WO2021144922A1 - 量子計算素子 - Google Patents

量子計算素子 Download PDF

Info

Publication number
WO2021144922A1
WO2021144922A1 PCT/JP2020/001286 JP2020001286W WO2021144922A1 WO 2021144922 A1 WO2021144922 A1 WO 2021144922A1 JP 2020001286 W JP2020001286 W JP 2020001286W WO 2021144922 A1 WO2021144922 A1 WO 2021144922A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
coupler
lines
indicated
superconducting line
Prior art date
Application number
PCT/JP2020/001286
Other languages
English (en)
French (fr)
Inventor
大輔 才田
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to PCT/JP2020/001286 priority Critical patent/WO2021144922A1/ja
Priority to JP2020523825A priority patent/JP6773359B1/ja
Publication of WO2021144922A1 publication Critical patent/WO2021144922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices

Definitions

  • the present invention relates to a quantum computing device.
  • a loop-shaped superconducting line is used to construct a qubit that has two quantum states in the orbital direction of the current, and after interacting with the qubits, the difference in the orbital direction is detected by a superconducting quantum interference.
  • Quantum computers that measure by device, SQUID) are being studied. In such a quantum computer, the interaction between qubits may be controlled by a coupler.
  • Non-Patent Document 1 discloses a coupler capable of controlling the strength of interaction between two qubits.
  • Non-Patent Document 2 discloses a study for obtaining protein folding by a quantum computer.
  • Non-Patent Document 1 quantum annealing by Hamiltonian including quadratic interaction between qubits can be realized. Further, for example, in Non-Patent Document 2, when the Hamiltonian of a protein contains a third-order or higher-order interaction, an auxiliary qubit is introduced to represent the third-order or higher-order interaction as a second-order or lower-order interaction.
  • the present invention provides a quantum computing element in which the gradation of the strength of the interaction is not easily limited even when the interaction of the third order or higher is included.
  • the quantum computing element comprises a plurality of superconducting lines each constituting a qubit according to an electromagnetic state, and two qubits composed of two superconducting lines among the plurality of superconducting lines. It includes a first coupler to interact with and a second coupler to interact with three or more qubits composed of three or more superconducting lines among a plurality of superconducting lines.
  • the three or more superconducting lines each include a loop that orbits clockwise or counterclockwise in plan view, and the second coupler faces the loop and is clockwise or counterclockwise in plan view. It may include three or more coupler loops that orbit in.
  • three or more superconducting lines can be efficiently interacted with each other by providing the superconducting lines and the second coupler with opposite loops.
  • the three or more coupler loops may orbit in the same direction.
  • three or more qubits can interact with the same polarity.
  • At least two of the three or more coupler loops may orbit in opposite directions.
  • three or more qubits can interact with different polarities.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines may be included in one unit cell.
  • a third-order or higher interaction is realized for three or more qubits forming a unit cell.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the three or more superconducting lines may span at least two unit lattices.
  • a third-order or higher interaction is realized for three or more qubits straddling two unit arrays.
  • the three or more superconducting lines may include at least two superconducting lines extending in the same direction and not adjacent to each other.
  • a third-order or higher-order interaction is realized for three or more superconducting lines including two superconducting lines in which the second-order interaction by the first coupler is not provided.
  • a plurality of first superconducting quantum interferometers electromagnetically connected to a plurality of superconducting lines are further provided, and a second coupler adjusts the strength of interaction of three or more qubits.
  • the inductance parameter of the second coupler, including the two superconducting qubits, may be smaller than the inductance parameters of the plurality of superconducting lines.
  • the inductance parameter of the second coupler is smaller than the inductance parameter of the plurality of superconducting lines, the gradation of the strength of the interaction is high even when the interaction of the third order or higher is included. It becomes difficult to be restricted.
  • the inductance parameter of the second coupler may be 1/2 or less of the inductance parameter of the plurality of superconducting lines.
  • the inductance parameter of the second coupler is 1/2 or less of the inductance parameter of the plurality of superconducting lines, so that the interaction is strong even when the interaction of the third order or higher is included. It becomes more difficult to limit the gradation of the mixture.
  • the present invention it is possible to provide a quantum computing element in which the gradation of the strength of the interaction is not easily limited even when the interaction of the third order or higher is included.
  • FIG. 1 is a diagram showing an outline of the quantum computing system 100 according to the embodiment of the present invention.
  • the quantum computing system 100 includes a quantum computer 1 and a classical computer 20.
  • the quantum computer 1 is a computer that positively utilizes the quantum effect, and may be, for example, a computer that performs quantum adiabatic calculation.
  • the quantum computer 1 may be replaced with a computer based on the quantum calculation method.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • FPGA Field-Programmable Gate Array
  • You may use a computer that performs calculations to be performed or calculations based on the Zing model.
  • the classical computer 20 is a computer that operates based on the classical natural law without actively utilizing the quantum effect, and may be, for example, a von Neumann computer.
  • the quantum computer 1 includes a quantum computing element 10.
  • the quantum computing element 10 includes a plurality of superconducting lines constituting a plurality of qubits, a first coupler that interacts with two qubits, and a second coupler that interacts with three or more qubits.
  • the quantum computing element 10 is used in a state of being cooled to a temperature equal to or lower than the superconducting transition temperature of the material forming the superconducting line and the coupler. Therefore, the quantum computer 1 includes a cooling mechanism in addition to the quantum computing element 10.
  • the quantum computer 1 is connected to the classical computer 20 via a cable (coaxial cable or the like) for propagating an electric signal, a communication network N such as a LAN (Local Area Network) or the Internet, and operates according to the settings of the classical computer 20.
  • the classical computer 20 sets the strength of the interaction between a plurality of qubits.
  • the quantum computer 1 may be formed on a chip different from the quantum computer 1 and may be controlled by a signal output from a signal source configured on the chip.
  • different chips and wirings may be placed at room temperature or in a temperature environment different from that of the quantum computing element. For example, it may be placed in a liquid helium temperature environment (about 4.2K) and connected to a chip of a quantum computing element installed at a temperature of 10 mK or less by wiring.
  • FIG. 2 is a diagram showing an outline of a plurality of superconducting lines, a first coupler, and a first example of the second coupler of the quantum computing element 10 according to the present embodiment.
  • “1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by “1”, the second superconducting line L2 indicated by “2", and the first superconducting line L1a.
  • the first superconducting line L1b and the first superconducting line L1c which are coupled so as to have the same quantum state as the first superconducting line L1a shown as "'" are shown by being surrounded by a broken line.
  • two 4 ⁇ 4 unit arrays in which 4 qubits are arranged in the vertical direction and 4 qubits in the horizontal direction are shown.
  • the first superconducting line L1a, L1b, L1c and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the first superconducting lines L1a, L1b, and L1c form the first qubit
  • the second superconducting lines L2 and the superconducting lines indicated by "2'” form the second qubit.
  • the superconducting lines indicated by "3" and “3'” constitute the third qubit
  • the superconducting lines indicated by "4" and "4'” constitute the fourth qubit. ..
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the readout circuits such as QFP (Quantum Flux Parametron) and the readout superconducting quantum interference device (SQUID) connected to the superconducting line are omitted, but the current flowing through the superconducting line is omitted.
  • the orbital direction is defined as the direction of the current flowing in the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 2 and returning to the superconducting quantum interferometer.
  • the first superconducting line L1a and the like include ring portions 31 and 32 for magnetically coupling with other superconducting lines and a ring portion 33 for magnetically coupling with the coupler.
  • the ring portion 33 is a part of the superconducting line and has a ring shape so as to facilitate magnetic coupling with other qubits.
  • the first couplers C1a and C1b are provided facing a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • facing each other means that a part of the superconducting lines constituting the qubit and a part of the superconducting lines forming the first couplers C1a and C1b are overlapped in a plan view.
  • a part of the superconducting line constituting the qubit and a part of the superconducting line forming the first couplers C1a and C1b may be overlapped in a linear section or a loop-shaped section. You may.
  • the first coupler C1a is provided, for example, at a position where the first superconducting line L1b and the second superconducting line L2 intersect, and faces a part of the first superconducting line L1b and a part of the second superconducting line L2. It is provided to do so.
  • the first coupler C1a is connected to a superconducting quantum interferometer, and the strength of the interaction between two qubits composed of two superconducting lines depends on the magnitude of the magnetic flux applied to the superconducting quantum interferometer. Is adjusted.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. That is, the qubit composed of the first superconducting line L1a indicated by "1" and the qubit composed of the first superconducting line L1b indicated by "1'” are in the same quantum state. ing. Similarly, the qubit composed of the second superconducting line L2 indicated by "2" and the qubit composed of the superconducting line indicated by "2'” are in the same quantum state. ..
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is, for example, a part of the first superconducting line L1a, a part of the superconducting line indicated by "2'", a part of the superconducting line indicated by "3'", and "4'". It is provided so as to face a part of the superconducting line shown as.
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the qubits composed of the superconducting lines from “1" to "4" and the superconducting lines from “1'” to “4'” are represented by q 1 to q 4, and are realized by the first coupler C1a.
  • the second-order interaction is expressed as J ij
  • the third-order interaction realized by the second coupler C2 is expressed as J ijk
  • the fourth-order interaction realized by the second coupler C2 is expressed as J ijkl.
  • the Hamiltonian of the mathematical formula (1) can be set by the quantum computing element 10 of this example.
  • the third and fourth terms of the mathematical formula (1) have been decomposed into quadratic interactions by introducing auxiliary qubits.
  • the term J 123 q 1 q 2 q 3 + J 124 q 1 q 2 q 4 is replaced by the term J 35 q 3 q 5 + J 45 q 4 q 5 + ⁇ 1 (q 5- q 1 q 2 ).
  • ⁇ 1 is a Lagrange undetermined multiplier.
  • J 134 q 1 q 3 q 4 + J 234 q 2 q 3 q 4 is replaced with the term J 16 q 1 q 6 + J 26 q 2 q 6 + ⁇ 2 (q 6- q 3 q 4 ). It is decomposed into a term of action and a term representing the constraint condition for the auxiliary qubit q 6.
  • ⁇ 2 is a Lagrange undetermined multiplier.
  • J 1234 q 1 q 2 q 3 q 4 is replaced by the quadratic term J 56 q 5 q 6. In this way, the Hamiltonian of the mathematical formula (1) can be decomposed into the following terms.
  • Decomposing a third-order or higher term into a second-order or lower term requires the setting of auxiliary qubits, which not only substantially reduces the number of usable qubits, but also constrains the auxiliary qubits. It is necessary to set the interaction related to the constraint condition relatively strongly so that is surely satisfied, and the gradation of the strength of other interactions used to solve the problem is narrowly limited. In addition, depending on the setting of constraint conditions, approximation may occur and the accuracy of the solution may be limited.
  • the quantum computing element 10 it is necessary to decompose the third-order or higher-order interaction into the second-order interaction by providing the second coupler C2 that interacts with three or more qubits. Even when the interaction of the third order or higher is included, it becomes difficult to limit the gradation of the intensity of the interaction.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 are included in one unit cell.
  • a plurality of superconducting lines forming two adjacent unit lattices are connected by a fourth coupler C4.
  • the fourth coupler C4 is provided, for example, so as to face a part of the first superconducting line L1b and a part of the first superconducting line L1c.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is adjusted so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the strength of the interaction may be adjusted so that the quantum states of the two qubits prefer opposite current directions.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be. Further, the strength of the interaction may be fixed so that the quantum states of the two qubits composed of the two superconducting lines are reversed.
  • the second coupler C2 that interacts with the four qubits indicated by "1234", the second coupler that interacts with the three qubits indicated by "124", and "134" The second coupler that interacts with the three qubits shown, the second coupler that interacts with the three qubits shown as "234", and the three qubits shown as "123” interact with each other.
  • Each of the second couplers to be operated is included in one unit cell. In this way, third-order or higher interactions are realized for three or more qubits that form a unit cell.
  • the Hamiltonian equation can be easily transformed.
  • the chip area that can be installed in the freezer is limited, it may be possible to increase the number of qubits that can be mounted on the same chip area by directly handling the interaction of the third order or higher.
  • FIG. 3 is a top view of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment.
  • the first superconducting line L1, the second superconducting line L2, the third superconducting line L3, and the fourth superconducting line L4 extend in the same direction, respectively.
  • the first superconducting line L1 is electromagnetically connected to the first superconducting quantum interferometer S1, and the second superconducting line L2, the third superconducting line L3, and the fourth superconducting line L4 are also superconducting, respectively. It is electromagnetically connected to a quantum interferometer.
  • the first superconducting line L1 constitutes the first qubit
  • the second superconducting line L2 constitutes the second qubit
  • the third superconducting line L3 constitutes the third qubit
  • the fourth The superconducting line L4 constitutes the fourth qubit.
  • the second coupler C2 is a first qubit, a second qubit, and a third qubit composed of a first superconducting line L1, a second superconducting line L2, a third superconducting line L3, and a fourth superconducting line L4.
  • the bit and the fourth qubit interact.
  • the second coupler C2 is electromagnetically connected to the second superconducting quantum interferometer S2, and the strength of the interaction is adjusted according to the magnitude of the magnetic flux applied to the second superconducting quantum interferometer S2. ..
  • the second superconducting quantum interferometer S2 has a structure in which, for example, two Josephson junctions are inserted in parallel in the line. The area of the two Josephson junctions may be the same.
  • the critical current values of the two Josephson junctions are I c1 and I c2 , a design in which one is slightly smaller is preferable.
  • the critical current density of 1 .mu.A / [mu] m 2 by utilizing the process of the Josephson junction of the superconducting wiring layer 4 has been Nb / AlOx / Nb, the area of the two Josephson junctions as an example 2. Asymmetry of 8 ⁇ m square and 2.9 ⁇ m square can be mentioned.
  • the second coupler C2 includes a ring that faces the first superconducting line L1, the second superconducting line L2, the third superconducting line L3, and the fourth superconducting line L4 in a non-contact manner, and four superconducting lines by electromagnetic induction. Interact the tracks.
  • the rings and couplers include the uppermost layer (fourth layer) line M4 shown by the solid line, the third layer line M3 shown by the broken line, and the second layer line M2 shown by the alternate long and short dash line. It is composed of the line M1 of the lowest layer (first layer) indicated by the alternate long and short dash line, has a non-contact and opposed structure, and has a structure capable of interacting by electromagnetic induction.
  • the line 40 is a line for applying a transverse magnetic field to the first superconducting line L1, the second superconducting line L2, the third superconducting line L3, and the fourth superconducting line L4.
  • Line 41 is a line for providing a h i of Equation (1), is provided opposite the ring and a part of the superconducting lines L1, L2, L3, L4.
  • the QFP42 schematically shown in FIG. 3 includes a superconducting quantum interferometer. Further, the readout superconducting quantum interferometer 43 schematically shown includes the superconducting quantum interferometer and reads out the quantum state of the corresponding superconducting line.
  • the line 44 is a line for applying magnetic flux to the QFP 42.
  • the line 45 is a line for applying magnetic flux to the read-out superconducting quantum interferometer 43.
  • the line 46 is a line for supplying a voltage to the corresponding read-out superconducting quantum interferometer 43.
  • the first coupler is provided for any two combinations of the first superconducting line L1, the second superconducting line L2, the third superconducting line L3, and the fourth superconducting line L4. It may have been.
  • FIG. 4A is a diagram showing the first layer (top layer) of the first example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment.
  • the metal layer and vias formed in the first layer are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the second coupler C2 includes coupler loops CL1, CL2, CL3, and CL4 that orbit clockwise or counterclockwise in a plan view facing the loop of the superconducting line.
  • the coupler loops CL1, CL2, CL3, and CL4 all orbit in the same direction.
  • FIG. 4B is covered with the second layer (the first layer, which is the uppermost layer) of the first example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment. It is a figure which shows the layer). In the figure, the metal layer and vias formed in the second layer are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the superconducting lines L1, L2, L3, and L4 include loops LL1, LL2, LL3, and LL4 that orbit clockwise or counterclockwise in a plan view, respectively.
  • the loops LL1, LL2, LL3, and LL4 all orbit in the same direction.
  • the second coupler C2 mutually connects the four qubits composed of the superconducting lines L1, L2, L3, and L4 so that the current flows in the same direction through the superconducting lines L1, L2, L3, and L4. Can act.
  • the strength and polarity of the interaction can be changed.
  • FIG. 4C shows the third layer (layer covered by the second layer) of the first example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment. It is a figure which shows. In the figure, the metal layer and vias formed in the third layer are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the second coupler C2 includes coupler loops CL1, CL2, CL3, and CL4 that orbit clockwise or counterclockwise in a plan view facing the loop of the superconducting line.
  • FIG. 4D is a diagram showing the fourth layer (bottom layer) of the first example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment.
  • the metal layer and vias formed in the fourth layer are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the superconducting lines L1, L2, L3, and L4 include loops LL1, LL2, LL3, and LL4 that orbit clockwise or counterclockwise in a plan view, respectively.
  • the layouts of the superconducting lines L1, L2, L3, L4 and the second coupler C2 shown in FIGS. 4A to 4D are merely examples, and are not only quadrangular but also ring-shaped, circular, and other layouts in a plan view. You may.
  • FIG. 5A is a diagram showing the first layer (top layer) of the second example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment.
  • the metal layer and vias formed in the first layer are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the second coupler C2 includes coupler loops CL1, CL2, CL3, and CL4 that orbit clockwise or counterclockwise in a plan view facing the loop of the superconducting line.
  • the coupler loops CL1 and CL2 orbit in the same direction
  • the coupler loops CL3 and CL4 orbit in the same direction
  • the coupler loops CL1 and CL2 and the coupler loops CL3 and CL4 orbit in opposite directions. ..
  • FIG. 5B is covered with the second layer (the first layer, which is the uppermost layer) of the second example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment. It is a figure which shows the layer). In the figure, the metal layer and vias formed in the second layer are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the superconducting lines L1, L2, L3, and L4 include loops LL1, LL2, LL3, and LL4 that orbit clockwise or counterclockwise in a plan view, respectively.
  • the loops LL1, LL2, LL3, and LL4 all orbit in the same direction.
  • a clockwise current flows in the loop LL1 and a magnetic flux is generated in the direction of penetrating the paper surface downward.
  • a counterclockwise current is induced in the coupler loop CL1 with respect to this magnetic flux, and a magnetic flux is generated in the coupler loop CL2 in the direction of penetrating the paper surface upward.
  • magnetic flux is generated in the coupler loops CL3 and CL4 in the direction of penetrating the paper surface downward. Therefore, a clockwise current is induced in the loop LL2, a counterclockwise current is induced in the loops LL3 and LL4, and a current flowing from the top to the bottom is induced in the superconducting line L2.
  • L4 induces a current flowing from bottom to top.
  • the second coupler C2 causes the current in the same direction to flow through the superconducting lines L1 and L2, and the current in the direction opposite to that in the superconducting lines L1 and L2 flows through the superconducting lines L3 and L4.
  • Four quantum bits composed of lines L1, L2, L3, and L4 can interact with each other. By changing the magnetic flux applied to the second superconducting quantum interferometer S2, the strength and polarity of the interaction can be changed.
  • FIG. 5C shows the third layer (layer covered by the second layer) of the second example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment. It is a figure which shows. In the figure, the metal layer and vias formed in the third layer are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the second coupler C2 includes coupler loops CL1, CL2, CL3, and CL4 that orbit clockwise or counterclockwise in a plan view facing the loop of the superconducting line.
  • FIG. 5D is a diagram showing the fourth layer (bottom layer) of the second example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment.
  • the metal layer and vias formed in the fourth layer are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the superconducting lines L1, L2, L3, and L4 include loops LL1, LL2, LL3, and LL4 that orbit clockwise or counterclockwise in a plan view, respectively.
  • FIG. 6 is a diagram showing a third example of the four superconducting lines L1, L2, L3, L4 and the second coupler C2 of the quantum computing element 10 according to the present embodiment.
  • the metal layer and vias formed in the first layer (top layer) are shown by solid lines, and the metal layers and vias formed in other layers are shown by broken lines.
  • the second coupler C2 includes coupler loops CL1, CL2, and CL4 that orbit clockwise or counterclockwise in a plan view, facing the loop of the superconducting line.
  • the coupler loops CL1, CL2, and CL3 orbit in the same direction.
  • the loop is not provided at the position where the coupler loop CL3 was provided in the first example.
  • the second coupler C2 is formed in the first layer (top layer), and the superconducting line L3 is covered with the second layer (the first layer which is the top layer). It is formed in the existing layer) and crosses over.
  • the three superconducting lines L1, L2, and L4 coupled by the second coupler C2 include at least two superconducting lines extending in the same direction and not adjacent to each other.
  • the superconducting line L1 and the superconducting line L4 extend in the same direction and are not adjacent to each other.
  • the superconducting line L2 and the superconducting line L4 extend in the same direction and are not adjacent to each other.
  • Superconducting lines that extend in the same direction and are not adjacent are not directly coupled by the first coupler.
  • the second coupler C2 realizes a third-order or higher-order interaction with respect to three or more superconducting lines including two superconducting lines in which the first coupler does not provide a second-order interaction. ..
  • FIG. 7 is a diagram showing an energy level in a state where a transverse magnetic field is applied to the first superconducting quantum interferometer of the quantum computing element 10 according to the present embodiment.
  • the first superconducting quantum interferometer is electromagnetically connected to the superconducting line and changes the energy level of the superconducting line according to the applied magnetic flux.
  • a transverse magnetic field is applied to the first superconducting quantum interferometer, the energy level in the ground state of the superconducting line is degenerated, resulting in a double-well type.
  • L is the inductance of the superconducting line
  • I C is the threshold current of the Josephson junction
  • the inductance parameter of the second coupler C2 is smaller than the inductance parameter of the plurality of superconducting lines. More preferably, the inductance parameter of the second coupler C2 is 1 ⁇ 2 or less of the inductance parameter of the plurality of superconducting lines. Since the inductance parameter of the second coupler C2 is smaller than the inductance parameter of the plurality of superconducting lines, it becomes difficult to limit the gradation of the strength of the interaction even when the interaction of the third order or higher is included.
  • the inductance parameter of the second coupler C2 is 1/2 or less of the inductance parameter of the plurality of superconducting lines, the strength of the interaction is the order of the strength of the interaction even when the interaction of the third order or higher is included. The key is less likely to be restricted.
  • FIG. 8 is a diagram showing an outline of a plurality of superconducting lines, a first coupler, and a second example of the second coupler of the quantum computing element 10 according to the present embodiment.
  • the first superconducting line L1a shown as "1” and the first superconducting line L1b shown as "1'" which are coupled so as to have the same quantum state as the first superconducting line L1a are shown.
  • the figure is surrounded by a broken line.
  • Each of the first superconducting lines L1a and L1b constitutes a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 8 and returning to the superconducting quantum interferometer. Defined in.
  • the first couplers C1a and C1b are provided facing a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1a is provided, for example, at a position where the first superconducting line L1b and the superconducting line shown as "2" intersect, and is a part of the first superconducting line L1b and the superconducting line shown as "2". It is provided so as to face a part of the track.
  • the first coupler C1a is connected to a superconducting quantum interferometer, and the strength of the interaction between two qubits composed of two superconducting lines depends on the magnitude of the magnetic flux applied to the superconducting quantum interferometer. Is adjusted.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. That is, the qubit composed of the first superconducting line L1a indicated by "1" and the qubit composed of the first superconducting line L1b indicated by "1'” are in the same quantum state. ing. Similarly, the qubit composed of the second superconducting line L2 indicated by "2" and the qubit composed of the superconducting line indicated by "2'” are in the same quantum state. ..
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 faces, for example, a part of the first superconducting line L1a, a part of the superconducting line indicated by "2'", and a part of the superconducting line indicated by "3'”.
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the second coupler C2 that interacts with the three qubits indicated by "123”, the second coupler that interacts with the three qubits indicated by "124", and "1234"
  • the second coupler that interacts with the four qubits shown, the second coupler that interacts with the three qubits labeled "134", and the three qubits labeled "234" interact.
  • Each of the second couplers to be operated is included in one unit cell. In this way, third-order or higher interactions are realized for three or more qubits that form a unit cell.
  • FIG. 9 is a diagram showing an outline of a third example of a plurality of superconducting lines and a second coupler of the quantum computing element 10 according to the present embodiment.
  • “1” is coupled so as to have the same quantum state as the first superconducting line L1a indicated by “1”, the second superconducting line L2 indicated by “2”, and the first superconducting line L1a.
  • the first superconducting line L1b indicated by "'” is shown by enclosing it with a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 9 and returning to the superconducting quantum interferometer. Defined in.
  • the first coupler C1b is provided so as to face a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the qubit composed of the first superconducting line L1a indicated by “1” and the qubit composed of the first superconducting line L1b indicated by “1'” are in the same quantum state. ing.
  • the qubit composed of the second superconducting line L2 indicated by “2” and the qubit composed of the superconducting line indicated by “2'” are in the same quantum state. ..
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is, for example, a part of the first superconducting line L1b, a part of the second superconducting line L2, a part of the superconducting line indicated by “3”, and the superconducting line indicated by “4”. It is provided so as to face a part of the above and a part of the superconducting line indicated by "5".
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 straddle at least two unit lattices.
  • the second coupler C2 shown as "12345” includes the first superconducting line L1b, the second superconducting line L2, and the superconducting line shown as "3" forming the unit cell on the left side.
  • the superconducting line shown as "4" and the superconducting line shown as "5" forming the unit cell on the right side are made to interact with each other, and five quantum bits are made to interact with each other.
  • the second coupler C2 indicated by “123456” includes a superconducting line indicated by "1'”, a second superconducting line L2, a superconducting line indicated by “3”, and a superconducting line indicated by "4".
  • the conduction line is made to interact with the superconducting line indicated by "5" and the superconducting line indicated by "6” forming the unit cell on the right side, and six quantum bits are made to interact with each other.
  • the second coupler C2 indicated by “1234567” includes a superconducting line indicated by "1'", a second superconducting line L2, a superconducting line indicated by "3", and a superconducting line indicated by "4".
  • the second coupler C2 indicated by "123456878” includes a superconducting line indicated by "1'”, a second superconducting line L2, a superconducting line indicated by "3”, and a superconducting line indicated by "4".
  • the second coupler C2 realizes a third-order or higher-order interaction for three or more qubits straddling two unit arrays.
  • the inductance of the second coupler C2 becomes relatively large, but the inductance parameters of the second coupler C2 are set to a plurality. By making it smaller than the inductance parameter of the superconducting line, it becomes difficult to limit the gradation of the strength of the interaction.
  • FIG. 10 is a diagram showing an outline of a fourth example of a plurality of superconducting lines, a first coupler, and a second coupler of the quantum computing element 10 according to the present embodiment.
  • “1” is coupled so as to have the same quantum state as the first superconducting line L1a indicated by “1”, the second superconducting line L2 indicated by “2”, and the first superconducting line L1a.
  • the first superconducting line L1b indicated by "'” is shown by enclosing it with a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 10 and returning to the superconducting quantum interferometer. Defined in.
  • the first couplers C1a and C1b are provided facing a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1a is provided, for example, at a position where the first superconducting line L1b and the second superconducting line L2 intersect, and faces a part of the first superconducting line L1b and a part of the second superconducting line L2. It is provided to do so.
  • the first coupler C1a is connected to a superconducting quantum interferometer, and the strength of the interaction between two qubits composed of two superconducting lines depends on the magnitude of the magnetic flux applied to the superconducting quantum interferometer. Is adjusted.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. That is, the qubit composed of the first superconducting line L1a indicated by "1" and the qubit composed of the first superconducting line L1b indicated by "1'” are in the same quantum state. ing. Similarly, the qubit composed of the second superconducting line L2 indicated by "2" and the qubit composed of the superconducting line indicated by "2'” are in the same quantum state. ..
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 faces, for example, a part of the first superconducting line L1a, a part of the superconducting line indicated by "2'", and a part of the superconducting line indicated by "3'”.
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the second coupler C2 that interacts with the three qubits indicated by "124", the second coupler that interacts with the three qubits indicated by "123”, and "1234"
  • the second coupler that interacts with the four qubits shown, the second coupler that interacts with the three qubits labeled "134", and the three qubits labeled "234" interact.
  • Each of the second couplers to be operated is included in one unit cell. In this way, third-order or higher interactions are realized for three or more qubits that form a unit cell.
  • the second coupler that interacts with the three qubits indicated by "134" and the second coupler that interacts with the four qubits indicated by "1234" are grade-separated at the intersection P. It intersects. Overpasses are formed by railroad tracks provided in two layers, as described with reference to FIG.
  • the Hamiltonian of the mathematical formula (1) can be realized with 13 qubits.
  • the Hamiltonian of the mathematical formula (1) can be realized with 15 qubits. Both can be realized with two unit lattices.
  • FIG. 11 is a diagram showing an outline of a plurality of superconducting lines and a first coupler of a conventional example.
  • “1” is coupled so as to have the same quantum state as the first superconducting line L1a indicated by “1”, the second superconducting line L2 indicated by “2”, and the first superconducting line L1a.
  • the first superconducting line L1b indicated by “'” is shown by enclosing it with a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 11 and returning to the superconducting quantum interferometer. Defined in.
  • the first couplers C1a and C1b are provided facing a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1a is provided, for example, at a position where the first superconducting line L1b and the second superconducting line L2 intersect, and faces a part of the first superconducting line L1b and a part of the second superconducting line L2. It is provided to do so.
  • the first coupler C1a is connected to a superconducting quantum interferometer, and the strength of the interaction between two qubits composed of two superconducting lines depends on the magnitude of the magnetic flux applied to the superconducting quantum interferometer. Is adjusted.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. That is, the qubit composed of the first superconducting line L1a indicated by "1" and the qubit composed of the first superconducting line L1b indicated by "1'” are in the same quantum state. ing. Similarly, the qubit composed of the second superconducting line L2 indicated by "2" and the qubit composed of the superconducting line indicated by "2'” are in the same quantum state. ..
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the Hamiltonian of the formula (1) can be realized with 3 unit lattices and 17 qubits.
  • the Hamiltonian of the equation (1) can be realized with two unit lattices and 15 qubits, and the fourth example.
  • the Hamiltonian of the equation (1) can be realized with two unit lattices and 13 qubits, and the same Hamiltonian can be represented with a smaller number of qubits than the layout of the conventional example.
  • the quantum computing element 10 according to the present embodiment since it is possible to directly express the interaction of the third order or higher without adding the constraint condition, it is necessary to strengthen some of the interactions so as to satisfy the constraint condition. It becomes difficult to limit the gradation of the strength of the interaction. Further, the fact that the number of unit cells can be reduced by the quantum computing element 10 according to the present embodiment means that the number of qubits that can be mounted in the same area can be increased. Since the chip area that can be installed in the refrigerator is limited, the number of qubits that can be mounted may be increased by using the quantum computing element 10 according to the present embodiment.
  • the case of analyzing the structure of a 5-base protein will be described below. In this case, it is necessary to deal with the fifth-order interaction.
  • the five qubits are represented by q 1 to q 5
  • the second-order interaction is represented by J ij
  • the third-order interaction is represented by J ijk
  • the fourth-order interaction is represented by J ijkl.
  • the action is expressed as J 12345
  • the Hamiltonian is generally expressed by the following mathematical formula (2).
  • k 1 to 5
  • j 1 to 5
  • the third, fourth, and fifth terms of the mathematical formula (2) have been decomposed into quadratic interactions by introducing auxiliary qubits. For example, replace q 1 q 2 with q 6 , replace q 3 q 4 with q 7 , replace q 3 q 5 with q 8 , replace q 4 q 5 with q 9, and replace q 5 q 7 with q 10 . By substituting, all interactions can be expressed by interactions up to the second order.
  • FIG. 12 is a diagram showing an outline of a fifth example of a plurality of superconducting lines, a first coupler, and a second coupler of the quantum computing element 10 according to the present embodiment.
  • the fifth example is an example in which the Hamiltonian of the mathematical formula (2) is expressed by the interaction up to the third order. By replacing q 1 q 2 with q 6 and replacing q 3 q 4 with q 7 , all of them are replaced. This is an example of expressing the interaction by the interaction up to the third order.
  • "1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by "1", the second superconducting line L2 indicated by "2", and the first superconducting line L1a.
  • the first superconducting line L1b shown as "" is shown by being surrounded by a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 12 and returning to the superconducting quantum interferometer. Defined in.
  • the first coupler C1b is provided so as to face a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • a qubit composed of the first superconducting line L1a extending in the vertical direction indicated by "1” and a qubit composed of the first superconducting line L1b extending in the horizontal direction indicated by “1". are in the same quantum state as each other.
  • the qubit composed of the second superconducting line L2 extending in the vertical direction indicated by "2” and the qubit composed of the superconducting line extending in the horizontal direction indicated by “2" are defined as qubits. , They are in the same quantum state as each other.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is provided, for example, so as to face a part of the first superconducting line L1a, a part of the superconducting line indicated by "3", and a part of the superconducting line indicated by "5". ..
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 are included in one unit cell.
  • the second coupler C2 indicated by "1,5,7” is a superconducting line indicated by "1", a superconducting line indicated by "5", and a superconducting line indicated by "7".
  • the lines interact and the three qubits interact.
  • the second coupler C2 indicated by "2, 4, 5" mutually exchanges the superconducting line indicated by "2", the superconducting line indicated by "4", and the superconducting line indicated by "5". Let it act and let the three qubits interact.
  • the second coupler C2 indicated by “2, 3, 5" interacts with the superconducting line indicated by “2", the superconducting line indicated by “3”, and the superconducting line indicated by “5".
  • the three qubits interact.
  • the second coupler C2 shown as "1,3,5" interacts with the first superconducting line L1a, the superconducting line shown as "3", and the superconducting line shown as "5".
  • the second coupler C2 indicated by “1, 4, 5" interacts with the superconducting line indicated by “1", the superconducting line indicated by "4", and the superconducting line indicated by "5".
  • the three qubits interact.
  • the second coupler C2 indicated by "4,5,6” interacts with the superconducting line indicated by "4", the superconducting line indicated by "5", and the superconducting line indicated by "6".
  • the three qubits interact.
  • the second coupler C2 indicated by "3, 5, 6” interacts with the superconducting line indicated by "3", the superconducting line indicated by "5", and the superconducting line indicated by "6".
  • the three qubits interact.
  • the second coupler C2 indicated by "5, 6, 7” interacts with the superconducting line indicated by "5", the superconducting line indicated by "6", and the superconducting line indicated by "6".
  • the three qubits interact.
  • the second coupler C2 indicated by "2, 5, 7” interacts with the superconducting line indicated by "2", the superconducting line indicated by "5", and the superconducting line indicated by "7".
  • the three qubits interact.
  • the Hamiltonian including the fourth-order and fifth-order interactions can be expressed by the third-order or lower interaction by the second coupler C2.
  • the 4th and 5th order interactions with the 3rd and lower order interactions using constraint terms, it is possible to handle them more directly than when expressing the Hamiltonian by reducing the dimensions to the 2nd order interactions.
  • the interaction can be increased to improve the accuracy of the solution.
  • it is possible to facilitate the transformation of the Hamiltonian equation and it may be possible to reduce the number of lattices required when mounting the Hamiltonian.
  • the chip area that can be installed in the freezer is limited, it may be possible to increase the number of qubits that can be mounted on the same chip area by directly handling the third-order interaction.
  • FIG. 13 is a diagram showing an outline of a sixth example of a plurality of superconducting lines, a first coupler, and a second coupler of the quantum computing element 10 according to the present embodiment.
  • the sixth example is an example in which the Hamiltonian of the mathematical formula (2) is expressed by the interaction up to the fourth order. By replacing q 1 q 2 with q 6 , all the interactions are expressed by the interaction up to the fourth order.
  • This is an example of expression.
  • "1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by "1", the second superconducting line L2 indicated by "2", and the first superconducting line L1a.
  • the first superconducting line L1b shown as "" is shown by being surrounded by a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 13 and returning to the superconducting quantum interferometer. Defined in.
  • the first coupler C1b is provided so as to face a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • a qubit composed of the first superconducting line L1a extending in the vertical direction indicated by "1” and a qubit composed of the first superconducting line L1b extending in the horizontal direction indicated by “1". are in the same quantum state as each other.
  • the qubit composed of the second superconducting line L2 extending in the vertical direction indicated by "2” and the qubit composed of the superconducting line extending in the horizontal direction indicated by “2" are defined as qubits. , They are in the same quantum state as each other.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 faces, for example, a part of the superconducting line indicated by "1", a part of the superconducting line indicated by "4", and a part of the superconducting line indicated by "5". It is provided in.
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 are included in one unit cell.
  • the second coupler C2 indicated by "1, 4, 5" is a superconducting line indicated by "1", a superconducting line indicated by "4", and a superconducting line indicated by "5".
  • the lines interact and the three qubits interact.
  • the second coupler C2 indicated by "3, 4, 5" mutually exchanges the superconducting line indicated by "3", the superconducting line indicated by "4", and the superconducting line indicated by "5". Let it act and let the three qubits interact.
  • the second coupler C2 indicated by "1,3,4,5” includes the first superconducting line L1a, the superconducting line indicated by “3", the superconducting line indicated by "4", and "5".
  • the superconducting lines shown are made to interact with each other, and four qubits are made to interact with each other.
  • the second coupler C2 shown as "1, 3, 4" interacts with the first superconducting line L1b, the superconducting line shown as "3", and the superconducting line shown as "4". Interact qubits.
  • the second coupler C2 shown as "2, 4, 5" interacts with the second superconducting line L2, the superconducting line shown as "4", and the superconducting line shown as "5", and has three.
  • the second coupler C2 shown as "1, 3, 5" interacts with the first superconducting line L1b, the superconducting line shown as "3", and the superconducting line shown as "5".
  • Interact qubits The second coupler C2 indicated by “2, 3, 5" interacts with the superconducting line indicated by “2", the superconducting line indicated by "3”, and the superconducting line indicated by "5".
  • the three qubits interact.
  • the second coupler C2 indicated by "2, 3, 4, 5" is a superconducting line indicated by "2", a superconducting line indicated by "3", a superconducting line indicated by "4", and "4".
  • the superconducting lines shown in "5" are made to interact with each other, and four qubits are made to interact with each other.
  • the second coupler C2 indicated by “3, 4, 6" interacts with the superconducting line indicated by “3", the superconducting line indicated by "4", and the superconducting line indicated by "6".
  • the three qubits interact.
  • the second coupler C2 indicated by “2, 3, 4" interacts with the superconducting line indicated by "2", the superconducting line indicated by "3", and the superconducting line indicated by "4".
  • the three qubits interact.
  • the second coupler C2 indicated by “3, 4, 5, 6” is a superconducting line indicated by “3", a superconducting line indicated by "4", a superconducting line indicated by "5", and "5".
  • the superconducting lines shown in “6” are made to interact with each other, and four qubits are made to interact with each other.
  • the second coupler C2 indicated by “3, 5, 6” interacts with the superconducting line indicated by "3", the superconducting line indicated by "5", and the superconducting line indicated by “6”.
  • the three qubits interact.
  • the second coupler C2 indicated by "4,5,6” interacts with the superconducting line indicated by "4", the superconducting line indicated by "5", and the superconducting line indicated by "6".
  • the three qubits interact.
  • the Hamiltonian including the fifth-order interaction can be expressed by the fourth-order or lower interaction by the second coupler C2.
  • the accuracy of the solution can be improved by increasing the number.
  • the chip area that can be installed in the freezer is limited, it may be possible to increase the number of qubits that can be mounted on the same chip area by directly handling the third-order and fourth-order interactions.
  • FIG. 14 is a diagram showing an outline of a plurality of superconducting lines and a first coupler of a conventional example.
  • the first superconducting line L1 indicated by “1” and the second superconducting line L2 indicated by “2” are shown by being surrounded by a broken line.
  • the first superconducting line L1 and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 14 and returning to the superconducting quantum interferometer. Defined in.
  • the first couplers C1a and C1b are provided facing a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1a is provided at a position where, for example, a superconducting line extending in the vertical direction indicated by "4" and a superconducting line extending in the horizontal direction indicated by "2" intersect, and is indicated by "4". It is provided so as to face a part of the superconducting line extending in the vertical direction and a part of the superconducting line extending in the horizontal direction indicated by "2".
  • the first coupler C1a is connected to a superconducting quantum interferometer, and the strength of the interaction between two qubits composed of two superconducting lines depends on the magnitude of the magnetic flux applied to the superconducting quantum interferometer. Is adjusted.
  • the first coupler C1b is provided, for example, at a position where the second superconducting line L2 and the laterally extending superconducting line indicated as "2" intersect, and a part of the second superconducting line L2 and "2". It is provided so as to face a part of the superconducting line extending in the lateral direction shown as.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the qubit composed of the second superconducting line L2 extending in the vertical direction indicated by "2" and the qubit composed of the superconducting line extending in the horizontal direction indicated by “2" are defined as qubits. They are in the same quantum state as each other.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the Hamiltonian of the formula (2) can be realized with 6 unit lattices and 33 qubits.
  • the Hamiltonian of the mathematical formula (2) can be realized with four unit lattices and 32 qubits, which is a conventional example.
  • the same Hamiltonian can be represented with fewer qubits than the layout.
  • the quantum computing element 10 according to the present embodiment since it is possible to directly express the interaction of the third order or higher without adding the constraint condition, it is necessary to strengthen some of the interactions so as to satisfy the constraint condition. It becomes difficult to limit the gradation of the strength of the interaction.
  • FIG. 15 is a diagram showing an outline of a seventh example of a plurality of superconducting lines, a first coupler, and a second coupler of the quantum computing element 10 according to the present embodiment.
  • the seventh example is an example in which the Hamiltonian of the mathematical formula (2) is expressed using a superconducting line of a 5 ⁇ 5 unit cell, and is an example including interactions up to the fifth order.
  • "1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by "1”, the second superconducting line L2 indicated by "2”, and the first superconducting line L1a.
  • the first superconducting line L1b shown as "" is shown by being surrounded by a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 15 and returning to the superconducting quantum interferometer. Defined in.
  • the first coupler C1b is provided so as to face a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1b is provided at a position where, for example, a superconducting line extending in the vertical direction indicated by "5" and a superconducting line extending in the horizontal direction indicated by "5" intersect, and is indicated by "5". It is provided so as to face a part of the superconducting line extending in the vertical direction and a part of the superconducting line extending in the horizontal direction indicated by "5".
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. That is, the qubit composed of the superconducting line extending in the vertical direction indicated by "5" and the qubit composed of the superconducting line extending in the horizontal direction indicated by "5" have the same quantum. It is in a state. Similarly, the qubit composed of the second superconducting line L2 extending in the vertical direction indicated by "2" and the qubit composed of the superconducting line extending in the horizontal direction indicated by "2" are defined as qubits. , They are in the same quantum state as each other.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is, for example, a part of the first superconducting line L1a, a part of the superconducting line shown as "2", a part of the superconducting line shown as "3”, and shown as "4". It is provided so as to face a part of the superconducting line and a part of the superconducting line indicated by "5".
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 are included in one unit cell.
  • the second coupler C2 shown as "12345” is the first superconducting line L1a, the superconducting line shown as "2", the superconducting line shown as "3", and shown as "4".
  • the superconducting line and the superconducting line indicated by "5" are made to interact with each other, and five quantum bits are made to interact with each other.
  • the second coupler C2 indicated by “2345” is the second superconducting line L2, the superconducting line indicated by "3", the superconducting line indicated by "4", and the superconducting line indicated by "5".
  • the lines interact and the four qubits interact.
  • the second coupler C2 indicated by “234" interacts with the superconducting line indicated by "2", the superconducting line indicated by "3", and the superconducting line indicated by "4", and three qubits. Interact bits.
  • the second coupler C2, indicated by "345" interacts with the superconducting line indicated by "3", the superconducting line indicated by "4", and the superconducting line indicated by "5", and three qubits. Interact bits.
  • the second coupler C2, indicated by “235" interacts with the superconducting line indicated by “2", the superconducting line indicated by "3", and the superconducting line indicated by "5", and three qubits. Interact bits.
  • the second coupler C2, indicated by “245" interacts with the superconducting line indicated by "2", the superconducting line indicated by "4", and the superconducting line indicated by "5", and three qubits. Interact bits.
  • the second coupler C2 indicated by "1234" includes the first superconducting line L1b, the superconducting line indicated by "2", the superconducting line indicated by "3", and the superconducting line indicated by "4". Let them interact and let the four qubits interact.
  • the second coupler C2 indicated by “1235" includes a superconducting line indicated by “1", a second superconducting line L2, a superconducting line indicated by "3”, and a superconducting line indicated by "5". Let them interact and let the four qubits interact.
  • the second coupler C2 indicated by “1245" is a superconducting line indicated by "1", a superconducting line indicated by "2", a superconducting line indicated by "4", and a superconducting line indicated by "5". The conduction lines interact and the four qubits interact.
  • the second coupler C2 indicated by “1345" is a superconducting line indicated by "1", a superconducting line indicated by “3", a superconducting line indicated by "4", and a superconducting line indicated by "5".
  • the conduction lines interact and the four qubits interact.
  • the second coupler C2 indicated by “124” interacts with the superconducting line indicated by “1”, the superconducting line indicated by “2”, and the superconducting line indicated by "4", and three qubits. Interact bits.
  • the second coupler C2, indicated by “135" interacts with the superconducting line indicated by "1", the superconducting line indicated by "3", and the superconducting line indicated by "5", and three qubits. Interact bits.
  • the second coupler C2 indicated by “123” interacts with the superconducting line indicated by “1", the superconducting line indicated by “2”, and the superconducting line indicated by “3", and three qubits.
  • the second coupler C2 indicated by “125” interacts with the superconducting line indicated by “1", the superconducting line indicated by “2”, and the superconducting line indicated by "5", and three qubits.
  • the second coupler C2 indicated by "134" interacts with the superconducting line indicated by "1", the superconducting line indicated by "3", and the superconducting line indicated by "4", and three qubits. Interact bits.
  • the second coupler C2 can directly represent the Hamiltonian containing the third-order, fourth-order and fifth-order interactions.
  • the accuracy of the solution can be improved as compared with the case where the Hamiltonian is expressed by reducing the dimension to the second-order interaction.
  • the chip area that can be installed in the freezer is limited, it may be possible to increase the number of qubits that can be mounted on the same chip area by directly handling the third-order interaction.
  • FIG. 16 is a diagram showing an outline of a plurality of superconducting lines and a first coupler of a conventional example.
  • This example is an example in which the Hamiltonian of the mathematical formula (2) is expressed by using a superconducting line of a 5 ⁇ 5 unit lattice and reducing the dimension to the second-order interaction.
  • "1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by "1”, the second superconducting line L2 indicated by "2”, and the first superconducting line L1a.
  • the first superconducting line L1b shown as "" is shown by enclosing it with a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 16 and returning to the superconducting quantum interferometer. Defined in.
  • the first couplers C1a and C1b are provided facing a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1a is provided, for example, at a position where the first superconducting line L1a and the superconducting line extending in the lateral direction shown as "2" intersect, and a part of the first superconducting line L1a and "2". It is provided so as to face a part of the superconducting line extending in the lateral direction shown as.
  • the first coupler C1a is connected to a superconducting quantum interferometer, and the strength of the interaction between two qubits composed of two superconducting lines depends on the magnitude of the magnetic flux applied to the superconducting quantum interferometer. Is adjusted.
  • the first coupler C1b is provided, for example, at a position where the second superconducting line L2 and the laterally extending superconducting line indicated as "2" intersect, and a part of the second superconducting line L2 and "2". It is provided so as to face a part of the superconducting line extending in the lateral direction shown as.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the qubit composed of the second superconducting line L2 extending in the vertical direction indicated by "2" and the qubit composed of the superconducting line extending in the horizontal direction indicated by “2" are defined as qubits. They are in the same quantum state as each other.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the Hamiltonian of the formula (2) can be realized with 4 grids and 25 qubits.
  • the Hamiltonian of the mathematical formula (2) in the layout of the seventh example, can be realized with three lattices and 29 qubits, and the number of quanta is smaller than that of the layout of the conventional example.
  • the same Hamiltonian can be represented by the number of bits.
  • the quantum computing element 10 according to the present embodiment since it is possible to directly express the interaction of the third order or higher without adding the constraint condition, it is necessary to strengthen some of the interactions so as to satisfy the constraint condition. It becomes difficult to limit the gradation of the strength of the interaction.
  • FIG. 17 is a diagram showing an outline of a plurality of superconducting lines, a first coupler, and a first modification of the second coupler of the quantum computing element 10 according to the present embodiment.
  • This modification is an example of a dedicated arrangement that expresses the fourth-order and fifth-order interactions.
  • "1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by “1”, the second superconducting line L2 indicated by "2”, and the first superconducting line L1a.
  • the first superconducting line L1b shown as "" is shown by being surrounded by a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 17 and returning to the superconducting quantum interferometer. Defined in.
  • the first coupler C1b is provided so as to face a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • a qubit composed of the first superconducting line L1a extending in the vertical direction indicated by "1” and a qubit composed of the first superconducting line L1b extending in the horizontal direction indicated by “1". are in the same quantum state as each other.
  • the fourth coupler C4a of this modification connects the superconducting line extending in the lateral direction indicated by “1” included in the unit cell on the left side and the first superconducting line L1b included in the unit cell on the right side. ..
  • the fourth coupler C4a is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4a does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is, for example, a part of the superconducting line shown as "1", a part of the second superconducting line L2, a part of the superconducting line shown as "3”, and shown as "4". It is provided so as to face a part of the superconducting line and a part of the superconducting line indicated by "5".
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 are included in one unit cell.
  • the second coupler C2 indicated by "1234" is indicated by the superconducting line indicated by "1", the second superconducting line L2, the superconducting line indicated by "3", and "4".
  • the superconducting lines are made to interact with each other, and four qubits are made to interact with each other.
  • the second coupler C2 indicated by “1235" is a superconducting line indicated by "1", a second superconducting line L2, a superconducting line indicated by "3”, and a superconducting line indicated by "5".
  • the lines interact and the four qubits interact.
  • the second coupler C2 indicated by “1345" is a superconducting line indicated by "1", a superconducting line indicated by "3", a superconducting line indicated by "4", and a superconducting line indicated by "5".
  • the conduction lines interact and the four qubits interact.
  • the second coupler C2 indicated by "12345” includes a superconducting line indicated by "1", a second superconducting line L2, a superconducting line indicated by "3”, and a superconducting line indicated by "5".
  • the lines interact and the five qubits interact.
  • the fourth coupler C4a by connecting a plurality of superconducting lines in the unit cell by the fourth coupler C4a, the fourth-order and fifth-order interactions represented by the second coupler C2 can be realized in a smaller unit cell. Can be done. This may reduce the number of grids required when implementing the Hamiltonian. Further, since the chip area that can be installed in the freezer is limited, it may be possible to increase the number of qubits that can be mounted on the same chip area by directly handling the fourth-order and fifth-order interactions.
  • FIG. 18 is a diagram showing an outline of a plurality of superconducting lines, a first coupler, and a second modification of the second coupler of the quantum computing element 10 according to the present embodiment.
  • This modification is an example of a dedicated arrangement that expresses the fourth-order and fifth-order interactions.
  • "1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by “1”, the second superconducting line L2 indicated by "2”, and the first superconducting line L1a.
  • the first superconducting line L1b shown as "" is shown by being surrounded by a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 18 and returning to the superconducting quantum interferometer. Defined in.
  • the first coupler C1b is provided so as to face a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • a qubit composed of the first superconducting line L1a extending in the vertical direction indicated by "1” and a qubit composed of the first superconducting line L1b extending in the horizontal direction indicated by “1". are in the same quantum state as each other.
  • the fourth coupler C4b of this modification comprises a plurality of superconducting lines indicated by "1" included in the left unit cell and a first superconducting line L1b included in the right unit cell. Join.
  • the fourth coupler C4b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4b does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is, for example, a part of the superconducting line shown as "1", a part of the second superconducting line L2, a part of the superconducting line shown as "3”, and shown as "4". It is provided so as to face a part of the superconducting line and a part of the superconducting line indicated by "5".
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 are included in one unit cell.
  • the second coupler C2 indicated by "1234" is indicated by the superconducting line indicated by "1", the second superconducting line L2, the superconducting line indicated by "3", and "4".
  • the superconducting lines are made to interact with each other, and four qubits are made to interact with each other.
  • the second coupler C2 indicated by “1235" is a superconducting line indicated by "1", a second superconducting line L2, a superconducting line indicated by "3”, and a superconducting line indicated by "5".
  • the lines interact and the four qubits interact.
  • the second coupler C2 indicated by “1345" is a superconducting line indicated by "1", a superconducting line indicated by "3", a superconducting line indicated by "4", and a superconducting line indicated by "5".
  • the conduction lines interact and the four qubits interact.
  • the second coupler C2 indicated by "12345” includes a superconducting line indicated by "1", a second superconducting line L2, a superconducting line indicated by "3”, and a superconducting line indicated by "5".
  • the lines interact and the five qubits interact.
  • the fourth coupler C4b by connecting a plurality of superconducting lines in the adjacent unit cell by the fourth coupler C4b, the fourth-order and fifth-order interactions represented by the second coupler C2 are realized in a smaller unit cell. can do. This may reduce the number of grids required when implementing the Hamiltonian. Further, since the chip area that can be installed in the freezer is limited, it may be possible to increase the number of qubits that can be mounted on the same chip area by directly handling the fourth-order and fifth-order interactions.
  • FIG. 19 is a diagram showing an outline of a plurality of superconducting lines, a first coupler, and a third modification of the second coupler of the quantum computing element 10 according to the present embodiment.
  • This modification is an example of a dedicated arrangement that expresses the fourth-order and fifth-order interactions.
  • "1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by “1”, the second superconducting line L2 indicated by "2”, and the first superconducting line L1a.
  • the first superconducting line L1b shown as "" is shown by being surrounded by a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 19 and returning to the superconducting quantum interferometer. Defined in.
  • the fourth coupler C4c of this modification has the first superconducting line L1b extending in the lateral direction indicated by “1” included in the lower left unit cell and the vertical line L1b indicated by “1” included in the upper right unit cell. It is coupled with the first superconducting line L1a extending in the direction.
  • the fourth coupler C4c is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4c does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the three superconducting lines included in the lower left unit cell extending in the lateral direction are coupled to the first superconducting line L1b.
  • the three superconducting lines included in the lower left unit cell extending in the lateral direction may be coupled to the first superconducting line L1a.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is, for example, a part of the first superconducting line L1b, a part of the second superconducting line L2, a part of the superconducting line indicated by “3”, and the superconducting line indicated by “4”. It is provided so as to face a part of the above and a part of the superconducting line indicated by "5".
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 are included in one unit cell.
  • the second coupler C2 shown as "1234" is the first superconducting line L1b, the second superconducting line L2, the superconducting line shown as "3", and the superconducting line shown as "4".
  • the lines interact and the four qubits interact.
  • the second coupler C2 indicated by "1235" is a superconducting line indicated by "1", a second superconducting line L2, a superconducting line indicated by "3", and a superconducting line indicated by "5".
  • the lines interact and the four qubits interact.
  • the second coupler C2 indicated by “1345" is a superconducting line indicated by "1", a superconducting line indicated by "3", a superconducting line indicated by "4", and a superconducting line indicated by "5".
  • the conduction lines interact and the four qubits interact.
  • the second coupler C2 indicated by “12345” includes a superconducting line indicated by "1", a second superconducting line L2, a superconducting line indicated by "3”, and a superconducting line indicated by "5".
  • the lines interact and the five qubits interact.
  • the fourth-order and fifth-order interactions represented by the second coupler C2 can be realized in a smaller unit cell.
  • the upper right unit cell and the lower left unit cell can be combined to express the fourth-order and fifth-order interactions without using the lower right unit cell. This may reduce the number of grids required when implementing the Hamiltonian. Further, since the chip area that can be installed in the freezer is limited, it may be possible to increase the number of qubits that can be mounted on the same chip area by directly handling the fourth-order and fifth-order interactions.
  • FIG. 20 is a diagram showing an outline of a plurality of superconducting lines, a first coupler, and a fourth modification of the second coupler of the quantum computing element 10 according to the present embodiment.
  • This modification is an example of expressing the fourth-order and fifth-order interactions, and is an example of the same arrangement as the present embodiment.
  • the quantum computing element 10 according to this modification has a horizontal length of L1 and a vertical length of L2, and is arranged in an area of an area L1 ⁇ L2.
  • "1" is coupled so as to have the same quantum state as the first superconducting line L1a indicated by "1", the second superconducting line L2 indicated by "2", and the first superconducting line L1a.
  • the first superconducting line L1b shown as "" is shown by being surrounded by a broken line.
  • the first superconducting lines L1a and L1b and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 20 and returning to the superconducting quantum interferometer. Defined in.
  • the first coupler C1b is provided so as to face a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the first superconducting line L1b intersect, and faces a part of the first superconducting line L1a and a part of the first superconducting line L1b. It is provided to do so.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • a qubit composed of the first superconducting line L1a extending in the vertical direction indicated by "1” and a qubit composed of the first superconducting line L1b extending in the horizontal direction indicated by “1". are in the same quantum state as each other.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and the plurality of superconducting lines forming two adjacent unit lattices are connected by the fourth coupler C4.
  • the fourth coupler C4 is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4 does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is, for example, a part of the superconducting line shown as "1", a part of the second superconducting line L2, a part of the superconducting line shown as "3”, and shown as "4". It is provided so as to face a part of the superconducting line and a part of the superconducting line indicated by "5".
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the plurality of superconducting lines are arranged so as to form at least two unit lattices in a plan view, and three or more superconducting lines coupled by the second coupler C2 are included in one unit cell.
  • the second coupler C2 indicated by "1234" is a superconducting line indicated by "1", a superconducting line indicated by "2”, a superconducting line indicated by "3", and "4".
  • the superconducting lines shown in the above are made to interact with each other, and four qubits are made to interact with each other.
  • the second coupler C2 indicated by "1235" is indicated by a superconducting line indicated by "1", a superconducting line indicated by “2”, a superconducting line indicated by “3”, and a superconducting line indicated by "5".
  • the superconducting lines are made to interact with each other, and four qubits are made to interact with each other.
  • FIG. 21 is a diagram showing an outline of a plurality of superconducting lines, a first coupler, and a fifth modification of the second coupler of the quantum computing element 10 according to the present embodiment.
  • This modified example is an example of expressing the fourth-order and fifth-order interactions, and is an example of a dedicated arrangement in which the installation area is reduced as compared with the fourth modified example.
  • the quantum computing element 10 according to this modification has a horizontal length of L1- ⁇ L1 and a vertical length of L2, and is arranged in an area (L1- ⁇ L1) ⁇ L2. Therefore, the installation area of the quantum computing element 10 according to this modification is smaller by ⁇ L1 ⁇ L2 than that of the fourth modification.
  • the first superconducting line L1a indicated by “1” and the second superconducting line L2 indicated by “2” are shown by being surrounded by a broken line.
  • the first superconducting line L1a and the second superconducting line L2 each constitute a qubit according to an electromagnetic state.
  • the quantum state of a qubit is represented by the orbital direction of the current flowing through the superconducting line.
  • the circumferential direction of the current flowing through the superconducting line is the direction of the current flowing through the path starting from the superconducting quantum interferometer provided at the end of the superconducting line in FIG. 21 and returning to the superconducting quantum interferometer. Defined in.
  • the first coupler C1b is provided so as to face a part of two superconducting lines among a plurality of superconducting lines, and two qubits composed of the two superconducting lines interact with each other.
  • the first coupler C1b is provided, for example, at a position where the first superconducting line L1a and the superconducting line extending in the lateral direction shown as "1" intersect, and a part of the first superconducting line L1a and "1". It is provided so as to face a part of the superconducting line extending in the lateral direction shown as.
  • the first coupler C1b is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. That is, the qubit composed of the first superconducting line L1a extending in the vertical direction indicated by "1" and the qubit composed of the superconducting line extending in the horizontal direction indicated by “1” are defined as qubits. They are in the same quantum state as each other.
  • a 2x4 lattice superconducting line is arranged on the left side, and a 4x4 lattice superconducting line is arranged on the right side.
  • the two superconducting lines extending in the vertical direction in the lattice on the left side and the superconducting line extending in the horizontal direction shown as "1" in the lattice on the right side are connected by the fourth coupler C4d.
  • the fourth coupler C4d is connected to a superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same.
  • the fourth coupler C4d does not have to be connected to the superconducting quantum interferometer, and the strength of the interaction is fixed so that the quantum states of the two qubits composed of the two superconducting lines are the same. May be.
  • the second coupler C2 is provided so as to face a part of three or more superconducting lines among the plurality of superconducting lines, and interacts with three or more qubits composed of three or more superconducting lines. Let me.
  • the second coupler C2 is, for example, a part of the superconducting line shown as "1", a part of the second superconducting line L2, a part of the superconducting line shown as "3”, and shown as "4". It is provided so as to face a part of the superconducting line and a part of the superconducting line indicated by "5".
  • the second coupler C2 is connected to a superconducting quantum interferometer, and is composed of three or more qubits composed of three or more superconducting lines according to the magnitude of the magnetic flux applied to the superconducting quantum interferometer. The strength of the interaction is adjusted.
  • the second coupler C2 indicated by “1234" is indicated by the superconducting line indicated by "1", the second superconducting line L2, the superconducting line indicated by "3", and "4".
  • the superconducting lines are made to interact with each other, and four qubits are made to interact with each other.
  • the second coupler C2 indicated by "1235" is a superconducting line indicated by "1", a second superconducting line L2, a superconducting line indicated by "3”, and a superconducting line indicated by "5". The lines interact and the four qubits interact.
  • the area of a part of the lattice is reduced, and the superconducting lines in the two lattices are connected by the fourth coupler C4d, so that the fourth-order interaction represented by the second coupler C2 is made smaller. It can be realized by the area. As a result, the number of qubits that can be mounted on the same chip area may be increased.
  • the scope of application of the present invention is not limited to structural analysis of proteins.
  • the present invention can also be applied to structural analysis of genes, analysis of HLA (Human Leukocyte Antigen), and the like.
  • the present invention can also be applied to the analysis of the structure of a compound. Further, it can be easily understood by a person having ordinary knowledge in the technical field to which the invention belongs that the present invention can be generally applied to optimization problems to which the quantum annealing method is suitable. For example, the present invention can also be applied to analysis of finance and traffic congestion.
  • one unit cell is formed by a 4 ⁇ 4 superconducting line
  • the size of the unit cell is not limited to this.
  • a 5 ⁇ 5 superconducting line may form one unit cell
  • a 6 ⁇ 6 superconducting line may form one unit cell.

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

3次以上の相互作用を含む場合であっても、相互作用の強さの階調が制限されづらい量子計算素子を提供する。量子計算素子は、それぞれ電磁的状態によって量子ビットを構成する複数の超伝導線路と、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる第1カプラと、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる第2カプラと、を備える。

Description

量子計算素子
 本発明は、量子計算素子に関する。
 近年、ループ状の超伝導線路によって、電流の周回方向を2つの量子状態とする量子ビットを構成し、量子ビットを相互作用させた後、周回方向の違いを超伝導量子干渉計(superconducting quantum interference device, SQUID)によって測定する量子コンピュータが研究されている。このような量子コンピュータでは、量子ビット間の相互作用をカプラによって制御することがある。
 例えば下記非特許文献1には、2つの量子ビット間の相互作用の強さを制御することができるカプラが開示されている。
 また、下記非特許文献2には、タンパク質のフォールディングを量子コンピュータによって求める研究が開示されている。
R. Harris、他9名、"Compound Josephson-junction coupler for flux qubits with minimal crosstalk"、Physical Review B, 80, 052506 (2009) Alejandro Perdomo-Ortiz、他4名、"Finding low-energy conformations of lattice protein models by quantum annealing"、Scientific Reports volume 2, Article number: 571 (2012)
 非特許文献1に記載のカプラを用いることで、量子ビット間の2次の相互作用を含むハミルトニアンによる量子アニーリングを実現することができる。また、例えば非特許文献2では、タンパク質のハミルトニアンが3次以上の相互作用を含む場合、補助量子ビットを導入して、3次以上の相互作用を2次以下の相互作用として表している。
 しかしながら、3次以上の相互作用を2次以下の相互作用として表すために補助量子ビットに関する制約条件を導入する場合、制約条件に関する相互作用を比較的強く設定する必要があり、他の相互作用の強さの階調が狭く制限されてしまう。
 そこで、本発明は、3次以上の相互作用を含む場合であっても、相互作用の強さの階調が制限されづらい量子計算素子を提供する。
 本発明の一態様に係る量子計算素子は、それぞれ電磁的状態によって量子ビットを構成する複数の超伝導線路と、複数の超伝導線路のうち2つの超伝導線路によって構成される2つの量子ビットを相互作用させる第1カプラと、複数の超伝導線路のうち3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる第2カプラと、を備える。
 この態様によれば、3つ以上の量子ビットを相互作用させる第2カプラを備えることで、3次以上の相互作用を2次の相互作用に分解する必要がなくなり、3次以上の相互作用を含む場合であっても、相互作用の強さの階調が制限されづらくなる。
 上記態様において、3つ以上の超伝導線路は、平面視において時計回り又は反時計回りに周回するループをそれぞれ含み、第2カプラは、ループと対向して、平面視において時計回り又は反時計回りに周回する3つ以上のカプラループを含んでもよい。
 この態様によれば、超伝導線路及び第2カプラに、それぞれ対向するループを設けることで、3つ以上の超伝導線路を効率良く相互作用させることができる。
 上記態様において、3つ以上のカプラループは、それぞれ同じ方向に周回していてもよい。
 この態様によれば、3つ以上の量子ビットを同じ極性で相互作用させることができる。
 上記態様において、3つ以上のカプラループのうち少なくとも2つは、互いに反対方向に周回していてもよい。
 この態様によれば、3つ以上の量子ビットを異なる極性で相互作用させることができる。
 上記態様において、複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、3つ以上の超伝導線路は、1つの単位格子に含まれてもよい。
 この態様によれば、単位格子を形成する3つ以上の量子ビットについて、3次以上の相互作用が実現される。
 上記態様において、複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、3つ以上の超伝導線路は、少なくとも2つの単位格子にまたがっていてもよい。
 この態様によれば、2つの単位格子にまたがる3つ以上の量子ビットについて、3次以上の相互作用が実現される。
 上記態様において、3つ以上の超伝導線路は、同じ方向に延伸し、隣接しない、少なくとも2つの超伝導線路を含んでもよい。
 この態様によれば、第1カプラによる2次の相互作用が設けられない2つの超伝導線路を含む、3つ以上の超伝導線路について、3次以上の相互作用が実現される。
 上記態様において、複数の超伝導線路と電磁的に接続された複数の第1超伝導量子干渉計をさらに備え、第2カプラは、3つ以上の量子ビットの相互作用の強さを調整する第2超伝導量子干渉計を含み、第2カプラのインダクタンスパラメータは、複数の超伝導線路のインダクタンスパラメータより小さくてもよい。
 この態様によれば、第2カプラのインダクタンスパラメータが、複数の超伝導線路のインダクタンスパラメータより小さいことで、3次以上の相互作用を含む場合であっても、相互作用の強さの階調が制限されづらくなる。
 上記態様において、第2カプラのインダクタンスパラメータは、複数の超伝導線路のインダクタンスパラメータの1/2以下であってもよい。
 この態様によれば、第2カプラのインダクタンスパラメータが、複数の超伝導線路のインダクタンスパラメータの1/2以下であることで、3次以上の相互作用を含む場合であっても、相互作用の強さの階調がさらに制限されづらくなる。
 本発明によれば、3次以上の相互作用を含む場合であっても、相互作用の強さの階調が制限されづらい量子計算素子を提供することができる。
本発明の実施形態に係る量子計算システムの概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第1例の概要を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの上面図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第1例の第1層を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第1例の第2層を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第1例の第3層を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第1例の第4層を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第2例の第1層を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第2例の第2層を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第2例の第3層を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第2例の第4層を示す図である。 本実施形態に係る量子計算素子の4つの超伝導線路及び第2カプラの第3例を示す図である。 本実施形態に係る量子計算素子の第1超伝導量子干渉計に横磁場を印加した状態におけるエネルギー準位を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第2例の概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路及び第2カプラの第3例の概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第4例の概要を示す図である。 従来例の複数の超伝導線路及び第1カプラの概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第5例の概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第6例の概要を示す図である。 従来例の複数の超伝導線路及び第1カプラの概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第7例の概要を示す図である。 従来例の複数の超伝導線路及び第1カプラの概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第1変形例の概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第2変形例の概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第3変形例の概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第4変形例の概要を示す図である。 本実施形態に係る量子計算素子の複数の超伝導線路、第1カプラ及び第2カプラの第5変形例の概要を示す図である。
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。
 図1は、本発明の実施形態に係る量子計算システム100の概要を示す図である。量子計算システム100は、量子コンピュータ1及び古典コンピュータ20を含む。ここで、量子コンピュータ1は、量子効果を積極的に利用した計算機であり、例えば量子断熱計算を行う計算機であってよい。なお、量子コンピュータ1は、量子計算の方法を参考とした計算機に置き換えてもよく、例えばCMOS(Complementary Metal-Oxide-Semiconductor)やFPGA(Field-Programmable Gate Array)で量子計算、特に量子アニーリングに相当する計算やイジングモデルに基づく計算を行う計算機を用いてもよい。また、古典コンピュータ20は、量子効果を積極的に利用することなく、古典的な自然法則に基づいて動作する計算機であり、例えばノイマン型コンピュータであってよい。
 量子コンピュータ1は、量子計算素子10を備える。量子計算素子10は、複数の量子ビットを構成する複数の超伝導線路と、2つの量子ビットを相互作用させる第1カプラと、3つ以上の量子ビットを相互作用させる第2カプラとを備える。量子計算素子10は、超伝導線路及びカプラを形成する材料の超伝導転移温度以下に冷却された状態で使用される。そのため、量子コンピュータ1は、量子計算素子10の他に、冷却機構を備える。
 量子コンピュータ1は、電気信号を伝搬するケーブル(同軸ケーブル等)、LAN(Local Area Network)やインターネット等の通信ネットワークNを介して古典コンピュータ20と接続され、古典コンピュータ20による設定に従って動作する。例えば、古典コンピュータ20は、複数の量子ビットの間の相互作用の強さを設定する。量子コンピュータ1は、量子コンピュータ1とは異なるチップに形成され、そのチップ上に構成された信号源から出力される信号で制御してもよい。その際、異なるチップ及び配線は、室温におかれる場合や量子計算素子とは異なる温度環境におかれる場合がある。例えば、液体ヘリウム温度の環境(約4.2K)に置かれ、配線で10mK以下の温度に設置された量子計算素子のチップと接続する場合もある。
 図2は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第1例の概要を示す図である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2、第1超伝導線路L1aと同じ量子状態となるように結合されている「1’」と示した第1超伝導線路L1b及び第1超伝導線路L1aと同じ量子状態となるように結合されている第1超伝導線路L1cとを破線で囲って図示している。同図では、縦方向に4量子ビット及び横方向に4量子ビット配置された4×4の単位格子を2つ図示している。
 第1超伝導線路L1a,L1b,L1c及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。第1超伝導線路L1a,L1b,L1cは、第1量子ビットを構成し、第2超伝導線路L2及び「2’」と示した超伝導線路は、第2量子ビットを構成する。同様に、「3」及び「3’」と示した超伝導線路は、第3量子ビットを構成し、「4」及び「4’」と示した超伝導線路は、第4量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。同図では、超伝導線路に接続されるQFP(Quantum Flux Parametron)や読出し超伝導量子干渉計(superconducting quantum interference device, SQUID)等の読出し回路は省略されているが、超伝導線路を流れる電流の周回方向は、図2において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。第1超伝導線路L1a等は、他の超伝導線路と磁気結合するためのリング部31,32と、カプラと磁気結合するためのリング部33とを含む。リング部33は、超伝導線路の一部であり、他の量子ビットと磁気結合しやすくするためリング形状となっている。
 第1カプラC1a,C1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。ここで、対向するとは、量子ビットを構成する超伝導線路の一部と、第1カプラC1a,C1bを構成する超伝導線路の一部とが、平面視において重畳することを意味する。量子ビットを構成する超伝導線路の一部と、第1カプラC1a,C1bを構成する超伝導線路の一部とは、直線状の区間で重畳してもよいし、ループ状の区間で重畳してもよい。第1カプラC1aは、例えば、第1超伝導線路L1b及び第2超伝導線路L2が交差する箇所に設けられ、第1超伝導線路L1bの一部及び第2超伝導線路L2の一部に対向するように設けられる。第1カプラC1aは、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、2つの超伝導線路によって構成される2つの量子ビットの相互作用の強さが調整される。
 第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した第1超伝導線路L1aによって構成される量子ビットと、「1’」と示した第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。同様に、「2」と示した第2超伝導線路L2によって構成される量子ビットと、「2’」と示した超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、第1超伝導線路L1aの一部、「2’」と示した超伝導線路の一部、「3’」と示した超伝導線路の一部及び「4’」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 「1」から「4」までの超伝導線路及び「1’」から「4’」までの超伝導線路によって構成される量子ビットをq~qと表し、第1カプラC1aによって実現される2次の相互作用をJijと表し、第2カプラC2によって実現される3次の相互作用をJijkと表し、第2カプラC2によって実現される4次の相互作用をJijklと表すとき、本例の量子計算素子10によって、数式(1)のハミルトニアンを設定することができる。ただし、Σi<jは、i=1~4,j=1~4について、i<jを満たす全ての組み合わせに関する和を表し、Σi<j<kは、i=1~4,j=1~4,k=1~4について、i<j<kを満たす全ての組み合わせに関する和を表す。
Figure JPOXMLDOC01-appb-M000001
 従来、数式(1)の第3項及び第4項は、補助量子ビットを導入して2次の相互作用に分解していた。例えば、J123+J124という項を、J35+J45+λ(q-q)という2次の相互作用の項と補助量子ビットqに関する制約条件を表す項とに分解する。ここで、λはラグランジュ未定乗数である。また、J134+J234という項を、J16+J26+λ(q-q)という2次の相互作用の項と補助量子ビットqに関する制約条件を表す項とに分解する。ここで、λはラグランジュ未定乗数である。また、J1234という項は、J56という2次の項に置き換えられる。このようにして、数式(1)のハミルトニアンは、2次以下の項に分解することができる。
 3次以上の項を2次以下の項に分解すると、補助量子ビットを設定しなければならず、実質的に使用可能な量子ビットの数が減ってしまうばかりでなく、補助量子ビットの制約条件が確実に満たされるように、制約条件に関する相互作用を比較的強く設定する必要があり、問題を解くために用いる他の相互作用の強さの階調が狭く制限されてしまう。また、制約条件の設定によっては、近似が生じて解の精度が制限されてしまうこともある。
 一方、本実施形態に係る量子計算素子10によれば、3つ以上の量子ビットを相互作用させる第2カプラC2を備えることで、3次以上の相互作用を2次の相互作用に分解する必要がなくなり、3次以上の相互作用を含む場合であっても、相互作用の強さの階調が制限されづらくなる。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2により結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、例えば、第1超伝導線路L1bの一部及び第1超伝導線路L1cの一部に対向するように設けられる。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが調整されている。2つの量子ビットの量子状態が逆の電流方向を好むように相互作用の強さが調整される場合もある。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。また、2つの超伝導線路によって構成される2つの量子ビットの量子状態が逆となるように、相互作用の強さが固定されていてもよい。
 本例の場合、「1234」と示された4つの量子ビットを相互作用させる第2カプラC2と、「124」と示された3つの量子ビットを相互作用させる第2カプラと、「134」と示された3つの量子ビットを相互作用させる第2カプラと、「234」と示された3つの量子ビットを相互作用させる第2カプラと、「123」と示された3つの量子ビットを相互作用させる第2カプラとは、それぞれ1つの単位格子に含まれる。このようにして、単位格子を形成する3つ以上の量子ビットについて、3次以上の相互作用が実現される。
 本実施形態では、タンパク質の構造解析に関し、簡単のために4塩基の構造を表現する場合を取り扱っている。この場合、4×4格子の超伝導線路を用いて、4次の相互作用まで表現することができる。5次以上の相互作用については、図9を用いて説明するレイアウトを用いて取り扱ってもよいし、制約項を用いて相互作用の次元を減らして4次以下の相互作用まででハミルトニアンを表現できるようにしてもよい。5次以上の相互作用を、制約項を用いて4次以下の相互作用に置き換える場合であっても、2次の相互作用まで次元を減らしてハミルトニアンを表現する場合よりも直接的に扱うことのできる相互作用が多いため、解の精度が向上する。また、ハミルトニアンの式変形を容易にすることができる。さらに、ハミルトニアンを実装する場合に必要となる格子数を削減することができる場合がある。また、冷凍機内に設置できるチップ面積は限られているため、3次以上の相互作用を直接的に扱うことで、同一チップ面積に搭載できる量子ビット数を増やすことができる場合がある。
 図3は、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の上面図である。第1超伝導線路L1、第2超伝導線路L2、第3超伝導線路L3及び第4超伝導線路L4は、それぞれ同一方向に延伸している。第1超伝導線路L1は、第1超伝導量子干渉計S1に電磁的に接続されており、第2超伝導線路L2、第3超伝導線路L3及び第4超伝導線路L4も、それぞれ超伝導量子干渉計に電磁的に接続されている。第1超伝導線路L1は、第1量子ビットを構成し、第2超伝導線路L2は、第2量子ビットを構成し、第3超伝導線路L3は、第3量子ビットを構成し、第4超伝導線路L4は、第4量子ビットを構成する。
 第2カプラC2は、第1超伝導線路L1、第2超伝導線路L2、第3超伝導線路L3及び第4超伝導線路L4により構成される第1量子ビット、第2量子ビット、第3量子ビット及び第4量子ビットを相互作用させる。第2カプラC2は、第2超伝導量子干渉計S2に電磁的に接続され、第2超伝導量子干渉計S2に印加される磁束の大きさに応じて、相互作用の強さが調整される。第2超伝導量子干渉計S2はジョセフソン接合が線路内に例えば2つ並列に挿入された構造となっている。2つのジョセフソン接合の面積は同一であってもよい。2つのジョセフソン接合のサイズが異なると、臨界電流値に違いが現れる。2つのジョセフソン接合の臨界電流値をIc1とIc2すると、一方がわずかに小さい設計が好ましい。例えば、臨界電流密度が1μA/μmであり、超伝導配線層を4つ有したNb/AlOx/Nbのジョセフソン接合のプロセスを利用して、一例として二つのジョセフソン接合の面積を2.8μm角と2.9μm角の非対称とすることが挙げられる。
 第2カプラC2は、第1超伝導線路L1、第2超伝導線路L2、第3超伝導線路L3及び第4超伝導線路L4とそれぞれ非接触で対向するリングを含み、電磁誘導により4つの超電導線路を相互作用させる。ここで、相互作用の強さは、第2カプラC2に印加される磁場によって制御される。当該リング及びカプラは、実線で示している最上層(第4層)の線路M4と、破線で示している第3層の線路M3と、一点鎖線で示している第2層の線路M2と、二点鎖線で示している最下層(第1層)の線路M1とで構成され、非接触で対向する構成を為し、電磁誘導により相互作用することが可能な構造となっている。
 線路40は、第1超伝導線路L1、第2超伝導線路L2、第3超伝導線路L3及び第4超伝導線路L4に横磁場を印加させるための線路である。一般にΦ/2(Φ=h/2e=2.067×10-15Wb)程度の磁束を数十μs~数msの時間で与えることで、アニーリングを行うことができる。線路41は、数式(1)のhを与えるための線路であり、超伝導線路L1,L2,L3,L4の一部であるリングと対向して設けられている。
 図3において模式的に示したQFP42は、超伝導量子干渉計を含む。また、模式的に示した読出し超伝導量子干渉計43は、超伝導量子干渉計を含み、対応する超伝導線路の量子状態を読み出す。線路44は、QFP42に磁束を印加するための線路である。また、線路45は、読出し超伝導量子干渉計43に磁束を印加するための線路である。線路46は、対応する読出し超伝導量子干渉計43に電圧を供給するための線路である。
 なお、図3では図示していないが、第1超伝導線路L1、第2超伝導線路L2、第3超伝導線路L3及び第4超伝導線路L4の任意の2つの組み合わせについて第1カプラが設けられていてよい。
 図4Aは、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第1例の第1層(最上層)を示す図である。同図では、第1層に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 第2カプラC2は、超伝導線路のループと対向して、平面視において時計回り又は反時計回りに周回するカプラループCL1,CL2,CL3,CL4を含む。第1例では、カプラループCL1,CL2,CL3,CL4は、全て同じ方向に周回している。
 図4Bは、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第1例の第2層(最上層である第1層に覆われている層)を示す図である。同図では、第2層に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 超伝導線路L1,L2,L3,L4は、平面視において時計回り又は反時計回りに周回するループLL1,LL2,LL3,LL4をそれぞれ含む。第1例では、ループLL1,LL2,LL3,LL4は、全て同じ方向に周回している。
 超伝導線路L1について、上から下に電流が流れる場合、ループLL1に時計回りの電流が流れて、紙面を下向きに貫く方向に磁束が発生する。この磁束に対して、カプラループCL1に反時計回りの電流が誘導されて、カプラループCL2,CL3,CL4に、紙面を上向きに貫く方向に磁束が発生する。このため、ループLL2,LL3,LL4に時計回りの電流が誘導されて、超伝導線路L2,L3,L4には、上から下に流れる電流が誘導される。このように、第2カプラC2によって、超伝導線路L1,L2,L3,L4に同じ方向の電流が流れるように、超伝導線路L1,L2,L3,L4により構成される4つの量子ビットを相互作用させることができる。なお、第2超伝導量子干渉計S2に印加する磁束を変えることで、相互作用の強さと極性を変えることができる。
 図4Cは、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第1例の第3層(第2層に覆われている層)を示す図である。同図では、第3層に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 第2カプラC2は、超伝導線路のループと対向して、平面視において時計回り又は反時計回りに周回するカプラループCL1,CL2,CL3,CL4を含む。
 図4Dは、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第1例の第4層(最下層)を示す図である。同図では、第4層に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 超伝導線路L1,L2,L3,L4は、平面視において時計回り又は反時計回りに周回するループLL1,LL2,LL3,LL4をそれぞれ含む。
 このようにして、超伝導線路L1,L2,L3,L4及び第2カプラC2に、それぞれ対向するループを設けることで、3つ以上の超伝導線路を効率良く相互作用させることができる。また、3つ以上のカプラループが、それぞれ同じ方向に周回することで、3つ以上の量子ビットを同じ極性で相互作用させることができる。
 なお、図4A~4Dに示した超伝導線路L1,L2,L3,L4及び第2カプラC2のレイアウトは一例にすぎず、平面視において四角形だけでなく、リング状、円形等他のレイアウトであってもよい。
 図5Aは、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第2例の第1層(最上層)を示す図である。同図では、第1層に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 第2カプラC2は、超伝導線路のループと対向して、平面視において時計回り又は反時計回りに周回するカプラループCL1,CL2,CL3,CL4を含む。第2例では、カプラループCL1,CL2は同じ方向に周回し、カプラループCL3,CL4は同じ方向に周回し、カプラループCL1,CL2とカプラループCL3,CL4は、互いに逆方向に周回している。
 図5Bは、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第2例の第2層(最上層である第1層に覆われている層)を示す図である。同図では、第2層に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 超伝導線路L1,L2,L3,L4は、平面視において時計回り又は反時計回りに周回するループLL1,LL2,LL3,LL4をそれぞれ含む。第2例では、ループLL1,LL2,LL3,LL4は、全て同じ方向に周回している。
 超伝導線路L1について、上から下に電流が流れる場合、ループLL1に時計回りの電流が流れて、紙面を下向きに貫く方向に磁束が発生する。この磁束に対して、カプラループCL1に反時計回りの電流が誘導されて、カプラループCL2に、紙面を上向きに貫く方向に磁束が発生する。また、カプラループCL3,CL4には、紙面を下向きに貫く方向に磁束が発生する。このため、ループLL2に時計回りの電流が誘導され、ループLL3,LL4に反時計周りの電流が誘導されて、超伝導線路L2には、上から下に流れる電流が誘導され、超伝導線路L3,L4には、下から上に流れる電流が誘導される。このように、第2カプラC2によって、超伝導線路L1,L2に同じ方向の電流が流れ、超伝導線路L3,L4には超伝導線路L1,L2と逆方向の電流が流れるように、超伝導線路L1,L2,L3,L4により構成される4つの量子ビットを相互作用させることができる。なお、第2超伝導量子干渉計S2に印加する磁束を変えることで、相互作用の強さと極性を変えることができる。
 図5Cは、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第2例の第3層(第2層に覆われている層)を示す図である。同図では、第3層に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 第2カプラC2は、超伝導線路のループと対向して、平面視において時計回り又は反時計回りに周回するカプラループCL1,CL2,CL3,CL4を含む。
 図5Dは、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第2例の第4層(最下層)を示す図である。同図では、第4層に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 超伝導線路L1,L2,L3,L4は、平面視において時計回り又は反時計回りに周回するループLL1,LL2,LL3,LL4をそれぞれ含む。
 このようにして、超伝導線路L1,L2,L3,L4及び第2カプラC2に、それぞれ対向するループを設けることで、3つ以上の超伝導線路を効率良く相互作用させることができる。また、3つ以上のカプラループのうち少なくとも2つが、互いに反対方向に周回することで、3つ以上の量子ビットを異なる極性で相互作用させることができる。
 図6は、本実施形態に係る量子計算素子10の4つの超伝導線路L1,L2,L3,L4及び第2カプラC2の第3例を示す図である。同図では、第1層(最上層)に形成された金属層及びビアを実線で示し、他の層に形成された金属層及びビアを破線で示している。
 第2カプラC2は、超伝導線路のループと対向して、平面視において時計回り又は反時計回りに周回するカプラループCL1,CL2,CL4を含む。第3例では、カプラループCL1,CL2,CL3は同じ方向に周回している。第3例では、第1例においてカプラループCL3が設けられていた位置にループが設けられていない。第2カプラC2と超伝導線路L3の交差箇所で、第2カプラC2は第1層(最上層)に形成され、超伝導線路L3は第2層(最上層である第1層に覆われている層)に形成されて、立体交差している。
 第3例において第2カプラC2によって結合される3つの超伝導線路L1,L2,L4は、同じ方向に延伸し、隣接しない、少なくとも2つの超伝導線路超伝導線路を含む。具体的には、超伝導線路L1と、超伝導線路L4は、同じ方向に延伸し、隣接しない。また、超伝導線路L2と、超伝導線路L4は、同じ方向に延伸し、隣接しない。同じ方向に延伸し、隣接しない超伝導線路は、第1カプラによって直接的に結合されることがない。このように、第2カプラC2によって、第1カプラによる2次の相互作用が設けられない2つの超伝導線路を含む、3つ以上の超伝導線路について、3次以上の相互作用が実現される。
 図7は、本実施形態に係る量子計算素子10の第1超伝導量子干渉計に横磁場を印加した状態におけるエネルギー準位を示す図である。第1超伝導量子干渉計は、超伝導線路に電磁的に接続され、印加される磁束に応じて、超伝導線路のエネルギー準位を変化させる。第1超伝導量子干渉計に横磁場を印加すると、超伝導線路の基底状態のエネルギー準位が縮退し、ダブルウェル型となる。
 超伝導線路は、インダクタンスパラメータβ=2π×L×I/Φの値が、1~10となるように設計されていればよく、好ましくはβが2~8となるように設計されていてよい。ここで、Lは超伝導線路のインダクタンスであり、Iはジョセフソン接合の閾値電流であり、Φは磁束量子(Φ=h/2e=2.067×10-15Wb)である。また、Iは量子ビット作製プロセスと、ジョセフソン接合の面積で定まる量である。例えば、I=5.3μAとなるようなジョセフソン接合と、L=260pHとなるような線路で量子ビットを作製すると、βは4.2となる。
 図7では、β=1.6の場合の第1グラフE1、β=3.0の場合の第2グラフE2、β=4.8の場合の第3グラフE3、β=6.0の場合の第4グラフE4及びβ=8.0の場合の第5グラフE5を示している。β=1.6の場合、縮退した基底状態間のエネルギー障壁が低く、超伝導線路を流れる周回電流の向きの制御が容易となるものの、熱擾乱に弱くなるため、量子状態の安定性が低くなる。そのため、β=2~8が好ましい値となる。
 本実施形態に係る量子計算素子10において、第2カプラC2のインダクタンスパラメータは、複数の超伝導線路のインダクタンスパラメータより小さい。より望ましくは、第2カプラC2のインダクタンスパラメータは、複数の超伝導線路のインダクタンスパラメータの1/2以下である。第2カプラC2のインダクタンスパラメータが、複数の超伝導線路のインダクタンスパラメータより小さいことで、3次以上の相互作用を含む場合であっても、相互作用の強さの階調が制限されづらくなる。また、第2カプラC2のインダクタンスパラメータが、複数の超伝導線路のインダクタンスパラメータの1/2以下であることで、3次以上の相互作用を含む場合であっても、相互作用の強さの階調がさらに制限されづらくなる。
 図8は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第2例の概要を示す図である。同図では、「1」と示した第1超伝導線路L1a及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1’」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1bは、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図8において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1a,C1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1aは、例えば、第1超伝導線路L1b及び「2」と示した超伝導線路が交差する箇所に設けられ、第1超伝導線路L1bの一部及び「2」と示した超伝導線路の一部に対向するように設けられる。第1カプラC1aは、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、2つの超伝導線路によって構成される2つの量子ビットの相互作用の強さが調整される。
 第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した第1超伝導線路L1aによって構成される量子ビットと、「1’」と示した第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。同様に、「2」と示した第2超伝導線路L2によって構成される量子ビットと、「2’」と示した超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、第1超伝導線路L1aの一部、「2’」と示した超伝導線路の一部及び「3’」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 本例の場合、「123」と示された3つの量子ビットを相互作用させる第2カプラC2と、「124」と示された3つの量子ビットを相互作用させる第2カプラと、「1234」と示された4つの量子ビットを相互作用させる第2カプラと、「134」と示された3つの量子ビットを相互作用させる第2カプラと、「234」と示された3つの量子ビットを相互作用させる第2カプラとは、それぞれ1つの単位格子に含まれる。このようにして、単位格子を形成する3つ以上の量子ビットについて、3次以上の相互作用が実現される。
 図9は、本実施形態に係る量子計算素子10の複数の超伝導線路及び第2カプラの第3例の概要を示す図である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1’」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図9において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した第1超伝導線路L1aによって構成される量子ビットと、「1’」と示した第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。同様に、「2」と示した第2超伝導線路L2によって構成される量子ビットと、「2’」と示した超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、第1超伝導線路L1bの一部、第2超伝導線路L2の一部、「3」と示した超伝導線路の一部、「4」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2によって結合される3つ以上の超伝導線路は、少なくとも2つの単位格子にまたがる。本例の場合、「12345」と示された第2カプラC2は、左側の単位格子を形成する第1超伝導線路L1b、第2超伝導線路L2、「3」と示した超伝導線路及び「4」と示した超伝導線路と、右側の単位格子を形成する「5」と示した超伝導線路とを相互作用させ、5つの量子ビットを相互作用させる。また、「123456」と示された第2カプラC2は、「1’」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「4」と示した超伝導線路と、右側の単位格子を形成する「5」と示した超伝導線路及び「6」と示した超伝導線路とを相互作用させ、6つの量子ビットを相互作用させる。また、「1234567」と示された第2カプラC2は、「1’」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「4」と示した超伝導線路と、右側の単位格子を形成する「5」と示した超伝導線路、「6」と示した超伝導線路及び「7」と示した超伝導線路とを相互作用させ、7つの量子ビットを相互作用させる。さらに、「12345678」と示された第2カプラC2は、「1’」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「4」と示した超伝導線路と、右側の単位格子を形成する「5」と示した超伝導線路、「6」と示した超伝導線路、「7」と示した超伝導線路及び「8」と示した超伝導線路とを相互作用させ、8つの量子ビットを相互作用させる。
 このようにして、第2カプラC2によって、2つの単位格子にまたがる3つ以上の量子ビットについて、3次以上の相互作用が実現される。なお、第2カプラC2によって、2つの単位格子にまたがる3つ以上の超伝導線路を結合させる場合、第2カプラC2のインダクタンスが比較的大きくなるが、第2カプラC2のインダクタンスパラメータを、複数の超伝導線路のインダクタンスパラメータより小さくすることで、相互作用の強さの階調が制限されづらくなる。
 図10は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第4例の概要を示す図である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1’」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図10において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1a,C1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1aは、例えば、第1超伝導線路L1b及び第2超伝導線路L2が交差する箇所に設けられ、第1超伝導線路L1bの一部及び第2超伝導線路L2の一部に対向するように設けられる。第1カプラC1aは、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、2つの超伝導線路によって構成される2つの量子ビットの相互作用の強さが調整される。
 第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した第1超伝導線路L1aによって構成される量子ビットと、「1’」と示した第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。同様に、「2」と示した第2超伝導線路L2によって構成される量子ビットと、「2’」と示した超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、第1超伝導線路L1aの一部、「2’」と示した超伝導線路の一部及び「3’」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 本例の場合、「124」と示された3つの量子ビットを相互作用させる第2カプラC2と、「123」と示された3つの量子ビットを相互作用させる第2カプラと、「1234」と示された4つの量子ビットを相互作用させる第2カプラと、「134」と示された3つの量子ビットを相互作用させる第2カプラと、「234」と示された3つの量子ビットを相互作用させる第2カプラとは、それぞれ1つの単位格子に含まれる。このようにして、単位格子を形成する3つ以上の量子ビットについて、3次以上の相互作用が実現される。
 本例では、「134」と示された3つの量子ビットを相互作用させる第2カプラと、「1234」と示された4つの量子ビットを相互作用させる第2カプラとが、交差箇所Pにおいて立体交差している。立体交差は、図6を用いて説明したように、2つの層に設けられる線路によって形成される。
 第4例のレイアウトによって、数式(1)のハミルトニアンを13量子ビットで実現することができる。なお、図2に示す第1例及び図8に示す第2例の場合、数式(1)のハミルトニアンを15量子ビットで実現することができる。いずれも単位格子が2つで実現できている。
 図11は、従来例の複数の超伝導線路及び第1カプラの概要を示す図である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1’」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図11において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1a,C1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1aは、例えば、第1超伝導線路L1b及び第2超伝導線路L2が交差する箇所に設けられ、第1超伝導線路L1bの一部及び第2超伝導線路L2の一部に対向するように設けられる。第1カプラC1aは、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、2つの超伝導線路によって構成される2つの量子ビットの相互作用の強さが調整される。
 第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した第1超伝導線路L1aによって構成される量子ビットと、「1’」と示した第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。同様に、「2」と示した第2超伝導線路L2によって構成される量子ビットと、「2’」と示した超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 従来例のレイアウトによって、数式(1)のハミルトニアンを3つの単位格子、17量子ビットで実現することができる。本実施形態に係る量子計算素子10によれば、第1例及び第2例のレイアウトであれば2つの単位格子、15量子ビットで数式(1)のハミルトニアンを実現することができ、第4例のレイアウトであれば2つの単位格子、13量子ビットで数式(1)のハミルトニアンを実現することができ、従来例のレイアウトよりも少ない量子ビット数で同じハミルトニアンを表すことができる。また、本実施形態に係る量子計算素子10によれば、拘束条件を加えずに3次以上の相互作用を直接表すことができるため、拘束条件を満たすように一部の相互作用を強くする必要がなく、相互作用の強さの階調が制限されづらくなる。また、本実施形態に係る量子計算素子10により、単位格子の数を減らすことができることが、同一面積で実装できる量子ビット数を増やすことができることを意味している。冷凍機内に設置することができるチップ面積は限られるため、本実施形態に係る量子計算素子10を利用することで実装できる量子ビット数を増やすことができる場合がある。
 以下では、5塩基のタンパク質の構造を解析する場合について説明する。この場合、5次の相互作用を取り扱う必要がある。5つの量子ビットをq~qと表し、2次の相互作用をJijと表し、3次の相互作用をJijkと表し、4次の相互作用をJijklと表し、5次の相互作用をJ12345と表すとき、ハミルトニアンは、一般に以下の数式(2)で表される。ただし、Σi<jは、i=1~5,j=1~5について、i<jを満たす全ての組み合わせに関する和を表し、Σi<j<kは、i=1~5,j=1~5,k=1~5について、i<j<kを満たす全ての組み合わせに関する和を表し、Σi<j<k<lは、i=1~5,j=1~5,k=1~5,l=1~5について、i<j<k<lを満たす全ての組み合わせに関する和を表す。
Figure JPOXMLDOC01-appb-M000002
 従来、数式(2)の第3項、第4項及び第5項は、補助量子ビットを導入して2次の相互作用に分解していた。例えば、qをqに置き換え、qをqに置き換え、qをqに置き換え、qをqに置き換え、qをq10に置き換えることで、全ての相互作用を2次までの相互作用で表現することができる。
 図12は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第5例の概要を示す図である。第5例は、数式(2)のハミルトニアンを、3次までの相互作用によって表現する例であり、qをqに置き換え、qをqに置き換えることで、全ての相互作用を3次までの相互作用で表現する例である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図12において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した縦方向に延伸する第1超伝導線路L1aによって構成される量子ビットと、「1」と示した横方向に延伸する第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。同様に、「2」と示した縦方向に延伸する第2超伝導線路L2によって構成される量子ビットと、「2」と示した横方向に延伸する超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、第1超伝導線路L1aの一部、「3」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2によって結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。本例の場合、「1,5,7」と示された第2カプラC2は、「1」と示した超伝導線路、「5」と示した超伝導線路及び「7」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。また、「2,4,5」と示された第2カプラC2は、「2」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「2,3,5」と示された第2カプラC2は、「2」と示した超伝導線路、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「1,3,5」と示された第2カプラC2は、第1超伝導線路L1a、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「1,4,5」と示された第2カプラC2は、「1」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「4,5,6」と示された第2カプラC2は、「4」と示した超伝導線路、「5」と示した超伝導線路及び「6」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「3,5,6」と示された第2カプラC2は、「3」と示した超伝導線路、「5」と示した超伝導線路及び「6」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「5,6,7」と示された第2カプラC2は、「5」と示した超伝導線路、「6」と示した超伝導線路及び「6」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「2,5,7」と示された第2カプラC2は、「2」と示した超伝導線路、「5」と示した超伝導線路及び「7」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。
 このようにして、第2カプラC2によって、4次及び5次の相互作用を含むハミルトニアンを3次以下の相互作用で表現することができる。4次及び5次の相互作用を、制約項を用いて3次以下の相互作用に置き換えることで、2次の相互作用まで次元を減らしてハミルトニアンを表現する場合よりも直接的に扱うことのできる相互作用を多くして、解の精度を向上させることができる。また、ハミルトニアンの式変形を容易にすることができ、ハミルトニアンを実装する場合に必要となる格子数を削減することができる場合がある。また、冷凍機内に設置できるチップ面積は限られているため、3次の相互作用を直接的に扱うことで、同一チップ面積に搭載できる量子ビット数を増やすことができる場合がある。
 図13は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第6例の概要を示す図である。第6例は、数式(2)のハミルトニアンを、4次までの相互作用によって表現する例であり、qをqに置き換えることで、全ての相互作用を4次までの相互作用で表現する例である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図13において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した縦方向に延伸する第1超伝導線路L1aによって構成される量子ビットと、「1」と示した横方向に延伸する第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。同様に、「2」と示した縦方向に延伸する第2超伝導線路L2によって構成される量子ビットと、「2」と示した横方向に延伸する超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、「1」と示した超伝導線路の一部、「4」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2によって結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。本例の場合、「1,4,5」と示された第2カプラC2は、「1」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。また、「3,4,5」と示された第2カプラC2は、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「1,3,4,5」と示された第2カプラC2は、第1超伝導線路L1a、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「1,3,4」と示された第2カプラC2は、第1超伝導線路L1b、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「2,4,5」と示された第2カプラC2は、第2超伝導線路L2、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「1,3,5」と示された第2カプラC2は、第1超伝導線路L1b、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「2,3,5」と示された第2カプラC2は、「2」と示した超伝導線路、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「2,3,4,5」と示された第2カプラC2は、「2」と示した超伝導線路、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「3,4,6」と示された第2カプラC2は、「3」と示した超伝導線路、「4」と示した超伝導線路及び「6」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「2,3,4」と示された第2カプラC2は、「2」と示した超伝導線路、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「3,4,5,6」と示された第2カプラC2は、「3」と示した超伝導線路、「4」と示した超伝導線路、「5」と示した超伝導線路及び「6」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「3,5,6」と示された第2カプラC2は、「3」と示した超伝導線路、「5」と示した超伝導線路及び「6」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「4,5,6」と示された第2カプラC2は、「4」と示した超伝導線路、「5」と示した超伝導線路及び「6」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。
 このようにして、第2カプラC2によって、5次の相互作用を含むハミルトニアンを4次以下の相互作用で表現することができる。5次の相互作用を、制約項を用いて4次以下の相互作用に置き換えることで、2次の相互作用まで次元を減らしてハミルトニアンを表現する場合よりも直接的に扱うことのできる相互作用を多くして、解の精度を向上させることができる。また、ハミルトニアンの式変形を容易にすることができ、ハミルトニアンを実装する場合に必要となる格子数を削減することができる場合がある。また、冷凍機内に設置できるチップ面積は限られているため、3次及び4次の相互作用を直接的に扱うことで、同一チップ面積に搭載できる量子ビット数を増やすことができる場合がある。
 図14は、従来例の複数の超伝導線路及び第1カプラの概要を示す図である。同図では、「1」と示した第1超伝導線路L1及び「2」と示した第2超伝導線路L2を破線で囲って図示している。
 第1超伝導線路L1及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図14において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1a,C1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1aは、例えば、「4」と示した縦方向に延伸する超伝導線路及び「2」と示した横方向に延伸する超伝導線路が交差する箇所に設けられ、「4」と示した縦方向に延伸する超伝導線路の一部及び「2」と示した横方向に延伸する超伝導線路の一部に対向するように設けられる。第1カプラC1aは、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、2つの超伝導線路によって構成される2つの量子ビットの相互作用の強さが調整される。
 第1カプラC1bは、例えば、第2超伝導線路L2及び「2」と示した横方向に延伸する超伝導線路が交差する箇所に設けられ、第2超伝導線路L2の一部及び「2」と示した横方向に延伸する超伝導線路の一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「2」と示した縦方向に延伸する第2超伝導線路L2によって構成される量子ビットと、「2」と示した横方向に延伸する超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 従来例のレイアウトによって、数式(2)のハミルトニアンを6つの単位格子、33量子ビットで実現することができる。本実施形態に係る量子計算素子10によれば、第5例及び第6例のレイアウトであれば4つの単位格子、32量子ビットで数式(2)のハミルトニアンを実現することができ、従来例のレイアウトよりも少ない量子ビット数で同じハミルトニアンを表すことができる。また、本実施形態に係る量子計算素子10によれば、拘束条件を加えずに3次以上の相互作用を直接表すことができるため、拘束条件を満たすように一部の相互作用を強くする必要がなく、相互作用の強さの階調が制限されづらくなる。
 図15は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第7例の概要を示す図である。第7例は、数式(2)のハミルトニアンを、5×5単位格子の超伝導線路を用いて表現する例であり、5次までの相互作用を含む例である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図15において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1bは、例えば、「5」と示した縦方向に延伸する超伝導線路及び「5」と示した横方向に延伸する超伝導線路が交差する箇所に設けられ、「5」と示した縦方向に延伸する超伝導線路の一部及び「5」と示した横方向に延伸する超伝導線路の一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「5」と示した縦方向に延伸する超伝導線路によって構成される量子ビットと、「5」と示した横方向に延伸する超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。同様に、「2」と示した縦方向に延伸する第2超伝導線路L2によって構成される量子ビットと、「2」と示した横方向に延伸する超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、第1超伝導線路L1aの一部、「2」と示した超伝導線路の一部、「3」と示した超伝導線路の一部、「4」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2によって結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。本例の場合、「12345」と示された第2カプラC2は、第1超伝導線路L1a、「2」と示した超伝導線路、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、5つの量子ビットを相互作用させる。また、「2345」と示された第2カプラC2は、第2超伝導線路L2、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「234」と示された第2カプラC2は、「2」と示した超伝導線路、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「345」と示された第2カプラC2は、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「235」と示された第2カプラC2は、「2」と示した超伝導線路、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「245」と示された第2カプラC2は、「2」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「1234」と示された第2カプラC2は、第1超伝導線路L1b、「2」と示した超伝導線路、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「1235」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「1245」と示された第2カプラC2は、「1」と示した超伝導線路、「2」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「1345」と示された第2カプラC2は、「1」と示した超伝導線路、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「124」と示された第2カプラC2は、「1」と示した超伝導線路、「2」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「135」と示された第2カプラC2は、「1」と示した超伝導線路、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「123」と示された第2カプラC2は、「1」と示した超伝導線路、「2」と示した超伝導線路及び「3」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「125」と示された第2カプラC2は、「1」と示した超伝導線路、「2」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。「134」と示された第2カプラC2は、「1」と示した超伝導線路、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、3つの量子ビットを相互作用させる。
 このようにして、第2カプラC2によって、3次、4次及び5次の相互作用を含むハミルトニアンを直接表現することができる。3次、4次及び5次の相互作用を直接表現することで、2次の相互作用まで次元を減らしてハミルトニアンを表現する場合よりも解の精度を向上させることができる。また、ハミルトニアンの式変形を容易にすることができ、ハミルトニアンを実装する場合に必要となる格子数を削減することができる場合がある。また、冷凍機内に設置できるチップ面積は限られているため、3次の相互作用を直接的に扱うことで、同一チップ面積に搭載できる量子ビット数を増やすことができる場合がある。
 図16は、従来例の複数の超伝導線路及び第1カプラの概要を示す図である。本例は、数式(2)のハミルトニアンを、5×5単位格子の超伝導線路を用いて、2次の相互作用まで次元を減らして表現する例である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1」と示した第1超伝導線路L1bを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図16において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1a,C1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1aは、例えば、第1超伝導線路L1a及び「2」と示した横方向に延伸する超伝導線路が交差する箇所に設けられ、第1超伝導線路L1aの一部及び「2」と示した横方向に延伸する超伝導線路の一部に対向するように設けられる。第1カプラC1aは、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、2つの超伝導線路によって構成される2つの量子ビットの相互作用の強さが調整される。
 第1カプラC1bは、例えば、第2超伝導線路L2及び「2」と示した横方向に延伸する超伝導線路が交差する箇所に設けられ、第2超伝導線路L2の一部及び「2」と示した横方向に延伸する超伝導線路の一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「2」と示した縦方向に延伸する第2超伝導線路L2によって構成される量子ビットと、「2」と示した横方向に延伸する超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 従来例のレイアウトによって、数式(2)のハミルトニアンを4つの格子、25量子ビットで実現することができる。本実施形態に係る量子計算素子10によれば、第7例のレイアウトであれば3つの格子、29量子ビットで数式(2)のハミルトニアンを実現することができ、従来例のレイアウトよりも少ない量子ビット数で同じハミルトニアンを表すことができる。また、本実施形態に係る量子計算素子10によれば、拘束条件を加えずに3次以上の相互作用を直接表すことができるため、拘束条件を満たすように一部の相互作用を強くする必要がなく、相互作用の強さの階調が制限されづらくなる。
 図17は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第1変形例の概要を示す図である。本変形例は、4次及び5次の相互作用を表現する専用配置の例である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図17において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した縦方向に延伸する第1超伝導線路L1aによって構成される量子ビットと、「1」と示した横方向に延伸する第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。
 本変形例の第4カプラC4aは、左側の単位格子に含まれる「1」と示した横方向に延伸する超伝導線路と、右側の単位格子に含まれる第1超伝導線路L1bとを結合する。第4カプラC4aは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4aは、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、「1」と示した超伝導線路の一部、第2超伝導線路L2の一部、「3」と示した超伝導線路の一部、「4」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2によって結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。本例の場合、「1234」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。また、「1235」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「1345」と示された第2カプラC2は、「1」と示した超伝導線路、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。さらに、「12345」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、5つの量子ビットを相互作用させる。
 このようにして、第4カプラC4aによって単位格子内の複数の超伝導線路を結合することで、第2カプラC2により表現される4次及び5次の相互作用をより少ない単位格子で実現することができる。これにより、ハミルトニアンを実装する場合に必要となる格子数を削減することができる場合がある。また、冷凍機内に設置できるチップ面積は限られているため、4次及び5次の相互作用を直接的に扱うことで、同一チップ面積に搭載できる量子ビット数を増やすことができる場合がある。
 図18は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第2変形例の概要を示す図である。本変形例は、4次及び5次の相互作用を表現する専用配置の例である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図18において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した縦方向に延伸する第1超伝導線路L1aによって構成される量子ビットと、「1」と示した横方向に延伸する第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。
 本変形例の第4カプラC4bは、左側の単位格子に含まれる複数の「1」と示した横方向に延伸する超伝導線路と、右側の単位格子に含まれる第1超伝導線路L1bとを結合する。第4カプラC4bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4bは、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、「1」と示した超伝導線路の一部、第2超伝導線路L2の一部、「3」と示した超伝導線路の一部、「4」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2によって結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。本例の場合、「1234」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。また、「1235」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「1345」と示された第2カプラC2は、「1」と示した超伝導線路、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。さらに、「12345」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、5つの量子ビットを相互作用させる。
 このようにして、第4カプラC4bによって隣接する単位格子内の複数の超伝導線路を結合することで、第2カプラC2により表現される4次及び5次の相互作用をより少ない単位格子で実現することができる。これにより、ハミルトニアンを実装する場合に必要となる格子数を削減することができる場合がある。また、冷凍機内に設置できるチップ面積は限られているため、4次及び5次の相互作用を直接的に扱うことで、同一チップ面積に搭載できる量子ビット数を増やすことができる場合がある。
 図19は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第3変形例の概要を示す図である。本変形例は、4次及び5次の相互作用を表現する専用配置の例である。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図19において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 本変形例の第4カプラC4cは、左下の単位格子に含まれる「1」と示した横方向に延伸する第1超伝導線路L1bと、右上の単位格子に含まれる「1」と示した縦方向に延伸する第1超伝導線路L1aとを結合する。第4カプラC4cは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4cは、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。なお、本変形例においても、第1変形例の第4カプラC4aのように、左下の単位格子に含まれる横方向に延伸する3つの超伝導線路を第1超伝導線路L1bに結合する構成としたり、第2変形例の第4カプラC4bのように、左下の単位格子に含まれる横方向に延伸する3つの超伝導線路を第1超伝導線路L1aに結合する構成としたりしてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、第1超伝導線路L1bの一部、第2超伝導線路L2の一部、「3」と示した超伝導線路の一部、「4」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2によって結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。本例の場合、「1234」と示された第2カプラC2は、第1超伝導線路L1b、第2超伝導線路L2、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。また、「1235」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。「1345」と示された第2カプラC2は、「1」と示した超伝導線路、「3」と示した超伝導線路、「4」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。さらに、「12345」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、5つの量子ビットを相互作用させる。
 このようにして、第4カプラC4cによって2つの単位格子内の超伝導線路を結合することで、第2カプラC2により表現される4次及び5次の相互作用をより少ない単位格子で実現することができる。本変形例の場合、右上の単位格子と左下の単位格子とを結合させ、右下の単位格子を用いずに4次及び5次の相互作用を表現することができる。これにより、ハミルトニアンを実装する場合に必要となる格子数を削減することができる場合がある。また、冷凍機内に設置できるチップ面積は限られているため、4次及び5次の相互作用を直接的に扱うことで、同一チップ面積に搭載できる量子ビット数を増やすことができる場合がある。
 図20は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第4変形例の概要を示す図である。本変形例は、4次及び5次の相互作用を表現する例であり、本実施形態と同様の配置の例である。本変形例に係る量子計算素子10は、横の長さがL1、縦の長さがL2であり、面積L1×L2の領域に配置される。同図では、「1」と示した第1超伝導線路L1a、「2」と示した第2超伝導線路L2及び第1超伝導線路L1aと同じ量子状態となるように結合されている「1」と示した第1超伝導線路L1bとを破線で囲って図示している。
 第1超伝導線路L1a,L1b及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図20において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1bは、例えば、第1超伝導線路L1a及び第1超伝導線路L1bが交差する箇所に設けられ、第1超伝導線路L1aの一部及び第1超伝導線路L1bの一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した縦方向に延伸する第1超伝導線路L1aによって構成される量子ビットと、「1」と示した横方向に延伸する第1超伝導線路L1bによって構成される量子ビットとは、互いに同じ量子状態となっている。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、隣接する2つの単位格子を形成する複数の超伝導線路は、第4カプラC4によって結合される。第4カプラC4は、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4は、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、「1」と示した超伝導線路の一部、第2超伝導線路L2の一部、「3」と示した超伝導線路の一部、「4」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、第2カプラC2によって結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。本例の場合、「1234」と示された第2カプラC2は、「1」と示した超伝導線路、「2」と示した超伝導線路、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。また、「1235」と示された第2カプラC2は、「1」と示した超伝導線路、「2」と示した超伝導線路、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。
 図21は、本実施形態に係る量子計算素子10の複数の超伝導線路、第1カプラ及び第2カプラの第5変形例の概要を示す図である。本変形例は、4次及び5次の相互作用を表現する例であり、第4変形例に比べて設置面積を削減した専用配置の例である。本変形例に係る量子計算素子10は、横の長さがL1-ΔL1、縦の長さがL2であり、面積(L1-ΔL1)×L2の領域に配置される。よって、本変形例に係る量子計算素子10の設置面積は、第4変形例に比べてΔL1×L2だけ小さい。同図では、「1」と示した第1超伝導線路L1a及び「2」と示した第2超伝導線路L2を破線で囲って図示している。
 第1超伝導線路L1a及び第2超伝導線路L2は、それぞれ電磁的状態によって量子ビットを構成する。具体的には、量子ビットの量子状態は、超伝導線路を流れる電流の周回方向によって表される。ここで、超伝導線路を流れる電流の周回方向は、図21において超伝導線路の端部に設けられている超伝導量子干渉計から出発して超伝導量子干渉計に戻る経路を流れる電流の方向で定義される。
 第1カプラC1bは、複数の超伝導線路のうち2つの超伝導線路の一部に対向して設けられ、2つの超伝導線路によって構成される2つの量子ビットを相互作用させる。第1カプラC1bは、例えば、第1超伝導線路L1a及び「1」と示した横方向に延伸する超伝導線路が交差する箇所に設けられ、第1超伝導線路L1aの一部及び「1」と示した横方向に延伸する超伝導線路の一部に対向するように設けられる。第1カプラC1bは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。すなわち、「1」と示した縦方向に延伸する第1超伝導線路L1aによって構成される量子ビットと、「1」と示した横方向に延伸する超伝導線路によって構成される量子ビットとは、互いに同じ量子状態となっている。
 本変形例では、左側に2×4格子の超伝導線路が配置され、右側に4×4格子の超伝導線路が配置されている。そして、左側の格子のうち縦方向に延伸する2つの超伝導線路と、右側の格子のうち「1」と示した横方向に延伸する超伝導線路とは、第4カプラC4dによって結合される。第4カプラC4dは、超伝導量子干渉計に接続され、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されている。第4カプラC4dは、超伝導量子干渉計に接続されなくてもよく、2つの超伝導線路によって構成される2つの量子ビットの量子状態が同一となるように、相互作用の強さが固定されていてもよい。
 第2カプラC2は、複数の超伝導線路のうち3つ以上の超伝導線路の一部に対向して設けられ、3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる。第2カプラC2は、例えば、「1」と示した超伝導線路の一部、第2超伝導線路L2の一部、「3」と示した超伝導線路の一部、「4」と示した超伝導線路の一部及び「5」と示した超伝導線路の一部に対向するように設けられる。第2カプラC2は、超伝導量子干渉計に接続され、超伝導量子干渉計に印加される磁束の大きさに応じて、3つ以上の超伝導線路によって構成される3つ以上の量子ビットの相互作用の強さが調整される。
 第2カプラC2によって結合される3つ以上の超伝導線路は、1つの単位格子に含まれる。本例の場合、「1234」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「4」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。また、「1235」と示された第2カプラC2は、「1」と示した超伝導線路、第2超伝導線路L2、「3」と示した超伝導線路及び「5」と示した超伝導線路を相互作用させ、4つの量子ビットを相互作用させる。
 このようにして、一部の格子の面積を小さくし、第4カプラC4dによって2つの格子内の超伝導線路を結合することで、第2カプラC2により表現される4次の相互作用をより小さい面積で実現することができる。これにより、同一チップ面積に搭載できる量子ビット数を増やすことができる場合がある。
 本発明の適用範囲は、たんぱく質の構造解析に限らない。本発明は、遺伝子の構造解析やHLA(Human Leukocyte Antigen)の解析などにも適用することができる。また、本発明は、化合物の構造の解析にも適用することができる。また、本発明を、量子アニーリング方式が適する最適化問題一般に適用できることは、発明が属する技術分野の通常の知識を有する者であれば容易に理解できる。例えば、本発明は、金融や交通渋滞の解析などにも適用することができる。また、本発明のハミルトニアンを3次以上の項で実装する考えは、同分野の通常の知識を有する者であれば、CMOS回路やFPGA等でハミルトニアンを実装する際にも適用できることは容易に理解することができ、その場合は本発明の適用範囲に含まれることは自明である。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 本実施形態では、4×4の超伝導線路によって1つの単位格子が形成される場合について説明したが、単位格子の大きさはこれに限られない。例えば、5×5の超伝導線路によって1つの単位格子が形成されてもよいし、6×6の超伝導線路によって1つの単位格子が形成されてもよい。
 

Claims (9)

  1.  それぞれ電磁的状態によって量子ビットを構成する複数の超伝導線路と、
     前記複数の超伝導線路のうち2つの超伝導線路によって構成される2つの量子ビットを相互作用させる第1カプラと、
     前記複数の超伝導線路のうち3つ以上の超伝導線路によって構成される3つ以上の量子ビットを相互作用させる第2カプラと、
     を備える量子計算素子。
  2.  前記3つ以上の超伝導線路は、平面視において時計回り又は反時計回りに周回するループをそれぞれ含み、
     前記第2カプラは、前記ループと対向して、平面視において時計回り又は反時計回りに周回する3つ以上のカプラループを含む、
     請求項1に記載の量子計算素子。
  3.  前記3つ以上のカプラループは、それぞれ同じ方向に周回する、
     請求項2に記載の量子計算素子。
  4.  前記3つ以上のカプラループのうち少なくとも2つは、互いに反対方向に周回する、
     請求項2に記載の量子計算素子。
  5.  前記複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、
     前記3つ以上の超伝導線路は、1つの単位格子に含まれる、
     請求項1から4のいずれか一項に記載の量子計算素子。
  6.  前記複数の超伝導線路は、平面視において少なくとも2つの単位格子を形成するように配置され、
     前記3つ以上の超伝導線路は、少なくとも2つの単位格子にまたがる、
     請求項1から4のいずれか一項に記載の量子計算素子。
  7.  前記3つ以上の超伝導線路は、同じ方向に延伸し、隣接しない、少なくとも2つの超伝導線路を含む、
     請求項1から6のいずれか一項に記載の量子計算素子。
  8.  前記複数の超伝導線路と電磁的に接続された複数の第1超伝導量子干渉計をさらに備え、
     前記第2カプラは、前記3つ以上の量子ビットの相互作用の強さを調整する第2超伝導量子干渉計を含み、
     前記第2カプラのインダクタンスパラメータは、前記複数の超伝導線路のインダクタンスパラメータより小さい、
     請求項1から7のいずれか一項に記載の量子計算素子。
  9.  前記第2カプラのインダクタンスパラメータは、前記複数の超伝導線路のインダクタンスパラメータの1/2以下である、
     請求項8に記載の量子計算素子。
PCT/JP2020/001286 2020-01-16 2020-01-16 量子計算素子 WO2021144922A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/001286 WO2021144922A1 (ja) 2020-01-16 2020-01-16 量子計算素子
JP2020523825A JP6773359B1 (ja) 2020-01-16 2020-01-16 量子計算素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001286 WO2021144922A1 (ja) 2020-01-16 2020-01-16 量子計算素子

Publications (1)

Publication Number Publication Date
WO2021144922A1 true WO2021144922A1 (ja) 2021-07-22

Family

ID=72829274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001286 WO2021144922A1 (ja) 2020-01-16 2020-01-16 量子計算素子

Country Status (2)

Country Link
JP (1) JP6773359B1 (ja)
WO (1) WO2021144922A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250771A (ja) * 2006-03-15 2007-09-27 Japan Science & Technology Agency 超伝導量子マルチビット素子及びそれを用いた集積回路
JP2011524026A (ja) * 2008-03-24 2011-08-25 ディー−ウェイブ システムズ,インコーポレイテッド アナログ処理用のシステム、装置、および方法
JP2017510005A (ja) * 2014-01-06 2017-04-06 グーグル インコーポレイテッド 量子アニーリング工程のための量子ハードウェアの構築およびプログラミング
JP2018533253A (ja) * 2015-09-04 2018-11-08 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation 量子ビット読み出しのためのシステムおよび方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250771A (ja) * 2006-03-15 2007-09-27 Japan Science & Technology Agency 超伝導量子マルチビット素子及びそれを用いた集積回路
JP2011524026A (ja) * 2008-03-24 2011-08-25 ディー−ウェイブ システムズ,インコーポレイテッド アナログ処理用のシステム、装置、および方法
JP2017510005A (ja) * 2014-01-06 2017-04-06 グーグル インコーポレイテッド 量子アニーリング工程のための量子ハードウェアの構築およびプログラミング
JP2018533253A (ja) * 2015-09-04 2018-11-08 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation 量子ビット読み出しのためのシステムおよび方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARRIS, R. ET AL.: "A Compound Josephson Junction Coupler for Flux Qubits With Minimal Crosstalk", PHYSICAL REVIEW B, vol. 80, 052506, 20 August 2009 (2009-08-20), pages 1 - 5, XP080321184 *
PERDOMO-ORTIZ, ALEJANDRO ET AL.: "Finding low- energy conformations of lattice protein models by quantum annealing", SCIENTIFIC REPORTS, vol. 2, no. 571, 2012, pages 1 - 7, XP055676849 *

Also Published As

Publication number Publication date
JPWO2021144922A1 (ja) 2021-07-22
JP6773359B1 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
US20210005661A1 (en) Quantum computing devices with majorana hexon qubits
Sato et al. Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors
Hart et al. Controlled finite momentum pairing and spatially varying order parameter in proximitized HgTe quantum wells
US7619437B2 (en) Coupling methods and architectures for information processing
Motrunich et al. Griffiths effects and quantum critical points in dirty superconductors without spin-rotation invariance: One-dimensional examples
Viefers Quantum Hall physics in rotating Bose–Einstein condensates
Hilgenkamp et al. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays
EP4002228A1 (en) Systems and methods for creating and using higher degree interactions between quantum devices
US20110238607A1 (en) Graph embedding techniques
Hegde et al. A topological Josephson junction platform for creating, manipulating, and braiding Majorana bound states
Mostame et al. Emulation of complex open quantum systems using superconducting qubits
Gallemí et al. Coherent quantum phase slip in two-component bosonic atomtronic circuits
Schüffelgen et al. Exploiting topological matter for Majorana physics and devices
WO2021144922A1 (ja) 量子計算素子
Chen et al. Decoding flat bands from compact localized states
Haim et al. Time-reversal-invariant topological superconductivity
EP4053923A1 (en) Superconducting quantum hybrid system, computer device and quantum chip
Klauser et al. Adjacent spin operator dynamical structure factor of the S= 1/2 Heisenberg chain
Cavalcante Quantum holonomies in graphene wormholes
Qu et al. Solid-state quantum computation station
Bergman et al. Effective Hamiltonians for some highly frustrated magnets
Liu et al. Negative inductance SQUID qubit operating in a quantum regime
Phong Topological Edge States in Two-Dimensional Materials
Irkhin et al. Topological states in strongly correlated systems
Sachdev Quantum phase transitions

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020523825

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914112

Country of ref document: EP

Kind code of ref document: A1