WO2021143204A1 - 一种分光平板、分光装置、分光镜头、摄像机和电子设备 - Google Patents

一种分光平板、分光装置、分光镜头、摄像机和电子设备 Download PDF

Info

Publication number
WO2021143204A1
WO2021143204A1 PCT/CN2020/118581 CN2020118581W WO2021143204A1 WO 2021143204 A1 WO2021143204 A1 WO 2021143204A1 CN 2020118581 W CN2020118581 W CN 2020118581W WO 2021143204 A1 WO2021143204 A1 WO 2021143204A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plate
spectroscopic
splitting
visible light
Prior art date
Application number
PCT/CN2020/118581
Other languages
English (en)
French (fr)
Inventor
刘军
陈勇
李�灿
李明璇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010235860.9A external-priority patent/CN113189782A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20913943.5A priority Critical patent/EP4063940A4/en
Publication of WO2021143204A1 publication Critical patent/WO2021143204A1/zh
Priority to US17/862,800 priority patent/US20220342226A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/142Coating structures, e.g. thin films multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • This application relates to the technical field of electronic equipment, and in particular to a spectroscopic flat panel, a spectroscopic device, a spectroscopic lens, a camera, and an electronic device.
  • Low-illuminance cameras are widely used in military, security, public safety and other fields because they can still capture clear images under low illuminance conditions.
  • the light collected by the camera includes both visible light and near-infrared light. Visible light and near-infrared light have a large difference in wavelength. If they are mixed together, the collected images will appear serious color cast.
  • a light splitting structure can be added to the transmission path of the imaging beam of the low-illuminance camera to divide the imaging beam formed by the focusing of the imaging lens into visible light and near-infrared light, so that the visible light and the near-infrared light can be divided into visible light and near-infrared light.
  • Near-infrared light can be processed separately and then fused, so that low-light cameras can output color images with vivid colors.
  • the addition of a light splitting structure will inevitably introduce chromatic aberration and off-axis aberration.
  • the embodiments of the present application provide a beam splitting plate, a beam splitting device, a beam splitting lens, a camera, and an electronic device, which can reduce the chromatic aberration and off-axis aberration introduced by the beam splitting structure, and reduce the difficulty of correcting the chromatic aberration and off-axis aberration of the camera.
  • some embodiments of the present application provide a light splitting plate for obliquely disposed in the imaging light path of a camera.
  • the light splitting plate includes a light-transmitting plate and a light-splitting film; the light-transmitting plate is a light-transmitting flat structure; the light-splitting film Supported on the light-transmitting plate and parallel to the light-transmitting plate, the light-splitting film is used to reflect visible light and transmit near-infrared light, or the light-splitting film is used to reflect near-infrared light and transmit visible light; the thickness of the light-transmitting plate meets when the light-splitting plate is inclined When set in the transmission path of the imaging light beam of the camera, the transmission path length of the visible light and the near-infrared light in the imaging light beam in the light-transmitting flat plate is less than the projection length of the light splitting film on the optical axis of the imaging light beam.
  • the spectroscopic film is used to reflect visible light and transmit near-infrared light, or the spectroscopic film is used to reflect near-infrared light and transmit visible light, the visible light in the imaging optical path can be imaged through the spectroscopic film. Separate from near-infrared light.
  • the light splitting film is supported on the light-transmitting plate and parallel to the light-transmitting plate, and the thickness of the light-transmitting plate satisfies that when the light-splitting plate is installed obliquely in the transmission path of the imaging beam of the camera, the visible light and near-infrared light in the imaging beam are in
  • the length of the transmission path in the light-transmitting flat plate is less than the projection length of the light splitting film on the optical axis of the imaging beam.
  • the projection length of the beam splitting film on the optical axis of the imaging beam is L ⁇ cos ⁇ .
  • the visible light and near-infrared light in the imaging beam have a small optical path transmitted in the transparent plate, causing small chromatic aberrations and off-axis aberrations. It is helpful to reduce the difficulty of correcting the chromatic aberration and off-axis aberration of the camera.
  • the thickness of the light-transmitting flat plate is less than 0.5 mm. In this way, the thickness of the light-transmitting plate is small.
  • the beam splitting plate is installed obliquely in the transmission path of the imaging beam of the camera, the transmission path length of the visible light and near-infrared light in the imaging beam in the light-transmitting plate is small, which causes chromatic aberration.
  • the off-axis aberration is small, and the chromatic aberration and off-axis aberration of the camera are less difficult to correct.
  • the light-transmitting flat plate has a first surface and a second surface opposite to each other; and the light splitting film is attached to the first surface or the second surface.
  • This structure is simple and easy to implement.
  • the spectroscopic flat plate further includes a first antireflection film, and the first antireflection film is pasted on the second surface, The first antireflection film is used to enhance the transmittance of visible light emitted from the second surface of the transparent plate; when the spectroscopic film is attached to the first surface, and the spectroscopic film is used to reflect visible light and transmit near-infrared light, the spectroscopic plate also The second anti-reflection film is included, and the second anti-reflection film is attached to the second surface, and the second anti-reflection film is used to enhance the transmittance of the near-infrared light emitted from the second surface to the light-transmitting plate. In this way, the use of the first antireflection film or the second antireflection film enhances the transmittance of visible light or near-infrared light
  • the spectroscopic plate when the spectroscopic film is attached to the second surface, the spectroscopic plate further includes a third antireflection film, the third antireflection film is attached to the first surface, and the third antireflection film is used to enhance visible light and near infrared The transmittance of light from the first surface into the light-transmitting flat plate.
  • the use of the third antireflection film enhances the transmittance of visible light and near-infrared light entering the spectroscopic plate, and reduces the optical path loss.
  • the light-transmitting plate includes a first light-transmitting plate and a second light-transmitting plate; the first light-transmitting plate has a first surface and a second surface opposite to each other; the second light-transmitting plate has a first surface and a second opposite surface. Surface; The light splitting film is sandwiched between the second surface of the first transparent plate and the first surface of the second transparent plate.
  • the structure is simple, easy to implement, and can protect the spectroscopic film against water and dust.
  • the light splitting plate further includes a fourth antireflection film, the fourth antireflection film is pasted on the first surface of the first light transmission plate, and the fourth antireflection film is used to enhance the visible light and near-infrared light from being transmitted through the first surface.
  • the use of the fourth antireflection film enhances the transmittance of visible light and near-infrared light entering the spectroscopic plate, and reduces the optical path loss.
  • the spectroscopic plate when the spectroscopic film reflects near-infrared light and transmits visible light, the spectroscopic plate further includes a fifth antireflection film, the fifth antireflection film is attached to the second surface of the second light transmission plate, and the fifth antireflection film It is used to enhance the transmittance of visible light emitted from the second surface of the second light-transmitting plate; when the light-splitting film reflects visible light and transmits near-infrared light, the light-splitting plate also includes a sixth antireflection film.
  • the transparent film is attached to the second surface of the second transparent plate, and the sixth antireflection film is used to enhance the transmittance of the near-infrared light from the second surface of the second transparent plate out of the second transparent plate.
  • the use of the fifth antireflection film or the sixth antireflection film enhances the transmittance of the visible light or near-infrared light transmitted by the spectroscopic film when exiting the spectroscopic plate, and reduces the optical path loss.
  • some embodiments of the present application provide a spectroscopic device, which includes a housing, a connection structure, and a spectroscopic plate; the housing is provided with a light entrance; the connection structure is provided on the edge of the housing at the light entrance, The connecting structure is used to connect with the image side end of the lens barrel of the imaging lens, so that the light entrance is opposite to the image side of the imaging lens group of the imaging lens; the beam splitting plate is the beam splitting plate according to any one of the technical solutions in the first aspect, The beam splitting plate is obliquely arranged in the casing.
  • the spectroscopic plate used in the spectroscopic device of the embodiment of the present application is the same as the spectroscopic plate described in any one of the technical solutions in the first aspect, the two can solve the same technical problems and achieve the same expected effects.
  • the spectroscopic device provided by the implementation of this application includes a housing and a connection structure, the housing is provided with a light entrance, and the connection structure is arranged at the edge of the housing at the light entrance, and the connection structure can be connected to the image of the lens barrel of the imaging lens.
  • the side ends are connected so that the light entrance is opposite to the image side surface of the imaging lens group of the imaging lens.
  • the spectroscopic device provided by the embodiment of the present application can be connected with the ordinary imaging lens through the connection structure to assemble the spectroscopic lens, thereby eliminating the need to re-assemble the spectroscopic lens.
  • the development of a new spectroscopic lens can save the development cost of the spectroscopic lens.
  • the spectroscopic device further includes a visible light sensor and a near-infrared light sensor;
  • the visible light sensor is arranged in the housing, and the visible light sensor is used to convert visible light reflected or transmitted by the spectroscopic plate into a visible light signal;
  • the near-infrared light sensor is arranged in the housing, The infrared light sensor is used to convert the near-infrared light transmitted or reflected by the spectroscopic plate into a brightness signal.
  • the spectroscopic flat panel, the visible light sensor and the near-infrared light sensor are integrated in the same housing, which can ensure the accuracy of the optical path from the spectroscopic flat panel to the visible light sensor and from the spectroscopic flat panel to the near-infrared light sensor.
  • the spectroscopic device further includes a visible light filter disposed between the spectroscopic plate and the near-infrared light sensor, and the visible light filter is used to filter visible light in the near-infrared light reflected or transmitted by the spectroscopic plate. .
  • the visible light and the near-infrared light can be further separated, and the visible light can avoid the interference of the near-infrared light sensing collection.
  • the spectroscopic device further includes a near-infrared light filter, the near-infrared light filter is disposed between the spectroscopic plate and the visible light sensor, and the near-infrared light filter is used to filter the visible light reflected or transmitted by the spectroscopic plate In the near-infrared light.
  • the near-infrared light can be further separated from the visible light, and the interference of the near-infrared light on the sensing and collection of the visible light can be avoided.
  • some embodiments of the present application provide a spectroscopic lens, the spectroscopic lens includes an imaging lens and a spectroscopic device; the imaging lens includes a lens barrel and an imaging lens group arranged in the lens barrel, the lens barrel has an image side end, and imaging The lens group is used to focus and form an imaging light beam, and the imaging lens group has an image side surface; the spectroscopic device is the spectroscopic device described in any one of the technical solutions in the second aspect, and the housing of the spectroscopic device is connected to the image side end of the lens barrel through a connecting structure , The light entrance of the beam splitter is opposite to the image side of the imaging lens group.
  • the spectroscopic device used in the spectroscopic lens of the embodiment of the present application is the same as the spectroscopic device described in any of the technical solutions in the second aspect, the two can solve the same technical problems and achieve the same expected effects.
  • some embodiments of the present application provide a spectroscopic lens, which includes a lens barrel, an imaging lens group, and a spectroscopic plate; the imaging lens group is arranged in the lens barrel, and the imaging lens group is used for focusing to form an imaging beam; the spectroscopic lens
  • the light splitting plate according to any one of the technical solutions in the first aspect, the light splitting plate is located on the image side of the imaging lens group, and the light splitting plate is obliquely arranged in the lens barrel.
  • the two can solve the same technical problems and achieve the same expected effects.
  • integrating the imaging lens group and the beam splitting plate into the lens barrel can ensure the relative position accuracy between the imaging lens group and the beam splitting plate, thereby ensuring the accuracy of the optical path from the imaging lens group to the beam splitting plate.
  • the image side end of the lens barrel encloses a first opening, and the visible light or near-infrared light transmitted by the beam splitting plate is emitted from the first opening;
  • the side wall of the lens barrel is provided with a second opening, and the near-infrared light reflected by the beam splitting plate Or visible light is emitted from the second opening;
  • the spectroscopic lens also includes a visible light sensor and a near-infrared light sensor;
  • the visible light sensor is arranged outside the lens barrel and fixed on the lens barrel, and the visible light sensor is used to convert the visible light reflected or transmitted by the spectroscopic plate into Visible light signal;
  • the near-infrared light sensor is arranged outside the lens barrel and fixed on the lens barrel, and the near-infrared light sensor is used to convert the near-infrared light transmitted or reflected by the light splitting plate into a brightness signal.
  • the spectroscopic flat panel, the visible light sensor and the near-infrared light sensor are fixed together to ensure the accuracy of the optical path from the spectroscopic flat panel to the visible light sensor and from the spectroscopic flat panel to the near infrared light sensor.
  • the spectroscopic lens further includes a visible light filter disposed between the spectroscopic plate and the near-infrared light sensor, and the visible light filter is used to filter visible light in the near-infrared light reflected or transmitted by the spectroscopic plate .
  • the visible light and the near-infrared light can be further separated, and the visible light can avoid the interference of the near-infrared light sensing collection.
  • the spectroscopic lens further includes a near-infrared light filter disposed between the spectroscopic plate and the visible light sensor, and the near-infrared light filter is used to filter out visible light reflected or transmitted by the spectroscopic plate In the near-infrared light.
  • the near-infrared light can be further separated from the visible light, and the interference of the near-infrared light on the sensing and collection of the visible light can be avoided.
  • some embodiments of the present application provide a camera, which includes the spectroscopic lens according to any one of the technical solutions of the third aspect or the fourth aspect.
  • the spectroscopic lens used in the camera of the embodiment of the application is the same as the spectroscopic lens described in any one of the technical solutions of the third aspect or the fourth aspect, the two can solve the same technical problems and achieve the same expected effects .
  • some embodiments of the present application provide an electronic device, which includes the camera described in the fifth aspect.
  • the two can solve the same technical problem and achieve the same expected effect.
  • FIG. 1 is an imaging light path diagram of a camera provided by some embodiments of the application.
  • FIG. 2 is a schematic structural diagram of a light splitting structure of a camera provided by some embodiments of the application;
  • FIG. 3 is a schematic structural diagram of a light splitting structure of a camera provided by still other embodiments of the application.
  • FIG. 4 is a schematic structural diagram of a light splitting structure of a camera provided by still other embodiments of the application.
  • FIG. 5 is a schematic structural diagram of a camera provided by some embodiments of the application.
  • FIG. 6 is a schematic structural diagram of a spectroscopic lens provided by some embodiments of the application.
  • FIG. 7 is a cross-sectional view of the imaging lens of the spectroscopic lens shown in FIG. 6;
  • FIG. 8 is a cross-sectional view of the spectroscopic device of the spectroscopic lens shown in FIG. 6;
  • FIG. 9 is a schematic structural diagram of a light splitting plate provided by some embodiments of the application.
  • FIG. 10 is a schematic diagram of the structure of a light splitting plate provided by still other embodiments of the application.
  • FIG. 11 is a schematic diagram of the structure of a light splitting plate provided by still other embodiments of the application.
  • FIG. 12 is a schematic diagram of the structure of a light splitting plate provided by still other embodiments of the application.
  • FIG. 13 is a schematic structural diagram of a light splitting plate provided by other embodiments of the application.
  • FIG. 14 is a schematic diagram of the structure of a light splitting plate provided by still other embodiments of the application.
  • FIG. 15 is a schematic structural diagram of a light splitting plate provided by still other embodiments of the application.
  • FIG. 16 is a schematic structural diagram of a light splitting plate provided by still other embodiments of the application.
  • FIG. 17 is a schematic diagram of the structure of a light splitting plate provided by still other embodiments of the application.
  • FIG. 18 is a cross-sectional view of the spectroscopic lens shown in FIG. 6;
  • FIG. 19 is a schematic diagram of the structure of a spectroscopic lens provided by still other embodiments of the application.
  • FIG. 20 is a cross-sectional view of the spectroscopic lens shown in FIG. 19;
  • FIG. 21 is a cross-sectional view of a spectroscopic lens provided by still other embodiments of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • FIG. 1 is an imaging light path diagram of a camera provided by some embodiments of the application.
  • the camera is a low-illuminance camera, and the camera can output color images.
  • the imaging lens 01 is focused to form an imaging light beam a.
  • the imaging light beam a enters the light splitting structure 02 and is divided into visible light b and near-infrared light c by the light splitting structure 02.
  • the visible light b is incident on the visible light sensor 03, and the visible light sensor 03 converts the visible light b into a visible light signal.
  • the near-infrared light c is incident on the near-infrared light sensor 04, and the near-infrared light sensor 04 converts the near-infrared light c into a brightness signal.
  • Both the visible light sensor 03 and the near-infrared light sensor 04 are connected to the image fusion module 05, and the image fusion module 05 processes the visible light signal and the brightness signal separately, and fuses the processed visible light signal with the processed brightness signal
  • FIG. 2 is a schematic structural diagram of a light splitting structure 02 provided by some embodiments of the application.
  • the light splitting structure 02 includes a light splitting film 023 and a first right angle prism 021 and a second right angle prism 022 for supporting the light splitting film 023.
  • the first right-angle prism 021 has a first right-angle surface 0211, a second right-angle surface 0212, and a first inclined surface 0213.
  • the second right-angled prism 022 has a third right-angled surface 0221, a fourth right-angled surface 0222, and a second inclined surface 0223.
  • the first inclined surface 0213 and the second inclined surface 0223 are arranged parallel and opposite to each other, and the dichroic film 023 is sandwiched between the first inclined surface 0213 and the second inclined surface 0223.
  • the imaging light beam a focused by the imaging lens enters the light splitting structure 02 from the first right angle surface 0211 along the direction perpendicular to the first right angle surface 0211.
  • the visible light b and the near-infrared light c in the imaging light beam a are separated by the light splitting film 023, the visible light b is emitted from the third right-angled surface 0221 along a direction perpendicular to the third right-angled surface 0221 out of the light-splitting structure 02, and near-infrared light c is emitted from the second right-angled surface 0212 out of the light-splitting structure 02.
  • the separated near-infrared light c exits the spectroscopic structure 02 from the second right-angled surface 0212 along a direction perpendicular to the second right-angled surface 0212.
  • the transmission path length l 02 of the divided near-infrared light c in the first right-angle prism 021 is equal to the transmission path length l 01 of the divided visible light b in the second right-angle prism 022.
  • the part of the first right-angle prism 021 adjacent to the second right-angle surface 0212 is cut off, and the cut part is the part enclosed by the dotted line shown in FIG. 3.
  • the separated near-infrared light c can be emitted from the spectroscopic structure 02 from the surface 0214 in a direction perpendicular to the surface 0214 formed after the ablation, and the separated near-infrared light c can be transmitted in the first right-angle prism 021
  • the path length l 02 is equal to the transmission path length l 01 of the separated visible light b in the second right-angle prism 022.
  • the area of the first right-angle prism 021 adjacent to the second right-angle surface 0212 supplements a part of the prism, and the supplementary part is the part enclosed by the dotted line shown in FIG. 4.
  • the separated near-infrared light c can be emitted from the spectroscopic structure 02 from the surface 0215 in a direction perpendicular to the surface 0215 formed after the supplement, and the separated near-infrared light c can be transmitted in the first right-angle prism 021
  • the path length l 02 is equal to the transmission path length l 01 of the separated visible light b in the second right-angle prism 022.
  • l 03 is an imaging light beam incident on a beam splitter film 023 prior to the transmission path length of the first right angle prism 021.
  • D is the thickness of the light splitting structure 02 along the optical axis of the imaging beam.
  • the size of D is usually on the centimeter level.
  • L is the width of the dichroic film 023 along its own tilt direction, and L ⁇ cos ⁇ represents the projection length of the dichroic film 023 on the optical axis of the imaging light beam a.
  • the optical path D 01 of the visible light in the imaging beam a in the spectroscopic structure 02 n 0 ⁇ L 01
  • the optical path D 02 of the near-infrared light in the imaging beam a in the spectroscopic structure 02 n 0 ⁇ L 02
  • the material of the right-angle prism 021 is the same as the material of the second right-angle prism 022
  • n 0 is the refractive index of the material of the first right-angle prism 021 or the second right-angle prism 022.
  • the visible light and near-infrared light in the imaging beam a have a long optical path transmitted in the light splitting structure 02, which causes large chromatic aberrations and off-axis aberrations, and it is difficult to correct the chromatic aberrations and off-axis aberrations of the camera.
  • the present application provides an electronic device, which includes but is not limited to a mobile phone terminal, a vehicle-mounted terminal, and a smart wearable device, and the electronic device includes a camera, which is a low-light camera capable of outputting color images.
  • FIG. 5 is a schematic structural diagram of a camera provided by some embodiments of the application.
  • the camera includes a spectroscopic lens 1.
  • the spectroscopic lens 1 is used to focus and form an imaging beam, and divide the imaging beam into visible light and near-infrared light.
  • FIG. 6 is a schematic structural diagram of a spectroscopic lens 1 provided by some embodiments of the application.
  • the spectroscopic lens 1 includes an imaging lens 11 and a spectroscopic device 12.
  • the imaging lens 11 is used for focusing to form an imaging beam.
  • the imaging lens 11 may be a common C/CS lens with a long back focus, or a fixed focus or zoom lens, which is not specifically limited here.
  • the spectroscopic device 12 is used to divide the imaging light beam formed by focusing the imaging lens 11 into visible light and near-infrared light.
  • FIG. 7 is a cross-sectional view of the imaging lens of the spectroscopic lens shown in FIG. 6.
  • the imaging lens 11 includes a lens barrel 111 and an imaging lens group 112 arranged in the lens barrel 111.
  • the lens barrel 111 is used to fix the imaging lens group 112.
  • the material of the lens barrel 111 includes but is not limited to metal and plastic.
  • the lens barrel 111 has an image side end A, and the image side end A is the end of the lens barrel 111 close to the image side.
  • the imaging lens group 112 includes at least one lens.
  • the imaging lens group 112 is used to focus and form an imaging light beam.
  • the imaging lens group 112 has an image side surface B, which is the surface of the imaging lens group 112 facing the image side.
  • FIG. 8 is a cross-sectional view of the spectroscopic device of the spectroscopic lens shown in FIG. 6.
  • the light splitting device 12 includes a housing 121, a connecting structure 122 and a light splitting plate 10.
  • the material of the housing 121 includes but is not limited to metal and plastic, and the housing 121 is provided with a light entrance C.
  • the connecting structure 122 is disposed on the edge of the housing at the light entrance C, and the connecting structure 122 includes but not limited to threads and buckles.
  • the beam splitting plate 10 is arranged obliquely in the housing 121, and the beam splitting plate 10 can separate the visible light and the near-infrared light in the imaging beam incident from the light entrance C.
  • the embodiment of the present application provides a light splitting plate 10.
  • the light-splitting plate 10 includes a light-transmitting plate and a light-splitting film.
  • the light-transmitting plate is a light-transmitting plate-like structure.
  • the light splitting film is supported on the light-transmitting plate and parallel to the light-transmitting plate.
  • the spectroscopic film is used to reflect visible light and transmit near-infrared light, or the spectroscopic film is used to reflect near-infrared light and transmit visible light.
  • the thickness d of the light-transmitting plate satisfies that when the light-splitting plate is arranged obliquely in the transmission path of the imaging beam of the camera, the transmission path length of the visible light and near-infrared light in the imaging light beam in the light-transmitting plate is less than that of the light-splitting film in the imaging beam.
  • the spectroscopic film since the spectroscopic film is used to reflect visible light and transmit near-infrared light, or the spectroscopic film is used to reflect near-infrared light and transmit visible light, the visible light in the imaging optical path can be imaged through the spectroscopic film. Separate from near-infrared light. And because the light-splitting film is supported on the light-transmitting plate and parallel to the light-transmitting plate, and the thickness d of the light-transmitting plate satisfies the visible light and near-infrared light in the imaging beam when the light-splitting plate is obliquely arranged in the transmission path of the imaging beam of the camera.
  • the length of the transmission path in the light-transmitting flat plate is less than the projection length of the light splitting film on the optical axis of the imaging beam.
  • the projection length of the beam splitting film on the optical axis of the imaging beam a is L ⁇ cos ⁇ .
  • the visible light and near-infrared light in the imaging beam are in two
  • the material used for the beam splitting plate is the same as that of the first right-angle prism 021 or the second right-angle prism 022 in the embodiment shown in FIG. 2, FIG. 3 or FIG.
  • the light path of the internal transmission is small, and the chromatic aberration and off-axis aberration caused are small, which is beneficial to reduce the difficulty of correcting the chromatic aberration and off-axis aberration of the camera.
  • FIG. 9 is a schematic structural diagram of a spectroscopic plate 10 provided by some embodiments of the application.
  • the light splitting plate 10 includes a light transmitting plate 101 and a light splitting film 102.
  • the material of the light-transmitting flat plate 101 includes, but is not limited to, optical glass.
  • the light-transmitting flat plate 101 has a first surface 1011 and a second surface 1012 opposite to each other, and the first surface 1011 and the second surface 1012 are both perpendicular to the thickness direction of the light-transmitting flat plate 101.
  • the spectroscopic film 102 is disposed on the first surface 1011. This structure is simple and easy to implement.
  • the imaging light beam a is incident on the surface of the beam splitting film 102 in the direction away from the transparent plate 101 (that is, the light receiving surface R of the beam splitting plate 10), As shown in FIG. 9, the imaging light beam a is incident on the spectroscopic flat plate 10 from the light receiving surface R.
  • the dichroic film 102 reflects one of the near-infrared light and visible light (such as near-infrared light c) in the imaging light beam, and transmits the other of the near-infrared light and visible light (such as visible light b).
  • n is the refractive index of the material of the light-transmitting flat plate 101.
  • the beam splitting film 102 is imaging
  • the thickness d of the light-transmitting flat plate 101 satisfies that the transmission path length of the visible light and the near-infrared light in the imaging light beam a in the light-transmitting flat plate is less than the optical axis of the light splitting film 102 in the imaging light beam a.
  • the projection length above, that is, the thickness d of the light-transmitting flat plate 101 satisfies: d ⁇ L sin ⁇ cos ⁇ /n.
  • the spectroscopic plate 10 When the spectroscopic film 102 is used to reflect near-infrared light and transmit visible light, in order to increase the transmittance of visible light on the second surface 1012 of the transparent plate 101, in some embodiments, as shown in FIG. 10, the spectroscopic plate 10 further includes The first antireflection film 103.
  • the first antireflection film 103 is attached to the second surface 1012.
  • the first antireflection film 103 is used to enhance the transmittance of the visible light emitted from the second surface 1012 to the light-transmitting plate 101, and the transmitted visible light passes through the first antireflection film. ⁇ 103 ⁇ Film 103.
  • a second antireflection film 104 is also included.
  • the second antireflection film 104 is attached to the second surface 1012, and the second antireflection film 104 is used to enhance the transmittance of the near-infrared light emitted from the second surface 1012 out of the light-transmitting plate 101, and the transmitted near-infrared light passes through The second antireflection film 104.
  • FIG. 12 is a schematic structural diagram of a light splitting plate 10 provided by still other embodiments of the application.
  • the light splitting plate 10 includes a light transmitting plate 101 and a light splitting film 102.
  • the material of the light-transmitting flat plate 101 includes, but is not limited to, optical glass.
  • the light-transmitting flat plate 101 has a first surface 1011 and a second surface 1012 opposite to each other, and the first surface 1011 and the second surface 1012 are both perpendicular to the thickness direction of the light-transmitting flat plate 101.
  • the spectroscopic film 102 is pasted on the second surface 1012. This structure is simple and easy to implement.
  • the imaging beam a is incident from the first surface 1011 (that is, the light receiving surface R of the beam splitter plate 10), as shown in FIG. 12, the imaging beam a
  • the light-receiving surface R is incident on the spectroscopic plate 10.
  • the dichroic film 102 reflects one of the near-infrared light and visible light (such as near-infrared light c) in the imaging light beam, and transmits the other of the near-infrared light and visible light (such as visible light b).
  • n is the refractive index of the material of the light-transmitting flat plate 101.
  • the thickness d of the light-transmitting plate 101 satisfies the transmission path length of the visible light and near-infrared light in the imaging beam a in the light-transmitting plate, both are less than the projection length of the beam splitting film 102 on the optical axis of the imaging beam a.
  • the thickness d of the light-transmitting flat plate 101 satisfies that the transmission path lengths of the visible light and near-infrared light in the imaging light beam a in the light-transmitting flat plate are both smaller than the optical axis of the beam splitting film 102
  • the projection length above, that is, the thickness d of the light-transmitting flat plate 101 satisfies: d ⁇ L sin ⁇ cos ⁇ /2n.
  • the light-splitting plate 10 further includes a third antireflection film 105.
  • the third antireflection film 105 is attached to the first surface 1011, and the third antireflection film 105 is used to enhance the transmittance of visible light and near-infrared light from the first surface 1011 into the light-transmitting plate 101, and the visible light in the imaging beam And near-infrared light passes through the third antireflection film 105.
  • FIG. 14 is a schematic diagram of the structure of the light splitting plate 10 provided by other embodiments of the application.
  • the light splitting flat plate 10 includes a first light transmitting flat plate 101 a, a second light transmitting flat plate 101 b, and a light splitting film 102.
  • the materials of the first light-transmitting flat plate 101a and the second light-transmitting flat plate 101b include, but are not limited to, optical glass.
  • the first transparent plate 101a has a first surface 1011a and a second surface 1012a opposite to each other, and the first surface 1011a and the second surface 1012a are both perpendicular to the thickness direction of the first transparent plate 101a.
  • the second light-transmitting flat plate 101b has a first surface 1011b and a second surface 1012b opposite to each other, and the first surface 1011b and the second surface 1012b are both perpendicular to the thickness direction of the second light-transmitting flat plate 101b.
  • the dichroic film 102 is sandwiched between the second surface 1012a and the first surface 1011b.
  • the dichroic film 102 is used to reflect visible light and transmit near-infrared light, or the dichroic film 102 is used to reflect near-infrared light and transmit visible light.
  • the structure is simple, easy to implement, and can protect the spectroscopic film against water and dust.
  • the imaging beam a is incident from the first surface 1011a (that is, the light receiving surface R of the beam splitting plate 10), as shown in FIG. 14, the imaging beam a
  • the light-receiving surface R is incident on the spectroscopic plate 10.
  • the dichroic film 102 reflects one of the near-infrared light and visible light (such as near-infrared light c) in the imaging light beam, and transmits the other of the near-infrared light and visible light (such as visible light b).
  • n sin ⁇ / sin ⁇ , seen from FIG.
  • n is the refractive index of the material of the light-transmitting flat plate 101
  • d 1 is the thickness of the first light-transmitting flat plate 101a
  • d 2 is the thickness of the second light-transmitting flat plate 101b.
  • the beam splitting film 102 is imaging
  • the thickness d of the light-transmitting flat plate 101 satisfies that the transmission path lengths of the visible light and the near-infrared light in the imaging light beam a in the light-transmitting flat plate are both smaller than the optical axis of the light splitting film 102 in the imaging light beam a.
  • the projection length above, that is, the thickness d of the light-transmitting flat plate 101 satisfies: d ⁇ L sin ⁇ cos ⁇ /n, d 1 ⁇ d 2 .
  • the beam splitting plate 10 further includes a fourth antireflection film 106.
  • the fourth anti-reflection film 106 is attached to the first surface 1011a of the first light-transmitting plate 101a, and the fourth anti-reflection film 106 is used to enhance visible light and near-infrared light from being incident on the first surface 1011a of the first light-transmitting plate 101a.
  • the transmittance of the first light-transmitting flat plate 101a, the visible light and the near-infrared light in the imaging beam pass through the fourth antireflection film 106.
  • the spectroscopic film 102 When the spectroscopic film 102 is used to reflect near-infrared light and transmit visible light, in order to increase the transmittance of visible light on the second surface 1012b of the second transparent plate 101b, in some embodiments, as shown in FIG. 16, the spectroscopic plate 10 A fifth antireflection film 107 is also included.
  • the fifth anti-reflection film 107 is attached to the second surface 1012b of the second light-transmitting plate 101b, and the fifth anti-reflection film 107 is used to enhance the visible light emitted from the second surface 1012b of the second light-transmitting plate 101b to the second light-transmitting plate.
  • the transmittance of 101b, the transmitted visible light passes through the fifth antireflection film 107.
  • the flat panel 10 further includes a sixth antireflection film 108.
  • the sixth anti-reflection film 108 is attached to the second surface 1012b of the second light-transmitting flat plate 101b, and the sixth anti-reflection film 108 is used to enhance the near-infrared light emitted from the second surface 1012b of the second light-transmitting flat plate 101b to the second transmission.
  • the transmittance of the light plate 101b, and the transmitted near-infrared light passes through the sixth antireflection film 108.
  • the thickness d of the light-transmitting flat plate 101 is less than 0.5 mm. In this way, the thickness of the light-transmitting plate 101 is small.
  • the beam splitting plate 10 is arranged obliquely in the transmission path of the imaging beam of the camera, the transmission path length of the visible light b and the near-infrared light c in the imaging light beam a in the light-transmitting plate 101 If it is smaller, the chromatic aberration and off-axis aberration caused are smaller, and the correction of the chromatic aberration and off-axis aberration of the camera is less difficult.
  • the inclination angle ⁇ of the spectroscopic plate 10 is 40°-60°. When the inclination angle of the spectroscopic plate 10 is within this range, visible light and near-infrared light can be distinguished.
  • the spectroscopic device 12 further includes a visible light sensor 123 and a near-infrared light sensor 124.
  • the visible light sensor 123 is disposed in the housing 121, and the visible light sensor 123 is used to convert the visible light b reflected or transmitted by the spectroscopic plate 10 into a visible light signal.
  • the near-infrared light sensor 124 is disposed in the housing 121, and the near-infrared light sensor 124 is used to convert the near-infrared light c transmitted or reflected by the spectroscopic plate 10 into a brightness signal.
  • the light splitting plate 10, the visible light sensor 123, and the near-infrared light sensor 124 are integrated in the same housing, which can ensure the accuracy of the optical paths from the light splitting plate 10 to the visible light sensor 123, and from the light splitting plate 10 to the near-infrared light sensor 124.
  • the spectroscopic device 12 further includes a visible light filter (not shown in the figure), the visible light filter is disposed between the spectroscopic plate 10 and the near-infrared light sensor 124, and the visible light filter is used to filter Visible light among the near-infrared light reflected or transmitted by the spectroscopic plate 10. In this way, the visible light and the near-infrared light can be further separated, and the visible light can avoid the interference of the near-infrared light sensing collection.
  • a visible light filter not shown in the figure
  • the visible light filter is disposed between the spectroscopic plate 10 and the near-infrared light sensor 124, and the visible light filter is used to filter Visible light among the near-infrared light reflected or transmitted by the spectroscopic plate 10. In this way, the visible light and the near-infrared light can be further separated, and the visible light can avoid the interference of the near-infrared light sensing collection.
  • the spectroscopic device 12 further includes a near-infrared light filter (not shown in the figure), and the near-infrared light filter is disposed between the spectroscopic plate 10 and the visible light sensor 123, and the near-infrared light filter The sheet is used to filter the near-infrared light in the visible light reflected or transmitted by the spectroscopic plate 10. In this way, the near-infrared light can be further separated from the visible light, and the interference of the near-infrared light on the sensing and collection of the visible light can be avoided.
  • a near-infrared light filter not shown in the figure
  • Fig. 18 is a cross-sectional view of the spectroscopic lens shown in Fig. 6.
  • the housing 121 of the spectroscopic device 12 is connected to the image side end A of the lens barrel 111 of the imaging lens 11 through the connecting structure 122, and the light entrance C of the spectroscopic device 12 is connected to the imaging lens group 112 of the imaging lens 11
  • the image side B is opposite.
  • the spectroscopic lens is assembled, and the spectroscopic device can be assembled with different imaging lenses to form a spectroscopic lens with different functions, so there is no need to re-develop a new spectroscopic lens, thereby saving the development cost of the spectroscopic lens.
  • FIG. 19 is a schematic structural diagram of a spectroscopic lens 1 provided by still other embodiments of the application
  • FIG. 20 is a cross-sectional view of the spectroscopic lens shown in FIG. 19.
  • the spectroscopic lens 1 includes a lens barrel 111, an imaging lens group 112 and a spectroscopic flat plate 10.
  • the lens barrel 111 is used to fix the imaging lens group 112 and the beam splitting plate 10, and the material of the lens barrel 111 includes but is not limited to metal and plastic.
  • the imaging lens group 112 is disposed in the lens barrel 111, the imaging lens group 112 includes at least one lens, and the imaging lens group 112 is used for focusing to form an imaging light beam.
  • the beam splitting plate 10 is the same as the beam splitting plate 10 in the beam splitting device 12.
  • the beam splitting plate 10 is arranged obliquely in the lens barrel 111, the beam splitting plate 10 is located on the image side of the imaging lens group 112, and the light receiving surface R of the beam splitting plate 10 faces the imaging lens group. Like side B.
  • integrating the imaging lens group 112 and the beam splitting plate 10 into the lens barrel 111 can ensure the relative position accuracy between the imaging lens group 112 and the beam splitting plate 10, thereby ensuring the accuracy of the optical path from the imaging lens group 112 to the beam splitting plate 10 .
  • the image side end of the lens barrel 111 encloses a first opening 111a, and the visible light or near-infrared light transmitted by the spectroscopic lens 10 can be emitted from the first opening 111a.
  • the side wall of the lens barrel 111 is provided with a second opening 111b, and the near-infrared light or visible light reflected by the spectroscopic lens 10 can be emitted from the second opening 111b.
  • the spectroscopic lens 1 further includes a visible light sensor 123 and a near-infrared light sensor 124.
  • the visible light sensor 123 is arranged outside the lens barrel 111 and fixed on the lens barrel 111, and the visible light sensor 123 is used to convert the visible light b reflected or transmitted by the spectroscopic plate 10 into a visible light signal.
  • the near-infrared light sensor 124 is arranged outside the lens barrel 111 and fixed on the lens barrel 111, and the near-infrared light sensor 124 is used to convert the near-infrared light c transmitted or reflected by the spectroscopic plate 10 into a brightness signal.
  • the light splitting plate 10, the visible light sensor 123, and the near-infrared light sensor 124 are fixed together to ensure the accuracy of the optical paths from the light splitting plate 10 to the visible light sensor 123, and from the light splitting plate 10 to the near-infrared light sensor 124.
  • the spectroscopic lens 1 further includes a visible light filter (not shown in the figure), the visible light filter is disposed between the spectroscopic plate 10 and the near-infrared light sensor 124, and the visible light filter is used to filter Visible light among the near-infrared light reflected or transmitted by the spectroscopic plate 10. In this way, the visible light and the near-infrared light can be further separated, and the visible light can avoid the interference of the near-infrared light sensing collection.
  • a visible light filter not shown in the figure
  • the visible light filter is disposed between the spectroscopic plate 10 and the near-infrared light sensor 124, and the visible light filter is used to filter Visible light among the near-infrared light reflected or transmitted by the spectroscopic plate 10. In this way, the visible light and the near-infrared light can be further separated, and the visible light can avoid the interference of the near-infrared light sensing collection.
  • the spectroscopic lens 1 further includes a near-infrared light filter (not shown in the figure), and the near-infrared light filter is disposed between the spectroscopic plate 10 and the visible light sensor 123, and the near-infrared light filter The sheet is used to filter the near-infrared light in the visible light reflected or transmitted by the spectroscopic plate 10. In this way, the near-infrared light can be further separated from the visible light, and the interference of the near-infrared light on the sensing and collection of the visible light can be avoided.
  • a near-infrared light filter not shown in the figure
  • the camera further includes a camera host 2, which includes an image fusion module (not shown in the figure).
  • the image fusion module is electrically connected to the visible light sensor 123, and the image fusion module is electrically connected to the near-infrared light sensor 124.
  • the image fusion module is used to perform separate image processing on the visible light signal converted by the visible light sensor 123 and the brightness signal converted by the near-infrared light sensor 124 , And merge the processed visible light signal with the processed brightness signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Blocking Light For Cameras (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供一种分光平板、分光装置、分光镜头、摄像机和电子设备,涉及电子设备技术领域,能够减小分光结构引入的色差以及轴外像差,降低摄像机的色差和轴外像差的矫正难度。该分光平板包括透光平板和分光膜;透光平板为透光的平板状结构;分光膜支撑于该透光平板上,并与该透光平板平行,分光膜用于反射可见光并透射近红外光,或者,分光膜用于反射近红外光并透射可见光;透光平板的厚度满足当分光平板倾斜设置于摄像机的成像光束的传输路径中时,成像光束中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜在该成像光束的光轴上的投影长度。本申请实施例提供的分光平板用于将成像光束中的可见光和近红外光分开。

Description

一种分光平板、分光装置、分光镜头、摄像机和电子设备
本申请要求于2020年01月14日提交国家知识产权局、申请号为202010036850.2、发明名称为“可切换分光的摄像机、高分辨率分光摄像机”的中国专利申请,以及于2020年03月27日提交国家知识产权局、申请号为202010235860.9、发明名称为“一种分光平板、分光装置、分光镜头、摄像机和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种分光平板、分光装置、分光镜头、摄像机和电子设备。
背景技术
低照度摄像机因其在较低的光照度条件下仍可以摄取清晰的图像而广泛应用于军事、安防、公共安全等领域。
目前,大多低照度摄像机在低照度场景下都需要采用红外灯进行补光,这样,可以提高场景亮度。但是,经过红外灯补光后,摄像机采集到的光线中既有可见光又有近红外光。可见光与近红外光波长差别较大,如果混合在一起,会使采集到的图像出现严重偏色。为了使低照度摄像机能够输出色彩逼真的彩色图像,可以在低照度摄像机的成像光束的传输路径中,增加分光结构来将成像镜头聚焦形成的成像光束分为可见光和近红外光,以使可见光和近红外光能够分别处理,再进行融合,从而使得低照度摄像机能够输出色彩逼真的彩色图像。但是,在低照度摄像机内,分光结构的加入不可避免地会引入色差和轴外像差,为了保证低照度摄像机输出的彩色图像的质量,需要改变成像光路中的其他光学结构(比如成像镜头)的参数来平衡此色差和轴外像差,以尽可能地减小摄像机的整个成像光路上的结构所引起的色差和轴外像差,且随着分光结构所引入的色差和轴外像差越大,其他光学结构的参数的调整难度越大,摄像机的色差和轴外像差的矫正难度越大。
发明内容
本申请的实施例提供一种分光平板、分光装置、分光镜头、摄像机和电子设备,能够减小分光结构引入的色差以及轴外像差,降低摄像机的色差和轴外像差的矫正难度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请一些实施例提供一种分光平板,用于倾斜设置于摄像机的成像光路中,该分光平板包括透光平板和分光膜;透光平板为透光的平板状结构;分光膜支撑于透光平板上并与该透光平板平行,分光膜用于反射可见光并透射近红外光,或者,分光膜用于反射近红外光并透射可见光;透光平板的厚度满足当分光平板倾斜设置于摄像机的成像光束的传输路径中时,成像光束中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜在成像光束的光轴上的投影长度。
在本申请实施例提供的分光平板中,由于分光膜用于反射可见光并透射近红外光, 或者,分光膜用于反射近红外光并透射可见光,因此通过该分光膜能够将成像光路中的可见光和近红外光分开。又由于分光膜支撑于透光平板上并与透光平板平行,且透光平板的厚度满足当分光平板倾斜设置于摄像机的成像光束的传输路径中时,成像光束中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜在成像光束的光轴上的投影长度。假设分光平板的倾斜角度为θ,分光膜沿分光平板的倾斜方向上的宽度为L,则分光膜在成像光束的光轴上的投影长度为L×cosθ。当分光膜以相同的倾斜角设置于成像光束的传输路径中,并采用两个直角棱镜支撑时,成像光束中的可见光和近红外光在两个直角棱镜中的传输路径长度分别为L 01、L 02,L 01=L 02,且L 01和L 02均等于L×cosθ。由此可知,成像光束中的可见光和近红外光在透光平板内的传输路径长度均小于L 01或L 02。在分光平板所用材料与两个直角棱镜的材料相同的情况下,成像光束中的可见光和近红外光在透光平板内传输的光程较小,引起的色差和轴外像差较小,有利于降低摄像机的色差和轴外像差的矫正难度。
可选地,透光平板的厚度小于0.5mm。这样,透光平板的厚度较小,当分光平板倾斜设置于摄像机的成像光束的传输路径中时,成像光束中的可见光和近红外光在透光平板内的传输路径长度较小,引起的色差和轴外像差较小,摄像机的色差和轴外像差的矫正难度较小。
可选地,透光平板具有相对的第一表面和第二表面;分光膜贴覆于第一表面或第二表面。此结构简单,容易实现。
可选地,当分光膜贴覆于第一表面,且分光膜用于反射近红外光并透射可见光时,分光平板还包括第一增透膜,第一增透膜贴覆于第二表面,该第一增透膜用于增强可见光由第二表面射出透光平板的透过率;当分光膜贴覆于第一表面,且分光膜用于反射可见光并透射近红外光时,分光平板还包括第二增透膜,第二增透膜贴覆于第二表面,该第二增透膜用于增强近红外光由第二表面射出透光平板的透过率。这样,采用第一增透膜或者第二增透膜增强了分光膜透射的可见光或者近红外光在第二表面的透过率,减小了光路损失。
可选地,当分光膜贴覆于第二表面时,分光平板还包括第三增透膜,第三增透膜贴覆于第一表面,该第三增透膜用于增强可见光和近红外光由第一表面射入透光平板的透过率。这样,采用第三增透膜增强了可见光和近红外光射入分光平板的透过率,减小了光路损失。
可选地,透光平板包括第一透光平板和第二透光平板;第一透光平板具有相对的第一表面和第二表面;第二透光平板具有相对的第一表面和第二表面;分光膜夹设于第一透光平板的第二表面与第二透光平板的第一表面之间。此结构简单,容易实现,且能够对分光膜进行防水防尘保护。
可选地,分光平板还包括第四增透膜,第四增透膜贴覆于第一透光平板的第一表面,该第四增透膜用于增强可见光和近红外光由第一透光平板的第一表面射入第一透光平板的透过率。这样,采用第四增透膜增强了可见光和近红外光射入分光平板的透过率,减小了光路损失。
可选地,当分光膜反射近红外光并透射可见光时,分光平板还包括第五增透膜,第五增透膜贴覆于第二透光平板的第二表面,该第五增透膜用于增强可见光由第二透 光平板的第二表面射出第二透光平板的透过率;当分光膜反射可见光并透射近红外光时,分光平板还包括第六增透膜,第六增透膜贴覆于第二透光平板的第二表面,该第六增透膜用于增强近红外光由第二透光平板的第二表面射出第二透光平板的透过率。这样,采用第五增透膜或者第六增透膜增强了分光膜透射的可见光或者近红外光射出分光平板时的透过率,减小了光路损失。
第二方面,本申请一些实施例提供一种分光装置,该分光装置包括壳体、连接结构和分光平板;壳体上设有入光口;连接结构设置于入光口处的壳体边沿,连接结构用于与成像镜头的镜筒的像侧端连接,以使入光口与成像镜头的成像镜片组的像侧面相对;分光平板为第一方面中任一技术方案所述的分光平板,分光平板倾斜设置于壳体内。
由于在本申请实施例的分光装置中使用的分光平板与第一方面中任一技术方案所述的分光平板相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。同时,由于本申请实施提供的分光装置包括壳体和连接结构,壳体上设有入光口,连接结构设置于入光口处的壳体边沿,连接结构能够与成像镜头的镜筒的像侧端连接,以使入光口与成像镜头的成像镜片组的像侧面相对,因此本申请实施例提供的分光装置可以通过连接结构与普通的成像镜头连接,以组装形成分光镜头,从而无需重新开发新的分光镜头,由此能够节省分光镜头的开发成本。
可选地,分光装置还包括可见光传感器和近红外光传感器;可见光传感器设置于壳体内,可见光传感器用于将分光平板反射或者透射的可见光转换为可见光信号;近红外光传感器设置于壳体内,近红外光传感器用于将分光平板透射或者反射的近红外光转换为亮度信号。这样,分光平板、可见光传感器和近红外光传感器集成在同一壳体内,能够保证分光平板到可见光传感器,以及分光平板到近红外光传感器的光路准确性。
可选地,分光装置还包括可见光滤光片,该可见光滤光片设置于分光平板与近红外光传感器之间,该可见光滤波片用于滤除分光平板反射或者透射的近红外光中的可见光。这样,能够进一步将可见光和近红外光分开,避免可见光对近红外光的传感采集产生干扰。
可选地,分光装置还包括近红外光滤光片,该近红外光滤光片设置于分光平板与可见光传感器之间,该近红外光滤光片用于滤除分光平板反射或者透射的可见光中的近红外光。这样,能够进一步将近红外光和可见光分开,避免近红外光对可见光的传感采集产生干扰。
第三方面,本申请一些实施例提供一种分光镜头,该分光镜头包括成像镜头和分光装置;成像镜头包括镜筒和设置于该镜筒内的成像镜片组,镜筒具有像侧端,成像镜片组用于聚焦形成成像光束,该成像镜片组具有像侧面;分光装置为第二方面中任一技术方案所述的分光装置,分光装置的壳体通过连接结构与镜筒的像侧端连接,该分光装置的入光口与成像镜片组的像侧面相对。
由于在本申请实施例的分光镜头中使用的分光装置与第二方面中任一技术方案所述的分光装置相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
第四方面,本申请一些实施例提供一种分光镜头,该分光镜头包括镜筒、成像镜 片组和分光平板;成像镜片组设置于镜筒内,成像镜片组用于聚焦形成成像光束;分光平板为第一方面中任一技术方案所述的分光平板,分光平板位于成像镜片组的像侧,且分光平板倾斜设置于镜筒内。
由于在本申请实施例的分光镜头中使用的分光平板与第一方面中任一技术方案所述的分光平板相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。同时,将成像镜片组和分光平板集成在镜筒内,能够保证成像镜片组与分光平板之间的相对位置精度,从而能够保证成像镜片组到分光平板的光路准确性。
可选地,镜筒的像侧端围成第一开口,分光平板透射的可见光或者近红外光由该第一开口射出;镜筒的侧壁设有第二开口,分光平板反射的近红外光或者可见光由该第二开口射出;分光镜头还包括可见光传感器和近红外光传感器;可见光传感器设置于镜筒外并固定于该镜筒上,可见光传感器用于将分光平板反射或者透射的可见光转换为可见光信号;近红外光传感器设置于镜筒外并固定于镜筒上,该近红外光传感器用于将分光平板透射或者反射的近红外光转换为亮度信号。这样,分光平板、可见光传感器和近红外光传感器固定在一起,能够保证分光平板到可见光传感器,以及分光平板到近红外光传感器的光路准确性。
可选地,分光镜头还包括可见光滤光片,该可见光滤光片设置于分光平板与近红外光传感器之间,该可见光滤波片用于滤除分光平板反射或者透射的近红外光中的可见光。这样,能够进一步将可见光和近红外光分开,避免可见光对近红外光的传感采集产生干扰。
可选地,分光镜头还包括近红外光滤光片,该近红外光滤光片设置于分光平板与可见光传感器之间,该近红外光滤光片用于滤除分光平板反射或者透射的可见光中的近红外光。这样,能够进一步将近红外光和可见光分开,避免近红外光对可见光的传感采集产生干扰。
第五方面,本申请一些实施例提供一种摄像机,该摄像机包括第三方面或第四方面中任一项技术方案所述的分光镜头。
由于在本申请实施例的摄像机中使用的分光镜头与第三方面或第四方面中任一项技术方案所述的分光镜头相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
第六方面,本申请一些实施例提供一种电子设备,该电子设备包括第五方面所述的摄像机。
由于在本申请实施例的电子设备中使用的摄像机与第五方面所述的摄像机相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
附图说明
图1为本申请一些实施例提供的摄像机的成像光路图;
图2为本申请一些实施例提供的摄像机的分光结构的结构示意图;
图3为本申请又一些实施例提供的摄像机的分光结构的结构示意图;
图4为本申请又一些实施例提供的摄像机的分光结构的结构示意图;
图5为本申请一些实施例提供的摄像机的结构示意图;
图6为本申请一些实施例提供的分光镜头的结构示意图;
图7为图6所示分光镜头的成像镜头的剖视图;
图8为图6所示分光镜头的分光装置的剖视图;
图9为本申请一些实施例提供的分光平板的结构示意图;
图10为本申请又一些实施例提供的分光平板的结构示意图;
图11为本申请又一些实施例提供的分光平板的结构示意图;
图12为本申请又一些实施例提供的分光平板的结构示意图;
图13为本申请又一些实施例提供的分光平板的结构示意图;
图14为本申请又一些实施例提供的分光平板的结构示意图;
图15为本申请又一些实施例提供的分光平板的结构示意图;
图16为本申请又一些实施例提供的分光平板的结构示意图;
图17为本申请又一些实施例提供的分光平板的结构示意图;
图18为图6所示分光镜头的剖视图;
图19为本申请又一些实施例提供的分光镜头的结构示意图;
图20为图19所示分光镜头的剖视图;
图21为本申请又一些实施例提供的分光镜头的剖视图。
附图标记:
01-成像镜头;02-分光结构;021-第一直角棱镜;0211-第一直角面;0212-第二直角面;0213-第一斜面;022-第二直角棱镜;0221-第三直角面;0222-第四直角面;0223-第二斜面;023-分光膜;03-可见光传感器;04-近红外光传感器;05-图像融合模块;1-分光镜头;11-成像镜头;111-镜筒;112-成像镜片组;12-分光装置;121-壳体;122-连接结构;10-分光平板;101-透光平板;1011-第一表面;1012-第二表面;101a-第一透光平板;1011a-第一表面;1012a-第二表面;101b-第二透光平板;1011b-第一表面;1012b-第二表面;102-分光膜;103-第一增透膜;104-第二增透膜;105-第三增透膜;106-第四增透膜;107-第五增透膜;108-第六增透膜;123-可见光传感器;124-近红外光传感器;2-摄像机主机。
具体实施方式
在本申请实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
图1为本申请一些实施例提供的摄像机的成像光路图,该摄像机为低照度摄像机,且该摄像机能够输出彩色图像。如图1所示,成像镜头01聚焦形成成像光束a,该成像光束a射入分光结构02,并被分光结构02分成可见光b和近红外光c。可见光b射入可见光传感器03,可见光传感器03将该可见光b转换为可见光信号。近红外光c射入近红外光传感器04,近红外光传感器04将该近红外光c转换为亮度信号。可见光传感器03和近红外光传感器04均与图像融合模块05连接,图像融合模块05对可见光信号和亮度信号进行分别处理,并将处理后的可见光信号与处理后的亮度信号进行融合。
由图1可知,分光结构02位于摄像机的成像光束的传输路径中。图2为本申请一些实施例提供的分光结构02的结构示意图。如图2所示,分光结构02包括分光膜023 以及用于支撑该分光膜023的第一直角棱镜021和第二直角棱镜022。第一直角棱镜021具有第一直角面0211、第二直角面0212和第一斜面0213。第二直角棱镜022具有第三直角面0221、第四直角面0222和第二斜面0223。第一斜面0213与第二斜面0223平行且相对设置,分光膜023夹设于第一斜面0213与第二斜面0223之间。成像镜头聚焦的成像光束a沿垂直于第一直角面0211的方向由第一直角面0211射入分光结构02,被分光膜023将成像光束a中的可见光b和近红外光c分开之后,可见光b沿垂直于第三直角面0221的方向由第三直角面0221射出分光结构02,近红外光c由第二直角面0212射出分光结构02。
当分光膜023的倾斜角度θ等于45°时,如图2所示,分开后的近红外光c沿垂直于第二直角面0212的方向由第二直角面0212射出分光结构02。分开后的近红外光c在第一直角棱镜021内的传输路径长度l 02与分开后的可见光b在第二直角棱镜022内的传输路径长度l 01相等。
当分光膜023的倾斜角度θ大于45°时,如图3所示,第一直角棱镜021上邻近第二直角面0212的部分切除,切除部分为图3所示虚线围成的部分。这样,可以使得分开后的近红外光c能够沿垂直于切除后形成的表面0214的方向由该表面0214射出分光结构02,并使得分开后的近红外光c在第一直角棱镜021内的传输路径长度l 02与分开后的可见光b在第二直角棱镜022内的传输路径长度l 01相等。
当分光膜023的倾斜角度θ小于45°时,如图4所示,第一直角棱镜021上邻近第二直角面0212的区域补充一部分棱镜,补充部分为图4所示虚线围成的部分。这样,可以使得分开后的近红外光c能够沿垂直于补充后形成的表面0215的方向由该表面0215射出分光结构02,并使得分开后的近红外光c在第一直角棱镜021内的传输路径长度l 02与分开后的可见光b在第二直角棱镜022内的传输路径长度l 01相等。
在图2、图3或图4所示的实施例中,成像光束a中的可见光在分光结构02中的传输路径长度L 01=l 03+l 01=D=L×cosθ。成像光束a中的近红外光在分光结构02中的传输路径长度L 02=l 03+l 02=l 03+l 01=D=L×cosθ。由此可知,L 01=L 02,且L 01和L 02均等于分光膜023在成像光束a的光轴上投影长度。其中,l 03为成像光束a在射入分光膜023之前在第一直角棱镜021内的传输路径长度。D为分光结构02沿成像光束的光轴方向的厚度,为了保证第一直角棱镜021和第二直角棱镜022能够被加工出来,D的尺寸通常为厘米级。L为分光膜023沿自身倾斜方向的宽度,L×cosθ表示分光膜023在成像光束a的光轴上投影长度。成像光束a中的可见光在分光结构02中的光程D 01=n 0×L 01,成像光束a中的近红外光在分光结构02中的光程D 02=n 0×L 02,第一直角棱镜021的材料与第二直角棱镜022的材料相同,n 0为第一直角棱镜021或第二直角棱镜022的材料折射率。成像光束a中的可见光和近红外光在分光结构02内传输的光程较长,引起的色差以及轴外像差较大,摄像机的色差和轴外像差的矫正难度较大。
为了解决上述问题,本申请提供了一种电子设备,该电子设备包括但不限于手机终端、车载终端和智能穿戴设备,且该电子设备包括摄像机,该摄像机为能够输出彩色图像的低照度摄像机。
本申请提供了一种摄像机,图5为本申请一些实施例提供的摄像机的结构示意图。如图5所示,摄像机包括分光镜头1。分光镜头1用于聚焦形成成像光束,并将成像 光束分成可见光和近红外光。
图6为本申请一些实施例提供的分光镜头1的结构示意图。如图6所示,分光镜头1包括成像镜头11和分光装置12。成像镜头11用于聚焦形成成像光束。成像镜头11可以为后焦较长的普通C/CS镜头,也可以为定焦或者变焦镜头,在此不做具体限定。分光装置12用于将成像镜头11聚焦形成的成像光束分为可见光和近红外光。
图7为图6所示分光镜头的成像镜头的剖视图。如图7所示,成像镜头11包括镜筒111和设置于该镜筒111内的成像镜片组112。镜筒111用于固定成像镜片组112,镜筒111的材料包括但不限于金属和塑料,镜筒111具有像侧端A,该像侧端A为镜筒111靠近像侧的一端。成像镜片组112包括至少一个镜片,成像镜片组112用于聚焦形成成像光束,成像镜片组112具有像侧面B,该像侧面B为成像镜片组112朝向像侧的表面。
图8为图6所示分光镜头的分光装置的剖视图。如图8所示,分光装置12包括壳体121、连接结构122和分光平板10。壳体121的材料包括但不限于金属和塑料,壳体121上设有入光口C。连接结构122设置于入光口C处的壳体边沿,连接结构122包括但不限于螺纹和卡扣。分光平板10倾斜设置于壳体121内,分光平板10能够将由入光口C射入的成像光束中的可见光和近红外光分开。
本申请实施例提供了一种分光平板10。该分光平板10包括透光平板和分光膜。透光平板为透光的平板状结构。分光膜支撑于透光平板上,并与该透光平板平行。分光膜用于反射可见光并透射近红外光,或者,分光膜用于反射近红外光并透射可见光。透光平板的厚度d满足当分光平板倾斜设置于摄像机的成像光束的传输路径中时,成像光束中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜在成像光束的光轴上的投影长度。
在本申请实施例提供的分光平板中,由于分光膜用于反射可见光并透射近红外光,或者,分光膜用于反射近红外光并透射可见光,因此通过该分光膜能够将成像光路中的可见光和近红外光分开。又由于分光膜支撑于透光平板上并与透光平板平行,且透光平板的厚度d满足当分光平板倾斜设置于摄像机的成像光束的传输路径中时,成像光束中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜在成像光束的光轴上的投影长度。假设分光平板的倾斜角度为θ,分光膜沿分光平板的倾斜方向上的宽度为L,则分光膜在成像光束a的光轴上的投影长度为L×cosθ。当分光膜以相同的倾斜角设置于成像光束a的传输路径中,并采用两个直角棱镜支撑时,如图2、图3或图4所示,成像光束中的可见光和近红外光在两个直角棱镜中的传输路径长度分别为L 01、L 02,L 01=L 02,且L 01和L 02均等于L×cosθ。由此可知,成像光束中的可见光和近红外光在透光平板内的传输路径长度均小于L 01或L 02。在分光平板所用材料与图2、图3或图4所示实施例中第一直角棱镜021或第二直角棱镜022的材料相同的情况下,成像光束中的可见光和近红外光在透光平板内传输的光程较小,引起的色差和轴外像差较小,有利于降低摄像机的色差和轴外像差的矫正难度。
需要说明的是,在本申请实施例的描述中,由于分光膜的厚度非常小,因此忽略分光膜的厚度。
具体地,图9为本申请一些实施例提供的分光平板10的结构示意图。如图9所示, 分光平板10包括透光平板101和分光膜102。透光平板101的材料包括但不限于光学玻璃。透光平板101具有相对的第一表面1011和第二表面1012,第一表面1011和第二表面1012均与透光平板101的厚度方向垂直。分光膜102设置于第一表面1011。此结构简单,容易实现。
在将上述实施例所述的分光平板10安装于成像光路中,且成像光束a由分光膜102上背离透光平板101的方向的表面(也即是分光平板10的受光面R)入射时,如图9所示,成像光束a由受光面R射入分光平板10。分光膜102反射成像光束中近红外光和可见光中的一种(比如近红外光c),透射近红外光和可见光中的另一种(比如可见光b)。近红外光c未经过透光平板101,近红外光c在分光平板10内的传输路径长度L 2=0。可见光b穿过分光平板10,可见光b在分光平板10内的传输路径长度L 1=d/cosβ,根据光的折射定律,n=sinδ/sinβ,由图9可知,δ=90°-θ,由此推导出,L 1=d×n/sinθ。其中,n为透光平板101的材料折射率。由于透光平板101的厚度d满足成像光束a中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜102在成像光束a的光轴上的投影长度,分光膜102在成像光束a的光轴上的投影长度为L×cosθ,因此,L 1=d×n/sinθ<L×cosθ,L 2=0<L×cosθ,由此可以推导出,d<L sinθcosθ/n。因此,在图9所示实施例中,透光平板101的厚度d满足成像光束a中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜102在成像光束a的光轴上的投影长度,也就是说,透光平板101的厚度d满足:d<L sinθcosθ/n。
当分光膜102用于反射近红外光并透射可见光时,为了增加可见光在透光平板101的第二表面1012的透过率,在一些实施例中,如图10所示,分光平板10还包括第一增透膜103。该第一增透膜103贴覆于第二表面1012,第一增透膜103用于增强可见光由第二表面1012射出透光平板101的透过率,透射的可见光穿过该第一增透膜103。
当分光膜102用于反射可见光并透射近红外光时,为了增加近红外光在透光平板101的第二表面1012的透过率,在一些实施例中,如图11所示,分光平板10还包括第二增透膜104。该第二增透膜104贴覆于第二表面1012,第二增透膜104用于增强近红外光由第二表面1012射出透光平板101的透过率,透射的近红外光穿过该第二增透膜104。
图12为本申请又一些实施例提供的分光平板10的结构示意图。如图12所示,分光平板10包括透光平板101和分光膜102。透光平板101的材料包括但不限于光学玻璃。透光平板101具有相对的第一表面1011和第二表面1012,第一表面1011和第二表面1012均与透光平板101的厚度方向垂直。分光膜102贴覆于第二表面1012。此结构简单,容易实现。
在将上述实施例所述的分光平板10安装于成像光路中,且成像光束a由第一表面1011(也即是分光平板10的受光面R)入射时,如图12所示,成像光束a由受光面R射入分光平板10。分光膜102反射成像光束中近红外光和可见光中的一种(比如近红外光c),透射近红外光和可见光中的另一种(比如可见光b)。近红外光c两次经过透光平板101,近红外光c在分光平板10内的传输路径长度L 2=2×d/cosβ。可见光b一次穿过分光平板10,可见光b在分光平板10内的传输路径长度L 1=d/cosβ,根据光的折射定律,n=sinδ/sinβ,由图9可知,δ=90°-θ,由此推导出,L 1=d×n/sinθ, L 1=2×d×n/sinθ。其中,n为透光平板101的材料折射率。由于透光平板101的厚度d满足成像光束a中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜102在成像光束a的光轴上的投影长度,分光膜102在成像光束a的光轴上的投影长度为L×cosθ,因此,L 1=d×n/sinθ<L×cosθ,L 2=2×d×n/sinθ<L×cosθ,由此可以推导出,d<L sinθcosθ/2n。因此,在图12所示实施例中,透光平板101的厚度d满足成像光束a中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜102在成像光束a的光轴上的投影长度,也就是说,透光平板101的厚度d满足:d<L sinθcosθ/2n。
为了增加可见光和近红外光在透光平板101的第一表面1011的透过率,在一些实施例中,如图13所示,分光平板10还包括第三增透膜105。该第三增透膜105贴覆于第一表面1011,第三增透膜105用于增强可见光和近红外光由第一表面1011射入透光平板101的透过率,成像光束中的可见光和近红外光穿过该第三增透膜105。
图14为本申请又一些实施例提供的分光平板10的结构示意图。如图14所示,分光平板10包括第一透光平板101a、第二透光平板101b和分光膜102。第一透光平板101a和第二透光平板101b的材料包括但不限于光学玻璃。第一透光平板101a具有相对的第一表面1011a和第二表面1012a,第一表面1011a和第二表面1012a均与第一透光平板101a的厚度方向垂直。第二透光平板101b具有相对的第一表面1011b和第二表面1012b,第一表面1011b和第二表面1012b均与第二透光平板101b的厚度方向垂直。分光膜102夹设于第二表面1012a与第一表面1011b之间。分光膜102用于反射可见光并透射近红外光,或者,分光膜102用于反射近红外光并透射可见光。此结构简单,容易实现,且能够对分光膜进行防水防尘保护。
在将上述实施例所述的分光平板10安装于成像光路中,且成像光束a由第一表面1011a(也即是分光平板10的受光面R)入射时,如图14所示,成像光束a由受光面R射入分光平板10。分光膜102反射成像光束中近红外光和可见光中的一种(比如近红外光c),透射近红外光和可见光中的另一种(比如可见光b)。近红外光c两次经过第一透光平板101a,近红外光c在分光平板10内的传输路径长度L 2=2×d 1/cosβ。可见光b穿过第一透光平板101a和第二透光平板101b,可见光b在分光平板10内的传输路径长度L 1=(d 1+d 2)/cosβ=d/cosβ。根据光的折射定律,n=sinδ/sinβ,由图9可知,δ=90°-θ,由此推导出,L 1=d×n/sinθ,L 1=2×d 1×n/sinθ。其中,n为透光平板101的材料折射率,d 1为第一透光平板101a的厚度,d 2为第二透光平板101b的厚度。由于透光平板101的厚度d满足成像光束a中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜102在成像光束a的光轴上的投影长度,分光膜102在成像光束a的光轴上的投影长度为L×cosθ,因此,L 1=d×n/sinθ<L×cosθ,L 2=2×d 1×n/sinθ<L×cosθ,由此可以推导出,d<L sinθcosθ/n,d 1≤d 2。因此,在图14所示实施例中,透光平板101的厚度d满足成像光束a中的可见光和近红外光在透光平板内的传输路径长度均小于分光膜102在成像光束a的光轴上的投影长度,也就是说,透光平板101的厚度d满足:d<L sinθcosθ/n,d 1≤d 2
为了增加可见光和近红外光在第一透光平板101a的第一表面1011a的透过率,在一些实施例中,如图15所示,分光平板10还包括第四增透膜106。该第四增透膜106 贴覆于第一透光平板101a的第一表面1011a,第四增透膜106用于增强可见光和近红外光由第一透光平板101a的第一表面1011a射入第一透光平板101a的透过率,成像光束中的可见光和近红外光穿过该第四增透膜106。
当分光膜102用于反射近红外光并透射可见光时,为了增加可见光在第二透光平板101b的第二表面1012b的透过率,在一些实施例中,如图16所示,分光平板10还包括第五增透膜107。该第五增透膜107贴覆于第二透光平板101b的第二表面1012b,第五增透膜107用于增强可见光由第二透光平板101b的第二表面1012b射出第二透光平板101b的透过率,透射的可见光穿过该第五增透膜107。
当分光膜102用于反射可见光并透射近红外光时,为了增加近红外光在第二透光平板101b的第二表面1012b的透过率,在一些实施例中,如图17所示,分光平板10还包括第六增透膜108。该第六增透膜108贴覆于第二透光平板101b的第二表面1012b,第六增透膜108用于增强近红外光由第二透光平板101b的第二表面1012b射出第二透光平板101b的透过率,透射的近红外光穿过该第六增透膜108。
在一些实施例中,透光平板101的厚度d小于0.5mm。这样,透光平板101的厚度较小,当分光平板10倾斜设置于摄像机的成像光束的传输路径中时,成像光束a中的可见光b和近红外光c在透光平板101内的传输路径长度较小,引起的色差和轴外像差较小,摄像机的色差和轴外像差的矫正难度较小。
在一些实施例中,分光平板10的倾斜角度θ为40°~60°。分光平板10的倾斜角度在此范围内时,能够将可见光和近红外光区分开。
在一些实施例中,如图8所示,分光装置12还包括可见光传感器123和近红外光传感器124。可见光传感器123设置于壳体121内,可见光传感器123用于将分光平板10反射或者透射的可见光b转换为可见光信号。近红外光传感器124设置于壳体121内,近红外光传感器124用于将分光平板10透射或者反射的近红外光c转换为亮度信号。
这样,分光平板10、可见光传感器123和近红外光传感器124集成在同一壳体内,能够保证分光平板10到可见光传感器123,以及分光平板10到近红外光传感器124的光路准确性。
在一些实施例中,分光装置12还包括可见光滤光片(图中未示出),该可见光滤光片设置于分光平板10与近红外光传感器124之间,该可见光滤波片用于滤除分光平板10反射或者透射的近红外光中的可见光。这样,能够进一步将可见光和近红外光分开,避免可见光对近红外光的传感采集产生干扰。
在一些实施例中,分光装置12还包括近红外光滤光片(图中未示出),该近红外光滤光片设置于分光平板10与可见光传感器123之间,该近红外光滤光片用于滤除分光平板10反射或者透射的可见光中的近红外光。这样,能够进一步将近红外光和可见光分开,避免近红外光对可见光的传感采集产生干扰。
图18为图6所示分光镜头的剖视图。如图18所示,分光装置12的壳体121通过连接结构122与成像镜头11的镜筒111的像侧端A连接,分光装置12的入光口C与成像镜头11的成像镜片组112的像侧面B相对。这样,就组装形成了分光镜头,分光装置能够与不同的成像镜头组装形成功能不同的分光镜头,从而无需重新开发新的 分光镜头,由此能够节省分光镜头的开发成本。
图19为本申请又一些实施例提供的分光镜头1的结构示意图,图20为图19所示分光镜头的剖视图。如图19和图20所示,分光镜头1包括:镜筒111、成像镜片组112和分光平板10。镜筒111用于固定成像镜片组112和分光平板10,镜筒111的材料包括但不限于金属和塑料。成像镜片组112设置于镜筒111内,成像镜片组112包括至少一个镜片,成像镜片组112用于聚焦形成成像光束。分光平板10与分光装置12中的分光平板10相同,分光平板10倾斜设置于镜筒111内,分光平板10位于成像镜片组112的像侧,且分光平板10的受光面R朝向成像镜片组的像侧面B。
这样,将成像镜片组112和分光平板10集成在镜筒111内,能够保证成像镜片组112与分光平板10之间的相对位置精度,从而能够保证成像镜片组112到分光平板10的光路准确性。
在一些实施例中,如图19和图20所示,镜筒111的像侧端围成第一开口111a,分光镜片10透射的可见光或者近红外光能够由第一开口111a射出。镜筒111的侧壁设有第二开口111b,分光镜片10反射的近红外光或者可见光能够由第二开口111b射出。
在一些实施例中,如图21所示,分光镜头1还包括可见光传感器123和近红外光传感器124。可见光传感器123设置于镜筒111外并固定于镜筒111上,可见光传感器123用于将分光平板10反射或者透射的可见光b转换为可见光信号。近红外光传感器124设置于镜筒111外并固定于镜筒111上,近红外光传感器124用于将分光平板10透射或者反射的近红外光c转换为亮度信号。
这样,分光平板10、可见光传感器123和近红外光传感器124固定在一起,能够保证分光平板10到可见光传感器123,以及分光平板10到近红外光传感器124的光路准确性。
在一些实施例中,分光镜头1还包括可见光滤光片(图中未示出),该可见光滤光片设置于分光平板10与近红外光传感器124之间,该可见光滤波片用于滤除分光平板10反射或者透射的近红外光中的可见光。这样,能够进一步将可见光和近红外光分开,避免可见光对近红外光的传感采集产生干扰。
在一些实施例中,分光镜头1还包括近红外光滤光片(图中未示出),该近红外光滤光片设置于分光平板10与可见光传感器123之间,该近红外光滤光片用于滤除分光平板10反射或者透射的可见光中的近红外光。这样,能够进一步将近红外光和可见光分开,避免近红外光对可见光的传感采集产生干扰。
如图5所示,摄像机还包括摄像机主机2,该摄像机主机2包括图像融合模块(图中未示出)。图像融合模块与可见光传感器123电连接,且图像融合模块与近红外光传感器124电连接,图像融合模块用于对可见光传感器123转换的可见光信号和近红外光传感器124转换的亮度信号进行分别图像处理,并将处理后的可见光信号和处理后的亮度信号进行融合。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽 管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种分光平板,用于倾斜设置于摄像机的成像光束的传输路径中,其特征在于,包括:
    透光平板,为透光的平板状结构;
    分光膜,支撑于所述透光平板上,并与所述透光平板平行,所述分光膜用于反射可见光并透射近红外光,或者,所述分光膜用于反射近红外光并透射可见光;
    所述透光平板的厚度满足当所述分光平板倾斜设置于摄像机的成像光束的传输路径中时,所述成像光束中的可见光和近红外光在所述透光平板内的传输路径长度均小于所述分光膜在所述成像光束的光轴上的投影长度。
  2. 根据权利要求1所述的分光平板,其特征在于,所述透光平板具有相对的第一表面和第二表面;
    所述分光膜贴覆于所述第一表面或所述第二表面。
  3. 根据权利要求2所述的分光平板,其特征在于,当所述分光膜贴覆于所述第一表面,且所述分光膜用于反射近红外光并透射可见光时,所述分光平板还包括:
    第一增透膜,贴覆于所述第二表面,所述第一增透膜用于增强所述可见光由所述第二表面射出所述透光平板的透过率;
    当所述分光膜贴覆于所述第一表面,且所述分光膜用于反射可见光并透射近红外光时,所述分光平板还包括:
    第二增透膜,贴覆于所述第二表面,所述第二增透膜用于增强所述近红外光由所述第二表面射出所述透光平板的透过率。
  4. 根据权利要求2或3所述的分光平板,其特征在于,当所述分光膜贴覆于所述第二表面时,所述分光平板还包括:
    第三增透膜,贴覆于所述第一表面,所述第三增透膜用于增强可见光和近红外光由所述第一表面射入所述透光平板的透过率。
  5. 根据权利要求1所述的分光平板,其特征在于,所述透光平板包括第一透光平板和第二透光平板;
    所述第一透光平板具有相对的第一表面和第二表面;
    所述第二透光平板具有相对的第一表面和第二表面;
    所述分光膜夹设于所述第一透光平板的第二表面与所述第二透光平板的第一表面之间。
  6. 根据权利要求5所述的分光平板,其特征在于,所述分光平板还包括:
    第四增透膜,贴覆于所述第一透光平板的第一表面,所述第四增透膜用于增强可见光和近红外光由所述第一透光平板的第一表面射入所述第一透光平板的透过率。
  7. 根据权利要求5或6所述的分光平板,其特征在于,当所述分光膜反射近红外光并透射可见光时,所述分光平板还包括:
    第五增透膜,贴覆于所述第二透光平板的第二表面,所述第五增透膜用于增强所述可见光由所述第二透光平板的第二表面射出所述第二透光平板的透过率;
    当所述分光膜反射可见光并透射近红外光时,所述分光平板还包括:
    第六增透膜,贴覆于所述第二透光平板的第二表面,所述第六增透膜用于增强所 述近红外光由所述第二透光平板的第二表面射出所述第二透光平板的透过率。
  8. 一种分光装置,其特征在于,包括:
    壳体,设有入光口;
    连接结构,设置于所述入光口处的壳体边沿,所述连接结构用于与成像镜头的镜筒的像侧端连接,以使所述入光口与所述成像镜头的成像镜片组的像侧面相对;
    分光平板,为权利要求1~7中任一项所述的分光平板,所述分光平板倾斜设置于所述壳体内。
  9. 根据权利要求8所述的分光装置,其特征在于,还包括:
    可见光传感器,设置于所述壳体内,所述可见光传感器用于将所述分光平板反射或者透射的可见光转换为可见光信号;
    近红外光传感器,设置于所述壳体内,所述近红外光传感器用于将所述分光平板透射或者反射的近红外光转换为亮度信号。
  10. 一种分光镜头,其特征在于,包括:
    成像镜头,包括镜筒和设置于所述镜筒内的成像镜片组,所述镜筒具有像侧端,所述成像镜片组用于聚焦形成成像光束,所述成像镜片组具有像侧面;
    分光装置,为权利要求8或9所述的分光装置,所述分光装置的壳体通过连接结构与所述镜筒的像侧端连接,所述分光装置的入光口与所述成像镜片组的像侧面相对。
  11. 一种分光镜头,其特征在于,包括:
    镜筒;
    成像镜片组,设置于所述镜筒内,所述成像镜片组用于聚焦形成成像光束;
    分光平板,为权利要求1~7中任一项所述的分光平板,所述分光平板位于所述成像镜片组的像侧,且所述分光平板倾斜设置于所述镜筒内。
  12. 根据权利要求11所述的分光镜头,其特征在于,所述镜筒的像侧端围成第一开口,所述分光平板透射的可见光或者近红外光由所述第一开口射出;所述镜筒的侧壁设有第二开口,所述分光平板反射的近红外光或者可见光由所述第二开口射出;
    所述分光镜头还包括:
    可见光传感器,设置于所述镜筒外并固定于所述镜筒上,所述可见光传感器用于将所述分光平板反射或者透射的可见光转换为可见光信号;
    近红外光传感器,设置于所述镜筒外并固定于所述镜筒上,所述近红外光传感器用于将所述分光平板透射或者反射的近红外光转换为亮度信号。
  13. 一种摄像机,其特征在于,包括权利要求10~12中任一项所述的分光镜头。
  14. 一种电子设备,其特征在于,包括权利要求13所述的摄像机。
PCT/CN2020/118581 2020-01-14 2020-09-28 一种分光平板、分光装置、分光镜头、摄像机和电子设备 WO2021143204A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20913943.5A EP4063940A4 (en) 2020-01-14 2020-09-28 LIGHT SPLITTER FLAT PANEL, LIGHT SPLITTER DEVICE, LIGHT SPLITTER LENS, SHOOTING DEVICE AND ELECTRONIC DEVICE
US17/862,800 US20220342226A1 (en) 2020-01-14 2022-07-12 Beam Splitter Plate, Beam Splitter Apparatus, Beam Splitter Lens Module, Camera, and Electronic Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010036850 2020-01-14
CN202010036850.2 2020-01-14
CN202010235860.9 2020-03-27
CN202010235860.9A CN113189782A (zh) 2020-01-14 2020-03-27 一种分光平板、分光装置、分光镜头、摄像机和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/862,800 Continuation US20220342226A1 (en) 2020-01-14 2022-07-12 Beam Splitter Plate, Beam Splitter Apparatus, Beam Splitter Lens Module, Camera, and Electronic Device

Publications (1)

Publication Number Publication Date
WO2021143204A1 true WO2021143204A1 (zh) 2021-07-22

Family

ID=76863513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118581 WO2021143204A1 (zh) 2020-01-14 2020-09-28 一种分光平板、分光装置、分光镜头、摄像机和电子设备

Country Status (3)

Country Link
US (1) US20220342226A1 (zh)
EP (1) EP4063940A4 (zh)
WO (1) WO2021143204A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101510007A (zh) * 2009-03-20 2009-08-19 北京科技大学 一种红外光图像与可见光图像实时摄取与自适应融合装置
CN102495474A (zh) * 2011-12-09 2012-06-13 北京理工大学 一种可见光/长波红外宽波段共调焦光学成像系统
CN102736153A (zh) * 2012-07-05 2012-10-17 美德瑞光电科技(上海)有限公司 低角度效应的红外截止滤光片
TW201348758A (zh) * 2012-05-28 2013-12-01 Hon Hai Prec Ind Co Ltd 紅外截止濾光片及鏡頭模組
CN203414717U (zh) * 2013-08-23 2014-01-29 重庆米森科技有限公司 一种用于摄像/照相设备分频处理短波红外与可见光的装置
CN104856653A (zh) * 2015-06-12 2015-08-26 广州医软智能科技有限公司 用于检测血管的装置与方法
CN109445116A (zh) * 2019-01-10 2019-03-08 西安广博光电科技有限公司 热像微光融合物镜光学系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193025A (en) * 1992-01-21 1993-03-09 Hughes Aircraft Company Optical viewing and near infrared tracking system for a portable missle launcher
US5600487A (en) * 1994-04-14 1997-02-04 Omron Corporation Dichroic mirror for separating/synthesizing light with a plurality of wavelengths and optical apparatus and detecting method using the same
US20100193412A1 (en) * 2009-02-02 2010-08-05 Satake Usa, Inc. Beam splitter
CN209055730U (zh) * 2018-12-18 2019-07-02 信利光电股份有限公司 一种摄像模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101510007A (zh) * 2009-03-20 2009-08-19 北京科技大学 一种红外光图像与可见光图像实时摄取与自适应融合装置
CN102495474A (zh) * 2011-12-09 2012-06-13 北京理工大学 一种可见光/长波红外宽波段共调焦光学成像系统
TW201348758A (zh) * 2012-05-28 2013-12-01 Hon Hai Prec Ind Co Ltd 紅外截止濾光片及鏡頭模組
CN102736153A (zh) * 2012-07-05 2012-10-17 美德瑞光电科技(上海)有限公司 低角度效应的红外截止滤光片
CN203414717U (zh) * 2013-08-23 2014-01-29 重庆米森科技有限公司 一种用于摄像/照相设备分频处理短波红外与可见光的装置
CN104856653A (zh) * 2015-06-12 2015-08-26 广州医软智能科技有限公司 用于检测血管的装置与方法
CN109445116A (zh) * 2019-01-10 2019-03-08 西安广博光电科技有限公司 热像微光融合物镜光学系统

Also Published As

Publication number Publication date
EP4063940A1 (en) 2022-09-28
US20220342226A1 (en) 2022-10-27
EP4063940A4 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
TWI707188B (zh) 相機模組與電子裝置
US7515818B2 (en) Image capturing apparatus
US8390721B2 (en) Portable electronic device and camera module therefor
EP3767937B1 (en) Camera module and electronic device
CN101344706B (zh) 可携式电子装置及可携式电子装置的照相模块
JP2008294819A (ja) 撮像装置
CN213780493U (zh) 成像镜头、取像装置及电子装置
WO2021017682A1 (zh) 光学模组
WO2021143204A1 (zh) 一种分光平板、分光装置、分光镜头、摄像机和电子设备
JP3125182B2 (ja) Cマウントカラーtv用色分解プリズムアッセンブリ
US7365329B2 (en) Method for determining location of infrared-cut filter on substrate
JP3511392B2 (ja) 3枚玉による結像レンズ
CN113189782A (zh) 一种分光平板、分光装置、分光镜头、摄像机和电子设备
JP4378004B2 (ja) 色分解光学系及びそれを用いたテレビカメラ
JP2005031460A (ja) 複眼光学系
JPH08220585A (ja) 電子カメラ
JP4366107B2 (ja) 光学装置
CN214480818U (zh) 摄像头模块和具有摄像功能的电子设备
CN220855315U (zh) 镜头
CN115097604B (zh) 一种多光谱镜头和一种多光谱摄像装置
CN113746549B (zh) 一种光信号接收复用系统
CN216905025U (zh) 一种摄像头模组及电子设备
CN216057225U (zh) 一种摄像头模组及终端设备
WO2024104120A1 (zh) 摄像头模组及电子设备
WO2021000639A1 (zh) 摄像头模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020913943

Country of ref document: EP

Effective date: 20220624

NENP Non-entry into the national phase

Ref country code: DE