatic work running is possible immediately (# S11No branch). # S13).
 自動走行が開始されると、走行モードが自動走行モードから手動走行モードに切り換えられるかどうかがチェックされる(#S14)。走行モードが手動走行モードに切り換えられた場合(#S14Yes分岐)、自動走行の一時的な中断なのか、圃場作業の終了にともなう自動走行の終了なのかが、作業者に問われる(#S15)。自動走行の終了であれば(#S15終了分岐)、動作確認フラグに「0」がセットされ(#S16)、手動走行に移行する(#S17)。自動走行の中断であれば(#S15中断分岐)、動作確認フラグに「0」がセットされずに、そのまま、手動走行に移行する(#S17)。 When automatic driving is started, it is checked whether the driving mode can be switched from the automatic driving mode to the manual driving mode (# S14). When the driving mode is switched to the manual driving mode (# S14Yes branch), the operator is asked whether it is a temporary interruption of the automatic driving or the end of the automatic driving due to the end of the field work (# S15). .. If the automatic driving is finished (# S15 end branch), "0" is set in the operation confirmation flag (# S16), and the vehicle shifts to manual driving (# S17). If the automatic driving is interrupted (# S15 interruption branch), the operation confirmation flag is not set to "0", and the vehicle shifts to manual driving as it is (# S17).
 手動走行に移行すると、走行モードが自動走行モードに切り換えられるかどうかのチェック(#S18)、及び田植機が圃場から離脱したかどうかのチェック(#S19)が行われる。自動走行モードに切り換えられると(#S18Yes分岐)、ステップ#S11にジャンプされ、動作確認フラグの状態がチェックされる。田植機が圃場から離脱すると(#S19Yes分岐)、動作確認フラグに「0」がセットされる(#S20)。さらに、田植機のメインスイッチがOFFされると(#S21Yes分岐)、このルーチンが終了する。 When shifting to manual driving, a check is performed to check whether the driving mode can be switched to the automatic driving mode (# S18) and whether the rice transplanter has left the field (# S19). When the mode is switched to the automatic driving mode (# S18Yes branch), the process jumps to step # S11 and the state of the operation confirmation flag is checked. When the rice transplanter leaves the field (# S19Yes branch), the operation confirmation flag is set to "0" (# S20). Further, when the main switch of the rice transplanter is turned off (# S21Yes branch), this routine ends.
 「1」にセット(有効化)した動作確認フラグの内容を「0」に置き換える動作確認フラグのリセット(無効化)は、上述した以外にも、設定された有効期限が切れることによっても行われてもよい。あるいは、夜中の自動走行以外では、動作確認フラグの有効化の日付が繰り上がったタイミング(日付が変わったタイミング)で、動作確認フラグの無効化が行われてもよい。また、圃場から離脱しない限りにおいて、1つの圃場で自動走行が行われている場合は、動作確認フラグの無効化が行われない設定、あるいは、予め決められた複数の圃場で自動走行が行われている場合は、動作確認フラグの無効化が行われない設定も、用意されると好都合である。 Replacing the contents of the operation confirmation flag set (enabled) with "1" with "0" The operation confirmation flag is reset (disabled) in addition to the above, when the set expiration date expires. You may. Alternatively, other than the automatic driving in the middle of the night, the operation confirmation flag may be invalidated at the timing when the date for enabling the operation confirmation flag is advanced (the timing when the date is changed). In addition, if automatic driving is performed in one field as long as the field is not separated, the operation confirmation flag is not invalidated, or automatic driving is performed in a plurality of predetermined fields. If so, it is convenient to prepare a setting that does not invalidate the operation confirmation flag.
 なお、図36での示されていないが、作業終了のための作業終了指令が与えられた場合には、動作確認フラグが取り消される(無効化)が、作業中断のための作業中断指令が与えられた場合には、動作確認フラグは維持される。 Although not shown in FIG. 36, when a work end command for work end is given, the operation confirmation flag is canceled (invalidated), but a work stop command for work interruption is given. If so, the operation confirmation flag is maintained.
 上述したソナーチェックとともに、リモコン90の動作チェックも行われる。なお、リモコン90の不使用が選択されると、このリモコンチェックは省略可能である。リモコンチェックの一例では、情報端末5のタッチパネル50に、順次リモコン90で操作すべきボタンが表示される。それに応じて、対応ボタンが操作されることで、動作チェックが進行する。全てのボタンの動作が確認されると、動作チェックが終了する。その際、ソナーチェックと同様に、各ボタンの動作完了の視覚記号や全ボタンの動作完了の視覚記号がタッチパネル50に表示されると好都合である。リモコン90の動作チェックが完了したことを示す動作確認フラグの無効化も、上述したソナーチェックにおける動作確認フラグの無効化を流用することができる。 Along with the above-mentioned sonar check, the operation check of the remote controller 90 is also performed. If the non-use of the remote controller 90 is selected, this remote controller check can be omitted. In an example of the remote control check, the touch panel 50 of the information terminal 5 sequentially displays the buttons to be operated by the remote control 90. Correspondingly, the operation check proceeds by operating the corresponding button. When the operation of all the buttons is confirmed, the operation check ends. At that time, it is convenient that the visual symbol of the completion of the operation of each button and the visual symbol of the completion of the operation of all the buttons are displayed on the touch panel 50 as in the sonar check. As for the invalidation of the operation confirmation flag indicating that the operation check of the remote controller 90 is completed, the invalidation of the operation confirmation flag in the above-mentioned sonar check can be diverted.
 自動走行の開始前に行われるチェック処理(ソナーチェック、リモコンチェック、積層灯チェック、ボイスアラームチェックなど)は、作業者の意思を確認して、キャンセルすることができるようにしてもよい。また、そのようなチェック処理のキャンセルは有人での自動走行に限定してもよい。 The check process (sonar check, remote control check, laminated light check, voice alarm check, etc.) performed before the start of automatic driving may be canceled after confirming the worker's intention. Further, the cancellation of such a check process may be limited to manned automatic driving.
〔準備処理〕
 準備処理では、図40に示す4つの注意喚起画面(それぞれに符号(a)、(b)、(c)、(d)が付与されている)が順次、表示される。(a)の画面は、機体1が許容範囲以上に傾斜する姿勢で、崖や水路に沿って自動走行を禁止する警告画面である。(b)の画面は、圃場の最外周に沿った苗植付作業を自動走行する場合には、必ず作業者が運転部14に乗り込んで、有人自動走行を行うことを要請する警告画面である。(c)の画面は、前回のマップを流用せずに、新たにマップ作成を行うことを要請する警告画面である。(d)の画面は、許容以上に変形した圃場や、圃場内部に走行障害物がある場合には、自動走行を禁止する警告画面である。各画面には「確認」ボタンが配置されており、「確認」ボタンを押すことにより次の画面が表示される。
[Preparation process]
In the preparatory process, the four warning screens shown in FIG. 40 (reference numerals (a), (b), (c), and (d) are assigned to each) are sequentially displayed. The screen (a) is a warning screen for prohibiting automatic traveling along a cliff or a waterway in a posture in which the aircraft 1 is tilted beyond an allowable range. The screen (b) is a warning screen for requesting that the worker always get into the driving unit 14 and perform manned automatic running when the seedling planting work along the outermost circumference of the field is automatically run. .. The screen (c) is a warning screen requesting that a new map be created without diverting the previous map. The screen (d) is a warning screen for prohibiting automatic driving when the field is deformed more than allowed or there is a running obstacle inside the field. A "confirmation" button is arranged on each screen, and the next screen is displayed by pressing the "confirmation" button.
 これらの自動走行前の準備としての注意喚起画面は、自動走行モードが選択される毎に表示されるが、所定時間毎に、または日付が変わるごとに表示されるようにしてもよい。
また、同じ作業者が自動走行を行う場合には、この注意喚起画面が、「確認」ボタンを押すことなしにアニメーション的に連続表示されるように構成してもよい。図40では、タッチパネル50に個別に表示される4つの注意喚起画面が示されていたが、これらの注意喚起画面は、任意に統合することができる。例えば、(a)の画面と(b)の画面とを統合して、1つの注意喚起画面としてもよい。
These warning screens as preparations before automatic driving are displayed every time the automatic driving mode is selected, but may be displayed at predetermined time intervals or every time the date changes.
Further, when the same worker performs automatic driving, the warning screen may be configured to be continuously displayed in an animation without pressing the "confirmation" button. In FIG. 40, four warning screens individually displayed on the touch panel 50 are shown, but these warning screens can be arbitrarily integrated. For example, the screen (a) and the screen (b) may be integrated into one alert screen.
 一般にタッチパネル50への情報表示とともに行われる各種処理は、「次」ボタンを押すことで次の処理に移行するが、この注意喚起画面を表示する処理では、全ての注意喚起画面の表示と「確認」ボタンの押し下げが行われるまで、「次」ボタンによる画面遷移が無効化されている。このため、作業者が全ての注意喚起画面を確認しない限り、次の処理に移行できない。ただし、同じ日の作業又は短時間の作業である場合や同じ作業者であることが判明した場合は、この「確認」操作を省略できる制御を入れても良い。 Generally, various processes performed together with displaying information on the touch panel 50 shift to the next process by pressing the "Next" button. However, in the process of displaying this alert screen, all the alert screens are displayed and "confirmation" is performed. The screen transition by the "Next" button is disabled until the "" button is pressed down. Therefore, the next process cannot be performed unless the worker confirms all the warning screens. However, if the work is performed on the same day or for a short time, or if it is found that the worker is the same worker, a control that can omit this "confirmation" operation may be inserted.
〔マップ選択処理〕
 田植機におけるマップ選択処理について説明する。図41は、マップ選択処理における機能部を示す機能ブロック図である。図41に示されるように、本実施形態におけるマップ選択処理では、制御ユニット30と情報端末5との間で互いに情報やデータの送受信が行われる。本実施形態では、制御ユニット30に、機体位置算出部311が備えられ、情報端末5に、表示装置551(タッチパネル50)、マップ情報記憶部552、マップ情報表示部553、入力領域判定部554、入力位置情報算定部555、サムネイル表示部556、操作判定部557、面積算出部558、報知部559が備えられる。各機能部は、マップ選択に係る処理を行うために、CPUを中核部材としてハードウエア又はソフトウエア或いはその両方で構築されている。
[Map selection process]
The map selection process in the rice transplanter will be described. FIG. 41 is a functional block diagram showing a functional unit in the map selection process. As shown in FIG. 41, in the map selection process in the present embodiment, information and data are transmitted and received between the control unit 30 and the information terminal 5. In the present embodiment, the control unit 30 is provided with the machine body position calculation unit 311, and the information terminal 5 includes a display device 551 (touch panel 50), a map information storage unit 552, a map information display unit 553, and an input area determination unit 554. The input position information calculation unit 555, the thumbnail display unit 556, the operation determination unit 557, the area calculation unit 558, and the notification unit 559 are provided. Each functional unit is constructed by hardware, software, or both with a CPU as a core member in order to perform processing related to map selection.
 機体位置算出部311は、衛星測位を用いて機体位置を算出する。衛星測位には測位ユニット8が利用され、測位ユニット8から機体位置算出部311に、例えば緯度情報、経度情報、及び高度情報からなるGPS情報が伝達される。なお、本実施形態では高度情報は、ジオイド高と標高とが合算された機体1の高さ(測位ユニット8の高さ)が相当する。機体位置とは、実空間における機体1の位置であって、緯度情報、経度情報、及び高度情報により示される。機体位置算出部311は、このようなGPS情報に基づき、実空間における機体1の位置を算出する。 The aircraft position calculation unit 311 calculates the aircraft position using satellite positioning. The positioning unit 8 is used for satellite positioning, and GPS information including latitude information, longitude information, and altitude information is transmitted from the positioning unit 8 to the aircraft position calculation unit 311. In the present embodiment, the altitude information corresponds to the height of the aircraft 1 (height of the positioning unit 8), which is the sum of the geoid height and the altitude. The aircraft position is the position of the aircraft 1 in the real space, and is indicated by latitude information, longitude information, and altitude information. The aircraft position calculation unit 311 calculates the position of the aircraft 1 in the real space based on such GPS information.
 マップ情報記憶部552は、作業地の形状を示すマップ情報を、作業地の位置を示す位置情報とマップ情報が作成された時間を示す時間情報とに基づいて記憶する。作業地の形状とは、田植機が植え付け作業を行う圃場の形状であって、圃場の外形の形状にあたる。
本実施形態では、このような圃場の外形の形状を示す情報は、マップ情報として扱われる。作業地の位置とは圃場の位置であって、圃場の外周部分の位置であっても良いし、圃場に田植機が出入りする出入口の位置であっても良い。更には、圃場の中央部分の位置であっても良い。また、マップ情報が作成された時間を示す時間情報とは、上述した位置情報が取得された時間を示すタイムスタンプであっても良いし、マップ情報がマップ情報記憶部552に記憶された時間を示すタイムスタンプであっても良い。マップ情報には、上述した圃場の位置を緯度情報、経度情報、及び高度情報等により規定した位置情報と共に、マップ情報が作成された時間を規定した時間情報とが含まれる。
The map information storage unit 552 stores map information indicating the shape of the work site based on the position information indicating the position of the work area and the time information indicating the time when the map information was created. The shape of the work site is the shape of the field where the rice transplanter performs the planting work, and corresponds to the shape of the outer shape of the field.
In the present embodiment, the information indicating the shape of the outer shape of such a field is treated as map information. The position of the work site is the position of the field, which may be the position of the outer peripheral portion of the field, or the position of the entrance / exit where the rice transplanter enters and exits the field. Furthermore, it may be the position of the central portion of the field. Further, the time information indicating the time when the map information is created may be a time stamp indicating the time when the above-mentioned position information is acquired, or the time when the map information is stored in the map information storage unit 552. It may be a time stamp indicating. The map information includes position information that defines the position of the field described above by latitude information, longitude information, altitude information, and the like, as well as time information that defines the time when the map information was created.
 表示装置551は表示画面を有する。本実施形態では表示装置551は情報端末5のタッチパネル50が相当する。本実施形態では、タッチパネル50が表示画面を兼ねる。このため、特に区別をしない場合には、表示画面をタッチパネル50として説明する。 The display device 551 has a display screen. In the present embodiment, the display device 551 corresponds to the touch panel 50 of the information terminal 5. In this embodiment, the touch panel 50 also serves as a display screen. Therefore, when no particular distinction is made, the display screen will be described as the touch panel 50.
 マップ情報表示部553は、マップ情報記憶部552に記憶されたマップ情報のうち、機体位置と位置情報と時間情報とに基づいて抽出したマップ情報を、タッチパネル50に表示させる。上述したように、マップ情報記憶部552にはマップ情報が記憶され、マップ情報には位置情報と時間情報とが含まれる。機体位置とは、機体位置算出部311により算出された実空間における機体1の位置であり、具体的には田植機の現在位置である。
マップ情報表示部553は、マップ情報記憶部552に記憶されたマップ情報の中から、田植機の現在位置を含む圃場の外形の形状を示すマップ情報であって、時間情報に基づいて最新のタイムスタンプを有するマップ情報を抽出し、当該抽出したマップ情報をタッチパネル50に表示させる。これにより、田植機が圃場内にいる場合には、自動で当該圃場の形状を示す最新のマップ情報をタッチパネル50に表示することが可能となる。
The map information display unit 553 causes the touch panel 50 to display the map information extracted based on the aircraft position, the position information, and the time information among the map information stored in the map information storage unit 552. As described above, the map information storage unit 552 stores the map information, and the map information includes the position information and the time information. The machine body position is the position of the machine body 1 in the real space calculated by the machine body position calculation unit 311 and specifically, the current position of the rice transplanter.
The map information display unit 553 is map information indicating the shape of the outer shape of the field including the current position of the rice planting machine from the map information stored in the map information storage unit 552, and is the latest time based on the time information. Map information having a stamp is extracted, and the extracted map information is displayed on the touch panel 50. As a result, when the rice transplanter is in the field, the latest map information indicating the shape of the field can be automatically displayed on the touch panel 50.
 図42には、タッチパネル50に表示された田植機が現在存在する圃場に係るマップ情報が示される。理解を容易にするために、図42にあっては、マップ情報表示部553により表示されたマップ情報は、マップ情報5531として示される。また、図42には、マップ情報5531における田植機の現在位置に対応する位置に、田植機のイメージ画像560も示される。更に、図42には、マップ情報5531に対応する圃場に対して所定距離内にある圃場の形状を示すマップ情報5532も示される。マップ情報5532も、マップ情報表示部553がマップ情報記憶部552から抽出してタッチパネル50に表示すると好適である。 FIG. 42 shows map information related to the field in which the rice transplanter currently exists, which is displayed on the touch panel 50. For ease of understanding, in FIG. 42, the map information displayed by the map information display unit 553 is shown as map information 5531. Further, FIG. 42 also shows an image image 560 of the rice transplanter at a position corresponding to the current position of the rice transplanter in the map information 5531. Further, FIG. 42 also shows map information 5532 showing the shape of the field within a predetermined distance from the field corresponding to the map information 5531. It is preferable that the map information 5532 is also extracted from the map information storage unit 552 by the map information display unit 553 and displayed on the touch panel 50.
 なお、田植機が圃場内に存在していない場合や、田植機の現在位置に応じたマップ情報がない場合には、田植機の現在位置に隣接する、あるいは近傍の圃場の形状を示すマップ情報をタッチパネル50に表示すると良い。 If the rice transplanter does not exist in the field, or if there is no map information according to the current position of the rice transplanter, map information indicating the shape of the field adjacent to or near the current position of the rice transplanter. May be displayed on the touch panel 50.
 図42において、マップ情報5531は、イメージ画像560の下層(背面)に表示されている。すなわち、田植機はマップ情報5531に対応する圃場に存在している。係る場合、マップ情報5531を外縁部に沿って囲むように指標5533を設けると良い。また、図42では図示していないが、マップ情報5531が作成された日時を示す情報や、マップ情報5531に対応する圃場の面積をタッチパネル50に表示しても良い。 In FIG. 42, the map information 5531 is displayed in the lower layer (rear surface) of the image image 560. That is, the rice transplanter exists in the field corresponding to the map information 5531. In such a case, it is preferable to provide the index 5533 so as to surround the map information 5531 along the outer edge portion. Further, although not shown in FIG. 42, information indicating the date and time when the map information 5531 was created and the area of the field corresponding to the map information 5531 may be displayed on the touch panel 50.
 図41に戻り、入力領域判定部554は、表示画面に表示されたマップ情報において、利用者による操作入力が行われた入力領域を判定する。上述したように、本実施形態ではタッチパネル50にマップ情報が表示される。利用者とは作業者である。操作入力とは、本実施形態では、作業者がタッチパネル50に指で触れて行う入力が相当する。このため、入力領域とはタッチパネル50における作業者の指が触れた領域が相当する。したがって、入力領域判定部554は、タッチパネル50に表示されたマップ情報において、作業者がタッチパネル50に指で触れて行った入力時において、タッチパネル50における作業者の指が触れた領域を判定する。 Returning to FIG. 41, the input area determination unit 554 determines the input area in which the operation input by the user has been performed in the map information displayed on the display screen. As described above, in the present embodiment, the map information is displayed on the touch panel 50. A user is a worker. In the present embodiment, the operation input corresponds to the input performed by the operator by touching the touch panel 50 with a finger. Therefore, the input area corresponds to the area touched by the operator's finger on the touch panel 50. Therefore, the input area determination unit 554 determines the area touched by the operator's finger on the touch panel 50 when the operator touches the touch panel 50 with a finger in the map information displayed on the touch panel 50.
 入力位置情報算定部555は、入力領域判定部554により判定された入力領域に応じたマップ情報における位置情報を入力位置情報として算定する。入力領域判定部554により判定された入力領域とは、マップ情報が表示されているタッチパネル50に作業者が指で触れて入力を行った際に、タッチパネル50における作業者の指が触れた領域である。一方、マップ情報は、圃場の形状を示す情報であって、マップ情報上の座標と圃場の位置情報との間には互いに相関がある。そこで、入力位置情報算定部555は、タッチパネル50に表示されるマップ情報における作業者の指が触れた領域に対応する圃場の位置を算定する。この位置を示す情報である位置情報が入力位置情報に相当する。 The input position information calculation unit 555 calculates the position information in the map information corresponding to the input area determined by the input area determination unit 554 as the input position information. The input area determined by the input area determination unit 554 is an area touched by the operator's finger on the touch panel 50 when the operator touches the touch panel 50 on which the map information is displayed with a finger to input. be. On the other hand, the map information is information indicating the shape of the field, and there is a correlation between the coordinates on the map information and the position information of the field. Therefore, the input position information calculation unit 555 calculates the position of the field corresponding to the area touched by the operator's finger in the map information displayed on the touch panel 50. The position information, which is the information indicating this position, corresponds to the input position information.
 サムネイル表示部556は、入力位置情報に基づいて、マップ情報記憶部552に記憶されたマップ情報を抽出してタッチパネル50にサムネイルで表示させる。入力位置情報は、入力位置情報算定部555により算定され、伝達される。サムネイル表示部556は、マップ情報記憶部552に記憶されたマップ情報の中から、伝達された入力位置情報により示される位置を含む圃場のマップ情報を抽出する。タッチパネル50にサムネイルで表示させるとは、タッチパネル50に縮小して表示することを意味する。ここでは、マップ情報表示部553により表示されたマップ情報よりも縮小して表示する。したがって、サムネイル表示部556は、マップ情報記憶部552から抽出したマップ情報を、マップ情報表示部553により表示されたマップ情報よりも縮小してタッチパネル50に表示させる。この時、タッチパネル50には、マップ情報表示部553により表示されたマップ情報と共に、サムネイル表示部556により抽出された、互いに時間情報が異なる複数のマップ情報が表示される。 The thumbnail display unit 556 extracts the map information stored in the map information storage unit 552 based on the input position information and displays it on the touch panel 50 as a thumbnail. The input position information is calculated and transmitted by the input position information calculation unit 555. The thumbnail display unit 556 extracts the map information of the field including the position indicated by the transmitted input position information from the map information stored in the map information storage unit 552. Displaying thumbnails on the touch panel 50 means reducing the display on the touch panel 50. Here, the map information is displayed in a smaller size than the map information displayed by the map information display unit 553. Therefore, the thumbnail display unit 556 reduces the map information extracted from the map information storage unit 552 to the map information displayed by the map information display unit 553 and displays it on the touch panel 50. At this time, on the touch panel 50, along with the map information displayed by the map information display unit 553, a plurality of map information extracted by the thumbnail display unit 556 and having different time information from each other is displayed.
 換言すれば、マップ情報記憶部552には、時間情報毎に複数のマップ情報が積層状態で記憶され(レイヤー記憶され)、サムネイル表示部556は入力位置情報算定部555により算定された入力位置情報に基づいてレイヤー記憶されたマップ情報(複数のマップ情報)をサムネイルで表示させる。 In other words, the map information storage unit 552 stores a plurality of map information in a stacked state (layer storage) for each time information, and the thumbnail display unit 556 stores the input position information calculated by the input position information calculation unit 555. The map information (multiple map information) stored in the layer is displayed as a thumbnail based on.
 この時、選択された圃場(入力位置情報算定部555により算定された入力位置情報に基づく圃場)と少なくとも一部が重複する(積層部分を有する)マップ情報を全て表示するように構成しても良い。 At this time, even if it is configured to display all the map information (having a laminated portion) that at least partially overlaps with the selected field (field based on the input position information calculated by the input position information calculation unit 555). good.
 図43には、作業者が、田植機が存在する圃場とは異なる圃場の形状を示すマップ情報5532を選択した場合の例が示される。この場合、選択されたマップ情報5532の外周部が指標5533で囲まれ、マップ情報5532が選択されたことが明示される。更に、このマップ情報5532に対してレイヤー記憶されたマップ情報5534,5535,5536がサムネイルで表示されている。 FIG. 43 shows an example in which the worker selects map information 5532 showing the shape of the field different from the field in which the rice transplanter exists. In this case, the outer peripheral portion of the selected map information 5532 is surrounded by the index 5533, and it is clearly shown that the map information 5532 has been selected. Further, the map information 5534, 5535, 5536 stored in layers for the map information 5532 is displayed as thumbnails.
 この時、サムネイル表示部556は、サムネイルで表示されるマップ情報に基づく作業地において行われた作業の情報を示す作業情報も表示すると好適である。マップ情報に基づく作業地において行われた作業の情報とは、タッチパネル50に表示されるマップ情報に対応する圃場において田植機が過去に行った植え付け作業の内容を示す情報である。具体的には、植え付け作業を行った日時や、作業条件等が相当する。したがって、サムネイル表示部556は、タッチパネル50に縮小表示されるマップ情報と共に、当該マップ情報に対応する圃場において過去に行った植え付け作業の日時や作業条件等を表示する。これにより、例えば作業者がサムネイル表示されたマップ情報に関心がある場合には、当該マップ情報に触れることで、マップ情報記憶部552から抽出したマップ情報を、作業者が触れたマップ情報に置き換えて大きく表示することが可能となる。 At this time, it is preferable that the thumbnail display unit 556 also displays work information indicating information on the work performed at the work site based on the map information displayed as thumbnails. The information on the work performed at the work site based on the map information is information indicating the contents of the planting work performed in the past by the rice transplanter in the field corresponding to the map information displayed on the touch panel 50. Specifically, the date and time when the planting work was performed, the work conditions, and the like correspond. Therefore, the thumbnail display unit 556 displays the date and time, work conditions, and the like of the planting work performed in the past in the field corresponding to the map information together with the map information reduced and displayed on the touch panel 50. As a result, for example, when the worker is interested in the map information displayed as thumbnails, the map information extracted from the map information storage unit 552 is replaced with the map information touched by the worker by touching the map information. It becomes possible to display it in a large size.
 図43には、このようなサムネイルで表示されるマップ情報の作業情報を表示した例も示される。すなわち、サムネイルでマップ情報が表示された状態でカーソル5537を操作して、マップ情報5534を選択すると、マップ情報5534が作成された日時を示す情報と、マップ情報5534に対応する圃場の面積とがタッチパネル50に表示される(図43にあっては不図示)。もちろん、カーソル5537による操作に代えて、直接マップ情報5534を指で触れて操作しても良い。 FIG. 43 also shows an example of displaying the work information of the map information displayed as such thumbnails. That is, when the cursor 5537 is operated with the map information displayed as thumbnails and the map information 5534 is selected, the information indicating the date and time when the map information 5534 was created and the area of the field corresponding to the map information 5534 are displayed. It is displayed on the touch panel 50 (not shown in FIG. 43). Of course, instead of the operation by the cursor 5537, the map information 5534 may be directly touched and operated.
 また、サムネイル表示部556は、タッチパネル50に縮小表示されるマップ情報と共に、圃場名や圃場面積(尺貫法等各国独自の単位を利用)や、圃場周辺の画像を表示しても良い。更には、前回の作業を行った作業者名や作業時間等を表示しても良い。 Further, the thumbnail display unit 556 may display the field name, the field area (using a unit unique to each country such as the shakkanho method), and the image around the field together with the map information reduced and displayed on the touch panel 50. Further, the name of the worker who performed the previous work, the working time, and the like may be displayed.
 ここで、作業者がタッチパネル50に対して操作入力を行った場合、図44に示されるように、複数のマップ情報5538,5539に亘って作業者の指が触れることがある。
本実施形態では、このような場合に、どのマップ情報が選択されたのかを適切に判定し、タッチパネル50に表示することができるように構成されている。以下、これについて説明する。
Here, when the operator inputs an operation to the touch panel 50, as shown in FIG. 44, the operator's finger may touch a plurality of map information 5538, 5539.
In the present embodiment, in such a case, it is configured so that it is possible to appropriately determine which map information is selected and display it on the touch panel 50. This will be described below.
 図41に戻り、操作判定部557は、タッチパネル50に複数のマップ情報が表示されている状態において、入力領域が少なくとも2以上のマップ情報に亘っているか否かを判定する。タッチパネル50に複数のマップ情報が表示されているとは、例えば図44のような場合である。入力領域は、上述した入力領域判定部554により判定され、タッチパネル50において作業者による操作入力が行われた領域である。操作判定部557は、このような操作入力が、少なくとも2つ以上のマップ情報に亘っているか否か、すなわち、タッチパネル50において作業者が触れた領域が、複数のマップ情報と重複しているか否かを判定する。 Returning to FIG. 41, the operation determination unit 557 determines whether or not the input area covers at least two or more map information in a state where a plurality of map information is displayed on the touch panel 50. The case where a plurality of map information is displayed on the touch panel 50 is, for example, as shown in FIG. 44. The input area is an area determined by the input area determination unit 554 described above, and the operation input by the operator is performed on the touch panel 50. The operation determination unit 557 determines whether or not such an operation input covers at least two or more map information, that is, whether or not the area touched by the operator on the touch panel 50 overlaps with the plurality of map information. Is determined.
 面積算出部558は、入力領域が少なくとも2以上のマップ情報に亘っていた場合に、夫々のマップ情報における入力領域の面積を算出する。入力領域が少なくとも2以上のマップ情報に亘っていることは、上述した操作判定部557の判定結果が面積算出部558に伝達されることで特定可能である。夫々のマップ情報における入力領域とは、タッチパネル50において作業者が触れた領域が複数のマップ情報と重複している場合において、マップ情報毎の作業者が触れた領域にあたる。したがって、面積算出部558は、タッチパネル50において作業者が触れた領域が複数のマップ情報と重複している場合には、マップ情報毎に、作業者が触れた領域の面積を算出する。 The area calculation unit 558 calculates the area of the input area in each map information when the input area covers at least two or more map information. The fact that the input area covers at least two or more map information can be specified by transmitting the determination result of the operation determination unit 557 described above to the area calculation unit 558. The input area in each map information corresponds to the area touched by the worker for each map information when the area touched by the worker on the touch panel 50 overlaps with a plurality of map information. Therefore, when the area touched by the worker on the touch panel 50 overlaps with a plurality of map information, the area calculation unit 558 calculates the area of the area touched by the worker for each map information.
 具体的には、図44のような、作業者による操作入力に係る入力領域5540と、当該入力領域5540の下層(背面)にあるマップ情報5538とが互いに重複する領域5541の面積を算出し、作業者による操作入力に係る入力領域5540と、当該入力領域5540の下層(背面)にあるマップ情報5539とが互いに重複する領域5542の面積を算出する。 Specifically, as shown in FIG. 44, the area of the area 5541 in which the input area 5540 related to the operation input by the operator and the map information 5538 in the lower layer (rear surface) of the input area 5540 overlap each other is calculated. The area of the area 5542 where the input area 5540 related to the operation input by the operator and the map information 5339 in the lower layer (back surface) of the input area 5540 overlap each other is calculated.
 係る場合、入力領域判定部554は、少なくとも2以上のマップ情報のうち、面積が最も広い入力領域のマップ情報を、操作入力が行われたマップ情報であるとする。すなわち、面積算出部558により算出された複数のマップ情報の夫々の面積において、最大の面積を有するマップ情報に対して、作業者が操作入力を行ったものとして判定する。図44の例では、領域5541の面積と領域5542の面積とを比較し、広い方の面積の領域5541を有するマップ情報5538に対して、操作入力が行われたと判定する。これにより、作業者が誤って複数のマップ情報に亘って操作入力を行った場合であっても、作業者による操作入力を適切に検出することが可能となる。 In such a case, the input area determination unit 554 determines that the map information of the input area having the largest area among at least two or more map information is the map information for which the operation input has been performed. That is, in each area of the plurality of map information calculated by the area calculation unit 558, it is determined that the operator has input the operation to the map information having the maximum area. In the example of FIG. 44, the area of the area 5541 and the area of the area 5542 are compared, and it is determined that the operation input has been performed for the map information 5538 having the area 5541 having the wider area. As a result, even if the operator mistakenly inputs an operation input over a plurality of map information, it is possible to appropriately detect the operation input by the operator.
 ここで、タッチパネル50には、上述したようにマップ情報表示部553によるマップ情報と、サムネイル表示部556による縮小されたマップ情報とが表示されることがある。また、図44のようにマップ情報表示部553によるマップ情報が複数表示されることもある。係る場合、複数のマップ情報の中に現在よりもかなり以前に作成されたマップ情報がある場合には、このようなマップ情報を植え付け作業の際に作業者が参考にすると情報が古すぎて支障をきたす可能性がある。 Here, as described above, the touch panel 50 may display the map information by the map information display unit 553 and the reduced map information by the thumbnail display unit 556. Further, as shown in FIG. 44, a plurality of map information by the map information display unit 553 may be displayed. In such a case, if there is map information created much earlier than the present among multiple map information, it would be a problem if the worker refers to such map information during planting work because the information is too old. May cause.
 そこで、報知部559が、タッチパネル50に表示されるマップ情報に関する時間情報に基づいて、当該マップ情報が作成されてからの経過時間を算定し、当該経過時間に応じて当該マップ情報の再作成を報知するように構成すると好適である。マップ情報に関する時間情報とは、マップ情報が作成された日時を示すタイムスタンプである。マップ情報が作成されてからの経過時間とは、マップ情報が作成された時から現在に至るまでの時間である。マップ情報の再作成とは、マップ情報を作り直すことである。したがって、報知部559は、タッチパネル50に表示されるマップ情報が作成された日時を示すタイムスタンプを参照し、当該マップ情報が作成されてから現在に至るまでの時間を算定する。算定された時間が、予め設定された時間(例えば3カ月)よりも長い場合には、報知部559は、マップ情報の作り直しを促すように報知すると良い。この報知は、タッチパネル50に表示して行っても良いし、音声で行っても良い。これにより、圃場の変化のリスクを通知することが可能となる。更に、予め設定された時間(例えば3カ月)よりも長い時間(例えば1年)が経過している場合には、圃場変化のリスクを予め設定された時間(例えば3カ月)の場合よりも強く通知し(警告し)、マップ情報の再作成をより強く促すと好適である。 Therefore, the notification unit 559 calculates the elapsed time since the map information was created based on the time information related to the map information displayed on the touch panel 50, and recreates the map information according to the elapsed time. It is preferable to configure it to notify. The time information related to the map information is a time stamp indicating the date and time when the map information was created. The elapsed time since the map information was created is the time from the time the map information was created to the present. Recreating map information means recreating map information. Therefore, the notification unit 559 refers to the time stamp indicating the date and time when the map information displayed on the touch panel 50 is created, and calculates the time from the creation of the map information to the present. When the calculated time is longer than the preset time (for example, 3 months), the notification unit 559 may notify the user to recreate the map information. This notification may be displayed on the touch panel 50 or may be performed by voice. This makes it possible to notify the risk of changes in the field. Furthermore, when a time longer than a preset time (eg 3 months) has passed (eg 1 year), the risk of field change is stronger than in the case of a preset time (eg 3 months). It is preferable to notify (warn) and urge the re-creation of map information more strongly.
 また、報知部559は、作業地においてこれまでに起こった災害を示す災害情報を取得し、災害情報とタッチパネル50に表示されるマップ情報に関する時間情報とに基づいて、当該マップ情報の作成後に当該マップ情報に基づく作業地において被災していると判定された場合には、当該マップ情報の再作成を報知するように構成しても良い。作業地においてこれまでに起こった災害とは、特に前回の作業後に発生した災害であって、例えば地震や、台風、風水害等が相当する。このような災害の発生状況については、例えば管理サーバやWEB等によって当該災害の種別と発生した日時に関する情報を含む災害情報を取得することが可能である。報知部559は、災害情報とタッチパネル50に表示されるマップ情報が作成された日時を示すタイムスタンプとを参照し、当該マップ情報が作成されてから現在に至るまでの間に、マップ情報により示される作業地において災害が発生したか否か、すなわち、作業地が被災したか否かを判定する。マップ情報が作成されてから現在に至るまでの間に、作業地において災害が発生していた場合には、報知部559は、マップ情報の作り直しを促すように報知すると良い。この報知は、タッチパネル50に表示して行っても良いし、音声で行っても良い。 In addition, the notification unit 559 acquires disaster information indicating disasters that have occurred so far at the work site, and after creating the map information, the notification unit 559 acquires the disaster information and the time information related to the map information displayed on the touch panel 50. If it is determined that the work site is damaged based on the map information, it may be configured to notify the re-creation of the map information. The disasters that have occurred so far at the work site are disasters that have occurred after the previous work, such as earthquakes, typhoons, and storms and floods. Regarding the occurrence status of such a disaster, for example, it is possible to acquire disaster information including information on the type of the disaster and the date and time when the disaster occurred by a management server, WEB, or the like. The notification unit 559 refers to the disaster information and the time stamp indicating the date and time when the map information displayed on the touch panel 50 is created, and indicates the map information from the time when the map information is created to the present. It is determined whether or not a disaster has occurred in the work area, that is, whether or not the work area has been damaged. If a disaster has occurred at the work site between the time the map information is created and the present, the notification unit 559 may notify the user to recreate the map information. This notification may be displayed on the touch panel 50 or may be performed by voice.
 また、例えばマップ情報が作成されてから現在に至るまでの間に、マップ情報の管理者や、作業地の管理者や、作業者の管理者が変更になっている場合にも、報知部559は、マップ情報の作り直しを促すように報知するように構成しても良い。係る場合、マップ情報に、マップ情報の管理者や、作業地の管理者や、作業者の管理者等を識別可能な情報を含ませておくと良い。 Further, for example, even if the manager of the map information, the manager of the work place, or the manager of the worker is changed between the time when the map information is created and the present, the notification unit 559 May be configured to notify the user to recreate the map information. In such a case, the map information may include information that can identify the manager of the map information, the manager of the work site, the manager of the worker, and the like.
 上記実施形態では、表示画面がタッチパネル50であるとして説明したが、表示画面はタッチパネル50でなくても良い。係る場合、作業者による操作入力は、例えばカーソルをタッチパッド等で操作して入力することが可能である。 In the above embodiment, the display screen is described as the touch panel 50, but the display screen does not have to be the touch panel 50. In such a case, the operation input by the operator can be input by operating the cursor with a touch pad or the like, for example.
 上記実施形態では、入力領域判定部554は、作業者による入力領域が複数に亘っている場合に面積が最も広い入力領域のマップ情報を、作業者による操作入力が行われたマップ情報とするとして説明した。しかしながら、面積に関わらず、最初に触れた領域(位置)のマップ情報を、作業者による操作入力が行われたマップ情報とするとして構成しても良いし、複数のマップ情報のうち、最新のマップ情報を、作業者による操作入力が行われたマップ情報とするとして構成しても良い。また、入力領域を中心に、所定範囲内にある作業地を全て選択候補として作業者に選択させるように構成しても良い。更には、マップ情報に当該マップ情報の使用頻度を示す使用頻度情報を含ませ、使用頻度の高いマップ情報をサムネイルで表示されるマップ情報のうち、最上段に位置するように表示しても良い。 In the above embodiment, the input area determination unit 554 assumes that the map information of the input area having the largest area when the input area by the operator extends over a plurality of input areas is the map information in which the operation input by the operator is performed. explained. However, regardless of the area, the map information of the area (position) touched first may be configured as the map information in which the operation input by the operator is performed, or the latest map information among the plurality of map information may be used. The map information may be configured as map information for which an operation input has been made by an operator. Further, the operator may be configured to select all the work areas within a predetermined range as selection candidates centering on the input area. Further, the map information may include the usage frequency information indicating the usage frequency of the map information, and the frequently used map information may be displayed so as to be located at the top of the map information displayed as thumbnails. ..
 上記実施形態では、サムネイル表示部556が、サムネイルで表示されるマップ情報に基づく作業地において行われた作業の情報を示す作業情報も表示するとして説明したが、当該作業情報を表示しないように構成しても良い。 In the above embodiment, the thumbnail display unit 556 has been described as displaying work information indicating information on work performed at the work site based on the map information displayed as thumbnails, but the work information is not displayed. You may.
 上記実施形態では、報知部559が、マップ情報が作成されてからの経過時間に応じて当該マップ情報の再作成を報知するとして説明したが、報知部559はマップ情報の再作成を報知しないように構成することも可能である。また、経過時間の算定は報知部559とは異なる機能部が行うように構成することも可能である。 In the above embodiment, the notification unit 559 has been described as notifying the re-creation of the map information according to the elapsed time since the map information was created, but the notification unit 559 does not notify the re-creation of the map information. It is also possible to configure in. Further, the calculation of the elapsed time can be configured to be performed by a functional unit different from the notification unit 559.
 上記実施形態では、報知部559が、マップ情報に基づく作業地において被災していると判定された場合に、マップ情報の再作成を報知するとして説明したが、作業地が被災している場合であっても報知部559はマップ情報の再作成を報知しないように構成することも可能である。 In the above embodiment, the notification unit 559 will notify the re-creation of the map information when it is determined that the work site is damaged based on the map information. However, when the work site is damaged. Even if there is, the notification unit 559 can be configured not to notify the re-creation of the map information.
 上記タッチパネル50に表示されるマップ情報には、圃場情報を追加できるように構成しても良い。この圃場情報の追加は、例えばスマートフォンや、情報端末5、管理サーバ、リモコン、音声入力により行うように構成することが可能である。また、マップ情報の並べ替えは、圃場情報の各項目(日時、圃場面積、圃場名、ユーザーキー等)で行えるように構成すると好適である。 The field information may be added to the map information displayed on the touch panel 50. The addition of the field information can be configured to be performed by, for example, a smartphone, an information terminal 5, a management server, a remote controller, or voice input. Further, it is preferable to rearrange the map information so that each item of the field information (date and time, field area, field name, user key, etc.) can be used.
 上記実施形態ではマップ情報記憶部552にマップ情報が記憶されているとして説明したが、マップ情報はタッチパネル50を介して作業者が削除できるように構成することも可能である。係る場合、マップ情報の作成時の機体位置の検出精度(GPS感度)が悪かった場合や区画整理等を行って圃場形状が変更になった場合に対応可能となる。 In the above embodiment, the map information is stored in the map information storage unit 552, but the map information can be configured so that the operator can delete it via the touch panel 50. In such a case, it is possible to deal with the case where the detection accuracy (GPS sensitivity) of the aircraft position at the time of creating the map information is poor or the field shape is changed due to the land readjustment or the like.
 また、マップ情報記憶部552に記憶されている複数のマップ情報は、一つのマップ情報として統合することができるように構成すると好適である。これにより、重複するマップ情報を統合して取り扱いを容易に行うことが可能となる。また、区画整理等により圃場形状が変更されている場合であっても、マップ情報の取得し直すことが不要となる。更には、作業に利用する資材の補給箇所が限定されている場合において実質的に一つの圃場として管理する必要がある場合であっても容易に対応できる。 Further, it is preferable to configure the plurality of map information stored in the map information storage unit 552 so that they can be integrated as one map information. This makes it possible to integrate duplicate map information and easily handle it. Further, even if the field shape is changed due to land readjustment or the like, it is not necessary to reacquire the map information. Furthermore, even when it is necessary to manage the fields as one field when the supply points of the materials used for the work are limited, it can be easily dealt with.
〔圃場形状取得処理〕
 田植機における圃場形状取得処理について説明する。図45は、圃場形状取得処理における機能部を示すブロック図である。図45に示されるように、本実施形態における圃場形状取得処理では、制御ユニット30と情報端末5との間で互いに情報やデータの送受信が行われる。本実施形態では、制御ユニット30に、機体位置算出部311が備えられ、情報端末5に、表示装置551(タッチパネル50)、位置情報算定部571、マップ情報作成部572、走行経路生成部573が備えられる。各機能部は、圃場形状取得に係る処理を行うために、CPUを中核部材としてハードウエア又はソフトウエア或いはその両方で構築されている。
[Farm shape acquisition process]
The field shape acquisition process in the rice transplanter will be described. FIG. 45 is a block diagram showing a functional unit in the field shape acquisition process. As shown in FIG. 45, in the field shape acquisition process in the present embodiment, information and data are transmitted and received between the control unit 30 and the information terminal 5. In the present embodiment, the control unit 30 is provided with an airframe position calculation unit 311, and the information terminal 5 is provided with a display device 551 (touch panel 50), a position information calculation unit 571, a map information creation unit 572, and a travel route generation unit 573. Be prepared. Each functional unit is constructed with hardware, software, or both with a CPU as a core member in order to perform processing related to field shape acquisition.
 機体位置算出部311は、衛星測位を用いて機体位置を算出する。衛星測位には測位ユニット8が利用され、測位ユニット8から機体位置算出部311に、例えば緯度情報、経度情報、及び高度情報からなるGPS情報が伝達される。なお、本実施形態では高度情報は、ジオイド高と標高とが合算された機体1の高さ(測位ユニット8の高さ)が相当する。機体位置とは、実空間における機体1の位置であって、緯度情報、経度情報、及び高度情報により示される。機体位置算出部311は、このようなGPS情報に基づき、実空間における機体1の位置を算出する。 The aircraft position calculation unit 311 calculates the aircraft position using satellite positioning. The positioning unit 8 is used for satellite positioning, and GPS information including latitude information, longitude information, and altitude information is transmitted from the positioning unit 8 to the aircraft position calculation unit 311. In the present embodiment, the altitude information corresponds to the height of the aircraft 1 (height of the positioning unit 8), which is the sum of the geoid height and the altitude. The aircraft position is the position of the aircraft 1 in the real space, and is indicated by latitude information, longitude information, and altitude information. The aircraft position calculation unit 311 calculates the position of the aircraft 1 in the real space based on such GPS information.
 位置情報算定部571は、作業地の外周に沿って区切られた複数の領域の夫々を走行する際に、一つの領域における走行開始時は、機体位置と機体1における外周側の後方側端部の位置とに基づいて位置情報を算定する。作業地の外周とは、田植機が植え付け作業を行う圃場の外周部分であって、圃場を区画する畦の内周部分にあたる。作業地の外周に沿って区切られた複数の領域とは、例えば圃場の外形が多角形状である場合には、多角形の各辺が相当する。また、圃場の外形が少なくとも円弧状部を有する場合には、当該円弧状部を一つの領域として、複数の領域に区分けしても良い。もちろん、外形が多角形状である場合にも、一つの辺を分割して複数の領域に区分けしても良い。 When the position information calculation unit 571 travels in each of a plurality of regions divided along the outer circumference of the work site, at the start of traveling in one region, the position of the machine and the rear end of the outer circumference of the machine 1 The position information is calculated based on the position of. The outer circumference of the work site is the outer peripheral portion of the field where the rice transplanter performs the planting work, and corresponds to the inner peripheral portion of the ridge that divides the field. The plurality of regions divided along the outer circumference of the work area correspond to each side of the polygon, for example, when the outer shape of the field is a polygon. Further, when the outer shape of the field has at least an arcuate portion, the arcuate portion may be used as one region and divided into a plurality of regions. Of course, even when the outer shape is polygonal, one side may be divided into a plurality of areas.
 以下では、理解を容易にするために、図46に示されるような圃場の外形が四角形であって、各辺が一つの領域を構成しているとして説明する。したがって、作業地の外周に沿って区切られた複数の領域とは、四角形状の外形を有する圃場の4つの辺が相当する。以下では、これらの4つの辺を、夫々、外周部分591-594として説明する。 In the following, in order to facilitate understanding, it will be described assuming that the outer shape of the field as shown in FIG. 46 is a quadrangle and each side constitutes one area. Therefore, the plurality of areas divided along the outer circumference of the work area correspond to the four sides of the field having a quadrangular outer shape. In the following, these four sides will be described as outer peripheral portions 591-594, respectively.
 一つの領域における走行開始時とは、田植機が、外周部分591-594の夫々において、走行を開始する時である。機体位置とは、田植機の位置であって、上述した機体位置算出部311により算出される。機体1における外周側の後方側端部の位置とは、図46の圃場の外周部分591-594の夫々を、反時計回りに走行する場合には、右側の摺動板ガード3Bが相当し、時計回りに走行する場合には、左側の摺動板ガード3Bが相当する。したがって、位置情報算定部571は、圃場の外周部分591-594の夫々において、走行を開始する時は、機体位置算出部311により算出された田植機の位置と、摺動板ガード3Bの位置とに基づいて、位置情報を算定する。 The time when the rice transplanter starts running in one area is the time when the rice transplanter starts running in each of the outer peripheral portions 591-594. The machine body position is the position of the rice transplanter, and is calculated by the machine body position calculation unit 311 described above. The position of the rear end portion on the outer peripheral side of the machine body 1 corresponds to the sliding plate guard 3B on the right side when traveling counterclockwise on each of the outer peripheral portions 591-594 of the field in FIG. When traveling clockwise, the sliding plate guard 3B on the left side corresponds to this. Therefore, when the position information calculation unit 571 starts traveling in each of the outer peripheral portions 591-594 of the field, the position of the rice transplanter calculated by the machine body position calculation unit 311 and the position of the sliding plate guard 3B The location information is calculated based on.
 具体的には、位置情報算定部571は、測位ユニット8の位置と摺動板ガード3Bの位置との偏差を予め記憶しておき、田植機が圃場を走行する方向(反時計回り又は時計回り)に応じて、測位ユニット8から当該走行する方向に対応した摺動板ガード3Bとの偏差を機体位置に対して加算又は減算して位置情報を算定すると良い。 Specifically, the position information calculation unit 571 stores in advance the deviation between the position of the positioning unit 8 and the position of the sliding plate guard 3B, and the direction in which the rice transplanter travels in the field (counterclockwise or clockwise). ), The deviation from the positioning unit 8 to the sliding plate guard 3B corresponding to the traveling direction may be added or subtracted from the aircraft position to calculate the position information.
 また、位置情報算定部571は、一つの領域における走行終了時は、機体位置と機体1における外周側の前方側端部の位置とに基づいて位置情報を算定する。一つの領域における走行終了時とは、田植機が、外周部分591-594の夫々において、走行を終了する時である。機体1における外周側の前方側端部の位置とは、図46の圃場の外周部分591-594の夫々を、反時計回りに走行する場合には、右側の予備苗収納装置17A(右側の予備苗収納装置17Aの右側端部)が相当し、時計回りに走行する場合には、左側の予備苗収納装置17A(左側の予備苗収納装置17Aの左側端部)が相当する。したがって、位置情報算定部571は、圃場の外周部分591-594の夫々において、走行を終了する時は、機体位置算出部311により算出された田植機の位置と、予備苗収納装置17Aの位置とに基づいて、位置情報を算定する。 Further, the position information calculation unit 571 calculates the position information based on the position of the machine body and the position of the front end portion on the outer peripheral side of the machine body 1 at the end of traveling in one area. The end of traveling in one area is the time when the rice transplanter ends traveling in each of the outer peripheral portions 591-594. The position of the front end on the outer peripheral side of the machine 1 is the reserve seedling storage device 17A on the right side (spare on the right side) when traveling counterclockwise on each of the outer peripheral portions 591-594 of the field in FIG. The right end of the seedling storage device 17A) corresponds to it, and when traveling clockwise, the spare seedling storage device 17A on the left side (the left end of the spare seedling storage device 17A on the left side) corresponds to this. Therefore, when the position information calculation unit 571 finishes running in each of the outer peripheral portions 591-594 of the field, the position of the rice transplanter calculated by the machine body position calculation unit 311 and the position of the spare seedling storage device 17A The location information is calculated based on.
 具体的には、位置情報算定部571は、測位ユニット8の位置と予備苗収納装置17Aの位置との偏差を予め記憶しておき、田植機が圃場を走行する方向(反時計回り又は時計回り)に応じて、測位ユニット8から当該走行する方向に対応した予備苗収納装置17Aとの偏差を機体位置に対して加算又は減算して位置情報を算定すると良い。 Specifically, the position information calculation unit 571 stores in advance the deviation between the position of the positioning unit 8 and the position of the spare seedling storage device 17A, and the direction in which the rice transplanter travels in the field (counterclockwise or clockwise). ), The position information may be calculated by adding or subtracting the deviation from the positioning unit 8 to the spare seedling storage device 17A corresponding to the traveling direction with respect to the machine position.
 ここで、田植機には、機体1に対して昇降自在に、対地作業を行う作業ユニットが設けられる。対地作業を行う作業ユニットとは、苗植付装置3である。係る場合、位置情報算定部571は、上昇位置にある苗植付装置3が下降状態とされた時点を走行開始時とし、下降状態にある苗植付装置3が上昇位置に戻された時点を走行終了時とすると好適である。上昇位置にある苗植付装置3が下降状態とされた時点とは、苗植付装置3の植付機構22が圃場の植付面(圃場面)に対して苗の植付ができるように植付面に近づけられ、整地フロート15が接地した時点である。このような苗植付装置3の下降は、整地フロート15にセンサを設けて検出することも可能であるし、苗植付装置3の昇降操作を行う作業操作レバー11の位置を検出して行うことも可能である。 Here, the rice transplanter is provided with a work unit that can move up and down with respect to the machine 1 to perform ground work. The work unit that performs ground work is the seedling planting device 3. In such a case, the position information calculation unit 571 sets the time when the seedling planting device 3 in the ascending position is in the descending state as the start of traveling, and the time when the seedling planting device 3 in the descending state is returned to the ascending position. It is preferable to set it at the end of running. When the seedling planting device 3 in the ascending position is in the descending state, the planting mechanism 22 of the seedling planting device 3 can plant seedlings on the planting surface (field scene) of the field. It is the time when the ground leveling float 15 touches the ground when it is brought close to the planting surface. Such lowering of the seedling planting device 3 can be detected by providing a sensor on the ground leveling float 15, and the position of the work operation lever 11 for raising and lowering the seedling planting device 3 is detected. It is also possible.
 また、下降状態にある苗植付装置3が上昇位置に戻された時点とは、苗植付装置3の植付機構22が圃場の植付面から遠ざけられ、整地フロート15が植付面から離間した時点である。このような苗植付装置3の上昇も、整地フロート15にセンサを設けて検出することも可能であるし、苗植付装置3の昇降操作を行う作業操作レバー11の位置を検出して行うことも可能である。 Further, when the seedling planting device 3 in the descending state is returned to the ascending position, the planting mechanism 22 of the seedling planting device 3 is moved away from the planting surface of the field, and the ground leveling float 15 is moved from the planting surface. It is the time when they are separated. Such an ascent of the seedling planting device 3 can also be detected by providing a sensor on the ground leveling float 15, and detecting the position of the work operation lever 11 for raising and lowering the seedling planting device 3. It is also possible.
 このように、位置情報算定部571は、苗植付装置3の植付機構22が圃場の植付面に対して苗の植付ができるように植付面に近づけられ、整地フロート15が接地した時点を走行開始時とし、苗植付装置3の植付機構22が圃場の植付面から遠ざけられ、整地フロート15が植付面から離間した時点を走行終了時とすることで、位置情報の算定を適切に行うことが可能となる。 In this way, the position information calculation unit 571 is brought close to the planting surface so that the planting mechanism 22 of the seedling planting device 3 can plant seedlings with respect to the planting surface of the field, and the ground leveling float 15 touches the ground. The time when the planting mechanism 22 of the seedling planting device 3 is separated from the planting surface of the field is set as the start of traveling, and the time when the ground leveling float 15 is separated from the planting surface is set as the end of traveling. Can be calculated appropriately.
 なお、植付機構22が下降(整地フロート15が接地)しないと位置情報算定部571が位置情報の算定をすることができないように構成することも可能である。また、位置情報算定部571による算定の開始や終了は、整地フロート15の接地以外に、他の条件や複数の条件を組み合わせて判定するように構成しても良い(例えば、植付クラッチの入り切りや、マーカ作用位置や、リンクセンサや、ロータの入り切り等)。 It is also possible to configure the position information calculation unit 571 so that the position information cannot be calculated unless the planting mechanism 22 is lowered (the ground leveling float 15 is in contact with the ground). Further, the start and end of the calculation by the position information calculation unit 571 may be determined by combining other conditions and a plurality of conditions in addition to the grounding of the ground leveling float 15 (for example, on / off of the planting clutch). , Marker action position, link sensor, rotor on / off, etc.).
 ここで、例えば外周部分591を反時計回りに走行する際、外周部分591と外周部分592との交点近傍に差し掛かった際、機体1が走行と停止とを繰り返しながら走行する(機体位置を微調整しながら走行する)ことがある。係る場合、苗植付装置3の植付機構22も上昇と下降とが繰り返されることもあり得る。上述したように、位置情報算定部571は、上昇位置にある苗植付装置3が下降状態とされた時点を走行開始時とし、下降状態にある苗植付装置3が上昇位置に戻された時点を走行終了時とする。しかしながら、上記のように微調整をしながら走行した場合、例えば外周部分591の走行中に意図しない走行開始時の位置と走行終了時の位置とが複数検出される可能性がある。 Here, for example, when traveling counterclockwise on the outer peripheral portion 591, when approaching the vicinity of the intersection of the outer peripheral portion 591 and the outer peripheral portion 592, the aircraft 1 travels while repeating traveling and stopping (fine adjustment of the aircraft position). While driving). In such a case, the planting mechanism 22 of the seedling planting device 3 may also be repeatedly raised and lowered. As described above, the position information calculation unit 571 sets the time when the seedling planting device 3 in the ascending position is in the descending state as the start of traveling, and the seedling planting device 3 in the descending state is returned to the ascending position. The time point is the end of running. However, when traveling while making fine adjustments as described above, for example, there is a possibility that a plurality of unintended positions at the start of travel and positions at the end of travel may be detected during travel of the outer peripheral portion 591.
 そこで、位置情報算定部571は、前回の走行開始時の位置から次の走行開始時の位置までの間における機体1の移動距離が、予め設定された距離以下である場合には、前回の走行開始時の位置を無効とすると良い。すなわち、上昇位置にある苗植付装置3が下降状態とされてから、上昇位置に戻され、更に上昇位置にある苗植付装置3が下降状態とされるまでの間に田植機が走行した移動距離が、予め設定された距離(例えば数十cm)以下である場合には、微調整をしながらの走行の可能性が高いことから、前回の走行開始時の位置を無効とすると良い。なお、係る場合、前回の走行開始時の前に、苗植付装置3が上昇位置に戻されたことによる走行終了時の位置も無効とすると良い。 Therefore, when the movement distance of the aircraft 1 from the position at the start of the previous run to the position at the start of the next run is less than or equal to the preset distance, the position information calculation unit 571 makes the previous run. It is good to invalidate the starting position. That is, the rice transplanter ran between the time when the seedling planting device 3 in the ascending position was put into the lowered state, the time when it was returned to the ascending position, and the time when the seedling planting device 3 in the ascending position was put into the descending state. When the moving distance is less than or equal to a preset distance (for example, several tens of cm), there is a high possibility of traveling while making fine adjustments, so it is preferable to invalidate the position at the start of the previous traveling. In such a case, it is preferable that the position at the end of the running due to the seedling planting device 3 being returned to the raised position before the start of the previous running is also invalid.
 具体的には、図47に示されるような、T=1において上昇位置にある苗植付装置3が下降状態とされてから、T=2において上昇位置に戻され、更にT=3において上昇位置にある苗植付装置3が下降状態とされるまで田植機が走行した場合には、移動距離5991が予め設定された距離(例えば数十cm)より大きいことから、T=1における前回の走行開始時の位置を無効としない。一方、T=3において上昇位置にある苗植付装置3が下降状態とされてから、T=4において上昇位置に戻され、外周部分592を走行すべく、更にT=5において上昇位置にある苗植付装置3が下降状態とされるまでの間に田植機が走行した場合には、移動距離5992が予め設定された距離(例えば数十cm)以下であることから、T=3における前回の走行開始時の位置を無効とする。この時、無効としたT=3の直前のT=2において苗植付装置3が上昇位置に戻されたことによる走行終了時の位置も無効とすると良い。 Specifically, as shown in FIG. 47, the seedling planting device 3 in the ascending position at T = 1 is brought into the descending state, then returned to the ascending position at T = 2, and further ascended at T = 3. When the rice transplanter travels until the seedling planting device 3 at the position is lowered, the moving distance 5991 is larger than the preset distance (for example, several tens of cm), so that the previous time at T = 1 Do not invalidate the position at the start of running. On the other hand, after the seedling planting device 3 in the ascending position at T = 3 is brought into the descending state, it is returned to the ascending position at T = 4, and is further in the ascending position at T = 5 in order to travel on the outer peripheral portion 592. If the rice transplanter travels before the seedling planting device 3 is lowered, the moving distance 5992 is less than or equal to a preset distance (for example, several tens of cm), so that the previous time at T = 3 The position at the start of running is invalid. At this time, it is preferable that the position at the end of traveling due to the seedling planting device 3 being returned to the ascending position at T = 2 immediately before the invalidated T = 3 is also invalidated.
 また、位置情報算定部571は、一つの領域において走行を開始してから終了するまでの間は、機体1の重心位置595から機体1の幅方向に沿って仮想的に延長した第1線596と、機体1における機体1の幅方向に沿って最も突出した突出部から機体1の長さ方向に沿って仮想的に延長した第2線597とが交差する位置に基づいて位置情報を算定すると良い。一つの領域において走行を開始してから終了するまでの間とは、圃場の外周部分591-594の夫々について、走行を開始してから終了するまでに間である。機体1の重心位置595から機体1の幅方向に沿って仮想的に延長した第1線596とは、図48において、機体1の重心となる位置(重心位置595)から、機体1の幅方向である左右方向に平行に延長した線が相当する。機体1における機体1の幅方向に沿って最も突出した突出部とは、機体1において、機体1の幅方向である左右方向に沿って最も突出している部位が相当する。本実施形態では、図48に示されるように、摺動板ガード3Bが相当する。このため、機体1における機体1の幅方向に沿って最も突出した突出部から機体1の長さ方向に沿って仮想的に延長した第2線597とは、図48において、摺動板ガード3Bから、機体1の長さ方向である前後方向に平行に延長した線が相当する。 In addition, the position information calculation unit 571 virtually extends from the center of gravity position 595 of the machine 1 along the width direction of the machine 1 from the start to the end of running in one area, the first line 596. And, when the position information is calculated based on the position where the second line 597, which is virtually extended along the length direction of the machine 1 from the protruding portion most protruding along the width direction of the machine 1 in the machine 1, intersects. good. The period from the start to the end of the running in one area is the period from the start to the end of the running for each of the outer peripheral portions 591-594 of the field. The first line 596, which is virtually extended from the center of gravity position 595 of the airframe 1 along the width direction of the airframe 1, is the width direction of the airframe 1 from the position (center of gravity position 595) which is the center of gravity of the airframe 1 in FIG. Corresponds to a line extending parallel to the left-right direction. The most protruding portion of the machine body 1 along the width direction of the machine body 1 corresponds to the most protruding portion of the machine body 1 along the left-right direction which is the width direction of the machine body 1. In this embodiment, as shown in FIG. 48, the sliding plate guard 3B corresponds. Therefore, in FIG. 48, the second line 597, which is virtually extended along the length direction of the machine body 1 from the most protruding portion of the machine body 1 along the width direction of the machine body 1, is the sliding plate guard 3B. Therefore, a line extending parallel to the front-rear direction, which is the length direction of the machine body 1, corresponds to the line.
 したがって、田植機が反時計回りに圃場の外周を走行する場合には、位置情報算定部571は、第1線596と右側の摺動板ガード3Bを基準に設定された第2線597との交点598Rの位置に基づいて位置情報を算定し、田植機が時計回りに圃場の外周を走行する場合には、位置情報算定部571は、第1線596と左側の摺動板ガード3Bを基準に設定された第2線597との交点598Lの位置に基づいて位置情報を算定する。なお、本実施形態では、第2線597が摺動板ガード3Bを基準に設定されているとしているが、摺動板ガード3Bに代えて、GPSアンテナから左右端を基準に設定しても良いし、前後輪等を基準にして設定しても良い。 Therefore, when the rice planting machine travels counterclockwise on the outer circumference of the field, the position information calculation unit 571 intersects with the first line 596 and the second line 597 set based on the sliding plate guard 3B on the right side. When the position information is calculated based on the position of the intersection 598R and the rice planting machine runs clockwise around the outer circumference of the field, the position information calculation unit 571 refers to the first line 596 and the sliding plate guard 3B on the left side. The position information is calculated based on the position of the intersection 598L with the second line 597 set in. In the present embodiment, the second line 597 is set based on the sliding plate guard 3B, but instead of the sliding plate guard 3B, the left and right ends may be set as a reference from the GPS antenna. However, it may be set based on the front and rear wheels and the like.
 図45に戻り、マップ情報作成部572は、位置情報に基づいて、作業地の形状を示すマップ情報を作成する。位置情報は、上述した位置情報算定部571により算定され、マップ情報作成部572に伝達される。作業地の形状を示すマップ情報とは、田植機が圃場の外周を走行して取得した位置情報により示される緯度情報及び経度情報からなる座標を連続的に繋いだ圃場の形状を示すマップにあたる。したがって、マップ情報作成部572は、位置情報算定部571により算定された位置情報により示される緯度情報及び経度情報からなる座標を連続的に繋いだ圃場の形状を示すマップを作成する。このようなマップ情報の作成は、公知の方法を利用して作成可能であるので、説明は省略する。なお、ここでは、作成途中のマップ情報も、単にマップ情報として説明する。 Returning to FIG. 45, the map information creation unit 572 creates map information indicating the shape of the work site based on the position information. The position information is calculated by the above-mentioned position information calculation unit 571 and transmitted to the map information creation unit 572. The map information showing the shape of the work site corresponds to a map showing the shape of the field in which the coordinates consisting of the latitude information and the longitude information indicated by the position information acquired by the rice transplanter traveling around the field are continuously connected. Therefore, the map information creation unit 572 creates a map showing the shape of the field in which the coordinates consisting of the latitude information and the longitude information indicated by the position information calculated by the position information calculation unit 571 are continuously connected. Since such map information can be created by using a known method, the description thereof will be omitted. Here, the map information being created is also simply described as map information.
 ここで、マップ情報作成部572がマップ情報を作成する際、タッチパネル50に作成状況を表示するように構成することも可能である。例えば、タッチパネル50において、マップ情報により示される圃場の形状を複数の指標を用いて明示するように構成することが可能である。指標とは表示画面に表示されるマーカである。したがって、マップ情報作成部572は、位置情報算定部571により算定された位置情報により示される座標に対応するように、タッチパネル50においてマーカを付すように構成することが可能である。 Here, when the map information creation unit 572 creates map information, it is also possible to configure the touch panel 50 to display the creation status. For example, the touch panel 50 can be configured to clearly indicate the shape of the field indicated by the map information using a plurality of indexes. The index is a marker displayed on the display screen. Therefore, the map information creation unit 572 can be configured to attach a marker on the touch panel 50 so as to correspond to the coordinates indicated by the position information calculated by the position information calculation unit 571.
 係る場合、表示画面において、走行開始時の位置と走行終了時の位置とが、走行開始時の位置及び走行終了時の位置以外の位置を示す指標と異なる指標で表示されるように構成すると好適である。これにより、表示画面を見た作業者に、走行開始時と走行終了時の双方の位置と、走行を開始してから走行を終了するまでの間における位置とを、直感的に把握させることが可能となる。 In such a case, it is preferable to configure the display screen so that the position at the start of running and the position at the end of running are displayed with an index different from the index indicating a position other than the position at the start of running and the position at the end of running. Is. As a result, the operator who sees the display screen can intuitively grasp both the positions at the start and end of the run and the positions between the start of the run and the end of the run. It will be possible.
 更には、表示画面において、走行開始時の位置と走行終了時の位置とが互いに異なる指標で表示されるように構成することも可能である。これにより、表示画面を見た作業者に、走行開始時の位置と走行終了時の位置とについても、直感的に把握させることが可能となる。 Furthermore, it is also possible to configure the display screen so that the position at the start of running and the position at the end of running are displayed with different indexes. This makes it possible for the operator who sees the display screen to intuitively grasp the position at the start of running and the position at the end of running.
 ここで、上述したようにマップ情報作成部572は、位置情報算定部571により算定された位置情報を用いてマップ情報を作成し、位置情報算定部571は、機体位置算出部311により算出された機体位置に基づき位置情報を算定する。マップ情報作成部572及び位置情報算定部571に対して、機体位置算出部311から機体位置が伝達されてくるが、マップ情報作成部572及び位置情報算定部571が、夫々、全ての機体位置を用いてマップ情報及び位置情報を作成すると、データ量が増大する可能性がある。 Here, as described above, the map information creation unit 572 creates map information using the position information calculated by the position information calculation unit 571, and the position information calculation unit 571 is calculated by the aircraft position calculation unit 311. Calculate position information based on the aircraft position. The aircraft position is transmitted from the aircraft position calculation unit 311 to the map information creation unit 572 and the position information calculation unit 571, but the map information creation unit 572 and the position information calculation unit 571 each set all the aircraft positions. Creating map information and location information using it may increase the amount of data.
 そこで、マップ情報作成部572は、位置情報算定部571により算定された位置情報のうち、マップ情報作成部572に伝達された位置情報のみを用いてマップ情報を作成すると好適である。これにより、機体位置算出部311から機体位置を位置情報算定部571が間引いて位置情報を算定し、当該間引いて作成した位置情報によりマップ情報を作成することができるので、データ量の増大を抑制することが可能となる。 Therefore, it is preferable that the map information creation unit 572 creates map information using only the position information transmitted to the map information creation unit 572 among the position information calculated by the position information calculation unit 571. As a result, the position information calculation unit 571 thins out the aircraft position from the aircraft position calculation unit 311 to calculate the position information, and the map information can be created from the position information created by the thinning out, so that the increase in the amount of data is suppressed. It becomes possible to do.
 また、マップ情報作成部572は、マップ情報に係るデータの量が予め設定された値以上になった場合に、作業地の形状の変化量が小さい部分に対応するデータを削除し、表示画面に当該削除したデータに対応する指標を他の指標と識別可能に明示すると好適である。マップ情報に係るデータの量が予め設定された値以上になった場合とは、マップ情報作成部572により作成されたマップ情報のデータ量が予め設定された値以上になった場合を意味する。作業地の形状の変化量が小さい部分とは、圃場の外形形状において、直線状である部分や、一定の曲率を有する円弧状の部分や、一定の変化率で変化する部分である。したがって、マップ情報作成部572は、マップ情報作成部572により作成されたマップ情報のデータ量が予め設定された値以上になった場合に、圃場の外形形状において、直線状である部分や、一定の曲率を有する円弧状の部分や、一定の変化率で変化する部分を示すデータを削除する。これにより、データ量の増大を抑制することが可能となる。また、データを削除した場合でも、タッチパネル50に表示される圃場の外形を示す指標そのものは削除せず、データを削除していない指標とは異なる指標で形状を示すと良い。これにより、作業者がタッチパネル50における圃場の形状を見た場合に、データが削除されているか否かを直感的に把握することが可能となる。なお、データを削除する場合には、取得済みのものから距離や角度変化が最も小さいものから順に削除するように構成しても良い。 Further, when the amount of data related to the map information exceeds a preset value, the map information creation unit 572 deletes the data corresponding to the portion where the amount of change in the shape of the work area is small, and displays the data on the display screen. It is preferable to clearly indicate the index corresponding to the deleted data so that it can be distinguished from other indexes. The case where the amount of data related to the map information exceeds the preset value means the case where the amount of data of the map information created by the map information creation unit 572 exceeds the preset value. The portion where the amount of change in the shape of the work site is small is a portion in the outer shape of the field that is linear, an arc-shaped portion having a constant curvature, or a portion that changes at a constant rate of change. Therefore, when the amount of map information data created by the map information creation unit 572 exceeds a preset value, the map information creation unit 572 may have a linear portion or a constant shape in the outer shape of the field. Delete the data showing the arc-shaped part having the curvature of and the part that changes at a constant rate of change. This makes it possible to suppress an increase in the amount of data. Further, even when the data is deleted, the index itself indicating the outer shape of the field displayed on the touch panel 50 may not be deleted, and the shape may be indicated by an index different from the index in which the data is not deleted. As a result, when the operator looks at the shape of the field on the touch panel 50, it is possible to intuitively grasp whether or not the data has been deleted. When deleting data, it may be configured to delete the acquired data in order from the one with the smallest change in distance or angle.
 上記構成により、田植機が圃場の外周を走行することで、マップ情報を作成することが可能となる。田植機は、このマップ情報に基づき苗植付作業を行うが、この際、走行経路生成部573により走行経路が生成される。この時、走行経路生成部573は、外周に沿って圃場を走行する際に、マップ情報により示される圃場の外周部に対して、圃場の中央側にオフセットした位置を基準として苗植付作業を行う際の走行経路を生成すると良い。
すなわち、田植機が圃場において苗植付作業を行う際に走行する走行経路は、マップ情報により規定される外形よりも中央側に所定距離だけオフセットした位置を外形として苗植付作業を行うと良い。なお、走行経路生成部573は、後述する往復経路作成部522及び周回経路作成部524を含む。
With the above configuration, it is possible to create map information by running the rice transplanter on the outer circumference of the field. The rice transplanter performs the seedling planting work based on this map information, and at this time, the traveling route is generated by the traveling route generation unit 573. At this time, when traveling the field along the outer circumference, the traveling route generation unit 573 performs the seedling planting work based on the position offset to the center side of the field with respect to the outer peripheral portion of the field indicated by the map information. It is good to generate a traveling route when doing so.
That is, it is preferable that the traveling route traveled by the rice transplanter when performing the seedling planting work in the field is performed with the outer shape offset to the center side by a predetermined distance from the outer shape defined by the map information. .. The travel route generation unit 573 includes a round-trip route creation unit 522 and a circuit route creation unit 524, which will be described later.
 また、田植機は、圃場の外周領域において苗植付作業を行う場合は、マップ情報を作成する際における機体速度と同じ速度で走行すると好適である。このため、マップ情報の作成時に、当該作成時の機体速度を記憶しておくと良い。これにより、マップ情報の作成時(空走り時)と圃場の外周部分における苗植付作業時(例えば、最終段階で行う圃場の周り植え時)とで機体速度を同じ速度にすることで、所期の位置(経路)から逸脱することなく、適切に苗植付作業を行うことが可能となる。 In addition, when performing seedling planting work in the outer peripheral area of the field, it is preferable that the rice transplanter travels at the same speed as the aircraft speed when creating the map information. Therefore, when creating the map information, it is preferable to memorize the aircraft speed at the time of the creation. As a result, the aircraft speed can be set to the same speed when creating map information (when running idle) and when planting seedlings in the outer peripheral part of the field (for example, when planting around the field at the final stage). It is possible to properly plant seedlings without deviating from the position (route) of the stage.
 次に、タッチパネル50に表示される画像を用いて説明する。圃場形状の取得を行う際に、まず、図49のように作業者に対して確認事項(注意事項)の表示を行うと良い。具体的には、図49の(A)のような、圃場における開始点と終了点との設定に関する注意事項の表示、図49の(B)のような、走行に関する注意事項の表示、図49の(C)のような、圃場における走行方向に関する注意事項の表示を行うと良い。また、夫々の表示にあっては、注意事項と共に「確認」ボタンを表示し、作業者の押下を待って次の表示を行うようにすると良い。 Next, an explanation will be given using an image displayed on the touch panel 50. When acquiring the field shape, it is preferable to first display the confirmation items (precautions) to the operator as shown in FIG. 49. Specifically, the display of precautions regarding the setting of the start point and the end point in the field as shown in FIG. 49 (A), the display of precautions regarding running as shown in FIG. 49 (B), FIG. 49. It is advisable to display precautions regarding the traveling direction in the field, such as (C). In addition, in each display, it is advisable to display a "confirmation" button together with precautions and wait for the operator to press the next display.
 注意事項の確認が終了し、田植機が上述した開始点への移動が完了すると、図50のように、作業者による「開始」ボタンの押下待ち状態とする表示を行うと良い。この時、作業者に田植機の右側が基準となっているか、あるいは左側が基準となっているかを示すサブ画像581を表示すると良い。図50では、サブ画像581に示される田植機の後方左端部に指標5811を付し、田植機の左側が基準になっていることを示している。 When the confirmation of the precautions is completed and the rice transplanter has completed the movement to the start point described above, it is advisable to display the state of waiting for the operator to press the "start" button as shown in FIG. At this time, it is preferable to display to the operator a sub-image 581 indicating whether the right side of the rice transplanter is the reference or the left side is the reference. In FIG. 50, an index 5811 is attached to the rear left end of the rice transplanter shown in the sub-image 581, indicating that the left side of the rice transplanter is the reference.
 走行を開始すると、図51に示されるように、走行に応じてマップ情報が作成される。
なお、この時、作成が完了した際に作業者が押下する「測位完了」ボタンや、作成を中断する「中断」ボタンを表示すると良い。また、田植機の右側が基準となっていることを示すサブ画像581及び指標5811も表示すると良い。
When the running is started, map information is created according to the running, as shown in FIG. 51.
At this time, it is preferable to display a "positioning complete" button pressed by the operator when the creation is completed, or a "suspend" button for interrupting the creation. It is also preferable to display a sub-image 581 and an index 5811 indicating that the right side of the rice transplanter is the reference.
 また、走行中は、図52に示されるように、第1線596と第2線597との交点598Lに基づいて指標が付され、圃場の一つの辺の測位が終了する時には、左側の予備苗収納装置17A(左側の予備苗収納装置17Aの左側端部)の位置に基づき指標が付される。次の外周部分の走行を行う場合には、図53に示されるように、後方左端部を基準に指標が付される。なお、図53に示されるように、先に走行した外周部分における終了時の位置と、次に走行した外周部分における開始時の位置の夫々には、他の指標と異なる指標を付すと良い。図54には、更に継続して走行して指標を付していった場合の表示が示される。このような指標を連続的に繋いで圃場の形状を示すマップ情報が作成される。 Further, during traveling, as shown in FIG. 52, an index is attached based on the intersection 598L between the first line 596 and the second line 597, and when the positioning of one side of the field is completed, the spare on the left side is used. An index is attached based on the position of the seedling storage device 17A (the left end of the spare seedling storage device 17A on the left side). When traveling on the next outer peripheral portion, as shown in FIG. 53, an index is attached with reference to the rear left end portion. As shown in FIG. 53, it is preferable to assign an index different from other indexes to each of the position at the end of the outer peripheral portion that has traveled first and the position at the start of the outer peripheral portion that has traveled next. FIG. 54 shows a display when the vehicle continues to travel and an index is attached. Map information showing the shape of the field is created by continuously connecting such indexes.
 上記実施形態では、圃場の外周部分を走行してマップ情報を作成することについて説明したが、圃場の外周部分を植付しながらマップ情報の作成を行っても良い。係る場合、多少の苗の踏み付けが生じる可能性があるが、効率良く苗植付作業とマップ情報の作成を行うことが可能となる。 In the above embodiment, it has been described that the map information is created by traveling on the outer peripheral portion of the field, but the map information may be created while planting the outer peripheral portion of the field. In such a case, some seedlings may be trampled, but it is possible to efficiently perform seedling planting work and map information creation.
 上記実施形態では、位置情報算定部571は、圃場の外周に沿って区切られた複数の領域毎に走行して、位置情報を算定するとして説明したが、例えば田植機が旋回中にあっては、旋回中心のみ位置情報を算定し、旋回開始前及び旋回終了後の位置情報を仮想的に繋いだ交点を圃場の角部としてみなしても良い。これにより、マップ情報を簡便に作成することが可能となる。 In the above embodiment, the position information calculation unit 571 has been described as traveling for each of a plurality of areas divided along the outer circumference of the field to calculate the position information. However, for example, when the rice transplanter is turning. , The position information may be calculated only at the center of the turn, and the intersection point where the position information before the start of the turn and after the end of the turn is virtually connected may be regarded as the corner of the field. This makes it possible to easily create map information.
 また、位置情報の算定中は、機体1の左右双方について算定し、左右のどちらの位置情報を採用するかについて切り替え可能に構成することも可能である。また、機体1の複数の位置(GPSアンテナ、前後輪、重心から左右端等)に基づいて算定した位置情報のうち、最もブレが少ない(誤差が少ない)ものを採用しても良い。 In addition, during the calculation of the position information, it is possible to calculate both the left and right sides of the aircraft 1 and to switch between the left and right position information. Further, among the position information calculated based on the plurality of positions of the machine body 1 (GPS antenna, front and rear wheels, left and right ends from the center of gravity, etc.), the one with the least blur (small error) may be adopted.
 また、所謂倣い走行時も位置情報を算定するように構成しても良いし、一つの領域から他の領域に移行する際(切り返し旋回の際)も倣い制御を行っても良い。 Further, the position information may be calculated even during the so-called copy running, or the copy control may be performed when shifting from one area to another (when turning back).
 作成されたマップ情報において、閉じられていない領域がある場合には、端点同士を繋ぐことでマップ情報を完成させることも可能である。また、閉じられていない領域がある場合には、機体1の情報(大きさ、位置、方位等)から圃場の形状を推定して圃場マップを完成させるように構成することも可能であるし、マップ情報の走行開始時の位置と走行終了時の位置との間で圃場の形状を補って完成させるように構成することも可能である。 If there is an unclosed area in the created map information, it is possible to complete the map information by connecting the end points. Further, when there is an unclosed area, it is possible to estimate the shape of the field from the information (size, position, orientation, etc.) of the aircraft 1 and configure the field map to be completed. It is also possible to supplement and complete the shape of the field between the position at the start of running and the position at the end of running in the map information.
〔ルート作成処理〕
 自動走行の目標となる走行経路(ルート)は、圃場の内部領域IAの苗植付作業を行うための内部往復経路IPLと、圃場の外周領域OAの苗植付作業を行うための周回経路と、出入口Eの近傍に設定される誘導開始可能エリアGAから内部往復経路IPLの開始点(作業開始点)Sへの移動ための開始点誘導経路とからなる。なお、圃場の外周領域OAは周回経路に沿った走行によって苗植付作業が行われる領域であり、内部領域IAは、外周領域OAの内部に残される領域である。ここでの、ルート作成処理には、往復経路作成処理と、苗補給経路作成処理、周回経路作成処理と、開始点誘導経路作成処理とが含まれている。
[Route creation process]
The travel route (route) that is the target of automatic driving is an internal reciprocating route IPL for planting seedlings in the inner area IA of the field and a circuit route for planting seedlings in the outer peripheral area OA of the field. , The start point guidance path for moving from the guidance startable area GA set in the vicinity of the entrance / exit E to the start point (work start point) S of the internal round-trip path IPL. The outer peripheral area OA of the field is an area where the seedling planting work is performed by traveling along the circumferential path, and the inner area IA is an area left inside the outer peripheral area OA. Here, the route creation process includes a round-trip route creation process, a seedling supply route creation process, a circuit route creation process, and a start point guidance route creation process.
 ルート作成に関する各種処理のために必要な機能部は、図55に示されているように、情報端末5に構築されている。この情報端末5は、機体位置算出部311、走行制御部312、作業制御部313などの機能部を構築している制御ユニット30と車載LANなどの通信線を通じて接続している。制御ユニット30は、走行機器1Dや作業装置1Cとも接続している。情報端末5に構築されている機能部は、基準辺設定部521、往復経路作成部522、走行方向決定部523、補給辺設定部531、補給制御管理部532、周回経路作成部524、運転形態管理部525、開始点設定部541、開始点誘導経路作成部542である。 As shown in FIG. 55, the functional unit required for various processes related to route creation is built in the information terminal 5. The information terminal 5 is connected to a control unit 30 that constructs functional units such as an airframe position calculation unit 311, a travel control unit 312, and a work control unit 313 through a communication line such as an in-vehicle LAN. The control unit 30 is also connected to the traveling device 1D and the working device 1C. The functional units built in the information terminal 5 include a reference side setting unit 521, a reciprocating route creation unit 522, a traveling direction determination unit 523, a supply side setting unit 531, a supply control management unit 532, a circuit route creation unit 524, and an operation mode. The management unit 525, the start point setting unit 541, and the start point guidance route creation unit 542.
 基準辺設定部521は、作業機の作業地である農場(圃場等)の外形の一辺を基準辺として設定する。往復経路作成部522は、基準辺に対して所定の方向で延びる複数の直進経路を含む内部往復経路IPLを作成する。走行方向決定部523は、内部往復経路IPLにおける走行方向を設定する。補給辺設定部531は、農場の外形の特定辺を作業機が消費する資材の資材補給辺として設定する。補給制御管理部532は、資材補給辺に向かって走行している内部往復経路IPLの直進経路の終端領域から、またはその次に走行する直進経路の始端領域から、あるいはその両方の領域から作業機を資材補給辺に寄せ付けるための補給走行制御を走行制御部312と連係して管理する。周回経路作成部524は、農場の外形を算出するために圃場の境界線に沿って走行する外形算出走行における走行軌跡に基づいて、農場の外周領域に少なくとも1本以上の周回経路を作成する。運転形態管理部525は、周回経路の運転形態として、有人自動走行、無人自動走行、手動走行からの選択を可能にする。開始点設定部541は、内部往復経路IPLを用いた作業走行の開始点Sを設定する。開始点誘導経路作成部542は、誘導条件を満たした作業機を開始点Sへ自動的に誘導するための開始点誘導経路SGLを作成する。 The reference side setting unit 521 sets one side of the outer shape of the farm (field, etc.), which is the work place of the work machine, as the reference side. The round-trip route creation unit 522 creates an internal round-trip path IPL including a plurality of straight paths extending in a predetermined direction with respect to the reference side. The traveling direction determination unit 523 sets the traveling direction in the internal reciprocating path IPL. The supply side setting unit 531 sets a specific side of the outer shape of the farm as a material supply side of the material consumed by the work machine. The replenishment control management unit 532 uses the work equipment from the end region of the straight path of the internal reciprocating path IPL traveling toward the material supply side, the start region of the straight path traveling next, or both regions. The replenishment running control for attracting the material to the material replenishment side is managed in cooperation with the running control unit 312. The orbital route creation unit 524 creates at least one or more orbital routes in the outer peripheral region of the farm based on the travel locus in the outer shape calculation run that runs along the boundary line of the field to calculate the outer shape of the farm. The driving mode management unit 525 enables selection from manned automatic driving, unmanned automatic driving, and manual driving as the driving mode of the circuit route. The start point setting unit 541 sets the start point S of the work run using the internal reciprocating path IPL. The start point guidance route creation unit 542 creates a start point guidance route SGL for automatically guiding the work machine satisfying the guidance condition to the start point S.
 ルート作成に関する機能部を実現するプログラムは、上述したように、情報端末5にインストールされている。各種処理は、情報端末5のタッチパネル50の画面に表示される内容と、タッチパネル50に対する操作によって進行する。 As described above, the program that realizes the functional part related to route creation is installed in the information terminal 5. The various processes proceed according to the contents displayed on the screen of the touch panel 50 of the information terminal 5 and the operation on the touch panel 50.
 内部領域IAでのルート作成では、図56に示すように、植付の基準辺の選択、及び、植付方向の選択が行われる。この例では、マップ作成処理によって得られた圃場の外形が四角形であり、その各辺と、出入口Eの出入辺が植付基準辺の候補となっている。植付基準辺の候補となる辺には、数値が付与されている。作業者は、所望の辺を基準辺として選択し、さらに、植付方向が基準辺に対して平行とするか、垂直とするかを選択する。この植付方向は、内部領域IAにおける往復走行での直進経路の方向となる。往復走行では直進経路と旋回経路とを組み合わせた経路が用いられるが、この直進経路は、直線状には限られず、大きな湾曲状、あるいは蛇行状であってもよい。 In the route creation in the internal area IA, as shown in FIG. 56, the reference side for planting and the planting direction are selected. In this example, the outer shape of the field obtained by the map creation process is a quadrangle, and each side thereof and the entrance / exit side of the entrance / exit E are candidates for the planting reference side. Numerical values are given to the sides that are candidates for the planting reference side. The operator selects a desired side as a reference side, and further selects whether the planting direction is parallel to or perpendicular to the reference side. This planting direction is the direction of the straight path in the reciprocating travel in the internal region IA. In the round-trip travel, a route that combines a straight route and a turning route is used, but the straight route is not limited to a straight line, and may be a large curved shape or a meandering shape.
〔往復工程〕
 植付方向の選択に関しては、基準辺が選択されると、自動的に往復走行での往復回数が少なくなる植付方向が自動的に選択されるように構成してもよい。また、同一圃場または類似圃場における初回の選択時は、圃場の最も長い辺に平行となるような植付方向がデフォルトとして設定され、それ以降の植付方向の選択時は、前回の選択結果がデフォルトとして設定されるように構成してもよい。
[Round-trip process]
Regarding the selection of the planting direction, when the reference side is selected, the planting direction in which the number of round trips in the reciprocating travel is reduced may be automatically selected. In addition, when the first selection is made in the same field or similar field, the planting direction is set as the default so that it is parallel to the longest side of the field, and when the subsequent planting direction is selected, the previous selection result is displayed. It may be configured to be set as the default.
 なお、圃場形状は、長方形に限らず、台形やひし形などの四角形でもよいし、さらに三角形や、五角形以上の多角形でもよい。従って、基準辺としては、長方形の四辺に限らず、対向する辺が非平行となる辺が選択されてもよい。また、湾曲された辺を基準辺として選択した場合は、その辺に沿った走行経路が設定されてもよいし、徐々に直線状に慣らされた経路が設定されてもよい。一方で、このような場合は誤差が大きくなるので基準辺に選択できないようにしてもよい。 The field shape is not limited to a rectangle, but may be a quadrangle such as a trapezoid or a rhombus, and may be a triangle or a polygon of a pentagon or more. Therefore, the reference side is not limited to the four sides of the rectangle, and a side in which the opposite sides are non-parallel may be selected. Further, when a curved side is selected as a reference side, a traveling route along the side may be set, or a route gradually acclimatized to a straight line may be set. On the other hand, in such a case, since the error becomes large, it may not be possible to select the reference side.
〔苗補給〕
 内部領域IAにおける往復走行での作業では、その作業途中に苗補給が必要となる。なお、ここでの苗補給はその他の資材補給(薬剤、肥料、燃料など)に読み替えられる。図57には、この苗補給に関する選択画面が示されている。苗補給では、田植機は、往復走行を中断して、畦に接近しなければならないが、この苗補給のための畦接近走行が可能となる位置での田植機の自動停止が可能である。この畦接近走行のための自動停止(苗補給辺自動停止)をするかしないかの選択がこの画面を通じて行うことができる。さらに、苗補給を行う辺は、往復走行での直進経路と交差する圃場辺であり、この辺を選択することもこの画面を通じて行うことができる。選択可能な辺は、1辺でもよいし、2辺でもよい。また、変形した圃場では、隣接する2つの辺が補給辺の候補となる可能性がある。
[Seedling supply]
In the reciprocating work in the internal area IA, seedling replenishment is required during the work. The seedling replenishment here is read as other material replenishment (drugs, fertilizers, fuel, etc.). FIG. 57 shows a selection screen for this seedling supply. In seedling replenishment, the rice transplanter must interrupt the round-trip travel and approach the ridges, but the rice transplanter can be automatically stopped at a position where the ridges can be approached for this seedling replenishment. Through this screen, it is possible to select whether or not to automatically stop (automatically stop the seedling supply side) for this ridge approaching run. Further, the side for supplying seedlings is a field side that intersects the straight path in the round-trip travel, and this side can also be selected through this screen. The selectable side may be one side or two sides. Also, in a deformed field, two adjacent sides may be candidates for supply sides.
 圃場が特殊な場合、資材補給辺の候補は、全ての圃場辺の中から選択可能にする必要がある。このため、そのような特殊圃場が考慮される場合、資材補給辺を全ての圃場辺の中から選択できるように構成する。 When the field is special, the candidate for the material supply side needs to be selectable from all the field sides. Therefore, when such a special field is considered, the material supply side is configured so that it can be selected from all the field sides.
 外周領域での周回経路に沿った作業走行(周り植え走行)においても、苗補給が必要な場合がある。この場合でも、機体1は圃場辺で自動停止させられる。その際、機体1が圃場辺から所定距離以上離れている場合、機体1を圃場辺に横寄せしてから、自動停止させられる。自動停止すると、補給を促す報知が行われる。 It may be necessary to replenish seedlings even during work running along the circuit route in the outer peripheral area (running around planting). Even in this case, the machine 1 is automatically stopped at the field side. At that time, if the machine 1 is separated from the field side by a predetermined distance or more, the machine 1 is moved sideways to the field side and then automatically stopped. When automatically stopped, a notification prompting replenishment is performed.
 苗補給辺の選択に関して、基準辺が選択されることで、好ましくは自動的に周り植え走行での苗補給辺が決定されるように構成されてもよいし、苗補給辺を選択してから、好ましくは自動的に基準辺が決定されるように構成されてもよい。 Regarding the selection of the seedling supply side, it may be configured so that the reference side is selected, preferably the seedling supply side in the surrounding planting run is automatically determined, or after the seedling supply side is selected. , Preferably configured so that the reference edge is automatically determined.
 苗補給では、一般的に、機体1の前部が畦(補給辺)に接近する必要があるので、旋回に入る前、あるいは旋回の途中で、畦に向かって前進する。補給後は、後進と旋回とによって、次の直進経路に入る。次の直進経路に入る際に行われる旋回制御では旋回半径を固定した制御が好都合である。この場合、機体1は、元の直進経路の通常の旋回走行が行われる位置まで後進で戻り、そこから通常の旋回走行により次の直進経路に入ることになる。薬剤補給などでは、機体1の後部が畦に接近する必要があるので、畦接近走行として、旋回してから後進する旋回後進畦寄せ走行が採用される。補給後は、前進で次の直進経路に入る。これらの一連の苗補給走行も、リモコン90等を用いた遠隔制御が可能である。 In seedling replenishment, it is generally necessary for the front part of the aircraft 1 to approach the ridge (replenishment side), so move forward toward the ridge before entering the turn or in the middle of the turn. After replenishment, it enters the next straight route by moving backward and turning. In the turning control performed when entering the next straight path, it is convenient to control with a fixed turning radius. In this case, the aircraft 1 reversely returns to the position where the normal turning path of the original straight path is performed, and then enters the next straight path by the normal turning path. Since it is necessary for the rear portion of the machine body 1 to approach the ridges in the case of chemical replenishment or the like, as the ridge approaching running, a turning backward ridge approaching running in which the aircraft turns and then moves backward is adopted. After replenishment, move forward to enter the next straight route. These series of seedling replenishment runs can also be remotely controlled using a remote controller 90 or the like.
 変形している畦の近くで苗補給が行われた場合、苗補給後に次の直線経路に戻る際に行われる旋回走行において、機体1が畦に接近する可能性がある。このような旋回走行では、通常行われる旋回に比べて、旋回開始位置を畦から遠い位置に設定したり、旋回半径を変更したりする。 If seedlings are replenished near the deformed ridges, there is a possibility that the aircraft 1 will approach the ridges in the turning run that is performed when returning to the next straight path after the seedlings are replenished. In such a turning run, the turning start position is set to a position farther from the ridge and the turning radius is changed as compared with the usual turning.
 資材補給経路に直進経路が含まれる場合、先行して行われた直進走行で得られた走行軌跡から基準線を作成し、この基準線に基づいて当該直進経路を自動走行することも可能である。 When the material supply route includes a straight route, it is also possible to create a reference line from the travel locus obtained in the preceding straight travel and automatically travel on the straight route based on this reference line. ..
 資材補給場所が、補給辺ではなく、限定した補給点である場合には、資材補給のための畦接近走行は、この補給点を目標点とする自動走行で行われる。 If the material supply location is not a supply side but a limited supply point, the ridge approaching run for material supply is performed by automatic driving with this supply point as the target point.
 苗補給のための自動停止を選択した場合、補給辺側の外周領域(枕地とも称する)OAに自動走行で直進する。この自動走行のためには、内部往復経路IPLの直進経路を延長させることによって生成された延長経路が利用される。その延長経路の走行中は、植付・播種・施肥などの作業を行われず、畦に接近した処理位置で、機体1は自動停止する。 If automatic stop for seedling replenishment is selected, the vehicle will automatically drive straight to the outer peripheral area (also called headland) OA on the replenishment side. For this automatic traveling, an extension route generated by extending the straight path of the internal round-trip path IPL is used. While traveling on the extension route, operations such as planting, sowing, and fertilizing are not performed, and the machine body 1 automatically stops at a processing position close to the ridge.
 自動停止を選択せずに補給を行う場合には、旋回走行の前や旋回途中で、苗植付装置3が上昇している時に、手動操作またはリモコン90を用いた割込み制御によって、畦接近走行が可能となる。その場合は、補給後に次の開始点まで機体1を手動で走行させないと、自動運転の再開は不能となる。もちろん、補給が不要な場合には、自動停止を選択する必要はない。補給が不要となる例は、密苗、ロング(ロール)マット苗を採用している場合、苗植付装置3ではなく直播装置が装備されている場合、などである。補給とは関係なしに、リモコン90を用いた操作などによって、旋回走行の前や旋回途中で機体1を停止するように設定してもよい。 When replenishment is performed without selecting automatic stop, when the seedling planting device 3 is raised before or during the turning, the ridge approaching running is performed by manual operation or interrupt control using the remote controller 90. Is possible. In that case, the automatic operation cannot be restarted unless the aircraft 1 is manually driven to the next starting point after replenishment. Of course, if you don't need replenishment, you don't have to choose automatic stop. Examples that do not require replenishment include dense seedlings, long (roll) mat seedlings, and a direct sowing device instead of the seedling planting device 3. The aircraft 1 may be set to be stopped before or during the turning run by an operation using the remote controller 90 or the like regardless of the replenishment.
 また、補給のための自動停止の要否選択にかかわらず、一時停止中に資材補給するかどうか作業者に判断させる時間を与えるために、自動的な一時停止と走行再開とを行う制御モードがあってもよい。この停止により、補給資材の残量を目視でチェックすることができる。 In addition, regardless of whether or not automatic stop is required for replenishment, a control mode that automatically pauses and resumes running is provided to give the operator time to decide whether to replenish materials during the pause. There may be. With this stop, the remaining amount of replenishment material can be visually checked.
 リモコン90等による遠隔操縦を行っている場合には、補給資材の残量チェックは、作業者による目視ではなく、残量センサを用いて行い、その検出結果または資材切れをリモコン90に送信する構成や、音声で周囲に報知する構成を採用してもよい。残量センサによって資材切れ(資材不足)が検出された場合には、自動停止することができる。このような自動停止や資材切れ(資材不足)の報知は、内部領域IAでの作業走行だけでなく、外周領域OAでの作業走行においても行うことができる。その際、資材補給位置までの資材補給経路が作成されるように構成してもよい。 When remote control is performed by the remote controller 90 or the like, the remaining amount check of the replenishment material is performed by using the remaining amount sensor instead of the visual inspection by the operator, and the detection result or the material shortage is transmitted to the remote controller 90. Alternatively, a configuration may be adopted in which the surroundings are notified by voice. When the remaining amount sensor detects that the material is out (insufficient material), it can be automatically stopped. Such automatic stop and notification of material shortage (material shortage) can be performed not only in the work run in the inner region IA but also in the work run in the outer peripheral region OA. At that time, the material supply route to the material supply position may be created.
 残量センサは、カメラによる撮影画像を入力として苗などの資材残量を出力する機械学習モデルで構成することができる。また、資材残量が推定できる場合、資材補給するために自動停止する位置も推定できる。この推定位置に基づいて、資材補給のための自動停止を予約することができる。この予約は自動または手動で行うことができ、予約のキャンセルは手動で行うことができる。 The remaining amount sensor can be configured with a machine learning model that outputs the remaining amount of materials such as seedlings by inputting the image taken by the camera. In addition, if the remaining amount of material can be estimated, the position where the material is automatically stopped to replenish the material can also be estimated. Based on this estimated position, an automatic stop for material supply can be reserved. This reservation can be made automatically or manually, and the reservation can be canceled manually.
 資材残量が推定できる場合、推定された残量で、次の補給可能な位置まで走行可能であるかどうかの判定が行われる。この判定結果に基づいて、資材補強のために機体1が停止し、資材補給走行を開始するための予想位置の報知が行われる。 If the remaining amount of material can be estimated, it is judged whether or not it is possible to travel to the next replenishable position with the estimated remaining amount. Based on this determination result, the aircraft 1 is stopped to reinforce the material, and the predicted position for starting the material replenishment run is notified.
〔周り植え行程〕
 この実施形態では、外周領域OAでの作業走行(周り植え走行)は、周回経路として、外周領域(枕地)OAの内側に位置する内側周回経路IRLと、外周領域OAの外側に位置する外側周回経路ORLとに沿っておこなわれる。内側周回経路IRLに沿った走行は、内側周回走行または内側周り走行と呼ばれ、外側周回経路ORLに沿った走行は、外側周回走行または外側周り走行と呼ばれる。マップ作成において機体1が走行した走行軌跡に実質的に一致するように作成される。内側周回経路IRLは、内部往復経路IPLと外側周回経路ORLの間にある経路である。内側周回走行及び外側周回走行は、有人自動、無人自動または手動で行うことができる。
[Around planting process]
In this embodiment, the work run (surrounding planting run) in the outer peripheral region OA includes an inner orbital path IRL located inside the outer peripheral region (headland) OA and an outer side located outside the outer peripheral region OA. It is performed along the circuit path ORL. Traveling along the inner orbital path IRL is referred to as inner orbital or inner peripheral travel, and travel along the outer orbital path ORL is referred to as outer or outer orbital travel. In the map creation, the aircraft 1 is created so as to substantially match the travel locus on which the aircraft 1 has traveled. The inner orbital path IRL is a path between the inner reciprocating path IPL and the outer orbital path ORL. The inner lap and the outer lap can be manned, unmanned or manually performed.
 図58は、この内側周回走行と外側周回走行とを自動と手動とのどちらで走行させるかを選択する画面である。画面右側には、自動・手動の選択領域が表示され、画面左側には、模式的な走行経路が表示されている。一周分の周回経路しか表示されていないが、この実施形態では、周回経路として、内側周回経路IRLと外側周回経路ORLとが表示される。 FIG. 58 is a screen for selecting whether to run the inner or outer lap running automatically or manually. An automatic / manual selection area is displayed on the right side of the screen, and a schematic traveling route is displayed on the left side of the screen. Although only one orbital route is displayed, in this embodiment, the inner orbital route IRL and the outer orbital route ORL are displayed as the orbital route.
 実際の作業走行においても、図58に類似する、内側周回経路IRLと外側周回経路ORLとが表示されるように構成されている。しかしながら手動走行が選択された周回経路は画面から消去される。作業済の領域は、植え跡として作業幅で塗りつぶされる。これに代えて、手動走行が選択された場合には、対応する周回経路が画面から消去されるとともに、植え跡も表示されないような構成であってもよい。さらには、手動走行される周回経路とその植え跡、及び自動走行される周回経路とその植え跡の表示形態を変えて、両方が識別可能に表示されてもよい。なお、画面における経路や植え跡の表示形態には、表示色や表示線種などが含まれている。異なる属性値を有する経路や植え跡は、その表示色や表示線種を変えることにより、識別可能となる。したがって、本願発明において、画面において色を変えるという表現には、線種を変えるということも含まれており、逆に画面において線種を変えると色を変えるということも含まれている。 Even in actual work driving, the inner circuit path IRL and the outer circuit path ORL, which are similar to those in FIG. 58, are displayed. However, the circuit route for which manual driving is selected is deleted from the screen. The worked area is filled with the working width as a planting mark. Instead of this, when manual running is selected, the corresponding circuit route may be deleted from the screen and the planting trace may not be displayed. Further, both may be identifiable by changing the display form of the manually traveled circuit route and its planting trace, and the automatically traveled circuit route and its planting trace. In addition, the display form of the route and the planting mark on the screen includes the display color and the display line type. Routes and planting traces with different attribute values can be identified by changing the display color and display line type. Therefore, in the present invention, the expression of changing the color on the screen includes changing the line type, and conversely, changing the line type on the screen also includes changing the color.
 内側周回経路IRLが手動走行に設定されると、外側周回経路ORLも手動走行に切り替わり、走行経路が表示されなくなる。但し、走行経路は、手動走行における案内の役割を果たすことができるので、手動走行であっても、少なくとも外側周回経路ORLは案内として利用するために表示させたままにしてもよい。 When the inner circuit route IRL is set to manual travel, the outer circuit route ORL also switches to manual travel, and the travel route is not displayed. However, since the travel route can play a role of guidance in manual travel, at least the outer circuit route ORL may be left displayed for use as guidance even in manual travel.
 この実施形態では、外側周回経路ORLは自動走行であっても有人自動走行になるように規定されているが、外側周回経路ORLはマップ作成のティーチング走行の走行軌跡に基づいて、しかもその走行は苗植付装置3を下降させた状態での走行であるので、無人自動走行でも問題が生じる可能性は小さい。このことから、外側周回経路ORLに対しても無人自動走行が選択できるように構成してもよい。また、内側周回経路IRLと外側周回経路ORLはそれぞれ別経路として設定されているのでアルゴリズムが複雑になりやすいが、最初から2つの経路のつなぎ経路を設けてもよい。または、内側周回経路IRLの終了時点でその終点から外側周回経路ORLの開始位置に向けて誘導する経路を設けてもよい。 In this embodiment, the outer orbital route ORL is defined to be manned automatic traveling even if it is an automatic traveling, but the outer orbital route ORL is based on the traveling locus of the teaching traveling of map creation, and the traveling is performed. Since the seedling planting device 3 is running in a lowered state, it is unlikely that a problem will occur even in unmanned automatic running. For this reason, unmanned automatic driving may be selected for the outer circuit route ORL. Further, since the inner circuit path IRL and the outer circuit path ORL are set as separate routes, the algorithm tends to be complicated, but a connecting route of the two routes may be provided from the beginning. Alternatively, a path may be provided to guide the inner circuit path IRL from its end point to the start position of the outer circuit path ORL at the end point.
 この実施形態では、往復走行における旋回走行のためのスペースを十分にとるために、外周領域OAに形成される周回経路は、2周の周回経路と既定されている。しかしながら、機種や作業条数によっては、1周の周回経路で十分である。したがって、周回経路が1周の周回経路で形成されることを選択できるような構成にしてもよい。但し、周回経路が1周の周回経路で形成される場合、往復走行で用いられる旋回経路には、後進を用いた切り返し経路、あるいは作業幅を超えるつなぎ直進経路でアングル状の2つの旋回経路をつなぐつなぎ旋回経路を採用することが好ましい。その際、つなぎ直進経路の走行では、周回経路を倣うような走行制御が行われるが、畦との間隔を規定している越境判定の許容範囲を拡大するなどの特例措置が採用される。さらには、旋回途中で畦との干渉リスクがある場合に後進等を用いた複数回切り返しで徐々に旋回する旋回リトライ機能も採用される。 In this embodiment, the orbital path formed in the outer peripheral region OA is defined as a two-lap orbital path in order to secure sufficient space for turning in the reciprocating run. However, depending on the model and the number of work lines, one round route is sufficient. Therefore, the configuration may be such that the orbital path can be selected to be formed by one orbital path. However, when the orbital path is formed by a one-round orbital path, the turning path used for the reciprocating run includes a turning path using reverse movement or two angle-shaped turning paths with a connecting straight-ahead path exceeding the working width. It is preferable to adopt a connecting turning path. At that time, when traveling on a straight-ahead route, travel control is performed so as to imitate the orbital route, but special measures such as expanding the permissible range of cross-border determination that regulates the distance from the ridge are adopted. Furthermore, when there is a risk of interference with the ridges during turning, a turning retry function that gradually turns by turning back multiple times using reverse movement or the like is also adopted.
 図59と図60には上述した特殊な旋回走行(旋回経路)が例示されている。図59は、つなぎ旋回の一例を示している。このつなぎ旋回は、1つの直進経路から隣接する直進経路ではなく、その次の次の直進経路に移行するための移行走行である。このつなぎ旋回は、ほぼ90度の方向転換を行う第1旋回経路(図59では符号Q1が付与されている)と、直線経路(図59では符号Q3が付与されている)と、第2旋回経路(図59では符号Q2が付与されている)とからなる。直線経路の長さは、移行先の直進経路の位置に応じて算定される。図60は、後進を用いた切り返し旋回の一例を示している。切り返し旋回は、走行している直進経路から旋回走行で隣接経路に移行する際に、その旋回走行のためのスペース(畦までの距離:外周領域OAの幅)が少ない場合に用いられる。図60で示された切り返し旋回は、第1旋回経路(図60では符号R1が付与されている)と、後進逆旋回経路(図60では符号R2が付与されている)と第2旋回経路(図60では符号R3が付与されている)とからなる。第1旋回経路と後進逆旋回経路とにより切り返しと称せられる走行が実現するが、この切り返しを増やすことで、旋回走行に必要なスペースを小さくすることができる。 FIGS. 59 and 60 exemplify the above-mentioned special turning run (turning path). FIG. 59 shows an example of a connecting turn. This connecting turn is a transitional run for shifting from one straight path to an adjacent straight path, not to the next straight path. This joint turn consists of a first turn path (which is given the code Q1 in FIG. 59), a straight path (which is given the code Q3 in FIG. 59), and a second turn, which makes a direction change of about 90 degrees. It consists of a route (in FIG. 59, the reference numeral Q2 is assigned). The length of the straight route is calculated according to the position of the straight route of the transition destination. FIG. 60 shows an example of a turning turn using reverse movement. The turning turn is used when the space for the turning running (distance to the ridge: width of the outer peripheral region OA) is small when shifting from the running straight path to the adjacent path by the turning run. The turn-back turn shown in FIG. 60 includes a first turn path (reference numeral R1 is assigned in FIG. 60), a reverse reverse turn path (reference numeral R2 is assigned in FIG. 60), and a second turn path (reference numeral R2 is assigned in FIG. 60). In FIG. 60, the reference numeral R3 is assigned). The first turning path and the reverse reverse turning path realize a running called turning, and by increasing this turning, the space required for turning can be reduced.
 旋回リトライ機能が実行されると、旋回時に機体1の旋回軌跡が推定され、推定された旋回軌跡に基づいて、限定されたスペース内で、あるいは畦まで所定の間隔をあけて、作業機が旋回可能であるかどうか判定される。その判定結果が旋回可能であればそのまま旋回が続行されるが、その判定結果が旋回不能であれば、判定結果が旋回可能になるまで、後進を用いた切り返し走行が行われる。その際、判定結果が旋回不能であれば、作業者に報知して、自動走行から手動走行に移行してもよいし、自動で、切り返し走行を行ってもよい。 When the turning retry function is executed, the turning locus of the aircraft 1 is estimated at the time of turning, and the working machine turns within a limited space or at a predetermined interval to the ridge based on the estimated turning locus. It is determined whether it is possible. If the determination result is that the turning is possible, the turning is continued as it is, but if the judgment result is that the turning is not possible, the turning run using the reverse movement is performed until the judgment result can be turned. At that time, if the determination result is that the vehicle cannot turn, the operator may be notified to shift from automatic driving to manual driving, or automatic turning-back driving may be performed.
 周り植え走行は畦近くの走行となるので、その前に作業者が認識しておくべき情報がある。このため、周り植え走行が開始される前の段階で、作業者に注意を喚起する報知、少なくとも外側周回走行は、有人で行われることを報知する。周り植え走行の前に行われる往復走行での実績に基づく警告が好都合である。その際、少なくとも、情報端末5の画面で注意喚起する報知が行わることが好ましい。別形態として、外側周回走行を有人で行うか無人で行うかを選択できても良い。また、報知は音声や積層灯等を用いてもよい。 Because the surrounding planting run is a run near the ridge, there is information that the worker should be aware of before that. For this reason, before the start of the surrounding planting run, the notification that calls attention to the operator, at least the outer lap running, is notified that the manned operation is performed. It is convenient to give a warning based on the results of the round-trip running before the surrounding planting run. At that time, it is preferable that at least the notification that calls attention is performed on the screen of the information terminal 5. As another form, it may be possible to select whether the outer lap running is performed manned or unmanned. Further, the notification may use voice, a laminated light, or the like.
 手動走行で外側周回走行が行われる場合、先に行われる内側周回走行時に外側周回走行の目安となるマーカを引くことが好ましい。このマーカ跡が外側周回走行を手動で行う作業者の操縦を助ける。 When the outer lap running is performed by manual running, it is preferable to draw a marker that serves as a guide for the outer lap running during the inner lap running that is performed first. This marker mark helps the operator who manually performs the outer orbiting.
 内側周回経路IRL及び外側周回経路ORLは、直進経路と方向転換経路との組み合わせである。これらの周回経路を用いて周り植え走行を行う際には、既に内部領域IAの苗植付が終了しているので、内部領域は既植領域となっている。従って、1つの直進経路での植付終了位置が、既植領域に揃う位置とすることで、当該植付終了位置と畦との間に既植領域と畦との間と同じ非植付スペースが生じる。この非植付スペースが次の直進経路を用いた走行のための方向転換走行(切り返し旋回)のためのスペースとして利用できるので、当該方向転換走行が容易となる。 The inner orbital route IRL and the outer orbital route ORL are a combination of a straight route and a direction change route. When the surrounding planting is carried out using these orbital routes, the internal area is already planted because the seedling planting of the internal area IA has already been completed. Therefore, by setting the planting end position on one straight path to be aligned with the planted area, the same non-planting space between the planted area and the ridge is provided between the planting end position and the ridge. Occurs. Since this non-planting space can be used as a space for turning (turning back) for running using the next straight route, the turning running becomes easy.
 内部領域IAの往復走行での直進経路の端部位置が他の直進経路の端部位置と異なっている領域、つまり内部領域IAのコーナ領域に凹部や凸部が存在する領域では、内側周回経路IRLがクランク状に折れ曲がることになる。このため、内側周回経路IRLの外側を被さるように延びる外側周回経路ORLでの走行による苗植付跡は、内側周回経路IRLに沿った走行での苗植付跡にオーバーハングすることになる。これを回避するために、オーバーハングとなる植付爪に対応する各条クラッチをオフする各条クラッチ制御が行われる。 In the area where the end position of the straight path in the reciprocating travel of the internal area IA is different from the end position of the other straight path, that is, the area where the corner area of the internal area IA has a concave portion or a convex portion, the inner circular path The IRL will bend like a crank. Therefore, the seedling planting trace by running on the outer orbital path ORL extending so as to cover the outside of the inner orbital path IRL overhangs the seedling planting mark by running along the inner orbital path IRL. In order to avoid this, each row clutch control for turning off each row clutch corresponding to the overhanging planting claw is performed.
 ここで、図61を用いて、各条クラッチ制御を伴う植付作業走行を説明する。図61における(a)では、8条分の植付機構(植付爪)22の全てが作動状態であり(各条クラッチの全てがオン)、8条の植付跡が形成されている。(b)では、左側の2条分の植付機構22が非作動であり(各条クラッチのオフ)、6条の植付跡が形成されている。(c)では、左側の4条分の植付機構22が非作動であり(各条クラッチのオフ)、4条の植付跡が形成されている。このような各条クラッチ制御によって、種々の植付跡が形成可能である。例えば、図61における(d)では、左側から順次植付機構22を非作動にしていくことで、三角形状の植付跡が形成される。さらには、図61における(e)に示すように、左側から植付機構22を順次非作動にし、その後順次作動にしていくことで、湾曲した側面を有する植付跡が形成される。あるいは、図示されていないが、階段状、凸状、凹状の側面を有する植付跡の形成も可能である。 Here, with reference to FIG. 61, the planting work running accompanied by the clutch control of each row will be described. In FIG. 61A, all of the eight-row planting mechanism (planting claw) 22 are in the operating state (all of the eight-row clutches are on), and eight-row planting marks are formed. In (b), the planting mechanism 22 for the two rows on the left side is inactive (the clutch for each row is off), and the planting marks for the six rows are formed. In (c), the planting mechanism 22 for the four rows on the left side is inactive (the clutch for each row is off), and the planting marks for the four rows are formed. By such control of each row clutch, various planting marks can be formed. For example, in FIG. 61 (d), a triangular planting mark is formed by sequentially deactivating the planting mechanism 22 from the left side. Further, as shown in FIG. 61 (e), the planting mechanism 22 is sequentially deactivated from the left side and then sequentially actuated to form a planting mark having a curved side surface. Alternatively, although not shown, it is possible to form planting marks with stepped, convex or concave sides.
 内側周回経路IRLは、往復走行での直進経路の各端部位置に沿うように作成され、その自動走行時には、内側周回経路IRLを目標経路として、目標経路からのずれを最小にする制御が行われる。これに対して、外側周回経路ORLは、マップ作成のためのティーチング走行での走行軌跡に基づいて作成されており、外側周回経路ORLを用いた自動走行の制御はティーチング走行に倣う制御である。この倣い制御が採用される外側周回経路ORLは、畦との接触を確実に防止できる。しかし、さらに接触リスクを下げるため、ティーチング走行での走行軌跡からさらに内側に後退(セットバック)させている。このセットバック量をゼロあるいは縮小することを選択する機能が設けられている。セットバック量の縮小に代えて、外側外周走行の制御が、ティーチング走行での走行軌跡に基づいて作成された外側周回経路ORLを目標とするのではなく、圃場外形(畦と圃場面との境界線)を目標とするように構成されてもよい。 The inner circuit route IRL is created along each end position of the straight route in reciprocating travel, and during the automatic travel, the inner circuit route IRL is used as the target route and control is performed to minimize the deviation from the target route. Will be. On the other hand, the outer orbital route ORL is created based on the traveling locus in the teaching traveling for creating the map, and the control of the automatic traveling using the outer orbital route ORL is a control following the teaching traveling. The outer circuit path ORL in which this copying control is adopted can surely prevent contact with the ridges. However, in order to further reduce the contact risk, the vehicle is set back further inward from the traveling locus in the teaching operation. There is a function to select to reduce or reduce this setback amount to zero. Instead of reducing the setback amount, the control of the outer outer circumference running does not target the outer orbital path ORL created based on the running locus in the teaching run, but the field outer shape (boundary between the ridge and the field scene). It may be configured to target the line).
 上述したように、ルート作成処理には、往復経路作成処理、内側周回経路IRL作成処理、外側周回経路ORL作成処理、開始点誘導経路作成処理が含まれる。これらのすべての処理は一度に行われるが、各処理が個別に行われるような構成を採用してもよい。 As described above, the route creation process includes a round-trip route creation process, an inner circuit route IRL creation process, an outer circuit route ORL creation process, and a start point guidance route creation process. All of these processes are performed at once, but a configuration may be adopted in which each process is performed individually.
 往復経路作成処理と内側周回経路IRL作成処理とが外側周回経路ORLを考慮せずに行われた場合、外側周回経路ORLと内側周回経路IRLとが重なり合うため、正常な外側周回経路ORLが形成できない不都合が生じる。 If the reciprocating route creation process and the inner circuit path IRL creation process are performed without considering the outer circuit path ORL, the outer circuit path ORL and the inner circuit path IRL overlap, so that a normal outer circuit path ORL cannot be formed. Inconvenience occurs.
〔開始点誘導〕
 次に、開始点誘導について、図62を用いて説明する。開始点誘導とは、圃場における苗植付作業の開始となる内部往復経路IPLの始端である開始点Sまで、田植機を誘導することである。圃場マップ形成のためのティーチング走行が終了し、ルート作成処理も終了すると、田植機は、自動走行での苗植付作業を行う。自動走行での植付作業は、内部往復経路IPLの開始点Sから開始される。田植機を開始点Sまで自動走行させるための走行経路である開始点誘導経路SGLがルート作成処理において設定され、かつこの開始点誘導経路SGLを用いた自動走行を許可する自動走行開始可能条件が設定されている。この自動走行開始可能条件は、田植機の位置とその方位とが許容範囲に入っていることである。簡単には、田植機が誘導開始可能エリアGAに入っていることが自動走行開始可能条件であってもよい。この誘導開始可能エリアGAはタッチパネル50に表示される画面にも表示される。
[Start point guidance]
Next, the starting point guidance will be described with reference to FIG. 62. The starting point guidance is to guide the rice transplanter to the starting point S, which is the starting point of the internal round-trip path IPL, which is the start of the seedling planting work in the field. When the teaching run for forming the field map is completed and the route creation process is completed, the rice transplanter performs the seedling planting work by the automatic run. The planting work in the automatic running starts from the start point S of the internal round-trip path IPL. The start point guidance route SGL, which is a travel route for automatically traveling the rice transplanter to the start point S, is set in the route creation process, and the automatic travel start enable condition for permitting automatic travel using this start point guidance route SGL is It is set. The condition for starting automatic driving is that the position of the rice transplanter and its orientation are within the permissible range. Simply, it may be a condition that the rice transplanter is in the guidance startable area GA as an automatic driving startable condition. The guidance startable area GA is also displayed on the screen displayed on the touch panel 50.
 自動走行開始のための操作を行った際に、田植機が誘導開始可能エリアGA内に位置している場合(または、田植機の位置とその方位とが許容範囲に入っている場合)、誘導開始可能エリアGA内に位置していない場合(または、田植機の位置とその方位とが許容範囲に入っていない場合)とでは、タッチパネル50に表示されている誘導開始可能エリアGAの表示色が異なる。田植機が誘導開始可能エリアGA内に位置しているかいないかは、ランプ点灯や音声等でも報知される。 Guidance if the rice transplanter is located within the guidance startable area GA (or if the position of the rice transplanter and its orientation are within the permissible range) when the operation for starting automatic driving is performed. When it is not located in the startable area GA (or when the position of the rice transplanter and its orientation are not within the permissible range), the display color of the guidance startable area GA displayed on the touch panel 50 is displayed. different. Whether or not the rice transplanter is located in the guidance startable area GA is also notified by lamp lighting or voice.
 例えば、図62に示すように、誘導開始可能エリアGA内に位置しておらず、自動走行開始可能条件が満たされていない場合は、自動走行開始可能条件が満たされるように報知される。その際、条件が満たされていない理由(例えば、位置ずれ、方位ずれなど)の報知、及びその解消方法(例えば、前後進指示、左右ハンドル操作指示など)の報知が行われる。この解消方法が行われ、図63に示すように、自動走行開始可能条件が満たされた場合、その旨の報知がなされ、自動走行での開始点誘導走行が開始される。図63では、2つの田植機の姿勢が示されている。一方の田植機の姿勢では、田植機が苗補給のために、その前部を畦に突き合わせており、この姿勢からは、所定の後進旋回と前進とを用いた切り返し走行FLでの開始点誘導経路SGLの捕捉によって、開始点誘導走行が行われる。他方の田植機の姿勢では、開始点誘導経路SGLの捕捉が可能であるので、農場に入ってそのまま、開始点誘導経路SGLに沿った開始点誘導走行が行われる。 For example, as shown in FIG. 62, when the vehicle is not located in the guidance startable area GA and the automatic driving startable condition is not satisfied, it is notified so that the automatic driving startable condition is satisfied. At that time, the reason why the condition is not satisfied (for example, misalignment, misorientation, etc.) is notified, and the method for solving the problem (for example, forward / backward movement instruction, left / right steering wheel operation instruction, etc.) is notified. When this solution method is performed and the condition for starting automatic driving is satisfied as shown in FIG. 63, a notification to that effect is given and the start point guided driving in automatic driving is started. In FIG. 63, the postures of the two rice transplanters are shown. On the other hand, in the posture of the rice transplanter, the rice transplanter has its front part butted against the ridge to replenish the seedlings, and from this posture, the starting point guidance in the turning back running FL using the predetermined reverse turning and forward movement is performed. By capturing the route SGL, the starting point guided run is performed. On the other hand, in the posture of the rice transplanter, the start point guidance path SGL can be captured, so that the start point guidance run along the start point guidance path SGL is performed as it is after entering the farm.
 誘導開始可能エリアGAを用いた自動走行開始可能条件の判定に関し、以下のことが追記される。
(1)機体1の大部分が誘導開始可能エリアGA内に入っていれば、少なくとも機体の前部、例えば前輪12Aの前ぐらいは誘導開始可能エリアGAから出ていてもエリア内と判定される。このことから、誘導開始可能エリアGAが圃場外(圃場境界線の外)にはみ出ていてもよい。
(2)基本的には、出入口E、内部往復経路IPLの開始点S、苗補給辺(苗補給畦)は、図63に示すように関係になるので、誘導開始可能エリアGAは、苗補給辺や圃場の出入口Eの近傍に設定される。もちろん、圃場外から出入口Eを通過して開始点Sに至る自動走行が可能な場合、誘導開始可能エリアGAは、圃場外に設定することができる。
(3)開始点誘導経路SGLは、実質的には、開始点Sにつながる旋回経路と、旋回経路につながる直進経路とからなるが、図62や図63に示すように、誘導開始可能エリアGAは直進経路の全てをカバーしていない。これは、自動走行開始可能条件(開始点誘導条件)として、スムーズに開始点誘導経路SGLを捕捉して進入するためには誘導開始可能エリアGAの中心点から開始点Sまでに所定距離(数m以上)だけ直進経路を確保することが望ましいからである。この所定条件は、一般的な田植機の旋回半径、2分の1ホイールベース距離に基づいており、このような仕様が異なった田植機では、この所定距離は変更される。
(4)開始点誘導経路SGLの直進経路の少なくとも一部は、誘導開始可能エリアGA内に入っている。誘導開始可能エリアGAの開始点誘導経路SGLの直進経路に沿った長さが長い方が、自動走行の開始エリア条件が緩まるので、好ましい。
(5)開始点誘導経路SGLは苗補給辺に平行に設定される。苗補給辺の候補が複数ある場合、出入り口に近い苗補給辺に第1候補となり、その苗補給辺に誘導開始可能エリアGAが設定される(6)開始点誘導経路SGLは、外側周回経路ORLを流用し、この外側周回経路ORLに平行となるように生成されてもよい。開始点誘導経路SGLは、複数の畦辺にまたがって設けられてもよい。その場合、誘導開始可能エリアGAもこれらの複数の畦辺に対応して2つ設定してもよいし、これらを連結されて1つのエリアとしてもよい。例えば、隣接する2つの畦辺のそれぞれに誘導開始可能エリアGAが形成された場合、開始点Sから遠い方の誘導開始可能エリアGAから開始点Sに近い方の誘導開始可能エリアGAに至る補助開始点誘導経路が形成される。開始点Sから遠い方の誘導開始可能エリアGAに入った作業機は、補助開始点誘導経路を用いて開始点Sに近い方の誘導開始可能エリアGAに移動し、その後、開始点誘導経路SGLを用いて、開始点Sに達することができる。開始点誘導経路SGLは外周領域OAに形成されるので、開始点誘導経路SGLを用いた走行と、周回経路を用いた走行とによって生成される互いの轍が重複することによる圃場の荒れを回避するために、開始点誘導経路SGLは、外側周回経路ORL及び内側周回経路IRLと間隔をあけて設定することが好ましい。内側周回経路IRLを用いた苗植付作業が全条の作業幅より狭い作業幅で行われる場合、外周領域OAに設定される開始点誘導経路SGLは、内部領域IAの方に寄らせるとよい。但し、制御負担を軽くするためには、外側周回経路ORLまたは内側周回経路IRLが、そのまま流用(兼用)されて、開始点誘導経路SGLとして設定されてもよい。
(7)図62や図63では、外周領域OAに開始点誘導経路SGLが設定されたが、周回経路が1つしか生成されず、外周領域OAの幅が狭い場合、開始点誘導経路SGLが少なくとも部分的に内部領域IAに入り込んでもよい。
(8)外側周回経路ORLは、全条植えとして生成されているので、外側周回経路ORLによる植付跡と内部往復経路IPLによる植付跡との間は、内側周回経路IRLによる植付跡が占めることになる。そのために、内側周回経路IRLでの作業機の作業幅が調整される。あるいは、内部往復経路IPLにおける直進経路を外周領域OAまで延長し、直進走行による植付跡を拡大させてもよい。また、部分的に植付跡を調整しなければならない場合には、図61を用いて説明した各条クラッチ制御を用いた走行が実行される。
The following will be added regarding the determination of the conditions under which automatic driving can be started using the guidance startable area GA.
(1) If most of the aircraft 1 is in the guidance startable area GA, at least the front part of the aircraft, for example, in front of the front wheels 12A, is determined to be in the area even if it is out of the guidance startable area GA. .. From this, the induction startable area GA may extend outside the field (outside the field boundary line).
(2) Basically, the entrance / exit E, the start point S of the internal round-trip route IPL, and the seedling supply side (seedling supply ridge) are related as shown in FIG. It is set near the side or the entrance / exit E of the field. Of course, the guidance startable area GA can be set outside the field when automatic traveling from outside the field through the doorway E to the start point S is possible.
(3) The start point guidance path SGL is substantially composed of a turning path connected to the starting point S and a straight path connected to the turning path. As shown in FIGS. 62 and 63, the guidance startable area GA Does not cover all straight routes. This is a predetermined distance (number) from the center point of the guidance startable area GA to the start point S in order to smoothly capture and enter the start point guidance path SGL as a condition for starting automatic driving (start point guidance condition). This is because it is desirable to secure a straight route only (m or more). This predetermined condition is based on the turning radius of a general rice transplanter and the half wheelbase distance, and the predetermined distance is changed for rice transplanters having different specifications.
(4) Start point guidance route At least a part of the straight route of the SGL is in the guidance startable area GA. The start point of the guidance startable area GA It is preferable that the length of the guidance route SGL along the straight path is longer because the conditions for the start area of automatic driving are relaxed.
(5) The starting point guidance route SGL is set parallel to the seedling supply side. When there are multiple candidates for the seedling supply side, the seedling supply side near the doorway becomes the first candidate, and the guidance startable area GA is set in the seedling supply side. (6) The start point guidance route SGL is the outer circuit route ORL. May be diverted and generated so as to be parallel to this outer circuit path ORL. The starting point guidance path SGL may be provided across a plurality of ridges. In that case, two guidance startable areas GA may be set corresponding to these a plurality of ridges, or these may be connected to form one area. For example, when a guidance startable area GA is formed on each of two adjacent ridges, assistance is provided from the guidance startable area GA farther from the start point S to the guidance startable area GA closer to the start point S. A starting point guidance pathway is formed. The work machine that has entered the guidance startable area GA farther from the start point S moves to the guidance startable area GA closer to the start point S using the auxiliary start point guidance path, and then moves to the guidance startable area GA closer to the start point S, and then the start point guidance path SGL. Can be used to reach the starting point S. Since the start point guidance path SGL is formed in the outer peripheral region OA, it is possible to avoid the roughening of the field due to the overlapping of the ruts generated by the running using the starting point guiding path SGL and the running using the circuit path. Therefore, it is preferable that the starting point guidance path SGL is set at intervals from the outer orbital path ORL and the inner orbital path IRL. When the seedling planting work using the inner circuit path IRL is performed in a work width narrower than the work width of the entire line, the starting point guidance path SGL set in the outer peripheral area OA may be moved closer to the inner area IA. .. However, in order to reduce the control load, the outer circuit path ORL or the inner circuit path IRL may be diverted (also used) as it is and set as the start point guidance path SGL.
(7) In FIGS. 62 and 63, the start point guidance path SGL is set in the outer peripheral region OA, but when only one circuit path is generated and the width of the outer peripheral region OA is narrow, the start point guidance path SGL is set. It may enter the internal region IA at least partially.
(8) Since the outer orbital path ORL is generated as a full-row planting, there is a planting mark by the inner orbital path IRL between the planting mark by the outer orbital path ORL and the planting mark by the inner reciprocating path IPL. Will occupy. Therefore, the working width of the working machine in the inner circuit path IRL is adjusted. Alternatively, the straight path in the internal round-trip path IPL may be extended to the outer peripheral region OA to enlarge the planting trace due to the straight running. Further, when it is necessary to partially adjust the planting trace, the traveling using the clutch control of each row described with reference to FIG. 61 is executed.
 〔誘導開始可能エリアGAへの誘導〕
 田植機が誘導開始可能エリアGAの外に位置しているときに、作業員が自動走行開始の操作を行うと、誘導開始可能エリアGAに移動するための案内画面がタッチパネル50に表示される。その他に、音声や積層灯、リモコン等も併せて報知させてもよい。報知しながら誘導開始可能エリアGAに自動走行してもよい。
[Induction to area GA where induction can be started]
When the rice transplanter is located outside the guidance startable area GA and the worker performs an operation to start automatic driving, a guidance screen for moving to the guidance startable area GA is displayed on the touch panel 50. In addition, voice, a laminated light, a remote controller, and the like may also be notified. You may automatically drive to the guidance startable area GA while notifying.
 案内画面の一例が、図64と図65とに示されている。図64では、田植機の機体位置が誘導開始可能エリアGAの外であり、機体方位も許容範囲外であることを示している。
図64は、推薦される機体方位(苗補給方位)が案内矢印として示されている。なお、開始点Sを向いた機体1の方位が開始点誘導経路SGLの方位となる案内矢印も図示可能である。図65は、田植機の機体位置が誘導開始可能エリアGA内であり、機体方位も許容範囲内であることを示している。この姿勢において、自動走行開始のための画面に移行することができる。なお、図64では、誘導開始可能エリアGAは、機体位置が許容外であることを示す色、例えば赤色で描画されている。図65では、誘導開始可能エリアGAは、機体位置が許容内であることを示す色、例えば青色に変化している。
An example of the guidance screen is shown in FIGS. 64 and 65. FIG. 64 shows that the position of the rice transplanter is outside the guidance startable area GA, and the orientation of the rice transplanter is also out of the permissible range.
In FIG. 64, the recommended aircraft orientation (seedling supply orientation) is shown as a guide arrow. It should be noted that a guide arrow in which the direction of the aircraft 1 facing the start point S is the direction of the start point guidance path SGL can also be illustrated. FIG. 65 shows that the position of the rice transplanter is within the guidance startable area GA, and the orientation of the rice transplanter is also within the permissible range. In this posture, it is possible to shift to the screen for starting automatic driving. In FIG. 64, the guidance startable area GA is drawn in a color indicating that the aircraft position is unacceptable, for example, red. In FIG. 65, the guidance startable area GA is changed to a color indicating that the aircraft position is within the permissible range, for example, blue.
 案内画面の他の例が、図66と図67と図68とに示されている。この例では、複数の誘導開始可能エリアGAが設定されており、苗補給辺に垂直な太い矢印で示されている。
この矢印の方位が基準方位を示している。図66は、田植機の機体位置が誘導開始可能エリアGAの外であり、機体方位も許容範囲外であることを示している。図67は、機体方位は許容範囲内であるが、田植機の機体位置が誘導開始可能エリアGAの外であることを示している。図68は、田植機の機体位置が誘導開始可能エリアGA内であり、機体方位も許容範囲内であることを示している。ここでも、図66や図67では、機体位置が許容外であることを示す色、例えば赤色で描画されているが、図68では、誘導開始可能エリアGAは、機体位置が許容内であることを示す色、例えば青色に変化している。
Other examples of the guidance screen are shown in FIGS. 66, 67 and 68. In this example, a plurality of induction startable areas GA are set and are indicated by thick arrows perpendicular to the seedling supply side.
The direction of this arrow indicates the reference direction. FIG. 66 shows that the position of the rice transplanter is outside the guidance startable area GA, and the orientation of the rice transplanter is also out of the permissible range. FIG. 67 shows that the airframe orientation is within the permissible range, but the airframe position of the rice transplanter is outside the guidance startable area GA. FIG. 68 shows that the position of the rice transplanter is within the guidance startable area GA, and the orientation of the rice transplanter is also within the permissible range. Again, in FIGS. 66 and 67, the aircraft position is drawn in a color indicating that the aircraft position is unacceptable, for example, red, but in FIG. 68, the guidance startable area GA has the aircraft position within the allowable range. It has changed to a color indicating, for example, blue.
 誘導開始可能エリアGAから開始点Sを経て行われる自動走行での苗植付作業が要求されると、機体装備品に関する判定が行われる。この判定に用いられる条件項目は、通信、センサ、モータ、などである。判定結果において、満たされなかった条件は、タッチパネル50に表示される。その際、満たされなかった条件のリカバリ方法が表示されるようにしてもよい。また、判定結果において、満たされた条件も、表示してもよい。 When the seedling planting work in the automatic running performed from the guidance startable area GA via the start point S is requested, the judgment regarding the aircraft equipment is made. The condition items used for this determination are communication, sensor, motor, and the like. In the determination result, the condition that is not satisfied is displayed on the touch panel 50. At that time, the recovery method of the unsatisfied condition may be displayed. In addition, the satisfied conditions may also be displayed in the determination result.
 自動走行で苗植付作業を行うための条件が全て満たされると、苗植付作業における基本設定確認画面(株間、苗取り量、横送り回数、施肥量、薬剤散布量など)が表示される。
この基本設定確認画面で設定された内容で、作業シミュレーションが行われ、苗補給辺から離れた位置での資材補給作業が必要と推定されれば、有人での自動走行を勧める案内画面が出る。この案内画面は、実際の作業走行中においても表示される。具体的には、往復走行において、次の苗補給辺に戻ってくるまでに、苗一枚分では足りないと推定された場合に、この案内画面が表示され、対で、有人自動走行か無人自動走行かの選択画面が表示される。
When all the conditions for planting seedlings by automatic driving are satisfied, the basic setting confirmation screen (inter-strain, seedling amount, number of lateral feeds, fertilizer application amount, chemical spray amount, etc.) for seedling planting work is displayed. ..
A work simulation is performed with the contents set on this basic setting confirmation screen, and if it is estimated that material replenishment work is required at a position away from the seedling replenishment side, a guidance screen recommending manned automatic driving appears. This guidance screen is also displayed during actual work driving. Specifically, in the round-trip travel, if it is estimated that one seedling is not enough before returning to the next seedling supply side, this guidance screen will be displayed, and in pairs, manned automatic driving or unmanned A screen for selecting automatic driving is displayed.
 補給が必要な資材の搭載量を検知する手段、つまり資材残量を検知する手段が投与資材毎に備えている場合には、この資材補給を考慮した有人自動走行か無人自動走行かの選択は、自動で行うことができる。資材搭載量検知手段は、苗切れセンサ(例えば、押圧式の苗切れセンサ)、ホッパの重量センサや光学式センサ、苗消費量検知エンコーダー(例えば、苗マットの移動量を回転量で検知する苗消費量検知エンコーダー)、カメラ(例えば、苗残量が所定値以下になっているかどうかを画像解析するカメラ)などで構成可能である。補給資材が燃料である場合、燃料の残量とそれ以降に走行しなければならない距離とに基づいて算出された最低限必要となる燃料補給が作業者に報知される。 If a means for detecting the loaded amount of materials that need to be replenished, that is, a means for detecting the remaining amount of materials is provided for each administered material, the selection of manned automatic driving or unmanned automatic driving in consideration of this material replenishment can be made. , Can be done automatically. The material loading amount detecting means is a seedling cutting sensor (for example, a pressing type seedling cutting sensor), a hopper weight sensor or an optical sensor, and a seedling consumption detection encoder (for example, a seedling that detects the amount of movement of the seedling mat by the amount of rotation). It can be configured with a consumption detection encoder), a camera (for example, a sensor that analyzes an image to see if the remaining amount of seedlings is below a predetermined value). When the replenishment material is fuel, the operator is notified of the minimum required refueling calculated based on the remaining amount of fuel and the distance that must be traveled thereafter.
 作業走行の開始前に推定された走行当たりの燃料消費量は、実際に作業走行を開始してから算出された走行当たりの燃料消費量とは異なることが少なくない。このため、燃料補給の案内タイミングは、順次補正されることが好ましい。 The fuel consumption per run estimated before the start of the work run is often different from the fuel consumption per run calculated after the actual start of the work run. Therefore, it is preferable that the guidance timing of refueling is sequentially corrected.
〔自動運転の中断・終了、走行ライン先送り、自動運転の中断からの再開〕
 自動走行の途中で自動走行が困難な状況が発生すると、自動走行は中断または終了され、走行制御は手動に移行する。自動走行が終了された場合には、自動走行での作業の再開は不可能となるが、自動走行が中断された場合には、自動走行での作業の再開は可能である。自動走行では、行われた自動走行の履歴(走破した走行経路など)が記録されている。自動走行の中断後、同じ機体位置で、あるいは手動走行で走行した後に、自動走行を再開する際には、自動走行が中断された機体位置及びその機体位置の走行経路のID等がメモリ等から読み出される。中断位置と再開位置が異なる場合において、中断位置と再開位置が同じライン上にある場合は、機体がライン上に重複した状態において、タッチパネルで再開指示可能である。中断位置と再開位置が異なるライン上にある場合は、タッチパネル50に表示される走行経路を用いて、設定されている走行経路を先送りし(ライン送りと称せられる)、機体1の現在位置に走行経路をマッチングさせる。表示領域が限られているタッチパネル50の画面で、このようなライン送りが行われる場合、特に周回経路や内部往復経路IPLが密集または重複している領域では各経路の識別が難しくなる。このため、各走行経路を色や線パターンなどで識別することが好ましい。
[Interruption / termination of automatic driving, postponement of running line, restart from interruption of automatic operation]
If a situation occurs in which automatic driving is difficult during automatic driving, automatic driving is interrupted or terminated, and driving control shifts to manual driving. When the automatic running is completed, the work in the automatic running cannot be restarted, but when the automatic running is interrupted, the work in the automatic running can be restarted. In automatic driving, the history of automatic driving performed (such as the travel route that has been completed) is recorded. When the automatic driving is resumed after the automatic driving is interrupted, at the same aircraft position, or after the manual driving is resumed, the position of the aircraft where the automatic driving was interrupted and the ID of the traveling route of the aircraft position are stored in the memory or the like. Read out. When the suspend position and the restart position are different, and the suspend position and the restart position are on the same line, the restart instruction can be given on the touch panel in a state where the aircraft overlaps on the line. If the interrupt position and the restart position are on different lines, the set travel route is postponed (called line feed) using the travel route displayed on the touch panel 50, and the aircraft 1 travels to the current position. Match routes. When such line feed is performed on the screen of the touch panel 50 in which the display area is limited, it becomes difficult to identify each route, especially in an area where the circuit path and the internal round-trip path IPL are densely packed or overlapped. Therefore, it is preferable to identify each traveling route by a color, a line pattern, or the like.
 タッチパネル50における走行経路の画面表示に関して追記される事項は以下の通りである。
(1)自動運転が中断された走行経路が赤色などの特徴色で描画される。その際、色変更される経路区間は、直進経路単位が好ましいが、中断点を含む直進経路の一部区間でもよい。
(2)自動運転の中断点付近に複数の経路が存在する場合、作業者によって処理対象となる走行経路が選択される。
(3)走行経路は、その走行経路の作業属性に応じて色変更される。例えば、走行経路に沿って苗植付作業が完了した経路と、苗植付作業が行われている経路と、これから行われる経路、空走り経路と呼ばれる苗植付作業を行わずに走行された経路などは、それぞれ識別可能に色塗りされる。また、苗植付作業が完了した経路の周辺は、その作業幅(各条単位)で色塗りされてもよい。
(4)手動走行においても、その走行軌跡と走行経路マップとのマッチングが行われ、手動走行で走行した作業跡も既作業領域として表示される。
(5)自動走行が中断され、複数本の走行経路に沿った手動走行を経て、再度自動走行が再開される場合での走行経路の先送りを容易にするため、走行経路早送り、早戻し機能が用意されている。
(6)自動走行を再開する際には、再開する走行ラインを選択する必要がある。その選択作業を容易にするため、自動運転再開時は、中断した走行経路、中断した走行経路の次の走行経路、中断した走行経路のひとつ前の走行経路のいずれかがデフォルトの再開走行経路として設定される。
The items to be added regarding the screen display of the traveling route on the touch panel 50 are as follows.
(1) The traveling route where the automatic driving is interrupted is drawn in a characteristic color such as red. At that time, the route section whose color is changed is preferably a straight route unit, but may be a part of the straight route including the interruption point.
(2) When there are a plurality of routes near the interruption point of the automatic operation, the operator selects the traveling route to be processed.
(3) The color of the traveling route is changed according to the work attribute of the traveling route. For example, the route where the seedling planting work was completed along the traveling route, the route where the seedling planting work was performed, the route to be performed, and the route where the seedling planting work called the idle running route was not performed. The routes and the like are colored so that they can be identified. Further, the periphery of the route where the seedling planting work is completed may be colored according to the work width (each row unit).
(4) Even in manual travel, the travel locus and the travel route map are matched, and the work traces traveled by manual travel are also displayed as an existing work area.
(5) In order to facilitate the postponement of the driving route when the automatic driving is interrupted and the automatic driving is restarted after the manual driving along a plurality of traveling routes, the traveling route fast forward and fast rewind functions are provided. It is prepared.
(6) When resuming automatic driving, it is necessary to select a traveling line to be restarted. In order to facilitate the selection work, when resuming automatic driving, one of the interrupted driving route, the driving route next to the interrupted driving route, and the driving route immediately before the interrupted driving route is set as the default restarting driving route. Set.
 自動運転の終了は、自動運転の中断または終了を選択する選択画面を通じて、終了を選択することが確定する。この自動走行の終了に関して追記される事項は以下の通りである。
(1)終了ボタンを押してからの自動運転再開は不可能としている。これは、一般的に作業が終了していないにも関わらず、終了ボタンを押すのは外側周回走行の開始前後が想定され、最外周は少しずれると圃場外に行く可能性もあるためこの部分での自動運転再開は不可能としている。但し、外側走行経路に入る前までは終了ボタンを押しても自動運転再開できるようにしてもよい。
(2)自動走行を再開する際の走行経路の選択は、走行経路単位だけでなく、走行経路における1点、さらには複数ライン単位、あるいは内部往復経路IPLまたは周回経路単位で選択可能である。複数の経路を選択した場合、実際に自動走行を再開するための走行経路は、絞り込み選択可能である。
(3)自動走行での作業を中断した中断地点から、資材補給等のために作業機が移動した場合、その移動場所から自動走行で中断地点まで移動し、自動走行での作業を再開する構成を採用することも可能である。その際、自動走行を再開する地点までの自動走行は、開始点誘導走行の制御技術を流用することができる。
(4)自動走行から手動走行または手動走行から自動走行への移行時に不具合情報が検知されると、その対応策を含めてその報知が行われる。
(5)自動運転の終了を選択した場合でも、自動走行の中断または新規自動運転(走行経路の再生成)の選択肢が残されるような構成であってもよい。
(6)外側周回経路ORLの自動走行において、自動走行が中断された場合には、自動走行の再開はできず、有人手動走行のみが許可されるように構成されていたが、自動運転の再開が可能な構成が採用されてもよい。
For the end of the automatic operation, it is confirmed that the end is selected through the selection screen for selecting the interruption or the end of the automatic operation. The items to be added regarding the end of this automatic driving are as follows.
(1) It is impossible to restart the automatic operation after pressing the end button. This is because it is assumed that the end button is pressed before and after the start of the outer lap running, even though the work is generally not completed, and if the outermost circumference is slightly deviated, it may go out of the field. It is impossible to restart the automatic operation at. However, the automatic operation may be restarted by pressing the end button until the vehicle enters the outer driving route.
(2) The selection of the traveling route when resuming the automatic traveling can be selected not only in the traveling route unit but also in one point in the traveling route, in the unit of a plurality of lines, or in the internal round-trip route IPL or the circuit route unit. When a plurality of routes are selected, the travel routes for actually restarting the automatic driving can be narrowed down and selected.
(3) When the work machine moves from the interruption point where the work in the automatic driving is interrupted to supply materials, etc., it moves from the moving place to the interruption point by the automatic driving and restarts the work in the automatic driving. It is also possible to adopt. At that time, the control technology of the start point guided driving can be diverted to the automatic driving to the point where the automatic driving is restarted.
(4) When defect information is detected during the transition from automatic driving to manual driving or from manual driving to automatic driving, the notification is given including the countermeasures.
(5) Even if the end of automatic driving is selected, the configuration may be such that the options of interruption of automatic driving or new automatic driving (regeneration of traveling route) remain.
(6) In the automatic driving of the outer circuit route ORL, if the automatic driving is interrupted, the automatic driving cannot be restarted and only manned manual driving is permitted, but the automatic driving is restarted. A configuration capable of the above may be adopted.
〔空走り制御と条間調整〕
 図4による基本的な走行経路図でも示されているように、一般的には、内部往復経路IPLの開始点Sと内部往復経路IPLの植付終了点である終了点Gは同じ側に位置し、かつ往復走行経路の終了点G及び内部往復経路IPLから周回経路への移行経路は、圃場の出入口の近傍に位置している。この条件を満足させるためには、内部往復経路IPLにおける直進経路の本数が偶数の場合は良いが、直進経路の本数が奇数の場合、内部往復経路IPLの終了点Gが出入口Eの反対側になる。この不都合を避けるため、図69に示すように、最終の直進経路(図69では符号Lnが付与されている)以外の直進経路、例えば、図69では符号Ln-1が付与されている直進経路を非作業(非苗植付作業)で空走行し、次の直進経路(図69では符号Lnが付与されている最終直進経路)を走行した後、空走行した直進経路を苗植付作業しながら走行する。これにより、最終直進経路の終了点Gが出入口側に反転される。図69の例では、終了点Gの位置が植付幅分だけ移動する。これを避けるには、他の直進経路を空走行直進経路として選択してするとよい。このように、旋回経路以外の走行経路(直進経路)を苗植付作業無しで走行することを空走行と称する。
[Free running control and inter-row adjustment]
As shown in the basic travel route diagram according to FIG. 4, in general, the start point S of the internal round-trip route IPL and the end point G, which is the planting end point of the internal round-trip route IPL, are located on the same side. However, the end point G of the round-trip travel route and the transition route from the internal round-trip route IPL to the circuit route are located near the entrance and exit of the field. In order to satisfy this condition, it is good if the number of straight routes in the internal round-trip route IPL is even, but if the number of straight routes is odd, the end point G of the internal round-trip route IPL is on the opposite side of the entrance / exit E. Become. In order to avoid this inconvenience, as shown in FIG. 69, a straight path other than the final straight path (in FIG. 69, the symbol Ln is assigned), for example, a straight path in which the symbol Ln-1 is assigned in FIG. 69. After running idle on the non-work (non-seedling planting work) and traveling on the next straight route (the final straight route to which the symbol Ln is assigned in FIG. 69), the seedling planting work is performed on the idle route. While driving. As a result, the end point G of the final straight path is reversed to the entrance / exit side. In the example of FIG. 69, the position of the end point G moves by the planting width. To avoid this, another straight route may be selected as the free running straight route. In this way, traveling on a traveling route (straight route) other than the turning route without seedling planting work is referred to as idling.
 もちろん、直進経路の本数が奇数の場合、内部往復経路IPLの開始点Sを内部往復経路IPLの終了点Gとは反対側に設定することで、空走行は不要となる。この場合は、内部往復経路IPLの開始点Sが出入口Eから遠く離れることになり、開始点誘導経路SGLが長くなる。この開始点誘導経路SGLの延長分が空走行の距離とみなすことができる。 Of course, when the number of straight routes is odd, the idle running becomes unnecessary by setting the start point S of the internal round-trip route IPL to the side opposite to the end point G of the internal round-trip route IPL. In this case, the start point S of the internal round-trip path IPL is far away from the entrance / exit E, and the start point guidance path SGL becomes long. The extension of the starting point guidance route SGL can be regarded as the distance of idling.
 空走行と類似するが、開始点誘導経路SGLの延長を回避するための有効な方法の1つが、直進経路の本数が偶数になるように、条間調整を行うことである。条間調整とは、作業幅(苗植付幅)を狭くすることである。例えば、所定作業幅で1本の直進経路を走行した際に作り出される作業済領域は、作業幅を所定作業幅の半分にした2本の直進経路を走行した際に作り出される作業済領域と同じとなる。全ての各条クラッチがオフでの走行は、各条クラッチの制御は伴わずに苗植付装置3を非作業位置に上昇させる空走行とは制御的には異なるが、作業結果的には同じである。条間調整を採用することにより、内部領域IAの直進経路の本数は偶数になる。但し、図61を用いて説明したような各条クラッチ制御を用いた条間調整(作業幅の調整)は、走行経路間隔の変更や各条クラッチのオフ制御などを伴うので、この条間調整の対象となる走行経路に進入する前、及び当該走行経路の走行中には、その旨の報知(音声、メッセージ表示、ランプなど)が行われる。 Similar to idling, but one of the effective ways to avoid the extension of the starting point guidance route SGL is to adjust the inter-rows so that the number of straight routes is even. Inter-row adjustment is to narrow the working width (sapling planting width). For example, the work area created when traveling on one straight path with a predetermined work width is the same as the work area created when traveling on two straight paths with the work width halved from the predetermined work width. It becomes. Running with all the row clutches off is different in terms of control from idling in which the seedling planting device 3 is raised to a non-working position without controlling each row clutch, but the work result is the same. Is. By adopting the inter-row adjustment, the number of straight routes in the internal area IA becomes an even number. However, the inter-row adjustment (adjustment of the working width) using the inter-row clutch control as described with reference to FIG. 61 involves changing the travel path interval, turning off the inter-row clutch, and the like. Before entering the travel route that is the target of the above, and while traveling on the travel route, a notification to that effect (voice, message display, lamp, etc.) is performed.
 条間調整では、各条クラッチのオフ制御によって作業幅が条単位で変更されるので、空走行では不可能な調整が可能である。つまり、内部往復経路IPLが設定される内部領域IAの幅が作業幅の整数倍にならない場合、条間調整を用いることにより、直進経路の間隔を縮めて整数倍になるように直進経路が設定される。その際、一般的には、直進経路の間隔は均等に調節されるが、各経路の調整幅を変えて、例えば、出入口Eに近い部分は標準に近い間隔にして、出入口に遠い側に向かって徐々に狭めたりしてもよい。または、出入口Eから所定距離のところまでは標準に近い間隔で均等に調整して、所定距離以降は出入口E側よりも間隔を少し短くして均等に調整してもよい。いずれにせよ、内部領域IAの幅を作業幅の整数倍に一致させるための条間調整では、いずれかの直進経路の間隔を調整すればよい。ただし、収量を重要視する場合には、条間調整はできるだけ密植方向に調整(最大3cm程度)することが好ましい。逆に、工数や資材削減を重視する場合には、条間調整は疎植方向に調整することが好ましい。 In inter-row adjustment, the work width is changed in units of rows by turning off the clutch of each row, so adjustments that are not possible in idling are possible. That is, when the width of the internal area IA in which the internal round-trip path IPL is set is not an integral multiple of the working width, the straight path is set so that the interval of the straight path is shortened and becomes an integral multiple by using the inter-row adjustment. Will be done. At that time, in general, the intervals of the straight paths are adjusted evenly, but the adjustment range of each path is changed, for example, the part near the entrance / exit E is set to the interval close to the standard, and the distance is toward the side far from the entrance / exit. It may be narrowed gradually. Alternatively, the distance from the doorway E to a predetermined distance may be adjusted evenly at intervals close to the standard, and after the predetermined distance, the distance may be slightly shorter than that on the doorway E side and adjusted evenly. In any case, in the inter-row adjustment for matching the width of the internal region IA to an integral multiple of the working width, the interval of one of the straight paths may be adjusted. However, when the yield is important, it is preferable to adjust the inter-row adjustment in the dense planting direction as much as possible (up to about 3 cm). On the contrary, when the reduction of man-hours and materials is emphasized, it is preferable to adjust the inter-row adjustment in the sparse planting direction.
 空走行や条間調整などが適用される経路に識別可能にタッチパネル50に表示される場合、画面解像度によっては、見づらい画面となる。このため、周回経路だけや内部往復経路IPLだけが表示されるようにしてもよい。往復工程があと少しで終わる場合は、現在位置をから判断して、次に作業する走行ラインとしての周回経路だけ表示させてもよい。
また、自動走行の中断再開時には、既作業となっている走行経路だけを消してもよい。なお、中断再開時は直前の作業履歴を記憶し、再開時に同じ作業履歴に基づいて作業が行われ、作業の継続性が確保されるようにすることが好ましい。
When the touch panel 50 is identifiable on a route to which idling or inter-row adjustment is applied, the screen may be difficult to see depending on the screen resolution. Therefore, only the orbital route or the internal round-trip route IPL may be displayed. If the reciprocating process is completed in a short time, the current position may be determined and only the orbital route as the traveling line to be worked on may be displayed.
Further, when the automatic traveling is interrupted and resumed, only the traveling route that has already been worked may be deleted. It is preferable that the work history immediately before the interruption is stored at the time of resumption, and the work is performed based on the same work history at the time of resumption so that the continuity of the work is ensured.
 空走行経路または条間調整される走行経路が設定されている場合、当該走行経路は、表示色の変更などを通じて識別可能できるように、タッチパネル50の画面に表示される。
また、走行中において、空走行経路または条間調整された走行経路に近づいた場合には、タッチパネル50の画面には、「次の走行経路は空走り(条間調整走行)」といったメッセージが表示される。空走行経路または条間調整された走行経路の走行跡には、対応する作業幅分の塗りつぶしが行われる。もちろん、空走行の場合には、塗りつぶしは行われず、走行経路だけが表示される。
When an empty traveling route or a traveling route adjusted between rows is set, the traveling route is displayed on the screen of the touch panel 50 so that it can be identified by changing the display color or the like.
In addition, when the vehicle approaches an empty driving route or a traveling route adjusted for inter-rows during traveling, a message such as "The next traveling route is idling (inter-row adjusted traveling)" is displayed on the screen of the touch panel 50. Will be done. The running traces of the empty running route or the traveling route adjusted between the rows are filled with the corresponding working width. Of course, in the case of idling, only the traveling route is displayed without filling.
 条間調整や空走行は、全ての作業走行経路において実施可能であるが、各条クラッチの制御を伴う条間調整は、周回経路だけに限定してもよい。 The inter-row adjustment and idling can be carried out on all work traveling routes, but the inter-row adjustment accompanied by the control of each inter-row clutch may be limited to the lap route only.
 内部往復経路IPLの直進経路から旋回経路に移行する領域では、株間距離に近い長さをもつゼロ条植え経路が設定されている。ゼロ条植え経路とは、この短い経路の走行の間に、その時点で植付爪が保持している苗を確実に植え込むための経路であり、これにより浮き苗が抑制される。 Internal round-trip route In the region where the IPL straight path changes to the turning path, a zero-row planting route with a length close to the inter-strain distance is set. The zero-row planting route is a route for surely planting the seedlings held by the planting claws at that time during the running of this short route, whereby floating seedlings are suppressed.
〔変形圃場での走行経路〕
 各辺の長さが異なるような変形圃場の場合、内側周回経路IRLも圃場形状に沿った経路で外側周回経路ORLに合わせることがある。この場合、内部領域IAが矩形であるとして内部往復経路IPLを生成すると、当該内部往復経路IPLを用いた場合の作業跡(内部往復経路IPLの直進経路で苗植付作業された領域)と内側周回経路IRLを用いた場合作業跡との間に、図70と図71に示されたような傾斜辺を有する変形の未作業領域または重複作業領域が生じてる。この問題を解消するためには、2つの方法がある。その1つは、内部往復経路IPLの直進経路の各終端が順次長くなるような内部往復経路IPLの生成であり、他の1つは、直進作業走行をしながら各条クラッチを制御することである。上述したように、各条クラッチが走行に伴なって順次オンまたはオフされることにより、作業跡(既植付領域)の1辺または両辺が傾斜辺となる。さらに、各条クラッチを細かく制御すれば、湾曲状の作業跡も可能である。
[Traveling route in deformed fields]
In the case of a deformed field in which the length of each side is different, the inner circuit path IRL may also be matched with the outer circuit path ORL by a route along the field shape. In this case, if the internal reciprocating path IPL is generated assuming that the internal reciprocating path IA is rectangular, the work trace when the internal reciprocating path IPL is used (the area where the seedlings are planted in the straight path of the internal reciprocating path IPL) and the inside. When the orbital path IRL is used, a deformed unworked area or an overlapping work area having an inclined side as shown in FIGS. 70 and 71 is generated between the work trace and the work mark. There are two ways to solve this problem. One is the generation of an internal reciprocating path IPL such that each end of the straight path of the internal reciprocating path IPL is sequentially lengthened, and the other is by controlling each clutch while traveling straight. be. As described above, each of the strip clutches is turned on or off in sequence as the vehicle travels, so that one or both sides of the work mark (pre-planted area) becomes an inclined side. Further, if each row clutch is finely controlled, a curved work mark is possible.
 各終端の長さが異なる直進経路の走行方法の例が、図70と図71に示されている。図70は、直進経路の終端が順次に短くなっている例を示しており、図示された内部往復経路IPLは、先直進経路Y1と、旋回経路Y2と、次直進経路Y3とからなり、次直進経路Y3は、第1経路部分Y31と第2経路部分Y32とに区分けされる。先直進経路Y1と第2経路部分Y32とが苗植付走行であり、旋回経路Y2と第1経路部分Y31とが非苗植付走行である。図71は、直進経路の終端が徐々に長くなっている例を示しており、図示された内部往復経路IPLは、先直進経路W1と、旋回経路W2と、次直進経路W3とからり、次直進経路W3は第1経路部分W31と第2経路部分W32とを含んでいる。
第1経路部分W31と第2経路部分W32とは、旋回経路W2の最終部分と重なり合っている。第1経路部分W31は後進経路である。先直進経路Y1と第2経路部分W32と次直進経路W3とが苗植付走行であり、旋回経路W2と第1経路部分W31とが非苗植付走行である。図71の例では、旋回経路は予め決められた所定の旋回半径で行われる経路としているので、直進経路が旋回経路に入り込んでおり、後進が必要となっているが、より小さな旋回半径が用いられた旋回、あるいは、特殊な旋回が行われる場合、旋回経路の距離が短くなるので、第1経路部分W31と第2経路部分W32とは不要となる。ここでの特殊な旋回とは、切り返し旋回や左右輪速度差を用いた旋回などであり、GPS座標、ステアリング角度、車輪回転数などに基づいた旋回制御によって実現可能である。
Examples of a traveling method of a straight path having different lengths at each end are shown in FIGS. 70 and 71. FIG. 70 shows an example in which the end of the straight path is gradually shortened, and the illustrated internal round-trip path IPL is composed of the forward straight path Y1, the turning path Y2, and the next straight path Y3, and is next. The straight path Y3 is divided into a first path portion Y31 and a second path portion Y32. The forward straight path Y1 and the second path portion Y32 are the seedling planting run, and the turning path Y2 and the first path portion Y31 are the non-seedling planting run. FIG. 71 shows an example in which the end of the straight-ahead path is gradually lengthened, and the illustrated internal round-trip path IPL is composed of the forward straight-ahead path W1, the turning path W2, and the next straight-ahead path W3, and is next. The straight path W3 includes a first path portion W31 and a second path portion W32.
The first path portion W31 and the second path portion W32 overlap with the final portion of the turning path W2. The first route portion W31 is a reverse route. The forward straight route Y1, the second route portion W32, and the next straight route W3 are seedling planting trips, and the turning route W2 and the first route portion W31 are non-sapling planting trips. In the example of FIG. 71, since the turning path is a path performed with a predetermined turning radius, the straight path enters the turning path and requires reverse movement, but a smaller turning radius is used. When the swivel or special swivel is performed, the distance of the swivel path is shortened, so that the first path portion W31 and the second path portion W32 are unnecessary. The special turning here is turning back turning, turning using the difference in speed between the left and right wheels, and the like, and can be realized by turning control based on GPS coordinates, steering angle, wheel rotation speed, and the like.
 変形圃場の場合、外側周回経路ORLは圃場形状に沿った経路であることから、直線経路と次の直線経路との連結点(以下プロット点と称する)の数が多くなる。内側周回経路IRLがその外側周回経路ORLに沿うように生成する場合、内側周回経路IRLのプロット数は外側周回経路ORLのプロット数よりは、少なく設定されるが、通常の矩形の内部領域IAの外形に沿うように生成された内側周回経路IRLのプロット数よりは多くなる。 In the case of a deformed field, since the outer circuit path ORL is a path along the field shape, the number of connecting points (hereinafter referred to as plot points) between the straight path and the next linear path increases. When the inner orbital path IRL is generated along its outer orbital path ORL, the number of plots of the inner orbital path IRL is set to be less than the number of plots of the outer orbital path ORL, but in the inner region IA of a normal rectangle. It is larger than the number of plots of the inner orbital path IRL generated along the outer shape.
〔別実施形態〕
(1)走行経路は、圃場の外周に沿った非作業走行を行うことにより設定される。走行経路は、情報端末5または制御ユニット30にて生成することができる。この際、情報端末5または制御ユニット30に、独立した機能ブロックとして経路設定部が設けられる構成とすることができる。また、情報端末5および制御ユニット30の両方に経路設定部が設けられ、選択的に、情報端末5または制御ユニット30のいずれで経路設定を行うかを決定する構成とすることもできる。また、外部のサーバ等で走行経路を生成し、生成された走行経路を情報端末5または制御ユニット30が受信できる構成としても良い。作業機の作業走行で得られた各種データ(マップ形状取得処理やルート作成処理などで作成されたデータ、走行中の検出された障害物に関する障害物データ、走行中に得られた走行状態データ、作業状態データ、圃場状態データなど)は、外部に設置された中央コンピュータやクラウドサービス用コンピュータにアップロードされても良い。さらに、作業前に、登録されているそのようなデータはダウンロードされても良い。
[Another Embodiment]
(1) The traveling route is set by performing non-working traveling along the outer circumference of the field. The traveling route can be generated by the information terminal 5 or the control unit 30. At this time, the information terminal 5 or the control unit 30 may be provided with a route setting unit as an independent functional block. Further, both the information terminal 5 and the control unit 30 may be provided with a route setting unit, and the information terminal 5 or the control unit 30 may be configured to selectively determine whether to set the route. Further, the travel route may be generated by an external server or the like, and the information terminal 5 or the control unit 30 may receive the generated travel route. Various data obtained during the work running of the work machine (data created by map shape acquisition processing, route creation processing, etc., obstacle data related to detected obstacles during running, running state data obtained during running, Work status data, field status data, etc.) may be uploaded to an external central computer or cloud service computer. In addition, such registered data may be downloaded prior to work.
(2)制御ユニット30は、任意の機能ブロックに細分化できる。例えば、自動走行の際の走行を制御する自動走行制御部、手動走行の際の走行を制御する手動走行制御部、各種の作業装置を制御する作業装置制御部、情報端末5やその他の機器との間で情報の送受信を行う通信部、ソナーセンサ60を制御し、障害物を検知する障害物検知部、障害物の検知結果に応じて自動走行制御部や手動走行制御部に指令を出す障害制御部、積層灯71を制御する積層灯制御部、主変速レバー7Aやモータ45等を制御する変速機操作部等が、制御ユニット30の機能ブロックとして個別に設けられても良い。 (2) The control unit 30 can be subdivided into arbitrary functional blocks. For example, with an automatic driving control unit that controls driving during automatic driving, a manual driving control unit that controls driving during manual driving, a working device control unit that controls various working devices, an information terminal 5, and other devices. Obstacle control that controls the communication unit that sends and receives information between the two, the sonar sensor 60, and detects obstacles, and issues commands to the automatic driving control unit and manual driving control unit according to the obstacle detection result. A unit, a laminated light control unit that controls the laminated light 71, a transmission operating unit that controls the main speed change lever 7A, the motor 45, and the like may be individually provided as functional blocks of the control unit 30.
(3)上記各実施形態において、田植機が行う各種の報知を行う報知装置は情報端末5やボイスアラーム発生装置100に限らず、種々の報知装置を用いて行うことができる。例えば、リモコン90にLEDを設けて点灯パターンにより種々の情報が報知されても良いし、リモコン90にモニタを設けて種々の情報が表示されても良い。また、積層灯71やセンターマスコット20、ライト、その他の発光体の点灯パターン、作業者が所持するスマートフォンやモバイル端末、パーソナルコンピュータ等への表示や振動、リモコン90等の振動等により報知することができる。また、報知装置が行う各種報知は、制御ユニット30、または制御ユニット30に内蔵される報知制御部、あるいは制御ユニット30の外部に設けられる報知制御部により、走行状態、作業状態、各種センサの検知状態等に応じて制御される。 (3) In each of the above embodiments, the notification device for performing various notifications performed by the rice transplanter is not limited to the information terminal 5 and the voice alarm generator 100, and can be performed using various notification devices. For example, the remote controller 90 may be provided with an LED to notify various information according to the lighting pattern, or the remote controller 90 may be provided with a monitor to display various information. In addition, it is possible to notify by the lighting pattern of the laminated light 71, the center mascot 20, the light, and other light emitters, the display and vibration on the smartphone, mobile terminal, personal computer, etc. possessed by the worker, and the vibration of the remote controller 90, etc. can. Further, various notifications performed by the notification device are detected by the control unit 30, the notification control unit built in the control unit 30, or the notification control unit provided outside the control unit 30 to detect the traveling state, the working state, and various sensors. It is controlled according to the state and the like.
(4)図72に示すように、圃場形状取得処理により取得された圃場のマップ情報によって示される圃場の外周輪郭線LL0を圃場の中央側に所定のオフセット量でオフセットした修正外周輪郭線LL1に基づいて、走行経路が形成される。修正外周輪郭線LL1は、最外周の周回経路である外側周回経路ORLと実質的に同一である。外側周回経路ORLの内側に内側周回経路IRL及び内部往復経路IPLが作成される。その際、図72に示すように、圃場外形に凸部ZAが存在していると、外側周回経路ORLや内側周回経路IRLも凸部ZAの形状に倣った屈曲形状を示すことになる。しかしながら、凸部ZAの圃場への突き出し量が小さければ、少なくとも内側周回経路IRLは、屈曲形状を直線に置き換えてもよい。このように、屈曲形状を直線に置き換える対象となる領域は、ここでは、特別植付領域SNAと称せられる。この特別植付領域SNAが複数ある圃場形状は複雑な多角形となるが、この特別植付領域SNAにおける屈曲形状の経路部分が直線に置き換えることができると、圃場形状はシンプルな形状となる。その結果、内側周回経路IRLは直線状に形成することができ、さらに内部往復経路IPLの包絡線も直線状となる。その際、外側周回経路ORLや内側周回経路IRLとの走行において、苗植付が重複する場合、外側周回経路ORLでの走行は空走りとしてもよいし、あるいは重ね植えとしてもよい。このような特別植付領域SNAは、圃場のコーナ領域、特に出入口Eに発生することが多いが、特別植付領域SNAにおける経路を直線化することで、経路設計が簡単となる。但し、この特別植付領域SNAにおける経路の直線化は、作業者によって選択可能とすることが好ましい。 (4) As shown in FIG. 72, the outer peripheral contour line LL0 of the field indicated by the map information of the field acquired by the field shape acquisition process is offset to the center side of the field by a predetermined offset amount to the modified outer peripheral contour line LL1. Based on this, a travel path is formed. The modified outer peripheral contour line LL1 is substantially the same as the outer peripheral path OL, which is the outermost peripheral path. An inner orbital path IRL and an internal reciprocating path IPL are created inside the outer orbital path ORL. At that time, as shown in FIG. 72, if the convex portion ZA is present on the outer shape of the field, the outer orbital path ORL and the inner orbital path IRL also show a bent shape following the shape of the convex portion ZA. However, if the amount of protrusion of the convex portion ZA into the field is small, at least the inner circular path IRL may replace the bent shape with a straight line. The region to be replaced with a straight line in this way is referred to as a special planting region SNA here. The field shape having a plurality of special planting area SNAs becomes a complicated polygon, but if the path portion of the bent shape in the special planting area SNA can be replaced with a straight line, the field shape becomes a simple shape. As a result, the inner circular path IRL can be formed linearly, and the envelope of the internal reciprocating path IPL is also linear. At that time, when the seedling planting overlaps in the traveling with the outer orbital path ORL or the inner orbital path IRL, the traveling on the outer orbital path ORL may be an idle run or a layered planting. Such special planting area SNA often occurs in the corner area of the field, particularly at the entrance / exit E, but by straightening the route in the special planting area SNA, the route design becomes simple. However, it is preferable that the linearization of the route in the special planting area SNA can be selected by the operator.
 なお、前述の屈曲形状の大きさが所定以上のときは前述の直線化が難しくなる。つまり、直線化した内側周回経路IRLが外側周回経路ORLに入り込むことになり、特別植付領域SNAが外側周回経路ORLと内側周回経路IRLの両方に含まれる重複特別植付領域となる。この場合には、この重複特別植付領域に対する植付作業は、内側周回経路IRLでの走行で行われる。また、外側周回経路ORLでのこの重複特別植付領域の走行は空植えで走行して、重複特別植付領域を通過する。なお、重複特別植付領域が出入口Eの周辺で発生している場合には、内側周回経路IRLを用いた走行で植付が行われ、外側周回経路ORLは、この重複特別植付領域を通過せずに、そのまま出入口Eを通過して圃場を脱出する。 When the size of the bent shape is larger than a predetermined value, the straightening becomes difficult. That is, the linear inner circuit path IRL enters the outer circuit path ORL, and the special planting area SNA becomes an overlapping special planting area included in both the outer circuit path ORL and the inner circuit path IRL. In this case, the planting work for this overlapping special planting area is performed by traveling on the inner circuit path IRL. In addition, the traveling of this overlapping special planting area on the outer circuit path ORL travels by empty planting and passes through the overlapping special planting area. If the overlapping special planting area occurs around the entrance / exit E, the planting is performed by traveling using the inner circuit path IRL, and the outer circuit path ORL passes through this overlapping special planting area. Without doing so, it passes through the doorway E as it is and escapes from the field.
(5)燃料切れ、バッテリ切れ、植付苗、肥料、薬剤などの資材切れ(資材不足)が発生した位置、あるいはそれらの発生が予測される位置が算出された場合には、その報知において、資材切れ(資材不足)の位置をタッチパネル50に、好ましくは走行経路上に表示する構成としてもよい。 (5) When the position where the material shortage (material shortage) such as fuel shortage, battery dead, planted seedling, fertilizer, chemicals, etc. has occurred, or the position where they are predicted to occur is calculated, in the notification, The position of the material shortage (material shortage) may be displayed on the touch panel 50, preferably on the traveling route.
(6)上記各実施形態では、田植機を例に説明したが、本発明は、田植機を始め、直播機、管理機(薬剤や肥料等の散布を行う)、トラクタ、収穫機等の各種農作業機、さらに、作業地を作業走行する各種作業機に適用することができる。 (6) In each of the above embodiments, a rice transplanter has been described as an example, but the present invention includes a rice transplanter, a direct sowing machine, a management machine (spraying chemicals, fertilizers, etc.), a tractor, a harvester, and the like. It can be applied to agricultural work machines and various work machines that work on the work site.
 本発明は、田植機等の農作業機、その他の作業機のための走行経路管理システムに適用することができる。 The present invention can be applied to a traveling route management system for agricultural work machines such as rice transplanters and other work machines.
1       :機体
5       :情報端末
50      :タッチパネル
522     :往復経路作成部
524     :周回経路作成部
525     :運転形態管理部
E       :出入口
OA      :外周領域
IA      :内部領域
IPL     :往復経路(内部往復経路)
IRL     :内側周回経路
ORL     :外側周回経路
1: Aircraft 5: Information terminal 50: Touch panel 522: Round-trip route creation unit 524: Circular route creation unit 525: Operation mode management unit E: Doorway OA: Outer peripheral area IA: Internal area IPL: Round-trip route (internal round-trip route)
IRL: Inner circuit path ORL: Outer circuit path

Claims (10)

  1.  農場を自動走行可能な作業機のための走行経路管理システムであって、
     前記農場の外形を算出するために前記農場の境界線に沿って走行する外形算出走行における走行軌跡に基づいて、前記農場の外周領域に少なくとも1本以上の周回経路を作成する周回経路作成部と、
     前記外周領域の内側に位置する内部領域に複数の直進経路を含む往復経路を作成する往復経路作成部と、を備え、
     前記周回経路の本数は、走行している前記直進経路から次に走行する前記直進経路への旋回走行に必要な面積によって決定される走行経路管理システム。
    A travel route management system for work machines that can automatically travel on farms.
    An orbital route creating unit that creates at least one or more orbital routes in the outer peripheral region of the farm based on the traveling locus in the outer shape calculation running along the boundary line of the farm to calculate the outer shape of the farm. ,
    A reciprocating route creating unit for creating a reciprocating route including a plurality of straight routes in an internal region located inside the outer peripheral region is provided.
    A travel route management system in which the number of circuit routes is determined by the area required for turning from the traveling straight route to the next traveling straight route.
  2.  前記往復経路は、前記農場の境界線に沿って走行する外形算出走行における走行軌跡に基づいて作成される請求項1に記載の走行経路管理システム。 The travel route management system according to claim 1, wherein the round-trip route is created based on a travel locus in an outer shape calculation travel traveling along a boundary line of the farm.
  3.  前記周回経路の運転形態として、有人自動走行、無人自動走行からの選択を可能にする運転形態管理部を備えている請求項1または2に記載の走行経路管理システム。 The travel route management system according to claim 1 or 2, further comprising an operation mode management unit that enables selection from manned automatic driving and unmanned automatic driving as the driving mode of the circuit route.
  4.  前記周回経路は、前記外形算出走行における走行軌跡に合わせた外側周回経路と、前記外側周回経路の内側に位置する内側周回経路とを含み、前記外側周回経路の運転形態は、前記有人自動走行または手動走行に限定されている請求項3に記載の走行経路管理システム。 The orbital route includes an outer orbital route that matches the travel locus in the outer shape calculation travel and an inner orbital route that is located inside the outer orbital route, and the operation mode of the outer orbital route is the manned automatic traveling or the operation mode. The travel route management system according to claim 3, which is limited to manual driving.
  5.  前記内側周回経路は、前記外周領域の内側に位置する内部領域に作成される複数の直進経路の端部輪郭線と前記外側周回経路とに沿うように作成される請求項4に記載の走行経路管理システム。 The traveling route according to claim 4, wherein the inner peripheral route is created along the end contour lines of a plurality of straight paths created in the inner region located inside the outer peripheral region and the outer peripheral region. Management system.
  6.  前記端部輪郭線と前記外側周回経路との間隔が変動する場合、前記内側周回経路に、作業制御情報として、前記間隔の変動に合わせて作業幅を変更するための各条クラッチのオン・オフが割り当てられる請求項5に記載の走行経路管理システム。 When the distance between the end contour line and the outer circuit path fluctuates, on / off of each clutch for changing the work width according to the change in the interval as work control information in the inner circuit path. The travel route management system according to claim 5, wherein is assigned.
  7.  前記作業機の車載LANに接続されたタッチパネル付き情報端末に、前記周回経路作成部と前記往復経路作成部と前記運転形態管理部とが、グラフィックユーザインターフェースを通じて操作可能に構築されており、前記周回経路は、前記運転形態に応じて識別可能に前記タッチパネルの画面に表示される請求項3から6のいずれか一項に記載の走行経路管理システム。 The circuit route creation unit, the round-trip route creation unit, and the operation mode management unit are constructed so as to be operable through a graphic user interface on an information terminal with a touch panel connected to the vehicle-mounted LAN of the work machine. The travel route management system according to any one of claims 3 to 6, wherein the route is identifiable according to the operation mode and is displayed on the screen of the touch panel.
  8.  前記運転形態として、手動走行が実行される経路部分は、前記画面から消去される請求項7に記載の走行経路管理システム。 The travel route management system according to claim 7, wherein the route portion on which manual travel is executed as the operation mode is deleted from the screen.
  9.  前記運転形態として、手動走行が実行される経路部分は、案内経路として識別可能に前記画面に表示される請求項7に記載の走行経路管理システム。 The travel route management system according to claim 7, wherein the route portion on which manual travel is executed as the operation mode is identifiable as a guide route and is displayed on the screen.
  10.  走行している前記直進経路から次に走行する前記直進経路への旋回走行を行うための旋回経路の一部として、前記周回経路の一部が用いられる請求項1から9のいずれか一項に記載の走行経路管理システム。 According to any one of claims 1 to 9, a part of the circuit path is used as a part of the turning path for performing a turning running from the traveling straight path to the next traveling straight path. The described travel route management system.
PCT/JP2020/023961 2020-01-14 2020-06-18 Traveling path management system for work vehicle WO2021145009A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227019125A KR20220127228A (en) 2020-01-14 2020-06-18 Driving path management system of working machine
CN202080084379.2A CN115334868A (en) 2020-01-14 2020-06-18 Travel route management system for work machine

Applications Claiming Priority (36)

Application Number Priority Date Filing Date Title
JP2020-004010 2020-01-14
JP2020-003989 2020-01-14
JP2020004015A JP7466315B2 (en) 2020-01-14 2020-01-14 Work Machine
JP2020003988A JP7442321B2 (en) 2020-01-14 2020-01-14 work equipment
JP2020004012A JP7407600B2 (en) 2020-01-14 2020-01-14 work equipment
JP2020-004014 2020-01-14
JP2020004013A JP2021108614A (en) 2020-01-14 2020-01-14 Implement
JP2020003987A JP2021108604A (en) 2020-01-14 2020-01-14 Implement
JP2020004017A JP7335173B2 (en) 2020-01-14 2020-01-14 work machine
JP2020003991A JP7403323B2 (en) 2020-01-14 2020-01-14 Driving route management system
JP2020-004013 2020-01-14
JP2020004020A JP2021108621A (en) 2020-01-14 2020-01-14 Travel path management system
JP2020-003992 2020-01-14
JP2020004016A JP2021108617A (en) 2020-01-14 2020-01-14 Working machine
JP2020004019A JP7409880B2 (en) 2020-01-14 2020-01-14 Work equipment travel route management system
JP2020003992A JP7413031B2 (en) 2020-01-14 2020-01-14 work equipment
JP2020-004015 2020-01-14
JP2020-004018 2020-01-14
JP2020-003986 2020-01-14
JP2020004018A JP7409879B2 (en) 2020-01-14 2020-01-14 Work equipment travel route management system
JP2020003989A JP7458794B2 (en) 2020-01-14 2020-01-14 work equipment
JP2020-004012 2020-01-14
JP2020-003988 2020-01-14
JP2020004010A JP7489779B2 (en) 2020-01-14 2020-01-14 Work Machine
JP2020-003991 2020-01-14
JP2020004011A JP7489780B2 (en) 2020-01-14 2020-01-14 Transplanter
JP2020-004016 2020-01-14
JP2020003986A JP7372158B2 (en) 2020-01-14 2020-01-14 work equipment
JP2020-004017 2020-01-14
JP2020003990A JP2021108607A (en) 2020-01-14 2020-01-14 Work machine
JP2020-003987 2020-01-14
JP2020-003990 2020-01-14
JP2020004014A JP7378300B2 (en) 2020-01-14 2020-01-14 work equipment
JP2020-004011 2020-01-14
JP2020-004019 2020-02-29
JP2020-004020 2020-02-29

Publications (1)

Publication Number Publication Date
WO2021145009A1 true WO2021145009A1 (en) 2021-07-22

Family

ID=76772030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023961 WO2021145009A1 (en) 2020-01-14 2020-06-18 Traveling path management system for work vehicle

Country Status (3)

Country Link
KR (2) KR20210091644A (en)
CN (2) CN113124870A (en)
WO (1) WO2021145009A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184195A (en) * 2021-12-14 2022-03-15 广州极飞科技股份有限公司 Path searching method and device, unmanned equipment and storage medium
WO2023112752A1 (en) * 2021-12-17 2023-06-22 株式会社クボタ Automated travel control system
FR3132002A1 (en) * 2022-01-25 2023-07-28 Kuhn Sas Method and installation for working a plot with at least one refueled agricultural robot
EP4231111A3 (en) * 2022-02-17 2023-09-20 Yanmar Holdings Co., Ltd. Automatic traveling method, work vehicle, and automatic traveling system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114030356B (en) * 2021-12-14 2023-11-28 航天科技控股集团股份有限公司 Configuration method of speed ratio of automobile combination instrument
JP2023127875A (en) * 2022-03-02 2023-09-14 ヤンマーホールディングス株式会社 Automatic travelling method, automatic travelling system, and automatic travelling program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266608A (en) * 1998-03-23 1999-10-05 Bio Oriented Technol Res Advancement Inst Unmanned working method for field working vehicle
US20050273253A1 (en) * 2004-06-03 2005-12-08 Norbert Diekhans Route planning system and method for agricultural working machines
JP2018099112A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route management system
JP2018116614A (en) * 2017-01-20 2018-07-26 株式会社クボタ Traveling route generating device and traveling route generating program
JP2018153103A (en) * 2017-03-15 2018-10-04 ヤンマー株式会社 Work vehicle
JP2018161085A (en) * 2017-03-24 2018-10-18 ヤンマー株式会社 Work vehicle
JP2019097529A (en) * 2017-12-07 2019-06-24 ヤンマー株式会社 Travel path setting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737299B2 (en) 2018-03-16 2020-08-05 井関農機株式会社 Work vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266608A (en) * 1998-03-23 1999-10-05 Bio Oriented Technol Res Advancement Inst Unmanned working method for field working vehicle
US20050273253A1 (en) * 2004-06-03 2005-12-08 Norbert Diekhans Route planning system and method for agricultural working machines
JP2018099112A (en) * 2016-12-19 2018-06-28 株式会社クボタ Travel route management system
JP2018116614A (en) * 2017-01-20 2018-07-26 株式会社クボタ Traveling route generating device and traveling route generating program
JP2018153103A (en) * 2017-03-15 2018-10-04 ヤンマー株式会社 Work vehicle
JP2018161085A (en) * 2017-03-24 2018-10-18 ヤンマー株式会社 Work vehicle
JP2019097529A (en) * 2017-12-07 2019-06-24 ヤンマー株式会社 Travel path setting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184195A (en) * 2021-12-14 2022-03-15 广州极飞科技股份有限公司 Path searching method and device, unmanned equipment and storage medium
CN114184195B (en) * 2021-12-14 2024-04-26 广州极飞科技股份有限公司 Path search method, path search device, unmanned equipment and storage medium
WO2023112752A1 (en) * 2021-12-17 2023-06-22 株式会社クボタ Automated travel control system
FR3132002A1 (en) * 2022-01-25 2023-07-28 Kuhn Sas Method and installation for working a plot with at least one refueled agricultural robot
WO2023144119A1 (en) * 2022-01-25 2023-08-03 Kuhn Sas Method and installation for working a plot of land with at least one replenished agricultural robot
EP4231111A3 (en) * 2022-02-17 2023-09-20 Yanmar Holdings Co., Ltd. Automatic traveling method, work vehicle, and automatic traveling system

Also Published As

Publication number Publication date
CN115334868A (en) 2022-11-11
KR20220127228A (en) 2022-09-19
CN113124870A (en) 2021-07-16
KR20210091644A (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2021145009A1 (en) Traveling path management system for work vehicle
JP2024026448A (en) Travel path management system for implement
JP2024023779A (en) Travel path management system for implement
JP2021108605A (en) Work machine
JP2021108617A (en) Working machine
JP2021108606A (en) Work machine
JP2021108616A (en) Work vehicle
JP2021108608A (en) Travel route management system
JP2021108621A (en) Travel path management system
JP7335173B2 (en) work machine
JP2021108613A (en) Implement
JP2021108611A (en) Implement
JP2021108614A (en) Implement
JP2021108615A (en) Work machine
JP2021108607A (en) Work machine
JP2021108603A (en) Implement
JP2021108612A (en) Implement
JP2021108604A (en) Implement
JP2021108609A (en) Working machine
JP2022085683A (en) Implement
JP2022085678A (en) Implement
JP2022085681A (en) Work machine and vehicle speed control system
WO2022114052A1 (en) Work machine and work travel system
WO2022114051A1 (en) Work machine and work travelling system
JP2022085684A (en) Implement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913105

Country of ref document: EP

Kind code of ref document: A1