WO2021142889A1 - 天线装置及终端设备 - Google Patents

天线装置及终端设备 Download PDF

Info

Publication number
WO2021142889A1
WO2021142889A1 PCT/CN2020/076749 CN2020076749W WO2021142889A1 WO 2021142889 A1 WO2021142889 A1 WO 2021142889A1 CN 2020076749 W CN2020076749 W CN 2020076749W WO 2021142889 A1 WO2021142889 A1 WO 2021142889A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
power
algorithm
signal
antenna device
Prior art date
Application number
PCT/CN2020/076749
Other languages
English (en)
French (fr)
Inventor
邢红娟
任科
蔡海
安鑫荣
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Priority to US17/758,970 priority Critical patent/US20230145234A1/en
Publication of WO2021142889A1 publication Critical patent/WO2021142889A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • This application relates to the field of mobile communication technology, and in particular to an antenna device and terminal equipment.
  • 5G mobile terminal equipment Due to the high millimeter wave frequency and large signal transmission attenuation, 5G mobile terminal equipment mostly uses array antenna beamforming to increase signal strength, and beam scanning technology to expand the signal communication angle.
  • the principle of beamforming and beam scanning is to enhance the intensity and angle of the array antenna by controlling the phase and signal amplitude of each transmitting and receiving unit in the millimeter wave array antenna module.
  • the antenna array only uses a digital phase shifter to control the phase of the transmitting and receiving units in the array antenna, and does not control the amplitude of the input signal of a single unit, so the array antenna works in some
  • the angle, especially the edge angle, will have too large sidelobes, which will affect the efficiency of signal reception and transmission, and there is a risk of introducing other external interference signals.
  • the embodiments of the present application provide an antenna device and terminal equipment, which can effectively solve the problem that the sidelobe amplitude of the current antenna array is too large, which affects the signal reception and transmission efficiency, and introduces other external interference signals.
  • an embodiment of the present application provides an antenna device, including: a power splitter; a plurality of antenna units electrically connected to the power splitter, and each antenna unit includes: a power splitter; The attenuator is electrically connected to the power divider, the power attenuator is used to load an algorithm to attenuate the input signal power; and a radiation part is used to transmit the received signal to the power attenuator and/or Receive the transmitted signal from the power attenuator; each antenna unit further includes: a phase shifter electrically connected to the power attenuator; and the algorithms are the Dolf-Chebyshev algorithm and the Taylor algorithm One of its combinations.
  • the radiation part is located on the first dielectric substrate.
  • the power attenuator is located on the second dielectric substrate.
  • an embodiment of the present application provides an antenna device, including: a power splitter; and a plurality of antenna units electrically connected to the power splitter, and each antenna unit includes: A power attenuator is electrically connected to the power divider, the power attenuator is used to load an algorithm to attenuate the input signal power; and a radiation part is used to transmit the received signal to the power attenuator and /Or receive the transmitted signal from the power attenuator.
  • each of the antenna units further includes: a phase shifter electrically connected to the power attenuator.
  • the radiation part is located on the first dielectric substrate.
  • the power attenuator is located on the second dielectric substrate.
  • phase shifter is located on the second dielectric substrate.
  • a ground plate is further provided between the first dielectric substrate and the second dielectric substrate, and the ground plate is provided with a plurality of through holes, and the number of the through holes is the same as the number of antenna units.
  • the multiple antenna units include: a first antenna unit, a second antenna unit, a third antenna unit, and a fourth antenna unit; the first antenna unit, the second antenna unit, and the The third antenna unit and the fourth antenna unit are arranged in a straight line.
  • the algorithm is one of the Dolf-Chebyshev algorithm, the Taylor algorithm, and a combination thereof.
  • the amplitude of the signal input by each of the antenna units is the same.
  • an embodiment of the present application provides a terminal device, including the above-mentioned antenna device.
  • this application adds a power attenuator to each antenna element of the array antenna, and the power attenuator is used to load the Dolf-Chebyshev algorithm and/or Taylor algorithm on the input signal power. Attenuation can effectively suppress the side lobe gain of the array antenna and maintain the same main lobe gain and width.
  • FIG. 1 is a schematic diagram of the circuit principle structure of the antenna device provided in the first embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an antenna device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the circuit principle structure of the antenna device provided in the second embodiment of the application.
  • Fig. 4 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relation.
  • an intermediate medium it can be the internal communication of two components or the interaction of two components relation.
  • the "on" or “under” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the circuit principle diagram of the antenna device provided in the first embodiment of this application includes: a power divider 80 and multiple antenna units.
  • the antenna device is used for terminal equipment.
  • the power divider 80 described in the first embodiment of the present application is also called a power divider, which is a device that divides the energy of an input signal into two or more channels to output equal or unequal energy. It can conversely combine the energy of multiple signals into one output, which can also be called a combiner at this time.
  • Each of the antenna units is electrically connected to the power divider 80, and each of the antenna units includes: a power attenuator 4 and a radiation part 1.
  • the radiation portion 1 is located on the first dielectric substrate 10.
  • the power attenuator 4 is located on the second dielectric substrate 30.
  • a grounding plate 20 is also provided between the first dielectric substrate 10 and the second dielectric substrate 30, and a plurality of through holes 2 are provided on the ground plate 20. The number of the through holes 2 is equal to that of the antenna unit The number is the same.
  • the power attenuator 4 is electrically connected to the power divider 80, and the power attenuator 4 is used to load an algorithm to attenuate the input signal power.
  • the algorithm is one of the Dolf-Chebyshev algorithm, the Taylor algorithm, and a combination thereof.
  • All the power attenuators 4 in the same group of antenna arrays can be loaded with the Dolf-Chebyshev algorithm, or can be loaded with the Taylor algorithm, or some of the power attenuators 4 can be loaded with the Dolf-Chebyshev algorithm, others Part of the power attenuator 4 is loaded with Taylor's algorithm. That is to say, the Dolf-Chebyshev algorithm and the Taylor algorithm can be mixed in the antenna device, or only one of the algorithms can be loaded in the antenna device.
  • the current distribution in the Dolf-Chebyshev algorithm can transfer part of the sidelobe energy to the main lobe, thereby reducing the sidelobe level and obtaining the narrowest main lobe width or in a given main lobe When the lobe width, the lowest side lobe level is obtained.
  • the Taylor distribution can make the levels of several sidelobes near the main lobe the same, while the remaining sidelobe levels show a decreasing trend.
  • the Taylor distribution adjusts the sidelobe level through the position of the lobe zero point. It is known that the sidelobe levels farther from the main lobe will decrease in turn. For the sidelobes close to the main lobe, moving the position of the lobe zero point toward the main lobe can reduce the corresponding sidelobe level.
  • the multiple antenna units are arranged in a straight line, but are not limited to this. In other embodiments, the multiple antenna units may be arranged in a curve.
  • the amplitude of the signal input by each antenna unit is the same, but the amplitude of the signal output by each antenna unit is not necessarily the same.
  • the output amplitude of each antenna element is determined according to the position of each antenna element in the antenna array. For example, when the antenna array is arranged in a straight line, the output amplitude of the antenna element in the middle position is greater than the output amplitude of the antenna elements on both sides.
  • the radiation part 1 is used to transmit received signals to the power attenuator 4 or receive transmission signals from the power attenuator 4.
  • the antenna device further includes: a phase shifter 3.
  • the phase shifter 3 is electrically connected to the power attenuator 4, and the phase shifter 3 is used to change the phase of the main lobe of the signal.
  • the antenna device When the antenna device transmits a signal, the signal is transmitted from the corresponding circuit inside the terminal device to the power divider 80, and the power divider 80 divides the signal into multiple paths (in accordance with the number of antenna units). Same) Constant amplitude signal.
  • Each of the multiple constant-amplitude signals respectively passes through the power attenuator 4, and the power attenuator 4 is loaded with the Dolf-Chebyshev algorithm or the Taylor algorithm to correspondingly attenuate the input power of the constant-amplitude signal.
  • the attenuated signal is passed through the phase shifter 3 to adjust the transmission phase of the signal. Finally, it is emitted from the radiating part 1 of the antenna unit.
  • the radiating part 1 and the phase shifter 3 are not directly connected, and the signal is coupled to the radiating part 1 through the through hole 2 on the ground plate 20.
  • the antenna device When the antenna device receives a signal from the outside of the terminal device, the signal is input to a plurality of antenna units by the plurality of radiating parts 1. Each of the plurality of radiating parts 1 couples the received signal to the phase shifter 3 through the through hole 2, and the phase shifter 3 adjusts the receiving phase of the signal.
  • the phase-adjusted signal passes through the power attenuator 4, and the power attenuation 4 is loaded with the Dolf-Chebyshev algorithm or the Taylor algorithm to attenuate the received signal power accordingly.
  • the power divider 80 After the attenuated multiple signals are sent to the power divider 80, the power divider 80 will combine the multiple signals into one signal at this time.
  • this application adds a power attenuator to each antenna element of the array antenna, and the power attenuator is used to load the Dolf-Chebyshev algorithm and/or Taylor algorithm on the input signal power. Attenuation can effectively suppress the side lobe gain of the array antenna and maintain the same main lobe gain and width.
  • a circuit schematic diagram of an antenna device 310 provided in the second embodiment of this application includes: a power divider 80 and multiple antenna units.
  • the antenna device 310 is used for terminal equipment.
  • the power divider 80 described in the second embodiment is also called a power divider, which is a device that divides the energy of an input signal into two or more channels to output equal or unequal energy. Of course, it can also be reversed. Come and combine the energy of multiple signals to one output, which can also be called a combiner at this time.
  • the multiple antenna units include: a first antenna unit 40, a second antenna unit 50, a third antenna unit 60, and a fourth antenna unit 70.
  • the first antenna unit 40, the second antenna unit 50, the third antenna unit 60, and the fourth antenna unit 70 are arranged in a straight line.
  • each antenna unit 40, 50, 60, and 70 is respectively electrically connected to the power splitter 80, and each antenna unit 40, 50, 60, and 70 includes: a power attenuator 4 and a radiating part 1.
  • the radiation portion 1 is located on the first dielectric substrate 10.
  • the power attenuator 4 is located on the second dielectric substrate 30.
  • a ground plate 20 is also provided between the first dielectric substrate 10 and the second dielectric substrate 30.
  • the ground plate 20 is provided with four through holes 2. The number of the through holes 2 is equal to that of the antenna unit. The number is the same.
  • the power attenuator 4 is electrically connected to the power divider 80, and the power attenuator 4 is used to load an algorithm to attenuate the input signal power.
  • the algorithm is one of the Dolf-Chebyshev algorithm, the Taylor algorithm, and a combination thereof.
  • the four antenna elements are divided into a group of antenna arrays, and the power attenuator 4 in the antenna array is loaded with the Dolf-Chebyshev algorithm or the Taylor algorithm. Therefore, in the antenna device in the second embodiment, the Dolf-Chebyshev algorithm and the Taylor algorithm only load one of the algorithms.
  • the current distribution in the Dolf-Chebyshev algorithm can transfer part of the sidelobe energy to the main lobe, thereby reducing the sidelobe level and obtaining the narrowest main lobe width or in a given main lobe When the lobe width, the lowest side lobe level is obtained.
  • the Taylor distribution can make the levels of several sidelobes near the main lobe the same, while the remaining sidelobe levels show a decreasing trend.
  • the Taylor distribution adjusts the sidelobe level through the position of the lobe zero point. It is known that the sidelobe levels farther from the main lobe will decrease in turn. For the sidelobes close to the main lobe, moving the position of the lobe zero point toward the main lobe can reduce the corresponding sidelobe level.
  • the four antenna units are arranged in a straight line, but are not limited to this. In other embodiments, the four antenna units may be arranged in a curve.
  • the input signal amplitudes of the four antenna units are the same, but the signal amplitudes output by the four antenna units are not necessarily the same.
  • the output amplitude of the antenna unit is determined according to the positions of the four antenna units in the antenna array. For example, when the antenna array is arranged in a straight line, the output amplitude of the antenna element in the middle position is greater than the output amplitude of the antenna elements on both sides.
  • the radiation part 1 is used to transmit received signals to the power attenuator 4 or receive transmission signals from the power attenuator 4.
  • the antenna device further includes: a phase shifter 3.
  • the phase shifter 3 is electrically connected to the power attenuator 4, and the phase shifter 3 is used to change the phase of the main lobe of the signal.
  • the antenna device transmits a signal
  • the signal is transmitted from the corresponding circuit inside the terminal device to the power divider 80, and the power divider 80 divides the signal into four channels (the same number as the four antenna units) Constant amplitude signal.
  • the four equal-amplitude signals respectively pass through the power attenuator 4, and the power attenuator 4 is loaded with the Dolf-Chebyshev algorithm or the Taylor algorithm to correspondingly attenuate the input power of the equal-amplitude signal.
  • the attenuated signal is passed through the phase shifter 3 to adjust the transmission phase of the signal. Finally, it is emitted from the radiating part 1 of the antenna unit.
  • the radiating part 1 and the phase shifter 3 are not directly connected, and the signal is coupled to the radiating part 1 through the through hole 2 on the ground plate 20.
  • the antenna device When the antenna device receives a signal from the outside of the terminal device, the signal is input to the four antenna elements from the plurality of radiating parts 1.
  • the four radiation parts 1 couple the received signal to the phase shifter 3 through the through hole 2, and the phase shifter 3 adjusts the receiving phase of the signal.
  • the phase-adjusted signal is passed through the power attenuator 4, and the power attenuation 4 is loaded with the Dolf-Chebyshev algorithm or the Taylor algorithm, and the received signal power is attenuated accordingly.
  • the power divider 80 After sending the attenuated multiple signals to the power divider 80, the power divider 80 will combine the four signals into one signal at this time.
  • this application adds a power attenuator to each antenna element of the array antenna, and the power attenuator is used to load the Dolf-Chebyshev algorithm and/or Taylor algorithm on the input signal power. Attenuation can effectively suppress the side lobe gain of the array antenna and maintain the same main lobe gain and width.
  • the terminal device provided in this embodiment of the application may be a device such as a smart phone or a tablet computer.
  • the antenna device 310 is used to receive and send electromagnetic waves, realize mutual conversion between electromagnetic waves and electrical signals, and communicate with a communication network or other equipment.
  • the memory 320 may be used to store software programs and modules.
  • the processor 380 executes various functional applications and data processing by running the software programs and modules stored in the memory 320.
  • the memory 320 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 320 may further include a memory remotely provided with respect to the processor 380, and these remote memories may be connected to the terminal device 300 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input unit 330 may be used to receive inputted digital or character information, and generate keyboard, mouse, joystick, optical or trackball signal input related to user settings and function control.
  • the input unit 330 may include a touch-sensitive surface 331 and other input devices 332.
  • the touch-sensitive surface 331 also called a touch screen or a touchpad, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on or on the touch-sensitive surface 331. Operation near the touch-sensitive surface 331), and drive the corresponding connection device according to the preset program.
  • the touch-sensitive surface 331 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 380, and can receive and execute the commands sent by the processor 380.
  • the touch-sensitive surface 331 can be realized in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 330 may also include other input devices 332.
  • the other input device 332 may include, but is not limited to, one or more of a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, and a joystick.
  • the display unit 340 may be used to display information input by the user or information provided to the user and various graphical user interfaces of the terminal device 300. These graphical user interfaces may be composed of graphics, text, icons, videos, and any combination thereof.
  • the display unit 340 may include a display panel 341.
  • an LCD Liquid
  • the display panel 341 is configured in the form of Crystal Display (Liquid Crystal Display), OLED (Organic Light-Emitting Diode, Organic Light-Emitting Diode), etc.
  • the touch-sensitive surface 331 may cover the display panel 341.
  • the touch-sensitive surface 331 When the touch-sensitive surface 331 detects a touch operation on or near it, it is transmitted to the processor 380 to determine the type of the touch event, and then the processor 380 determines the type of the touch event.
  • the type provides corresponding visual output on the display panel 341.
  • the touch-sensitive surface 331 and the display panel 341 are used as two independent components to implement input and output functions, in some embodiments, the touch-sensitive surface 331 and the display panel 341 can be integrated to implement input. And output function.
  • the terminal device 300 may also include at least one sensor 350, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 341 according to the brightness of the ambient light, and the proximity sensor can close the display panel 341 when the terminal device 300 is moved to the ear. And/or backlight.
  • the gravity acceleration sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary.
  • the terminal device 300 can also be configured with other sensors such as gyroscopes, barometers, hygrometers, thermometers, infrared sensors, here No longer.
  • the audio circuit 360, the speaker 361, and the microphone 362 can provide an audio interface between the user and the terminal device 300.
  • the audio circuit 360 can transmit the electrical signal converted from the received audio data to the speaker 361, and the speaker 361 converts it into a sound signal for output; on the other hand, the microphone 362 converts the collected sound signal into an electrical signal, which is then output by the audio circuit 360. After being received, it is converted into audio data, and then processed by the audio data output processor 380, and then sent to, for example, another terminal via the antenna device 310, or the audio data is output to the memory 320 for further processing.
  • the audio circuit 360 may also include an earplug jack to provide communication between a peripheral earphone and the terminal device 300.
  • the processor 380 is the control center of the terminal device 300, which uses various interfaces and lines to connect the various parts of the entire mobile phone, runs or executes software programs and/or modules stored in the memory 320, and calls data stored in the memory 320 , Perform various functions of the terminal device 300 and process data, so as to monitor the mobile phone as a whole.
  • the processor 380 may include one or more processing cores; in some embodiments, the processor 380 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and For application programs, the modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 380.
  • the terminal device 300 also includes a power source 390 (such as a battery) for supplying power to various components.
  • the power source may be logically connected to the processor 380 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the power supply 390 may also include any components such as one or more DC or AC power supplies, a recharging system, a power failure detection circuit, a power converter or inverter, and a power status indicator.
  • the terminal device 300 may also include a camera (such as a front camera, a rear camera), a Bluetooth module, etc., which will not be repeated here.
  • a camera such as a front camera, a rear camera
  • a Bluetooth module etc., which will not be repeated here.
  • each of the above modules can be implemented as an independent entity, or can be combined arbitrarily, and implemented as the same or several entities.
  • each of the above modules please refer to the previous method embodiments, which will not be repeated here.
  • the terminal device 300 of this embodiment adopts the antenna device 310 described in the foregoing embodiment, its display effect is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种天线装置及终端设备,本申请通过在阵列天线的每一天线单元中增加一功率衰减器,所述功率衰减器用于加载道尔夫-切比雪夫算法和/或泰勒算法对输入的信号功率做衰减,能有效抑制阵列天线的副瓣增益,并且保持相同的主瓣增益和宽度。

Description

天线装置及终端设备
本申请要求于2020年1月17日提交中国专利局、申请号为202010053567.0、发明名称为“天线装置及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种天线装置及终端设备。
背景技术
由于毫米波频率高,信号传输衰减大,5G移动终端设备多采用阵列天线波束赋形提升信号强度,并且采用波束扫描技术扩大信号通信角度。波束赋形以及波束扫描原理是通过控制毫米波阵列天线模组中每一个发射和接受单元的相位和信号幅度,从而增强阵列天线辐射的强度和角度。
但是,目前市场上的部分5G毫米波移动通讯终端产品,天线阵列只采用数字移相器控制阵列天线中发射和接收单元的相位,没有控制输入单个单元信号的幅度,因此阵列天线工作在某些角度,尤其是边缘角度,会出现副瓣过大,影响信号接收和发射效率,并且有引入其他外界干扰信号的风险。
技术问题
本申请实施例提供一种天线装置及终端设备,能有效解决目前天线阵列的副瓣幅度过大,影响信号接收和发射效率,并且有引入其他外界干扰信号的问题。
技术解决方案
根据本申请的一方面,本申请实施例提供了一种天线装置,包括:一功分器;多个天线单元,与所述功分器电性连接,每一所述天线单元包括:一功率衰减器,与所述功分器电性连接,所述功率衰减器用于加载一算法对输入的信号功率做衰减;以及一辐射部,用于将接收信号传送至所述功率衰减器和/或从所述功率衰减器接收发射信号;每一所述天线单元还包括:一移相器,与所述功率衰减器电性连接;以及所述算法为道尔夫-切比雪夫算法与泰勒算法及其组合的其中一者。
进一步地,所述辐射部位于第一介质基板上。
进一步地,所述功率衰减器位于第二介质基板上。
根据本申请的另一方面,本申请实施例提供了一种天线装置,包括:一功分器;以及多个天线单元,与所述功分器电性连接,每一所述天线单元包括:一功率衰减器,与所述功分器电性连接,所述功率衰减器用于加载一算法对输入的信号功率做衰减;以及一辐射部,用于将接收信号传送至所述功率衰减器和/或从所述功率衰减器接收发射信号。
进一步地,每一所述天线单元还包括:一移相器,与所述功率衰减器电性连接。
进一步地,所述辐射部位于第一介质基板上。
进一步地,所述功率衰减器位于第二介质基板上。
进一步地,所述移相器位于所述第二介质基板上。
进一步地,在所述第一介质基板与所述第二介质基板之间还设有一接地板,所述接地板上设有多个通孔,所述通孔的数量与天线单元的数量相同。
进一步地,所述多个天线单元包括:一第一天线单元、一第二天线单元、一第三天线单元及一第四天线单元;所述第一天线单元、所述第二天线单元、所述第三天线单元及所述第四天线单元呈一直线排布。
进一步地,所述算法为道尔夫-切比雪夫算法与泰勒算法及其组合的其中一者。
进一步地,每一所述天线单元输入的信号幅值相同。
根据本申请的又一方面,本申请实施例提供了一种终端设备,包括上述所述的天线装置。
有益效果
本申请的优点在于,本申请通过在阵列天线的每一天线单元中增加一功率衰减器,所述功率衰减器用于加载道尔夫-切比雪夫算法和/或泰勒算法对输入的信号功率做衰减,能有效抑制阵列天线的副瓣增益,并且保持相同的主瓣增益和宽度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的天线装置的电路原理结构示意图。
图2为本申请实施例提供的天线装置的结构示意图。
图3为本申请实施例二提供的天线装置的电路原理结构示意图。
图4为本申请实施例提供的终端设备的结构示意图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
如图1所示,为本申请实施例一提供的天线装置的电路原理图,包括:一功分器80及多个天线单元。所述天线装置用于终端设备。本申请实施例一中所述的功分器80也叫作功率分配器(power divider),其是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,当然也可反过来将多路信号能量合成一路输出,此时可也称为合路器。
每一所述天线单元与所述功分器80电性连接,每一所述天线单元包括:一功率衰减器4及一辐射部1。
结合参阅图2,所述辐射部1位于第一介质基板10上。所述功率衰减器4位于第二介质基板30上。在所述第一介质基板10与所述第二介质基板30之间还设有一接地板20,所述接地板20上设有多个通孔2,所述通孔2的数量与天线单元的数量相同。
所述功率衰减器4与所述功分器80电性连接,所述功率衰减器4用于加载一算法对输入的信号功率做衰减。其中所述算法为道尔夫-切比雪夫算法与泰勒算法及其组合的其中一者。当天线装置中的天线单元超过4个时,一般最多将4个天线单元分为第一组天线阵列,多出的天线单元可分为第二组天线阵列,甚至更多的组天线阵列。相同组天线阵列中所有的所述功率衰减器4可以统一加载道尔夫-切比雪夫算法,或者可以统一加载泰勒算法,或者部分的功率衰减器4加载道尔夫-切比雪夫算法,其他部分的功率衰减器4加载泰勒算法。也就是说,在天线装置中道尔夫-切比雪夫算法与泰勒算法可以混用也可以在天线装置中仅加载其中一种算法。
需要说明的是,道尔夫-切比雪夫算法中电流分布可以将一部分副瓣的能量转移到主瓣上,从而降低副瓣电平水平,获得最窄的主瓣宽度或者在给定的主瓣宽度时,获得最低的副瓣电平。与道尔夫-切比雪夫算法保持相同的副瓣电平不同的是,泰勒分布可以使得在主瓣附近的几个副瓣电平相同,而其余的副瓣电平呈现依次递减的趋势。泰勒分布通过波瓣零点的位置来调节副瓣电平,已知离主瓣较远的副瓣电平都会依次降低。对于靠近主瓣的副瓣,将其波瓣零点的位置向主瓣方向移动,就可以使相应的副瓣电平降低。
所述多个天线单元呈一直线排布,但不限于此,在其他实施例中多个天线单元可以呈曲线排布。
每一所述天线单元输入的信号幅值相同,但每一所述天线单元输出的信号幅值不一定相同。具体是根据每一所述天线单元在天线阵列中所排布的位置决定该天线单元输出的幅值。例如天线阵列呈直线排布时,其中处于中间位置的天线单元输出幅值大于两边天线单元的输出幅值。
所述辐射部1用于将接收信号传送至所述功率衰减器4或从所述功率衰减器4接收发射信号。
所述天线装置还包括:一移相器3。
所述移相器3与所述功率衰减器4电性连接,所述移相器3用于改变信号主瓣的相位。
当天线装置发射一信号时,所述信号从所述终端设备内部对应的电路传送至所述功分器80,所述功分器80将信号分成多路(与所述多个天线单元的数量相同)等幅信号。每一所述多路等幅信号分别通过所述功率衰减器4,所述功率衰减器4加载道尔夫-切比雪夫算法或泰勒算法,对输入的等幅信号功率做相应的衰减。将衰减后的信号经过移相器3,调整信号的发射相位。最后从天线单元的辐射部1发射出去。其中所述辐射部1与所述移相器3不直接连接,所述信号通过接地板20上的通孔2耦合至辐射部1。
当天线装置从所述终端设备外部接收一信号时,所述信号由多个辐射部1输入多个天线单元。每一所述多个辐射部1将接收的信号通过通孔2耦合至移相器3上,通过移相器3调整信号的接收相位。将调整相位后的信号通过功率衰减器4,所述功率衰减4加载道尔夫-切比雪夫算法或泰勒算法,对接收的信号功率做相应的衰减。在将衰减后的多路信号发送至功分器80中,此时功分器80会将多路信号合并成一路信号。
本申请的优点在于,本申请通过在阵列天线的每一天线单元中增加一功率衰减器,所述功率衰减器用于加载道尔夫-切比雪夫算法和/或泰勒算法对输入的信号功率做衰减,能有效抑制阵列天线的副瓣增益,并且保持相同的主瓣增益和宽度。
如图3所示,为本申请实施例二提供的一种天线装置310的电路原理图,包括:一功分器80及多个天线单元。所述天线装置310用于终端设备。实施例二中所述的功分器80也叫作功率分配器(power divider),其是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,当然也可反过来将多路信号能量合成一路输出,此时可也称为合路器。
在实施例二中所述多个天线单元包括:一第一天线单元40、一第二天线单元50、一第三天线单元60及一第四天线单元70。所述第一天线单元40、所述第二天线单元50、所述第三天线单元60及所述第四天线单元70呈一直线排布。
四个天线单元40、50、60及70分别与所述功分器80电性连接,每一天线单元40、50、60及70包括:一功率衰减器4及一辐射部1。
结合参阅图2,所述辐射部1位于第一介质基板10上。所述功率衰减器4位于第二介质基板30上。在所述第一介质基板10与所述第二介质基板30之间还设有一接地板20,所述接地板20上设有四个通孔2,所述通孔2的数量与天线单元的数量相同。
所述功率衰减器4与所述功分器80电性连接,所述功率衰减器4用于加载一算法对输入的信号功率做衰减。其中所述算法为道尔夫-切比雪夫算法与泰勒算法及其组合的其中一者。在实施例二中将四个天线单元分为一组天线阵列,所述天线阵列中所述功率衰减器4加载道尔夫-切比雪夫算法或泰勒算法。因此,实施例二中的天线装置中道尔夫-切比雪夫算法与泰勒算法仅加载其中一种算法。
需要说明的是,道尔夫-切比雪夫算法中电流分布可以将一部分副瓣的能量转移到主瓣上,从而降低副瓣电平水平,获得最窄的主瓣宽度或者在给定的主瓣宽度时,获得最低的副瓣电平。与道尔夫-切比雪夫算法保持相同的副瓣电平不同的是,泰勒分布可以使得在主瓣附近的几个副瓣电平相同,而其余的副瓣电平呈现依次递减的趋势。泰勒分布通过波瓣零点的位置来调节副瓣电平,已知离主瓣较远的副瓣电平都会依次降低。对于靠近主瓣的副瓣,将其波瓣零点的位置向主瓣方向移动,就可以使相应的副瓣电平降低。
所述四个天线单元呈一直线排布,但不限于此,在其他实施例中四个天线单元可以呈曲线排布。
四个天线单元输入的信号幅值相同,但四个天线单元输出的信号幅值不一定相同。具体是根据四个天线单元在天线阵列中所排布的位置决定该天线单元输出的幅值。例如天线阵列呈直线排布时,其中处于中间位置的天线单元输出幅值大于两边天线单元的输出幅值。
所述辐射部1用于将接收信号传送至所述功率衰减器4或从所述功率衰减器4接收发射信号。
所述天线装置还包括:一移相器3。
所述移相器3与所述功率衰减器4电性连接,所述移相器3用于改变信号主瓣的相位。
当天线装置发射一信号时,所述信号从所述终端设备内部对应的电路传送至所述功分器80,所述功分器80将信号分成四路(与四个天线单元的数量相同)等幅信号。四路等幅信号分别通过所述功率衰减器4,所述功率衰减器4加载道尔夫-切比雪夫算法或泰勒算法,对输入的等幅信号功率做相应的衰减。将衰减后的信号经过移相器3,调整信号的发射相位。最后从天线单元的辐射部1发射出去。其中所述辐射部1与所述移相器3不直接连接,所述信号通过接地板20上的通孔2耦合至辐射部1。
当天线装置从所述终端设备外部接收一信号时,所述信号由多个辐射部1输入四个天线单元。四个辐射部1将接收的信号通过通孔2耦合至移相器3上,通过移相器3调整信号的接收相位。将调整相位后的信号通过功率衰减器4,所述功率衰减,4加载道尔夫-切比雪夫算法或泰勒算法,对接收的信号功率做相应的衰减。在将衰减后的多路信号发送至功分器80中,此时功分器80会将四路信号合并成一路信号。
本申请的优点在于,本申请通过在阵列天线的每一天线单元中增加一功率衰减器,所述功率衰减器用于加载道尔夫-切比雪夫算法和/或泰勒算法对输入的信号功率做衰减,能有效抑制阵列天线的副瓣增益,并且保持相同的主瓣增益和宽度。
如图4所示,为本申请实施例提供的终端设备,该终端设备可以是智能手机、平板电脑等设备。
天线装置310用于接收和发送电磁波,实现电磁波与电信号的相互转换,从而与通讯网络或者其他设备进行通讯。存储器320可用于存储软件程序以及模块,处理器380通过运行存储在存储器320内的软件程序以及模块,从而执行各种功能应用以及数据处理。存储器320可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器320可进一步包括相对于处理器380远程设置的存储器,这些远程存储器可以通过网络连接至终端设备300。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入单元330可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,输入单元330可包括触敏表面331以及其他输入设备332。触敏表面331,也称为触摸显示屏或者触控板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面331上或在触敏表面331附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面331可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器380,并能接收处理器380发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面331。除了触敏表面331,输入单元330还可以包括其他输入设备332。具体地,其他输入设备332可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元340可用于显示由用户输入的信息或提供给用户的信息以及终端设备300的各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示单元340可包括显示面板341,可选的,可以采用LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板341。进一步的,触敏表面331可覆盖显示面板341,当触敏表面331检测到在其上或附近的触摸操作后,传送给处理器380以确定触摸事件的类型,随后处理器380根据触摸事件的类型在显示面板341上提供相应的视觉输出。虽然在图4中,触敏表面331与显示面板341是作为两个独立的部件来实现输入和输出功能,但是在某些实施例中,可以将触敏表面331与显示面板341集成而实现输入和输出功能。
终端设备300还可包括至少一种传感器350,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板341的亮度,接近传感器可在终端设备300移动到耳边时,关闭显示面板341和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等; 至于终端设备300还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路360、扬声器361,传声器362可提供用户与终端设备300之间的音频接口。音频电路360可将接收到的音频数据转换后的电信号,传输到扬声器361,由扬声器361转换为声音信号输出;另一方面,传声器362将收集的声音信号转换为电信号,由音频电路360接收后转换为音频数据,再将音频数据输出处理器380处理后,经天线装置310以发送给比如另一终端,或者将音频数据输出至存储器320以便进一步处理。音频电路360还可能包括耳塞插孔,以提供外设耳机与终端设备300的通信。
处理器380是终端设备300的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器320内的软件程序和/或模块,以及调用存储在存储器320内的数据,执行终端设备300的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器380可包括一个或多个处理核心;在一些实施例中,处理器380可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器380中。
终端设备300还包括给各个部件供电的电源390(比如电池),在一些实施例中,电源可以通过电源管理系统与处理器380逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源390还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
尽管未示出,终端设备300还可以包括摄像头(如前置摄像头、后置摄像头)、蓝牙模块等,在此不再赘述。
具体实施时,以上各个模块可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个模块的具体实施可参见前面的方法实施例,在此不再赘述。
当本实施例的终端设备300采用上述实施例所述的天线装置310,其显示效果更好。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的天线装置及终端设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (13)

  1. 一种天线装置,其包括:
    一功分器;以及
    多个天线单元,与所述功分器电性连接,每一所述天线单元包括:
    一功率衰减器,与所述功分器电性连接,所述功率衰减器用于加载一算法对输入的信号功率做衰减;以及
    一辐射部,用于将接收信号传送至所述功率衰减器和/或从所述功率衰减器接收发射信号;
    每一所述天线单元还包括:一移相器,与所述功率衰减器电性连接;以及
    所述算法为道尔夫-切比雪夫算法与泰勒算法及其组合的其中一者。
  2. 根据权利要求1所述的天线装置,其中所述辐射部位于第一介质基板上。
  3. 根据权利要求1所述的天线装置,其中所述功率衰减器位于第二介质基板上。
  4. 一种天线装置,其包括:
    一功分器;以及
    多个天线单元,与所述功分器电性连接,每一所述天线单元包括:
    一功率衰减器,与所述功分器电性连接,所述功率衰减器用于加载一算法对输入的信号功率做衰减;以及
    一辐射部,用于将接收信号传送至所述功率衰减器和/或从所述功率衰减器接收发射信号。
  5. 根据权利要求4所述的天线装置,其中每一所述天线单元还包括:
    一移相器,与所述功率衰减器电性连接。
  6. 根据权利要求5所述的天线装置,其中所述辐射部位于第一介质基板上。
  7. 根据权利要求6所述的天线装置,其中所述功率衰减器位于第二介质基板上。
  8. 根据权利要求7所述的天线装置,其中所述移相器位于所述第二介质基板上。
  9. 根据权利要求6所述的天线装置,其中在所述第一介质基板与所述第二介质基板之间还设有一接地板,所述接地板上设有多个通孔,所述通孔的数量与天线单元的数量相同。
  10. 根据权利要求4所述的天线装置,其中所述多个天线单元包括:
    一第一天线单元、一第二天线单元、一第三天线单元及一第四天线单元;
    所述第一天线单元、所述第二天线单元、所述第三天线单元及所述第四天线单元呈一直线排布。
  11. 根据权利要求4所述的天线装置,其中所述算法为道尔夫-切比雪夫算法与泰勒算法及其组合的其中一者。
  12. 根据权利要求4所述的天线装置,其中每一所述天线单元输入的信号幅值相同。
  13. 一种终端设备,包括如权利要求4所述的天线装置。
PCT/CN2020/076749 2020-01-17 2020-02-26 天线装置及终端设备 WO2021142889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/758,970 US20230145234A1 (en) 2020-01-17 2020-02-26 Antenna apparatus and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010053567.0A CN111146579A (zh) 2020-01-17 2020-01-17 天线装置及终端设备
CN202010053567.0 2020-01-17

Publications (1)

Publication Number Publication Date
WO2021142889A1 true WO2021142889A1 (zh) 2021-07-22

Family

ID=70525824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076749 WO2021142889A1 (zh) 2020-01-17 2020-02-26 天线装置及终端设备

Country Status (3)

Country Link
US (1) US20230145234A1 (zh)
CN (1) CN111146579A (zh)
WO (1) WO2021142889A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019133195A1 (en) * 2017-12-29 2019-07-04 Commscope Technologies Llc Compact phased array millimeter wave communications systems suitable for fixed wireless access applications
CN110224214A (zh) * 2019-06-06 2019-09-10 天通凯美微电子有限公司 一种天线阵列和射频前端器件与芯片集成的电子设备
CN110380218A (zh) * 2019-05-17 2019-10-25 东南大学 一种圆极化平面基片集成磁电偶极子天线及其阵列
CN110611169A (zh) * 2019-09-17 2019-12-24 上海交通大学 基于周期性相位调制的相控阵天线系统及其使用方法
CN110661558A (zh) * 2018-06-29 2020-01-07 中兴通讯股份有限公司 一种毫米波收发信机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394359B (zh) * 2011-06-21 2014-09-03 中国兵器工业第二〇六研究所 一种波束对称的多层微带平板阵列天线
CN102646874B (zh) * 2012-04-20 2015-04-08 电子科技大学 一种基于单刀多掷开关的四维天线阵
CN105305018A (zh) * 2015-09-29 2016-02-03 天津工业大学 Rfid阅读器波束切换型阵列天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019133195A1 (en) * 2017-12-29 2019-07-04 Commscope Technologies Llc Compact phased array millimeter wave communications systems suitable for fixed wireless access applications
CN110661558A (zh) * 2018-06-29 2020-01-07 中兴通讯股份有限公司 一种毫米波收发信机
CN110380218A (zh) * 2019-05-17 2019-10-25 东南大学 一种圆极化平面基片集成磁电偶极子天线及其阵列
CN110224214A (zh) * 2019-06-06 2019-09-10 天通凯美微电子有限公司 一种天线阵列和射频前端器件与芯片集成的电子设备
CN110611169A (zh) * 2019-09-17 2019-12-24 上海交通大学 基于周期性相位调制的相控阵天线系统及其使用方法

Also Published As

Publication number Publication date
CN111146579A (zh) 2020-05-12
US20230145234A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US11075449B2 (en) Electronic device with antenna mechanism
US11527914B2 (en) Electronic device, wireless charging device, and wireless charging method
CN109150327B (zh) 一种天线检测方法、天线检测装置及移动终端
WO2021129750A1 (zh) 射频电路、电子设备及srs发送方法
CN108963445A (zh) 一种天线及终端设备
CN110190916B (zh) 一种功率检测电路及终端
WO2020238630A1 (zh) 移动终端
US10720979B1 (en) Wireless devices having spirally-distributed beam pointing angles
CN110289885A (zh) 一种天线调谐方法及终端
KR20190090441A (ko) 루프 타입 안테나 및 그것을 포함하는 전자 장치
WO2021128552A1 (zh) 一种 mimo 天线装置及移动终端
KR20200079834A (ko) 복수의 전기적 경로를 이용하여 급전을 받는 도전성 패치를 포함하는 안테나 구조체 및 상기 안테나 구조체를 포함하는 전자 장치
CN110166146A (zh) 一种功率检测电路及终端
WO2019129093A1 (zh) 一种移动终端天线及其切换方法、移动终端
WO2021174635A1 (zh) 一种显示面板及移动终端
US11038569B2 (en) Electronic device for sweeping antenna phase
JP6584034B2 (ja) 端末装置、通信方法およびプログラム
WO2021142889A1 (zh) 天线装置及终端设备
WO2021109248A1 (zh) 天线阻抗匹配电路、天线系统、印刷电路板和移动终端
US20220131257A1 (en) Antenna structure, terminal and control method
US20240006767A1 (en) Antenna apparatus and mobile terminal
WO2022052902A1 (zh) 电子设备及其控制方法、控制装置
US20240356211A1 (en) Antenna structure and electronic device
CN213151017U (zh) 天线结构及电子设备
US20230027038A1 (en) Pcb and terminal device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913785

Country of ref document: EP

Kind code of ref document: A1