WO2021143917A1 - S模式DAPs数据实时监控方法以及系统 - Google Patents

S模式DAPs数据实时监控方法以及系统 Download PDF

Info

Publication number
WO2021143917A1
WO2021143917A1 PCT/CN2021/072618 CN2021072618W WO2021143917A1 WO 2021143917 A1 WO2021143917 A1 WO 2021143917A1 CN 2021072618 W CN2021072618 W CN 2021072618W WO 2021143917 A1 WO2021143917 A1 WO 2021143917A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
target
daps
information
track
Prior art date
Application number
PCT/CN2021/072618
Other languages
English (en)
French (fr)
Inventor
金立杰
张璐
张凯
郭建华
吴宏刚
何东林
Original Assignee
中国民用航空总局第二研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国民用航空总局第二研究所 filed Critical 中国民用航空总局第二研究所
Priority to JP2022544105A priority Critical patent/JP7394231B2/ja
Publication of WO2021143917A1 publication Critical patent/WO2021143917A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station

Definitions

  • the invention relates to the field of civil aviation management, in particular to a real-time monitoring method and system for S-mode DAPs data.
  • S mode is a technology with selective inquiry function. Each transponder has a unique 24-bit address code, and the ground equipment can select and inquire specific transponder. In addition, the S mode also has a two-way data link that can be used for ground air traffic control (ie, air control) information transmission.
  • Mode S DAPs Downlinked Aircraft parameters
  • DAPs data applications are divided into basic surveillance ELS and enhanced surveillance EHS.
  • ICAO In the Aviation Surveillance Manual (Doc9924), ICAO regards it as a special surveillance program combined with independent non-cooperative, independent cooperative and related cooperative types to form a surveillance system. Four categories.
  • the ground control center can obtain a wealth of airborne operation information, mainly including airborne equipment data link capabilities, flight status, aircraft identification information, ACAS resolution recommendations (RA), altitude, vertical intent to select, heading, turning angle, speed and other information .
  • This information can help the controller to more intuitively understand the aircraft's movement status and surrounding conditions, reduce the communication between the controller and the pilot, and help the controller to detect in advance the potential conflicts caused by the pilot's operation inconsistent with the instructions. This ensures the safety of air traffic, improves the efficiency of air traffic management, and helps improve flight punctuality.
  • DAPs data was initially limited to data items in ELS. It was not until August 2013 that the use of selected height data items was added to the Chengdu district management automation system for the first time, and the EHS phase was started. DAPs data application. As of the end of 2018, 74 sets of Mode S secondary surveillance radars have been deployed in my country, and DAPs data can be obtained. In addition, a multi-point positioning system with interrogation function can also obtain DAPs data.
  • DAPs data reflects the real-time operating status of the aircraft and helps the controller to grasp the real-time air traffic situation.
  • the present invention provides a real-time monitoring method and system for mode S DAPs data to realize the safety of the controlled target aircraft.
  • the present invention provides a real-time monitoring method for mode S DAPs data, including: obtaining real-time data from an air traffic control ground monitoring device, and extracting target information data and DAPs data from the real-time data; the target information data is used for Characterize the target trajectory information of the target aircraft, the DAPs data is used to characterize the information issued by the on-board equipment of the target aircraft; generate target trajectory information according to the target information data, and compare the DAPs according to the target trajectory information The data undergoes multiple preset verifications; after the DAPs data passes the multiple verifications, the target information data and DAPs data are sent to the air traffic control automation system to display the target movement status according to the air traffic control automation system.
  • the target aircraft includes: obtaining real-time data from an air traffic control ground monitoring device, and extracting target information data and DAPs data from the real-time data; the target information data is used for
  • the step of generating target trajectory information according to the target information data includes: according to the target identification information in the target information data, searching among the existing target trajectories, whether there is any difference with the target identification Information matching track; if there is no track matching the target identification information, the target track information is generated according to the target information data; if there is a track matching the target route identification information, use The target information data is updated to match the trajectory, and the updated trajectory is used as the target trajectory information.
  • the step of performing multiple preset verifications on the DAPs data according to the target track information includes: when the DAPs data is of the first type, according to the target track information and a preset configuration verification process Perform configuration consistency verification on the DAPs data.
  • the first type of DAPs data includes any one of the following data: transponder capability data, data link capability register data, GICB capability static configuration register data, and GICB capability The data of the dynamic configuration register.
  • the step of performing multiple preset verifications on the DAPs data according to the target track information further includes: when the DAPs data is of the second type, according to the target track information and the preset rationality
  • the verification process verifies the rationality of the DAPs data.
  • the second type of DAPs data includes any one of the following data: flight status data, aircraft identification register data, and ACAS solution suggestion register data.
  • the step of performing multiple preset verifications on the DAPs data according to the target track information further includes: when the DAPs data is of the third type, according to the target track information and the preset correctness The verification process verifies the correctness of the DAPs data.
  • the third type of DAPs data includes any one of the following data: data of the selected intention altitude register, data of the track and steering register, and data of the direction and speed register .
  • the method for real-time monitoring of the S-mode DAPs data further includes: monitoring aircraft abnormalities according to the target track information; when determining that the aircraft is abnormal, starting a preset abnormality processing procedure.
  • an S-mode DAPs data real-time monitoring system includes: a data receiving unit for acquiring real-time data from air traffic control ground monitoring equipment, and extracting target information data and DAPs data from the real-time data, and sending the Target information data and DAPs data; the target information data is used to characterize the target trajectory information of the target aircraft, and the DAPs data is used to characterize the information issued by the on-board equipment of the target aircraft; the data monitoring unit is used to receive the target Information data and DAPs data, and generate target track information according to the target information data, and perform a preset multiple verification of the DAPs data according to the target track information, and the DAPs data passes the multiple After verification, the target information data and DAPs data are sent to the air traffic control automation system to control the target aircraft according to the target movement status displayed by the air traffic control automation system.
  • the data monitoring unit includes: a track generation module, which is used to search for the existing target track based on the target identity identification information in the target information data, and whether there is any difference between the target identity identification information and the target identification information. Matching track; if there is no track matching the target identification information, the target track information is generated according to the target information data; if there is a track matching the target route identification information, it will be used The target information data is updated to match the trajectory, and the updated trajectory is used as the target trajectory information.
  • a track generation module which is used to search for the existing target track based on the target identity identification information in the target information data, and whether there is any difference between the target identity identification information and the target identification information. Matching track; if there is no track matching the target identification information, the target track information is generated according to the target information data; if there is a track matching the target route identification information, it will be used The target information data is updated to match the trajectory, and the updated trajectory is used as the target trajectory information.
  • the data monitoring unit further includes: a configuration verification module, configured to perform configuration consistency verification on the DAPs data according to target track information and a preset configuration verification process when the DAPs data is of the first type
  • the DAPs data of the first type includes any one of the following data: transponder capability data, data link capability register data, GICB capability static configuration register data, and GICB capability dynamic configuration register data.
  • the data monitoring unit further includes: a rationality verification module, configured to perform rationality of the DAPs data according to target track information and a preset rationality verification process when the DAPs data is of the second type Verification, the second type of DAPs data includes any one of the following data: flight status data, aircraft identification register data, and ACAS solution suggestion register data; the correctness verification module is used when the DAPs data is In the third type, the correctness of the DAPs data is verified according to the target track information and the preset correctness verification process.
  • the third type of DAPs data includes any one of the following data: Data, track and turn register data, and direction and speed register data.
  • the S-mode DAPs data real-time monitoring method and system of the present invention monitor the S-mode DAPs data in real time when receiving real-time data, and only after the monitoring verification is passed, will it help the controller to control the target aircraft based on the verified S-mode DAPs data, thereby Realize real-time monitoring before using S-mode DAPs data for control, solve the problem from the source of the data, and avoid introducing problem S-mode DAPs data into the air traffic control automation system to affect the control link, thereby helping to improve the controller's control of the target aircraft safety.
  • Fig. 1 is a flowchart of a real-time monitoring method for mode S DAPs data according to an exemplary first embodiment of the present invention
  • Fig. 2 is a flowchart of a method for real-time monitoring of mode S DAPs data according to an exemplary second embodiment of the present invention
  • FIG. 3 is a flow chart of the consistency verification of the GICB capability configuration register in the method for real-time monitoring of DAPs data in mode S according to the third exemplary embodiment of the present invention
  • FIG. 4 is a flowchart of the FS rationality verification of aircraft status in the method for real-time monitoring of DAPs data in mode S according to an exemplary fourth embodiment of the present invention
  • FIG. 5 is a flowchart of the accuracy of the track and steering register in the method for real-time monitoring of DAPs data in mode S according to an exemplary fifth embodiment of the present invention
  • FIG. 6 is a structural block diagram of a real-time monitoring system for mode S DAPs data according to an exemplary sixth embodiment of the present invention
  • Fig. 7 is a structural block diagram of a real-time monitoring system for S-mode DAPs data according to an exemplary seventh embodiment of the present invention.
  • the flow chart of the method for real-time monitoring of mode S DAPs data includes:
  • Step 101 Acquire real-time data from the air traffic control ground monitoring equipment, and extract target information data and DAPs data from the real-time data; the target information data is used to characterize the target trajectory information of the target aircraft, and the DAPs data is used for Information issued by the onboard equipment that characterizes the target aircraft;
  • Step 102 Generate target track information according to the target information data, and perform multiple preset verifications on the DAPs data according to the target track information;
  • Step 103 After the DAPs data passes the multiple verifications, the target information data and the DAPs data are sent to the air traffic control automation system to control the target aircraft according to the target movement status displayed by the system.
  • the mode S DAPs data is monitored in real time, and only after the monitoring verification is passed, the controller will help the controller to control the target aircraft according to the verified mode S DAPs data, so as to realize the use of the S mode DAPs data.
  • Real-time monitoring before control solves the problem from the source of the data and avoids the introduction of the problematic S-mode DAPs data into the air traffic control automation system to affect the control link, thereby helping to improve the safety of the controller's control of the target aircraft.
  • Figure 2 provides a preferred embodiment of a method for real-time monitoring of mode S DAPs data of the present invention.
  • Another method for real-time monitoring of mode S DAPs data in an embodiment of the present invention includes:
  • Step 201 The data receiver is responsible for receiving real-time data.
  • step 202 the data receiver respectively extracts target information data from the real-time data, and transmits the target information data to the real-time monitoring software.
  • step 203 the data receiver respectively extracts DAPs data from the real-time data, and transmits the DAPs data to the real-time monitoring software.
  • Step 204 After receiving the target information data, the real-time monitoring software performs target track management on the target information to obtain track information. It can include:
  • the target identification information in the target information data search among the existing target trajectories to find out whether there is a trajectory that matches the target identification information
  • the target track information is generated according to the target information data; if there is a track matching the target route identification information, the target information data will be updated Match the track, and use the updated track as the target track information.
  • Step 205 the real-time monitoring software verifies the DAPs data in real time, and filters out the DAPs data that have not passed the verification; the specific verification method can be seen in Figure 3 to Figure 5. For specific operations:
  • the verification process is used to verify them, so as to ensure the availability of all types of DAPs data.
  • Synchronous verification of different types of DAPs data using different verification processes can speed up the processing speed of different types of DAPs data verification, thereby improving the system's processing capacity and ensuring the real-time performance of DAPs data verification.
  • the data of the data link capability register 10 16 For the data of the transponder capability CA, the data of the data link capability register 10 16 , the data of the GICB capability static configuration register 18 16 -1C 16 and the data of the GICB capability dynamic configuration register 17 16 data information of the first type DAPs, using the preset configuration
  • the verification process is verified.
  • This information mainly reflects the relevant capabilities and configuration of the transponder.
  • the actual situation of the target track information is used to determine whether it is consistent with the issued configuration information.
  • the specific content of different information is different, and it can be customized analysis and verification according to the specific situation of each information, and the logic of judgment is basically similar.
  • Take the GICB capability dynamic configuration register 10 16 Take the GICB capability dynamic configuration register 10 16 as an example to illustrate the specific process of configuration consistency verification as shown in Figure 3.
  • the second type DAPs data information such as flight status FS data, aircraft identification register 20 16 data, ACAS solution proposal (RA) register 30 16 data, etc., are verified using a preset rationality verification process. Using target track information, combined with related data definitions, judge whether the received data is reasonable. The specific content of different information is different, and it can be customized analysis and verification according to the specific situation of each information, and the logic of judgment is basically similar.
  • Figure 4 illustrates the specific process of data rationality verification by taking the aircraft status FS as an example in detail.
  • the data of the third type DAPs such as the data of the selected intention altitude register 40 16 , the data of the track and steering register 50 16 and the data of the direction and speed register 60 16 are verified by the preset correctness verification process.
  • Combining the target-related track information calculate the threshold value of aircraft altitude, speed, heading, turning angle and other related data, and judge the correctness of the movement situation-related information contained in the specific register based on the threshold value and the current target movement.
  • the specific content of different information is different, and it can be customized analysis and verification according to the specific situation of each information, and the logic of judgment is basically similar. Take the track and steering register 50 16 as an example to illustrate the specific process of data correctness verification as shown in Figure 5.
  • a certain register contains a large amount of motion state information, and all the information needs to be verified for correctness. Once a piece of data fails the correctness verification, the data of the entire register is considered It may be the problem data.
  • the judgment of specific data items adopts similar logic. It mainly uses the track data to calculate the threshold value and the calculated value of the data item, and uses these two values to determine whether the message value is correct.
  • the calculation of the relevant values adopts the horizontal position and height after tracking and filtering in the target track information, which has extremely strong credibility and ensures that the basis for judging the message value is correct and reasonable.
  • the following shows the calculation of the track calculation value of the heading angle and the calculation of the threshold value. The corresponding calculation method for different data items is different.
  • Step 206 Judge whether the verification is passed
  • Step 207 After the verification is passed, the trajectory information is updated through the verified DAPs data, and combined with the target information data, and encoded according to a predetermined format;
  • step 208 the encoded information is sent to the automation system, and the entire process is fast and accurate, ensuring the real-time availability of DAPs data.
  • step 209 it may also be based on the collected feedback on the monitoring performance of the external device on a regular basis;
  • Step 210 According to the feedback on the monitoring performance, the monitoring logic is adaptively adjusted to further improve the real-time monitoring capability of the DAPs data.
  • the DAPs data shows the abnormality of the aircraft on the ground actually in the air or the DAPs data shows the abnormality of the aircraft actually on the ground.
  • the ground target speed and/or height judgment threshold it is necessary to reduce the ground target speed and/or height judgment threshold, and in the second case, it is necessary to increase the ground target speed and/or height judgment threshold.
  • the target information data in the real-time data sent by the air traffic control ground monitoring equipment to the air traffic control automation system is used to monitor the DAPs data in the real-time data in real time, which can not only find problem data caused by the processing of the air traffic ground monitoring equipment, but also It can also discover the problem data issued by the airborne equipment. At the same time, it can monitor the DAPs data in real time to shield the problem DAPs data for the air traffic control automation system, which is equivalent to adding a layer of DAPs data between the air traffic control ground monitoring equipment and the automation system.
  • the firewall ensures the real-time availability of DAPs data entering the air traffic control automation system, avoids the control problems caused by the problem data from the source, promotes the development and promotion of the new DAPs technology, thereby improving the safety and efficiency of control, and helping Respond to the challenges of rapid development of China's aviation industry.
  • the S-mode DAPs data real-time monitoring system including the data receiver and monitoring software is taken as an example for explanation.
  • the data receiver is based on the CPCI architecture, and the monitoring software can be installed on the data receiver or on other computers. When installed on other computers, the data sent by the data receiver can be received through the network.
  • the S mode DAPs data real-time monitoring system includes:
  • the data receiving unit 601 is configured to obtain real-time data from the air traffic control ground monitoring equipment, extract target information data and DAPs data from the real-time data, and send the target information data and DAPs data;
  • the target information data is used for Characterize the target trajectory information of the target aircraft, the DAPs data is used to characterize the airborne equipment of the target aircraft to issue information;
  • the data monitoring unit 602 is used to receive the target information data and the DAPs data, and according to the target information data Generate target track information, and perform multiple preset verifications on the DAPs data according to the target track information, and send the target information data and DAPs data after the DAPs data passes the multiple verifications To the air traffic control automation system to control the target aircraft according to the target movement status displayed by the system.
  • This embodiment monitors the Mode S DAPs data in real time when real-time data is received, and only after the monitoring verification is passed, does it help the controller to control the target aircraft based on the verified Mode S DAPs data, thereby realizing the use of Mode S DAPs data Carry out real-time monitoring before control, solve the problem from the source of the data, avoid introducing the problematic S-mode DAPs data into the air traffic control automation system to affect the control link, thereby improving the safety of the controller's control of the target aircraft.
  • FIG. 7 a structural block diagram of an S-mode DAPs data real-time monitoring system of an exemplary seventh embodiment of the present invention.
  • This embodiment is a preferred mode of the embodiment shown in FIG. 6, and the explanations in FIGS. 1 to 6 can be applied ⁇ In this embodiment.
  • the S-mode DAPs real-time data monitoring system mainly provides a detailed description of the data monitoring unit 602.
  • the data monitoring unit 602 may include: a track generation module 701, an analysis verification module 702, an information sending module 703, and an adaptive monitoring logic Judgment module 704.
  • the track generation module 701 is used to search the existing track according to the target identification information in the target information data, perform the matching between the target and the track, and determine whether there is a track matching the target identification information. If the match fails, a new trajectory will be established and the relevant information including the movement status will be stored. If the matching is successful, use the target information data to update the matching trajectory, and use the updated trajectory as the target trajectory information. Specifically, when the matching is successful, it is also possible to use the relevant information to track and filter the movement state of the target such as the horizontal position and altitude on the basis of the rationality judgment of the target information, and to update the track information.
  • the tracking and filtering of the target's horizontal position and altitude are based on the basic principles of the ⁇ - ⁇ algorithm. In addition to smoothing and predicting the position information, the horizontal position filtering can also detect and judge the turning state of the target aircraft. Because the altitude data has two accuracy units of 100 feet and 25 feet, the specific parameters and processes are different for different accuracy of the altitude.
  • the analysis and verification module 702 is used to analyze and verify the DAPs data. For all the DAPs information, first decode it according to its encoding format to obtain the specific information contained therein. Then analyze and verify. Specifically, the analysis and verification module 702 may include:
  • the configuration verification module 702a is configured to perform configuration consistency verification on the DAPs data according to target track information and a preset configuration verification process when the DAPs data is of the first type, and the DAPs data of the first type includes Any one of the following data: transponder capability data, data link capability register data, GICB capability static configuration register data, and GICB capability dynamic configuration register data;
  • the rationality verification module 702b is used to verify the rationality of the DAPs data according to the target track information and a preset rationality verification process when the DAPs data is of the second type, and the DAPs data of the second type Including any of the following data: flight status data, aircraft identification register data, and ACAS solution suggestion register data;
  • the correctness verification module 702c is used to verify the correctness of the DAPs data according to the target track information and a preset correctness verification process when the DAPs data is of the third type, and the third type of DAPs data Including any of the following data: select the data of the intention altitude register, the data of the track and steering register, and the data of the direction and speed register.
  • the information sending module 703 retains the verified DAPs data according to the verification result given by the analysis verification module 702, and uses it to update the track management information. And combined with the corresponding target information given by the trajectory generation module, it is processed and sent to the air traffic control automation system in the specified format together.
  • the adaptive monitoring logic judgment module 704 uses the feedback from the external device to determine whether the monitoring logic needs to be adjusted and how it should be adjusted, and sends the corresponding adjustment instructions to the analysis and verification module 702 for monitoring logic adjustment.
  • Step 1 The data receiver receives CAT48 data
  • Step 2 Solve the target information data from the CAT48 data.
  • Each target information must contain the aircraft address code information and send it to the real-time monitoring software;
  • Step 3 Solve the DAPs data from the CAT48 data. Each DAPs data must have a corresponding aircraft address code record and send it to the real-time monitoring software;
  • Step 4 After the real-time monitoring software receives the target information data, it performs track matching for each target (judged according to the aircraft address code). If the matching is unsuccessful, go to step 5, otherwise go to step 6;
  • Step 5 Consider that the current target is a new target and establish a new target track
  • Step 6 According to the specific content of the current target information, perform tracking and filtering processing on the corresponding position, altitude, speed, track, steering and other motion state related information in the track information, and update the matching track information;
  • Step 7 After the real-time monitoring software receives DAPs data, it judges the type of each DAPs data. If it is for transponder capability CA, data link capability register 10 16 , GICB capability static configuration register 18 16 -1C 16 and GICB capability dynamic configuration register 17 16 and other information, go to step 8. If it is aircraft status FS, aircraft identification register 20 16 , ACAS Resolution Suggestion (RA) Register 30 16 and other information, go to step 9, if it is altitude information, select the intention altitude register 40 16 , track and turn register 50 16 , direction and speed register 60 16 and other information, go to step 10;
  • RA Address Resolution Suggestion
  • Step 8 Decode the DAPs data, use the recorded aircraft address code to find the type of DAPs information that the target has issued in the track information, and determine whether it is consistent with the configuration indicated in the DAPs data. If the configuration is consistent, it will pass the verification, and if it is inconsistent, it will not pass the verification;
  • Step 9 Decode the DAPs data, use the recorded aircraft address code to find the track-related information, and combine the definition of the relevant data to determine whether the DAPs data is reasonable, if it is reasonable, it passes the verification, and if it is unreasonable, it fails the verification;
  • Step 10 Decode the DAPs data, use the recorded aircraft address code to find the track-related information, calculate the corresponding motion information judgment threshold, and combine the motion state information in the track information to determine whether the DAPs data is correct. If it is correct, it will pass the verification. If it is incorrect, it will be verified. Failed verification;
  • Step 11 Judge whether the verification is passed for each DAPs data, and perform step 12 and step 13 through verification;
  • Step 12 Update the track information of the DAPs data type
  • Step 13 Combine the corresponding target information with the address code of the aircraft;
  • Step 14 The target information is coded in CAT48 format and sent to the automation system.
  • the system can monitor the DAPs data of at least 500 targets per second.
  • the system delay the time from the system receiving the data to the completion of monitoring the DAPs data and sending it to the automation system does not exceed 0.5 seconds.
  • false detection probability the probability that the system detects normal DAPs data as problem DAPs data is less than 1%.
  • the probability of missed detection the probability that the system does not detect the problematic DAPs data is less than 0.1%.
  • the mean time between failures the system can run without failure for at least 20,000 hours.
  • the mean failure repair time the repair time of the indoor equipment in the system is less than 0.5 hours when the failure occurs, and the repair time is less than 2 hours when the outdoor equipment fails.
  • the data monitoring unit of this embodiment includes four main functional modules: track management, analysis and verification, information sending module, and adaptive monitoring logic judgment module.
  • the analysis verification module includes three modules: configuration verification, rationality verification and correctness verification. Multi-threaded mode can be used. There is only data interaction between modules, but they do not affect each other in operation, thus ensuring the real-time processing of real-time monitoring software.
  • the problematic data issued by the airborne equipment and processed by the ground equipment can be found at the same time, which improves the availability of DAPs data and ensures that the aircraft operating status and air situation awareness obtained by the controller using DAPs data are reliable. From the source, the workload and misjudgment caused by wrong data to the controller are avoided. Directly use the issued data, no special test transponder is needed, which saves the configuration work required for related tests and saves time and cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种S模式DAPs数据实时监控方法以及系统,该方法包括从空管地面监视设备获取实时数据,并从该实时数据中提取目标信息数据和DAPs数据(101);该目标信息数据用于表征目标航空器的目标航迹信息,该DAPs数据用于表征目标航空器的机载设备下发信息;根据该目标信息数据生成目标航迹信息,以及根据目标航迹信息对该DAPs数据进行预设的多项验证(102);在DAPs数据通过多项验证后,将目标信息数据和DAPs数据发送至空管自动化系统,以根据系统显示目标运动状态管制目标航空器(103),该方法及系统能提高对目标航空器管制的安全性。

Description

S模式DAPs数据实时监控方法以及系统 技术领域
本发明涉及民航空管领域,尤其涉及一种S模式DAPs数据实时监控方法以及系统。
背景技术
S模式是一种具有选择性询问功能的技术,每个应答机具有唯一的24位地址码,地面设备可对特定应答机进行选择询问。此外S模式还具备可用于地面空管(即空中管控)信息传递的双向数据链。S模式DAPs(下行数据链参数,Downlinked Aircraft parameters)数据由机载设备下发,是对地面设备特定询问的响应。DAPs数据应用分为基本型监视ELS和增强型监视EHS,国际民航组织在航空监视手册(Doc9924)中将其作为特殊监视方案与独立非合作式、独立合作式和相关合作式一起组成监视系统的四种分类。
通过该技术地面管制中心可以获取丰富机载运行信息,主要包括机载设备数据链能力、飞行状态、飞机识别信息、ACAS解决建议(RA)、高度、选择垂直意图、航向、转角、速度等信息。这些信息可以帮助管制员更加直观的了解飞机的运动状态和周边情况,减少了管制员和飞行员之间的通信,有助于管制员预先发现飞行员操作与其指令不符引起的潜在冲突。从而保证了空中交通的安全,提高了空中交通管理的效率,有助于航班准点率的提升。
中国民航一直积极推进DAPs数据应用,对DAPs数据的使用最初局限于ELS中的数据项,直到2013年8月首次在成都区管自动化系统中增加了利用选择高度数据项的使用,开启了EHS阶段的DAPs数据应用。截至2018年底,我国境内部署S模式二次监视雷达74套,可获得DAPs数据,另外具有询问功能的多点定位系统也可获得DAPs数据。
当前我国已经开展了DAPs数据应用的研究、测试等相关工作,并在此基础上制订了DAPs数据在空管自动化系统中应用的相关要求。在长期的应用过程中,也发现DAPs数据存在问题,严重影响了DAPs数据应用。当前影响DAPs数据应用的问题主要有以下两点:
(1)无法保证数据的可用性
2012年国际民航组织航空监视组第12次会议上提到DAPs数据本应得到更广泛的应用,造成其应用困难的主要原因就是DAPs数据的可用性未得到保证。
为了保证DAPs数据的可用性,当前空管相关部门在使用DAPs数据时均会进行测试工作。 但这些测试,主要是使用测试应答机,对询问、接收和处理DAPs数据的地面设备进行定期测试。只能确保地面设备对DAPs数据的处理正常,不能发现机载设备下发的问题DAPs数据,从而将这些问题数据引入空管系统,影响管制员对管制空域目标的判断和指挥。
(2)数据监控非实时
DAPs数据是反映飞机实时运行状态的,有助于管制员掌握实时空中交通情况。当前还没有DAPs数据的实时监控系统,而只是对DAPs数据进行记录,在需要时才对具体数据进行分析。此方式仅能帮助排查问题的原因,理清相关责任,不能从源头避免问题的发生。
发明内容
有鉴于此,本发明提供一种S模式DAPs数据实时监控方法以及系统,以实现管制目标航空器的安全性。一方面,本发明提供一种S模式DAPs数据实时监控方法,包括:从空管地面监视设备获取实时数据,并从所述实时数据中提取目标信息数据和DAPs数据;所述目标信息数据用于表征目标航空器的目标航迹信息,所述DAPs数据用于表征目标航空器的机载设备下发信息;根据所述目标信息数据生成目标航迹信息,以及根据所述目标航迹信息对所述DAPs数据进行预设的多项验证;在所述DAPs数据通过所述多项验证后,将所述目标信息数据和DAPs数据发送至空管自动化系统,以根据空管自动化系统显示目标运动状态管制所述目标航空器。
进一步地,根据所述目标信息数据生成目标航迹信息的步骤,包括:根据所述目标信息数据中的目标身份标识信息,在已有各目标航迹中查找,是否存在与所述目标身份标识信息匹配的航迹;若不存在与所述目标身份标识信息匹配的航迹,则根据所述目标信息数据生成目标航迹信息;若存在与所述目标航线标识信息匹配的航迹,则利用所属目标信息数据更新匹配航迹,并将更新后航迹作为目标航迹信息。
进一步地,根据所述目标航迹信息对所述DAPs数据进行预设的多项验证的步骤,包括:当所述DAPs数据为第一类型时,根据目标航迹信息以及预设的配置验证流程对所述DAPs数据进行配置一致性验证,所述第一类型的DAPs数据包括以下数据中的任意一种:应答机能力数据、数据链能力寄存器的数据,GICB能力静态配置寄存器的数据及GICB能力动态配置寄存器的数据。
进一步地,根据所述目标航迹信息对所述DAPs数据进行预设的多项验证的步骤,还包括: 当所述DAPs数据为第二类型时,根据目标航迹信息以及预设的合理性验证流程对所述DAPs数据进行合理性验证,所述第二类型的DAPs数据包括以下数据中的任意一种:飞行状态数据、飞机身份识别寄存器的数据以及ACAS解决建议寄存器的数据。
进一步地,根据所述目标航迹信息对所述DAPs数据进行预设的多项验证的步骤,还包括:当所述DAPs数据为第三类型时,根据目标航迹信息以及预设的正确性验证流程对所述DAPs数据进行正确性验证,所述第三类型的DAPs数据包括以下数据中的任意一种:选择意图高度寄存器的数据、航迹与转向寄存器的数据以及方向与速度寄存器的数据。
进一步地,所述的S模式DAPs数据实时监控方法还包括:根据所述目标航迹信息进行航空器异常监控;在确定航空器异常时,启动预设的异常处理流程。
另一方面,一种S模式DAPs数据实时监控系统包括:数据接收单元,用于从空管地面监视设备获取实时数据,并从所述实时数据中提取目标信息数据和DAPs数据,以及发送所述目标信息数据和DAPs数据;所述目标信息数据用于表征目标航空器的目标航迹信息,所述DAPs数据用于表征目标航空器的机载设备下发信息;数据监控单元,用于接收所述目标信息数据和DAPs数据,并根据所述目标信息数据生成目标航迹信息,以及根据所述目标航迹信息对所述DAPs数据进行预设的多项验证,在所述DAPs数据通过所述多项验证后,将所述目标信息数据和DAPs数据发送至空管自动化系统,以根据所述空管自动化系统显示目标运动状态管制所述目标航空器。
进一步地,所述数据监控单元包括:航迹生成模块,用于根据所述目标信息数据中的目标身份标识信息,在已有各目标航航迹中查找,是否存在与所述目标身份标识信息匹配的航迹;若不存在与所述目标身份标识信息匹配的航迹,则根据所述目标信息数据生成目标航迹信息;若存在与所述目标航线标识信息匹配的航迹,则将利用所属目标信息数据更新匹配航迹,并将更新后的航迹作为目标航迹信息。
进一步地,所述数据监控单元还包括:配置验证模块,用于当所述DAPs数据为第一类型时,根据目标航迹信息以及预设的配置验证流程对所述DAPs数据进行配置一致性验证,所述第一类型的DAPs数据包括以下数据中的任意一种:应答机能力数据、数据链能力寄存器的数据,GICB能力静态配置寄存器的数据及GICB能力动态配置寄存器的数据。
进一步地,所述数据监控单元还包括:合理性验证模块,用于当所述DAPs数据为第二类型 时,根据目标航迹信息以及预设的合理性验证流程对所述DAPs数据进行合理性验证,所述第二类型的DAPs数据包括以下数据中的任意一种:飞行状态数据、飞机身份识别寄存器的数据以及ACAS解决建议寄存器的数据;正确性验证模块,用于当所述DAPs数据为第三类型时,根据目标航迹信息以及预设的正确性验证流程对所述DAPs数据进行正确性验证,所述第三类型的DAPs数据包括以下数据中的任意一种:选择意图高度寄存器的数据、航迹与转向寄存器的数据以及方向与速度寄存器的数据。
本发明S模式DAPs数据实时监控方法以及系统在接收到实时数据时,对S模式DAPs数据实时监控,仅在监控验证通过后才帮助管制员根据验证通过的S模式DAPs数据管制目标航空器,以此实现在利用S模式DAPs数据进行管制前的实时监控,从数据的源头解决问题,避免将问题S模式DAPs数据引入空管自动化系统影响管制环节,由此有助于提高管制员对目标航空器管制的安全性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为根据本发明示例性第一实施例的S模式DAPs数据实时监控方法的流程图;
图2为根据本发明示例性第二实施例的S模式DAPs数据实时监控方法的流程图;
图3为根据本发明示例性第三实施例的S模式DAPs数据实时监控方法中GICB能力配置寄存器一致性验证的流程图;
图4为根据本发明示例性第四实施例的S模式DAPs数据实时监控方法中飞机状态FS合理性验证的流程图;
图5为根据本发明示例性第五实施例的S模式DAPs数据实时监控方法中航迹与转向寄存器正确性的流程图;
图6为根据本发明示例性第六实施例的S模式DAPs数据实时监控系统的结构框图;
图7为根据本发明示例性第七实施例的S模式DAPs数据实时监控系统的结构框图。
具体实施方式
下面结合附图对本发明实施例进行详细描述。
需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合;并且,基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
如图1所示,本发明示例性第一实施例的S模式DAPs数据实时监控方法的流程图,包括:
步骤101:从空管地面监视设备获取实时数据,并从所述实时数据中提取目标信息数据和DAPs数据;所述目标信息数据用于表征目标航空器的目标航迹信息,所述DAPs数据用于表征目标航空器的机载设备下发信息;
步骤102:根据所述目标信息数据生成目标航迹信息,以及根据所述目标航迹信息对所述DAPs数据进行预设的多项验证;
步骤103:在所述DAPs数据通过所述多项验证后,将所述目标信息数据和DAPs数据发送至所述空管自动化系统,以根据系统显示目标运动状态管制所述目标航空器。
本实施例在接收到实时数据时,对S模式DAPs数据实时监控,仅在监控验证通过后才帮助管制员根据验证通过的S模式DAPs数据管制目标航空器,以此实现在利用S模式DAPs数据进行管制前的实时监控,从数据的源头解决问题,避免将问题S模式DAPs数据引入空管自动化系统影响管制环节,由此有助于提高管制员对目标航空器管制的安全性。
图2提供了本发明一种S模式DAPs数据实时监控方法优选的实施方式,本发明实施例另一种S模式DAPs数据实时监控方法,包括:
步骤201,数据接收机负责接收实时数据。
步骤202,数据接收机从实时数据中分别提取出目标信息数据,并将目标信息数据传送给实时监控软件。
步骤203,数据接收机从实时数据中分别提取出DAPs数据,并将DAPs数据传送给实时监控软件。
步骤204,实时监控软件接收到目标信息数据后,对目标信息进行目标航迹管理,得到航迹信息。具体可以包括:
根据所述目标信息数据中的目标身份标识信息,在已有各目标航航迹中查找,是否存在与所述目标身份标识信息匹配的航迹;
若不存在与所述目标身份标识信息匹配的航迹,则根据所述目标信息数据生成目标航迹信息;若存在与所述目标航线标识信息匹配的航迹,则将利用所属目标信息数据更新匹配航迹,并将更新后的航迹作为目标航迹信息。
步骤205,实时监控软件对DAPs数据进行实时验证,滤除未通过验证的DAPs数据;具体验证的方式可以参见图3-图5。具体操作时:
根据不同DAPs数据类型,利用验证流程对其进行验证,从而保证所有类型DAPs数据的可用性。利用不同验证流程对不同类型的DAPs数据进行同步验证,可加快不同类型DAPs数据验证的处理速度,从而提高了系统处理能力,保证对DAPs数据验证的实时性。
对应答机能力CA的数据,数据链能力寄存器10 16的数据,GICB能力静态配置寄存器18 16-1C 16及GICB能力动态配置寄存器17 16的数据等第一类型DAPs数据信息,利用预设的配置验证流程进行验证。这些信息中主要反映了应答机的相关能力和配置情况,通过目标航迹信息的实际情况来判断与下发配置信息是否一致。不同信息中具体内容不同,可以依据每种信息具体情况对其进行定制分析与验证,判断的逻辑基本类似。以GICB能力动态配置寄存器10 16为例说明配置一致性验证的具体流程如图3所示。
对飞行状态FS数据,飞机身份识别寄存器20 16的数据,ACAS解决建议(RA)寄存器30 16的数据等第二类型DAPs数据信息,利用预设的合理性验证流程进行验证。利用目标航迹信息,结合相关数据定义,判断接收到的数据是否合理。不同信息中具体内容不同,可以依据每种信息具体情况对其进行定制分析与验证,判断的逻辑基本类似。图4详细以飞机状态FS为例说明了数据合理性验证的具体流程。
对选择意图高度寄存器40 16的数据,航迹与转向寄存器50 16的数据,方向与速度寄存器60 16的数据等第三类型DAPs数据,利用预设的正确性验证流程进行验证。结合目标相关航迹信息,计算飞机高度、速度、航向、转角等相关数据的门限值,基于门限值和当前目标运动情况判断具体寄存器所含有的运动态势相关信息的正确性。不同信息中具体内容不同,可以依据每种信息具体情况对其进行定制分析与验证,判断的逻辑基本类似。以航迹与转向寄存器50 16为例说明数据正确性验证的具体流程详见图5。
对于依据正确性验证流程进行验证的DAPs数据,某一个寄存器中包含了大量的运动状态 信息,需对所有的信息进行正确性验证,一旦有一项数据未通过正确性验证,则认为整个寄存器的数据可能是问题数据。在验证过程中对于具体数据项的判断采用的是类似的逻辑。主要就是利用航迹数据计算门限值以及该数据项的计算值,并利用这两个值判断报文值是否正确。相关数值的计算均采用目标航迹信息中进行跟踪滤波后的水平位置和高度,具有极强的可信度,确保对报文值的判断依据正确合理。下面展示了航向角的航迹计算值和门限值的计算,不同的数据项的相应计算方法不同。
根据航迹数据计算航迹角信息:
Figure PCTCN2021072618-appb-000001
根据航迹数据计算航迹角门限值:
δX=X current-X previous
δY=Y current-Y previous
Figure PCTCN2021072618-appb-000002
Figure PCTCN2021072618-appb-000003
TermXY=2*δX*δY*(σXY previous+σXY current)
Denom=(δX 2+δY 2) 2
σHeading 2=(TermX+TermY+TermXY)/Denom
步骤206,判断验证是否通过;
步骤207,在验证通过后,通过验证的DAPs数据更新航迹信息,并与目标信息数据结合,按照预定的格式进行编码;
步骤208,将编码后的信息发送给自动化系统,整个流程快速准确,保证DAPs数据的实时可用。
步骤209,还可以定期根据收集的外部设备对监控性能的反馈;
步骤210,根据对监控性能的反馈,自适应调整监控逻辑,进一步提高对DAPs数据的实时监控能力。
比如收到地空状态异常检测率低的反馈后,首先判断是未检出DAPs数据显示在地面的飞机实际在空中的异常还是未检出DAPs数据显示在空中的飞机实际在地面的异常。针对第一种情况,需要减小地面目标速度和/或高度判断门限值,针对第二种情况,则需要增大地面目标速度和/或高度的判断门限值。
本实施例通过对空管地面监视设备发送给空管自动化系统的实时数据中的目标信息数据 对实时数据中的DAPs数据进行实时监控,不仅能发现空管地面监视设备处理带来的问题数据,还可以发现机载设备下发的问题数据,同时,对DAPs数据进行实时监控,为空管自动化系统屏蔽问题DAPs数据,相当于在空管地面监视设备和自动化系统中间加入了一层针对DAPs数据的防火墙,保证进入空管自动化系统的DAPs数据实时可用,从源头上避免了问题数据引发的管制问题,促进了该项DAPs新技术的发展和推广,从而提高了管制安全和效率,有助于应对我国航空业快速发展的挑战。
本实施例中以S模式DAPs数据实时监控系统包括数据接收机和监控软件为例进行解释说明。数据接收机基于CPCI架构,监控软件可以安装在数据接收机上,也可以安装在其他计算机上。在安装在其他计算机上时,可以通过网络接收数据接收机发送的数据。
如图6所示,本发明示例性第六实施例的S模式DAPs数据实时监控系统的结构框图,该S模式DAPs数据实时监控系统包括:
数据接收单元601,用于从空管地面监视设备获取实时数据,并从所述实时数据中提取目标信息数据和DAPs数据,以及发送所述目标信息数据和DAPs数据;所述目标信息数据用于表征目标航空器的目标航迹信息,所述DAPs数据用于表征目标航空器的机载设备下发信息;数据监控单元602,用于接收所述目标信息数据和DAPs数据,并根据所述目标信息数据生成目标航迹信息,以及根据所述目标航迹信息对所述DAPs数据进行预设的多项验证,在所述DAPs数据通过所述多项验证后,将所述目标信息数据和DAPs数据发送至所述空管自动化系统,以根据系统显示目标运动状态管制所述目标航空器。
本实施例通过在接收到实时数据时,对S模式DAPs数据实时监控,仅在监控验证通过后才帮助管制员根据验证通过的S模式DAPs数据管制目标航空器,以此实现在利用S模式DAPs数据进行管制前的实时监控,从数据的源头解决问题,避免将问题S模式DAPs数据引入空管自动化系统影响管制环节,由此提高管制员对目标航空器管制的安全性。
如图7所示,本发明示例性第七实施例的S模式DAPs数据实时监控系统的结构框图,本实施例是图6所示实施例的优选方式,图1-图6的解释说明可以应用于本实施例。该S模式DAPs数据实时监控系统主要对数据监控单元602,进行细化说明,具体地,数据监控单元602可以包括:航迹生成模块701、分析验证模块702、信息发送模块703以及自适应监控逻辑判断模块704。
航迹生成模块701,用于根据目标信息数据中的目标身份标识信息在已有航迹中查找,进行目标和航迹的匹配,确定是否存在与所述目标身份标识信息匹配的航迹。如匹配失败则建立新的航迹,存入包括运动状态在内的相关信息。如匹配成功,则利用所属目标信息数据更新匹配航迹,并将更新后航迹作为目标航迹信息。具体的,在匹配成功时,还可以在对目 标信息进行合理性判断的基础上利用相关信息进行目标水平位置和高度等运动状态的跟踪滤波处理,更新航迹信息。对目标水平位置和高度的跟踪滤波均依据α-β算法的基本原理,在水平位置滤波中除了对位置信息进行平滑和预测外,还可以对目标航空器的转向状态进行检测和判断。因高度数据有100英尺和25英尺两种精度单位,不同精度的高度,具体参数及流程有所差异。
分析验证模块702,用于对DAPs数据进行分析验证,对于所有的DAPs信息,首先根据其编码格式进行解码,得到其中包含的具体信息。然后进行分析验证。具体地,分析验证模块702可以包括:
配置验证模块702a,用于当所述DAPs数据为第一类型时,根据目标航迹信息以及预设的配置验证流程对所述DAPs数据进行配置一致性验证,所述第一类型的DAPs数据包括以下数据中的任意一种:应答机能力数据、数据链能力寄存器的数据,GICB能力静态配置寄存器的数据及GICB能力动态配置寄存器的数据;
合理性验证模块702b,用于当所述DAPs数据为第二类型时,根据目标航迹信息以及预设的合理性验证流程对所述DAPs数据进行合理性验证,所述第二类型的DAPs数据包括以下数据中的任意一种:飞行状态数据、飞机身份识别寄存器的数据以及ACAS解决建议寄存器的数据;
正确性验证模块702c,用于当所述DAPs数据为第三类型时,根据目标航迹信息以及预设的正确性验证流程对所述DAPs数据进行正确性验证,所述第三类型的DAPs数据包括以下数据中的任意一种:选择意图高度寄存器的数据、航迹与转向寄存器的数据以及方向与速度寄存器的数据。
信息发送模块703,根据分析验证模块702给出的验证结果,保留通过验证的DAPs数据,并利用其更新航迹管理信息。并结合航迹生成模块给出的相应目标信息,一起按指定格式处理发送给空管自动化系统。
自适应监控逻辑判断模块704,利用外部设备反馈的情况判断监控逻辑是否需要调整,应如何调整,并将相应的调整指令发送给分析验证模块702进行监控逻辑调整。
以收到S模式二次雷达下发的CAT48数据为例说明S模式DAPs数据实时监控系统的工作流程:
步骤1,数据接收机接收CAT48数据;
步骤2,从CAT48数据中解出目标信息数据,每个目标信息必须包含飞机地址码信息,传送给实时监控软件;
步骤3,从CAT48数据中解出DAPs数据,每个DAPs数据必须有相应的飞机地址码记录,发送给实时监控软件;
步骤4,实时监控软件接收目标信息数据后,对每一个目标(依据飞机地址码判断)进行航迹匹配,若匹配不成功,则执行步骤5,否则执行步骤6;
步骤5,认为当前目标是一个新目标,建立新目标航迹;
步骤6,根据当前目标信息具体内容,对航迹信息中相应的位置、高度、速度、航迹、转向等运动状态相关信息进行跟踪滤波处理,并更新匹配航迹信息;
步骤7,实时监控软件接收DAPs数据后,对每一个DAPs数据判断其类型。如果是对应答机能力CA,数据链能力寄存器10 16,GICB能力静态配置寄存器18 16-1C 16及GICB能力动态配置寄存器17 16等信息,执行步骤8,如果是飞机状态FS,飞机身份识别寄存器20 16,ACAS解决建议(RA)寄存器30 16等信息,执行步骤9,如果是高度信息、选择意图高度寄存器40 16,航迹与转向寄存器50 16,方向与速度寄存器60 16等信息,执行步骤10;
步骤8,DAPs数据解码,利用记录的飞机地址码查找航迹信息中该目标已下发DAPs信息类型,判断与DAPs数据中表示的配置情况是否一致,一致则通过验证,不一致则未通过验证;
步骤9,DAPs数据解码,利用记录的飞机地址码查找航迹相关信息,结合相关数据定义,判断DAPs数据是否合理,合理则通过验证,不合理则未通过验证;
步骤10,DAPs数据解码,利用记录的飞机地址码查找航迹相关信息,计算相应运动信息判断门限值,结合航迹信息中运动状态信息判断DAPs数据是否正确,正确则通过验证,不正确则未通过验证;
步骤11,对每一个DAPs数据判断是否通过验证,通过验证执行步骤12和步骤13;
步骤12,DAPs数据类型更新航迹信息;
步骤13,根据飞机地址码与对应目标信息结合;
步骤14,目标信息按CAT48格式编码,发送自动化系统。
在实际操作时,对于目标处理能力:在均匀收到数据的情况下,系统每秒至少可对500个目标的DAPs数据进行监控。对于系统延时:从系统接收到数据到对其中DAPs数据完成监控后发送给自动化系统的时间不超过0.5秒。对于误检概率:系统将正常DAPs数据检测为问题DAPs数据的概率小于1%。对于漏检概率:系统未检出问题DAPs数据的概率小于0.1%。对于平均无故障时间:系统至少可以20,000小时无故障运行。对于平均故障修复时间:系统中室内设备出现故障时修复时间小于0.5小时,室外设备出现故障时修复时间小于2小时。
本实施例数据监控单元包括航迹管理、分析验证、信息发送模块和自适应监控逻辑判断模块四个主要功能模块。分析验证模块又包含了配置验证、合理性验证和正确性验证三个模块。可以采用多线程模式,各模块之间仅是有数据之间的交互,但在操作上互不影响,从而保证了实时监控软件处理的实时性。可同时发现机载设备下发的和地面设备处理得到的问题 数据,提高了DAPs数据的可用性,保证管制员利用DAPs数据得到的飞机运行状态及空中情景意识可靠。从源头上避免了错误数据给管制员带来的工作负荷及错误判断。直接利用下发数据,无需专门的测试应答机,省去相关测试所需的配置工作,节约了时间和成本。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (3)

  1. 一种S模式DAPs数据实时监控方法,其特征在于,包括:
    从空管地面监视设备获取实时数据,并从所述实时数据中提取目标信息数据和DAPs数据;所述目标信息数据用于表征目标航空器的目标航迹信息,所述DAPs数据用于表征目标航空器的机载设备下发信息;
    根据所述目标信息数据生成目标航迹信息,以及根据所述目标航迹信息对所述DAPs数据进行预设的多项验证;
    在所述DAPs数据通过所述多项验证后,将所述目标信息数据和DAPs数据发送至空管自动化系统,以根据所述空管自动化系统显示目标运动状态管制所述目标航空器,
    根据所述目标信息数据生成目标航迹信息的步骤,包括:
    根据所述目标信息数据中的目标身份标识信息,在已有各目标航迹中查找,是否存在与所述目标身份标识信息匹配的航迹;
    若不存在与所述目标标识信息匹配的航迹,则根据所述目标信息数据生成目标航迹信息;
    若存在与所述目标航线标识信息匹配的航迹,则利用所属目标信息数据更新匹配航迹,并将更新后航迹作为目标航迹信息,
    根据所述目标航迹信息对所述DAPs数据进行预设的多项验证的步骤,包括:
    当所述DAPs数据为第一类型时,根据目标航迹信息以及预设的配置验证流程对所述DAPs数据进行配置一致性验证,所述第一类型的DAPs数据包括以下数据中的任意一种:应答机能力数据、数据链能力寄存器的数据,GICB能力静态配置寄存器的数据及GICB能力动态配置寄存器的数据,
    根据所述目标航迹信息对所述DAPs数据进行预设的多项验证的步骤,还包括:
    当所述DAPs数据为第二类型时,根据目标航迹信息以及预设的合理性验证流程对所述DAPs数据进行合理性验证,所述第二类型的DAPs数据包括以下数据中的任意一种:飞行状态数据、飞机身份识别寄存器的数据以及ACAS解决建议寄存器的数据,
    根据所述目标航迹信息对所述DAPs数据进行预设的多项验证的步骤,还包括:
    当所述DAPs数据为第三类型时,根据目标航迹信息以及预设的正确性验证流程对所述DAPs数据进行正确性验证,所述第三类型的DAPs数据包括以下数据中的任意一种:选择意图高度寄存器的数据、航迹与转向寄存器的数据以及方向与速度寄存器的数据。
  2. 根据权利要求1所述的S模式DAPs数据实时监控方法,其特征在于,还包括:
    根据所述目标航迹信息进行航空器异常监控;
    在确定航空器异常时,启动预设的异常处理流程。
  3. 一种S模式DAPs数据实时监控系统,其特征在于,包括:
    数据接收单元,用于从空管地面监视设备获取实时数据,并从所述实时数据中提取目标信息数据和DAPs数据,以及发送所述目标信息数据和DAPs数据;所述目标信息数据用于表征目标航空器的目标航迹信息,所述DAPs数据用于表征目标航空器的机载设备下发信息;
    数据监控单元,用于接收所述目标信息数据和DAPs数据,并根据所述目标信息数据生成目标航迹信息,以及根据所述目标航迹信息对所述DAPs数据进行预设的多项验证,在所述DAPs数据通过所述多项验证后,将所述目标信息数据和DAPs数据发送至所述空管自动化系统,以根据所述空管自动化系统显示目标运动状态管制所述目标航空器,
    所述数据监控单元包括:
    航迹生成模块,用于根据所述目标信息数据中的目标身份标识信息,在已有各目标航航迹中查找,是否存在与所述目标身份标识信息匹配的航迹;若不存在与所述目标标识信息匹配的航迹,则根据所述目标信息数据生成目标航迹信息;若存在与所述目标航线标识信息匹配的航迹,则将利用所属目标信息数据更新匹配航迹,并将更新后的航迹作为目标航迹信息,
    所述数据监控单元还包括:
    配置验证模块,用于当所述DAPs数据为第一类型时,根据目标航迹信息以及预设的配置验证流程对所述DAPs数据进行配置一致性验证,所述第一类型的DAPs数据包括以下数据中的任意一种:应答机能力数据、数据链能力寄存器的数据,GICB能力静态配置寄存器的数据及GICB能力动态配置寄存器的数据,
    所述数据监控单元还包括:
    合理性验证模块,用于当所述DAPs数据为第二类型时,根据目标航迹信息以及预设的合理性验证流程对所述DAPs数据进行合理性验证,所述第二类型的DAPs数据包括以下数据中的任意一种:飞行状态数据、飞机身份识别寄存器的数据以及ACAS解决建议寄存器的数据;
    正确性验证模块,用于当所述DAPs数据为第三类型时,根据目标航迹信息以及预设的正确性验证流程对所述DAPs数据进行正确性验证,所述第三类型的DAPs数据包括以下数据中的任意一种:选择意图高度寄存器的数据、航迹与转向寄存器的数据以及方向与速度寄存器的数据。
PCT/CN2021/072618 2020-01-19 2021-01-19 S模式DAPs数据实时监控方法以及系统 WO2021143917A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022544105A JP7394231B2 (ja) 2020-01-19 2021-01-19 モードSのDAPsデータのリアルタイム監視方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010058749.7A CN111081075B (zh) 2020-01-19 2020-01-19 S模式DAPs数据实时监控方法以及系统
CN202010058749.7 2020-01-19

Publications (1)

Publication Number Publication Date
WO2021143917A1 true WO2021143917A1 (zh) 2021-07-22

Family

ID=70323732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072618 WO2021143917A1 (zh) 2020-01-19 2021-01-19 S模式DAPs数据实时监控方法以及系统

Country Status (3)

Country Link
JP (1) JP7394231B2 (zh)
CN (1) CN111081075B (zh)
WO (1) WO2021143917A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118113053A (zh) * 2024-04-26 2024-05-31 粤港澳大湾区数字经济研究院(福田) 一种低空飞行器的飞行轨迹验证方法、装置、终端及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081075B (zh) * 2020-01-19 2020-12-22 中国民用航空总局第二研究所 S模式DAPs数据实时监控方法以及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792058B1 (en) * 2000-07-12 2004-09-14 Lockheed Martin Corporation Digital receiving system for dense environment of aircraft
US20050156777A1 (en) * 2004-01-15 2005-07-21 Honeywell International, Inc. Integrated traffic surveillance apparatus
CN103728602A (zh) * 2013-12-31 2014-04-16 四川九洲电器集团有限责任公司 S模式应答机的自动检测系统
CN107369339A (zh) * 2017-08-29 2017-11-21 中国民用航空总局第二研究所 基于cpci架构的ads‑b下行数据链分析验证系统
CN111081075A (zh) * 2020-01-19 2020-04-28 中国民用航空总局第二研究所 S模式DAPs数据实时监控方法以及系统
CN211123719U (zh) * 2020-01-19 2020-07-28 中国民用航空总局第二研究所 S模式DAPs数据接收装置及实时监控系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030158762A1 (en) * 2002-01-18 2003-08-21 Jiang Wu System and method for airplane security / service / maintenance management
CN100466014C (zh) * 2006-11-08 2009-03-04 北京航空航天大学 机场场面移动目标监视系统
CN203708241U (zh) * 2013-12-21 2014-07-09 中电科航空电子有限公司 具有1090兆赫扩展电文的广播式自动相关监视能力的s模式应答机
CN103701488B (zh) * 2013-12-21 2015-10-07 中电科航空电子有限公司 具有1090兆赫扩展电文的广播式自动相关监视能力的s模式应答机
CN104977572A (zh) * 2015-06-27 2015-10-14 安徽四创电子股份有限公司 一种多功能s模式二次雷达测试台及其测试方法
CN105070107B (zh) * 2015-07-16 2017-07-07 四川九洲空管科技有限责任公司 机载防撞系统、acas收发主机数字信号环路自检系统及方法
CN105336220B (zh) * 2015-12-08 2017-12-05 成都民航空管科技发展有限公司 一种空管自动化系统飞行计划相关纠正方法
CN105894862B (zh) * 2016-05-05 2018-05-04 中国民用航空华东地区空中交通管理局 一种空中交通管制智能化指挥系统
CN106371091B (zh) * 2016-08-24 2018-11-02 四川九洲空管科技有限责任公司 Ads-b与二次雷达监视信息的数据融合方法及装置
CN207302363U (zh) * 2017-08-29 2018-05-01 成都西南民航通信网络有限公司 基于cpci架构的ads-b下行数据链分析验证系统
CN109598982B (zh) * 2018-12-04 2021-09-24 中国航空无线电电子研究所 一种基于多链路的机载监视系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792058B1 (en) * 2000-07-12 2004-09-14 Lockheed Martin Corporation Digital receiving system for dense environment of aircraft
US20050156777A1 (en) * 2004-01-15 2005-07-21 Honeywell International, Inc. Integrated traffic surveillance apparatus
CN103728602A (zh) * 2013-12-31 2014-04-16 四川九洲电器集团有限责任公司 S模式应答机的自动检测系统
CN107369339A (zh) * 2017-08-29 2017-11-21 中国民用航空总局第二研究所 基于cpci架构的ads‑b下行数据链分析验证系统
CN111081075A (zh) * 2020-01-19 2020-04-28 中国民用航空总局第二研究所 S模式DAPs数据实时监控方法以及系统
CN211123719U (zh) * 2020-01-19 2020-07-28 中国民用航空总局第二研究所 S模式DAPs数据接收装置及实时监控系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAI YUJUN, LI YAN DONG: "Application Analysis of S mode SSR Data Link", ELECTRONIC TEST, CN, no. 1, 1 January 2020 (2020-01-01), CN, pages 97 - 101, XP055828944, ISSN: 1000-8519, DOI: 10.16520/j.cnki.1000-8519.2020.01.035 *
LAN PENG, ZENG YI-JIANG, WANG LING: "Ground Mode S Secondary Surveillance Radar and its Key Techniques Analysis", TELECOMMUNICATION ENGINEERING, DIANXUN JISHU ZAZHISHE, CN, vol. 52, no. 6, 1 June 2012 (2012-06-01), CN, pages 840 - 845, XP055828942, ISSN: 1001-893X, DOI: 10.3969/j.issn.1001-893X.2012.06.002 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118113053A (zh) * 2024-04-26 2024-05-31 粤港澳大湾区数字经济研究院(福田) 一种低空飞行器的飞行轨迹验证方法、装置、终端及介质

Also Published As

Publication number Publication date
JP2023500998A (ja) 2023-01-17
CN111081075B (zh) 2020-12-22
JP7394231B2 (ja) 2023-12-07
CN111081075A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2021143917A1 (zh) S模式DAPs数据实时监控方法以及系统
EP1783720B1 (en) Error control in an air traffic management system
CN104808197A (zh) 一种多监视源飞行目标并行跟踪处理方法
Liu et al. Multi-sensor fusion and fault detection using hybrid estimation for air traffic surveillance
JP4253291B2 (ja) 二次監視レーダシステムとその地上装置
CN107656266B (zh) 基于ads-b的s模式二次雷达信息融合系统及其融合方法
US5712785A (en) Aircraft landing determination apparatus and method
US9922568B2 (en) Aircraft flight management unit and method of monitoring such a unit
CN102013175A (zh) 基于4d航迹和雷达数据的中期空中交通冲突探测方法
CN111045374A (zh) 智慧水务物联网在线监测平台及方法
CN104537896A (zh) 一种全静默的空域监视与避让系统及空域监视与避让方法
CN113447886B (zh) 场面多点定位系统数据质量监控方法、装置及电子设备
JP2008175784A (ja) モードs二次監視レーダ
CN105070107A (zh) 机载防撞系统、acas收发主机数字信号环路自检系统及方法
CN108153980A (zh) 基于ads-b与tcas数据融合的综合显示方法
CN106526586A (zh) 一种基于岸基情报雷达的数据处理方法
CN110930769A (zh) 一种空管自动化告警方法、系统及终端设备
CN107369339A (zh) 基于cpci架构的ads‑b下行数据链分析验证系统
JP2009098137A (ja) モードs二次監視レーダ
CN104933900A (zh) 二次雷达指挥所系统显示控制方法及系统
CN112133137A (zh) Itwr系统与atc系统相关一致性检查方法及装置
CN114330036B (zh) 一种机载防撞系统防撞软件仿真测试方法
KR20220159271A (ko) Bds 스왑의 문제를 회피하기 위하여 모드 s 에서 동작하는 이차 레이더를 관리하는 방법
CN110435925B (zh) 空中冲突探测机载设备的性能评估平台
CN111277677B (zh) 基于ads-b的航空器地址码冲突检测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741001

Country of ref document: EP

Kind code of ref document: A1