WO2021143697A1 - 气溶胶生成装置控制加热气溶胶生成制品的方法 - Google Patents

气溶胶生成装置控制加热气溶胶生成制品的方法 Download PDF

Info

Publication number
WO2021143697A1
WO2021143697A1 PCT/CN2021/071350 CN2021071350W WO2021143697A1 WO 2021143697 A1 WO2021143697 A1 WO 2021143697A1 CN 2021071350 W CN2021071350 W CN 2021071350W WO 2021143697 A1 WO2021143697 A1 WO 2021143697A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance heating
temperature
preset
heating element
difference
Prior art date
Application number
PCT/CN2021/071350
Other languages
English (en)
French (fr)
Inventor
陈斌
Original Assignee
深圳御烟实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳御烟实业有限公司 filed Critical 深圳御烟实业有限公司
Publication of WO2021143697A1 publication Critical patent/WO2021143697A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the invention relates to a method for an aerosol generating device to control heating an aerosol generating product.
  • the heating tube or heating sheet of the low-temperature heating non-combustion smoking set utilizes thermistor or temperature control sensor to detect and control its temperature, so as to avoid the release of harmful substances at high temperature.
  • this method easily leads to inaccurate temperature measurement, and the temperature of the heating tube or the heating plate is prone to drift.
  • a method for controlling heating of an aerosol-generating product by an aerosol generating device includes a power source and a thermal conductor for conducting heat to the aerosol-generating product.
  • the method for controlling the heating of an aerosol-generating product by the aerosol generating device includes the steps of controlling the power supply to at least one of the second resistance heating elements at a first preset time; The step of controlling the power supply to supply power to at least one of the first resistance heating elements at a second preset time, wherein:
  • the step of controlling the power supply to supply power to at least one of the second resistance heating elements at the first preset time further includes:
  • a first temperature value is derived from the measured first resistivity, and the first temperature value is used to indicate the actual temperature of the second resistance heating element controlled to supply power;
  • the step of controlling the power supply to supply power to at least one of the first resistance heating elements at a second preset time further includes:
  • a second temperature value is derived from the measured second resistivity, where the second temperature value is used to indicate the actual temperature of the first resistance heating element controlled to supply power;
  • the power supplied by the power supply to the first resistance heating element controlled to supply power is adjusted so that the second temperature value is below the preset temperature.
  • the step of comparing the first temperature value with the preset temperature after each derivation of the first temperature value further includes: calculating the difference between the first temperature value and the preset temperature and setting it as the first temperature value. Difference
  • the step of comparing the second temperature value with the preset temperature after the second temperature value is derived each time further includes: calculating the difference between the second temperature value and the preset temperature and setting it as the second difference value.
  • the step of adjusting the power supplied from the power supply to the second resistance heating element controlled to supply power after each comparison so that the first temperature value is below the preset temperature further includes:
  • the first temperature value ⁇ the preset temperature, and the first difference between the first temperature value and the preset temperature is under the following conditions: if the first preset difference ⁇ the first difference ⁇ the second preset difference, Keep the power supplied to the second resistance heating element controlled to be powered unchanged; if the first difference is greater than the second preset difference, increase the power supplied to the second resistance heating element controlled to supply power; if When the first difference value is less than the first preset difference value, the electric energy supplied by the power supply to the second resistance heating element controlled to supply power is reduced;
  • the step of adjusting the power supplied by the power supply to the first resistance heating element controlled to supply power so that the second temperature value is below the preset temperature further includes:
  • the second temperature value ⁇ the preset temperature, and the second difference between the second temperature value and the preset temperature is under the following conditions: if the first preset difference ⁇ the second difference ⁇ the second preset difference, Keep the power supplied to the first resistance heating element controlled to supply power unchanged; if the second difference is greater than the second preset difference, increase the power supplied to the first resistance heating element controlled to supply power; if When the second difference value is less than the first preset difference value, the electric energy supplied by the power supply to the first resistance heating element controlled to supply power is reduced.
  • the step of controlling the power supply to supply power to at least one of the second resistance heating elements at a first preset time and the step of controlling the power supply to supply power to at least one of the first resistors at a second preset time are performed alternately.
  • the second preset time is when the first temperature value reaches close to the preset temperature
  • the first preset time is when the second temperature value reaches close to the preset temperature.
  • the second preset time is when the first difference between the first temperature value and the preset temperature reaches 10°C or less; the first preset time is when the When the second difference between the second temperature value and the preset temperature reaches 10°C or less.
  • the step of measuring the first resistivity of at least one first resistance heating element at least once further includes: when the number of times of measuring the first resistivity of the first resistance heating element is multiple times, The interval between the next measurement of the first resistivity of the first resistance heating element and the last measurement of the first resistivity of the first resistance heating element is set as the first interval time, and the first interval time is fixed. , Or the greater the first difference, the longer the first interval;
  • the step of measuring at least one second resistivity of the second resistance heating element at least once further includes: when the number of times of measuring the second resistivity of the second resistance heating element is multiple times, measuring the second resistance next time The interval time between the second resistivity of the heating element and the last measurement of the second resistivity of the second resistance heating element is set as the second interval time, the second interval time is fixed, or the second difference The larger the value, the longer the second interval time.
  • the aerosol-generating product contains multiple volatile compounds, and the preset temperature satisfies at least one of the following two conditions: the preset temperature ⁇ the volatile compounds in the aerosol-generating product The minimum release temperature of at least one of, the preset temperature ⁇ the temperature at which the aerosol is generated by heating the aerosol-generating product but does not cause combustion.
  • the step of adjusting the power supplied by the power supply to the second resistance heating element controlled to supply power after each comparison so that the first temperature value is below the preset temperature includes adjusting after each comparison Power supplied to the second resistance heating element controlled to supply power so that the first temperature value is within a preset range below the preset temperature;
  • the step of adjusting the power supplied to the first resistance heating element controlled to supply power so that the second temperature value is below the preset temperature includes adjusting the power supply to the controlled power supply after each comparison.
  • the electric energy of the first resistance heating element is such that the second temperature value is within a preset range below the preset temperature.
  • each of the first resistance heating element and each of the second resistance heating elements are respectively covered on the outer wall of the heat conductor; or, the heat conductor is in a hollow tube shape, Each of the first resistance heating element and each of the second resistance heating elements are respectively covered on the inner wall of the heat conductor; or, the heat conductor is in the shape of a hollow tube, and each of the first resistance The heating element is arranged on the outer wall of the heat conductor, and each of the second resistance heating elements is arranged on the inner wall of the heat conductor.
  • the method for controlling the heating of aerosol-generating products by the aerosol generating device of the embodiment of the present invention uses the first resistance heating element and the second resistance heating element to detect the temperature of each other correspondingly, so that the temperature of the heat conductor can finally be accurately stabilized as needed It solves the problem of inaccurate temperature measurement and avoids the phenomenon of temperature drift of the heat conductor.
  • FIG. 1 is a schematic diagram of a partial structure of an aerosol generating device provided by an embodiment of the present invention.
  • the "aerosol generating device" described in the embodiment of the present invention refers to a device used to provide heat or electrical energy for aerosol generating products, such as smoking articles.
  • the aerosol generating device can directly provide thermal energy to heat the aerosol generating product, or preferably provide electrical energy for the aerosol generating product, and the aerosol generating product converts the electrical energy into thermal energy to heat the smoke material.
  • aerosol-generating product refers to a product that contains smoke material and can generate aerosol by heating, such as smoke or mist, such as aerosol-generating product, cartridge or cigarette, preferably for one-time use Products.
  • the aerosol-generating product itself cannot provide electrical energy.
  • the "smoke material” described in the embodiments of the present invention refers to a smoking material, which is a material that can produce odor and/or nicotine and/or smoke when heated or burned, that is, a material that can be atomized, that is, an aerosol generating material.
  • the smoke material can be solid, semi-solid and liquid. Because of the consideration of air permeability, assembly and production, solid tobacco materials are often processed into flakes, so they are also commonly referred to as flakes, and silk flakes are also called flakes.
  • the tobacco material discussed in the embodiments of the present invention may be natural or synthetic smoke liquid, smoke oil, smoke glue, tobacco paste, cut tobacco, tobacco leaves, etc., for example, synthetic smoke material contains glycerin, propylene glycol, and nicotine.
  • the e-liquid is liquid
  • the e-liquid is in the form of oil
  • the e-liquid is in the form of a gel
  • the ointment is in the form of a paste
  • the cut tobacco includes natural or artificial cut tobacco
  • the tobacco leaves Including natural or artificial or extracted and processed tobacco leaves.
  • the smoke material can be heated in the form of being sealed by other substances, such as stored in a package that can be degraded by heat, such as microcapsules. After heating, the required volatile substances are derived from the degraded or porous sealed package.
  • the smoke material described in the embodiment of the present invention may or may not contain nicotine.
  • the tobacco material containing nicotine may include natural tobacco leaf products, at least one of smoke liquid, smoke oil, smoke glue, smoke paste, tobacco shreds, tobacco leaves, etc. made from nicotine as a raw material.
  • the smoke liquid is water-like
  • the smoke oil is oil-like
  • the smoke glue is gel-like
  • the smoke cream is paste-like
  • tobacco shreds include natural or artificial or extracted and processed tobacco
  • tobacco leaves include natural or artificial or extracted and processed tobacco tobacco leaf.
  • the tobacco material that does not contain nicotine mainly contains aroma substances, such as spices, which can be atomized to simulate the smoking process and to quit smoking.
  • the fragrance includes peppermint oil.
  • the smoking material may also include other additives, such as glycerin and/or propylene glycol.
  • the embodiment of the present invention provides a method for an aerosol generating device to control heating of an aerosol generating product.
  • the aerosol generating device includes a power source and a thermal conductor 1 for conducting heat to the aerosol generating product.
  • the thermal conductor 1 is at least partially inserted into the aerosol generating product or coated on the outer periphery of the aerosol generating product. It is used to conduct heat to heat the aerosol-generating product, such as a heating plate, a heating rod, or a heating tube coated on the outer circumference of the aerosol-generating product in the prior art.
  • At least one first resistance heating element 2 and at least one second resistance heating element 3 are covered on the heat conductor 1, and each first resistance heating element 2 and each second resistance heating element 3 can be connected to a power source.
  • the first resistance heating element 2 and the second resistance heating element 3 are respectively made of resistance materials.
  • Resistive materials include, but are not limited to: semiconductors such as doped ceramics, "conductive" ceramics (for example, molybdenum disilicide), carbon, graphite, metals, metal alloys, and composite materials made of ceramic materials and metal materials.
  • the composite material may include doped or undoped ceramics. Examples of suitable doped ceramics include doped silicon carbide. Examples of suitable metals include titanium, zirconium, tantalum, and platinum group metals.
  • suitable metal alloys include stainless steel, alloys containing nickel, cobalt, chromium, aluminum, titanium, zirconium, hafnium, niobium, molybdenum, tantalum, tungsten, tin, gallium, manganese and iron, and alloys based on nickel, iron, cobalt, Stainless steel, and super heat-resistant alloy of iron-manganese-aluminum base alloy.
  • the resistive material can optionally be embedded in the insulating material, encapsulated or coated with the insulating material, or vice versa according to the kinetics of energy transfer and the required external physical and chemical properties.
  • the material of the thermal conductor 1 includes one or more of the following, such as glass, ceramic, anodized metal, coated metal, polyimide, etc.
  • the ceramic may include mica, alumina (Al2O3) or zirconia (ZrO2).
  • Each first resistance heating element 2 and each second resistance heating element 3 are respectively covered on the outer wall of the heat conductor 1; or, the heat conductor 1 is in the shape of a hollow tube, and each first resistance heating element 2 and each The second resistance heating elements 3 are respectively covered on the inner wall of the heat conductor 1; or, the heat conductor 1 is in the shape of a hollow tube, and each first resistance heating element 2 is covered on the outer wall of the heat conductor 1, and each second The resistance heating element 3 is covered on the inner wall of the heat conductor 1.
  • the aerosol generating device also includes a controller, which is connected to a power source and each first resistance heating element 2 and each second resistance heating element 3. The method of controlling the heating of the aerosol-generating product is specifically controlled by the controller.
  • the method for the aerosol generating device to control the heating of the aerosol generating product includes the steps of controlling the power supply to supply power to at least one second resistance heating element 3 at a first preset time and controlling the power supply to supply power to at least one second resistance heating element 3 at a second preset time.
  • the step of a resistance heating element 2 is the step of controlling the power supply to the at least one second resistance heating element 3 at the first preset time and the step of controlling the power supply to the at least one first resistance heating element 2 at the second preset time.
  • the first preset time and the second preset time are alternate times, for example, the first preset time is 0s, 10s, 20s, 24s, 28s, and the second preset time is 5s, 15s, 22s , 26s, 30s, and so on.
  • the specific time of the first preset time and the second preset time is determined according to needs.
  • the first preset time and the second preset time are separated by a longer time, such as 5s-20s apart Alternate.
  • the so-called proximity can be slightly lower, slightly higher or equal to the time between the first preset time and the second preset time Shorter, such as alternating 0.5s-3s apart.
  • the second preset time is when the first temperature value reaches close to the preset temperature, that is to say, the step of controlling the power supply to the at least one first resistance heating element 2 at the second preset time is entered;
  • a preset time is when the second temperature value reaches close to the preset temperature, the so-called proximity can be slightly lower, slightly higher or equal to, that is to say, at this time, the control power supply is supplied to the first preset time.
  • At least one first resistance heating element 2 step is when the first temperature value reaches close to the preset temperature, that is to say, at this time, the control power supply is supplied to the first preset time.
  • the step of controlling the power supply to supply power to the at least one second resistance heating element 3 at the first preset time further includes:
  • the number of times of the first resistivity of a resistance heating element 2 can be one or more times, depending on needs;
  • the first temperature value is derived from the measured first resistivity.
  • the first temperature value is used to indicate the actual temperature of the second resistance heating element 3 that is controlled to supply power; that is, the first resistance heating element 2 is used to sense Detecting the temperature of the second resistance heating element 3;
  • the first temperature value is compared with the preset temperature
  • the step of controlling the power supply to supply power to the at least one first resistance heating element 2 at the second preset time further includes:
  • the second resistivity of at least one second resistance heating element 3 is measured at least once; that is, every time the step of controlling the power supply to the at least one first resistance heating element 2 at the second preset time is entered, the first resistance heating element 2 is measured.
  • the number of times of the second resistivity of the second resistance heating element 3 can be one or more times, depending on needs;
  • the second temperature value is derived from the measured second resistivity.
  • the second temperature value is used to indicate the actual temperature of the first resistance heating element 2 that is controlled to supply power; that is to say, the second resistance heating element 3 is used for sensing Detecting the temperature of the first resistance heating element 2;
  • the second temperature value is compared with the preset temperature
  • Resistance R V/I; where V is the voltage across the first resistance heating element 2 or the second resistance heating element 3, and I is the current passing through the first resistance heating element 2 or the second resistance heating element 3.
  • R is proportional to ⁇ (T).
  • the resistance R can be determined, and thus by measuring the voltage V of the first resistance heating element 2 or the second resistance heating element 3 And the current I to determine the resistivity ⁇ at a given temperature.
  • the temperature can be obtained simply from a look-up table of the relationship between the characteristic resistivity of the first resistance heating element 2 or the second resistance heating element 3 used with respect to temperature or by calculating the value of the polynomial of the above formula.
  • the treatment can be simplified by representing the resistivity ⁇ versus temperature in one or more (preferably two) linear approximations within the temperature range applicable to tobacco. This simplifies the temperature evaluation desired in controllers with limited computing resources.
  • a look-up table of the relationship between the characteristic resistivity of the first resistance heating element 2 or the second resistance heating element 3 with respect to temperature may be stored in the controller.
  • the aerosol generating device controls The method of heating the aerosol-generating product further includes: selecting a preset temperature.
  • the aerosol-forming product contains a variety of volatile compounds. The selection is based on the release temperature of the volatile compounds that should and should not be released.
  • the preset temperature ⁇ the lowest of at least one of the volatile compounds in the aerosol-forming product Release temperature, the preset temperature can be stored in the controller in advance.
  • the preset temperature may also be an acceptable range, such as a range minus 5% of the preset temperature.
  • the step of comparing the first temperature value with the preset temperature after each derivation of the first temperature value further includes: calculating a first difference between the first temperature value and the preset temperature; similarly
  • the step of comparing the second temperature value with the preset temperature each time after the second temperature value is derived further includes: calculating a second difference between the second temperature value and the preset temperature.
  • the second preset time is when the first difference between the first temperature value and the preset temperature reaches 10°C or less, and further preferably, the second preset time is when the first difference between the first temperature value and the preset temperature When it reaches 5°C or less.
  • the first preset time is when the second difference between the second temperature value and the preset temperature reaches 10°C or less, and further preferably, the first preset time is when the second difference between the second temperature value and the preset temperature When it reaches 5°C or less.
  • the first difference may be the difference calculated by the first temperature being lower than the preset temperature, or the difference calculated by the first temperature being higher than the preset temperature; the second difference may be the second temperature The value is lower than the difference calculated by the preset temperature, or it may be the difference calculated by the second temperature value higher than the preset temperature.
  • the step of adjusting the power supplied by the power supply to the second resistance heating element 3 controlled to supply power so that the first temperature value is below the preset temperature further includes:
  • the first temperature value ⁇ the preset temperature, and the first difference between the first temperature value and the preset temperature is under the following conditions: if the first preset difference ⁇ the first difference ⁇ the second preset difference, Keep the power supplied to the second resistance heating element 3 controlled to be powered unchanged; if the first difference is greater than the second preset difference, that is to say when the temperature difference is large, increase the power supply to the controlled power supply The electric energy of the second resistance heating element 3; if the first difference is less than the first preset difference, that is, when the temperature difference is small, the electric energy supplied by the power supply to the second resistance heating element 3 that is controlled to supply power is reduced.
  • the first preset difference can be selected from the range of 50-100°C, such as 50°C, 80°C, 100°C, etc.
  • the second preset difference can be selected from the range of 150-250°C, such as 150°C, 200°C. , 250°C and so on.
  • the step of adjusting the power supplied by the power supply to the first resistance heating element 2 controlled to supply power so that the second temperature value is below the preset temperature further includes:
  • the second temperature value ⁇ the preset temperature, and the second difference between the second temperature value and the preset temperature is under the following conditions: if the first preset difference ⁇ the second difference ⁇ the second preset difference, Keep the power supplied to the first resistance heating element 2 controlled to be powered unchanged; if the second difference is greater than the second preset difference, that is to say when the temperature difference is large, increase the power supply to the controlled power supply The electric energy of the first resistance heating element 2; if the second difference is less than the first preset difference, that is, when the temperature difference is small, the electric energy supplied by the power supply to the first resistance heating element 2 controlled to supply power is reduced.
  • the first preset difference can be selected from the range of 50-100°C, such as 50°C, 80°C, 100°C, etc.
  • the second preset difference can be selected from the range of 150-250°C, such as 150°C, 200°C. , 250°C and so on.
  • the step of measuring at least one first resistivity of the first resistance heating element 2 at least once further includes: when measuring the first resistivity of the first resistance heating element 2 If it is multiple times, the first interval between the next measurement of the first resistivity of the first resistance heating element 2 and the last measurement of the first resistivity of the first resistance heating element 2 is fixed, or the first The greater the difference, the longer the first interval time.
  • the first interval time is 10s-20s; when the first difference between the first temperature value and the preset temperature is 100-200°C
  • the first interval time is 5s-10s; when the first difference between the first temperature value and the preset temperature is less than 100, the first interval time is 0.5s-5s.
  • the electric energy can be increased, that is, the power can be increased, and the preset temperature can be quickly reached. Therefore, the temperature can be detected each time at a fixed interval.
  • the step of measuring at least one second resistivity of the second resistance heating element 3 at least once further includes: when the number of times of measuring the second resistivity of the second resistance heating element 3 is multiple times, the next measurement The second interval between the second resistivity of the second resistance heating element 3 and the last measurement of the second resistivity of the second resistance heating element 3 is fixed, or the second difference is greater, so The longer the second interval.
  • the second interval time is 10s-20s; when the second difference between the second temperature value and the preset temperature is 100-200°C
  • the second interval time is 5s-10s; when the second difference between the second temperature value and the preset temperature is less than 100, the second interval time is 0.5s-5s.
  • the electric energy can be increased, that is, the power can be increased, and the preset temperature can be quickly reached, so the temperature can be detected each time at a fixed interval.
  • the step of controlling the power supply to supply power to the at least one second resistance heating element 3 at the first preset time further includes: the first resistance heating element 2 with the first resistivity to be measured is preset by the power supply. Set a micro current, the current amount of the preset micro current meets the requirement of detecting the first resistivity and at the same time the preset micro current passes through the first resistance heating element 2 to hardly cause the first resistance heating element 2 to generate heat;
  • the step of controlling the power supply to the at least one first resistance heating element 2 for a second preset time further includes: the second resistance heating element 3 of the second resistivity being measured is supplied with a preset micro current from the power supply, or may be supplied by another power supply
  • the preset micro current, the current amount of the preset micro current meets the requirement of detecting the second resistivity, and the second resistance heating element 3 hardly generates heat when the preset micro current passes through the second resistance heating element 3.
  • the current amount of the preset microcurrent is preferably ⁇ 100mA.
  • the step of adjusting the power supplied from the power supply to the second resistance heating element 3 controlled to supply power so that the first temperature value is below the preset temperature includes every step After a comparison, the power supplied to the second resistance heating element 3 controlled to supply power is adjusted so that the first temperature value is within a preset range below the preset temperature, for example, at -5 of the preset temperature. Within %, that is, the preset temperature minus 5% to the preset temperature range.
  • the step of adjusting the power supplied to the first resistance heating element 2 controlled to supply power so that the second temperature value is below the preset temperature includes adjusting the power supply to The electric energy of the first resistance heating element 2 that is controlled to supply power so that the second temperature value is within a preset range below the preset temperature, for example, within -5% of the preset temperature, that is, the preset The temperature minus 5% to the preset temperature range.
  • the present invention uses the first resistance heating element 2 and the second resistance heating element 3 to detect the temperature of each other correspondingly, so that the temperature of the heat conductor 1 can finally be accurately stabilized at the required temperature, and the problem of inaccurate temperature measurement is solved. The phenomenon that the temperature of the heat conductor 1 drifts is avoided.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

一种气溶胶生成装置控制加热气溶胶生成制品的方法,利用第一电阻加热件(2)和第二电阻加热件(3)相互对应地检测对方的温度,使导热体(1)的温度最终可以准确地稳定在所需要的温度,解决了测温不准确的问题,避免了导热体(1)的温度出现漂移的现象。

Description

气溶胶生成装置控制加热气溶胶生成制品的方法 技术领域
本发明涉及一种气溶胶生成装置控制加热气溶胶生成制品的方法。
背景技术
传统卷烟需通过明火点燃燃烧产生烟草烟雾,烟草在高温和裂解的过程中会释放对人体有害混合物质达数千种。而低温加热烟具可有效降低有害物质的产生,更加健康。低温烟在使用时,是将烟体插入到烟具的加热管或是加热片插入烟体中,然后电源通电使加热管/加热片发热,将烟体加热从而产生烟雾。
现有技术中的低温加热不燃烧烟具的加热管或加热片利用热敏电阻或温控传感器实现检测控制其温度,以避免高温下有害物质释放出来。但该方式容易导致测温不准确,加热管或加热片的温度容易出现漂移。
技术问题
基于此,有必要提供一种气溶胶生成装置控制加热气溶胶生成制品的方法。
技术解决方案
一种气溶胶生成装置控制加热气溶胶生成制品的方法,所述气溶胶生成装置包括电源和用于将热量传导至气溶胶生成制品的导热体,在所述导热体上覆设有至少一第一电阻加热件和至少一第二电阻加热件,气溶胶生成装置控制加热气溶胶生成制品的方法包括在第一预设时间控制所述电源供电至至少一所述第二电阻加热件的步骤和在第二预设时间控制所述电源供电至至少一所述第一电阻加热件的步骤,其中,
在第一预设时间控制电源供电至至少一所述第二电阻加热件的步骤进一步包括:
至少测量一次至少一所述第一电阻加热件的第一电阻率;
每一次测量后从测量的第一电阻率导出第一温度值,所述第一温度值用于标示被控制供电的第二电阻加热件的实际温度;
每一次导出第一温度值后将所述第一温度值与预设温度进行比较;
每一次比较后调整电源供应至被控制供电的第二电阻加热件的电能以使所述第一温度值在所述预设温度之下;
在第二预设时间控制所述电源供电至至少一所述第一电阻加热件的步骤进一步包括:
至少测量一次至少一所述第二电阻加热件的第二电阻率;
每一次测量后从测量的第二电阻率导出第二温度值,所述第二温度值用于标示被控制供电的第一电阻加热件的实际温度;
每一次导出第二温度值后将所述第二温度值与预设温度进行比较;
每一次比较后调整电源供应至被控制供电的第一电阻加热件的电能以使所述第二温度值在所述预设温度之下。
在其中一实施例中,每一次导出第一温度值后将所述第一温度值与预设温度进行比较的步骤还包括:计算第一温度值与预设温度的差值且设为第一差值;
每一次导出第二温度值后将所述第二温度值与预设温度进行比较的步骤还包括:计算第二温度值与预设温度的差值且设为第二差值。
在其中一实施例中,每一次比较后调整电源供应至被控制供电的第二电阻加热件的电能以使所述第一温度值在所述预设温度之下的步骤还包括:
当第一温度值≥预设温度时,则停止或减少电源供应至被控制供电的第二电阻加热件的电能;
当第一温度值<预设温度时,且第一温度值与预设温度的第一差值在如下条件:若第一预设差值≤第一差值≤第二预设差值时,保持电源供应至被控制供电的第二电阻加热件的电能不变;若第一差值>第二预设差值时,则增加电源供应至被控制供电的第二电阻加热件的电能;若第一差值<第一预设差值时,则减少电源供应至被控制供电的第二电阻加热件的电能;
每一次比较后调整电源供应至被控制供电的第一电阻加热件的电能以使所述第二温度值在所述预设温度之下的步骤还包括:
当第二温度值≥预设温度时,则停止或减少电源供应至被控制供电的第一电阻加热件的电能;
当第二温度值<预设温度时,且第二温度值与预设温度的第二差值在如下条件:若第一预设差值≤第二差值≤第二预设差值时,保持电源供应至被控制供电的第一电阻加热件的电能不变;若第二差值>第二预设差值时,则增加电源供应至被控制供电的第一电阻加热件的电能;若第二差值<第一预设差值时,则减少电源供应至被控制供电的第一电阻加热件的电能。
在其中一实施例中,在第一预设时间控制所述电源供电至至少一所述第二电阻加热件的步骤与在第二预设时间控制所述电源供电至至少一所述第一电阻加热件的步骤交替进行。
在其中一实施例中,所述第二预设时间是当所述第一温度值达到接近所述预设温度时,所述第一预设时间是当所述第二温度值达到接近所述预设温度时。
在其中一实施例中,所述第二预设时间是当所述第一温度值与所述预设温度相差的第一差值达到10℃以下时;所述第一预设时间是当所述第二温度值与所述预设温度相差的第二差值达到10℃以下时。
在其中一实施例中,至少测量一次至少一所述第一电阻加热件的第一电阻率的步骤还包括:当测量所述第一电阻加热件的第一电阻率的次数为多次时,下一次测量所述第一电阻加热件的第一电阻率与上一次测量所述第一电阻加热件的第一电阻率的间隔时间设为第一间隔时间,所述第一间隔时间固定不变,或者所述第一差值越大,所述第一间隔时间越长;
至少测量一次至少一所述第二电阻加热件的第二电阻率的步骤还包括:测量所述第二电阻加热件的第二电阻率的次数为多次时,下一次测量所述第二电阻加热件的第二电阻率与上一次测量所述第二电阻加热件的第二电阻率的间隔时间设为第二间隔时间,所述第二间隔时间固定不变,或者所述第二差值越大,第二间隔时间越长。
在其中一实施例中,气溶胶生成制品中含有多种挥发性化合物,所述预设温度满足以下两个条件的至少一种:所述预设温度≤气溶胶生成制品中的挥发性化合物中的至少一种的最低释放温度、所述预设温度≤加热气溶胶生成制品产生气溶胶但没有引起燃烧情况的温度。
在其中一实施例中,每一次比较后调整电源供应至被控制供电的第二电阻加热件的电能以使所述第一温度值在所述预设温度之下的步骤包括每一次比较后调整电源供应至被控制供电的第二电阻加热件的电能以使所述第一温度值在所述预设温度之下的预设范围之内;
每一次比较后调整电源供应至被控制供电的第一电阻加热件的电能以使所述第二温度值在所述预设温度之下的步骤包括每一次比较后调整电源供应至被控制供电的第一电阻加热件的电能以使所述第二温度值在所述预设温度之下的预设范围之内。
在其中一实施例中,每一所述第一电阻加热件和每一所述第二电阻加热件分别覆设于所述导热体的外壁上;或者,所述导热体是呈中空管状的,每一所述第一电阻加热件和每一所述第二电阻加热件分别覆设于所述导热体的内壁上;或者,所述导热体是呈中空管状的,每一所述第一电阻加热件覆设于所述导热体的外壁上,每一所述第二电阻加热件覆设于所述导热体的内壁上。
有益效果
本发明实施例的气溶胶生成装置控制加热气溶胶生成制品的方法利用第一电阻加热件和第二电阻加热件相互对应地检测对方的温度,使导热体的温度最终可以准确地稳定在所需要的温度,解决了测温不准确的问题,避免了导热体的温度出现漂移的现象。
附图说明
图1为本发明的一实施例提供的气溶胶生成装置的局部结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在发明中,当元件被称为“固定于”另一个元件,除非特别限定为“直接地”,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,除非特别限定为“直接地”,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接地连接”或“直接地固定”时,不存在该居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。实施例附图中各种不同对象按便于列举说明的比例绘制,而非按实际组件的比例绘制。
本发明实施例所述的“气溶胶生成装置”指用于为气溶胶生成制品提供热能或电能的装置,例如烟具。所述气溶胶生成装置可直接提供热能加热所述气溶胶生成制品,或者优选是为气溶胶生成制品提供电能,所述气溶胶生成制品将电能转换为热能加热所述烟料。
本发明实施例所述的“气溶胶生成制品”指包含烟料,能够通过加热产生气溶胶,例如烟气或雾气的产品,例如气溶胶生成制品、烟弹或烟支,优选为一次性使用的制品。所述气溶胶生成制品本身不能够提供电能。
本发明实施例所述的“烟料”指发烟物质,是经加热或燃烧可以产生气味和/或尼古丁和/或烟气的物质,即可被雾化的物质,即气溶胶生成物质。烟料可以是固态、半固态和液态。固态烟料因为透气性、组装和制作等方面的考虑,经常加工成薄片状,因此又俗称为薄片,丝状薄片也称为薄片丝。本发明实施例所讨论的烟料可为天然的或人工合成的烟液、烟油、烟胶、烟膏、烟丝、烟叶等,例如,人工合成的烟料含有甘油、丙二醇和烟碱等。所述烟液为液体,所述烟油为油状,所述烟胶为凝胶状,所述烟膏为膏状,所述烟丝包括天然的或人造的或萃取加工过的烟丝,所述烟叶包括天然的或人造的或萃取加工过的烟叶。烟料可以在被其它物质封存的形式下被加热,如保存在可遇热降解的包装中,例如微胶囊中,加热后所需挥发性物质从降解或有孔隙的封存包装中导出。
本发明实施例所述的烟料可以含有烟碱,也可以不含有烟碱。含有烟碱的烟料可以包括天然烟叶制品,以烟碱为原料制成的烟液、烟油、烟胶、烟膏、烟丝、烟叶等中的至少一种。烟液为水状,烟油为油状,烟胶为凝胶状,烟膏为膏状,烟丝包括天然的或人造的或萃取加工过的烟丝,烟叶包括天然的或人造的或萃取加工过的烟叶。不含有烟碱的烟料主要含有香味物质,例如香料,既可被雾化以起到模拟吸烟过程又起到戒烟等目的。在一实施例中,所述香料包括薄荷油。所述烟料还可包括其他添加剂,例如甘油和/或丙二醇。
本发明实施例提供一种气溶胶生成装置控制加热气溶胶生成制品的方法。
请参阅图1,气溶胶生成装置包括电源和用于将热量传导至气溶胶生成制品的导热体1,该导热体1至少部分地插入气溶胶生成制品中或包覆于气溶胶生成制品外周,用于传导热量进而加热气溶胶生成制品,如现有技术中加热片、加热棒或包覆于气溶胶生成制品外周的加热管等。
在导热体1上覆设有至少一个第一电阻加热件2和至少一个第二电阻加热件3,每一个第一电阻加热件2和每一个第二电阻加热件3可与电源相连接。第一电阻加热件2和第二电阻加热件3分别是由电阻材料制成的。电阻材料包括但不限于:诸如掺杂的陶瓷的半导体、“导电”陶瓷( 例如,二硅化钼)、碳、石墨、金属、金属合金以及由陶瓷材料和金属材料制成的复合材料。该复合材料可以包括掺杂的或未掺杂的陶瓷。适合的掺杂陶瓷的实例包括掺杂的碳化硅。适合的金属的实例包括钛、锆、钽及铂族金属。适合的金属合金的实例包括不锈钢,含镍、钴、铬、铝、钛、锆、铪、铌、钼、钽、钨、锡、镓、锰及铁的合金,以及基于镍、铁、钴、不锈钢、及铁-锰-铝基合金的超耐热合金。在复合材料中,电阻材料可以依据能量传递的动力学和所需的外部的物理化学性质任选地嵌入绝缘材料内,以绝缘材料包封或涂覆,或者反之亦然。导热体1的材料包括以下的一种或多种,如玻璃、陶瓷、阳极氧化金属、被覆金属、聚酰亚胺等,陶瓷可以包括云母、氧化铝(Al2O3)或者氧化锆(ZrO2)。
每一个第一电阻加热件2和每一个第二电阻加热件3分别覆设于导热体1的外壁上;或者,导热体1是呈中空管状的,每一个第一电阻加热件2和每一个第二电阻加热件3分别覆设于导热体1的内壁上;或者,导热体1是呈中空管状的,每一个第一电阻加热件2覆设于导热体1的外壁上,每一个第二电阻加热件3覆设于导热体1的内壁上。
其中,第一电阻加热件2和第二电阻加热件3使用蒸镀、电镀、印刷等任何合适的技术沉积在导热体1上。气溶胶生成装置还包括控制器,控制器与电源以及每一个第一电阻加热件2和每一个第二电阻加热件3相连接。控制加热气溶胶生成制品的方法具体由控制器控制。
具体地,气溶胶生成装置控制加热气溶胶生成制品的方法包括在第一预设时间控制电源供电至至少一个第二电阻加热件3的步骤和在第二预设时间控制电源供电至至少一个第一电阻加热件2的步骤,在第一预设时间控制电源供电至至少一个第二电阻加热件3的步骤与在第二预设时间控制电源供电至至少一个第一电阻加热件2的步骤的较佳选择是交替进行,使彼此测温更准确,温控效果更好。也就是说,第一预设时间和第二预设时间是交替的时间,比如第一预设时间是0s、10s、20s、24s、28s的时间,第二预设时间是5s、15s、22s、26s、30s的时间,诸如此类。第一预设时间和第二预设时间的具体时间根据需要而定,优选地,在起始加热阶段,第一预设时间和第二预设时间相隔的时间长些,如相隔5s-20s进行交替。当第一电阻加热件2和第二电阻加热件3的温度接近预设温度时,所谓接近可以是略低于、略高于或等于,第一预设时间和第二预设时间相隔的时间短些,如相隔0.5s-3s进行交替。优选地,第二预设时间是当第一温度值达到接近预设温度时,也就就是说此时进入在第二预设时间控制电源供电至至少一个第一电阻加热件2的步骤;第一预设时间是当所述第二温度值达到接近预设温度时,所谓接近可以是略低于、略高于或等于,也就就是说此时进入在第一预设时间控制电源供电至至少一个第一电阻加热件2的步骤。
其中,在第一预设时间控制电源供电至至少一个第二电阻加热件3的步骤进一步包括:
至少测量一次至少一个第一电阻加热件2的第一电阻率;也就是说,在每次进入至在第一预设时间控制电源供电至至少一个第二电阻加热件3的步骤时,测量第一电阻加热件2的第一电阻率的次数可以为一次或多次,根据需要而定;
每一次测量后从测量的第一电阻率导出第一温度值,第一温度值用于标示被控制供电的第二电阻加热件3的实际温度;也就是说,利用第一电阻加热件2感应检测第二电阻加热件3的温度;
每一次导出第一温度值后将第一温度值与预设温度进行比较;
每一次比较后调整电源供应至被控制供电的第二电阻加热件3的电能进而使第一温度值在预设温度之下,也就是说使第二电阻加热件3的实际温度在预设温度之下,避免气溶胶生成制品被加热至预设温度之上而产生有害物质。
在第二预设时间控制电源供电至至少一个第一电阻加热件2的步骤进一步包括:
至少测量一次至少一个第二电阻加热件3的第二电阻率;也就是说,在每次进入至在第二预设时间控制电源供电至至少一个第一电阻加热件2的步骤时,测量第二电阻加热件3的第二电阻率的次数可以为一次或多次,根据需要而定;
每一次测量后从测量的第二电阻率导出第二温度值,第二温度值用于标示被控制供电的第一电阻加热件2的实际温度;也就是说,利用第二电阻加热件3感应检测第一电阻加热件2的温度;
每一次导出第二温度值后将第二温度值与预设温度进行比较;
每一次比较后调整电源供应至被控制供电的第一电阻加热件2的电能进而使第二温度值在预设温度之下,也就是说使第一电阻加热件2的实际温度在预设温度之下,避免气溶胶生成制品被加热至预设温度之上而产生有害物质。
需要说明的是,现有技术中已有相关报道,电阻率ρ随温度增大而增大。电阻R=V/I ;其中V是在第一电阻加热件2或第二电阻加热件3两端的电压,而I 是通过第一电阻加热件2或第二电阻加热件3的电流。电阻R取决于第一电阻加热件2或第二电阻加热件3的构造以及温度,并且由以下关系表示:R=ρ(T)×L/S,其中ρ(T) 是与温度相关的电阻率,L是第一电阻加热件2或第二电阻加热件3的长度,而S是第一电阻加热件2或第二电阻加热件3的横截面面积。对于给定的第一电阻加热件2或第二电阻加热件3的构造,L和S是固定的并且能够被测出。因而,对于给定的第一电阻加热件2或第二电阻加热件3的设计,R与ρ(T) 成比例。第一电阻加热件2或第二电阻加热件3的电阻率ρ(T) 能够以多项式的形式如下表示:ρ(T) =Po× (1+α1T+α2T2) ,其中ρo 是参考温度To下的电阻率,而α1和α2是多项式的系数。因而,知道了第一电阻加热件2或第二电阻加热件3的长度和横截面,则可以确定电阻R,并且由此通过测量第一电阻加热件2或第二电阻加热件3的电压V 和电流I来确定在给定温度下的电阻率ρ。温度能够简单地从所使用的第一电阻加热件2或第二电阻加热件3的特性电阻率相对于温度的关系的查找表中获得或者通过求以上公式的多项式的值来获得。优选地,处理可以通过在可应用于烟草的温度范围内的一个或多个(优选为两个) 线性近似中表示电阻率ρ 相对于温度的曲线来简化。这样简化了在具有有限的计算资源的控制器中所希望的对温度的求值。第一电阻加热件2或第二电阻加热件3的特性电阻率相对于温度的关系的查找表可以存储于控制器中。
另外,在第一预设时间控制电源供电至至少一个第二电阻加热件3的步骤和在第二预设时间控制电源供电至至少一个第一电阻加热件2的步骤之前,气溶胶生成装置控制加热气溶胶生成制品的方法还包括:选择预设温度。气溶胶生成制品中含有多种挥发性化合物,该选择基于应当释放以及不应当释放的挥发性化合物的释放温度,预设温度≤在气溶胶生成制品中的挥发性化合物中的至少一种的最低释放温度,预设温度可以预先存储于控制器中。预设温度也可以是可接受的范围,如减去预设温度的5%以内的范围。在另一些实施例中,预设温度≤加热气溶胶生成制品产生气溶胶但没有引起燃烧情况的温度,即该预设温度用于实现加热但不燃烧的效果。
在另一些实施例中,每一次导出第一温度值后将所述第一温度值与预设温度进行比较的步骤还包括:计算第一温度值与预设温度的第一差值;同样地,每一次导出第二温度值后将所述第二温度值与预设温度进行比较的步骤还包括:计算第二温度值与预设温度的第二差值。第二预设时间是当第一温度值与预设温度的第一差值达到10℃以下时,进一步优选地,第二预设时间是当第一温度值与预设温度的第一差值达到5℃以下时。第一预设时间是当第二温度值与预设温度的第二差值达到10℃以下时,进一步优选地,第一预设时间是当第二温度值与预设温度的第二差值达到5℃以下时。需要说明的是,第一差值可以是第一温度值低于预设温度计算的差值,也可以是第一温度高于预设温度计算的差值;第二差值可以是第二温度值低于预设温度计算的差值,也可以是第二温度值高于预设温度计算的差值。
进一步地,每一次比较后调整电源供应至被控制供电的第二电阻加热件3的电能以使所述第一温度值在所述预设温度之下的步骤还包括:
当第一温度值≥预设温度时,则停止或减少电源供应至被控制供电的第二电阻加热件3的电能;
当第一温度值<预设温度时,且第一温度值与预设温度的第一差值在如下条件:若第一预设差值≤第一差值≤第二预设差值时,保持电源供应至被控制供电的第二电阻加热件3的电能不变;若第一差值>第二预设差值时,也就是说温差较大时,则增加电源供应至被控制供电的第二电阻加热件3的电能;若第一差值<第一预设差值时,也就是说温差较小时,则减少电源供应至被控制供电的第二电阻加热件3的电能。其中,第一预设差值可以选自50-100℃范围,如50℃、80℃、100℃等等,第二预设差值可以选自150-250℃范围,如150℃、200℃、250℃等等。
每一次比较后调整电源供应至被控制供电的第一电阻加热件2的电能以使所述第二温度值在所述预设温度之下的步骤还包括:
当第二温度值≥预设温度时,则停止或减少电源供应至被控制供电的第一电阻加热件2的电能;
当第二温度值<预设温度时,且第二温度值与预设温度的第二差值在如下条件:若第一预设差值≤第二差值≤第二预设差值时,保持电源供应至被控制供电的第一电阻加热件2的电能不变;若第二差值>第二预设差值时,也就是说温差较大时,则增加电源供应至被控制供电的第一电阻加热件2的电能;若第二差值<第一预设差值时,也就是说温差较小时,则减少电源供应至被控制供电的第一电阻加热件2的电能。其中,第一预设差值可以选自50-100℃范围,如50℃、80℃、100℃等等,第二预设差值可以选自150-250℃范围,如150℃、200℃、250℃等等。在另一些实施例中,进一步地,至少测量一次至少一所述第一电阻加热件2的第一电阻率的步骤还包括:当测量所述第一电阻加热件2的第一电阻率的次数为多次时,下一次测量所述第一电阻加热件2的第一电阻率与上一次测量所述第一电阻加热件2的第一电阻率的第一间隔时间固定不变,或者第一差值越大,第一间隔时间越长。例如,当第一温度值与预设温度的第一差值在200℃以上时,第一间隔时间为10s-20s;当第一温度值与预设温度的第一差值在100-200℃时,第一间隔时间为5s-10s;当第一温度值与预设温度的第一差值在100以下时,第一间隔时间为0.5s-5s。当第一间隔时间固定不变时,可以增加电能,即加大功率,可以快速达到预设温度,因此可以在固定不变的间隔时间进行每次检测温度。
同样地,至少测量一次至少一所述第二电阻加热件3的第二电阻率的步骤还包括:测量所述第二电阻加热件3的第二电阻率的次数为多次时,下一次测量所述第二电阻加热件3的第二电阻率与上一次测量所述第二电阻加热件3的第二电阻率的第二间隔时间固定不变,或者所述第二差值越大,所述第二间隔时间越长。例如,当第二温度值与预设温度的第二差值在200℃以上时,第二间隔时间为10s-20s;当第二温度值与预设温度的第二差值在100-200℃时,第二间隔时间为5s-10s;当第二温度值与预设温度的第二差值在100以下时,第二间隔时间为0.5s-5s。当第二间隔时间固定不变时,可以增加电能,即加大功率,可以快速达到预设温度,因此可以在固定不变的间隔时间进行每次检测温度。
在另一些实施例中,进一步地,在第一预设时间控制电源供电至至少一个第二电阻加热件3的步骤还包括:被测第一电阻率的第一电阻加热件2由电源供应预设微电流,该预设微电流的电流量在满足检测第一电阻率的需求的同时该预设微电流通过第一电阻加热件2时几乎不会使第一电阻加热件2产生热量;在第二预设时间控制电源供电至至少一个第一电阻加热件2的步骤还包括:被测第二电阻率的第二电阻加热件3由电源供应预设微电流,也可以由另外的电源供应预设微电流,该预设微电流的电流量在满足检测第二电阻率的需求的同时该预设微电流通过第二电阻加热件3时几乎不会使第二电阻加热件3产生热量。该预设微电流的电流量优选≤100mA。
在另一些实施例中,进一步地,每一次比较后调整电源供应至被控制供电的第二电阻加热件3的电能以使所述第一温度值在所述预设温度之下的步骤包括每一次比较后调整电源供应至被控制供电的第二电阻加热件3的电能以使所述第一温度值在所述预设温度之下的预设范围之内,例如在预设温度的-5%之内,即预设温度减去5%至预设温度的范围之内。同样地,每一次比较后调整电源供应至被控制供电的第一电阻加热件2的电能以使所述第二温度值在所述预设温度之下的步骤包括每一次比较后调整电源供应至被控制供电的第一电阻加热件2的电能以使所述第二温度值在所述预设温度之下的预设范围之内,例如在预设温度的-5%之内,即预设温度减去5%至预设温度的范围之内。
本发明利用第一电阻加热件2和第二电阻加热件3相互对应地检测对方的温度,使导热体1的温度最终可以准确地稳定在所需要的温度,解决了测温不准确的问题,避免了导热体1的温度出现漂移的现象。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,所述气溶胶生成装置包括电源和用于将热量传导至气溶胶生成制品的导热体,在所述导热体上覆设有至少一第一电阻加热件和至少一第二电阻加热件,气溶胶生成装置控制加热气溶胶生成制品的方法包括在第一预设时间控制所述电源供电至至少一所述第二电阻加热件的步骤和在第二预设时间控制所述电源供电至至少一所述第一电阻加热件的步骤,其中,
    在第一预设时间控制电源供电至至少一所述第二电阻加热件的步骤进一步包括:
    至少测量一次至少一所述第一电阻加热件的第一电阻率;
    每一次测量后从测量的第一电阻率导出第一温度值,所述第一温度值用于标示被控制供电的第二电阻加热件的实际温度;
    每一次导出第一温度值后将所述第一温度值与预设温度进行比较;
    每一次比较后调整电源供应至被控制供电的第二电阻加热件的电能以使所述第一温度值在所述预设温度之下;
    在第二预设时间控制所述电源供电至至少一所述第一电阻加热件的步骤进一步包括:
    至少测量一次至少一所述第二电阻加热件的第二电阻率;
    每一次测量后从测量的第二电阻率导出第二温度值,所述第二温度值用于标示被控制供电的第一电阻加热件的实际温度;
    每一次导出第二温度值后将所述第二温度值与预设温度进行比较;
    每一次比较后调整电源供应至被控制供电的第一电阻加热件的电能以使所述第二温度值在所述预设温度之下。
  2. 根据权利要求1所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,每一次导出第一温度值后将所述第一温度值与预设温度进行比较的步骤还包括:计算第一温度值与预设温度的差值且设为第一差值;
    每一次导出第二温度值后将所述第二温度值与预设温度进行比较的步骤还包括:计算第二温度值与预设温度的差值且设为第二差值。
  3. 根据权利要求2所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,每一次比较后调整电源供应至被控制供电的第二电阻加热件的电能以使所述第一温度值在所述预设温度之下的步骤还包括:
    当第一温度值≥预设温度时,则停止或减少电源供应至被控制供电的第二电阻加热件的电能;
    当第一温度值<预设温度时,且第一温度值与预设温度的第一差值在如下条件:若第一预设差值≤第一差值≤第二预设差值时,保持电源供应至被控制供电的第二电阻加热件的电能不变;若第一差值>第二预设差值时,则增加电源供应至被控制供电的第二电阻加热件的电能;若第一差值<第一预设差值时,则减少电源供应至被控制供电的第二电阻加热件的电能;
    每一次比较后调整电源供应至被控制供电的第一电阻加热件的电能以使所述第二温度值在所述预设温度之下的步骤还包括:
    当第二温度值≥预设温度时,则停止或减少电源供应至被控制供电的第一电阻加热件的电能;
    当第二温度值<预设温度时,且第二温度值与预设温度的第二差值在如下条件:若第一预设差值≤第二差值≤第二预设差值时,保持电源供应至被控制供电的第一电阻加热件的电能不变;若第二差值>第二预设差值时,则增加电源供应至被控制供电的第一电阻加热件的电能;若第二差值<第一预设差值时,则减少电源供应至被控制供电的第一电阻加热件的电能。
  4. 根据权利要求2所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,在第一预设时间控制所述电源供电至至少一所述第二电阻加热件的步骤与在第二预设时间控制所述电源供电至至少一所述第一电阻加热件的步骤交替进行。
  5. 根据权利要求4所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,所述第二预设时间是当所述第一温度值达到接近所述预设温度时,所述第一预设时间是当所述第二温度值达到接近所述预设温度时。
  6. 根据权利要求5所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,所述第二预设时间是当所述第一温度值与所述预设温度相差的第一差值达到10℃以下时;所述第一预设时间是当所述第二温度值与所述预设温度相差的第二差值达到10℃以下时。
  7. 根据权利要求2所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,至少测量一次至少一所述第一电阻加热件的第一电阻率的步骤还包括:当测量所述第一电阻加热件的第一电阻率的次数为多次时,下一次测量所述第一电阻加热件的第一电阻率与上一次测量所述第一电阻加热件的第一电阻率的间隔时间设为第一间隔时间,所述第一间隔时间固定不变,或者所述第一差值越大,所述第一间隔时间越长;
    至少测量一次至少一所述第二电阻加热件的第二电阻率的步骤还包括:测量所述第二电阻加热件的第二电阻率的次数为多次时,下一次测量所述第二电阻加热件的第二电阻率与上一次测量所述第二电阻加热件的第二电阻率的间隔时间设为第二间隔时间,所述第二间隔时间固定不变,或者所述第二差值越大,第二间隔时间越长。
  8. 根据权利要求1所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,气溶胶生成制品中含有多种挥发性化合物,所述预设温度满足以下两个条件的至少一种:所述预设温度≤气溶胶生成制品中的挥发性化合物中的至少一种的最低释放温度、所述预设温度≤加热气溶胶生成制品产生气溶胶但没有引起燃烧情况的温度。
  9. 根据权利要求8所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,每一次比较后调整电源供应至被控制供电的第二电阻加热件的电能以使所述第一温度值在所述预设温度之下的步骤包括每一次比较后调整电源供应至被控制供电的第二电阻加热件的电能以使所述第一温度值在所述预设温度之下的预设范围之内;
    每一次比较后调整电源供应至被控制供电的第一电阻加热件的电能以使所述第二温度值在所述预设温度之下的步骤包括每一次比较后调整电源供应至被控制供电的第一电阻加热件的电能以使所述第二温度值在所述预设温度之下的预设范围之内。
  10. 根据权利要求1所述的气溶胶生成装置控制加热气溶胶生成制品的方法,其特征在于,每一所述第一电阻加热件和每一所述第二电阻加热件分别覆设于所述导热体的外壁上;或者,所述导热体是呈中空管状的,每一所述第一电阻加热件和每一所述第二电阻加热件分别覆设于所述导热体的内壁上;或者,所述导热体是呈中空管状的,每一所述第一电阻加热件覆设于所述导热体的外壁上,每一所述第二电阻加热件覆设于所述导热体的内壁上。
PCT/CN2021/071350 2020-01-17 2021-01-13 气溶胶生成装置控制加热气溶胶生成制品的方法 WO2021143697A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010052525.5 2020-01-17
CN202010052525 2020-01-17
CN202010110405.6A CN111165907B (zh) 2020-01-17 2020-02-24 气溶胶生成装置控制加热气溶胶生成制品的方法
CN202010110405.6 2020-02-24

Publications (1)

Publication Number Publication Date
WO2021143697A1 true WO2021143697A1 (zh) 2021-07-22

Family

ID=70619284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071350 WO2021143697A1 (zh) 2020-01-17 2021-01-13 气溶胶生成装置控制加热气溶胶生成制品的方法

Country Status (2)

Country Link
CN (1) CN111165907B (zh)
WO (1) WO2021143697A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111165907B (zh) * 2020-01-17 2022-09-27 深圳御烟实业有限公司 气溶胶生成装置控制加热气溶胶生成制品的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207518878U (zh) * 2017-11-30 2018-06-19 深圳市合元科技有限公司 一种控温陶瓷发热片以及烟具
CN108576948A (zh) * 2018-08-10 2018-09-28 普维思信(北京)科技有限公司 一种用于加热不燃烧香烟的加热装置及分段式加热方法
CN109105959A (zh) * 2018-09-05 2019-01-01 深圳瀚星翔科技有限公司 一种烤烟型电子烟温度控制的方法及烤烟型电子烟
CN109645571A (zh) * 2019-01-04 2019-04-19 深圳麦克韦尔股份有限公司 加热不燃烧装置及其加热组件、标定方法
CN208863605U (zh) * 2018-09-17 2019-05-17 湖南中烟工业有限责任公司 加热不燃烧烟具发热体、烟具及烟雾抽吸系统
US20190154619A1 (en) * 2017-11-22 2019-05-23 Jim Connolly Multi-zone, fixed potential test sensor heating system
CN209788480U (zh) * 2019-01-26 2019-12-17 深圳市合元科技有限公司 烟支加热组件及电加热吸烟装置
CN111165907A (zh) * 2020-01-17 2020-05-19 深圳御烟实业有限公司 气溶胶生成装置控制加热气溶胶生成制品的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104116138B (zh) * 2014-06-24 2017-10-10 深圳麦克韦尔股份有限公司 电子烟及其控制方法
US9949511B2 (en) * 2014-06-24 2018-04-24 Shenzhen Smoore Technology Limited Electronic cigarette and control method therefor
AU2016248879A1 (en) * 2015-04-15 2017-08-17 Philip Morris Products S.A. Device and method for controlling an electrical heater to limit temperature according to desired temperature profile over time

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190154619A1 (en) * 2017-11-22 2019-05-23 Jim Connolly Multi-zone, fixed potential test sensor heating system
CN207518878U (zh) * 2017-11-30 2018-06-19 深圳市合元科技有限公司 一种控温陶瓷发热片以及烟具
CN108576948A (zh) * 2018-08-10 2018-09-28 普维思信(北京)科技有限公司 一种用于加热不燃烧香烟的加热装置及分段式加热方法
CN109105959A (zh) * 2018-09-05 2019-01-01 深圳瀚星翔科技有限公司 一种烤烟型电子烟温度控制的方法及烤烟型电子烟
CN208863605U (zh) * 2018-09-17 2019-05-17 湖南中烟工业有限责任公司 加热不燃烧烟具发热体、烟具及烟雾抽吸系统
CN109645571A (zh) * 2019-01-04 2019-04-19 深圳麦克韦尔股份有限公司 加热不燃烧装置及其加热组件、标定方法
CN209788480U (zh) * 2019-01-26 2019-12-17 深圳市合元科技有限公司 烟支加热组件及电加热吸烟装置
CN111165907A (zh) * 2020-01-17 2020-05-19 深圳御烟实业有限公司 气溶胶生成装置控制加热气溶胶生成制品的方法

Also Published As

Publication number Publication date
CN111165907A (zh) 2020-05-19
CN111165907B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
JP6937401B2 (ja) 加熱式エアロゾル発生装置、及び一貫した特性のエアロゾルを発生させる方法
JP7021276B2 (ja) エアロゾル生成が改善されたエアロゾル発生システム
KR102284091B1 (ko) 에어로졸 발생 방법
EP3249488B1 (en) Temperature control system and control method thereof, and electronic cigarette containing said temperature control system
CN102551217B (zh) 用于控制电气烟雾生成系统中烟气成分的形成的方法
TWI697289B (zh) 氣溶膠形成製品、電熱氣溶膠產生裝置及系統、及操作該系統之方法
CN105027016B (zh) 用于控制电加热器以限制温度的装置及方法
WO2021147715A1 (zh) 电加热元件和气溶胶生成装置及制备方法和控制加热方法
BR112020004331A2 (pt) dispositivo gerador de aerossol operado eletricamente com regulação de energia contínua
CN107407941A (zh) 根据所期望的温度随时间分布曲线控制电加热器以限制温度的装置和方法
JP7381489B2 (ja) 温度に基づく制御を有するエアロゾル発生装置
EA025718B1 (ru) Система формирования аэрозоля, содержащая средство для определения истощения жидкой основы
US20220312854A1 (en) Aerosol provision systems
WO2021143697A1 (zh) 气溶胶生成装置控制加热气溶胶生成制品的方法
WO2020134888A1 (zh) 电阻检测系统和方法
CN211861814U (zh) 电加热元件及气溶胶生成装置
TW202103591A (zh) 用於電子煙之質量流量計
CN213755008U (zh) 一种气溶胶生成加热组件
EP4393332A1 (en) Aerosol generating device and control method therefor
US20240008540A1 (en) Heater for use in aerosol generation device, and aerosol generation device
WO2023194232A1 (en) An aerosol-generating device and system and method for control thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741671

Country of ref document: EP

Kind code of ref document: A1