WO2021144161A1 - Cvd reactor having doubled flow zone plate - Google Patents

Cvd reactor having doubled flow zone plate Download PDF

Info

Publication number
WO2021144161A1
WO2021144161A1 PCT/EP2021/050038 EP2021050038W WO2021144161A1 WO 2021144161 A1 WO2021144161 A1 WO 2021144161A1 EP 2021050038 W EP2021050038 W EP 2021050038W WO 2021144161 A1 WO2021144161 A1 WO 2021144161A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
susceptor
substrate
temperature
flow zone
Prior art date
Application number
PCT/EP2021/050038
Other languages
German (de)
French (fr)
Inventor
Francesco BUTTITTA
Ilio Miccoli
Wilhelm Josef Thomas KRÜCKEN
Original Assignee
Aixtron Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron Se filed Critical Aixtron Se
Publication of WO2021144161A1 publication Critical patent/WO2021144161A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4411Cooling of the reaction chamber walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4558Perforated rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate

Definitions

  • the invention relates to an apparatus and a method for the deposition of III-IV layers on a substrate, in particular an MOCVD reactor and an MOCVD process.
  • the invention relates in particular to a device in which in a
  • Reactor housing a gas inlet element, a susceptor delimiting a process chamber downwards, a heating device heating the susceptor and a process chamber ceiling delimiting the process chamber upwards are arranged, the susceptor forming a substrate storage zone for receiving a substrate to be coated and on a between the gas inlet organ and the area of the susceptor arranged in the substrate storage zone, a feed zone plate rests in such a way that a free space remains between the top of the susceptor and the underside of the feed zone plate, in which there is an additional plate.
  • the invention particularly relates to a method for depositing
  • III-V semiconductor layers in a device in which in a reactor housing a gas inlet element, a susceptor delimiting a process chamber downwards, a heating device heating the susceptor and a process chamber ceiling delimiting the process chamber upwards are arranged, the susceptor being a Substrate storage zone for receiving a substrate to be coated is formed and a feed zone plate rests on an area of the susceptor arranged between the gas inlet element and the substrate storage zone in such a way that a free space remains between the top of the susceptor and the underside of the feed zone plate, in which an additional plate can be located, with the following steps:
  • the substrate storage zone has a temperature between 500 ° C. and 800 ° C. and the flow zone has a lower temperature
  • a susceptor with a circular floor plan delimits a process chamber at the bottom.
  • a gas inlet element with which hydrides of elements of main group V and organometallic compounds of elements of III.
  • Main group can be fed into the process chamber together with a carrier gas.
  • the susceptor heated by a heating device is hotter than a process chamber ceiling that delimits the process chamber at the top. As a result of this temperature difference, a vertical temperature gradient forms in the process chamber. Heat flows from the susceptor to the process chamber ceiling.
  • the susceptor is surrounded by a gas outlet element.
  • the susceptor In an area adjacent to the gas outlet element, the susceptor forms a substrate storage zone. In this substrate storage zone there is a multiplicity of substrates which are arranged around the gas inlet element at a uniform distance from the gas inlet element. A flow zone extends between the sub stratlagerzone and the gas inlet member. In the advance zone, on the upward-facing side of the susceptor, there is a running plate. An annular intermediate plate is located in a free space between the underside of the feed plate and the upwardly facing side of the susceptor. A temperature control gas is fed into the spaces between the flow plate and the intermediate plate as well as the intermediate plate and the susceptor. By varying the composition of the gas, its thermal conductivity can be adjusted. By changing the thermal conductivity of the tempering gas, the heat flow from the flow zone to the process chamber ceiling is varied, and thus the surface temperature of the flow zone.
  • a MOCVD reactor is also described in US 2004/0003779.
  • DE 10056029 A1 describes a method for temperature control of the surface temperatures of substrates which are stored on substrate holders which in turn lie in pockets of a susceptor and are carried there by a gas cushion. Due to the height of the gas cushion, the surface temperature of a substrate can be adjusted in such a way that the surface temperatures of all substrates have essentially the same value.
  • the invention is based on the object of further developing the generic device and the generic ate method in particular to the effect that the surface temperatures of the substrates can be varied more effectively individually.
  • Another object of the invention is to provide a device and a method with which layers for optoelectronic components can be manufactured, the parameters of which influencing the wavelength lie within narrow tolerances.
  • the layer properties of the layers of the plurality of layers produced simultaneously in a process chamber during a run may have only minimal differences. Tight tolerances on layer thickness and layer composition of ternary and quaternary III-V layers are required so that the wavelengths of the optoelectronic components, lasers or LEDs produced with the layer sequences differ only slightly.
  • the growth temperature has a significant influence on the layer parameters influencing the wavelength. With the method described in DE 10056029 A1, the surface temperature of the substrates is to be kept at an average value by an individual control of the height of the gas cushion.
  • the temperature of the surface of the advance zone must be lower than the temperature on the substrates. If the feed zone has the same temperature as the substrate storage zone or even a higher temperature, the substrate temperatures cannot be individually influenced to the required extent. According to the invention, it is proposed to lower the flow zone temperature to a temperature below the substrate temperature.
  • the temperature is preferably lowered in a range from 10 ° C to 40 ° C or 20 ° C to 40 ° C.
  • the pre-run zone temperature is preferably about 25 ° C. below the substrate temperature. The latter is preferably in a range between 500 ° C and 800 ° C.
  • the surface temperatures of the substrates can be varied by an individual energy flow.
  • the susceptor is locally heated or cooled in the areas in which a substrate is located.
  • Local heating is possible, for example, by adding radiant heat, for example with a laser beam.
  • Surface temperatures of the substrates can be changed individually by modifying a gas cushion on which a substrate holder carrying a substrate rests. This can be done by changing the height of the gas cushion.
  • it is also possible to change the thermal conductivity of the gas forming the gas cushion for example by creating the gas cushion from a mixture of two gases, one of which has a high thermal conductivity and the other has a low thermal conductivity.
  • a process gas is fed into the process chamber through the gas inlet element.
  • the process gas has at least one first reactive gas, wel Ches an element of III. Main group, for example gallium, indium or aluminum and in particular is an organometallic compound.
  • It has at least one second reactive gas, which is an element of main group V, for example arsenic, phosphorus or nitrogen.
  • the second reactive gas can be a hydride.
  • the two reactive gases are conveyed together with a carrier gas, for example hydrogen.
  • Pre-decomposition takes place within a lead zone, which according to the invention takes place at a temperature which is lower than the surface temperature of the substrate.
  • activation of the starting materials fed into the process chamber through the gas inlet element also takes place in the flow zone. The activation obeys an exponential function, so that it is sufficient to lower the temperature in the flow zone to the above-mentioned, for example, 10 to 40 ° C compared to the temperature in the substrate storage zone.
  • the surface temperature of the substrates can be varied by, for example, +/- 3 or +/- 5 ° C.
  • the inven- The device according to the invention is characterized in that the additional plate and the flow zone plate are congruent on top of one another.
  • the invention thus provides for a doubling of the flow zone plate.
  • the additional plate and the flow zone plate preferably have the same floor plan.
  • the lead zone plate can be electrically conductive. You can for example consist of graphite.
  • the surface of the advance zone plate can be coated.
  • the additional plate can be electrically insulating. It can consist of quartz or a ceramic material.
  • the Vorlaufzo nenplatte and the additional plate each have a central opening.
  • the gas inlet element which is arranged centrally in the process chamber and has a preferably circular outline can be inserted in the central opening.
  • the central opening of the flow zone plate and additional plate then also has a circular shape.
  • the flow zone plate and the additional plate each consist of one piece. It is each a flat body.
  • the peripheral edges of the additional plate and the flow zone plate can directly adjoin the circular disk-shaped substrate holder. In this respect, the peripheral edge of the additional plate and flow zone plate forms a plurality of juxtaposed indentations, each indentation extending along a circular arc line.
  • the additional plate is spaced from the top of the susceptor facing the process chamber by a gap.
  • the gap height can be around 0.8 mm +/- 10 percent.
  • the material thickness of the additional plate can be 3.2 mm +/- 10 percent.
  • the distance from the top of the susceptor to the top of the lead zone plate can be 9.6 mm +/- 10 percent. It can thus be provided that the height of the gaps is the same. It can also be provided that the gap height is in the range between a fifth and a third of the material thickness of the additional plate.
  • the gap height of each of the two gaps is preferably ⁇ 1 mm.
  • the material thickness of the flow zone plate can be greater than the material thickness of the additional plate.
  • the material thickness can be at least five times as large as the gap be high.
  • spacer elements can be used. First spacer elements can be provided with which the advance zone plate is supported on the upper side of the susceptor. These first spacer elements can reach through openings in the additional plate.
  • the additional plate can have second spacer elements which are supported on the upper side of the susceptor. The resulting two gaps have the same vertical gap spacing over their entire surface extending in a horizontal plane, so that all the broad sides of the additional plate and the advance zone plate run parallel to one another.
  • the spacer elements can be attached to the additional plate or the flow zone plate.
  • a gas for example temperature control gas
  • an additional plate which has the same layout as the flow zone plate, several gaps with a small gap width are formed. During a deposition process, no gas can flow through these gaps. Due to the small gap width, only a small amount of the process gas diffuses into the free space below the flow zone plate, so that an acceptable parasitic deposition takes place there.
  • the two extending parallel to each other create the column together with the additional plate consisting in particular of quartz or a ceramic material, a thermal insulation zone below the flow zone plate.
  • the flow zone plate preferably has a greater thermal conductivity than the additional plate which fulfills the task of an insulation plate. In the plan view, the flow zone plate and the additional plate have a star-shaped appearance.
  • FIG. 1 shows a plan view of a susceptor 2 of a CVD reactor, approximately according to section line II in FIG. 2,
  • FIG. 2 shows a section through a CVD reactor along the section line II-II in FIG. 1 in a schematic representation
  • FIG. 3 enlarges the detail III from FIG. 2,
  • FIG. 4 is a perspective view of a flow zone plate 10 according to the invention and an additional plate 11 according to the invention,
  • FIG. 5 shows a representation similar to FIGS. 2 or 3 and additionally the temperature profile of the surface of the flow zone plate 10 and of the substrate 4 in the radial direction R in the process chamber.
  • FIG. 2 shows schematically the structure of a CVD reactor according to the invention.
  • a gas-tight housing 1 Inside a gas-tight housing 1 is a circular disk-shaped susceptor 2 made of graphite and in particular coated graphite, which is heated from below with a heating device 6 by heat radiation or by generating a high-frequency alternating electromagnetic field.
  • the susceptor 2 is supported by a shaft 19 which can also form an axis of rotation with which the susceptor 2 can be driven in rotation about its figure axis.
  • Above the center of the susceptor 2 Above the center of the susceptor 2 is a substantially cylindrical gas inlet gate 5, through which a process gas can be fed into a process chamber 8.
  • the process chamber 8 extends from the gas inlet element 5 between susceptor 2 and a process chamber ceiling 7 in a radially outward direction to towards a gas outlet element 20.
  • the gas outlet element 20 is connected to a gas line (not shown) with a vacuum pump with which the interior of the housing 1 can be evacuated.
  • the process chamber 8 has two peripheral zones.
  • a radially inner circumferential zone adjoining the gas inlet element 5 forms a flow zone V.
  • a zone adjoining the flow zone V in a radially outward direction forms a substrate storage zone S.
  • the substrate storage zone S is followed by the gas outlet element 20, which surrounds the susceptor 2 in a circular manner .
  • Each substrate holder 3 consists of a circular disk-shaped flat body, for example made of graphite.
  • the underside of the substrate holder 3 can be flat or curved.
  • the top of the substrate holder 3 can have a recess for receiving a substrate 4.
  • a purge gas can be fed in by means of a gas supply line, not shown, with which the substrate holder 3 is raised and rotated about its figure axis. Due to the height of the gas cushion 21 thus generated, the temperature Ts of the substrate 4 resting on the sub strathalter 3 can be varied.
  • the gas cushions can be individually adjusted for this purpose.
  • a flow zone plate 10 which is shown in FIG. 4, extends in the flow zone V.
  • the flow zone plate 10 is made of graphite, in particular special coated graphite and has an opening 15 in its center, in which the gas inlet element 5 is inserted.
  • the flow zone plate 10 completely fills the area between the gas inlet element 5 and the substrate holders 3 extending on a circular arc line around the center of the susceptor 2. you has indentations that run on a circular arc line. The indentations adjoin the substrate holder 3. The spaces between the indentations extend up to the radial height at which the distance between two adjacent substrate holders 3 is minimal. They give the flow zone plate 10 a star-shaped shape. Additional cover plates can be provided radially outside the flow zone plate 10.
  • the additional plate 11 is an insulation plate and has the same outline as the flow zone plate 10.
  • the gas inlet element 5 is also inserted in its central opening 17.
  • the additional plate 11 has the same indentations as the flow zone plate 10 and adjoins the substrate holder 3 in the same way with its indentations on.
  • the flow zone plate 10 is supported with spacer elements 14 on the upper side 2 ′ of the susceptor 2.
  • the additional plate 11 has openings 14 through which the spacer elements 14 protrude.
  • the additional plate 11 also has spacer elements 18 with which it is supported on the top 2 'of the Sus 2 receptor.
  • the spacer elements 14, 18 are evenly distributed Winkelver around the center of the flow zone plate 10 or additional plate 11 is arranged.
  • a distance a of the top 2 'of the susceptor 2 from the top of the flow zone plate 10 facing the process chamber 8 is approximately 10 mm, preferably approximately 9.6 mm.
  • a distance b of a gap 12 between Vorlaufzo nenplatte 10 and additional plate 11 is preferably about 0.8 mm.
  • a distance c of a gap 13 between the top 2 'of the susceptor 2 and the bottom of the additional plate 11 is preferably 0.8 mm.
  • the distance between the bottom 10 'of the lead zone plate 10 and the top 2' of the susceptor 2 is about 4.8 mm before given.
  • the fiction, contemporary arrangement of flow zone plate 10 and additional plate 11 enables a method to be carried out in which III-V layers are deposited on a substrate in order to produce optoelectronic components in which the temperatures Ts by an individual variation Substrates 4 the wavelengths of the band transitions of the layers are almost identical.
  • reactive gases are conveyed to the gas inlet element 5.
  • the first reactive gases can be hydrides of the elements arsenic, phosphorus or nitrogen.
  • Second reactive gases can be organometallic compounds of gallium, indium or aluminum.
  • a total of three reactive gases or four reactive gases are preferably fed simultaneously together with a carrier gas through the gas inlet element 5 into the process chamber 8, so that ternary or quaternary layers are deposited on the substrates.
  • the layer composition depends on the temperature Ts of the susceptor and on the partial pressures of the reactive gases.
  • the wavelengths of optical components whose layers are deposited using the method depend on the layer composition. It is therefore necessary that each substrate holder or each substrate has the same substrate temperature Ts during the deposition process.
  • the substrate temperature Ts is regulated, it is varied slightly by a middle temperature which is between 500 ° C. and 800 ° C.
  • the temperature Ts is preferably varied by influencing the gas cushion 21.
  • the arrangement of the flow zone plate 10 and the additional plate 11 reduce the temperature Tv on the side of the flow zone plate 10 facing the process chamber 8 by 10 to 40 ° C is lower than the temperature Ts of the substrate.
  • the temperature difference between the temperature Tv of the flow zone V and the temperature Ts of the substrate 4 or the substrate storage zone S is preferably 25 ° C, in particular at least 25 ° C. Due to the lower flow zone temperature Tv compared to the substrate temperature Ts, a temperature variation due to gap height perform hen variation.
  • FIG. 5 shows schematically the course of the surface temperature of the flow zone plate 10 and the substrate 4 in the radial direction R.
  • the flow zone temperature Tv is lower than the substrate temperature Ts.
  • the flow zone temperature Tv can be in a range between an upper temperature TI and a lower temperature T2, the lower tempera ture TI is about 10 or 20 ° C lower than the substrate temperature Ts and the lower temperature T2 is, for example, 50 ° C lower than the substrate temperature Ts.
  • a device which is characterized in that the additional plate 11 and the lead zone plate 10 are congruent one above the other.
  • a device which is characterized in that the vertical height of the free space 12, 13 is chosen so that the temperature of the Vorlaufzo- ne V is 10 to 40 ° C or 20 ° C to 40 ° C lower than the temperature of the substrate storage zone S.
  • a device or a method which is characterized in that there is an additional plate 11 in the free space 12, 13, which in particular has a plan that matches the flow zone plate 10 and / or that the flow zone plate 10 is electrically conductive and / or off There is graphite and / or that the additional plate 11 has a lower thermal conductivity than the flow zone plate 10.
  • a device or a method which is characterized in that the additional plate 11 is electrically insulating and / or consists of quartz and / or a ceramic material.
  • a device or a method which is characterized by first spacer elements 14 with which the flow zone plate 10 is held at a predetermined first distance d from the top 2 'of the substrate holder 2 and by second spacer elements 18 with which the additional plate 11 is held at a predetermined second distance c from the top of the substrate holder 3, the additional plate 11 having openings 16 through which the first distance elements 14 reach.
  • a device or a method which is characterized in that the flow zone plate 10 and the additional plate 11 are each a flat piece with flat broad side surfaces and the flow zone plate 10 and the inlet Set plate 11 extend parallel to one another and parallel to the flat upper side 2 'of the susceptor 2.
  • a device or a method which is characterized in that the vertical distance of the additional plate 11 compared to the top 21 of the susceptor extending in a horizontal plane is 20.8 mm +/- 10% and the vertical distance of the lead zone plate 10 opposite of the additional plate 11 is 0.8 mm +/- 10% and / or that the vertical distance between the top of the lead zone plate 10 and the top of the susceptor is 29.6 mm +/- 10% and / or that the material thickness of the additional plate is 113.2 mm +/- 10%.

Abstract

The invention relates to an apparatus wherein a gas inlet element (5), a susceptor delimiting a process chamber (8) at the bottom, a heating device (6) heating the susceptor (2), and a process chamber ceiling (7) delimiting the process chamber (8) at the top are arranged in a reactor housing (1), wherein the susceptor (2) forms a substrate bearing zone (S) for receiving a substrate (4) to be coated and a flow zone plate (10) lies on a region of the susceptor (2) arranged between the gas inlet element (5) and the substrate bearing zone (S) such that a free space (12, 13) remains between the top side (2') of the susceptor (2) and the bottom side (10') of the flow zone plate (10), in which free space an additional plate (11) is located. The invention further relates to a method for depositing III-V semiconductor layers. In order to maintain the parameters that influence the wavelengths of optoelectronic components in a tight tolerance range, the invention proposes a doubled flow zone plate (10, 11), such that the temperature of the flow zone is 10 to 40°C lower than the substrate temperature.

Description

Beschreibung description
CVD-Reaktor mit doppelter Vorlauf zonenplatte CVD reactor with double flow zone plate
Gebiet der Technik Field of technology
[0001] Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Ab scheiden von III-IV-Schichten auf einem Substrat insbesondere einen MOCVD- Reaktor und ein MOCVD-Verfahren. [0002] Die Erfindung betrifft insbesondere eine Vorrichtung, bei der in einemThe invention relates to an apparatus and a method for the deposition of III-IV layers on a substrate, in particular an MOCVD reactor and an MOCVD process. The invention relates in particular to a device in which in a
Reaktorgehäuse ein Gaseinlassorgan, ein eine Prozesskammer nach unten be grenzender Suszeptor, eine den Suszeptor heizende Heizeinrichtung und eine die Prozesskammer nach oben begrenzende Prozesskammerdecke angeordnet sind, wobei der Suszeptor eine Substratlagerzone zur Aufnahme eines zu be- schichtenden Substrates ausbildet und auf einem zwischen dem Gaseinlassor gan und der Substratlagerzone angeordneten Bereich des Suszeptors eine Vor laufzonenplatte derart aufliegt, dass zwischen Oberseite des Suszeptors und Unterseite der Vorlaufzonenplatte ein Freiraum verbleibt, in dem sich eine Zu satzplatte befindet. [0003] Die Erfindung betrifft insbesondere ein Verfahren zum Abscheiden vonReactor housing, a gas inlet element, a susceptor delimiting a process chamber downwards, a heating device heating the susceptor and a process chamber ceiling delimiting the process chamber upwards are arranged, the susceptor forming a substrate storage zone for receiving a substrate to be coated and on a between the gas inlet organ and the area of the susceptor arranged in the substrate storage zone, a feed zone plate rests in such a way that a free space remains between the top of the susceptor and the underside of the feed zone plate, in which there is an additional plate. The invention particularly relates to a method for depositing
III-V-Halbleiter schichten in einer Vorrichtung, bei der in einem Reaktor gehäuse ein Gaseinlassorgan, ein eine Prozesskammer nach unten begrenzender Suszep tor, eine den Suszeptor heizende Heizeinrichtung und eine die Prozesskammer nach oben begrenzende Prozesskammerdecke angeordnet sind, wobei der Sus- zeptor eine Substratlagerzone zur Aufnahme eines zu beschichtenden Substra tes ausbildet und auf einem zwischen dem Gaseinlassorgan und der Substrat lagerzone angeordneten Bereich des Suszeptors eine Vorlaufzonenplatte derart aufliegt, dass zwischen Oberseite des Suszeptors und Unterseite der Vorlaufzo nenplatte ein Freiraum verbleibt, in dem sich eine Zusatzplatte befinden kann, mit den folgenden Schritten: III-V semiconductor layers in a device in which in a reactor housing a gas inlet element, a susceptor delimiting a process chamber downwards, a heating device heating the susceptor and a process chamber ceiling delimiting the process chamber upwards are arranged, the susceptor being a Substrate storage zone for receiving a substrate to be coated is formed and a feed zone plate rests on an area of the susceptor arranged between the gas inlet element and the substrate storage zone in such a way that a free space remains between the top of the susceptor and the underside of the feed zone plate, in which an additional plate can be located, with the following steps:
Aufheizen des Suszeptors mittels der Heizeinrichtung und Erzeugen eines vertikalen Temperaturgradienten in der Prozesskammer derart, dass die Prozesskammerdecke eine geringere Temperatur besitzt, als der Suszep- tor, die Substratlagerzone eine Temperatur zwischen 500°C und 800°C und die Vorlaufzone eine geringere Temperatur aufweist; Heating the susceptor by means of the heating device and generating a vertical temperature gradient in the process chamber in such a way that the process chamber ceiling has a lower temperature than the susceptor, the substrate storage zone has a temperature between 500 ° C. and 800 ° C. and the flow zone has a lower temperature;
Einspeisen eines Prozessgases durch das Gaseinlassorgan in die Vorlauf zone, wobei das Prozessgas zumindest ein ein Element der III. Haupt gruppe enthaltendes erstes reaktives Gas, zumindest ein ein Element der V. Hauptgruppe enthaltendes zweites reaktives Gas und ein Trägergas enthält. Feeding a process gas through the gas inlet element into the flow zone, the process gas at least one element of III. Main group containing first reactive gas, at least one element of the V main group containing second reactive gas and a carrier gas.
Stand der Technik State of the art
[0004] Die DE 102014104218 Al offenbart ein gattungsgemäßes Verfahren und eine gattungsgemäße Vorrichtung. Ein Suszeptor mit einem kreisförmigen Grundriss begrenzt eine Prozesskammer nach unten. In der Mitte der kreisför- migen Prozesskammer befindet sich ein Gaseinlassorgan, mit welchem Hydride von Elementen der V. Hauptgruppe und metallorganische Verbindungen von Elementen der III. Hauptgruppe zusammen mit einem Trägergas in die Pro zesskammer eingespeist werden. Der von einer Heizeinrichtung beheizte Sus zeptor ist heißer als eine die Prozesskammer nach oben begrenzende Prozess- kammerdecke. Als Folge dieses Temperaturunterschiedes bildet sich ein verti kaler Temperaturgradient in der Prozesskammer aus. Wärme fließt vom Sus zeptor zur Prozesskammerdecke. Der Suszeptor ist von einem Gasauslassorgan umgeben. In einem dem Gasauslassorgan benachbarten Bereich bildet der Sus zeptor eine Substratlagerzone aus. In dieser Substratlagerzone befindet sich eine Vielzahl von Substraten, die in einem gleichmäßigen Abstand vom Gasein lassorgan um das Gaseinlassorgan herum angeordnet sind. Zwischen der Sub stratlagerzone und dem Gaseinlassorgan erstreckt sich eine Vorlaufzone. In der Vorlaufzone liegt auf der nach oben weisenden Seite des Suszeptors eine Vor- laufplatte. In einem Freiraum zwischen der Unterseite der Vorlaufplatte und der nach oben weisenden Seite des Suszeptors befindet sich eine ringförmige Zwischenplatte. In Zwischenräume zwischen Vorlaufplatte und Zwischenplatte sowie Zwischenplatte und Suszeptor wird ein Temperiergas eingespeist. Durch Variation der Zusammensetzung des Gases kann dessen Wärmeleiteigenschaft eingestellt werden. Durch Veränderung der Wärmeleiteigenschaft des Tempe riergases wird der Wärmefluss von der Vorlaufzone zur Prozesskammerdecke variiert und damit die Oberflächentemperatur der Vorlaufzone. DE 102014104218 A1 discloses a generic method and a generic device. A susceptor with a circular floor plan delimits a process chamber at the bottom. In the middle of the circular process chamber there is a gas inlet element with which hydrides of elements of main group V and organometallic compounds of elements of III. Main group can be fed into the process chamber together with a carrier gas. The susceptor heated by a heating device is hotter than a process chamber ceiling that delimits the process chamber at the top. As a result of this temperature difference, a vertical temperature gradient forms in the process chamber. Heat flows from the susceptor to the process chamber ceiling. The susceptor is surrounded by a gas outlet element. In an area adjacent to the gas outlet element, the susceptor forms a substrate storage zone. In this substrate storage zone there is a multiplicity of substrates which are arranged around the gas inlet element at a uniform distance from the gas inlet element. A flow zone extends between the sub stratlagerzone and the gas inlet member. In the advance zone, on the upward-facing side of the susceptor, there is a running plate. An annular intermediate plate is located in a free space between the underside of the feed plate and the upwardly facing side of the susceptor. A temperature control gas is fed into the spaces between the flow plate and the intermediate plate as well as the intermediate plate and the susceptor. By varying the composition of the gas, its thermal conductivity can be adjusted. By changing the thermal conductivity of the tempering gas, the heat flow from the flow zone to the process chamber ceiling is varied, and thus the surface temperature of the flow zone.
[0005] Ein MOCVD-Reaktor wird zudem in der US 2004/0003779 beschrieben. Die DE 10056029 Al beschreibt ein Verfahren zur Temperatursteuerung der Oberflächentemperaturen von Substraten, die auf Substrathaltern gelagert sind, welche wiederum in Taschen eines Suszeptors einliegen und dort von einem Gaspolster getragen werden. Durch die Höhe des Gaspolsters lässt sich die Oberflächentemperatur eines Substrates derart angleichen, dass die Oberflä- chentemperaturen aller Substrate im Wesentlichen denselben Wert besitzen. A MOCVD reactor is also described in US 2004/0003779. DE 10056029 A1 describes a method for temperature control of the surface temperatures of substrates which are stored on substrate holders which in turn lie in pockets of a susceptor and are carried there by a gas cushion. Due to the height of the gas cushion, the surface temperature of a substrate can be adjusted in such a way that the surface temperatures of all substrates have essentially the same value.
Zusammenfassung der Erfindung Summary of the invention
[0006] Der Erfindung liegt die Aufgabe zugrunde, die gattungsgemäße Vor richtung und das gattungs gern äße Verfahren insbesondere dahingehend ge brauchsvorteilhaft weiterzubilden, dass die Oberflächentemperaturen der Sub strate wirksamer individuell variiert werden können. Eine Aufgabe der Erfin- düng besteht ferner darin, eine Vorrichtung und ein Verfahren anzugeben, mit dem Schichten für optoelektronische Bauelemente gefertigt werden können, deren die Wellenlänge beeinflussenden Parameter in engen Toleranzen liegen. The invention is based on the object of further developing the generic device and the generic ate method in particular to the effect that the surface temperatures of the substrates can be varied more effectively individually. Another object of the invention is to provide a device and a method with which layers for optoelectronic components can be manufactured, the parameters of which influencing the wavelength lie within narrow tolerances.
[0007] Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Er findung, wobei die Unteransprüche nicht nur Weiterbildungen der in den ne- bengeordneten Ansprüchen angegebenen Erfindung, sondern auch eigenstän dige Lösungen der Aufgabe darstellen. The object is achieved by the invention specified in the claims, the subclaims not only being further developments of the Dependent claims specified invention, but also stand-alone solutions to the task.
[0008] Bei der Herstellung von Schichten für optoelektronische Bauelemente mit dem gattungsgemäßen Verfahren dürfen die Schichteigenschaften der Schichten der mehreren gleichzeitig in einer Prozesskammer während eines Runs hergestellten Schichten nur minimale Unterschiede aufweisen. Es werden enge Toleranzen an Schichtdicke und Schichtzusammensetzung von ternären und quaternären III-V-Schichten gefordert, damit sich die Wellenlängen der mit den Schichtenfolgen hergestellten optoelektronischen Bauelemente, Laser oder LEDs nur geringfügig unterscheiden. Die Wachstumstemperatur hat einen signi fikanten Einfluss auf die die Wellenlänge beeinflussenden Schichtparameter. Mit dem in der DE 10056029 Al beschriebenen Verfahren soll durch eine individuel le Steuerung der Höhe der Gaspolster die Oberflächentemperatur der Substrate auf einem Mittelwert gehalten werden. Untersuchungen, die dieser Anmeldung vorausgehen, zeigen, dass für die Wirksamkeit dieses Verfahrens die Temperatur der Oberfläche der Vorlaufzone geringer sein muss, als die Temperatur auf den Substraten. Hat die Vorlaufzone dieselbe Temperatur wie die Substratlagerzone oder sogar eine höhere Temperatur, lassen sich die Substrattemperaturen nicht im erforderlichen Umfang individuell beeinflussen. Erfindungsgemäß wird vor geschlagen, die Vorlaufzonen Temperatur auf eine Temperatur unterhalb der Substrattemperatur abzusenken. Bevorzugt wird die Temperatur in einem Be reich von 10°C bis 40°C oder 20°C bis 40°C abgesenkt. Bevorzugt liegt die Vor laufzonentemperatur etwa 25°C unterhalb der Substrattemperatur. Letztere liegt bevorzugt in einem Bereich zwischen 500°C und 800°C. Die Oberflächentempera turen der Substrate können durch einen individuellen Energiefluss variiert wer den. Beispielsweise kann vorgesehen sein, dass der Suszeptor in den Bereichen, in denen sich ein Substrat befindet, lokal beheizt oder gekühlt wird. Eine lokale Erwärmung ist beispielsweise durch Hinzufügung von Strahlungswärme, bei spielsweise mit einem Laserstrahl, möglich. Es ist aber auch möglich, die Ober- flächentemperaturen der Substrate dadurch individuell zu verändern, in dem ein Gaspolster, auf dem ein ein Substrat tragender Substrathalter aufliegt, modifi ziert wird. Dies kann dadurch erfolgen, dass die Höhe des Gaspolsters verändert wird. Es ist aber auch möglich, die Wärmeleitfähigkeit des das Gaspolster bilden den Gases zu verändern, beispielsweise indem das Gaspolster aus einer Mi schung von zwei Gasen erzeugt wird, von denen eines eine hohe Wärmeleitfä higkeit und das andere eine geringe Wärmeleitfähigkeit aufweist. Aufgrund des Wärmeflusses von der Heizeinrichtung durch den Suszeptor, durch das Gaspols ter, durch den Substrathalter, durch das Substrat und durch die Prozesskammer hin zur Prozesskammerdecke kann mit einer Änderung eines Wärmeleitwider standes die Temperatur des Substrates individuell verändert werden. Um auf den Substraten, die sich in der Substratlagerzone befinden, III-V-Schichten abzu scheiden, wird durch das Gaseinlassorgan ein Prozessgas in die Prozesskammer eingespeist. Das Prozessgas weist zumindest ein erstes reaktives Gas auf, wel ches ein Element der III. Hauptgruppe, beispielsweise Gallium, Indium oder Aluminium beinhaltet und insbesondere eine metallorganische Verbindung ist.In the production of layers for optoelectronic components using the generic method, the layer properties of the layers of the plurality of layers produced simultaneously in a process chamber during a run may have only minimal differences. Tight tolerances on layer thickness and layer composition of ternary and quaternary III-V layers are required so that the wavelengths of the optoelectronic components, lasers or LEDs produced with the layer sequences differ only slightly. The growth temperature has a significant influence on the layer parameters influencing the wavelength. With the method described in DE 10056029 A1, the surface temperature of the substrates is to be kept at an average value by an individual control of the height of the gas cushion. Investigations which precede this application show that for this method to be effective, the temperature of the surface of the advance zone must be lower than the temperature on the substrates. If the feed zone has the same temperature as the substrate storage zone or even a higher temperature, the substrate temperatures cannot be individually influenced to the required extent. According to the invention, it is proposed to lower the flow zone temperature to a temperature below the substrate temperature. The temperature is preferably lowered in a range from 10 ° C to 40 ° C or 20 ° C to 40 ° C. The pre-run zone temperature is preferably about 25 ° C. below the substrate temperature. The latter is preferably in a range between 500 ° C and 800 ° C. The surface temperatures of the substrates can be varied by an individual energy flow. For example, it can be provided that the susceptor is locally heated or cooled in the areas in which a substrate is located. Local heating is possible, for example, by adding radiant heat, for example with a laser beam. But it is also possible to Surface temperatures of the substrates can be changed individually by modifying a gas cushion on which a substrate holder carrying a substrate rests. This can be done by changing the height of the gas cushion. However, it is also possible to change the thermal conductivity of the gas forming the gas cushion, for example by creating the gas cushion from a mixture of two gases, one of which has a high thermal conductivity and the other has a low thermal conductivity. Due to the heat flow from the heating device through the susceptor, through the gas cushion, through the substrate holder, through the substrate and through the process chamber to the process chamber ceiling, the temperature of the substrate can be changed individually with a change in a thermal resistance. In order to deposit III-V layers on the substrates that are located in the substrate storage zone, a process gas is fed into the process chamber through the gas inlet element. The process gas has at least one first reactive gas, wel Ches an element of III. Main group, for example gallium, indium or aluminum and in particular is an organometallic compound.
Es weist zumindest ein zweites reaktives Gas auf, welches ein Element der V. Hauptgruppe, beispielsweise Arsen, Phosphor oder auch Stickstoff ist. Das zwei te reaktive Gas kann ein Hydrid sein. Die beiden reaktiven Gase werden zusam men mit einem Trägergas, beispielsweise Wasserstoff, gefördert. Innerhalb einer Vorlaufzone findet eine Vorzerlegung statt, die erfindungsgemäß bei einer Tem peratur erfolgt, die geringer ist, als die Oberflächentemperatur des Substrates. In der Vorlaufzone findet darüber hinaus auch eine Aktivierung der durch das Gas einlassorgan in die Prozesskammer eingespeisten Ausgangsstoffe statt. Die Akti vierung gehorcht einer Exponentialfunktion, so dass es ausreicht, die Tempera tur in der Vorlaufzone in die o.g. beispielsweise 10 bis 40°C gegenüber der Tem peratur in der Substratlagerzone abzusenken. Durch die Variation der Höhe des Gaspolsters oder durch lokale Energiezufuhr oder durch Variation der Zusam mensetzung der das Gaspolster bildenden Gase kann die Oberflächentemperatur der Substrate um beispielsweise +/- 3 oder +/- 5°C variiert werden. Die erfin- dungsgemäße Vorrichtung zeichnet sich dadurch aus, dass die Zusatzplatte und die Vorlaufzonenplatte deckungsgleich übereinander liegen. Die Erfindung sieht somit eine Verdoppelung der Vorlaufzonenplatte vor. Die Zusatzplatte und die Vorlaufzonenplatte haben bevorzugt denselben Grundriss. Die Vorlaufzonen platte kann elektrisch leitend sein. Sie kann beispielsweise aus Graphit bestehen. Die Oberfläche der Vorlaufzonenplatte kann beschichtet sein. Die Zusatzplatte kann elektrisch isolierend sein. Sie kann aus Quarz oder einem keramischen Werkstoff bestehen. In einer bevorzugten Ausgestaltung besitzen die Vorlaufzo nenplatte und die Zusatzplatte jeweils eine zentrale Öffnung. In der zentralen Öffnung kann das zentral in der Prozesskammer angeordnete Gaseinlassorgan stecken, welches einen bevorzugt kreisrunden Grundriss aufweist. Die zentrale Öffnung von Vorlaufzonenplatte und Zusatzplatte besitzt dann ebenfalls eine Kreisform. Gemäß einer weiteren bevorzugten Ausgestaltung ist vorgesehen, dass die Vorlaufzonenplatte und die Zusatzplatte jeweils aus einem Stück beste hen. Es handelt sich jeweils um einen Flachkörper. Die Umfangsränder von Zu satzplatte und Vorlaufzonenplatte können unmittelbar an die kreisscheibenför migen Substrathalter angrenzen. Insofern bildet der Umfangsrand von Zusatz platte und Vorlaufzonenplatte eine Vielzahl nebeneinander liegender Einbuch tungen, wobei jede Einbuchtung sich entlang einer Kreisbogenlinie erstreckt. Gemäß einer bevorzugten Ausgestaltung der Erfindung ist die Zusatzplatte von der zur Prozesskammer weisenden Oberseite des Suszeptors durch einen Spalt beabstandet. Die Spalthöhe kann etwa 0,8 mm +/- 10 Prozent betragen. Die Ma terialstärke der Zusatzplatte kann 3,2 mm +/- 10 Prozent betragen. Der Abstand der Oberseite des Suszeptors zur Oberseite der Vorlaufzonenplatte kann 9,6 mm +/- 10 Prozent betragen. Es kann somit vorgesehen sein, dass die Höhe der bei den Spalte gleich groß ist. Es kann ferner vorgesehen sein, dass die Spalthöhe im Bereich zwischen einem Fünftel und einem Drittel der Materialstärke der Zusatz platte liegt. Die Spalthöhe jedes der beiden Spalte ist bevorzugt <1 mm. Die Ma terialstärke der Vorlaufzonenplatte kann größer sein als die Materialstärke der Zusatzplatte. Die Materialstärke kann mindestens fünfmal so groß wie die Spalt- höhe sein. Zur Einstellung des Freiraums zwischen Oberseite des Suszeptors und Unterseite der Vorlaufzonenplatte, also der Spalthöhen können Distanzelemente verwendet werden. Es können erste Distanzelemente vorgesehen sein, mit denen die Vorlaufzonenplatte sich auf der Oberseite des Suszeptors abstützt. Diese ers ten Distanzelemente können durch Öffnungen der Zusatzplatte hindurchgreifen. Die Zusatzplatte kann zweite Distanzelemente aufweisen, die sich auf der Ober seite des Suszeptors abstützen. Die sich dadurch ergebenden zwei Spalte haben über ihre gesamte, sich in einer Horizontalebene erstreckende Fläche denselben vertikalen Spaltabstand, sodass sämtliche Breitseiten der Zusatzplatte und der Vorlaufzonenplatte parallel zueinander verlaufen. Die Distanzelemente können an der Zusatzplatte oder der Vorlaufzonenplatte befestigt sein. Mit der erfin dungsgemäßen Ausgestaltung einer Suszeptoranordnung eines CVD-Reaktors ist es nicht erforderlich, dass in den Freiraum beziehungsweise die Spalte ein Gas, beispielsweise Temperiergas, eingespeist wird. Durch die Verwendung ei ner Zusatzplatte, die mit der Vorlaufzonenplatte grundrissidentisch ist, bilden sich mehrere Spalte mit einer geringen Spaltweite aus. Während eines Abschei dungsprozesses kann durch diese Spalte kein Gas hindurchströmen. Aufgrund der geringen Spaltweite diffundiert nur eine geringe Menge des Prozessgases in den Freiraum unterhalb der Vorlaufzonenplatte, sodass dort eine hinnehmbare parasitäre Deposition stattfindet. Die beiden sich parallel zueinander erstrecken den Spalte schaffen zusammen mit der insbesondere aus Quarz oder einem ke ramischen Werkstoff bestehenden Zusatzplatte eine thermische Isolationszone unterhalb der Vorlaufzonenplatte. Die Vorlaufzonenplatte hat bevorzugt eine größere Wärmeleitfähigkeit, als die die Aufgabe einer Isolationsplatte erfüllende Zusatzplatte. In der Draufsicht haben Vorlaufzonenplatte und Zusatzplatte ein sternförmiges Erscheinungsbild. It has at least one second reactive gas, which is an element of main group V, for example arsenic, phosphorus or nitrogen. The second reactive gas can be a hydride. The two reactive gases are conveyed together with a carrier gas, for example hydrogen. Pre-decomposition takes place within a lead zone, which according to the invention takes place at a temperature which is lower than the surface temperature of the substrate. In addition, activation of the starting materials fed into the process chamber through the gas inlet element also takes place in the flow zone. The activation obeys an exponential function, so that it is sufficient to lower the temperature in the flow zone to the above-mentioned, for example, 10 to 40 ° C compared to the temperature in the substrate storage zone. By varying the height of the gas cushion or by supplying local energy or by varying the composition of the gases forming the gas cushion, the surface temperature of the substrates can be varied by, for example, +/- 3 or +/- 5 ° C. The inven- The device according to the invention is characterized in that the additional plate and the flow zone plate are congruent on top of one another. The invention thus provides for a doubling of the flow zone plate. The additional plate and the flow zone plate preferably have the same floor plan. The lead zone plate can be electrically conductive. You can for example consist of graphite. The surface of the advance zone plate can be coated. The additional plate can be electrically insulating. It can consist of quartz or a ceramic material. In a preferred embodiment, the Vorlaufzo nenplatte and the additional plate each have a central opening. The gas inlet element which is arranged centrally in the process chamber and has a preferably circular outline can be inserted in the central opening. The central opening of the flow zone plate and additional plate then also has a circular shape. According to a further preferred embodiment, it is provided that the flow zone plate and the additional plate each consist of one piece. It is each a flat body. The peripheral edges of the additional plate and the flow zone plate can directly adjoin the circular disk-shaped substrate holder. In this respect, the peripheral edge of the additional plate and flow zone plate forms a plurality of juxtaposed indentations, each indentation extending along a circular arc line. According to a preferred embodiment of the invention, the additional plate is spaced from the top of the susceptor facing the process chamber by a gap. The gap height can be around 0.8 mm +/- 10 percent. The material thickness of the additional plate can be 3.2 mm +/- 10 percent. The distance from the top of the susceptor to the top of the lead zone plate can be 9.6 mm +/- 10 percent. It can thus be provided that the height of the gaps is the same. It can also be provided that the gap height is in the range between a fifth and a third of the material thickness of the additional plate. The gap height of each of the two gaps is preferably <1 mm. The material thickness of the flow zone plate can be greater than the material thickness of the additional plate. The material thickness can be at least five times as large as the gap be high. To adjust the free space between the top of the susceptor and the bottom of the flow zone plate, that is to say the gap heights, spacer elements can be used. First spacer elements can be provided with which the advance zone plate is supported on the upper side of the susceptor. These first spacer elements can reach through openings in the additional plate. The additional plate can have second spacer elements which are supported on the upper side of the susceptor. The resulting two gaps have the same vertical gap spacing over their entire surface extending in a horizontal plane, so that all the broad sides of the additional plate and the advance zone plate run parallel to one another. The spacer elements can be attached to the additional plate or the flow zone plate. With the inventive configuration of a susceptor arrangement of a CVD reactor, it is not necessary for a gas, for example temperature control gas, to be fed into the free space or the gap. By using an additional plate, which has the same layout as the flow zone plate, several gaps with a small gap width are formed. During a deposition process, no gas can flow through these gaps. Due to the small gap width, only a small amount of the process gas diffuses into the free space below the flow zone plate, so that an acceptable parasitic deposition takes place there. The two extending parallel to each other create the column together with the additional plate consisting in particular of quartz or a ceramic material, a thermal insulation zone below the flow zone plate. The flow zone plate preferably has a greater thermal conductivity than the additional plate which fulfills the task of an insulation plate. In the plan view, the flow zone plate and the additional plate have a star-shaped appearance.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
[0009] Ein Ausführungsbeispiel Erfindung wird nachfolgend anhand beige fügter Zeichnungen im Detail erläutert. Es zeigen: Fig. 1 eine Draufsicht auf einen Suszeptor 2 eines CVD-Reaktors, etwa gemäß der Schnittlinie I-I in Figur 2, An exemplary embodiment of the invention is explained in detail below with reference to attached drawings. Show it: 1 shows a plan view of a susceptor 2 of a CVD reactor, approximately according to section line II in FIG. 2,
Fig. 2 einen Schnitt durch einen CVD-Reaktor entlang der Schnittlinie II-II in Figur 1 in einer schematischen Darstellung, FIG. 2 shows a section through a CVD reactor along the section line II-II in FIG. 1 in a schematic representation,
Fig. 3 vergrößert den Ausschnitt III aus Figur 2, FIG. 3 enlarges the detail III from FIG. 2,
Fig. 4 perspektivisch eine erfindungsgemäße Vorlaufzonenplatte 10 und eine erfindungsgemäße Zusatzplatte 11, 4 is a perspective view of a flow zone plate 10 according to the invention and an additional plate 11 according to the invention,
Fig. 5 eine Darstellung ähnlich der Figuren 2 oder 3 und zusätzlich des Temper aturver lauf s der Oberfläche der Vorlaufzonenplat te 10 und des Substrates 4 in Radialrichtung R in der Prozess kammer. 5 shows a representation similar to FIGS. 2 or 3 and additionally the temperature profile of the surface of the flow zone plate 10 and of the substrate 4 in the radial direction R in the process chamber.
Beschreibung der Ausführungsformen Description of the embodiments
[0010] Die Figur 2 zeigt schematisch den Aufbau eines erfindungsgemäßen CVD-Reaktors. Innerhalb eines gasdichten Gehäuses 1 befindet sich ein kreis scheibenförmiger, aus Graphit und insbesondere beschichtetem Graphit beste- hender Suszeptor 2, der von unten her mit einer Heizeinrichtung 6 durch Wär mestrahlung oder durch die Erzeugung eines hochfrequenten elektromagneti schen Wechselfeldes beheizt wird. Der Suszeptor 2 wird von einem Schaft 19 gestützt, der auch eine Drehachse bilden kann, mit der der Suszeptor 2 um sei ne Figurenachse drehangetrieben werden kann. Oberhalb des Zentrums des Suszeptors 2 befindet sich ein im Wesentlichen zylinderförmiges Gaseinlassor gan 5, durch welches ein Prozessgas in eine Prozesskammer 8 eingespeist wer den kann. Die Prozesskammer 8 erstreckt sich vom Gaseinlassorgan 5 zwischen Suszeptor 2 und einer Prozesskammerdecke 7 in Radialauswärtsrichtung bis hin zu einem Gasauslassorgan 20. Das Gasauslassorgan 20 ist mit einer nicht dargestellten Gasleitung mit einer Vakuumpumpe verbunden, mit der das In nere des Gehäuses 1 evakuierbar ist. FIG. 2 shows schematically the structure of a CVD reactor according to the invention. Inside a gas-tight housing 1 is a circular disk-shaped susceptor 2 made of graphite and in particular coated graphite, which is heated from below with a heating device 6 by heat radiation or by generating a high-frequency alternating electromagnetic field. The susceptor 2 is supported by a shaft 19 which can also form an axis of rotation with which the susceptor 2 can be driven in rotation about its figure axis. Above the center of the susceptor 2 is a substantially cylindrical gas inlet gate 5, through which a process gas can be fed into a process chamber 8. The process chamber 8 extends from the gas inlet element 5 between susceptor 2 and a process chamber ceiling 7 in a radially outward direction to towards a gas outlet element 20. The gas outlet element 20 is connected to a gas line (not shown) with a vacuum pump with which the interior of the housing 1 can be evacuated.
[0011] Die Prozesskammer 8 besitzt zwei Umfangszonen. Eine radial innere Umfangszone, die an das Gaseinlassorgan 5 angrenzt, bildet eine Vorlaufzo ne V. Eine sich an die Vorlaufzone V in Radialauswärtsrichtung anschließende Zone bildet eine Substratlagerzone S. An die Substratlagerzone S schließt sich das Gasauslassorgan 20 an, welches den Suszeptor 2 kreisförmig umgibt. The process chamber 8 has two peripheral zones. A radially inner circumferential zone adjoining the gas inlet element 5 forms a flow zone V. A zone adjoining the flow zone V in a radially outward direction forms a substrate storage zone S. The substrate storage zone S is followed by the gas outlet element 20, which surrounds the susceptor 2 in a circular manner .
[0012] In der Substratlagerzone S befinden sich in Umfangsrichtung um das Zentrum des Substrathalters 3 gleichmäßig verteilt mehrere, im Ausführungs beispiel zwölf Substrathalter 3. Jeder Substrathalter 3 besteht aus einem kreis scheibenförmigen flachen Körper, beispielsweise aus Graphit. Die Unterseite des Substrathalters 3 kann eben oder gewölbt sein. Die Oberseite des Substrat halters 3 kann eine Vertiefung zur Aufnahme eines Substrates 4 aufweisen. In einem Zwischenraum zwischen einem Boden einer Tasche des Suszeptors 2, in der der Substrathalter 3 liegt, kann mittels einer nicht dargestellten Gaszulei tung ein Spülgas eingespeist werden, mit dem der Substrathalter 3 angehoben und in eine Drehung um seine Figurenachse versetzt wird. Durch die Höhe des dadurch erzeugten Gaspolsters 21 kann die Temperatur Ts des auf dem Sub strathalter 3 aufliegenden Substrates 4 variiert werden. Hierzu sind die Gas polster individuell einstellbar. In the substrate storage zone S are in the circumferential direction around the center of the substrate holder 3 evenly distributed several, in the execution example twelve substrate holder 3. Each substrate holder 3 consists of a circular disk-shaped flat body, for example made of graphite. The underside of the substrate holder 3 can be flat or curved. The top of the substrate holder 3 can have a recess for receiving a substrate 4. In a space between a bottom of a pocket of the susceptor 2, in which the substrate holder 3 lies, a purge gas can be fed in by means of a gas supply line, not shown, with which the substrate holder 3 is raised and rotated about its figure axis. Due to the height of the gas cushion 21 thus generated, the temperature Ts of the substrate 4 resting on the sub strathalter 3 can be varied. The gas cushions can be individually adjusted for this purpose.
[0013] In der Vorlaufzone V erstreckt sich eine Vorlaufzonenplatte 10, die in der Figur 4 dargestellt ist. Die Vorlaufzonenplatte 10 besteht aus Graphit, insbe sondere beschichtetem Graphit und besitzt in ihrer Mitte eine Öffnung 15, in der das Gaseinlassorgan 5 steckt. Die Vorlaufzonenplatte 10 füllt den Bereich zwischen Gaseinlassorgan 5 und den sich auf einer Kreisbogenlinie um das Zentrum des Suszeptors 2 erstreckenden Substrathaltern 3 vollständig aus. Sie besitzt Einbuchtungen, die auf einer Kreisbogenlinie verlaufen. Die Einbuch tungen grenzen an die Substrathalter 3 an. Die Zwischenräume zwischen den Einbuchtungen erstrecken sich bis auf die radiale Höhe, auf der der Abstand zwischen zwei benachbarten Substrathaltern 3 minimal ist. Sie verleihen der Vorlaufzonenplatte 10 eine sternförmige Gestalt. Radial außerhalb der Vorlauf zonenplatte 10 können ergänzende Abdeckplatten vorgesehen sein. A flow zone plate 10, which is shown in FIG. 4, extends in the flow zone V. The flow zone plate 10 is made of graphite, in particular special coated graphite and has an opening 15 in its center, in which the gas inlet element 5 is inserted. The flow zone plate 10 completely fills the area between the gas inlet element 5 and the substrate holders 3 extending on a circular arc line around the center of the susceptor 2. you has indentations that run on a circular arc line. The indentations adjoin the substrate holder 3. The spaces between the indentations extend up to the radial height at which the distance between two adjacent substrate holders 3 is minimal. They give the flow zone plate 10 a star-shaped shape. Additional cover plates can be provided radially outside the flow zone plate 10.
[0014] Unterhalb der Vorlaufzonenplatte 10 ist eine Zusatzplatte 11 aus Quarz oder einem keramischen Material angeordnet. Die Zusatzplatte 11 ist eine Isola tionsplatte und hat denselben Grundriss wie die Vorlaufzonenplatte 10. In ihrer zentralen Öffnung 17 steckt ebenfalls das Gaseinlassorgan 5. Die Zusatzplat te 11 besitzt dieselben Einbuchtungen wie die Vorlaufzonenplatte 10 und grenzt mit ihren Einbuchtungen in derselben Weise an die Substrathalter 3 an. Below the flow zone plate 10, an additional plate 11 made of quartz or a ceramic material is arranged. The additional plate 11 is an insulation plate and has the same outline as the flow zone plate 10. The gas inlet element 5 is also inserted in its central opening 17. The additional plate 11 has the same indentations as the flow zone plate 10 and adjoins the substrate holder 3 in the same way with its indentations on.
[0015] Die Vorlaufzonenplatte 10 stützt sich mit Distanzelementen 14 auf der Oberseite 2' des Suszeptors 2 ab. Die Zusatzplatte 11 besitzt Öffnungen 14, durch die die Distanzelemente 14 hindurchragen. Die Zusatzplatte 11 besitzt ebenfalls Distanzelemente 18, mit denen sie sich auf der Oberseite 2' des Sus zeptors 2 abstützt. Die Distanzelemente 14, 18 sind in gleichmäßiger Winkelver teilung um das Zentrum von Vorlaufzonenplatte 10 beziehungsweise Zusatz platte 11 angeordnet. The flow zone plate 10 is supported with spacer elements 14 on the upper side 2 ′ of the susceptor 2. The additional plate 11 has openings 14 through which the spacer elements 14 protrude. The additional plate 11 also has spacer elements 18 with which it is supported on the top 2 'of the Sus 2 receptor. The spacer elements 14, 18 are evenly distributed Winkelver around the center of the flow zone plate 10 or additional plate 11 is arranged.
[0016] Ein Abstand a der Oberseite 2' des Suszeptors 2 von der zur Prozess kammer 8 weisenden Oberseite der Vorlaufzonenplatte 10 beträgt etwa 10 mm, bevorzugt etwa 9,6 mm. Ein Abstand b eines Spaltes 12 zwischen Vorlaufzo nenplatte 10 und Zusatzplatte 11 beträgt bevorzugt etwa 0,8 mm. Ein Abstand c eines Spaltes 13 zwischen der Oberseite 2' des Suszeptors 2 und der Unterseite der Zusatzplatte 11 beträgt bevorzugt 0,8 mm. Der Abstand der Unterseite 10' der Vorlaufzonenplatte 10 und der Oberseite 2' des Suszeptors 2 beträgt bevor zugt etwa 4,8 mm. [0017] Die erfindungs gemäße Anordnung von Vorlaufzonenplatte 10 und Zu satzplatte 11 ermöglicht die Durchführung eines Verfahrens, bei dem III-V- Schichten auf einem Substrat abgeschieden werden, um daraus optoelektroni sche Bauelemente herzustellen, bei dem durch eine individuelle VariaÜon der Temperaturen Ts der Substrate 4 die Wellenlängen der Bandübergänge der Schichten nahezu identisch sind. Mit geeigneten Zuleitungen und einem in den Zeichnungen nicht dargestellten Gasmischsystem werden reaküve Gase zum Gaseinlassorgan 5 gefördert. Erste reaküve Gase können Hydride der Elemente Arsen, Phosphor oder Stickstoff sein. Zweite reaktive Gase können metallorga nische Verbindungen von Gallium, Indium oder Aluminium sein. Bevorzugt werden insgesamt drei reaktive Gase oder vier reaktive Gase gleichzeitig zu sammen mit einem Trägergas durch das Gaseinlassorgan 5 in die Prozesskam mer 8 eingespeist, sodass auf den Substraten ternäre oder quaternäre Schichten abgeschieden werden. Die Schichtzusammensetzung ist von der Temperatur Ts des Suszeptors und von den Partialdrücken der reaktiven Gase abhängig. Die Wellenlängen von optischen Bauelementen, deren Schichten mit dem Verfahren abgeschieden werden, hängen von der Schichtzusammensetzung ab. Es ist des halb erforderlich, dass jeder Substrathalter beziehungsweise jedes Substrat während des Abscheideprozesses dieselbe Substrattemperatur Ts besitzt. Bei einer Regelung der Substrattemperatur Ts wird diese geringfügig um eine mitt lere Temperatur, die zwischen 500°C und 800°C liegt, variiert. Dabei erfolgt die Variation der Temperaturen Ts bevorzugt durch eine Beeinflussung des Gas polsters 21. Hierzu ist es wesentlich, dass durch die Anordnung von Vorlauf zonenplatte 10 und Zusatzplatte 11 die Temperatur Tv auf der zur Prozess kammer 8 weisenden Seite der Vorlaufzonenplatte 10 um 10 bis 40°C geringer ist, als die Temperatur Ts des Substrates. Bevorzugt beträgt die Temperaturdif ferenz zwischen Temperatur Tv der Vorlaufzone V und Temperatur Ts des Substrates 4 beziehungsweise der Substratlagerzone S 25°C, insbesondere min destens 25°C. Aufgrund der gegenüber der Substrattemperatur Ts geringeren Vorlaufzonentemperatur Tv lässt sich eine Temperaturvariation durch Spalthö- henvariation durchführen. Die bevorzugt nicht mit einem Spülgas gespülten Spalten 12, 13 bilden zwar ein Totvolumen. Aufgrund der geringen Spalthöhe findet dort aber ein tolerier bares parasitäres Wachstum statt. A distance a of the top 2 'of the susceptor 2 from the top of the flow zone plate 10 facing the process chamber 8 is approximately 10 mm, preferably approximately 9.6 mm. A distance b of a gap 12 between Vorlaufzo nenplatte 10 and additional plate 11 is preferably about 0.8 mm. A distance c of a gap 13 between the top 2 'of the susceptor 2 and the bottom of the additional plate 11 is preferably 0.8 mm. The distance between the bottom 10 'of the lead zone plate 10 and the top 2' of the susceptor 2 is about 4.8 mm before given. The fiction, contemporary arrangement of flow zone plate 10 and additional plate 11 enables a method to be carried out in which III-V layers are deposited on a substrate in order to produce optoelectronic components in which the temperatures Ts by an individual variation Substrates 4 the wavelengths of the band transitions of the layers are almost identical. With suitable feed lines and a gas mixing system not shown in the drawings, reactive gases are conveyed to the gas inlet element 5. The first reactive gases can be hydrides of the elements arsenic, phosphorus or nitrogen. Second reactive gases can be organometallic compounds of gallium, indium or aluminum. A total of three reactive gases or four reactive gases are preferably fed simultaneously together with a carrier gas through the gas inlet element 5 into the process chamber 8, so that ternary or quaternary layers are deposited on the substrates. The layer composition depends on the temperature Ts of the susceptor and on the partial pressures of the reactive gases. The wavelengths of optical components whose layers are deposited using the method depend on the layer composition. It is therefore necessary that each substrate holder or each substrate has the same substrate temperature Ts during the deposition process. When the substrate temperature Ts is regulated, it is varied slightly by a middle temperature which is between 500 ° C. and 800 ° C. The temperature Ts is preferably varied by influencing the gas cushion 21. To this end, it is essential that the arrangement of the flow zone plate 10 and the additional plate 11 reduce the temperature Tv on the side of the flow zone plate 10 facing the process chamber 8 by 10 to 40 ° C is lower than the temperature Ts of the substrate. The temperature difference between the temperature Tv of the flow zone V and the temperature Ts of the substrate 4 or the substrate storage zone S is preferably 25 ° C, in particular at least 25 ° C. Due to the lower flow zone temperature Tv compared to the substrate temperature Ts, a temperature variation due to gap height perform hen variation. The gaps 12, 13, which are preferably not flushed with a flushing gas, form a dead volume. Because of the small gap height, however, tolerable parasitic growth takes place there.
[0018] Die Figur 5 zeigt schematisch den Verlauf der Oberflächentemperatur der Vorlaufzonenplatte 10 und des Substrates 4 in Radialrichtung R. Die Vor laufzonentemperatur Tv ist niedriger als die Substrattemperatur Ts. Die Vor laufzonentemperatur Tv kann in einem Bereich zwischen einer oberen Tempe ratur TI und einer unteren Temperatur T2 liegen, wobei die untere Tempera tur TI etwa 10 oder 20°C niedriger ist, als die Substrattemperatur Ts und die untere Temperatur T2 beispielsweise 50°C niedriger ist, als die Substrattempe ratur Ts. Figure 5 shows schematically the course of the surface temperature of the flow zone plate 10 and the substrate 4 in the radial direction R. The flow zone temperature Tv is lower than the substrate temperature Ts. The flow zone temperature Tv can be in a range between an upper temperature TI and a lower temperature T2, the lower tempera ture TI is about 10 or 20 ° C lower than the substrate temperature Ts and the lower temperature T2 is, for example, 50 ° C lower than the substrate temperature Ts.
[0019] Zwischen der Vorlaufzonenplatte 10 bzw. der Zwischenplatte 11 und dem Substrathalter 3 erstreckt sich ein auch in der Figur 1 erkennbarer Gas spalt 22. In diesem Gasspalt 22 ändert sich die Vorlaufzonentemperatur Tv na- hezu sprungartig zur Substrattemperatur Ts. A gas gap 22, also recognizable in FIG. 1, extends between the flow zone plate 10 or the intermediate plate 11 and the substrate holder 3. In this gas gap 22, the flow zone temperature Tv changes almost abruptly to the substrate temperature Ts.
[0020] Die vorstehenden Ausführungen dienen der Erläuterung der von der Anmeldung insgesamt erfassten Erfindungen, die den Stand der Technik zu mindest durch die folgenden Merkmalskombinationen jeweils auch eigenstän dig weiterbilden, wobei zwei, mehrere oder alle dieser Merkmalskombinatio- nen auch kombiniert sein können, nämlich: The above explanations serve to explain the inventions covered by the application as a whole, which develop the state of the art independently at least by means of the following combinations of features, two, several or all of these combinations of features also being able to be combined, namely :
[0021] Eine Vorrichtung, die dadurch gekennzeichnet ist, dass die Zusatzplat te 11 und die Vorlaufzonen-platte 10 deckungsgleich Übereinanderliegen. A device which is characterized in that the additional plate 11 and the lead zone plate 10 are congruent one above the other.
[0022] Ein Vorrichtung, das dadurch gekennzeichnet ist, dass die vertikale Höhe des Freiraums 12, 13 so gewählt ist, dass die Temperatur der Vorlaufzo- ne V um 10 bis 40°C oder 20°C bis 40°C niedriger ist, als die Temperatur der Substratlagerzone S. A device which is characterized in that the vertical height of the free space 12, 13 is chosen so that the temperature of the Vorlaufzo- ne V is 10 to 40 ° C or 20 ° C to 40 ° C lower than the temperature of the substrate storage zone S.
[0023] Eine Vorrichtung oder ein Verfahren, die dadurch gekennzeichnet sind, dass sich im Freiraum 12, 13 eine Zusatzplatte 11 befindet, die insbesondere eine mit der Vorlaufzonenplatte 10 übereinstimmenden Grundriss aufweist und/ oder dass die Vorlaufzonenplatte 10 elektrisch leitend ist und/ oder aus Graphit besteht und/ oder dass die Zusatzplatte 11 eine geringere Wärmeleitfä higkeit aufweist als die Vorlaufzonenplatte 10. A device or a method, which is characterized in that there is an additional plate 11 in the free space 12, 13, which in particular has a plan that matches the flow zone plate 10 and / or that the flow zone plate 10 is electrically conductive and / or off There is graphite and / or that the additional plate 11 has a lower thermal conductivity than the flow zone plate 10.
[0024] Eine Vorrichtung oder ein Verfahren, die dadurch gekennzeichnet sind, dass die Zusatzplatte 11 elektrisch isolierend ist und/ oder aus Quarz und/ oder einem keramischen Werkstoff besteht. A device or a method, which is characterized in that the additional plate 11 is electrically insulating and / or consists of quartz and / or a ceramic material.
[0025] Eine Vorrichtung oder ein Verfahren, die dadurch gekennzeichnet sind, dass die Vorlaufzonenplatte 10 und die Zusatzplatte 11 jeweils eine zentrale Öffnung 15, 17 aufweist, in der das Gaseinlassorgan 5 steckt und/ oder jeweils aus einem Stück bestehen. A device or a method which is characterized in that the flow zone plate 10 and the additional plate 11 each have a central opening 15, 17 in which the gas inlet member 5 is inserted and / or each consist of one piece.
[0026] Eine Vorrichtung oder ein Verfahren, die gekennzeichnet sind durch erste Distanzelemente 14, mit denen die Vorlauf zonenplatte 10 in einem vorbe- stimmten ersten Abstand d zur Oberseite 2' des Substrathalters 2 gehalten ist und durch zweite Distanzelemente 18, mit denen die Zusatzplatte 11 in einem vorbestimmten zweiten Abstand c zur Oberseite des Substrathalters 3 gehalten ist, wobei die Zusatzplatte 11 Öffnungen 16 aufweist, durch die die ersten Dis tanzelemente 14 hindurchgreifen. A device or a method which is characterized by first spacer elements 14 with which the flow zone plate 10 is held at a predetermined first distance d from the top 2 'of the substrate holder 2 and by second spacer elements 18 with which the additional plate 11 is held at a predetermined second distance c from the top of the substrate holder 3, the additional plate 11 having openings 16 through which the first distance elements 14 reach.
[0027] Eine Vorrichtung oder ein Verfahren, die dadurch gekennzeichnet sind, dass die Vorlaufzonenplatte 10 und die Zusatzplatte 11 jeweils ein Flachstück mit ebenen Breitseitenflächen ist und die Vorlaufzonenplatte 10 sowie die Zu- satzplatte 11 sich parallel zueinander und parallel zur ebenen Oberseite 2' des Suszeptors 2 erstrecken. A device or a method, which is characterized in that the flow zone plate 10 and the additional plate 11 are each a flat piece with flat broad side surfaces and the flow zone plate 10 and the inlet Set plate 11 extend parallel to one another and parallel to the flat upper side 2 'of the susceptor 2.
[0028] Eine Vorrichtung oder ein Verfahren, die dadurch gekennzeichnet sind, dass der vertikale Abstand der Zusatzplatte 11 gegenüber der sich in einer Ho rizontalebene erstreckenden Oberseite 21 des Suszeptors 20,8 mm +/- 10 % und der vertikale Abstand der Vorlaufzonenplatte 10 gegenüber der Zusatzplatte 11 0,8 mm +/- 10 % beträgt und/ oder dass der vertikale Abstand der Oberseite der Vorlaufzonenplatte 10 zur Oberseite des Suszeptors 29,6 mm +/- 10 % und/ oder dass die Materialstärke der Zusatzplatte 113,2 mm +/- 10 % beträgt. A device or a method, which is characterized in that the vertical distance of the additional plate 11 compared to the top 21 of the susceptor extending in a horizontal plane is 20.8 mm +/- 10% and the vertical distance of the lead zone plate 10 opposite of the additional plate 11 is 0.8 mm +/- 10% and / or that the vertical distance between the top of the lead zone plate 10 and the top of the susceptor is 29.6 mm +/- 10% and / or that the material thickness of the additional plate is 113.2 mm +/- 10%.
[0029] Ein Verfahren, das dadurch gekennzeichnet ist, dass der Temperatur unterschied zwischen Temperatur Tv der Vorlaufzone V und der Tempera tur Ts des Substrates 4 größer ist als 25°C und/ oder dass in den Freiraum 12, 13 kein Temperiergas eingespeist wird und/ oder dass die Substrattemperatur ei ner Vielzahl von in der Substratlagerzone S angeordneten Substrate 4 jeweils individuell geregelt wird und/ oder dass die Substrattemperatur jedes Substra tes 4 durch Variation eines Energieflusses oder durch Höhe oder Zusammen setzung eines einem Substrathalter 3 tragenden Gaspolsters variiert wird und/ oder dass das Element der V. Hauptgruppe Arsen oder Phosphor ist. A method which is characterized in that the temperature difference between the temperature Tv of the flow zone V and the temperature Ts of the substrate 4 is greater than 25 ° C and / or that no temperature gas is fed into the free space 12, 13 and / or that the substrate temperature of a plurality of substrates 4 arranged in the substrate storage zone S is individually regulated and / or that the substrate temperature of each substrate 4 is varied by varying an energy flow or by the height or composition of a gas cushion carrying a substrate holder 3 and / or that the element of main group V is arsenic or phosphorus.
[0030] Alle offenbarten Merkmale sind (für sich, aber auch in Kombination untereinander) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/ beigefügten Prioritäts unterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender An meldung mit aufzunehmen. Die Unteransprüche charakterisieren, auch ohne die Merkmale eines in Bezug genommenen Anspruchs, mit ihren Merkmalen eigenständige erfinderische Weiterbildungen des Standes der Technik, insbe sondere um auf Basis dieser Ansprüche Teilanmeldungen vorzunehmen. Die in jedem Anspruch angegebene Erfindung kann zusätzlich ein oder mehrere der in der vorstehenden Beschreibung, insbesondere mit Bezugsziffern versehene und/ oder in der Bezugsziffernliste angegebene Merkmale aufweisen. Die Er findung betrifft auch Gestaltungsformen, bei denen einzelne der in der vorste- henden Beschreibung genannten Merkmale nicht verwirklicht sind, insbeson dere soweit sie erkennbar für den jeweiligen Verwendungszweck entbehrlich sind oder durch andere technisch gleichwirkende Mittel ersetzt werden kön nen. All the features disclosed are essential to the invention (individually, but also in combination with one another). In the disclosure of the application, the disclosure content of the associated / attached priority documents (copy of the previous application) is hereby fully included, also for the purpose of including features of these documents in the claims of the present application. The subclaims characterize, even without the features of a referenced claim, with their features independent inventive developments of the prior art, in particular in order to make divisional applications on the basis of these claims. In the The invention specified in each claim can additionally have one or more of the features provided in the above description, in particular provided with reference numbers and / or specified in the list of reference numbers. The invention also relates to design forms in which some of the features mentioned in the above description are not implemented, in particular if they are recognizable for the respective purpose or can be replaced by other technically equivalent means.
Liste der Bezugszeichen List of reference symbols
1 Gehäuse S Substratlagerzone1 housing S substrate storage zone
2 Suszeptor Ts Substrattemperatur 2' Oberseite Tv Vorlaufzonentemperatur2 susceptor Ts substrate temperature 2 'top side Tv feed zone temperature
3 Substrathalter V Vorlaufzone 3 substrate holder V feed zone
4 Substrat 4 substrate
5 Gaseinlassorgan 5 gas inlet device
6 Heizeinrichtung 6 heating device
7 Prozesskammerdecke 7 process chamber ceiling
8 Prozesskammer b Abstand 8 process chamber b distance
9 Gasauslassöffnung c Abstand 9 Gas outlet opening c distance
10 Vorlaufzonenplatte 10' Unterseite 10 advance zone plate 10 'underside
11 Zusatzplatte 11 additional plate
12 Spalt, Freiraum 12 gap, free space
13 Spalt, Freiraum 13 Gap, free space
14 Distanzelement 14 spacer element
15 zentrale Öffnung 15 central opening
16 Öffnung 16 opening
17 zentrale Öffnung 17 central opening
18 Distanzelement 18 spacer element
19 Schaft 19 shaft
20 Gasauslassorgan 20 gas outlet device
21 Gaspolster 21 gas cushions

Claims

Ansprüche Expectations
Vorrichtung, bei der in einem Reaktorgehäuse (1) ein Gaseinlassorgan (5), ein eine Prozesskammer (8) nach unten begrenzender Suszeptor, eine den Suszeptor (2) heizende Heizeinrichtung (6) und eine die Prozesskam mer (8) nach oben begrenzende Prozesskammerdecke (7) angeordnet sind, wobei der Suszeptor (2) eine Substratlagerzone (5) zur Aufnahme eines zu beschichtenden Substrates (4) ausbildet und auf einem zwischen dem Gas einlassorgan (5) und der Substratlagerzone (S) angeordneten Bereich des Suszeptors (2) eine Vorlaufzonenplatte (10) derart aufliegt, dass zwischen Oberseite (2') des Suszeptors (2) und Unterseite (10') der Vorlaufzonen platte (10) ein Freiraum (12, 13) verbleibt, in dem sich eine Zusatzplat te (11) befindet, dadurch gekennzeichnet, dass die Zusatzplatte (11) und die Vorlaufzonenplatte (10) deckungsgleich Übereinanderliegen. Device in which in a reactor housing (1) a gas inlet element (5), a susceptor delimiting a process chamber (8) at the bottom, a heating device (6) which heats the susceptor (2) and a process chamber ceiling delimiting the process chamber (8) at the top (7) are arranged, the susceptor (2) forming a substrate storage zone (5) for receiving a substrate (4) to be coated and on an area of the susceptor (2) arranged between the gas inlet element (5) and the substrate storage zone (S) a feed zone plate (10) rests in such a way that a free space (12, 13) remains between the top (2 ') of the susceptor (2) and the underside (10') of the feed zone plate (10), in which there is an additional plate (11) is located, characterized in that the additional plate (11) and the flow zone plate (10) are congruent one above the other.
Verfahren zum Abscheiden von III-V-Halbleiter schichten in einer Vorrich tung, bei der in einem Reaktorgehäuse (1) ein Gaseinlassorgan (5), ein eine Prozesskammer (8) nach unten begrenzender Suszeptor, eine den Suszep tor (2) heizende Heizeinrichtung (6) und eine die Prozesskammer (8) nach oben begrenzende Prozesskammerdecke (7) angeordnet sind, wobei der Suszeptor (2) eine Substratlagerzone (5) zur Aufnahme eines zu beschich tenden Substrates A method for the deposition of III-V semiconductor layers in a device in which a gas inlet element (5), a process chamber (8) delimiting the bottom of a process chamber (8), a heating device (2) heating the susceptor (2) in a reactor housing (1) 6) and a process chamber ceiling (7) delimiting the process chamber (8) at the top, the susceptor (2) having a substrate storage zone (5) for receiving a substrate to be coated
(4) ausbildet und auf einem zwischen dem Gaseinlass organ (5) und der Substratlagerzone (S) angeordneten Bereich des Suszep tors (2) eine Vorlaufzonenplatte (10) derart aufliegt, dass zwischen Ober seite (2') des Suszeptors (2) und Unterseite (10') der Vorlaufzonenplat te (10) ein Freiraum (12, 13) verbleibt, mit den folgenden Schritten: (4) and on a between the gas inlet organ (5) and the substrate storage zone (S) arranged area of the susceptor (2) a flow zone plate (10) rests in such a way that between the upper side (2 ') of the susceptor (2) and Underside (10 ') of the flow zone plate (10) a free space (12, 13) remains, with the following steps:
Aufheizen des Suszeptors (2) mittels der Heizeinrichtung (6) und Er zeugen eines vertikalen Temperaturgradienten in der Prozesskam mer (8) derart, dass die Prozesskammer oder -decke (7) eine geringe- re Temperatur besitzt, als der Suszeptor (2), die Substratlagerzone (S) eine Temperatur (Ts) zwischen 500°C und 800°C und die Vorlaufzo ne (V) eine geringere Temperatur (Tv) aufweist; The susceptor (2) is heated up by means of the heating device (6) and it generates a vertical temperature gradient in the process chamber (8) in such a way that the process chamber or ceiling (7) has a slight re has temperature than the susceptor (2), the substrate storage zone (S) has a temperature (Ts) between 500 ° C and 800 ° C and the Vorlaufzo ne (V) has a lower temperature (Tv);
Einspeisen eines Prozessgases durch das Gaseinlassorgan (5) in die Vorlaufzone (V), wobei das Prozessgas zumindest ein ein Element der III. Hauptgruppe enthaltendes erstes reaktives Gas, zumindest ein ein Element der V. Hauptgruppe enthaltendes zweites reaktives Gas und ein Trägergas enthält; dadurch gekennzeichnet, dass die vertikale Höhe des Freiraums (12, 13) so gewählt ist, dass die Temperatur der Vorlaufzone (V) um 10 bis 40°C oder 20°C bis 40°C niedriger ist, als die Temperatur der Substratlagerzone (S). Feeding a process gas through the gas inlet element (5) into the flow zone (V), the process gas at least one element of III. First reactive gas containing main group, at least one second reactive gas containing an element of main group V and a carrier gas; characterized in that the vertical height of the free space (12, 13) is chosen so that the temperature of the feed zone (V) is 10 to 40 ° C or 20 ° C to 40 ° C lower than the temperature of the substrate storage zone (S ).
Vorrichtung nach Anspruch 1 oder Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass sich im Freiraum (12, 13) eine Zusatzplatte (11) be findet, die insbesondere eine mit der Vorlaufzonenplatte (10) übereinstim menden Grundriss aufweist und/ oder dass die Vorlaufzonenplatte (10) elektrisch leitend ist und/ oder aus Graphit besteht und/ oder dass die Zu satzplatte (11) eine geringere Wärmeleitfähigkeit aufweist als die Vorlauf zonenplatte (10). Device according to claim 1 or method according to claim 2, characterized in that there is an additional plate (11) in the free space (12, 13), which in particular has a plan that corresponds to the flow zone plate (10) and / or that the flow zone plate ( 10) is electrically conductive and / or consists of graphite and / or that the additional plate (11) has a lower thermal conductivity than the flow zone plate (10).
Vorrichtung oder Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zusatzplatte (11) elektrisch isolierend ist und/ oder aus Quarz und/ oder einem keramischen Werkstoff besteht. Device or method according to one of the preceding claims, characterized in that the additional plate (11) is electrically insulating and / or consists of quartz and / or a ceramic material.
Vorrichtung oder Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorlaufzonenplatte (10) und die Zusatz platte (11) jeweils eine zentrale Öffnung (15, 17) aufweist, in der das Gas einlassorgan Device or method according to one of the preceding claims, characterized in that the flow zone plate (10) and the additional plate (11) each have a central opening (15, 17) in which the gas inlet member
(5) steckt. (5) is stuck.
6. Vorrichtung und Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorlaufzonenplatte (10) und die Zusatz platte (11) jeweils aus einem Stück bestehen. 6. Device and method according to one of the preceding claims, characterized in that the flow zone plate (10) and the additional plate (11) each consist of one piece.
7. Vorrichtung oder Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch erste Distanzelemente (14), mit denen die Vorlauf zonenplatte (10) in einem vorbestimmten ersten Abstand (d) zur Obersei te (2') des Substrathalters (2) gehalten ist, und durch zweite Distanzele mente (18), mit denen die Zusatzplatte (11) in einem vorbestimmten zwei ten Abstand (c) zur Oberseite des Substrathalters (3) gehalten ist, wobei die Zusatzplatte (11) Öffnungen (16) aufweist, durch die die ersten Dis tanzelemente (14) hindurchgreifen. 7. Device or method according to one of the preceding claims, characterized by first spacer elements (14) with which the flow zone plate (10) is held at a predetermined first distance (d) to the Obersei te (2 ') of the substrate holder (2), and by second spacer elements (18) with which the additional plate (11) is held at a predetermined two-th distance (c) to the top of the substrate holder (3), the additional plate (11) having openings (16) through which the first distance elements (14) reach through.
8. Vorrichtung oder Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorlaufzonenplatte (10) und die Zusatz platte (11) jeweils ein Flachstück mit ebenen Breitseitenflächen ist und die Vorlaufzonenplatte (10) sowie die Zusatzplatte (11) sich parallel zueinan der und parallel zur ebenen Oberseite (2') des Suszeptors (2) erstrecken. 8. Device or method according to one of the preceding claims, characterized in that the flow zone plate (10) and the additional plate (11) is each a flat piece with flat broad side surfaces and the flow zone plate (10) and the additional plate (11) parallel to one another and extend parallel to the flat upper side (2 ') of the susceptor (2).
9. Vorrichtung oder Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der vertikale Abstand der Zusatzplatte (11) gegenüber der sich in einer Horizontalebene erstreckenden Oberseite ( 2' ) des Suszeptors (2) 0,8 mm +/- 10 % und der vertikale Abstand der Vor laufzonenplatte (10) gegenüber der Zusatzplatte (11) 0,8 mm +/- 10 % be trägt. 9. Device or method according to one of the preceding claims, characterized in that the vertical distance of the additional plate (11) relative to the upper side (2 ') of the susceptor (2) extending in a horizontal plane and 0.8 mm +/- 10% the vertical distance between the advance zone plate (10) and the additional plate (11) is 0.8 mm +/- 10%.
10. Vorrichtung oder Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der vertikale Abstand der Oberseite der Vorlaufzonenplatte (10) zur Oberseite des Suszeptors (2) 9,6 mm +/- 10 % beträgt. 10. Device or method according to one of the preceding claims, characterized in that the vertical distance of the top of the lead zone plate (10) to the top of the susceptor (2) is 9.6 mm +/- 10%.
11. Vorrichtung oder Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Materialstärke der Zusatzplatte (11) 3,2 mm +/- 10 % beträgt. 11. Device or method according to one of the preceding claims, characterized in that the material thickness of the additional plate (11) is 3.2 mm +/- 10%.
12. Verfahren nach einem der vorhergehenden Ansprüche 2 bis 11, dadurch gekennzeichnet, dass der Temperaturunterschied zwischen Tempera tur (Tv) der Vorlaufzone (V) und der Temperatur (Ts) des Substrates (4) größer ist als 25°C. 12. The method according to any one of the preceding claims 2 to 11, characterized in that the temperature difference between the tempera ture (Tv) of the flow zone (V) and the temperature (Ts) of the substrate (4) is greater than 25 ° C.
13. Verfahren nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, dass in den Freiraum (12, 13) kein Temperiergas eingespeist wird. 13. The method according to any one of claims 2 to 12, characterized in that no temperature gas is fed into the free space (12, 13).
14. Verfahren nach einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, dass die Substrattemperatur einer Vielzahl von in der Substratlagerzo ne (S) angeordneten Substrate (4) jeweils individuell geregelt wird und/ oder dass die Substrattemperatur jedes Substrates (4) durch Variati on eines Energieflusses oder durch Höhe oder Zusammensetzung eines einem Substrathalter (3) tragenden Gaspolsters variiert wird. 14. The method according to any one of claims 2 to 13, characterized in that the substrate temperature of a plurality of substrates (4) arranged in the substrate storage zone (S) is individually regulated and / or that the substrate temperature of each substrate (4) by variation an energy flow or by the height or composition of a gas cushion carrying a substrate holder (3).
15. Verfahren nach einem der Ansprüche 2 bis 14, dadurch gekennzeichnet, dass das Element der V. Hauptgruppe Arsen oder Phosphor ist. 15. The method according to any one of claims 2 to 14, characterized in that the element of main group V is arsenic or phosphorus.
16. Vorrichtung oder Verfahren, gekennzeichnet durch eines oder mehrere der kennzeichnenden Merkmale eines der vorhergehenden Ansprüche. 16. Device or method, characterized by one or more of the characterizing features of one of the preceding claims.
PCT/EP2021/050038 2020-01-17 2021-01-05 Cvd reactor having doubled flow zone plate WO2021144161A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020101066.4 2020-01-17
DE102020101066.4A DE102020101066A1 (en) 2020-01-17 2020-01-17 CVD reactor with double flow zone plate

Publications (1)

Publication Number Publication Date
WO2021144161A1 true WO2021144161A1 (en) 2021-07-22

Family

ID=74194702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/050038 WO2021144161A1 (en) 2020-01-17 2021-01-05 Cvd reactor having doubled flow zone plate

Country Status (3)

Country Link
DE (1) DE102020101066A1 (en)
TW (1) TW202140845A (en)
WO (1) WO2021144161A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103368A1 (en) 2021-02-12 2022-08-18 Aixtron Se CVD reactor with a temperature control ring surrounding a gas inlet element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056029A1 (en) 2000-11-11 2002-05-16 Aixtron Ag Controlling surface temperature of substrates supported by carriers on dynamic gas cushions in process chamber of CVD reactor comprises varying gas stream producing gas cushions from average value of optically measured surface temperatures
US20040003779A1 (en) 2000-09-01 2004-01-08 Holger Jurgensen Device for depositing in particular crystalline layers on one or more, in particular likewise crystalline substrates
DE10323085A1 (en) * 2003-05-22 2004-12-09 Aixtron Ag CVD coater
EP2398047A2 (en) * 2010-06-15 2011-12-21 Samsung LED Co., Ltd. Susceptor and Chemical Vapor Deposition Apparatus including the same
DE102014114099A1 (en) * 2013-10-04 2015-04-09 Hermes Epitek Corporation Gas phase film deposition apparatus
DE102014104218A1 (en) 2014-03-26 2015-10-01 Aixtron Se CVD reactor with feed-zone temperature control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040003779A1 (en) 2000-09-01 2004-01-08 Holger Jurgensen Device for depositing in particular crystalline layers on one or more, in particular likewise crystalline substrates
DE10056029A1 (en) 2000-11-11 2002-05-16 Aixtron Ag Controlling surface temperature of substrates supported by carriers on dynamic gas cushions in process chamber of CVD reactor comprises varying gas stream producing gas cushions from average value of optically measured surface temperatures
DE10323085A1 (en) * 2003-05-22 2004-12-09 Aixtron Ag CVD coater
EP2398047A2 (en) * 2010-06-15 2011-12-21 Samsung LED Co., Ltd. Susceptor and Chemical Vapor Deposition Apparatus including the same
DE102014114099A1 (en) * 2013-10-04 2015-04-09 Hermes Epitek Corporation Gas phase film deposition apparatus
DE102014104218A1 (en) 2014-03-26 2015-10-01 Aixtron Se CVD reactor with feed-zone temperature control

Also Published As

Publication number Publication date
DE102020101066A1 (en) 2021-07-22
TW202140845A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
EP2406411B1 (en) Mocvd reactor with cylindrical gas inlet device
DE3317349C2 (en)
EP1618227B1 (en) Method and device for depositing semiconductor layers using two process gases, of which one is preconditioned
EP2488679B1 (en) Cvd-reactor with a substrate holder having a multiple zone gas cushion
EP1718784B1 (en) Inlet system for an mocvd reactor
EP2408952B1 (en) Mocvd reactor having a ceiling panel coupled locally differently to a heat dissipation member
DE102014104218A1 (en) CVD reactor with feed-zone temperature control
DE4404110A1 (en) Substrate holder for MOCVD and MOCVD devices
EP1041169A1 (en) Apparatus for coating substrates by a PVD process
DE102011055061A1 (en) CVD reactor or substrate holder for a CVD reactor
DE102005055252A1 (en) CVD reactor with slide-mounted susceptor holder
DE102009043848A1 (en) CVD method and CVD reactor
EP2475804A1 (en) Cvd reactor
DE102009043840A1 (en) CVD reactor with strip-like gas inlet zones and method for depositing a layer on a substrate in such a CVD reactor
WO2002024985A1 (en) Gas inlet mechanism for cvd-method and device
DE3540628C2 (en) Making an epitaxial film by chemical vapor deposition
DE10057134A1 (en) Process for depositing crystalline layers onto crystalline substrates in a process chamber of a CVD reactor comprises adjusting the kinematic viscosity of the carrier gas mixed
DE112011102504T5 (en) Improved reactor for chemical vapor deposition
EP3871245A1 (en) Shield plate for a cvd reactor
WO2021144161A1 (en) Cvd reactor having doubled flow zone plate
EP1127176B1 (en) Device for producing and processing semiconductor substrates
EP1404891A1 (en) Cvd system comprising a thermally differentiated substrate support
DE102012104475A1 (en) Device useful for depositing layer on substrate comprises processing chamber having susceptor heated by heating device for receiving substrate, gas inlet element, gas outlet element and gas-tight reactor housing which is outwardly arranged
DE102021103368A1 (en) CVD reactor with a temperature control ring surrounding a gas inlet element
DE102020123326A1 (en) CVD reactor with temperature-controlled gas inlet area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21701043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21701043

Country of ref document: EP

Kind code of ref document: A1