WO2021143470A1 - 参考信号处理方法、装置、第一通信节点和第二通信节点 - Google Patents

参考信号处理方法、装置、第一通信节点和第二通信节点 Download PDF

Info

Publication number
WO2021143470A1
WO2021143470A1 PCT/CN2020/138469 CN2020138469W WO2021143470A1 WO 2021143470 A1 WO2021143470 A1 WO 2021143470A1 CN 2020138469 W CN2020138469 W CN 2020138469W WO 2021143470 A1 WO2021143470 A1 WO 2021143470A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reference signal
data
sequences
sequence
Prior art date
Application number
PCT/CN2020/138469
Other languages
English (en)
French (fr)
Other versions
WO2021143470A9 (zh
Inventor
马一华
袁志锋
胡留军
李志岗
李卫敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/758,706 priority Critical patent/US20230041846A1/en
Priority to EP20913606.8A priority patent/EP4093137A4/en
Priority to JP2022542699A priority patent/JP7443533B2/ja
Priority to KR1020227027818A priority patent/KR20220128392A/ko
Publication of WO2021143470A1 publication Critical patent/WO2021143470A1/zh
Publication of WO2021143470A9 publication Critical patent/WO2021143470A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • H04J11/0043Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation by grouping or ordering the users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment

Definitions

  • This application relates to the field of communications, such as reference signal processing methods, devices, first communication nodes, and second communication nodes.
  • each user selects a sequence from a sequence pool as a reference signal.
  • a conflict occurs. If the collision probability of the reference signals of all users is the same, it is impossible to provide differentiated services for different users.
  • This application provides a reference signal processing method, device, a first communication node, and a second communication node.
  • the embodiment of the present application provides a reference signal processing method, which is applied to a first communication node, and includes:
  • the values of w of different first communication nodes are not all the same, and the value of w is a positive integer; based on the w sequences, a reference signal is generated; and the reference signal and the corresponding data signal are sent.
  • An embodiment of the present application also provides a reference signal processing method, which is applied to a second communication node, and includes:
  • Receive reference signals and data signals of a plurality of first communication nodes based on generating at least one sequence of the target reference signal in each of the reference signals, demodulate the data signal corresponding to the target reference signal; determine to generate based on the data signal The w sequences of the target reference signal; perform interference cancellation based on the w sequences, and continue to determine the next target reference signal until all the reference signals are eliminated.
  • An embodiment of the present application also provides a reference signal processing device, which is configured in a first communication node, and includes:
  • a generating module configured to generate w sequences, the values of w of different first communication nodes are not all the same, and the w is a positive integer; the generating module is configured to generate reference signals based on the w sequences; sending The module is configured to send the reference signal and the corresponding data signal.
  • An embodiment of the present application also provides a reference signal processing device, which is configured at a second communication node, and includes:
  • the receiving module is configured to receive reference signals and data signals of multiple first communication nodes; the demodulating module is configured to generate at least one sequence of the target reference signal in each of the reference signals and demodulate the corresponding target reference signal.
  • the determination module is configured to determine the w sequences for generating the target reference signal based on the data signal; the interference cancellation module is configured to perform interference cancellation based on the w sequences, and continue to determine the next target reference signal until The cancellation of each of the reference signals is completed.
  • the embodiment of the present application also provides a first communication node, including:
  • One or more processors a storage device for storing one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors are applied to The reference signal processing method of the first communication node.
  • the embodiment of the present application also provides a second communication node, including:
  • One or more processors a storage device for storing one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors are applied to Reference signal processing method of the second communication node.
  • An embodiment of the present application also provides a storage medium that stores a computer program that, when executed by a processor, implements any reference signal processing method in the embodiments of the present application.
  • FIG. 1 is a schematic flowchart of a reference signal processing method provided by this application
  • Figure 1a is a schematic structural diagram of a transmission frame provided by this application.
  • FIG. 1b is a schematic diagram of the second communication node indicating the value of the first communication node w provided by this application;
  • FIG. 1c is a schematic diagram of generating a reference signal provided by this application.
  • FIG. 1d is another schematic diagram of generating a reference signal provided by this application.
  • FIG. 1e is a schematic diagram of a data information provided by this application including reference signal generation sequence information
  • FIG. 1f is a schematic diagram of another data information provided by this application including reference signal generation sequence information
  • FIG. 1g is a schematic diagram of another data information provided by this application including reference signal generation sequence information
  • FIG. 1h is a schematic diagram of another data information provided by this application including reference signal generation sequence information
  • FIG. 1i is a schematic diagram of another data information provided by this application including reference signal generation sequence information
  • FIG. 1j is a schematic diagram of another data information provided by this application including reference signal generation sequence information
  • FIG. 1k is a schematic diagram of another data information provided by this application including reference signal generation sequence information
  • FIG. 11 is a schematic diagram of another data information provided by this application including reference signal generation sequence information
  • FIG. 1m is a schematic diagram of another data information provided by this application including reference signal generation sequence information
  • FIG. 2 is a schematic flowchart of a reference signal processing method provided by this application.
  • FIG. 3 is a schematic structural diagram of a reference signal processing device provided by this application.
  • FIG. 4 is a schematic structural diagram of a reference signal processing device provided by this application.
  • FIG. 5 is a schematic structural diagram of a first communication node provided by this application.
  • Fig. 6 is a schematic structural diagram of a second communication node provided by this application.
  • FIG. 1 is a schematic flowchart of a reference signal processing method provided by this application.
  • the method may be suitable for reducing the collision probability of a reference signal.
  • the method may be executed by a reference signal processing device.
  • the signal processing device may be implemented by software and/or hardware and integrated on the first communication node.
  • the first communication node covers any suitable type of user equipment.
  • the reference signal processing method provided by this application includes S110, S120, and S130.
  • this application first generates w sequences, and each sequence is used to generate the reference signal.
  • the value of w may be determined based on the data information, or may be determined based on the transmission priority, or may be instructed by the base station, which is not limited here.
  • the generation of w sequences can be determined from the sequence pool based on the sequence indication information and/or the sequence number offset.
  • the sequence number offset and sequence indication information can be determined by data information.
  • the w is a positive integer.
  • the values of w of different first communication nodes are the same or partly the same, so as to reduce the collision probability of the reference signal.
  • S120 Generate a reference signal based on the w sequences.
  • this step can generate a reference signal based on each sequence.
  • the generation method is not limited here, for example, it can be a superposition method or a method of mapping to different time-frequency resources.
  • the way of superposition can be realized by sequence addition.
  • this step may send the reference signal and the corresponding data signal to the second communication node.
  • the present application provides a reference signal processing method, which is applied to a first communication node to generate w sequences, and the values of w of different first communication nodes are not all the same; based on the w sequences, a reference signal is generated; Sending the reference signal and the corresponding data signal. Using this method, the collision probability of the reference signal is effectively reduced.
  • the present application will be exemplarily described below.
  • the reference signal generation method provided in the present application can be considered as a reference signal generation method with a variable number of generated sequences.
  • (1) The reference signal collision probability of all users is the same, which is not an optimal setting for the continuous interference cancellation (Successive Interference Cancellation, SIC) process.
  • (2) The reference signal collision probability of different users is the same, and it is impossible to provide differentiated services for different users.
  • This application is aimed at large-scale access.
  • each user selects a sequence from a sequence pool as a reference signal.
  • conflicts occur. This leads to: (1) Each user sends the same number of sequences, and the reference signal collision probability is the same, which is not the optimal setting for the SIC process. (2) The priority of multiple users is the same, and emergency services cannot obtain a higher priority.
  • This application proposes a reference signal generation method, which improves the success rate of random access and provides differentiated services for access with different requirements.
  • the reference signal in this application can be generated from w sequences in a sequence pool. Different users' w can be different to reduce the collision probability.
  • Fig. 1a is a schematic diagram of the structure of a transmission frame provided by this application.
  • the reference signal can be generated by w non-repetitive sequences, and w for different users can be different.
  • Example 1 the number of sequences w generated by multiple users (ie, the first communication node) of the reference signal can be generated through a probability distribution.
  • each transmission can generate a new w through f(w), or output w generated by using f(w) once.
  • Table 1 is the correspondence table of w and f(w).
  • UE User Equipment
  • Table 1 is the correspondence table of w and f(w).
  • UE User Equipment
  • Table 1 is the correspondence table of w and f(w).
  • UE User Equipment
  • Table 1 is the correspondence table of w and f(w).
  • UE User Equipment
  • Table 1 is the correspondence table of w and f(w).
  • UE User Equipment
  • p is f(w).
  • Each UE determines the value of each w based on the corresponding relationship between w and f(w) shown in FIG. 1b.
  • the corresponding relationship between w and f(w) may be pre-stored in each UE.
  • Example 2 The number of sequences w generated by multiple users (ie, the first communication node) of the reference signal is determined by the current transmission priority of each user.
  • the method for determining the priority of transmission is not limited, and it may be determined by the first communication node, or may be instructed by the second communication node.
  • the priority can be updated once for each transmission, or the priority can be updated once for multiple transmissions, or one priority can be used fixedly.
  • Table 2 is the corresponding relationship table between w and transmission priority. See Table 2. Each UE has a pre-stored corresponding relationship between priority and w. Each UE determines its own based on the corresponding relationship between priority and w and the priority of this transmission. w. If the priority of UE1 this time is 1, then the w of UE1 is 4.
  • Example 3 The number w of sequences of reference signals generated by multiple users can be determined by the data information of each user.
  • Table 3 is a table of correspondence between w and bit symbols. Refer to Table 3. There are 3 values for w, which need to be indicated by a 2-bit symbol x.
  • the 2-bit symbol x can be the information bits before the Cyclic Redundancy Check (CRC) is added; after the CRC is added And the bits before channel coding; or the codewords after channel coding are obtained by mapping. That is, w can be determined by the information bits before adding CRC; the bits after adding CRC and before channel coding; or the 2-bit symbol (that is, x) from the codeword after channel coding.
  • CRC Cyclic Redundancy Check
  • w can be determined based on the value of x. For example, the UE takes a 2-bit symbol from the information bits before adding CRC as x, and then determines the corresponding w based on Table 3. If the value of x in UE1 is 01, the value of w in UE1 is 3.
  • Example 4 the number of sequences w of the reference signal generated by multiple users is determined by the identification information of the first communication node, for example, the UE ID (Identifier, ID), and the UE ID must be included in the transmission information at this time.
  • the identification information of the first communication node for example, the UE ID (Identifier, ID)
  • the UE ID must be included in the transmission information at this time.
  • This embodiment can be regarded as a special case of Example 3, that is, the user's data information includes the UE ID, and the UE ID is used to determine w.
  • Table 4 is a table of correspondence between w and identification information. See Table 4. Each UE may have a pre-stored table of correspondence between w and identification information, and each UE determines the corresponding w based on its identification information.
  • Example 5 The number of sequences w for multiple users to generate reference signals is allocated by the base station. This manner can also be regarded as a specific implementation manner of Example 4, that is, the base station associates the UE ID with w and notifies the UE. When the base station decodes the UE ID, the corresponding w value can be known.
  • Example 6 after w is determined, the user, that is, the first communication node, selects w sequences, and generates a reference signal through the w sequences.
  • the way to generate the reference signal can be to superimpose multiple sequences.
  • Figure 1c is a schematic diagram of reference signal generation provided by this application. See Figure 1c.
  • the sequence pool includes 8 sequences, namely z0, z1...z7.
  • Each UE selects w sequences from the sequence pool, and superimposes them.
  • Example 7 when w is determined, the user selects w sequences, and generates a reference signal through the w sequences.
  • the way of generating the reference signal may be to transmit multiple sequences at different time-frequency resource locations.
  • Figure 1d is another schematic diagram of reference signal generation provided by this application. See Figure 1d.
  • the sequence pool includes 8 sequences, namely z0, z1...z7. Each UE selects w sequences from the sequence pool and maps them to The reference signal is generated by means of different time-frequency resources.
  • the data part may only include the value information of w, or may include the value information of w and the sequence number indication information.
  • the data information needs to contain information indicating w pieces of sequence. Since in this application, w is uncertain for different users, the w pieces of sequence indication information contained in the data information include but are not limited to: the number of pieces of information w (That is, the value information of w), a single item or any combination of w pieces of sequence indication information (ie, sequence indication information) and w pieces of sequence offset information (ie, sequence number offset). Assuming that there are M kinds of values for w, you need Bits to indicate; assuming there are N sequences in the sequence set, you need Bits to indicate. One way is to include 1 piece of m-bit information about the value of w and w pieces of n-bit information about the value of the reference signal sequence number. Wherein, the reference signal is shown as pilots in this embodiment, that is, pilots, and the data information in this embodiment is information bits before adding CRC.
  • Fig. 1e is a schematic diagram of a kind of data information provided by this application including reference signal generation sequence information
  • Fig. 1f is a schematic diagram of still another kind of data information provided by this application including reference signal generation sequence information
  • Fig. 1g is another diagram provided by this application
  • This data information includes a schematic diagram of the reference signal generation sequence information.
  • the information bits before adding CRC may contain reference signal generation sequence information.
  • the reference signal generation sequence information includes one of the following: 1 value information about the value of w, that is, m-bit information ; And w sequence number indication information, that is, w n-bit information about the value of the pilot sequence.
  • the data information needs to contain information indicating w pieces of sequence. Since in this application, w is uncertain for different users, the w pieces of sequence indication information contained in the data information include, but are not limited to: the number of pieces of information w , A single item or any combination of w pieces of sequence indication information and w pieces of sequence offset information (ie, sequence number offset).
  • the reference signal is represented as a demodulation reference signal (DMRS) in this embodiment, and the data information in this embodiment is the bits before channel coding after adding CRC.
  • DMRS demodulation reference signal
  • Fig. 1h is a schematic diagram of another data information provided by this application including reference signal generation sequence information.
  • FIG. 1i is a schematic diagram of another data information provided by this application including reference signal generation sequence information.
  • the data information can be determined based on the bits after adding CRC and before channel coding.
  • the data information includes: 1 piece of value information about the value of w; any one of w-1 sequence number offsets, that is, w pieces of n-bit information about the pilot sequence number offset.
  • the data information includes 1 piece of n-bit information about the pilot sequence number offset and 1 piece of 1-bit information about the value of w; or the data information includes only 1 piece of information about the pilot sequence number offset.
  • N-bit information of the shift amount is 1 piece of value information about the pilot sequence number offset.
  • Example 10 The data information needs to contain information indicating w pieces of sequence. Since in this application, w is uncertain for different users, the w pieces of sequence indication information contained in the data information include but are not limited to: the number of pieces of information w , A single item or any combination of the indication information of the w sequences and the offset information of the w sequences.
  • v pieces of n-bit information about the value of the reference signal sequence number. Among them, the value of v for each user is the same. In this way, from v n-bit sequence number information, w can be determined by the number of non-repetitive sequence numbers, and the sequence numbers of w sequences can be determined by the collection of non-repetitive sequences.
  • the reference signal is represented as a demodulation reference signal DMRS in this embodiment, and the data information in this embodiment is information bits before adding CRC.
  • Fig. 1j is a schematic diagram of another data information provided by this application including reference signal generation sequence information.
  • the data information may include v n-bit sequence number information among the information bits before adding CRC.
  • the n of each first communication node is the same.
  • the number of non-repeated sequence numbers in the v n-bit sequence number information is determined as w, and the set of non-repeated sequence numbers is the sequence number of w sequences.
  • the data information needs to contain information indicating w pieces of sequence. Since w is uncertain for different users in this application, the w pieces of sequence indication information contained in the data information include but are not limited to: the number of pieces of information w , A single item or any combination of the indication information of the w sequences and the offset information of the w sequences. Assuming that there are V types of values for v, you need Bits to indicate; assuming there are N sequences in the sequence set, you need Bits to indicate. One way is to include 1 piece of m-bit information about the value of v and v pieces of n-bit information about the value of the reference signal sequence number.
  • w can be determined by the number of non-repetitive sequence numbers, and the sequence numbers of w sequences can be determined by the non-repetitive sequence set.
  • the reference signal is represented as a preamble in this embodiment, and the data information is a codeword after channel coding in this embodiment.
  • Figure 1k is a schematic diagram of another data information provided by this application including reference signal generation sequence information.
  • the data information may include 1 m-bit information about the value of v and v information about the value of v in the codeword after channel coding. N-bit information of the preamble sequence number information.
  • v in each first communication node is not fixed, and there are V kinds of values.
  • the number of different repeated sequence numbers in the n-bit information about the value of the sequence number is determined as w, and the non-repetitive sequence set is determined as the indication information of the w sequences, that is, the sequence number.
  • the data information needs to contain information indicating w pieces of sequence. Since w is uncertain for different users in this application, the w pieces of sequence indication information contained in the data information include but are not limited to: the number of pieces of information w , A single item or any combination of the indication information of the w sequences and the offset information of the w sequences. Assuming that there are N sequences in the sequence set, you need Bits to indicate. One way includes w n-bit sequence number information and 1 q-bit termination sequence.
  • the reference signal in this embodiment is represented as a preamble and a demodulation reference signal DMRS, and the number of sequences and sequence numbers used to generate them are related, and the data information in this embodiment is the channel after adding CRC Bits before encoding.
  • the sequence numbers and sequence numbers used to generate them are related to each other.
  • the data information is a codeword after channel coding.
  • FIG. 11 is a schematic diagram of another data information provided by this application including reference signal generation sequence information.
  • w in this application is the same as Example 10 and Example 11, and neither is determined by calculation.
  • the data information may include w n-bit sequence number information and 1 q-bit termination sequence contained in the information bits before adding the CRC.
  • the number of n-bit sequence number indications before the termination sequence is determined as w, and w pieces of n-bit sequence number information indicate w pieces of sequence indication information.
  • the data information needs to contain information indicating w pieces of sequence. Since w is uncertain for different users in this application, the w pieces of sequence indication information contained in the data information include but are not limited to: the number of pieces of information w , A single item or any combination of the indication information of the w sequences and the offset information of the w sequences. Assuming that there are N sequences in the sequence set, you need Bits to indicate. One way includes w n-bit sequence number information and 1 q-bit termination sequence. Wherein, the reference signal is shown as the preamble and demodulation reference signal DMRS in this embodiment, and the number of sequences and sequence numbers used to generate them are irrelevant. In this embodiment, the data information is added with CRC. Bits before channel coding.
  • Figure 1m is a schematic diagram of another type of data information provided by this application including reference signal generation sequence information. See Figure 1m.
  • the number of sequences and the sequence number are not related, so v n bits are extracted from the bits before channel coding after adding CRC.
  • the serial number information and v'n'bit serial number information are used as data information, and w and w serial serial numbers are determined based on v n-bit serial number information.
  • Based on v'n'bit sequence number information determine w'and w'sequence numbers to be used as the preamble and demodulation reference signal generation sequence information respectively.
  • Example 14 this application can be combined with partial scrambling technology (ie Partial Scrambling). Part of the scrambling technology can improve the randomness of scheduling-free transmission of different user data, thereby improving the demodulation performance and the estimation performance of the Data-pilot. This application can perform partial scrambling technology processing on the information bits before adding CRC or the bits before channel coding after adding CRC.
  • partial scrambling technology ie Partial Scrambling
  • the value of w is indicated by the base station or determined according to one of the following: discrete probability distribution; priority of transmission; data information.
  • the corresponding w may be determined based on the priority of the transmission.
  • w can be directly indicated by the data information or obtained by computing the data information.
  • the data information may include v n-bit sequence information; the data information may include w n-bit sequence number information and 1 q-bit termination sequence.
  • one or more of the following w sequences are determined by data information: sequence indication information; sequence number offset.
  • the sequence number indication information is used to indicate the sequence number of the sequence to identify the sequence.
  • the sequence number offset may be the sequence number offset of the sequence.
  • the sequence number indication information of w sequences can be determined based on the sequence number of a sequence and the sequence sequence number offset.
  • the data information is information bits or code words before modulation by the first communication node.
  • the data information is information bits before adding cyclic redundancy check, bits after adding cyclic redundancy check and before channel coding, or codewords after channel coding.
  • the data information includes identification information of the first communication node.
  • the identification information is used to identify the first communication node to distinguish each first communication node.
  • the number of bits of the data information is determined based on the value range of the w, and the data information indicates the w.
  • w can be directly indicated by the data information, and the number of bits of the data information can be determined based on the value range of w, so that different values of the data information have a corresponding relationship with each value of w.
  • the data signal includes one or more of the following: value information of the w; sequence number indication information; sequence sequence number offset, and the data signal is determined based on the data information.
  • the data information includes one or more of the following: 1 value information of the w; w sequence number indication information, the sequence number indication information is used to indicate w sequences, see this application for specific examples Example 8. Determine w sequences by using w sequence number indication information, and determine the value of w based on the value information of w.
  • the data information includes one or more of the following: 1 value information of the w; w-1 sequence number offsets.
  • 1 value information of the w For a specific example, refer to Example 9 of this application, based on the value of w
  • the information determines the value of w, and based on w-1 sequence number offsets and the sequence number of the successfully detected data, the sequence number of the sequence that generates the reference information is determined.
  • the sequence number offset is the offset of the sequence number.
  • the data information when the values of v of different first communication nodes are the same, the data information includes v n-bit information, and when the values of v of different first communication nodes are different, The data information includes v n-bit information and the value information of v; the number of non-repeated information in the v n-bit information is the w; and the v n-bit information is not repeated
  • the information of is determined as sequence number indication information, where n is a positive integer, v is a positive integer, and the value of v is greater than or equal to w of all first communication nodes.
  • the value of w and the sequence number indication information are obtained through data information operations.
  • the number of non-repeated information in the v n-bit information is determined as w, and the non-repeated n-bit information is determined as the sequence number indication information.
  • the value of n is determined based on the number of sequences included in the sequence set of obtaining w sequences.
  • the data information includes: w n-bit information and 1 q-bit termination sequence, and the value of n is determined based on the number of sequences included in the sequence set of obtaining w sequences,
  • the q is a positive integer; the number indicated by the first n bits of the termination sequence is the w, and the w pieces of n-bit information indicate the sequence number indication information of the w pieces of sequence. See Example 12 for specific examples.
  • the method further includes:
  • the information bits before the cyclic redundancy check or the information bits after the cyclic redundancy check are partially scrambled.
  • the reference signal includes one or more of the following: preamble; pilot; demodulation reference signal.
  • the generating a reference signal based on the w sequences includes:
  • the w sequences are superimposed to generate a reference signal; or, the w sequences are mapped to different time-frequency resources to generate a reference signal.
  • FIG. 2 is a schematic flow chart of a reference signal processing method provided by this application.
  • the method can be applied to the situation of reducing the collision probability of the reference signal.
  • the method can be implemented by the reference signal processing device. Execution, the reference signal processing device may be implemented by software and/or hardware, and integrated on the second communication node.
  • the second communication node may be a base station.
  • the reference signal processing method includes S210, S220, and S230.
  • S210 Receive reference signals and data signals of multiple first communication nodes.
  • S220 Based on generating at least one sequence of the target reference signal in each of the reference signals, demodulate a data signal corresponding to the target reference signal.
  • This application can detect the target reference signal and determine at least one sequence for generating the target reference signal.
  • the target reference signal is the reference signal currently being processed.
  • the data signal is detected by using at least one sequence that generates the target reference signal to obtain a data signal corresponding to the target reference signal.
  • S230 Determine, based on the data signal, w sequences for generating the target reference signal.
  • the data signal After the data signal is determined, the information included in the data signal is extracted.
  • the data signal includes one or more of the following: value information of the w; sequence number indication information; sequence sequence number offset, the data signal is based on the data
  • the information is OK.
  • the data signal may be a signal sent to the second communication node after the data information is processed. Different data information corresponds to different processing, which is not limited here.
  • the w sequences can be determined based on each information in the same manner as the first communication node.
  • S240 Perform interference cancellation based on the w sequences, and continue to determine the next target reference signal until all the reference signals are eliminated.
  • interference cancellation can be performed in this step, such as eliminating target reference signals and data signals corresponding to w sequences; or only eliminating data signals corresponding to w sequences.
  • the remaining reference signals can be continuously detected to obtain the next target reference signal, and S220 is continued.
  • This application provides a reference signal processing method, which is applied to a second communication node, and receives reference signals and data signals of multiple first communication nodes; based on generating at least one sequence of target reference signals in each of the reference signals, demodulates A data signal corresponding to the target reference signal is generated; and w sequences for generating the target reference signal are determined based on the data signal. Using this method effectively reduces the collision probability of the reference signal.
  • the method further includes sending the value of w. Such as sending to the first communication node to indicate the value of the first communication node w.
  • the value of w is determined according to one of the following: discrete probability distribution; priority of transmission; data information.
  • one or more of the following w sequences are determined by data information: sequence indication information; sequence number offset.
  • the data information is information bits or code words before modulation by the first communication node.
  • the data information is information bits before adding cyclic redundancy check, bits after adding cyclic redundancy check and before channel coding, or codewords after channel coding.
  • the data information includes identification information of the first communication node.
  • the number of bits of the data information is determined based on the value range of the w, and the data information indicates the w.
  • the data signal includes one or more of the following: value information of the w; sequence number indication information; sequence sequence number offset, and the data signal is determined based on the data information.
  • the data information includes one or more of the following: one piece of value information of the w; and w pieces of sequence number indication information, where the sequence number indication information is used to indicate w sequences.
  • the data information includes one or more of the following: 1 value information of the w; w-1 sequence number offsets.
  • the data information when the values of v of different first communication nodes are the same, the data information includes v n-bit information, and when the values of v of different first communication nodes are different, The data information includes v n-bit information and the value information of v; the number of non-repeated information in the v n-bit information is the w; and the v n-bit information is not repeated The information is determined as the serial number indication information.
  • the data information includes: w pieces of n-bit information and 1 q-bit termination sequence, and the value of n is determined based on the number of sequences included in the sequence set for obtaining the w sequences;
  • the number indicated by the first n bits of the termination sequence is the w, and the w pieces of n-bit information indicate the sequence number indication information of the w pieces of sequence.
  • the information bits before the cyclic redundancy check or the information bits after the cyclic redundancy check are partially scrambled.
  • the reference signal includes one or more of the following: preamble; pilot; demodulation reference signal.
  • FIG. 3 is a schematic structural diagram of a reference signal processing device provided by this application.
  • the device is configured at a first communication node.
  • the w is a positive integer;
  • the generating module 32 is configured to generate reference signals based on the w sequences;
  • the sending module 33 It is configured to send the reference signal and the corresponding data signal.
  • the reference signal processing device provided in this embodiment is used to implement the reference signal processing method of the embodiment shown in FIG. 1.
  • the implementation principle and technical effect of the reference signal processing device provided in this embodiment are the same as the reference signal processing of the embodiment shown in FIG. The method is similar, so I won't repeat it here.
  • the value of w is indicated by the base station or determined according to one of the following: discrete probability distribution; priority of transmission; data information.
  • one or more of the following w sequences are determined by data information: sequence indication information; sequence number offset.
  • the data information is information bits or code words before modulation by the first communication node.
  • the data information is information bits before adding cyclic redundancy check, bits after adding cyclic redundancy check and before channel coding, or codewords after channel coding.
  • the data information includes identification information of the first communication node.
  • the number of bits of the data information is determined based on the value range of the w, and the data information indicates the w.
  • the data signal includes one or more of the following: value information of the w; sequence number indication information; sequence sequence number offset, and the data signal is determined based on the data information.
  • the data information includes one or more of the following: one piece of value information of the w; and w pieces of sequence number indication information, where the sequence number indication information is used to indicate w sequences.
  • the data information includes one or more of the following: 1 value information of the w; w-1 sequence number offsets.
  • the data information when the values of v of different first communication nodes are the same, the data information includes v n-bit information, and when the values of v of different first communication nodes are different, The data information includes v n-bit information and the value information of v; the number of non-repeated information in the v n-bit information is the w; and the v n-bit information is not repeated
  • the information of is determined as sequence number indication information; wherein, the n is a positive integer, the v is a positive integer, and the value of v is greater than or equal to w of all first communication nodes.
  • the data information includes: w n-bit information and 1 q-bit termination sequence, and the value of n is determined based on the number of sequences included in the sequence set of obtaining w sequences,
  • the q is a positive integer; the number indicated by the first n bits of the termination sequence is the w, and the w pieces of n-bit information indicate the sequence number indication information of the w pieces of sequence.
  • the device further includes: a processing module configured to:
  • the information bits before the cyclic redundancy check or the information bits after the cyclic redundancy check are partially scrambled.
  • the reference signal includes one or more of the following: preamble; pilot; demodulation reference signal.
  • the generating module 32 is configured to:
  • the w sequences are superimposed to generate a reference signal; or, the w sequences are mapped to different time-frequency resources to generate a reference signal.
  • FIG. 4 is a schematic structural diagram of a reference signal processing device provided by this application.
  • the device is configured at a second communication node.
  • the device includes: a receiving module 41, Set to receive reference signals and data signals of multiple first communication nodes; the demodulation module 42 is set to demodulate data corresponding to the target reference signal based on generating at least one sequence of the target reference signal in each of the reference signals.
  • the determination module 43 is configured to determine the w sequences for generating the target reference signal based on the data signal; the interference cancellation module 44 is configured to perform interference cancellation based on the w sequences, and continue to determine the next target reference signal until The cancellation of each of the reference signals is completed.
  • the reference signal processing device provided in this embodiment is used to implement the reference signal processing method of the embodiment shown in FIG. 2.
  • the implementation principle and technical effect of the reference signal processing device provided in this embodiment are the same as the reference signal processing of the embodiment shown in FIG. The method is similar, so I won't repeat it here.
  • the device further includes a sending module configured to send the value of W.
  • the value of w is determined according to one of the following: discrete probability distribution; priority of transmission; data information.
  • one or more of the following w sequences are determined by data information: sequence indication information; sequence number offset.
  • the data information is information bits or code words before modulation by the first communication node.
  • the data information is information bits before adding cyclic redundancy check, bits after adding cyclic redundancy check and before channel coding, or codewords after channel coding.
  • the data information includes identification information of the first communication node.
  • the number of bits of the data information is determined based on the value range of the w, and the data information indicates the w.
  • the data signal includes one or more of the following: value information of the w; sequence number indication information; sequence sequence number offset, and the data signal is determined based on the data information.
  • the data information includes one or more of the following: one piece of value information of the w; and w pieces of sequence number indication information, where the sequence number indication information is used to indicate w sequences.
  • the data information includes one or more of the following: 1 value information of the w; w-1 sequence number offsets.
  • the data information when the values of v of different first communication nodes are the same, the data information includes v n-bit information, and when the values of v of different first communication nodes are different, The data information includes v n-bit information and the value information of v; the number of non-repeated information in the v n-bit information is the w; and the v n-bit information is not repeated
  • the information of is determined as sequence number indication information; wherein, the n is a positive integer, the v is a positive integer, and the value of v is greater than or equal to w of all first communication nodes.
  • the data information includes: w n-bit information and 1 q-bit termination sequence, and the value of n is determined based on the number of sequences included in the sequence set of obtaining w sequences,
  • the q is a positive integer; the number indicated by the first n bits of the termination sequence is the w, and the w pieces of n-bit information indicate the sequence number indication information of the w pieces of sequence.
  • the information bits before the cyclic redundancy check or the information bits after the cyclic redundancy check are partially scrambled.
  • FIG. 5 is a schematic structural diagram of a first communication node provided by this application.
  • the first communication node provided by this application includes one or more processors. 51 and a storage device 52; there may be one or more processors 51 in the first communication node.
  • one processor 51 is taken as an example; the storage device 52 is used to store one or more programs; the one or Multiple programs are executed by the one or more processors 51, so that the one or more processors 51 implement the method described in FIG. 1 in the embodiment of the present application.
  • the first communication node further includes: a communication device 53, an input device 54 and an output device 55.
  • the processor 51, the storage device 52, the communication device 53, the input device 54 and the output device 55 in the first communication node may be connected by a bus or other means.
  • the connection by a bus is taken as an example.
  • the input device 54 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the first communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to perform information transceiving and communication under the control of the processor 51.
  • the information includes but is not limited to reference signals and corresponding data symbols.
  • the storage device 52 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the method described in FIG. 1 of the embodiment of the present application (for example, refer to the signal processing device in the The generation module 31, the generation module 32 and the sending module 33).
  • the storage device 52 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the first communication node and the like.
  • the storage device 52 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 52 may include memories remotely provided with respect to the processor 51, and these remote memories may be connected to the first communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • FIG. 6 is a schematic structural diagram of a second communication node provided by this application.
  • the second communication node provided by this application includes one or more There are two processors 61 and a storage device 62; the processors 61 in the second communication node may be one or more.
  • one processor 61 is taken as an example; the storage device 62 is used to store one or more programs; The one or more programs are executed by the one or more processors 61, so that the one or more processors 61 implement the reference signal processing method as described in FIG. 2 in the embodiment of the present application.
  • the second communication node further includes: a communication device 63, an input device 64, and an output device 65.
  • the processor 61, the storage device 62, the communication device 63, the input device 64, and the output device 65 in the second communication node may be connected by a bus or other methods.
  • the connection by a bus is taken as an example.
  • the input device 64 can be used to receive inputted digital or character information, and generate key signal input related to user settings and function control of the second communication node.
  • the output device 65 may include a display device such as a display screen.
  • the communication device 63 may include a receiver and a transmitter.
  • the communication device 63 is configured to perform information transceiving and communication under the control of the processor 61.
  • the information includes but is not limited to reference signals and corresponding data symbols.
  • the storage device 62 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the reference signal processing method described in FIG. 2 of the embodiment of the present application (for example, reference signal The receiving module 41, the demodulating module 42, the determining module 43 and the interference cancellation module 44 in the processing device).
  • the storage device 62 may include a storage program area and a storage data area, where the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the second communication node, and the like.
  • the storage device 62 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 62 may include memories remotely provided with respect to the processor 61, and these remote memories may be connected to the second communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • An embodiment of the present application further provides a storage medium that stores a computer program, and the computer program implements the reference signal processing method described in any of the embodiments of the present application when the computer program is executed by a processor.
  • the reference signal processing method applied to the first communication node and the reference signal processing method applied to the second communication node wherein the reference signal processing method applied to the first communication node includes: generating w sequences, different first communication The values of the w of the nodes are not all the same; based on the w sequences, a reference signal is generated; and the reference signal and the corresponding data signal are sent.
  • the reference signal processing method applied to the second communication node includes: receiving reference signals and data signals of a plurality of first communication nodes; based on generating at least one sequence of the target reference signal in each of the reference signals, demodulating the signal corresponding to the target The data signal of the reference signal; determining, based on the data signal, w sequences for generating the target reference signal.
  • the computer storage medium of the embodiment of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above.
  • Examples of computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (Random Access Memory, RAM), read-only memory (Read Only) Memory, ROM), Erasable Programmable Read Only Memory (EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to: electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • the computer program code used to perform the operations of this application can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or, it can be connected to an external computer (For example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user equipment covers any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本文公开一种参考信号处理方法、装置、第一通信节点和第二通信节点。该参考信号处理方法包括:产生w条序列,不同的第一通信节点的w的取值不全相同,w为正整数;基于所述w条序列,生成参考信号;发送所述参考信号和所述参考信号对应的数据信号。

Description

参考信号处理方法、装置、第一通信节点和第二通信节点
本申请要求在2020年01月16日提交中国专利局、申请号为202010048713.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及参考信号处理方法、装置、第一通信节点和第二通信节点。
背景技术
在大规模接入场景中,如随机接入场景,每个用户从一个序列池中选择一个序列作为参考信号。当多个用户选择同一个参考信号时,则发生冲突。若所有用户的参考信号的碰撞概率一致,则无法为不同用户提供差异化的业务。
发明内容
本申请提供参考信号处理方法、装置、第一通信节点和第二通信节点。
本申请实施例提供了一种参考信号处理方法,应用于第一通信节点,包括:
产生w条序列,不同的第一通信节点的所述w的取值不全相同,所述w为正整数;基于所述w条序列,生成参考信号;发送所述参考信号和对应的数据信号。
本申请实施例还提供了一种参考信号处理方法,应用于第二通信节点,包括:
接收多个第一通信节点的参考信号和数据信号;基于生成各所述参考信号中目标参考信号的至少一个序列,解调出对应所述目标参考信号的数据信号;基于所述数据信号确定生成所述目标参考信号的w条序列;基于所述w条序列进行干扰消除,继续确定下一个目标参考信号直至各所述参考信号均消除完成。
本申请实施例还提供了一种参考信号处理装置,配置于第一通信节点,包括:
产生模块,设置为产生w条序列,不同的第一通信节点的所述w的取值不全相同,所述w为正整数;生成模块,设置为基于所述w条序列,生成参考信号;发送模块,设置为发送所述参考信号和对应的数据信号。
本申请实施例还提供了一种参考信号处理装置,配置于第二通信节点,包 括:
接收模块,设置为接收多个第一通信节点的参考信号和数据信号;解调模块,设置为基于生成各所述参考信号中目标参考信号的至少一个序列,解调出对应所述目标参考信号的数据信号;确定模块,设置为基于所述数据信号确定生成所述目标参考信号的w条序列;干扰消除模块,设置为基于所述w条序列进行干扰消除,继续确定下一个目标参考信号直至各所述参考信号均消除完成。
本申请实施例还提供了一种第一通信节点,包括:
一个或多个处理器;存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现应用于第一通信节点的参考信号处理方法。
本申请实施例还提供了一种第二通信节点,包括:
一个或多个处理器;存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现应用于第二通信节点的参考信号处理方法。
本申请实施例还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种参考信号处理方法。
附图说明
图1为本申请提供的一种参考信号处理方法的流程示意图;
图1a为本申请提供的一种传输帧的结构示意图;
图1b为本申请提供的第二通信节点指示第一通信节点w取值的示意图;
图1c为本申请提供的一种生成参考信号的示意图;
图1d为本申请提供的又一种生成参考信号的示意图;
图1e为本申请提供的一种数据信息包含参考信号生成序列信息的示意图;
图1f为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图;
图1g为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图;
图1h为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图;
图1i为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图;
图1j为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图;
图1k为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图;
图1l为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图;
图1m为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图;
图2为本申请提供的一种参考信号处理方法的流程示意图;
图3为本申请提供的一种参考信号处理装置的结构示意图;
图4为本申请提供的一种参考信号处理装置的结构示意图;
图5为本申请提供的一种第一通信节点的结构示意图;
图6为本申请提供的一种第二通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在一个示例性实施方式中,图1为本申请提供的一种参考信号处理方法的流程示意图,该方法可以适用于降低参考信号碰撞概率的情况,该方法可以由参考信号处理装置执行,该参考信号处理装置可以由软件和/或硬件实现,并集成在第一通信节点上。第一通信节点涵盖任何适合类型的用户设备。
如图1所示,本申请提供的参考信号处理方法,包括S110、S120和S130。
S110、产生w条序列,不同的第一通信节点的所述w的取值不全相同。
为降低参考信号的碰撞概率,本申请首先产生w条序列,各序列用于生成参考信号。w的取值可以基于数据信息确定,也可以基于传输优先级确定,又可以由基站指示,此处不作限定。w条序列的产生可以从序列池中基于序列指示信息和/或序列序号偏移量确定。序列序号偏移量和序列指示信息可以由数据信息确定。所述w为正整数。
不同的第一通信节点的w的取值相同或部分相同,以降低参考信号的碰撞概率。
S120、基于所述w条序列,生成参考信号。
在产生w条序列后,本步骤可以基于各序列生成参考信号,此处不对生成的手段进行限定,如可以为叠加的方式或映射到不同的时频资源的方式。叠加 的方式可以通过序列相加实现。
S130、发送所述参考信号和对应的数据信号。
在生成参考信号后,本步骤可以发送参考信号和对应的数据信号至第二通信节点。
本申请提供了一种参考信号处理方法,应用于第一通信节点,产生w条序列,不同的第一通信节点的所述w的取值不全相同;基于所述w条序列,生成参考信号;发送所述参考信号和对应的数据信号。利用该方法,有效的降低了参考信号的碰撞概率。
以下对本申请进行示例性描述,本申请提供的参考信号生成方法可以认为是可变生成序列数量的参考信号生成方法。在传统通信系统中,(1)所有用户的参考信号碰撞概率一致,对连续干扰消除(Successive Interference Cancellation,SIC)过程来说不是最优的设定。(2)不同用户的参考信号碰撞概率一致,无法为不同用户提供差异化的业务。
本申请针对大规模接入。传统的随机接入方式,每个用户从一个序列池里面选择一条序列作为参考信号,当多个用户选择同一个参考信号时,则发生冲突。这导致了,(1)每个用户发相同数量的序列,则参考信号碰撞概率一致,不是SIC过程的最优的设置。(2)多个用户的优先级一致,紧急业务无法获得更高的优先级。
本申请提出了一种参考信号的生成方式,提高随机接入的成功率,为不同需求的接入提供差异化的业务。本申请中的参考信号可以由一个序列池中的w条序列生成。不同用户的w可以不同,以降低碰撞概率。
图1a为本申请提供的一种传输帧的结构示意图,参见图1a,参考信号可以由w条不重复的序列生成,不同用户的w可以是不同的。
示例1,多个用户(即第一通信节点)生成参考信号的序列数量w可以通过概率分布来生成。
概率分布可以表达成w~f(w),w=1,2,3…,满足
Figure PCTCN2020138469-appb-000001
对于一个用户来说,每次传输都可以通过f(w)新生成一个w,也可以多次输出使用一次f(w)生成出来的w。
表1为w与f(w)的对应关系表。参见表1,用户设备(User Equipment,UE)基于概率分布确定w,如UE1通过f(w)的值为0.5,确定w 1=2。其中,p即为f(w)。各UE基于图1b中示出的w与f(w)的对应关系确定各自w的取值。其中,w与f(w)的对应关系可以预存在各UE中。
表1 w与f(w)的对应关系表
w 2 3 4 其他
p 0.5 0.28 0.22 0
示例2,多个用户(即第一通信节点)生成参考信号的序列数量w由每个用户当前传输的优先级来确定。对传输的优先级的确定方式不作限定,可以为第一通信节点确定,也可以为第二通信节点指示。
对于一个用户来说,可以每次传输都更新一次优先级,也可以多次传输更新一次优先级,也可以固定使用一个优先级。
表2为w与传输优先级的对应关系表,参见表2,各UE预存有优先级与w的对应关系,各UE基于优先级与w的对应关系和本次传输的优先级,确定各自的w。如UE1本次优先级为1,则UE1的w为4。
表2 w与传输优先级的对应关系表
优先级 1 2 3
w 4 2 1
示例3,多个用户生成参考信号的序列数量w可以由每个用户的数据信息来确定。表3为w与比特符号对应关系表。参见表3,w有3种取值,需要用2比特符号x来指示,这2比特符号x可以是通过对加循环冗余校验(Cyclic Redundancy Check,CRC)前的信息比特;加CRC后且信道编码前的比特;或信道编码后的码字,进行映射得到的。即w可以由加CRC前的信息比特;加CRC后且信道编码前的比特;或信道编码后的码字中取2比特符号(即x)确定。在UE确定w时,可以基于x的取值确定w,如UE从加CRC前的信息比特中取2比特符号作为x,然后基于表3确定对应的w。如UE1中x的取值为01,则UE1中w的取值为3。
表3 w与比特符号对应关系表
x 00/11 01 10
w 2 3 4
示例4,多个用户生成参考信号的序列数量w由第一通信节点的标识信息, 如,UE标识(Identifier,ID)来决定,此时传输信息中要包含UE ID。此实施例可以看作是示例3的一种特殊情况,即用户的数据信息包含UE ID,且用UE ID来确定w。
表4为w与标识信息的对应关系表,参见表4,各UE中可以预存有w与标识信息的对应关系表,各UE基于其标识信息,确定对应的w。
表4 w与标识信息的对应关系表
标识信息 1 2 3 4 ...
w 2 3 4 2 ...
示例5,多个用户生成参考信号的序列数量w由基站分配。这种方式也可以看作是示例4的一种具体的实现方式,即基站侧将UE ID和w进行关联,并通知到UE。当基站解出UE ID时,即可知道对应的w值。图1b为本申请提供的第二通信节点指示第一通信节点w取值的示意图,参见图1b,第二通信节点即基站,向各UE指示对应的w取值,如向UE1指示w=2。
示例6,当w确定之后,用户,即第一通信节点选择w条序列,并通过此w条序列生成参考信号。其生成参考信号的方式可以是叠加多条序列。
图1c为本申请提供的一种生成参考信号的示意图,参见图1c,序列池中包括8条序列,即z0、z1……z7,各UE从序列池中选取w条序列,通过叠加的方式生成参考信号,如UE1选取序列z2和z6,生成参考信号。
示例7,当w确定之后,用户选择w条序列,并通过此w条序列生成参考信号。其生成参考信号的方式可以是在不同的时频资源位置传输多条序列。
图1d为本申请提供的又一种生成参考信号的示意图,参见图1d,序列池中包括8条序列,即z0、z1……z7,各UE从序列池中选取w条序列,通过映射在不同时频资源的方式生成参考信号。在w取值为1的情况下,数据部分可以仅包括w的取值信息,也可以包括w的取值信息和序号指示信息。
示例8,数据信息需要包含指示w条序列的信息,由于在本申请中,w对于不同用户是不确定的,数据信息包含的w条序列指示信息,包含但不限于:序列条数w的信息(即w的取值信息),w条序列的指示信息(即序列指示信息)和w条序列的偏移量信息(即序列序号偏移量)中的单项或任意组合。假设w的取值有M种,则需要
Figure PCTCN2020138469-appb-000002
比特来指示;假设序列集合中一共有N条序列,则需要
Figure PCTCN2020138469-appb-000003
比特来指示。一种方式是包含1个关于w取值的m比特信息和w个关于参考信号序号取值的n比特信息。其中,所述的参考信 号在此实施例中表现为导频,即pilots,所述的数据信息在此实施例中为加CRC前的信息比特。
图1e为本申请提供的一种数据信息包含参考信号生成序列信息的示意图,图1f为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图,图1g为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图。参见图1e、图1f及图1g,可以在加CRC前的信息比特包含参考信号生成序列信息,参考信号生成序列信息包括如下之一:1个关于w取值的取值信息,即m比特信息;和w个序号指示信息,即w个关于导频序列取值的n比特信息。
示例9,数据信息需要包含指示w条序列的信息,由于在本申请中,w对于不同用户是不确定的,数据信息包含的w条序列指示信息,包含但不限于:序列条数w的信息,w条序列的指示信息和w条序列的偏移量信息(即序列序号偏移量)中的单项或任意组合。
假设w的取值有2种,则需要1比特来指示;假设序列集合中一共有N条序列,两条序列的偏移量的范围为-N+1~N-1,则需要
Figure PCTCN2020138469-appb-000004
比特来指示。一种方式是包含1个关于w取值的m比特信息和w-1个关于参考信号序号偏移量的n比特信息。其中,所述的参考信号在此实施例中表现为解调参考信号(Demodulation Reference Signal,DMRS),所述的数据信息在此实施例中为加CRC后信道编码前的比特。
图1h为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图。图1i为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图。参见图1h和图1i,数据信息可以基于加CRC后且信道编码前的比特确定。数据信息包括:1个关于w取值的取值信息;w-1个序列序号偏移量中的任意一个,即w个关于导频序号偏移量的n比特信息。在w取值为2的情况下,数据信息包括1个关于导频序号偏移量的n比特信息和1个关于w取值的1比特信息;或数据信息仅包括1个关于导频序号偏移量的n比特信息。
示例10,数据信息需要包含指示w条序列的信息,由于在本申请中,w对于不同用户是不确定的,数据信息包含的w条序列指示信息,包含但不限于:序列条数w的信息,w条序列的指示信息和w条序列的偏移量信息中的单项或任意组合。
假设序列集合中一共有N条序列,则需要
Figure PCTCN2020138469-appb-000005
比特来指示。一种方式是包含v个关于参考信号序号取值的n比特信息。其中,每个用户的v取值相同。通过这种方式,可以从v个n比特序号信息中,通过不重复序号数量来确定w,通过不重复的序列集合来确定w条序列的序号。其中,所述的参考信号在此实施例中表现为解调参考信号DMRS,所述的数据信息在此实施例中为 加CRC前的信息比特。
图1j为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图,参考1j,数据信息可以包括加CRC前的信息比特中v个n比特序号信息。每个第一通信节点的n相同。将v个n比特序号信息中不重复的序号数量确定为w,不重复的序号集合为w条序列的序号。
示例11,数据信息需要包含指示w条序列的信息,由于在本申请中,w对于不同用户是不确定的,数据信息包含的w条序列指示信息,包含但不限于:序列条数w的信息,w条序列的指示信息和w条序列的偏移量信息中的单项或任意组合。假设v的取值有V种,则需要
Figure PCTCN2020138469-appb-000006
比特来指示;假设序列集合中一共有N条序列,则需要
Figure PCTCN2020138469-appb-000007
比特来指示。一种方式是包含1个关于v取值的m比特信息和v个关于参考信号序号取值的n比特信息。通过这种方式,可以从v个n比特序号信息中,通过不重复序号数量来确定w,通过不重复的序列集合来确定w条序列的序号。其中,所述的参考信号在此实施例中表现为前导Preamble,所述的数据信息在此实施例中为信道编码后的码字。
图1k为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图,参见图1k,数据信息可以包括信道编码后的码字中1个关于v取值的m比特信息和v个关于前导序号信息的n比特信息。本示例中各第一通信节点中的v不固定,有V种取值。本申请将v个关于序号取值的n比特信息中不同重复的序号数量确定为w,不重复的序列集合确定为w条序列的指示信息,即序列序号。
示例12,数据信息需要包含指示w条序列的信息,由于在本申请中,w对于不同用户是不确定的,数据信息包含的w条序列指示信息,包含但不限于:序列条数w的信息,w条序列的指示信息和w条序列的偏移量信息中的单项或任意组合。假设序列集合中一共有N条序列,则需要
Figure PCTCN2020138469-appb-000008
比特来指示。一种方式包含w个n比特序号信息和1个q比特终止序列。其中,所述的参考信号在此实施例中表现为前导Preamble和解调参考信号DMRS,且生成它们的序列数量和序号是关联的,所述的数据信息在此实施例中为加CRC后信道编码前的比特。且生成它们的序列数量和序号是相互关联的,所述的数据信息在此实施例中为加信道编码后的码字。
图1l为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图,参见图1l,本申请中的w与示例10和示例11相同,均未运算确定。本示例中,数据信息可以包括加CRC前的信息比特中包含的w个n比特序号信息和1个q 比特终止序列。将终止序列前n比特序号指示的个数确定为w,w个n比特序号信息指示w条序列的指示信息。
示例13,数据信息需要包含指示w条序列的信息,由于在本申请中,w对于不同用户是不确定的,数据信息包含的w条序列指示信息,包含但不限于:序列条数w的信息,w条序列的指示信息和w条序列的偏移量信息中的单项或任意组合。假设序列集合中一共有N条序列,则需要
Figure PCTCN2020138469-appb-000009
比特来指示。一种方式包含w个n比特序号信息和1个q比特终止序列。其中,所述的参考信号在此实施例中表现为前导Preamble和解调参考信号DMRS,且生成它们的序列数量和序号是无关联的,所述的数据信息在此实施例中为加CRC后信道编码前的比特。
图1m为本申请提供的又一种数据信息包含参考信号生成序列信息的示意图,参见图1m,序列数量和序号是无关联的,故在加CRC后信道编码前的比特中提取v个n比特序号信息和v'个n'比特序号信息作为数据信息,基于v个n比特序号信息,确定w和w条序列序号。基于v'个n'比特序号信息,确定w'和w'条序列序号,以分别作为前导和解调参考信号的生成序列信息。
示例14,本申请可以结合部分加扰技术(即Partial Scrambling)。部分加扰技术可以提高免调度传输不同用户数据的随机性,进而可以提高解调性能,以及提高Data-pilot的估计性能。本申请可以对加CRC前的信息比特或加CRC后信道编码前的比特进行部分加扰技术处理。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述w的取值由基站指示或根据如下之一确定:离散概率分布;传输的优先级;数据信息。
w可以与传输的优先级存在对应关系,基于传输的优先级可以确定对应的w。w可以由数据信息直接指示或通过对数据信息运算得到。如数据信息可以包括v个n比特序列信息;数据信息可以包括w个n比特序号信息和1个q比特终止序列。
在一个实施例中,所述w条序列的如下一个或多个由数据信息确定:序列指示信息;序列序号偏移量。
序号指示信息用于指示序列的序号,以标识该序列。序列序号偏移量可以为序列的序号的偏移量。基于一个序列的序号及序列序号偏移量可以确定w条序列的序号指示信息。
在一个实施例中,所述数据信息为所述第一通信节点进行调制前的信息比特或码字。
在一个实施例中,所述数据信息为加循环冗余校验前的信息比特、加循环冗余校验后且信道编码前的比特或信道编码后的码字。
在一个实施例中,所述数据信息包括所述第一通信节点的标识信息。
w可以和第一通信节点的标识信息存在对应关系,确定第一通信节点的标识信息后,可以确定对应的w。标识信息用于标识第一通信节点,以区分各第一通信节点。
在一个实施例中,所述数据信息的比特位数基于所述w的取值范围确定,所述数据信息指示所述w,具体示例参见本申请示例3。w可以由数据信息直接指示,数据信息的比特位数可以基于w的取值范围确定,以使得在数据信息的不同取值与w的各取值存在对应关系。
在一个实施例中,所述数据信号包括如下一个或多个:所述w的取值信息;序号指示信息;序列序号偏移量,所述数据信号基于所述数据信息确定。
在一个实施例中,所述数据信息包括以下一个或多个:1个所述w的取值信息;w个序号指示信息,所述序号指示信息用于指示w个序列,具体示例参见本申请示例8,通过w个序号指示信息确定w个序列,基于w的取值信息确定w的取值。
在一个实施例中,所述数据信息包括以下一个或多个:1个所述w的取值信息;w-1个序列序号偏移量,具体示例参见本申请示例9,基于w的取值信息确定w的取值,基于w-1个序列序号偏移量及成功检测数据的序列序号,确定生成参考信息的序列的序号。序号偏移量为序列序号的偏移量。
在一个实施例中,在不同第一通信节点的v的取值相同的情况下,所述数据信息包括v个n比特的信息,在不同第一通信节点的v的取值不同的情况下,所述数据信息包括v个n比特的信息和所述v的取值信息;所述v个n比特信息中不重复的信息的数量为所述w;将所述v个n比特信息中不重复的信息确定为序号指示信息,其中,所述n为正整数,所述v为正整数,所述v的取值大于或等于所有第一通信节点的w。具体示例参见本申请示例10和示例11,本实施例通过数据信息运算得到w的取值及序号指示信息。将v个n比特信息中不重复的信息的数量确定为w,将不重复的n比特信息确定为序号指示信息。所述n的取值基于获取w条序列的序列集合所包括的序列的条数确定。
在一个实施例中,所述数据信息包括:w个n比特的信息和1个q比特的终止序列,所述n的取值基于获取w条序列的序列集合所包括的序列的条数确 定,所述q为正整数;所述终止序列前n比特指示的个数为所述w,所述w个n比特的信息指示所述w条序列的序号指示信息。具体示例参见示例12。
在一个实施例中,该方法,还包括:
将循环冗余校验前的信息比特或循环冗余校验后的信息比特进行部分加扰处理。
在一个实施例中,所述参考信号包括以下一个或多个:前导;导频;解调参考信号。
在一个实施例中,所述基于所述w条序列,生成参考信号,包括:
叠加所述w条序列,生成参考信号;或,将所述w条序列映射至不同的时频资源上,生成参考信号。
本申请还提供了一种参考信号处理方法,图2为本申请提供的一种参考信号处理方法的流程示意图,该方法可以适用于降低参考信号碰撞概率的情况,该方法可以由参考信号处理装置执行,该参考信号处理装置可以由软件和/或硬件实现,并集成在第二通信节点上。第二通信节点可以为基站。
如图2所示,该参考信号处理方法,包括S210、S220和S230。
S210、接收多个第一通信节点的参考信号和数据信号。
S220、基于生成各所述参考信号中目标参考信号的至少一个序列,解调出对应所述目标参考信号的数据信号。
本申请可以对目标参考信号进行检测,确定生成目标参考信号的至少一个序列。目标参考信号为当前处理的参考信号。使用生成目标参考信号的至少一个序列检测数据信号,以得到对应目标参考信号的数据信号。
S230、基于所述数据信号确定生成所述目标参考信号的w条序列。
在确定数据信号后,提取数据信号中所包括的信息,数据信号包括如下一个或多个:所述w的取值信息;序号指示信息;序列序号偏移量,所述数据信号基于所述数据信息确定。数据信号可以为数据信息经过处理后发送至第二通信节点的信号。不同数据信息对应的处理不同,此处不做限定。
确定数据信号中所包括的信息后,基于各信息采用与第一通信节点相同的方式即可确定w条序列。
S240、基于所述w条序列进行干扰消除,继续确定下一个目标参考信号直至各所述参考信号均消除完成。
确定w条序列后,本步骤可以进行干扰消除,如消除w条序列对应的目标 参考信号和数据信号;或仅消除w条序列对应的数据信号。执行完消除操作后,可以继续对剩余的参考信号进行检测,得到下一个目标参考信号,继续执行S220。
本实施例尚未详尽指出,参见上述实施例,此处不作赘述。
本申请提供了一种参考信号处理方法,应用于第二通信节点,接收多个第一通信节点的参考信号和数据信号;基于生成各所述参考信号中目标参考信号的至少一个序列,解调出对应所述目标参考信号的数据信号;基于所述数据信号确定生成所述目标参考信号的w条序列。利用该方法有效的降低了参考信号的碰撞概率。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,该方法还包括发送w的取值。如发送至第一通信节点,以指示第一通信节点w的取值。
在一个实施例中,所述w的取值根据如下之一确定:离散概率分布;传输的优先级;数据信息。
在一个实施例中,所述w条序列的如下一个或多个由数据信息确定:序列指示信息;序列序号偏移量。
在一个实施例中,所述数据信息为所述第一通信节点进行调制前的信息比特或码字。
在一个实施例中,所述数据信息为加循环冗余校验前的信息比特、加循环冗余校验后且信道编码前的比特或信道编码后的码字。
在一个实施例中,所述数据信息包括所述第一通信节点的标识信息。
在一个实施例中,所述数据信息的比特位数基于所述w的取值范围确定,所述数据信息指示所述w。
在一个实施例中,所述数据信号包括如下一个或多个:所述w的取值信息;序号指示信息;序列序号偏移量,所述数据信号基于所述数据信息确定。
在一个实施例中,所述数据信息包括以下一个或多个:1个所述w的取值信息;w个序号指示信息,所述序号指示信息用于指示w个序列。
在一个实施例中,所述数据信息包括以下一个或多个:1个所述w的取值信息;w-1个序列序号偏移量。
在一个实施例中,在不同第一通信节点的v的取值相同的情况下,所述数据信息包括v个n比特的信息,在不同第一通信节点的v的取值不同的情况下,所述数据信息包括v个n比特的信息和所述v的取值信息;所述v个n比特信 息中不重复的信息的数量为所述w;将所述v个n比特信息中不重复的信息确定为序号指示信息。
在一个实施例中,所述数据信息包括:w个n比特的信息和1个q比特的终止序列,所述n的取值基于获取w条序列的序列集合所包括的序列的条数确定;所述终止序列前n比特指示的个数为所述w,所述w个n比特的信息指示所述w条序列的序号指示信息。
在一个实施例中,循环冗余校验前的信息比特或循环冗余校验后的信息比特进行了部分加扰处理。
在一个实施例中,所述参考信号包括以下一个或多个:前导;导频;解调参考信号。
本申请提供了一种参考信号处理装置,图3为本申请提供的一种参考信号处理装置的结构示意图,该装置配置于第一通信节点,参见图3,该装置包括:产生模块31,设置为产生w条序列,不同的第一通信节点的所述w的取值不全相同,所述w为正整数;生成模块32,设置为基于所述w条序列,生成参考信号;发送模块33,设置为发送所述参考信号和对应的数据信号。
本实施例提供的参考信号处理装置用于实现如图1所示实施例的参考信号处理方法,本实施例提供的参考信号处理装置实现原理和技术效果与图1所示实施例的参考信号处理方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述w的取值由基站指示或根据如下之一确定:离散概率分布;传输的优先级;数据信息。
在一个实施例中,所述w条序列的如下一个或多个由数据信息确定:序列指示信息;序列序号偏移量。
在一个实施例中,所述数据信息为所述第一通信节点进行调制前的信息比特或码字。
在一个实施例中,所述数据信息为加循环冗余校验前的信息比特、加循环冗余校验后且信道编码前的比特或信道编码后的码字。
在一个实施例中,所述数据信息包括所述第一通信节点的标识信息。
在一个实施例中,所述数据信息的比特位数基于所述w的取值范围确定,所述数据信息指示所述w。
在一个实施例中,所述数据信号包括如下一个或多个:所述w的取值信息; 序号指示信息;序列序号偏移量,所述数据信号基于所述数据信息确定。
在一个实施例中,所述数据信息包括以下一个或多个:1个所述w的取值信息;w个序号指示信息,所述序号指示信息用于指示w个序列。
在一个实施例中,所述数据信息包括以下一个或多个:1个所述w的取值信息;w-1个序列序号偏移量。
在一个实施例中,在不同第一通信节点的v的取值相同的情况下,所述数据信息包括v个n比特的信息,在不同第一通信节点的v的取值不同的情况下,所述数据信息包括v个n比特的信息和所述v的取值信息;所述v个n比特信息中不重复的信息的数量为所述w;将所述v个n比特信息中不重复的信息确定为序号指示信息;其中,所述n为正整数,所述v为正整数,所述v的取值大于或等于所有第一通信节点的w。
在一个实施例中,所述数据信息包括:w个n比特的信息和1个q比特的终止序列,所述n的取值基于获取w条序列的序列集合所包括的序列的条数确定,所述q为正整数;所述终止序列前n比特指示的个数为所述w,所述w个n比特的信息指示所述w条序列的序号指示信息。
在一个实施例中,该装置,还包括:处理模块,设置为:
将循环冗余校验前的信息比特或循环冗余校验后的信息比特进行部分加扰处理。
在一个实施例中,所述参考信号包括以下一个或多个:前导;导频;解调参考信号。
在一个实施例中,生成模块32设置为:
叠加所述w条序列,生成参考信号;或,将所述w条序列映射至不同的时频资源上,生成参考信号。
本申请还提供了一种参考信号处理装置,图4为本申请提供的一种参考信号处理装置的结构示意图,该装置配置于第二通信节点,参见图4,该装置包括:接收模块41,设置为接收多个第一通信节点的参考信号和数据信号;解调模块42,设置为基于生成各所述参考信号中目标参考信号的至少一个序列,解调出对应所述目标参考信号的数据信号;确定模块43,设置为基于所述数据信号确定生成所述目标参考信号的w条序列;干扰消除模块44,设置为基于所述w条序列进行干扰消除,继续确定下一个目标参考信号直至各所述参考信号均消除完成。
本实施例提供的参考信号处理装置用于实现如图2所示实施例的参考信号 处理方法,本实施例提供的参考信号处理装置实现原理和技术效果与图2所示实施例的参考信号处理方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,在一个实施例中,该装置还包括发送模块,设置为发送W的取值。
在一个实施例中,所述w的取值根据如下之一确定:离散概率分布;传输的优先级;数据信息。
在一个实施例中,所述w条序列的如下一个或多个由数据信息确定:序列指示信息;序列序号偏移量。
在一个实施例中,所述数据信息为所述第一通信节点进行调制前的信息比特或码字。
在一个实施例中,所述数据信息为加循环冗余校验前的信息比特、加循环冗余校验后且信道编码前的比特或信道编码后的码字。
在一个实施例中,所述数据信息包括所述第一通信节点的标识信息。
在一个实施例中,所述数据信息的比特位数基于所述w的取值范围确定,所述数据信息指示所述w。
在一个实施例中,所述数据信号包括如下一个或多个:所述w的取值信息;序号指示信息;序列序号偏移量,所述数据信号基于所述数据信息确定。
在一个实施例中,所述数据信息包括以下一个或多个:1个所述w的取值信息;w个序号指示信息,所述序号指示信息用于指示w个序列。
在一个实施例中,所述数据信息包括以下一个或多个:1个所述w的取值信息;w-1个序列序号偏移量。
在一个实施例中,在不同第一通信节点的v的取值相同的情况下,所述数据信息包括v个n比特的信息,在不同第一通信节点的v的取值不同的情况下,所述数据信息包括v个n比特的信息和所述v的取值信息;所述v个n比特信息中不重复的信息的数量为所述w;将所述v个n比特信息中不重复的信息确定为序号指示信息;其中,所述n为正整数,所述v为正整数,所述v的取值大于或等于所有第一通信节点的w。
在一个实施例中,所述数据信息包括:w个n比特的信息和1个q比特的终止序列,所述n的取值基于获取w条序列的序列集合所包括的序列的条数确定,所述q为正整数;所述终止序列前n比特指示的个数为所述w,所述w个 n比特的信息指示所述w条序列的序号指示信息。
在一个实施例中,循环冗余校验前的信息比特或循环冗余校验后的信息比特进行了部分加扰处理。
本申请提供了一种第一通信节点,图5为本申请提供的一种第一通信节点的结构示意图,如图5所示,本申请提供的第一通信节点,包括一个或多个处理器51和存储装置52;该第一通信节点中的处理器51可以是一个或多个,图5中以一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中图1所述的方法。
第一通信节点还包括:通信装置53、输入装置54和输出装置55。
第一通信节点中的处理器51、存储装置52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图5中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与第一通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。信息包括但不限于参考信号和对应的数据符号。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例图1所述方法对应的程序指令/模块(例如,参考信号处理装置中的产生模块31、生成模块32和发送模块33)。存储装置52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据第一通信节点的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至第一通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供了一种第二通信节点,图6为本申请提供的一种第二通信节点的结构示意图,如图6所示,本申请提供的第二通信节点,包括一个或多个处理器61和存储装置62;该第二通信节点中的处理器61可以是一个或多个,图6中以一个处理器61为例;存储装置62用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器61执行,使得所述一个或多个处理器61实现如本申请实施例中图2所述的参考信号处理方法。
第二通信节点还包括:通信装置63、输入装置64和输出装置65。
第二通信节点中的处理器61、存储装置62、通信装置63、输入装置64和输出装置65可以通过总线或其他方式连接,图6中以通过总线连接为例。
输入装置64可用于接收输入的数字或字符信息,以及产生与第二通信节点的用户设置以及功能控制有关的按键信号输入。输出装置65可包括显示屏等显示设备。
通信装置63可以包括接收器和发送器。通信装置63设置为根据处理器61的控制进行信息收发通信。信息包括但不限于参考信号和对应的数据符号。
存储装置62作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例图2所述参考信号处理方法对应的程序指令/模块(例如,参考信号处理装置中的接收模块41、解调模块42、确定模块43和干扰消除模块44)。存储装置62可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据第二通信节点的使用所创建的数据等。此外,存储装置62可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置62可包括相对于处理器61远程设置的存储器,这些远程存储器可以通过网络连接至第二通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的参考信号处理方法。如应用于第一通信节点的参考信号处理方法和应用于第二通信节点的参考信号处理方法,其中,应用于第一通信节点的参考信号处理方法包括:产生w条序列,不同的第一通信节点的所述w的取值不全相同;基于所述w条序列,生成参考信号;发送所述参考信号和对应的数据信号。
应用于第二通信节点的参考信号处理方法包括:接收多个第一通信节点的参考信号和数据信号;基于生成各所述参考信号中目标参考信号的至少一个序列,解调出对应所述目标参考信号的数据信号;基于所述数据信号确定生成所述目标参考信号的w条序列。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存 储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指 令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (21)

  1. 一种参考信号处理方法,应用于第一通信节点,包括:
    产生w条序列,不同的第一通信节点的w的取值不全相同,w为正整数;
    基于所述w条序列,生成参考信号;
    发送所述参考信号和所述参考信号对应的数据信号。
  2. 根据权利要求1所述的方法,其中,w的取值由基站指示或根据如下之一确定:离散概率分布;传输的优先级;数据信息。
  3. 根据权利要求1所述的方法,其中,所述w条序列的如下至少之一由数据信息确定:序列指示信息;序列序号偏移量。
  4. 根据权利要求2或3所述的方法,其中,所述数据信息为所述第一通信节点进行调制前的信息比特或码字。
  5. 根据权利要求4所述的方法,其中,所述数据信息为加循环冗余校验前的信息比特、加循环冗余校验后且信道编码前的比特或信道编码后的码字。
  6. 根据权利要求2或3所述的方法,其中,所述数据信息包括所述第一通信节点的标识信息。
  7. 根据权利要求2或3所述的方法,其中,所述数据信息的比特位数基于w的取值范围确定,所述数据信息指示w。
  8. 根据权利要求1所述的方法,其中,所述数据信号包括如下至少之一:w的取值信息;序号指示信息;序列序号偏移量,所述数据信号基于数据信息确定。
  9. 根据权利要求2或3或8所述的方法,其中,
    所述数据信息包括以下至少之一:1个w的取值信息;w个序号指示信息,所述w个序号指示信息用于指示所述w条序列。
  10. 根据权利要求2或3或8所述的方法,其中,
    所述数据信息包括以下至少之一:1个w的取值信息;w-1个序列序号偏移量。
  11. 根据权利要求2或3或8所述的方法,其中,
    在不同第一通信节点的v的取值相同的情况下,所述数据信息包括v个n比特的信息,在不同第一通信节点的v的取值不同的情况下,所述数据信息包括v个n比特的信息和v的取值信息;
    所述v个n比特信息中不重复的信息的数量为w;
    将所述v个n比特信息中不重复的信息确定为序号指示信息;
    其中,n为正整数,v为正整数,v的取值大于或等于所有第一通信节点的w。
  12. 根据权利要求2或3或8所述的方法,其中,
    所述数据信息包括:w个n比特的信息和1个q比特的终止序列,n的取值基于获取所述w条序列的序列集合所包括的序列的条数确定,q为正整数;
    所述终止序列前n比特指示的个数为w,所述w个n比特的信息指示所述w条序列的序号指示信息。
  13. 根据权利要求5所述的方法,还包括:
    将循环冗余校验前的信息比特或循环冗余校验后的信息比特进行部分加扰处理。
  14. 根据权利要求1所述的方法,其中,所述参考信号包括以下至少之一:前导;导频;解调参考信号。
  15. 根据权利要求1所述的方法,其中,所述基于所述w条序列,生成参考信号,包括:
    叠加所述w条序列,生成所述参考信号;或,
    将所述w条序列映射至不同的时频资源上,生成所述参考信号。
  16. 一种参考信号处理方法,应用于第二通信节点,包括:
    接收多个第一通信节点的参考信号和数据信号;
    基于生成所述多个第一通信节点的参考信号中目标参考信号的至少一个序列,解调出所述多个第一通信节点的数据信号中所述目标参考信号对应的数据信号;
    基于所述目标参考信号对应的数据信号确定生成所述目标参考信号的w条序列;
    基于所述w条序列进行干扰消除,继续确定下一个目标参考信号直至对所述多个第一通信节点的参考信号均进行干扰消除。
  17. 一种参考信号处理装置,配置于第一通信节点,包括:
    产生模块,设置为产生w条序列,不同的第一通信节点的w的取值不全相同,w为正整数;
    生成模块,设置为基于所述w条序列,生成参考信号;
    发送模块,设置为发送所述参考信号和所述参考信号对应的数据信号。
  18. 一种参考信号处理装置,配置于第二通信节点,包括:
    接收模块,设置为接收多个第一通信节点的参考信号和数据信号;
    解调模块,设置为基于生成所述多个第一通信节点的参考信号中目标参考信号的至少一个序列,解调出所述多个第一通信节点的数据信号中所述目标参考信号对应的数据信号;
    确定模块,设置为基于所述目标参考信号对应的数据信号确定生成所述目标参考信号的w条序列;
    干扰消除模块,设置为基于所述w条序列进行干扰消除,继续确定下一个目标参考信号直至对所述多个第一通信节点的参考信号均进行干扰消除。
  19. 一种第一通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-15任一项所述的参考信号处理方法。
  20. 一种第二通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求16所述的参考信号处理方法。
  21. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-16任一项所述的参考信号处理方法。
PCT/CN2020/138469 2020-01-16 2020-12-23 参考信号处理方法、装置、第一通信节点和第二通信节点 WO2021143470A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/758,706 US20230041846A1 (en) 2020-01-16 2020-12-23 Reference signal processing method and apparatus, first communication node, and second communication node
EP20913606.8A EP4093137A4 (en) 2020-01-16 2020-12-23 METHOD AND APPARATUS FOR PROCESSING REFERENCE SIGNAL, FIRST COMMUNICATION NODE AND SECOND COMMUNICATION NODE
JP2022542699A JP7443533B2 (ja) 2020-01-16 2020-12-23 基準信号処理方法、装置、第1通信ノード及び第2通信ノード
KR1020227027818A KR20220128392A (ko) 2020-01-16 2020-12-23 기준 신호 처리 방법, 장치, 제1 통신 노드 및 제2 통신 노드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010048713.0A CN111901890A (zh) 2020-01-16 2020-01-16 参考信号处理方法、装置、第一通信节点和第二通信节点
CN202010048713.0 2020-01-16

Publications (2)

Publication Number Publication Date
WO2021143470A1 true WO2021143470A1 (zh) 2021-07-22
WO2021143470A9 WO2021143470A9 (zh) 2022-09-09

Family

ID=73169745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138469 WO2021143470A1 (zh) 2020-01-16 2020-12-23 参考信号处理方法、装置、第一通信节点和第二通信节点

Country Status (6)

Country Link
US (1) US20230041846A1 (zh)
EP (1) EP4093137A4 (zh)
JP (1) JP7443533B2 (zh)
KR (1) KR20220128392A (zh)
CN (1) CN111901890A (zh)
WO (1) WO2021143470A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901890A (zh) * 2020-01-16 2020-11-06 中兴通讯股份有限公司 参考信号处理方法、装置、第一通信节点和第二通信节点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170366221A1 (en) * 2016-06-17 2017-12-21 Freescale Semiconductor, Inc. Clear channel assessment
CN110299980A (zh) * 2018-03-23 2019-10-01 中兴通讯股份有限公司 一种传输参考信号的方法、装置和系统
CN110535602A (zh) * 2019-01-18 2019-12-03 中兴通讯股份有限公司 一种信息传输方法、装置、通信设备和通信节点
CN111901890A (zh) * 2020-01-16 2020-11-06 中兴通讯股份有限公司 参考信号处理方法、装置、第一通信节点和第二通信节点

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191174B (zh) 2013-03-27 2019-09-03 Lg电子株式会社 在无线通信系统中消除干扰的方法以及使用该方法的装置
US10911281B2 (en) * 2015-10-20 2021-02-02 Huawei Technologies Co., Ltd. System and method for pilot signal transmission
EP3324697A4 (en) 2015-12-08 2019-04-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd METHOD AND DEVICE FOR PRODUCING A CONNECTION
CN107466112B (zh) * 2016-06-03 2022-08-12 北京三星通信技术研究有限公司 上行数据传输方法、随机接入方法和相应的终端和基站
CN108347293B (zh) 2017-01-24 2023-10-24 华为技术有限公司 传输方法及装置
JP2017147769A (ja) 2017-06-05 2017-08-24 株式会社Nttドコモ ユーザ端末、無線通信方法及び移動通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170366221A1 (en) * 2016-06-17 2017-12-21 Freescale Semiconductor, Inc. Clear channel assessment
CN110299980A (zh) * 2018-03-23 2019-10-01 中兴通讯股份有限公司 一种传输参考信号的方法、装置和系统
CN110535602A (zh) * 2019-01-18 2019-12-03 中兴通讯股份有限公司 一种信息传输方法、装置、通信设备和通信节点
CN111901890A (zh) * 2020-01-16 2020-11-06 中兴通讯股份有限公司 参考信号处理方法、装置、第一通信节点和第二通信节点

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, ERICSSON, MITSUBISHI ELECTRIC, NEC: "Sequence Hopping and Cyclic-Shift Value Hopping for Uplink Reference Signal in E-UTRA", 3GPP DRAFT; R1-071643 SEQUENCE AND CYCLIC-SHIFT HOPPING IN UL RS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. St. Julian; 20070403, 3 April 2007 (2007-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050105569 *
See also references of EP4093137A4 *

Also Published As

Publication number Publication date
JP2023510843A (ja) 2023-03-15
JP7443533B2 (ja) 2024-03-05
EP4093137A4 (en) 2024-03-20
WO2021143470A9 (zh) 2022-09-09
US20230041846A1 (en) 2023-02-09
KR20220128392A (ko) 2022-09-20
EP4093137A1 (en) 2022-11-23
CN111901890A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
US8478258B2 (en) Techniques to reduce false detection of control channel messages in a wireless network
US10841803B2 (en) Data channel sending and receiving methods, network device, and terminal
CN102648597B (zh) 用于多播块确认的方法和装置
US11303498B2 (en) Data transmission method and apparatus based on probability non-uniform modulation
US10887067B2 (en) Coding scheme determining method and apparatus
US20200119844A1 (en) System and method for interleaving distributed crc in polar codes for early termination
WO2015113258A1 (zh) 一种上行接入方法、装置及系统
US11381340B2 (en) Data transmission method and apparatus and storage medium
WO2021143470A1 (zh) 参考信号处理方法、装置、第一通信节点和第二通信节点
JP2022533872A (ja) 通信方法、装置、コンピュータプログラム、及び電子機器
WO2021062580A1 (zh) 确定侧行链路传输资源的方法和装置
WO2018112891A1 (zh) 一种传输信号的方法、装置及设备
WO2021143632A1 (zh) 数据传输方法、装置、第一通信节点和第二通信节点
EP4093138A1 (en) Data processing methods and apparatuses, first communication node, second communication mode, and storage medium
US10171207B2 (en) Methods and apparatus for control bit detection
CN107205273B (zh) 一种dci盲探测数据的处理方法及装置
WO2021104516A1 (zh) 一种时钟数据恢复方法、装置,鉴相器及存储介质
WO2018170907A1 (zh) 通信方法、终端和网络设备
US20210099273A1 (en) Methods and apparatus for dynamic acknowledgement list selection in detection of uplink control channel formats
WO2019028619A1 (zh) 一种数据调度方法及装置、计算机存储介质
JP2016540395A (ja) デバイス対デバイス通信における発見検出のための方法およびデバイス
WO2016172850A1 (zh) 一种信息传输方法、设备及系统
JP2024502047A (ja) ピーク対平均電力比を低減するための方法及び装置
CN117176532A (zh) 用于降低发送物理层协议数据单元中的峰均功率比的方法和装置
CN110932821A (zh) 一种控制信息传输方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020913606

Country of ref document: EP

Effective date: 20220816