WO2021143405A1 - 能源消纳系统 - Google Patents

能源消纳系统 Download PDF

Info

Publication number
WO2021143405A1
WO2021143405A1 PCT/CN2020/135087 CN2020135087W WO2021143405A1 WO 2021143405 A1 WO2021143405 A1 WO 2021143405A1 CN 2020135087 W CN2020135087 W CN 2020135087W WO 2021143405 A1 WO2021143405 A1 WO 2021143405A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
feeder
mode
load
working mode
Prior art date
Application number
PCT/CN2020/135087
Other languages
English (en)
French (fr)
Inventor
韩建振
杨海跃
王正平
杨俊广
张�杰
刘二勇
李铁良
梅晓辉
刘廷众
Original Assignee
国网河北省电力有限公司衡水供电分公司
衡水电力设计有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网河北省电力有限公司衡水供电分公司, 衡水电力设计有限公司, 国家电网有限公司 filed Critical 国网河北省电力有限公司衡水供电分公司
Priority to EP20888740.6A priority Critical patent/EP3876377A4/en
Publication of WO2021143405A1 publication Critical patent/WO2021143405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the invention belongs to the technical field of energy consumption, and more specifically, relates to an energy consumption system.
  • the purpose of the present invention is to provide an energy consumption system to reasonably carry out energy consumption, thereby improving energy utilization rate and realizing flexible dispatch of grid load.
  • the present invention provides an energy consumption system, which includes: a control module and an energy consumption module;
  • the energy consumption module is connected to each feeder, and is used to switch the load between each feeder according to the control instruction of the control module;
  • the control module collects real-time current and voltage information of each port of the energy consumption module, and controls the working state of the energy consumption module according to the real-time current and voltage information, so as to realize load switching between various feeders.
  • the energy absorption module includes a first converter, a second converter, a third converter, a fourth converter, a first capacitor, a second capacitor, a first filter, and a second converter. Filter, third filter and fourth filter;
  • the AC end of the first converter is connected to the first feeder through a first filter, the first DC end of the first converter is connected to the first end of the first capacitor and the first end of the fourth converter Two DC terminals are connected, and the second DC terminal of the first converter is connected with the second terminal of the first capacitor and the first DC terminal of the fourth converter;
  • the AC end of the second converter is connected to the second feeder through a second filter, the first DC end of the second converter is connected to the first end of the second capacitor and the first end of the third converter Two DC terminals are connected, and the second DC terminal of the second converter is connected with the second terminal of the second capacitor and the first DC terminal of the third converter;
  • the AC terminal of the third converter is connected to the third feeder through a third filter
  • the AC end of the fourth converter is connected to the fourth feeder through a fourth filter
  • the first end of the first capacitor is connected to the first end of the second capacitor, and the second end of the first capacitor is connected to the second end of the second capacitor; the first end of the first capacitor is connected to the second end of the second capacitor.
  • the terminal and the second terminal are used to provide DC plug-in ports;
  • the control module collects real-time current and voltage information across the first feeder, the second feeder, the third feeder, the fourth feeder and the first capacitor, and controls the first converter and the second converter according to the real-time current and voltage information
  • the working status of the converter, the third converter and the fourth converter can realize the load switching between each feeder.
  • control module includes a detection unit, an arithmetic unit, a drive unit, and a communication unit;
  • the input end of the detection unit is connected to the first feeder, the second feeder, the third feeder, the fourth feeder, the first end of the first capacitor, and the second end of the first capacitor.
  • the output end of the detection unit is connected to the first end of the first capacitor and the second end of the first capacitor.
  • the input end of the arithmetic unit is connected; the output end of the arithmetic unit is connected to the input end of the drive unit, and the output end of the drive unit is connected to the first converter, the second converter, and the third converter.
  • the converter is connected to the fourth converter; the input end of the communication unit is used to provide a receiving port for upper-level scheduling information, and the output end of the communication unit is connected to the input end of the arithmetic unit;
  • the detection unit collects real-time current and voltage information across the first feeder, the second feeder, the third feeder, the fourth feeder, and the first capacitor, and sends the real-time current and voltage information to the arithmetic unit;
  • the real-time current and voltage information or upper-level scheduling information generates a drive signal for load switching, and sends the drive signal to the drive unit;
  • the drive unit adjusts the first converter and the second converter according to the drive signal.
  • the working status of the current converter, the third converter and the fourth converter realizes the load switching between each feeder.
  • control module controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the real-time current and voltage information, including:
  • the available converter in the first working mode is controlled to work in the rectification mode, and the first feeder and the available feeder in the first working mode supply power to the third feeder; among them, the available converter in the first working mode Is the second converter and/or the fourth converter, and the available feeder in the first working mode is the second feeder and/or the fourth feeder;
  • the first working mode is: no external device is connected to the DC plug-in port, the first converter works in the rectification mode, the third converter works in the inverter mode, the second converter and the fourth converter The current device is cut off, and the first feeder supplies power to the third feeder.
  • control module controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the real-time current and voltage information, including:
  • the second converter When the current working mode of the energy absorption system is the second working mode, if the real-time current and voltage information shows that the second feeder port is short-circuited, the second converter is controlled to be turned off, and whether the first feeder can absorb the second Three-feeder load;
  • the fourth converter is controlled to work in rectification mode, and the first and fourth feeders supply power to the third feeder; if the first feeder can absorb the third feeder’s load Load, the first feeder will supply power to the third feeder;
  • the second working mode is: no external device is connected to the DC plug-in port, the first converter and the second converter work in the rectification mode, the third converter works in the inverter mode, and the fourth converter works in the inverter mode.
  • the current device is cut off, and the first feeder and the second feeder supply power to the third feeder.
  • control module controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the real-time current and voltage information, including:
  • the energy storage equipment is controlled to work in the step-down mode, and the random power generation equipment Supply power to the first feeder, the second feeder, the third feeder, the fourth feeder and the energy storage equipment;
  • the third working mode is: the DC plug-in port is connected to random power generation equipment and energy storage equipment, the random power generation equipment is turned on, the energy storage equipment is turned off, the first converter, the second converter, and the third converter The converter and the fourth converter work in the inverter mode, and the random power generation equipment supplies power to the first feeder, the second feeder, the third feeder and the fourth feeder.
  • control module controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the real-time current and voltage information, including:
  • the third converter is controlled to be turned off, and whether the first feeder can absorb random The load of power generation equipment;
  • the available converter in the fourth working mode is the second converter and/or the fourth converter
  • the available feeder in the fourth working mode is the second feeder and/or the fourth feeder
  • the fourth working mode is: the DC plug-in port is connected to the random power generation equipment, the random power generation equipment is turned on, the first converter and the third converter work in the inverter mode, the second converter and the fourth The converter is cut off, and the random power generation equipment supplies power to the first feeder and the third feeder.
  • control module controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the real-time current and voltage information, including:
  • the current working mode of the energy absorption system is the fifth working mode
  • the energy storage device is controlled to work in the boost mode
  • the available converter in the fifth working mode is controlled to work in the rectification mode, which is controlled by the random power generation device, energy storage device, and/or the fifth working mode
  • the feeder can be used to supply power to the random load equipment; wherein the available converter in the fifth working mode is at least one of the first converter, the second converter, the third converter, and the fourth converter.
  • the available feeder in the five working mode is at least one of the first feeder, the second feeder, the third feeder, and the fourth feeder;
  • the fifth working mode is: DC plug-in port is connected to random power generation equipment, random load equipment and energy storage equipment, random power generation equipment and random load equipment are turned on, energy storage equipment is cut off, the first converter, the second The converter, the third converter and the fourth converter are cut off, and the random power generation equipment supplies power to the random load equipment.
  • control module also controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the upper-level scheduling information, so as to realize the communication between the various feeders.
  • the control module controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the upper-level scheduling information, including:
  • the current working mode of the energy consumption system is the sixth working mode
  • the upper-level scheduling information indicates to control the first converter to be turned off, control the first converter to be turned off, and control the second converter and/or
  • the third converter works in rectification mode, and the second feeder and/or the third feeder supplies power to the fourth feeder;
  • the sixth working mode is: no external device is connected to the DC plug-in port, the first converter works in the rectification mode, the fourth converter works in the inverter mode, the second converter and the third converter The current device is cut off, and the first feeder supplies power to the fourth feeder.
  • control module also controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the upper-level scheduling information, so as to realize the communication between the various feeders.
  • the control module controls the working status of the first converter, the second converter, the third converter, and the fourth converter according to the upper-level scheduling information, including:
  • the current working mode of the energy consumption system is the seventh working mode
  • the random power generation equipment is controlled to be turned off, and whether the first feeder and the third feeder can absorb the second The load of the second feeder and the fourth feeder;
  • the energy storage equipment is controlled to work in the boost mode, and the second feeder and the fourth feeder are transferred to the first feeder, the third feeder and the storage. If the first feeder and the third feeder can absorb the load of the second feeder and the fourth feeder, the second feeder and the fourth feeder will supply power to the first feeder and the third feeder;
  • the seventh working mode is: the DC plug-in port is connected to the random power generation equipment and the energy storage equipment, the random power generation equipment is turned on, the energy storage equipment is turned off, the second converter and the fourth converter work in the rectification mode, The first converter and the third converter work in the inverter mode, and power is supplied to the first feeder and the third feeder by the random power generation equipment, the second feeder and the fourth feeder.
  • the input terminal of the communication unit is also used to provide a receiving port for historical reference information
  • the arithmetic unit generates a drive signal for load switching according to at least one of real-time current and voltage information, upper-level scheduling information, and historical reference information; wherein, the historical reference information includes historical influencing factor data that affects user load and historical load data .
  • the beneficial effect of the energy consumption system provided by the present invention is that the present invention can adjust the working mode of the energy consumption module through the control module, so as to realize the load transfer and balance between the various feeders.
  • the energy consumption system provided by the present invention is faster and more intelligent, and can reasonably carry out energy consumption, thereby improving energy utilization rate and realizing flexible dispatching of grid load.
  • Fig. 1 is a schematic structural diagram of an energy consumption system provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a control module provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a partial structure of an energy consumption system provided by an embodiment of the present invention.
  • Fig. 4 is a control flow chart of the energy consumption system provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an energy consumption system according to an embodiment of the present invention.
  • the energy consumption system includes: a control module 200 and an energy consumption module 100.
  • the energy consumption module 100 is connected to each feeder line, and is used to switch the load between each feeder line according to the control instruction of the control module 200;
  • the control module 200 collects real-time current and voltage information of each port of the energy absorbing module 100, and controls the working state of the energy absorbing module 100 according to the real-time current and voltage information, so as to realize load switching between various feeders.
  • the energy absorption module 100 includes a first converter 11, a second converter 12, a third converter 13, a fourth converter 14, a first capacitor 15, a second capacitor 16, a first filter 17, The second filter 18, the third filter 19 and the fourth filter 10.
  • the AC end of the first converter 11 is connected to the first feeder through the first filter 17, and the first DC end of the first converter 11 is connected to the first end of the first capacitor 15 and the fourth converter 14
  • the second DC terminal is connected, and the second DC terminal of the first converter 11 is connected with the second terminal of the first capacitor 15 and the first DC terminal of the fourth converter 14.
  • the AC end of the second converter 12 is connected to the second feeder through the second filter 18, the first DC end of the second converter 12 is connected to the first end of the second capacitor 16 and the third converter 13
  • the second DC terminal is connected, and the second DC terminal of the second converter 12 is connected with the second terminal of the second capacitor 16 and the first DC terminal of the third converter 13.
  • the AC end of the third converter 13 is connected to the third feeder line through the third filter 19.
  • the AC end of the fourth converter 14 is connected to the fourth feeder line through the fourth filter 10.
  • the first end of the first capacitor 15 is connected to the first end of the second capacitor 16, and the second end of the first capacitor 15 is connected to the second end of the second capacitor 16.
  • the first end and the second end of the first capacitor 15 are used to provide direct current plug-in ports.
  • the control module 200 collects real-time current and voltage information across the first feeder, the second feeder, the third feeder, the fourth feeder and the first capacitor 15, and controls the first converter 11 and the second converter according to the real-time current and voltage information 12.
  • the working state of the third converter 13 and the fourth converter 14 realizes the load switching between each feeder.
  • the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 are all controlled sources, and the controlled source may be a controlled voltage source, It can also be a controlled current source.
  • FIG. 3 is a schematic diagram of a single-sided structure of an energy consumption system provided by an embodiment of the present invention.
  • FIG. 3 includes a first converter 11, a fourth converter 14, and a first capacitor 15, where multiple voltage source converters can be used in the first converter 11 and the fourth converter 14.
  • the second converter 12 and the third converter 13 can also be implemented by adopting the structure shown in FIG. 3, which will not be repeated here.
  • control module 200 can control the load between each feeder by controlling the working status of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14.
  • the direction of current flow is achieved by controlling the firing angles of the power tubes of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 to achieve arbitrary power matching, thereby realizing each
  • the on-demand transfer of load between feeders achieves load balance and power flow adjustment, and improves energy utilization.
  • the present invention provides a multi-end back-to-back design of the energy consumption module 100.
  • the energy consumption module 100 has a simple structure, is convenient to switch, and can support multiple power supply working modes.
  • the present invention can adjust the working mode of each converter power tube in the energy consumption module 100 through the control module 200, so as to realize the load transfer and balance between the various feeders.
  • the energy consumption system provided by the present invention is faster and more intelligent, and can reasonably carry out energy consumption, thereby improving energy utilization rate and realizing flexible dispatching of grid load.
  • control module 200 includes a detection unit 21, an arithmetic unit 22, a drive unit 23 and a communication unit 24.
  • the input end of the detection unit 21 is connected to the first feeder line, the second feeder line, the third feeder line, the fourth feeder line, the first end of the first capacitor 15 and the second end of the first capacitor 15, and the output end of the detection unit 21 is connected to the operation
  • the input terminal of unit 22 is connected.
  • the output end of the arithmetic unit 22 is connected to the input end of the drive unit 23, and the output end of the drive unit 23 is connected to the first converter 11, the second converter 12, the third converter 13 and the fourth converter 14 .
  • the input terminal of the communication unit 24 is a receiving port of the upper-level scheduling information, and the output terminal of the communication unit 24 is connected to the input terminal of the computing unit 22.
  • the detection unit 21 collects real-time current and voltage information with the first feeder, the second feeder, the third feeder, the fourth feeder and the two ends of the first capacitor 15, and sends the real-time current and voltage information to the computing unit 22.
  • the arithmetic unit 22 generates a drive signal for load switching according to real-time current and voltage information or upper-level scheduling information, and sends the drive signal to the drive unit 23.
  • the driving unit 23 adjusts the working states of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 according to the driving signal to realize the load switching among the feeders.
  • control module 200 may also receive upper-level scheduling information.
  • the trigger conditions for load switching between feeders may include two types:
  • control module 200 detects the real-time current and voltage information of each port of the energy consumption module 100, and automatically controls the first converter 11, the second converter 12, the third converter 13 and the second converter according to the real-time current and voltage information.
  • the working state of the four converters 14 realizes the load switching between the various feeders.
  • control module 200 receives the upper-layer scheduling information, and controls the working status of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 according to the upper-layer scheduling information to realize each item Load switching between feeders.
  • control module 200 controls the first converter 11, the second converter 12, and the third converter 13 according to real-time current and voltage information.
  • the working status of the fourth converter 14 may include:
  • the available converter in the first working mode is controlled to work in the rectification mode, and power is supplied to the third feeder from the first feeder and the available feeder in the first working mode.
  • the available converters in the first working mode are the second converter 12 and/or the fourth converter 14, and the available feeders in the first working mode are the second feeder and/or the fourth feeder.
  • the first working mode is: no external device is connected to the DC plug-in port, the first converter 11 works in the rectification mode, the third converter 13 works in the inverter mode, and the second converter 12 and the fourth converter work in the inverter mode.
  • the converter 14 is cut off, and power is supplied from the first feeder line to the third feeder line.
  • the load switching between the various feeders is triggered by the voltage and current information collected by the control module 200.
  • the DC plug-in port may not be connected to an external device, or it may be controlled to shut off each external device after being connected to an external device.
  • the control mode provided by the embodiment of the present invention can also be described as: the energy absorption system works in the first working mode (that is, power is supplied to the third feeder through the first feeder), if the voltage and current information collected by the control module 200 shows that the first feeder If the load demand of the third feeder cannot be met, the available converters in the first working mode (that is, the second converter 12 and/or the fourth converter 14) are controlled to work in the rectification mode through the control module 200.
  • the first feeder and the available feeder in the first working mode (that is, the second feeder and/or the fourth feeder) supply power to the third feeder.
  • the usable feeder includes at least one feeder.
  • the usable feeder in the first working mode in this embodiment may be the second feeder, the fourth feeder, or the second feeder and the fourth feeder.
  • control module 200 can also control the working status of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 according to upper-level scheduling information.
  • the current working mode of the energy consumption system is: the first converter 11 works in the rectification mode, the third converter 13 works in the inverter mode, and the second converter 12 and the fourth converter 14 are cut off.
  • the first feeder supplies power to the third feeder.
  • the control module 200 receives upper-level scheduling information at this time, the upper-level scheduling information indicates that the first feeder supplies power to the second feeder and the third feeder, based on the current working mode of the energy absorption system, the control module 200 The second converter 12 is controlled to work in the inverter mode to realize the interconnection of the first feeder, the second feeder and the third feeder.
  • control module 200 controls the first converter 11, the second converter 12, and the third converter 13 according to real-time current and voltage information.
  • the working status of the fourth converter 14 may include:
  • the second converter 12 When the current working mode of the energy absorption system is the second working mode, if the real-time current and voltage information shows that the second feeder port is short-circuited, the second converter 12 is controlled to be turned off, and whether the first feeder can absorb the third The load on the feeder.
  • the fourth converter 14 is controlled to work in the rectification mode, and the first feeder and the fourth feeder supply power to the third feeder. If the first feeder can absorb the load of the third feeder, the first feeder supplies power to the third feeder.
  • the second working mode is: no external device is connected to the DC plug-in port, the first converter 11 and the second converter 12 are working in the rectification mode, the third converter 13 is working in the inverter mode, and the fourth converter is working in the inverter mode.
  • the converter 14 is cut off, and the first feeder and the second feeder supply power to the third feeder.
  • the load switching between the various feeders is triggered by the voltage and current information collected by the control module 200.
  • the control mode provided by the embodiment of the present invention can also be described as: the energy consumption system works in the second working mode (that is, the power is supplied to the third feeder through the first feeder and the second feeder), if the voltage and current information collected by the control module 200 If the port of the second feeder is short-circuited, it is detected whether the first feeder can absorb the load of the third feeder. If the first feeder cannot absorb the load of the third feeder, the fourth converter 14 is controlled to work in the rectification mode, and the first feeder and the fourth feeder supply power to the third feeder. If the first feeder can absorb the load of the third feeder, the first feeder directly supplies power to the third feeder.
  • control module 200 can re-switch the load between the feeders according to the real-time real-time current and voltage information.
  • the control will transfer part of the load of the overloaded or short-circuited feeder to To another feeder to achieve load balance.
  • the embodiment of the present invention can perform autonomous switching of any control mode according to actual voltage and current information.
  • control module 200 controls the first converter 11, the second converter 12, and the third converter 13 according to real-time current and voltage information.
  • the working status of the fourth converter 14 may include:
  • the energy storage equipment is controlled to work in the step-down mode, and the random power generation equipment is transferred to the first A feeder, a second feeder, a third feeder, a fourth feeder and energy storage equipment supply power.
  • the third working mode is: DC plug-in port is connected to random power generation equipment and energy storage equipment, random power generation equipment is turned on, energy storage equipment is turned off, the first converter 11, the second converter 12, and the third converter
  • the converter 13 and the fourth converter 14 work in the inverter mode, and the random power generation equipment supplies power to the first feeder, the second feeder, the third feeder and the fourth feeder.
  • both the random power generation equipment and the energy storage equipment are external equipment.
  • the random power generation equipment can be photovoltaic power generation equipment or wind power generation equipment.
  • the working modes of energy storage equipment include boost mode, buck mode and cut-off mode.
  • the boost mode realizes that the energy storage device provides electric energy to the DC side bus of the energy absorption system
  • the buck mode realizes the DC side bus pair of the energy absorption system.
  • the energy storage device charges and stores electric energy
  • the cut-off mode realizes the isolation of the energy storage device and the DC side bus of the energy absorption system.
  • the load switching between the various feeders is triggered by the voltage and current information collected by the control module 200.
  • the control mode provided by the embodiment of the present invention can also be described as: the energy consumption system works in the third working mode (that is, the first feeder, the second feeder, the third feeder, and the fourth feeder are supplied with power through the random power generation equipment), if The voltage and current information collected by the control module 200 shows that the four feeders cannot absorb the load of the random power generation device, and the energy storage device can be controlled to work in a step-down mode to charge the energy storage device.
  • the third working mode increases the absorption radius of the random energy of the random power generation equipment, and improves the flexible transfer capability of the random energy.
  • the control module 200 can also control the working status of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 according to upper-level scheduling information.
  • the current working mode of the energy consumption system is: the DC plug-in port is connected to random power generation equipment and energy storage equipment, the first converter 11 and the third converter 13 work in the inverter mode, and the second converter The converter 12 and the fourth converter 14 are cut off, the energy storage device is cut off, and the random power generation device is turned on. At this time, the random power generation device supplies power to the first feeder and the third feeder. If the upper-level scheduling information received by the control module 200 indicates that the random power generation equipment supplies power to the first feeder, the control module 200 can control the third converter 13 to turn off.
  • the random load device may be a charging car.
  • Random energy (the energy required by random power generation equipment) is greatly affected by the weather.
  • This embodiment uses photovoltaic power generation and charging cars as examples to illustrate the interconnection process between random power generation equipment, random load equipment, and energy absorption system: when photovoltaic power generation equipment generates power, the direct current emitted is incorporated into the energy through the direct current plug-in port The absorbing system converts DC to AC through various converters and supplies it to the load or grid-connected use. When the photovoltaic power generation is greater than the power required by the load, the excess power is absorbed by the energy storage device.
  • the background monitoring system can guide the charging car users to charge through the real-time electricity price information sent by the distribution control system, and balance the power generation and power consumption while enjoying low electricity prices.
  • the background monitoring system can be a device for sending dispatching information at the upper level.
  • control module 200 controls the first converter 11, the second converter 12, and the third converter 13 according to real-time current and voltage information.
  • the working status of the fourth converter 14 may include:
  • the third converter 13 When the current working mode of the energy absorption system is the fourth working mode, if the real-time current and voltage information shows that the third feeder port is short-circuited, the third converter 13 is controlled to be turned off, and whether the first feeder can absorb random power generation The load of the equipment.
  • the available converter in the fourth working mode is controlled to work in the inverter mode, and the random power generation equipment supplies power to the first feeder and the available feeders in the fourth working mode. If the first feeder can absorb the load of the random power generation equipment, the random power generation equipment will supply power to the first feeder.
  • the available converters in the fourth working mode are the second converter 12 and/or the fourth converter 14, and the available feeders in the fourth working mode are the second feeder and/or the fourth feeder.
  • the fourth working mode is: the DC plug-in port is connected to the random power generation equipment, the random power generation equipment is turned on, the first converter 11 and the third converter 13 work in the inverter mode, the second converter 12 and the second converter 12 The quad converter 14 is cut off, and the random power generation equipment supplies power to the first feeder and the third feeder.
  • the load switching between the various feeders is triggered by the voltage and current information collected by the control module 200.
  • the control mode provided by the embodiment of the present invention can also be described as: when the random power generation equipment supplies power to the first feeder and the third feeder, if the third feeder is short-circuited, it is detected whether the first feeder can absorb the load of the random power generation equipment. If the first feeder cannot absorb the load of the random power generation equipment, the random power generation equipment supplies power to the available feeders in the first feeder and the fourth working mode (that is, the second feeder and/or the fourth feeder). If the first feeder can absorb the load of the random power generation equipment, the random power generation equipment directly supplies power to the first feeder.
  • control module 200 controls the first converter 11, the second converter 12, and the third converter 13 according to real-time current and voltage information.
  • the working status of the fourth converter 14 may include:
  • the current working mode of the energy absorption system is the fifth working mode
  • the energy storage device is controlled to work in the boost mode
  • the available converter in the fifth working mode is controlled to work in the rectification mode
  • the available feeder in the fifth working mode is controlled by the random power generation device, the energy storage device, and/or the available feeder in the fifth working mode. Supply power to random load equipment.
  • the available converters in the fifth working mode are at least one of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14, and in the fifth working mode
  • the available feeder for is at least one of the first feeder, the second feeder, the third feeder, and the fourth feeder.
  • the fifth working mode is: the DC plug-in port is connected to random power generation equipment, random load equipment and energy storage equipment, random power generation equipment and random load equipment are turned on, energy storage equipment is cut off, the first converter 11, the second transformer The converter 12, the third converter 13 and the fourth converter 14 are cut off, and the random power generation equipment supplies power to the random load equipment.
  • the load switching between the various feeders is triggered by the voltage and current information collected by the control module 200.
  • the control mode provided by the embodiment of the present invention can also be described as: when the current working mode of the energy absorption system is the fifth working mode (that is, the random power generation equipment supplies power to the random load equipment), if the real-time current and voltage information shows the random power generation equipment
  • the power supply capacity of the random power generation equipment is greatly reduced (if the random power generation equipment is photovoltaic power generation equipment, the power supply capacity of the random power generation equipment will be greatly reduced at night), and the energy storage requirements of the energy storage equipment cannot be met, you can choose the fifth working mode
  • At least one of the feeders can be used to charge the energy storage device. Among them, the selection of several feeders can be reasonably set according to the requirements of energy storage equipment.
  • control module 200 also controls the first converter 11, the second converter 12, the third converter 13, and the third converter according to upper-level scheduling information.
  • the working state of the fourth converter 14 realizes the load switching between the various feeders.
  • the control module 200 controls the working status of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 according to the upper-level scheduling information, which may include:
  • the current working mode of the energy consumption system is the sixth working mode
  • the first converter 11 is controlled to be turned off
  • the second converter 12 and/ Or the third converter 13 works in the rectification mode
  • the second feeder and/or the third feeder supplies power to the fourth feeder.
  • the sixth working mode is: no external device is connected to the DC plug-in port, the first converter 11 works in the rectification mode, the fourth converter 14 works in the inverter mode, the second converter 12 and the third converter 12 work in the inverter mode.
  • the converter 13 is cut off, and power is supplied from the first feeder line to the fourth feeder line.
  • the load switching between the various feeders is triggered by the upper-layer scheduling information received by the control module 200. It can be seen from the above description that after the control module 200 adjusts the working mode of the converter according to the upper-level scheduling information, it can also adjust itself according to the load imbalance that may be caused after the adjustment.
  • control module 200 further controls the first converter 11, the second converter 12, the third converter 13, and the third converter according to upper-level scheduling information.
  • the working state of the fourth converter 14 realizes the load switching between the various feeders.
  • the control module 200 controls the working status of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 according to the upper-level scheduling information, which may include:
  • the current working mode of the energy absorption system is the seventh working mode
  • the random power generation equipment is controlled to cut off, and whether the first feeder and the third feeder can absorb the second feeder And the load of the fourth feeder.
  • the energy storage device is controlled to work in the boost mode, and the second feeder and the fourth feeder are transferred to the first feeder, the third feeder and the storage. Can supply power to the device. If the first feeder line and the third feeder line can absorb the load of the second feeder line and the fourth feeder line, the second feeder line and the fourth feeder line supply power to the first feeder line and the third feeder line.
  • the seventh working mode is: the DC plug-in port is connected to random power generation equipment and energy storage equipment, the random power generation equipment is turned on, and the energy storage equipment is turned off.
  • the second converter 12 and the fourth converter 14 work in rectification mode
  • the first converter 11 and the third converter 13 work in an inverter mode, and supply power to the first feeder and the third feeder from the random power generation equipment, the second feeder, and the fourth feeder.
  • the load switching between feeders is triggered by the upper-layer scheduling information received by the control module 200. It can be seen from the above description that after the control module 200 adjusts the working mode of the converter according to the upper-level scheduling information, it can also adjust itself according to the load imbalance that may be caused after the adjustment.
  • the input terminal of the communication unit is also used to provide a receiving port for historical reference information.
  • the arithmetic unit generates a drive signal for load switching according to at least one of real-time current and voltage information, upper-level scheduling information, and historical reference information.
  • the historical reference information includes historical influencing factor data and historical load data that affect user load.
  • the trigger conditions for load switching between feeders can also include historical reference information, that is, the control module 200 receives historical reference information and controls according to the historical reference information.
  • the working states of the first converter 11, the second converter 12, the third converter 13, and the fourth converter 14 realize load switching among the feeders.
  • the method for the arithmetic unit to generate a drive signal for load switching may be: receiving internal/external information (including but not limited to real-time current and voltage information, upper-level scheduling Information and historical reference information), and preprocess the data in the internal/external information (including but not limited to the removal of outliers, the completion of missing data, etc.), and perform multi-scale decomposition of the preprocessed internal/external information Obtain multiple reconstructed data sequences, perform load prediction based on the multiple reconstructed data sequences, and generate load switching drive signals according to the load prediction results.
  • internal/external information including but not limited to real-time current and voltage information, upper-level scheduling Information and historical reference information
  • preprocess the data in the internal/external information including but not limited to the removal of outliers, the completion of missing data, etc.
  • multi-scale decomposition of the preprocessed internal/external information Obtain multiple reconstructed data sequences, perform load prediction based on the multiple reconstructed data sequences
  • FIG. 4 provides a control flowchart of the energy consumption system.
  • control process of the control module 200 of the energy consumption system may be:
  • the default mode is selected to start working.
  • the default mode can be preset according to requirements, and the default mode includes but is not limited to the first working mode, the second working mode, the third working mode, etc. in the foregoing embodiment.
  • each port includes but not limited to the connection port of the energy consumption system and the first feeder, the connection port of the energy consumption system and the second feeder, the connection port of the energy consumption system and the third feeder, the energy consumption system and the connection port of the third feeder.
  • the wiring port of the three feeders and the first end and the second end of the first capacitor that is, the DC plug-in port).
  • the scheduling is performed according to the upper-level scheduling information, and then the load scheduling is performed according to the real-time current and voltage information. If the upper-level scheduling information is not received, the working state of load scheduling based on the real-time current and voltage information is maintained.
  • a port failure If a port failure is detected, it will continue to check whether all ports are faulty. If all ports are faulty, the energy absorption system will be controlled to stop running. If not all ports are faulty, the faulty port will be controlled to be cut off and based on the real-time current and voltage. Information for load scheduling.
  • FIG. 4 shows the control flow of the control module 200 of the energy consumption system when the DC plug-in port has no external device access.
  • the control flow and diagram 4 is similar, and scheduling can still be performed according to the control flow of Fig. 4.
  • the random power generation equipment can be regarded as a feeder with only two working modes (rectification mode and cut-off mode), and the energy storage equipment can be directly regarded as a feeder. The principle is the same as that in Fig. 4, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种能源消纳系统,包括:控制模块(200)和能源消纳模块(100);所述能源消纳模块(100)与各条馈线连接,用于根据控制模块(200)的控制指令进行各条馈线之间的负荷切换;所述控制模块(200)采集所述能源消纳模块(100)各个端口的实时电流电压信息,并根据所述实时电流电压信息控制所述能源消纳模块(100)的工作状态,实现各条馈线之间的负荷切换。该能源消纳模块(100)智能快捷,有效提高了能源利用率,不仅能够实现负荷转移,也为调控中心提供了灵活的控制手段,实现了电网能源的灵活调度。

Description

能源消纳系统 技术领域
本发明属于能源消纳技术领域,更具体地说,是涉及一种能源消纳系统。
背景技术
在配电网方面,随着各种分布式能源、微电网、电动汽车以及其他储能装置的大量接入,现有的辐射型配网结构已经无法满足多元化、个性化用电需求,高随机性的电源或负荷极容易造成馈线过载或电压越限问题,因此限制了新能源并网发电的功率消纳。
因此,如何实现各种能源的消纳以及电网负荷的灵活调度成为电力系统行业亟待解决的问题。
发明内容
本发明的目的在于提供一种能源消纳系统,以合理进行能源消纳,从而提高能源利用率,实现电网负荷的灵活调度。
为实现上述目的,本发明提供了一种能源消纳系统,该系统包括:控制模块和能源消纳模块;
所述能源消纳模块与各条馈线连接,用于根据控制模块的控制指令进行各条馈线之间的负荷切换;
所述控制模块采集所述能源消纳模块各个端口的实时电流电压信息,并根据所述实时电流电压信息控制所述能源消纳模块的工作状态,实现各条馈线之间的负荷切换。
可选地,所述能源消纳模块包括第一变流器、第二变流器、第三变流器、第四变流器、第一电容、第二电容、第一滤波器、第二滤波器、第三滤波器和第四滤波器;
所述第一变流器的交流端通过第一滤波器与第一馈线连接,所述第一变流器的第一直流端与第一电容的第一端和第四变流器的第二直流端连接,所述第一变流器的第二直流端与第一电容的第二端和第四变流器的第一直流端连接;
所述第二变流器的交流端通过第二滤波器与第二馈线连接,所述第二变流器的第一直流端与第二电容的第一端和第三变流器的第二直流端连接,所述第二变流器的第二直流端与第二电容的第二端和第三变流器的第一直流端连接;
所述第三变流器的交流端通过第三滤波器与第三馈线连接;
所述第四变流器的交流端通过第四滤波器与第四馈线连接;
所述第一电容的第一端与所述第二电容的第一端连接,所述第一电容的第二端与所述第二电容的第二端连接;所述第一电容的第一端和第二端用于提供直流即插端口;
所述控制模块采集第一馈线、第二馈线、第三馈线、第四馈线和第一电容两端的实时电流电压信息,并根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,实现各条馈线之间的负荷切换。
可选地,所述控制模块包括检测单元、运算单元、驱动单元和通讯单元;
所述检测单元的输入端与第一馈线、第二馈线、第三馈线、第四馈线和第一电容的第一端、第一电容的第二端连接,所述检测单元的输出端与所述运算单元的输入端连接;所述运算单元的输出端与所述驱动单元的输入端连接,所述驱动单元的输出端与所述第一变流器、第二变流器、第三变流器和第四变流器连接;所述通讯单元的输入端用于提供上层调度信息的接收端口,所述通讯单元的输出端与所述运算单元的输入端连接;
所述检测单元采集第一馈线、第二馈线、第三馈线、第四馈线和第一电容两端的实时电流电压信息,并将所述实时电流电压信息发送至运算单元;所述运算单元根据所述实时电流电压信息或上层调度信息生成负荷切换的驱动信号,并将所述驱动信号发送至所述驱动单元;所述驱动单元根据所述驱动信号调整所述第一变流器、第二变流器、第三变流器和第四变流器的工作状态,实现各条馈线之间的负荷切换。
可选地,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
当能源消纳系统的当前工作模式为第一工作模式时,若所述实时电流电压信息显示第三馈线的端口电压小于第一预设电压值且第一馈线的供电电流大于第一预设电流值,则控制第一工作模式下的可用变流器工作在整流模式,由第一馈线和第一工作模式下的可用馈线向第三馈线供电;其中,第一工作模式下的可用变流器为第二变流器和/或第四变流器,第一工作模式下的可用馈线为第二馈线和/或第四馈线;
其中,所述第一工作模式为:直流即插端口无外部设备接入,第一变流器工作在整流模式,第三变流器工作在逆变模式,第二变流器和第四变流器截止,由第一馈线向第三馈线供电。
可选地,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
当能源消纳系统的当前工作模式为第二工作模式时,若所述实时电流电压信息显示第二馈线端口出现短路,则控制第二变流器截止,并检测第一馈线是否能够消纳第三馈线的负荷;
若第一馈线无法消纳第三馈线的负荷,则控制第四变流器工作在整流模式,由第一馈线和第四馈线向第三馈线供电;若第一馈线能够消纳第三馈线的负荷,则由第一馈线向第三馈线供电;
其中,所述第二工作模式为:直流即插端口无外部设备接入、第一变流器和第二变流器工作在整流模式、第三变流器工作在逆变模式、第四变流器截止,由第一馈线和第二馈线向第三馈线供电。
可选地,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
当能源消纳系统的当前工作模式为第三工作模式时,若所述实时电流电压信息显示四条馈线无法消纳随机发电设备的负荷,则控制储能设备工作在降压模式,由随机发电设备向第一馈线、第二馈线、第三馈线、第四馈线和储能设备供电;
其中,所述第三工作模式为:直流即插端口接入随机发电设备和储能设备,随机发电设备开启、储能设备截止,第一变流器、第二变流器、第三变流器和第四变流器工作在逆变模式,由随机发电设备向第一馈线、第二馈线、第三馈线和第四馈线供电。
可选地,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
当能源消纳系统的当前工作模式为第四工作模式时,若所述实时电流电压信息显示第三馈线端口出现短路,则控制第三变流器截止,并检测第一馈线是否能够消纳随机发电设备的负荷;
若第一馈线无法消纳随机发电设备的负荷,则控制第四工作模式下的可用变流器工作在逆变模式,由随机发电设备向第一馈线和第四工作模式下的可用馈线供电;若第一馈线能够消纳随机发电设备的负荷,则由随机发电设备向第一馈线供电;其中,第四工作模式下的可用变流器为第二变流器和/或第四变流器,第四工作模式下的可用馈线为第二馈线和/或第四馈线;
其中,所述第四工作模式为:直流即插端口接入随机发电设备,随机发电设备开启,第一变流器和第三变流器工作在逆变模式、第二变流器和第四变流器截止,由随机发电设备向第一馈线和第三馈线供电。
可选地,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
当能源消纳系统的当前工作模式为第五工作模式时,若所述实时电流电压信息显示随机发电设备的供电电流小于第二预设电流值且随机负荷设备的端口电压小于第二预设电压值,则控制储能设备工作在升压模式,和/或控制第五工作模式下的可用变流器工作在整流模式,由随机发电设备、储能设备、和/或第五工作模式下的可用馈线向随机负荷设备供电;其中,第五工作模式下的可用变流器为第一变流器、第二变流器、第三变流器和第四变流器中的至少一个,第五工作模式下的可用馈线为第一馈线、第二馈线、第三馈线和第四馈线中的至少一条;
其中,所述第五工作模式为:直流即插端口接入随机发电设备、随机负荷设备和储能设备,随机发电设备和随机负荷设备开启、储能设备截止,第一变流器、第二变流器、第三变流器和第四变流器截止,由随机发电设备向随机负荷设备供电。
可选地,所述控制模块还根据所述上层调度信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,实现各条馈线之间的负荷切换;
所述控制模块根据所述上层调度信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
当能源消纳系统的当前工作模式为第六工作模式时,若所述上层调度信息指示控制第一变流器截止,则控制第一变流器截止,并控制第二变流器和/或第三变流器工作在整流模式,由第二馈线和/或第三馈线向第四馈线供电;
其中,所述第六工作模式为:直流即插端口无外部设备接入,第一变流器工作在整流模式、第四变流器工作在逆变模式、第二变流器和第三变流器截止,由第一馈线向第四馈线供电。
可选地,所述控制模块还根据所述上层调度信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,实现各条馈线之间的负荷切换;
所述控制模块根据所述上层调度信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
当能源消纳系统的当前工作模式为第七工作模式时,若所述上层调度信息指示控制随机发电设备截止,则控制随机发电设备截止,并检测第一馈线和第三馈线是否能够消纳第二馈线和第四馈线的负荷;
若第一馈线和第三馈线不能消纳第二馈线和第四馈线的负荷,则控制储能设备工作在升压模式,由第二馈 线和第四馈线向第一馈线、第三馈线以及储能设备供电;若第一馈线和第三馈线能够消纳第二馈线和第四馈线的负荷,则由第二馈线和第四馈线向第一馈线和第三馈线供电;
其中,所述第七工作模式为:直流即插端口接入随机发电设备和储能设备,随机发电设备开启、储能设备截止,第二变流器和第四变流器工作在整流模式、第一变流器和第三变流器工作在逆变模式,由随机发电设备、第二馈线以及第四馈线向第一馈线和第三馈线供电。
可选地,所述通讯单元的输入端还用于提供历史参考信息的接收端口;
所述运算单元根据实时电流电压信息、上层调度信息和历史参考信息中的至少一种信息生成负荷切换的驱动信号;其中,所述历史参考信息包括影响用户负荷的历史影响因素数据以及历史负荷数据。
本发明提供的能源消纳系统的有益效果在于:本发明可通过控制模块对能源消纳模块的工作模式进行调整,实现各条馈线之间的负荷转移与平衡。本发明提供的能源消纳系统更加的快捷智能,能够合理进行能源消纳,从而提高能源利用率,实现电网负荷的灵活调度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的能源消纳系统的结构示意图;
图2为本发明一实施例提供的控制模块的结构示意图;
图3为本发明一实施例提供的能源消纳系统的局部结构示意图;
图4为本发明一实施例提供的能源消纳系统的控制流程图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参考图1,图1为本发明一实施例提供的能源消纳系统的结构示意图。该能源消纳系统包括:控制模块200和能源消纳模块100。
能源消纳模块100与各条馈线连接,用于根据控制模块200的控制指令进行各条馈线之间的负荷切换;
控制模块200采集能源消纳模块100各个端口的实时电流电压信息,并根据实时电流电压信息控制能源消纳模块100的工作状态,实现各条馈线之间的负荷切换。
能源消纳模块100包括第一变流器11、第二变流器12、第三变流器13、第四变流器14、第一电容15、第二电容16、第一滤波器17、第二滤波器18、第三滤波器19和第四滤波器10。
第一变流器11的交流端通过第一滤波器17与第一馈线连接,第一变流器11的第一直流端与第一电容15的第一端和第四变流器14的第二直流端连接,第一变流器11的第二直流端与第一电容15的第二端和第四变流器14的第一直流端连接。
第二变流器12的交流端通过第二滤波器18与第二馈线连接,第二变流器12的第一直流端与第二电容16 的第一端和第三变流器13的第二直流端连接,第二变流器12的第二直流端与第二电容16的第二端和第三变流器13的第一直流端连接。
第三变流器13的交流端通过第三滤波器19与第三馈线连接。
第四变流器14的交流端通过第四滤波器10与第四馈线连接。
第一电容15的第一端与第二电容16的第一端连接,第一电容15的第二端与第二电容16的第二端连接。第一电容15的第一端和第二端用于提供直流即插端口。
控制模块200采集第一馈线、第二馈线、第三馈线、第四馈线和第一电容15两端的实时电流电压信息,并根据实时电流电压信息控制第一变流器11、第二变流器12、第三变流器13和第四变流器14的工作状态,实现各条馈线之间的负荷切换。
在本实施例中,第一变流器11、第二变流器12、第三变流器13、第四变流器14均为受控源,该受控源可以为受控电压源,也可以为受控电流源。
在本实施例中,可参考图3,图3是本发明实施例提供的能源消纳系统的单侧结构示意图。具体的,图3中包含第一变流器11、第四变流器14、第一电容15,其中,第一变流器11和第四变流器14中均可使用多个电压源变流器实现。其中,第二变流器12和第三变流器13也可采用图3所示的结构实现,此处不再赘述。
在本实施例中,控制模块200可通过控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态来控制各条馈线之间负荷电流的流向,通过控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的功率管的触发角大小来实现任意功率匹配,从而实现各条馈线之间负荷的按需转移,达到负荷均衡与潮流的调整,提高能源利用率。
从以上描述可知,一方面,本发明提供了一种多端背靠背设计的能源消纳模块100,该能源消纳模块100结构简单,且切换方便,能够支持多种供电工作模式。另一方面,本发明可通过控制模块200对能源消纳模块100中各个变流器功率管的工作模式进行调整,实现各条馈线之间的负荷转移与平衡。本发明提供的能源消纳系统更加的快捷智能,能够合理进行能源消纳,从而提高能源利用率,实现电网负荷的灵活调度。
可选地,请参考图2,作为本发明提供的能源消纳系统的一种具体实施方式,控制模块200包括检测单元21、运算单元22、驱动单元23和通讯单元24。
检测单元21的输入端与第一馈线、第二馈线、第三馈线、第四馈线、第一电容15的第一端和第一电容15的第二端连接,检测单元21的输出端与运算单元22的输入端连接。运算单元22的输出端与驱动单元23的输入端连接,驱动单元23的输出端与第一变流器11、第二变流器12、第三变流器13和第四变流器14连接。通讯单元24的输入端为上层调度信息的接收端口,通讯单元24的输出端与运算单元22的输入端连接。
检测单元21采集与第一馈线、第二馈线、第三馈线、第四馈线和第一电容15两端的实时电流电压信息,并将实时电流电压信息发送至运算单元22。运算单元22根据实时电流电压信息或上层调度信息生成负荷切换的驱动信号,并将驱动信号发送至驱动单元23。驱动单元23根据驱动信号调整第一变流器11、第二变流器12、第三变流器13和第四变流器14的工作状态,以实现各条馈线之间的负荷切换。
在本实施例中,控制模块200还可接收上层调度信息,本发明实施例中各条馈线之间的负荷切换的触发条件可包括两种:
第一,控制模块200检测能源消纳模块100各个端口的实时电流电压信息,根据该实时电流电压信息自动 控制第一变流器11、第二变流器12、第三变流器13和第四变流器14的工作状态,实现各条馈线之间的负荷切换。
第二,控制模块200接收上层调度信息,根据上层调度信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态,实现各条馈线之间的负荷切换。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,控制模块200根据实时电流电压信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态,可包括:
当能源消纳系统的当前工作模式为第一工作模式时,若实时电流电压信息显示第三馈线的端口电压小于第一预设电压值且第一馈线的供电电流大于第一预设电流值,则控制第一工作模式下的可用变流器工作在整流模式,由第一馈线和第一工作模式下的可用馈线向第三馈线供电。其中,第一工作模式下的可用变流器为第二变流器12和/或第四变流器14,第一工作模式下的可用馈线为第二馈线和/或第四馈线。
其中,第一工作模式为:直流即插端口无外部设备接入,第一变流器11工作在整流模式,第三变流器13工作在逆变模式,第二变流器12和第四变流器14截止,由第一馈线向第三馈线供电。
在本实施例中,各条馈线之间的负荷切换是通过控制模块200采集的电压电流信息触发的。本实施例中的第一工作模式中直流即插端口可以不接入外部设备,也可接入外部设备后控制各个外部设备截止。
本发明实施例提供的控制模式也可以描述为:能源消纳系统工作在第一工作模式(也即通过第一馈线向第三馈线供电),若控制模块200采集的电压电流信息显示第一馈线无法满足第三馈线的负荷需求,则通过控制模块200控制第一工作模式下的可用变流器(也即第二变流器12和/或第四变流器14)工作在整流模式,由第一馈线和第一工作模式下的可用馈线(也即第二馈线和/或第四馈线)向第三馈线供电。其中,可用馈线包括至少一条馈线,例如本实施例中第一工作模式下的可用馈线可以为第二馈线,可以为第四馈线,也可以为第二馈线和第四馈线。
在本实施例中,控制模块200还可以根据上层调度信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态。例如,能源消纳系统的当前工作模式为:第一变流器11工作在整流模式、第三变流器13工作在逆变模式、第二变流器12和第四变流器14截止,此时由第一馈线向第三馈线供电。若此时控制模块200接收到上层调度信息,该上层调度信息指示由第一馈线向第二馈线和第三馈线供电,则在能源消纳系统的当前工作模式的基础上,可通过控制模块200控制第二变流器12工作在逆变模式,来实现第一馈线、第二馈线和第三馈线的互联。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,控制模块200根据实时电流电压信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态,可包括:
当能源消纳系统的当前工作模式为第二工作模式时,若实时电流电压信息显示第二馈线端口出现短路,则控制第二变流器12截止,并检测第一馈线是否能够消纳第三馈线的负荷。
若第一馈线无法消纳第三馈线的负荷,则控制第四变流器14工作在整流模式,由第一馈线和第四馈线向第三馈线供电。若第一馈线能够消纳第三馈线的负荷,则由第一馈线向第三馈线供电。
其中,第二工作模式为:直流即插端口无外部设备接入、第一变流器11和第二变流器12工作在整流模式、第三变流器13工作在逆变模式、第四变流器14截止,由第一馈线和第二馈线向第三馈线供电。
在本实施例中,各条馈线之间的负荷切换是通过控制模块200采集的电压电流信息触发的。本发明实施例 提供的控制模式也可以描述为:能源消纳系统工作在第二工作模式(也即通过第一馈线和第二馈线向第三馈线供电),若控制模块200采集的电压电流信息显示第二馈线的端口短路,则检测第一馈线是否能够消纳第三馈线的负荷。若第一馈线无法消纳第三馈线的负荷,则控制第四变流器14工作在整流模式,由第一馈线和第四馈线向第三馈线供电。若第一馈线能够消纳第三馈线的负荷,则直接由第一馈线向第三馈线供电。
在本实施例中,若第二馈线的短路故障消除,则控制模块200可根据实时的实时电流电压信息重新进行各条馈线之间的负荷切换。
在本实施例中,若故障检测结果显示某一馈线的端口出现过负荷或短路时,则在能源消纳系统的当前工作模式的基础上,控制将过负荷或者短路的馈线的一部分负荷转供至另一馈线上,从而实现负荷平衡。本发明实施例可根据实际的电压电流信息进行任意控制模式的自主切换。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,控制模块200根据实时电流电压信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态,可包括:
当能源消纳系统的当前工作模式为第三工作模式时,若实时电流电压信息显示四条馈线无法消纳随机发电设备的负荷,则控制储能设备工作在降压模式,由随机发电设备向第一馈线、第二馈线、第三馈线、第四馈线和储能设备供电。
其中,第三工作模式为:直流即插端口接入随机发电设备和储能设备,随机发电设备开启、储能设备截止,第一变流器11、第二变流器12、第三变流器13和第四变流器14工作在逆变模式,由随机发电设备向第一馈线、第二馈线、第三馈线和第四馈线供电。
在本实施例中,随机发电设备和储能设备均属于外部设备。其中,随机发电设备可以为光伏发电设备,也可以为风力发电设备。储能设备的工作模式包括升压模式、降压模式和截止模式,升压模式实现储能设备向能源消纳系统的直流侧母线提供电能,降压模式实现能源消纳系统的直流侧母线对储能设备进行充电储存电能,截止模式实现储能设备与能源消纳系统直流侧母线隔离。
在本实施例中,各条馈线之间的负荷切换是通过控制模块200采集的电压电流信息触发的。本发明实施例提供的控制模式也可以描述为:能源消纳系统工作在第三工作模式(也即通过随机发电设备向第一馈线、第二馈线、第三馈线、第四馈线供电),若控制模块200采集的电压电流信息显示四条馈线无法消纳随机发电设备的负荷,则可控制储能设备工作在降压模式,对储能设备进行充电。
在本实施例中,第三工作模式提高了随机发电设备的随机能源的消纳半径,提高了随机能源的柔性转供能力。
在本实施例中,控制模块200还可以根据上层调度信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态。例如,能源消纳系统的当前工作模式为:直流即插端口接入了随机发电设备和储能设备,第一变流器11和第三变流器13工作在逆变模式、第二变流器12和第四变流器14截止、储能设备截止、随机发电设备开启,此时由随机发电设备向第一馈线和第三馈线供电。若控制模块200接收到的上层调度信息指示由随机发电设备向第一馈线供电,则可通过控制模块200控制第三变流器13截止。
在本实施例中,随机负荷设备可以为充电汽车。随机能源(随机发电设备所需的能源)受天气影响比较大。本实施例以光伏发电和充电汽车为例对随机发电设备、随机负荷设备与能源消纳系统之间的互联过程进行说明:当光伏发电设备发电时,发出的直流电通过直流即插端口并入能源消纳系统,经过各个变流器将直流变为交流, 供给负载或并网使用。当光伏发电量大于负载所需电量时,多余的电量由储能设备消纳。当储能设备容量限额即将用完时,后台监控系统可通过营配调控系统发出的实时电价信息,引导充电汽车用户进行充电,享受低电价的同时,平衡发电功率和用电功率。其中,后台监控系统可以为上层调度信息的发出设备。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,控制模块200根据实时电流电压信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态,可包括:
当能源消纳系统的当前工作模式为第四工作模式时,若实时电流电压信息显示第三馈线端口出现短路,则控制第三变流器13截止,并检测第一馈线是否能够消纳随机发电设备的负荷。
若第一馈线无法消纳随机发电设备的负荷,则控制第四工作模式下的可用变流器工作在逆变模式,由随机发电设备向第一馈线和第四工作模式下的可用馈线供电。若第一馈线能够消纳随机发电设备的负荷,则由随机发电设备向第一馈线供电。其中,第四工作模式下的可用变流器为第二变流器12和/或第四变流器14,第四工作模式下的可用馈线为第二馈线和/或第四馈线。
其中,第四工作模式为:直流即插端口接入随机发电设备,随机发电设备开启,第一变流器11和第三变流器13工作在逆变模式、第二变流器12和第四变流器14截止,由随机发电设备向第一馈线和第三馈线供电。
在本实施例中,各条馈线之间的负荷切换是通过控制模块200采集的电压电流信息触发的。本发明实施例提供的控制模式也可以描述为:随机发电设备向第一馈线和第三馈线供电时,若第三馈线短路,则检测第一馈线是否能够消纳随机发电设备的负荷。若第一馈线无法消纳随机发电设备的负荷,则由随机发电设备向第一馈线和第四工作模式下的可用馈线(也即第二馈线和/或第四馈线)供电。若第一馈线能够消纳随机发电设备的负荷,则直接由随机发电设备向第一馈线供电。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,控制模块200根据实时电流电压信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态,可包括:
当能源消纳系统的当前工作模式为第五工作模式时,若实时电流电压信息显示随机发电设备的供电电流小于第二预设电流值且随机负荷设备的端口电压小于第二预设电压值,则控制储能设备工作在升压模式,和/或控制第五工作模式下的可用变流器工作在整流模式,由随机发电设备、储能设备、和/或第五工作模式下的可用馈线向随机负荷设备供电。其中,第五工作模式下的可用变流器为第一变流器11、第二变流器12、第三变流器13和第四变流器14中的至少一个,第五工作模式下的可用馈线为第一馈线、第二馈线、第三馈线和第四馈线中的至少一条。
其中,第五工作模式为:直流即插端口接入随机发电设备、随机负荷设备和储能设备,随机发电设备和随机负荷设备开启、储能设备截止,第一变流器11、第二变流器12、第三变流器13和第四变流器14截止,由随机发电设备向随机负荷设备供电。
在本实施例中,各条馈线之间的负荷切换是通过控制模块200采集的电压电流信息触发的。本发明实施例提供的控制模式也可以描述为:当能源消纳系统的当前工作模式为第五工作模式(也即随机发电设备向随机负荷设备供电)时,若实时电流电压信息显示随机发电设备的供电能力大幅度降低(若随机发电设备为光伏发电设备,则在夜晚时随机发电设备的供电能力会大幅降低),无法满足储能设备的储能需求,则可选取第五工作模式下的可用馈线中的至少一条对储能设备进行充电。其中,选取几条馈线可根据储能设备的需求进行合理设置。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,控制模块200还根据上层调度信息控制第一变流器11、第二变流器12、第三变流器13和第四变流器14的工作状态,实现各条馈线之间的负荷切换。
控制模块200根据上层调度信息控制第一变流器11、第二变流器12、第三变流器13和第四变流器14的工作状态,可包括:
当能源消纳系统的当前工作模式为第六工作模式时,若上层调度信息指示控制第一变流器11截止,则控制第一变流器11截止,并控制第二变流器12和/或第三变流器13工作在整流模式,由第二馈线和/或第三馈线向第四馈线供电。
其中,第六工作模式为:直流即插端口无外部设备接入,第一变流器11工作在整流模式、第四变流器14工作在逆变模式、第二变流器12和第三变流器13截止,由第一馈线向第四馈线供电。
在本实施例中,各条馈线之间的负荷切换是通过控制模块200接收的上层调度信息触发的。由上述描述可知,控制模块200在根据上层调度信息进行变流器工作模式的调整后,还可根据调整后可能会导致的负荷失衡情况进行自行调整。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,控制模块200还根据上层调度信息控制第一变流器11、第二变流器12、第三变流器13和第四变流器14的工作状态,实现各条馈线之间的负荷切换。
控制模块200根据上层调度信息信息控制第一变流器11、第二变流器12、第三变流器13和第四变流器14的工作状态,可包括:
当能源消纳系统的当前工作模式为第七工作模式时,若上层调度信息指示控制随机发电设备截止,则控制随机发电设备截止,并检测第一馈线和第三馈线是否能够消纳第二馈线和第四馈线的负荷。
若第一馈线和第三馈线不能消纳第二馈线和第四馈线的负荷,则控制储能设备工作在升压模式,由第二馈线和第四馈线向第一馈线、第三馈线以及储能设备供电。若第一馈线和第三馈线能够消纳第二馈线和第四馈线的负荷,则由第二馈线和第四馈线向第一馈线和第三馈线供电。
其中,第七工作模式为:直流即插端口接入随机发电设备和储能设备,随机发电设备开启、储能设备截止,第二变流器12和第四变流器14工作在整流模式、第一变流器11和第三变流器13工作在逆变模式,由随机发电设备、第二馈线以及第四馈线向第一馈线和第三馈线供电。
在本实施例中,各条馈线之间的负荷切换是通过控制模块200接收的上层调度信息触发的。由上述描述可知,控制模块200在根据上层调度信息进行变流器工作模式的调整后,还可根据调整后可能会导致的负荷失衡情况进行自行调整。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,通讯单元的输入端还用于提供历史参考信息的接收端口。
运算单元根据实时电流电压信息、上层调度信息和历史参考信息中的至少一种信息生成负荷切换的驱动信号。其中,历史参考信息包括影响用户负荷的历史影响因素数据以及历史负荷数据。
在本实施例中,各条馈线之间的负荷切换的触发条件除了实时电流电压信息和上层调度信息外,还可包括历史参考信息,也即控制模块200接收历史参考信息,根据历史参考信息控制第一变流器11、第二变流器12、第三变流器13、第四变流器14的工作状态,实现各条馈线之间的负荷切换。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,运算单元生成负荷切换的驱动信号的方法 可以为:接收内/外部信息(包括但不限于实时电流电压信息、上层调度信息和历史参考信息),并对内/外部信息中的数据进行预处理(包括但不限于异常值的去除、缺失数据的补全等),对预处理后的内/外部信息进行多尺度分解得到多个重构数据序列,根据多个重构数据序列进行负荷预测,并根据负荷预测结果生成负荷切换的驱动信号。
可选地,作为本发明提供的能源消纳系统的一种具体实施方式,图4提供了一种能源消纳系统的控制流程图。
在本实施例中,能源消纳系统的控制模块200的控制流程可以为:
对能源消纳系统进行初始化后选定默认模式开始工作。其中,默认模式可以根据需求进行预先设定,默认模式包括但不限于上述实施例中的第一工作模式、第二工作模式、第三工作模式等。
根据各个端口的实时电流电压信息进行负荷调度。其中,各个端口包括但不限于能源消纳系统与第一馈线的接线端口、能源消纳系统与第二馈线的接线端口、能源消纳系统与第三馈线的接线端口、能源消纳系统与第三馈线的接线端口和第一电容的第一端和第二端(也就是直流即插端口)。
检测各个端口的实时电压和实时电流是否正常,若各个端口的实时电压和实时电流正常,则检测是否接收到上层调度信息,若各个端口的实时电压和实时电流不正常,则检测是否存在端口故障。
若接收到上层调度信息,则根据上层调度信息进行调度后,再根据实时电流电压信息进行负荷调度。若未接收到上层调度信息,则保持根据实时电流电压信息进行负荷调度的工作状态。
若检测到存在端口故障,则继续检测是否所有端口均存在故障,若所有端口均存在故障,则控制能源消纳系统停止运行,若并非所有端口故障,则控制故障端口截止,并根据实时电流电压信息进行负荷调度。
在本实施例中,图4表示的是直流即插端口无外部设备接入的情况下能源消纳系统的控制模块200的控制流程,在直流即插端口接入外部设备后,控制流程与图4类似,仍可根据图4的控制流程进行调度。其中,在进行负荷调度时,随机发电设备可以看作只有两种工作模式的馈线(整流模式和截止模式),储能设备可直接看作馈线,原理与图4相同,此处不再赘述。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种能源消纳系统,其特征在于,包括:控制模块和能源消纳模块;
    所述能源消纳模块与各条馈线连接,用于根据控制模块的控制指令进行各条馈线之间的负荷切换;
    所述控制模块采集所述能源消纳模块各个端口的实时电流电压信息,并根据所述实时电流电压信息控制所述能源消纳模块的工作状态,实现各条馈线之间的负荷切换。
  2. 如权利要求1所述的能源消纳系统,其特征在于,所述能源消纳模块包括第一变流器、第二变流器、第三变流器、第四变流器、第一电容、第二电容、第一滤波器、第二滤波器、第三滤波器和第四滤波器;
    所述第一变流器的交流端通过第一滤波器与第一馈线连接,所述第一变流器的第一直流端与第一电容的第一端和第四变流器的第二直流端连接,所述第一变流器的第二直流端与第一电容的第二端和第四变流器的第一直流端连接;
    所述第二变流器的交流端通过第二滤波器与第二馈线连接,所述第二变流器的第一直流端与第二电容的第一端和第三变流器的第二直流端连接,所述第二变流器的第二直流端与第二电容的第二端和第三变流器的第一直流端连接;
    所述第三变流器的交流端通过第三滤波器与第三馈线连接;
    所述第四变流器的交流端通过第四滤波器与第四馈线连接;
    所述第一电容的第一端与所述第二电容的第一端连接,所述第一电容的第二端与所述第二电容的第二端连接;所述第一电容的第一端和第二端用于提供直流即插端口;
    所述控制模块采集第一馈线、第二馈线、第三馈线、第四馈线和第一电容两端的实时电流电压信息,并根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,实现各条馈线之间的负荷切换。
  3. 如权利要求2所述的能源消纳系统,其特征在于,所述控制模块包括检测单元、运算单元、驱动单元和通讯单元;
    所述检测单元的输入端与第一馈线、第二馈线、第三馈线、第四馈线和第一电容的第一端、第一电容的第二端连接,所述检测单元的输出端与所述运算单元的输入端连接;所述运算单元的输出端与所述驱动单元的输入端连接,所述驱动单元的输出端与所述第一变流器、第二变流器、第三变流器和第四变流器连接;所述通讯单元的输入端用于提供上层调度信息的接收端口,所述通讯单元的输出端与所述运算单元的输入端连接;
    所述检测单元采集第一馈线、第二馈线、第三馈线、第四馈线和第一电容两端的实时电流电压信息,并将所述实时电流电压信息发送至运算单元;所述运算单元根据所述实时电流电压信息或上层调度信息生成负荷切换的驱动信号,并将所述驱动信号发送至所述驱动单元;所述驱动单元根据所述驱动信号调整所述第一变流器、第二变流器、第三变流器和第四变流器的工作状态,实现各条馈线之间的负荷切换。
  4. 如权利要求2所述的能源消纳系统,其特征在于,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
    当能源消纳系统的当前工作模式为第一工作模式时,若所述实时电流电压信息显示第三馈线的端口电压小于第一预设电压值且第一馈线的供电电流大于第一预设电流值,则控制第一工作模式下的可用变流器工作在整 流模式,由第一馈线和第一工作模式下的可用馈线向第三馈线供电;其中,第一工作模式下的可用变流器为第二变流器和/或第四变流器,第一工作模式下的可用馈线为第二馈线和/或第四馈线;
    其中,所述第一工作模式为:直流即插端口无外部设备接入,第一变流器工作在整流模式,第三变流器工作在逆变模式,第二变流器和第四变流器截止,由第一馈线向第三馈线供电。
  5. 如权利要求2所述的能源消纳系统,其特征在于,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
    当能源消纳系统的当前工作模式为第二工作模式时,若所述实时电流电压信息显示第二馈线端口出现短路,则控制第二变流器截止,并检测第一馈线是否能够消纳第三馈线的负荷;
    若第一馈线无法消纳第三馈线的负荷,则控制第四变流器工作在整流模式,由第一馈线和第四馈线向第三馈线供电;若第一馈线能够消纳第三馈线的负荷,则由第一馈线向第三馈线供电;
    其中,所述第二工作模式为:直流即插端口无外部设备接入、第一变流器和第二变流器工作在整流模式、第三变流器工作在逆变模式、第四变流器截止,由第一馈线和第二馈线向第三馈线供电。
  6. 如权利要求2所述的能源消纳系统,其特征在于,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
    当能源消纳系统的当前工作模式为第三工作模式时,若所述实时电流电压信息显示四条馈线无法消纳随机发电设备的负荷,则控制储能设备工作在降压模式,由随机发电设备向第一馈线、第二馈线、第三馈线、第四馈线和储能设备供电;
    其中,所述第三工作模式为:直流即插端口接入随机发电设备和储能设备,随机发电设备开启、储能设备截止,第一变流器、第二变流器、第三变流器和第四变流器工作在逆变模式,由随机发电设备向第一馈线、第二馈线、第三馈线和第四馈线供电。
  7. 如权利要求2所述的能源消纳系统,其特征在于,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
    当能源消纳系统的当前工作模式为第四工作模式时,若所述实时电流电压信息显示第三馈线端口出现短路,则控制第三变流器截止,并检测第一馈线是否能够消纳随机发电设备的负荷;
    若第一馈线无法消纳随机发电设备的负荷,则控制第四工作模式下的可用变流器工作在逆变模式,由随机发电设备向第一馈线和第四工作模式下的可用馈线供电;若第一馈线能够消纳随机发电设备的负荷,则由随机发电设备向第一馈线供电;其中,第四工作模式下的可用变流器为第二变流器和/或第四变流器,第四工作模式下的可用馈线为第二馈线和/或第四馈线;
    其中,所述第四工作模式为:直流即插端口接入随机发电设备,随机发电设备开启,第一变流器和第三变流器工作在逆变模式、第二变流器和第四变流器截止,由随机发电设备向第一馈线和第三馈线供电。
  8. 如权利要求2所述的能源消纳系统,其特征在于,所述控制模块根据所述实时电流电压信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
    当能源消纳系统的当前工作模式为第五工作模式时,若所述实时电流电压信息显示随机发电设备的供电电流小于第二预设电流值且随机负荷设备的端口电压小于第二预设电压值,则控制储能设备工作在升压模式,和/或控制第五工作模式下的可用变流器工作在整流模式,由随机发电设备、储能设备、和/或第五工作模式下的 可用馈线向随机负荷设备供电;其中,第五工作模式下的可用变流器为第一变流器、第二变流器、第三变流器和第四变流器中的至少一个,第五工作模式下的可用馈线为第一馈线、第二馈线、第三馈线和第四馈线中的至少一条;
    其中,所述第五工作模式为:直流即插端口接入随机发电设备、随机负荷设备和储能设备,随机发电设备和随机负荷设备开启、储能设备截止,第一变流器、第二变流器、第三变流器和第四变流器截止,由随机发电设备向随机负荷设备供电。
  9. 如权利要求3所述的能源消纳系统,其特征在于,所述控制模块还根据所述上层调度信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,实现各条馈线之间的负荷切换;
    所述控制模块根据所述上层调度信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
    当能源消纳系统的当前工作模式为第六工作模式时,若所述上层调度信息指示控制第一变流器截止,则控制第一变流器截止,并控制第二变流器和/或第三变流器工作在整流模式,由第二馈线和/或第三馈线向第四馈线供电;
    其中,所述第六工作模式为:直流即插端口无外部设备接入,第一变流器工作在整流模式、第四变流器工作在逆变模式、第二变流器和第三变流器截止,由第一馈线向第四馈线供电。
  10. 如权利要求3所述的能源消纳系统,其特征在于,所述控制模块还根据所述上层调度信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,实现各条馈线之间的负荷切换;
    所述控制模块根据所述上层调度信息控制第一变流器、第二变流器、第三变流器和第四变流器的工作状态,包括:
    当能源消纳系统的当前工作模式为第七工作模式时,若所述上层调度信息指示控制随机发电设备截止,则控制随机发电设备截止,并检测第一馈线和第三馈线是否能够消纳第二馈线和第四馈线的负荷;
    若第一馈线和第三馈线不能消纳第二馈线和第四馈线的负荷,则控制储能设备工作在升压模式,由第二馈线和第四馈线向第一馈线、第三馈线以及储能设备供电;若第一馈线和第三馈线能够消纳第二馈线和第四馈线的负荷,则由第二馈线和第四馈线向第一馈线和第三馈线供电;
    其中,所述第七工作模式为:直流即插端口接入随机发电设备和储能设备,随机发电设备开启、储能设备截止,第二变流器和第四变流器工作在整流模式、第一变流器和第三变流器工作在逆变模式,由随机发电设备、第二馈线以及第四馈线向第一馈线和第三馈线供电。
  11. 如权利要求3所述的能源消纳系统,其特征在于,所述通讯单元的输入端还用于提供历史参考信息的接收端口;
    所述运算单元根据实时电流电压信息、上层调度信息和历史参考信息中的至少一种信息生成负荷切换的驱动信号;其中,所述历史参考信息包括影响用户负荷的历史影响因素数据以及历史负荷数据。
PCT/CN2020/135087 2020-01-19 2020-12-10 能源消纳系统 WO2021143405A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20888740.6A EP3876377A4 (en) 2020-01-19 2020-12-10 ENERGY CONSUMPTION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010059826.0A CN111244941B (zh) 2020-01-19 2020-01-19 能源消纳系统
CN202010059826.0 2020-01-19

Publications (1)

Publication Number Publication Date
WO2021143405A1 true WO2021143405A1 (zh) 2021-07-22

Family

ID=70879619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135087 WO2021143405A1 (zh) 2020-01-19 2020-12-10 能源消纳系统

Country Status (3)

Country Link
EP (1) EP3876377A4 (zh)
CN (1) CN111244941B (zh)
WO (1) WO2021143405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244941B (zh) * 2020-01-19 2022-04-19 国网河北省电力有限公司衡水供电分公司 能源消纳系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867197A (zh) * 2010-07-14 2010-10-20 上海交通大学 海上风电场并网的轻型直流输电实验系统
US20160365728A1 (en) * 2015-06-15 2016-12-15 Siemens Aktiengesellschaft Network Regulation Upon Threshold Value Overshoots in a Low Voltage or Medium Voltage Network
CN107394819A (zh) * 2017-08-24 2017-11-24 上海交通大学 一种变电站低压母线间柔性互联系统及其控制方法
CN107482634A (zh) * 2017-08-24 2017-12-15 上海交通大学 一种多微网柔性互联系统及其控制方法
CN109193661A (zh) * 2018-11-05 2019-01-11 武汉大学 一种基于多端柔性互联技术的交直流混合优质配电系统
CN111244941A (zh) * 2020-01-19 2020-06-05 国网河北省电力有限公司衡水供电分公司 能源消纳系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856924B (zh) * 2012-08-29 2015-01-21 中国能源建设集团广东省电力设计研究院 一种基于复合储能的微电网平滑切换控制方法
CN105706013B (zh) * 2013-09-11 2018-07-03 国立研究开发法人宇宙航空研究开发机构 太阳电池调整系统、相关方法及最小电流检测及控制系统
CN204376424U (zh) * 2015-01-29 2015-06-03 国家电网公司 基于背靠背交直流变换器的微电网结构
US20170257021A1 (en) * 2016-03-02 2017-09-07 Whirlpool S.A. System for Correction of Harmonic Content in Electric Power Circuit, System for Control of Electric Motors, and Refrigeration Compressor
CN105811447B (zh) * 2016-05-04 2019-03-01 贵州大学 基于智能直流配电中心的城市配电网网架结构
CN107749642A (zh) * 2017-11-12 2018-03-02 国网江西省电力有限公司电力科学研究院 一种家用式能量路由器
CN109756121B (zh) * 2018-12-24 2022-09-09 中国电力科学研究院有限公司 一种基于mmc的隔离型dc-dc直流变换器及控制方法
CN209282844U (zh) * 2018-12-30 2019-08-20 国网浙江省电力有限公司丽水供电公司 配电网负荷切换降损系统
CN110138075A (zh) * 2019-04-10 2019-08-16 国网江苏省电力有限公司南通供电分公司 高兼容性交直流混合配电系统
CN110690731A (zh) * 2019-08-20 2020-01-14 东南大学 一种适用于混合微电网的电力电子变压器及其协调控制和模式切换方法
CN111181157B (zh) * 2020-01-19 2021-11-23 国网河北省电力有限公司衡水供电分公司 负荷切换系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867197A (zh) * 2010-07-14 2010-10-20 上海交通大学 海上风电场并网的轻型直流输电实验系统
US20160365728A1 (en) * 2015-06-15 2016-12-15 Siemens Aktiengesellschaft Network Regulation Upon Threshold Value Overshoots in a Low Voltage or Medium Voltage Network
CN107394819A (zh) * 2017-08-24 2017-11-24 上海交通大学 一种变电站低压母线间柔性互联系统及其控制方法
CN107482634A (zh) * 2017-08-24 2017-12-15 上海交通大学 一种多微网柔性互联系统及其控制方法
CN109193661A (zh) * 2018-11-05 2019-01-11 武汉大学 一种基于多端柔性互联技术的交直流混合优质配电系统
CN111244941A (zh) * 2020-01-19 2020-06-05 国网河北省电力有限公司衡水供电分公司 能源消纳系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876377A4 *

Also Published As

Publication number Publication date
EP3876377A4 (en) 2022-02-23
EP3876377A1 (en) 2021-09-08
CN111244941A (zh) 2020-06-05
CN111244941B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN102005817B (zh) 基于微电网的不间断电源装置及其调度控制方法
US9608451B2 (en) Electric power supplying apparatus, electric power supplying method, inverter, and electric vehicle
CN102368631B (zh) 一种高效可靠的数据中心电子设备供电架构
ES2741429T3 (es) Sistema de suministro eléctrico con integración de energía eólica, energía solar, generador de combustible diésel y suministro de red
KR20220115623A (ko) 스와핑 스테이션용 또는 에너지 저장 스테이션용 충전 시스템
CN103178553A (zh) 一种家用混合供电系统
WO2012144358A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
CN209805420U (zh) 一种高兼容性楼宇直流配电系统
CN111682569A (zh) 一种智能控制的储能系统
CN105896690B (zh) 一种用于电动汽车充电的混合能源系统及其监控装置
WO2021143405A1 (zh) 能源消纳系统
US20230187966A1 (en) Non-current equalization ups apparatus, current distribution method, and parallel ups system
CN209088619U (zh) 一种不间断电源系统
CN217282355U (zh) 电源管理系统、换电站
CN111181157B (zh) 负荷切换系统
CN211296203U (zh) 一种微电网系统
CN114221369A (zh) 基于光储直流微电网的高压直流供电系统及其能量管理方法
CN208955660U (zh) 变电站光伏交直流系统
CN110445172A (zh) 一种双回路户用型光伏储能系统及其供电方法
CN210123895U (zh) 具有能量回馈功能的新能源电梯供电系统及新能源电梯
CN220066969U (zh) 一种用于直流屏的光储充系统
CN218733330U (zh) 一种站台门系统电源
US11770007B2 (en) Method and system for integration and control of power for consumer power circuits
CN116632986B (zh) 一种直流储充系统及其充电控制方法
CN219576654U (zh) 共用电池的微电网电路系统及储能设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020888740

Country of ref document: EP

Effective date: 20210527

NENP Non-entry into the national phase

Ref country code: DE