WO2021142817A1 - Magnetic memory - Google Patents

Magnetic memory Download PDF

Info

Publication number
WO2021142817A1
WO2021142817A1 PCT/CN2020/072929 CN2020072929W WO2021142817A1 WO 2021142817 A1 WO2021142817 A1 WO 2021142817A1 CN 2020072929 W CN2020072929 W CN 2020072929W WO 2021142817 A1 WO2021142817 A1 WO 2021142817A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ferromagnetic layer
ferromagnetic
magnetic memory
layer structure
Prior art date
Application number
PCT/CN2020/072929
Other languages
French (fr)
Chinese (zh)
Inventor
赵巍胜
熊丹荣
彭守仲
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to PCT/CN2020/072929 priority Critical patent/WO2021142817A1/en
Publication of WO2021142817A1 publication Critical patent/WO2021142817A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00

Definitions

  • the present invention relates to the technical field of magnetic tunnel junctions, and in particular to a magnetic memory.
  • the basic storage unit of traditional magnetic memory is a magnetic tunnel junction (MTJ).
  • the core part is a sandwich structure formed by two ferromagnetic layers sandwiching a tunneling barrier layer.
  • One of the ferromagnetic layers has the same magnetization direction and is called the reference layer.
  • the other ferromagnetic layer is called the free layer.
  • the magnetic tunnel junction When its magnetization direction is parallel or antiparallel to the reference layer, the magnetic tunnel junction is in a low-resistance or high-resistance state, respectively.
  • the two resistance states can represent binary data "0" and "1" respectively, which is the basic principle of MRAM data storage.
  • the data writing operation of MRAM is realized by reversing the magnetization direction of the free layer in the MTJ.
  • SOT Spin-Orbit Torque
  • This data writing technology requires adding a heavy metal or topological insulator that can generate spin-orbit moment under the MTJ free layer, and the spin-orbit moment caused by the current flowing through the film is used to drive the magnetization inversion of the free layer.
  • the main purpose of the embodiments of the present invention is to provide a magnetic memory to increase the annealing temperature so as to be compatible with the CMOS post-heat treatment process.
  • an embodiment of the present invention provides a magnetic memory, including:
  • the first antiferromagnetic layer is used to provide an exchange bias field
  • the insertion layer is arranged on the antiferromagnetic layer and is used to block the diffusion of the material of the first antiferromagnetic layer during the annealing process;
  • Free ferromagnetic layer structure set on the insertion layer
  • the first barrier layer is set on the free ferromagnetic layer structure
  • the ferromagnetic layer structure With reference to the ferromagnetic layer structure, it is arranged on the first barrier layer and has a fixed magnetization direction;
  • the magnetization direction of the free ferromagnetic layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure.
  • it further includes:
  • Buffer layer; the first antiferromagnetic layer is disposed on the buffer layer.
  • it further includes:
  • the buffer layer is arranged on the substrate.
  • it further includes:
  • Artificial antiferromagnetic layer the artificial antiferromagnetic layer is set on the reference ferromagnetic layer structure.
  • it further includes:
  • Covering layer the covering layer is arranged on the artificial antiferromagnetic layer.
  • it further includes:
  • Protective layer the protective layer is arranged on the cover layer.
  • the free ferromagnetic layer structure includes: a first ferromagnetic layer
  • the reference ferromagnetic layer structure includes: a second ferromagnetic layer.
  • the free ferromagnetic layer structure includes: a third ferromagnetic layer
  • the reference ferromagnetic layer structure includes:
  • the fourth ferromagnetic layer is arranged on the first barrier layer
  • the first metal layer is located between the fourth ferromagnetic layer and the fifth ferromagnetic layer;
  • the fifth ferromagnetic layer is located between the first metal layer and the second barrier layer.
  • the free ferromagnetic layer structure includes:
  • the sixth ferromagnetic layer, the second metal layer and the seventh ferromagnetic layer are identical to each other.
  • the sixth ferromagnetic layer is arranged on the insertion layer
  • the second metal layer is located between the sixth ferromagnetic layer and the seventh ferromagnetic layer;
  • the reference ferromagnetic layer structure includes: an eighth ferromagnetic layer.
  • the free ferromagnetic layer structure includes:
  • the ninth ferromagnetic layer, the third barrier layer and the tenth ferromagnetic layer are disposed on the ninth ferromagnetic layer, the third barrier layer and the tenth ferromagnetic layer;
  • the ninth ferromagnetic layer is arranged on the insertion layer
  • the third barrier layer is located between the ninth ferromagnetic layer and the tenth ferromagnetic layer;
  • the reference ferromagnetic layer structure includes: the eleventh ferromagnetic layer.
  • the magnetic memory of the embodiment of the present invention includes: a first antiferromagnetic layer, used to provide an exchange bias field; an insertion layer, arranged on the antiferromagnetic layer, used to block the material of the first antiferromagnetic layer during the annealing process Diffusion; free ferromagnetic layer structure, set on the insertion layer; first barrier layer, set on the free ferromagnetic layer structure; refer to the ferromagnetic layer structure, set on the first barrier layer, with a fixed magnetization direction, The magnetization direction of the free ferromagnetic layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure.
  • the invention has the characteristics of high annealing temperature and can be compatible with the CMOS post heat treatment process.
  • Fig. 1 is a schematic diagram of a magnetic memory in the first embodiment of the present invention
  • Figure 2 is a schematic diagram of a magnetic memory in a second embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a magnetic memory in a third embodiment of the present invention.
  • Figure 4 is a schematic diagram of a magnetic memory in a fourth embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a magnetic memory in a fifth embodiment of the present invention.
  • an embodiment of the present invention provides a magnetic memory compatible with the CMOS post-heat treatment process.
  • Fig. 1 is a schematic diagram of a magnetic memory in the first embodiment of the present invention.
  • magnetic storage includes:
  • the first antiferromagnetic layer is used to provide an exchange bias field
  • the first antiferromagnetic layer is one or any combination of platinum manganese (PtMn), iridium manganese (IrMn), palladium manganese (PdMn) and iron manganese (FeMn), and the thickness may be 1 nm-10 nm.
  • the common element ratio of PtMn can be Pt 50 Mn 50 , Pt 20 Mn 80 , Pt 25 Mn 75 or Pt 75 Mn 25 and other materials; the common element ratio of IrMn is Ir 50 Mn 50 , Ir 20 Mn 80 or Ir 25 Mn 75 and other materials; the common element ratio of PdMn is Pd 50 Mn 50 , Pd 90 Mn 10 or Pd 75 Mn 25 ; the common element ratio of FeMn is Fe 50 Mn 50 or Fe 80 Mn 20 , among the above materials The number represents the percentage of the element.
  • the insertion layer is arranged on the antiferromagnetic layer and is used to block the diffusion of the material of the first antiferromagnetic layer during the annealing process;
  • the insertion layer can be one or any combination of tungsten (W), molybdenum (Mo), chromium (Cr), and iridium (Ir); the thickness of the insertion layer is 0.1 nm-3 nm.
  • Free ferromagnetic layer structure set on the insertion layer
  • the first barrier layer is set on the free ferromagnetic layer structure
  • the ferromagnetic layer structure With reference to the ferromagnetic layer structure, it is arranged on the first barrier layer and has a fixed magnetization direction;
  • the magnetization direction of the free ferromagnetic layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure.
  • Fig. 2 is a schematic diagram of a magnetic memory in the second embodiment of the present invention.
  • the free ferromagnetic layer structure may include: a first ferromagnetic layer; the reference ferromagnetic layer structure may include: a second ferromagnetic layer.
  • the thickness of the first ferromagnetic layer and the second ferromagnetic layer may be 0.5nm-2nm, and the material and thickness of the first ferromagnetic layer and the second ferromagnetic layer may be different.
  • Fig. 3 is a schematic diagram of a magnetic memory in a third embodiment of the present invention.
  • the free ferromagnetic layer structure may include:
  • the reference ferromagnetic layer structure may include:
  • the fourth ferromagnetic layer is arranged on the first barrier layer
  • the first metal layer is located between the fourth ferromagnetic layer and the fifth ferromagnetic layer;
  • the fifth ferromagnetic layer is located between the first metal layer and the second barrier layer.
  • the reference ferromagnetic layer structure in the third embodiment of the present invention can improve the magnetic anisotropy of the reference ferromagnetic layer structure.
  • Fig. 4 is a schematic diagram of a magnetic memory in a fourth embodiment of the present invention.
  • the free ferromagnetic layer structure may include:
  • the sixth ferromagnetic layer, the second metal layer and the seventh ferromagnetic layer are identical to each other.
  • the sixth ferromagnetic layer is arranged on the insertion layer
  • the second metal layer is located between the sixth ferromagnetic layer and the seventh ferromagnetic layer;
  • the reference ferromagnetic layer structure may include: an eighth ferromagnetic layer.
  • the free ferromagnetic layer structure in the fourth embodiment of the present invention can improve the magnetic anisotropy of the free ferromagnetic layer structure, while further preventing the material of the first antiferromagnetic layer from diffusing to the free ferromagnetic layer structure and the first barrier layer The interface, thereby further increasing the annealing temperature.
  • Fig. 5 is a schematic diagram of a magnetic memory in a fifth embodiment of the present invention.
  • the free ferromagnetic layer structure may include:
  • the ninth ferromagnetic layer, the third barrier layer and the tenth ferromagnetic layer are disposed on the ninth ferromagnetic layer, the third barrier layer and the tenth ferromagnetic layer;
  • the ninth ferromagnetic layer is arranged on the insertion layer
  • the third barrier layer is located between the ninth ferromagnetic layer and the tenth ferromagnetic layer;
  • the reference ferromagnetic layer structure may include: an eleventh ferromagnetic layer.
  • the free ferromagnetic layer structure in the fifth embodiment of the present invention can improve the magnetic anisotropy of the free ferromagnetic layer structure, and at the same time further prevent the material of the first antiferromagnetic layer from diffusing to the free ferromagnetic layer structure and the first barrier layer The interface, thereby further increasing the annealing temperature.
  • the first ferromagnetic layer, the third ferromagnetic layer, the sixth ferromagnetic layer, the seventh ferromagnetic layer, the ninth ferromagnetic layer and the tenth ferromagnetic layer may be cobalt iron boron (CoFeB), iron boron (FeB ), one or any combination of cobalt iron (CoFe), iron (Fe) and Heusler alloy (Heusler Alloy).
  • CoFeB cobalt iron boron
  • FeB iron boron
  • Heusler alloy Heusler Alloy
  • the second ferromagnetic layer, the fourth ferromagnetic layer, the fifth ferromagnetic layer, the eighth ferromagnetic layer, and the eleventh ferromagnetic layer can be cobalt iron boron (CoFeB), iron boron (FeB), cobalt iron (CoFe) One or any combination of iron (Fe) and Heusler alloy (Heusler Alloy).
  • the common element ratio of cobalt-iron-boron can be Co 20 Fe 60 B 20 , Co 40 Fe 40 B 20 or Co 60 Fe 20 B 20 ; the common element ratio of iron-boron can be Fe 80 B 20 ; cobalt-iron
  • the ratio of commonly used elements can be materials such as Co 50 Fe 50 , Co 20 Fe 80 or Co 80 Fe 20 ; the Hesler alloy can be materials such as cobalt iron aluminum (Co 2 FeAl) or cobalt manganese silicon (Co 2 MnSi); The numbers in the above materials represent the percentage of elements.
  • the first barrier layer, the second barrier layer, and the third barrier layer refer to thin film layers formed of insulator materials such as metal oxides, which can be magnesium oxide, aluminum oxide, magnesium aluminum oxide, hafnium oxide, and One or any combination of tantalum oxides, such as magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), or magnesium meta aluminate (MgAl 2 O 4 ).
  • the thickness of the first barrier layer, the second barrier layer, and the third barrier layer may be 0.2 nm-1.5 nm.
  • the first metal layer and the second metal layer may be tungsten (W), molybdenum (Mo), chromium (Cr), iridium (Ir), tantalum (Ta), ruthenium (Ru), niobium (Nb), platinum (Pt)
  • W molybdenum
  • Cr chromium
  • Ir iridium
  • Ta tantalum
  • Ru ruthenium
  • Nb niobium
  • platinum platinum
  • the thickness of the first metal layer and the second metal layer can be 0.1nm-3nm.
  • it further includes: a buffer layer; and the first antiferromagnetic layer is disposed on the buffer layer.
  • the buffer layer may be a metal material or an alloy material, such as one or any combination of tantalum (Ta), iridium (Ir), hafnium (Hf), bismuth (Bi) and molybdenum (Mo), and the thickness may be 0.2nm -200nm.
  • it further includes: a substrate; the buffer layer is disposed on the substrate.
  • the substrate may be a material with stable chemical properties and a smooth surface, such as silicon (Si) or glass.
  • it further includes: an artificial antiferromagnetic layer; the artificial antiferromagnetic layer is arranged on the reference ferromagnetic layer structure.
  • the artificial antiferromagnetic layer is used to enhance the magnetic anisotropy and magnetization direction of the reference ferromagnetic layer structure.
  • the materials that make up the artificial antiferromagnetic layer are ruthenium (Ru) layer, multiple first cobalt nickel (Co/Ni) layers, ruthenium (Ru) layer and multiple second cobalt nickel (Co/Ni) layers from bottom to top. Floor.
  • the number of the first cobalt-nickel (Co/Ni) layer is different from the number of the second cobalt-nickel (Co/Ni) layer; the overall appearance of the first cobalt-nickel layer is the first magnetization direction, and the overall appearance of the second cobalt-nickel layer is The second magnetization direction, and the first magnetization direction is opposite to the second magnetization direction.
  • it further includes: a cover layer; the cover layer is arranged on the artificial antiferromagnetic layer.
  • the covering layer may be a metal material or an alloy material, such as one or any combination of tantalum (Ta), iridium (Ir), hafnium (Hf), bismuth (Bi), tungsten (W) and molybdenum (Mo),
  • the thickness can be 0.2nm-200nm.
  • it further includes: a protective layer; the protective layer is disposed on the cover layer.
  • the protective layer may be a metallic material or a non-metallic material.
  • the protective layer may be one or any combination of tantalum (Ta), ruthenium (Ru) and silicon dioxide (SiO 2 ), and the thickness may be 0.5 nm- 1000nm.
  • the magnetic memory When preparing the magnetic memory of the embodiment of the present invention, traditional magnetron sputtering, molecular beam epitaxy, or atomic layer deposition can be used to grow each layer of material on a thermally oxidized substrate or other multilayer film in the order from bottom to top. Then, the magnetic memory is manufactured through processing techniques such as photolithography and etching, and the cross-sectional area of each film layer is basically the same, and the cross-sectional shape is generally one of a circle, an ellipse, a square, or a rectangle.
  • the material of the buffer layer is tantalum with a thickness of 2nm; the material of the cover layer is tungsten with a thickness of 3nm; the material of the antiferromagnetic layer is an iridium-manganese alloy with a thickness of 5nm; the material of the insertion layer is tungsten with a thickness of 0.5nm;
  • the material of a ferromagnetic layer is Co 20 Fe 60 B 20 with a thickness of 1.1 nm;
  • the material of the first barrier layer is magnesium oxide with a thickness of 1 nm;
  • the material of the second ferromagnetic layer is Co 20 Fe 60 B 20 with a thickness It is 1nm;
  • the material of the protective layer is silicon dioxide, and the thickness is 5nm.
  • the magnetic memory of the present invention has a high annealing temperature.
  • the interface between tungsten and cobalt-iron-boron has strong perpendicular magnetic anisotropy
  • the magnetic memory of the present invention has strong perpendicular magnetic anisotropy and thermal stability.
  • the present invention can still maintain high thermal stability, and therefore can reduce the size of the device and increase the magnetic storage density.
  • the magnetic memory of the present invention has a higher charge flow-spin current conversion efficiency, a smaller critical switching current, and lower power consumption. Because the materials of the insertion layer and the cover layer in the present invention are both tungsten, and the materials of the two ferromagnetic layers are both cobalt-iron-boron, a symmetrical tungsten/cobalt-iron-boron/magnesium oxide/cobalt-iron-boron/ The tungsten structure helps to obtain a strong tunneling magnetoresistance; at the same time, the tungsten/cobalt-iron-boron/magnesium oxide/cobalt-iron-boron/tungsten structure has a strong resonance tunneling effect, so that a strong tunneling can be obtained Magnetoresistance helps to improve the reliability of data reading of magnetic memory. Finally, the insertion of tungsten at the interface between the iridium-manganese alloy and the cobalt-iron-boron may enhance
  • the present invention has the characteristic of high annealing temperature and can be compatible with the CMOS post-heat treatment process. If the material of the insertion layer is selected as Mo, in addition to the advantage of high annealing temperature, the present invention also has the characteristics of strong perpendicular magnetic anisotropy, which can improve thermal stability and ensure the reliability of data reading; if further formation of related barriers With the layer symmetrical Mo/CoFeB/MgO/CoFeB/Mo structure, the present invention also has the characteristic of high tunneling magnetoresistance, which can improve the reliability and stability of data reading.
  • the magnetic memory of the embodiment of the present invention includes: a first antiferromagnetic layer for providing an exchange bias field; an insertion layer, which is provided on the antiferromagnetic layer, for blocking the first antiferromagnetic layer during the annealing process Diffusion of the material; free ferromagnetic layer structure, set on the insertion layer; first barrier layer, set on the free ferromagnetic layer structure; refer to the ferromagnetic layer structure, set on the first barrier layer, free ferromagnetic
  • the magnetization direction of the layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure.
  • the invention has the characteristics of high annealing temperature and can be compatible with the CMOS post heat treatment process.
  • the invention also has the characteristics of strong perpendicular magnetic anisotropy, small critical switching current, and high tunneling magnetoresistance rate, which can ensure the reliability and stability of data storage and reading, reduce power consumption, and realize deterministic magnetization switching.

Abstract

Provided in the present invention is a magnetic memory, comprising: a first anti-ferromagnetic layer used for providing an exchange bias field; an insertion layer arranged on the anti-ferromagnetic layer and used for blocking diffusion of the material of the first anti-ferromagnetic layer during an annealing process; a free ferromagnetic layer structure arranged on the insertion layer; a first barrier layer arranged on the free ferromagnetic layer structure; and a reference ferromagnetic layer structure arranged on the first barrier layer and having a fixed magnetisation direction; the magnetisation direction of the free ferromagnetic layer structure is parallel or anti-parallel to the magnetisation direction of the reference ferromagnetic layer structure. The present invention has a high annealing temperature, and is compatible with CMOS post thermal treatment processes.

Description

磁存储器Magnetic storage 技术领域Technical field
本发明涉及磁隧道结技术领域,具体地,涉及一种磁存储器。The present invention relates to the technical field of magnetic tunnel junctions, and in particular to a magnetic memory.
背景技术Background technique
传统磁存储器(Magnetic Random Access Memory,MRAM)的基本存储单元为磁隧道结(Magnetic Tunnel Junction,MTJ)。其核心部分是由两个铁磁层夹着一个隧穿势垒层而形成的三明治结构。其中一个铁磁层磁化方向不变,被称为参考层。另一个铁磁层被称为自由层,它的磁化方向与参考层平行或反平行时,磁隧道结分别处于低阻或高阻态。两个阻态可分别代表二进制数据“0”和“1”,这是MRAM数据存储的基本原理。The basic storage unit of traditional magnetic memory (Magnetic Random Access Memory, MRAM) is a magnetic tunnel junction (MTJ). The core part is a sandwich structure formed by two ferromagnetic layers sandwiching a tunneling barrier layer. One of the ferromagnetic layers has the same magnetization direction and is called the reference layer. The other ferromagnetic layer is called the free layer. When its magnetization direction is parallel or antiparallel to the reference layer, the magnetic tunnel junction is in a low-resistance or high-resistance state, respectively. The two resistance states can represent binary data "0" and "1" respectively, which is the basic principle of MRAM data storage.
MRAM的数据写入操作是通过翻转MTJ中自由层的磁化方向来实现。其中,利用自旋轨道矩(Spin-Orbit Torque,SOT)能实现快速且可靠的磁化翻转。这种数据写入技术要求在MTJ自由层下方增加一条能产生自旋轨道矩的重金属或拓扑绝缘体等材料,利用流经这一薄膜的电流引发的自旋轨道矩来驱动自由层的磁化翻转。然而,对于具有垂直磁各向异性(Perpendicular Magnetic Anisotropy,PMA)的磁隧道结来说,采用自旋轨道矩实现数据写入时通常需要同时施加一个面内方向的外加磁场来决定自由层的磁化翻转极性,从而实现确定性磁化翻转,但这极大地增加了电路复杂度,同时降低了铁磁层的稳定性,这成为了限制自旋轨道矩数据写入方法实际应用的最大障碍。The data writing operation of MRAM is realized by reversing the magnetization direction of the free layer in the MTJ. Among them, the use of Spin-Orbit Torque (SOT) can achieve fast and reliable magnetization reversal. This data writing technology requires adding a heavy metal or topological insulator that can generate spin-orbit moment under the MTJ free layer, and the spin-orbit moment caused by the current flowing through the film is used to drive the magnetization inversion of the free layer. However, for magnetic tunnel junctions with perpendicular magnetic anisotropy (Perpendicular Magnetic Anisotropy, PMA), it is usually necessary to apply an external magnetic field in the in-plane direction at the same time to determine the magnetization of the free layer when using the spin-orbit moment to realize data writing. Reversing the polarity to achieve deterministic magnetization reversal, but this greatly increases the circuit complexity and at the same time reduces the stability of the ferromagnetic layer, which becomes the biggest obstacle to the practical application of the method for limiting the spin-orbit moment data writing.
2016年,有研究人员发现利用反铁磁/铁磁结构能够产生一个面内方向的交换偏置场,该交换偏置场能够代替外磁场,从而能实现基于自旋轨道矩的无需外磁场的确定性磁化翻转。然而该结构的一个明显的缺点是退火温度低,无法兼容CMOS后期热处理工艺。In 2016, some researchers discovered that the use of antiferromagnetic/ferromagnetic structures can generate an in-plane exchange bias field, which can replace an external magnetic field, thereby realizing a spin-orbital moment-based exchange bias field that does not require an external magnetic field. Deterministic magnetization flip. However, an obvious disadvantage of this structure is that the annealing temperature is low and cannot be compatible with the CMOS post heat treatment process.
发明内容Summary of the invention
本发明实施例的主要目的在于提供一种磁存储器,以提高退火温度从而兼容CMOS后期热处理工艺。The main purpose of the embodiments of the present invention is to provide a magnetic memory to increase the annealing temperature so as to be compatible with the CMOS post-heat treatment process.
为了实现上述目的,本发明实施例提供一种磁存储器,包括:In order to achieve the foregoing objective, an embodiment of the present invention provides a magnetic memory, including:
第一反铁磁层,用于提供交换偏置场;The first antiferromagnetic layer is used to provide an exchange bias field;
插入层,设置在反铁磁层上,用于阻挡退火过程中第一反铁磁层材料的扩散;The insertion layer is arranged on the antiferromagnetic layer and is used to block the diffusion of the material of the first antiferromagnetic layer during the annealing process;
自由铁磁层结构,设置在插入层上;Free ferromagnetic layer structure, set on the insertion layer;
第一势垒层,设置在自由铁磁层结构上;The first barrier layer is set on the free ferromagnetic layer structure;
参考铁磁层结构,设置在第一势垒层上,具有固定的磁化方向;With reference to the ferromagnetic layer structure, it is arranged on the first barrier layer and has a fixed magnetization direction;
其中,自由铁磁层结构的磁化方向与参考铁磁层结构的磁化方向平行或反平行。Wherein, the magnetization direction of the free ferromagnetic layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure.
在其中一种实施例中,还包括:In one of the embodiments, it further includes:
缓冲层;第一反铁磁层设置在缓冲层上。Buffer layer; the first antiferromagnetic layer is disposed on the buffer layer.
在其中一种实施例中,还包括:In one of the embodiments, it further includes:
基底;缓冲层设置在基底上。Substrate; the buffer layer is arranged on the substrate.
在其中一种实施例中,还包括:In one of the embodiments, it further includes:
人造反铁磁层;人造反铁磁层设置在参考铁磁层结构上。Artificial antiferromagnetic layer; the artificial antiferromagnetic layer is set on the reference ferromagnetic layer structure.
在其中一种实施例中,还包括:In one of the embodiments, it further includes:
覆盖层;覆盖层设置在人造反铁磁层上。Covering layer; the covering layer is arranged on the artificial antiferromagnetic layer.
在其中一种实施例中,还包括:In one of the embodiments, it further includes:
保护层;保护层设置在覆盖层上。Protective layer; the protective layer is arranged on the cover layer.
在其中一种实施例中,自由铁磁层结构包括:第一铁磁层;In one of the embodiments, the free ferromagnetic layer structure includes: a first ferromagnetic layer;
参考铁磁层结构包括:第二铁磁层。The reference ferromagnetic layer structure includes: a second ferromagnetic layer.
在其中一种实施例中,自由铁磁层结构包括:第三铁磁层;In one of the embodiments, the free ferromagnetic layer structure includes: a third ferromagnetic layer;
参考铁磁层结构包括:The reference ferromagnetic layer structure includes:
第四铁磁层、第一金属层、第五铁磁层和第二势垒层;A fourth ferromagnetic layer, a first metal layer, a fifth ferromagnetic layer, and a second barrier layer;
第四铁磁层设置在第一势垒层上;The fourth ferromagnetic layer is arranged on the first barrier layer;
第一金属层位于第四铁磁层与第五铁磁层之间;The first metal layer is located between the fourth ferromagnetic layer and the fifth ferromagnetic layer;
第五铁磁层位于第一金属层和第二势垒层之间。The fifth ferromagnetic layer is located between the first metal layer and the second barrier layer.
在其中一种实施例中,自由铁磁层结构包括:In one of the embodiments, the free ferromagnetic layer structure includes:
第六铁磁层、第二金属层和第七铁磁层;The sixth ferromagnetic layer, the second metal layer and the seventh ferromagnetic layer;
第六铁磁层设置在插入层上;The sixth ferromagnetic layer is arranged on the insertion layer;
第二金属层位于第六铁磁层和第七铁磁层之间;The second metal layer is located between the sixth ferromagnetic layer and the seventh ferromagnetic layer;
参考铁磁层结构包括:第八铁磁层。The reference ferromagnetic layer structure includes: an eighth ferromagnetic layer.
在其中一种实施例中,自由铁磁层结构包括:In one of the embodiments, the free ferromagnetic layer structure includes:
第九铁磁层、第三势垒层和第十铁磁层;The ninth ferromagnetic layer, the third barrier layer and the tenth ferromagnetic layer;
第九铁磁层设置在插入层上;The ninth ferromagnetic layer is arranged on the insertion layer;
第三势垒层位于第九铁磁层和第十铁磁层之间;The third barrier layer is located between the ninth ferromagnetic layer and the tenth ferromagnetic layer;
参考铁磁层结构包括:第十一铁磁层。The reference ferromagnetic layer structure includes: the eleventh ferromagnetic layer.
本发明实施例的磁存储器包括:第一反铁磁层,用于提供交换偏置场;插入层,设置在反铁磁层上,用于阻挡退火过程中第一反铁磁层的材料的扩散;自由铁磁层结构,设置在插入层上;第一势垒层,设置在自由铁磁层结构上;参考铁磁层结构,设置在第一势垒层上,具有固定的磁化方向,自由铁磁层结构的磁化方向与参考铁磁层结构的磁化方向平行或反平行。本发明具有退火温度高的特点,可以兼容CMOS后期热处理工艺。The magnetic memory of the embodiment of the present invention includes: a first antiferromagnetic layer, used to provide an exchange bias field; an insertion layer, arranged on the antiferromagnetic layer, used to block the material of the first antiferromagnetic layer during the annealing process Diffusion; free ferromagnetic layer structure, set on the insertion layer; first barrier layer, set on the free ferromagnetic layer structure; refer to the ferromagnetic layer structure, set on the first barrier layer, with a fixed magnetization direction, The magnetization direction of the free ferromagnetic layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure. The invention has the characteristics of high annealing temperature and can be compatible with the CMOS post heat treatment process.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the accompanying drawings needed in the description of the embodiments. Obviously, the accompanying drawings in the following description are only of the present invention. For some embodiments, those of ordinary skill in the art can obtain other drawings based on these drawings without creative work.
图1是本发明第一实施例中磁存储器的示意图;Fig. 1 is a schematic diagram of a magnetic memory in the first embodiment of the present invention;
图2是本发明第二实施例中磁存储器的示意图;Figure 2 is a schematic diagram of a magnetic memory in a second embodiment of the present invention;
图3是本发明第三实施例中磁存储器的示意图;Fig. 3 is a schematic diagram of a magnetic memory in a third embodiment of the present invention;
图4是本发明第四实施例中磁存储器的示意图;Figure 4 is a schematic diagram of a magnetic memory in a fourth embodiment of the present invention;
图5是本发明第五实施例中磁存储器的示意图。Fig. 5 is a schematic diagram of a magnetic memory in a fifth embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
鉴于现有技术存在退火温度低而无法兼容CMOS后期热处理工艺的问题,本发明实施例提供一种磁存储器以兼容CMOS后期热处理工艺。以下结合附图对本发明进行详细说明。In view of the problem that the prior art has a low annealing temperature and cannot be compatible with the CMOS post-heat treatment process, an embodiment of the present invention provides a magnetic memory compatible with the CMOS post-heat treatment process. The present invention will be described in detail below with reference to the accompanying drawings.
图1是本发明第一实施例中磁存储器的示意图。如图1所示,磁存储器包括:Fig. 1 is a schematic diagram of a magnetic memory in the first embodiment of the present invention. As shown in Figure 1, magnetic storage includes:
第一反铁磁层,用于提供交换偏置场;The first antiferromagnetic layer is used to provide an exchange bias field;
其中,第一反铁磁层为铂锰(PtMn)、铱锰(IrMn)、钯锰(PdMn)和铁锰(FeMn)的其中之一或任意组合,厚度可以为1nm-10nm。PtMn的常用元素配比可以为Pt 50Mn 50、Pt 20Mn 80、Pt 25Mn 75或Pt 75Mn 25等材料;IrMn的常用元素配比是Ir 50Mn 50、Ir 20Mn 80或Ir 25Mn 75等材料;PdMn的常用元素配比是Pd 50Mn 50、Pd 90Mn 10或Pd 75Mn 25等材料;FeMn的常用元素配比是Fe 50Mn 50或Fe 80Mn 20等材料,上述材料中的数字代表元素的百分比。 Wherein, the first antiferromagnetic layer is one or any combination of platinum manganese (PtMn), iridium manganese (IrMn), palladium manganese (PdMn) and iron manganese (FeMn), and the thickness may be 1 nm-10 nm. The common element ratio of PtMn can be Pt 50 Mn 50 , Pt 20 Mn 80 , Pt 25 Mn 75 or Pt 75 Mn 25 and other materials; the common element ratio of IrMn is Ir 50 Mn 50 , Ir 20 Mn 80 or Ir 25 Mn 75 and other materials; the common element ratio of PdMn is Pd 50 Mn 50 , Pd 90 Mn 10 or Pd 75 Mn 25 ; the common element ratio of FeMn is Fe 50 Mn 50 or Fe 80 Mn 20 , among the above materials The number represents the percentage of the element.
插入层,设置在反铁磁层上,用于阻挡退火过程中第一反铁磁层的材料的扩散;The insertion layer is arranged on the antiferromagnetic layer and is used to block the diffusion of the material of the first antiferromagnetic layer during the annealing process;
其中,插入层可以为钨(W)、钼(Mo)、铬(Cr)、铱(Ir)的其中之一或任意组合;插入层的厚度为0.1nm-3nm。Wherein, the insertion layer can be one or any combination of tungsten (W), molybdenum (Mo), chromium (Cr), and iridium (Ir); the thickness of the insertion layer is 0.1 nm-3 nm.
自由铁磁层结构,设置在插入层上;Free ferromagnetic layer structure, set on the insertion layer;
第一势垒层,设置在自由铁磁层结构上;The first barrier layer is set on the free ferromagnetic layer structure;
参考铁磁层结构,设置在第一势垒层上,具有固定的磁化方向;With reference to the ferromagnetic layer structure, it is arranged on the first barrier layer and has a fixed magnetization direction;
其中,自由铁磁层结构的磁化方向与参考铁磁层结构的磁化方向平行或反平行。Wherein, the magnetization direction of the free ferromagnetic layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure.
图2是本发明第二实施例中磁存储器的示意图。如图2所示,自由铁磁层结构可以包括:第一铁磁层;参考铁磁层结构可以包括:第二铁磁层。Fig. 2 is a schematic diagram of a magnetic memory in the second embodiment of the present invention. As shown in FIG. 2, the free ferromagnetic layer structure may include: a first ferromagnetic layer; the reference ferromagnetic layer structure may include: a second ferromagnetic layer.
第一铁磁层和第二铁磁层的厚度可以为0.5nm-2nm,且第一铁磁层和第二铁磁层的材料和厚度可以不同。The thickness of the first ferromagnetic layer and the second ferromagnetic layer may be 0.5nm-2nm, and the material and thickness of the first ferromagnetic layer and the second ferromagnetic layer may be different.
图3是本发明第三实施例中磁存储器的示意图。如图3所示,自由铁磁层结构可以包括:Fig. 3 is a schematic diagram of a magnetic memory in a third embodiment of the present invention. As shown in Figure 3, the free ferromagnetic layer structure may include:
第三铁磁层;Third ferromagnetic layer;
参考铁磁层结构可以包括:The reference ferromagnetic layer structure may include:
第四铁磁层、第一金属层、第五铁磁层和第二势垒层;A fourth ferromagnetic layer, a first metal layer, a fifth ferromagnetic layer, and a second barrier layer;
第四铁磁层设置在第一势垒层上;The fourth ferromagnetic layer is arranged on the first barrier layer;
第一金属层位于第四铁磁层与第五铁磁层之间;The first metal layer is located between the fourth ferromagnetic layer and the fifth ferromagnetic layer;
第五铁磁层位于第一金属层和第二势垒层之间。The fifth ferromagnetic layer is located between the first metal layer and the second barrier layer.
本发明第三实施例中的参考铁磁层结构可以提高参考铁磁层结构的磁各向异性。The reference ferromagnetic layer structure in the third embodiment of the present invention can improve the magnetic anisotropy of the reference ferromagnetic layer structure.
图4是本发明第四实施例中磁存储器的示意图。如图4所示,自由铁磁层结构可以包括:Fig. 4 is a schematic diagram of a magnetic memory in a fourth embodiment of the present invention. As shown in Figure 4, the free ferromagnetic layer structure may include:
第六铁磁层、第二金属层和第七铁磁层;The sixth ferromagnetic layer, the second metal layer and the seventh ferromagnetic layer;
第六铁磁层设置在插入层上;The sixth ferromagnetic layer is arranged on the insertion layer;
第二金属层位于第六铁磁层和第七铁磁层之间;The second metal layer is located between the sixth ferromagnetic layer and the seventh ferromagnetic layer;
参考铁磁层结构可以包括:第八铁磁层。The reference ferromagnetic layer structure may include: an eighth ferromagnetic layer.
本发明第四实施例中的自由铁磁层结构可以提高自由铁磁层结构的磁各向异性,同时进一步阻止第一反铁磁层的材料扩散到自由铁磁层结构与第一势垒层的界面,从而进一步提高退火温度。The free ferromagnetic layer structure in the fourth embodiment of the present invention can improve the magnetic anisotropy of the free ferromagnetic layer structure, while further preventing the material of the first antiferromagnetic layer from diffusing to the free ferromagnetic layer structure and the first barrier layer The interface, thereby further increasing the annealing temperature.
图5是本发明第五实施例中磁存储器的示意图。如图5所示,自由铁磁层结构可以包括:Fig. 5 is a schematic diagram of a magnetic memory in a fifth embodiment of the present invention. As shown in Figure 5, the free ferromagnetic layer structure may include:
第九铁磁层、第三势垒层和第十铁磁层;The ninth ferromagnetic layer, the third barrier layer and the tenth ferromagnetic layer;
第九铁磁层设置在插入层上;The ninth ferromagnetic layer is arranged on the insertion layer;
第三势垒层位于第九铁磁层和第十铁磁层之间;The third barrier layer is located between the ninth ferromagnetic layer and the tenth ferromagnetic layer;
参考铁磁层结构可以包括:第十一铁磁层。The reference ferromagnetic layer structure may include: an eleventh ferromagnetic layer.
本发明第五实施例中的自由铁磁层结构可以提高自由铁磁层结构的磁各向异性,同时进一步阻止第一反铁磁层的材料扩散到自由铁磁层结构与第一势垒层的界面,从而进一步提高退火温度。The free ferromagnetic layer structure in the fifth embodiment of the present invention can improve the magnetic anisotropy of the free ferromagnetic layer structure, and at the same time further prevent the material of the first antiferromagnetic layer from diffusing to the free ferromagnetic layer structure and the first barrier layer The interface, thereby further increasing the annealing temperature.
其中,第一铁磁层、第三铁磁层、第六铁磁层、第七铁磁层、第九铁磁层和第十铁磁层可以为钴铁硼(CoFeB)、铁硼(FeB)、钴铁(CoFe)、铁(Fe)和赫斯勒合金(Heusler Alloy)的其中之一或任意组合。Among them, the first ferromagnetic layer, the third ferromagnetic layer, the sixth ferromagnetic layer, the seventh ferromagnetic layer, the ninth ferromagnetic layer and the tenth ferromagnetic layer may be cobalt iron boron (CoFeB), iron boron (FeB ), one or any combination of cobalt iron (CoFe), iron (Fe) and Heusler alloy (Heusler Alloy).
第二铁磁层、第四铁磁层、第五铁磁层、第八铁磁层、第十一铁磁层可以为钴铁硼(CoFeB)、铁硼(FeB)、钴铁(CoFe)、铁(Fe)和赫斯勒合金(Heusler Alloy)的其中之一或任意组合。The second ferromagnetic layer, the fourth ferromagnetic layer, the fifth ferromagnetic layer, the eighth ferromagnetic layer, and the eleventh ferromagnetic layer can be cobalt iron boron (CoFeB), iron boron (FeB), cobalt iron (CoFe) One or any combination of iron (Fe) and Heusler alloy (Heusler Alloy).
钴铁硼的常用元素配比可以为Co 20Fe 60B 20、Co 40Fe 40B 20或Co 60Fe 20B 20等材料;铁硼的常用元素配比可以为Fe 80B 20;钴铁的常用元素配比可以为Co 50Fe 50、Co 20Fe 80或Co 80Fe 20等材料;赫斯勒合金可以为是钴铁铝(Co 2FeAl)或钴锰硅(Co 2MnSi)等材料;上述材料中的数字代表元素的百分比。 The common element ratio of cobalt-iron-boron can be Co 20 Fe 60 B 20 , Co 40 Fe 40 B 20 or Co 60 Fe 20 B 20 ; the common element ratio of iron-boron can be Fe 80 B 20 ; cobalt-iron The ratio of commonly used elements can be materials such as Co 50 Fe 50 , Co 20 Fe 80 or Co 80 Fe 20 ; the Hesler alloy can be materials such as cobalt iron aluminum (Co 2 FeAl) or cobalt manganese silicon (Co 2 MnSi); The numbers in the above materials represent the percentage of elements.
第一势垒层、第二势垒层和第三势垒层是指金属氧化物等绝缘体材料形成的薄膜层,其可以为镁氧化物、铝氧化物、镁铝氧化物、铪氧化物和钽氧化物的其中之一或任意组合,例如氧化镁(MgO)、三氧化二铝(Al 2O 3)或偏铝酸镁(MgAl 2O 4)等。第一势垒层、第二势垒层和第三势垒层的厚度可以为0.2nm-1.5nm。 The first barrier layer, the second barrier layer, and the third barrier layer refer to thin film layers formed of insulator materials such as metal oxides, which can be magnesium oxide, aluminum oxide, magnesium aluminum oxide, hafnium oxide, and One or any combination of tantalum oxides, such as magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), or magnesium meta aluminate (MgAl 2 O 4 ). The thickness of the first barrier layer, the second barrier layer, and the third barrier layer may be 0.2 nm-1.5 nm.
第一金属层和第二金属层可以为钨(W)、钼(Mo)、铬(Cr)、铱(Ir)、钽(Ta)、钌(Ru)、铌(Nb)、铂(Pt)、钯(Pd)、银(Ag)的其中之一或任意组合;第一金属层和第二金属层的厚度可以为0.1nm-3nm。The first metal layer and the second metal layer may be tungsten (W), molybdenum (Mo), chromium (Cr), iridium (Ir), tantalum (Ta), ruthenium (Ru), niobium (Nb), platinum (Pt) One or any combination of palladium (Pd) and silver (Ag); the thickness of the first metal layer and the second metal layer can be 0.1nm-3nm.
在其中一种实施例中,还包括:缓冲层;第一反铁磁层设置在缓冲层上。In one of the embodiments, it further includes: a buffer layer; and the first antiferromagnetic layer is disposed on the buffer layer.
其中,缓冲层可以为金属材料或者合金材料,例如钽(Ta)、铱(Ir)、铪(Hf)、铋(Bi)和钼(Mo)的其中之一或任意组合,厚度可以为0.2nm-200nm。Wherein, the buffer layer may be a metal material or an alloy material, such as one or any combination of tantalum (Ta), iridium (Ir), hafnium (Hf), bismuth (Bi) and molybdenum (Mo), and the thickness may be 0.2nm -200nm.
在其中一种实施例中,还包括:基底;缓冲层设置在基底上。In one of the embodiments, it further includes: a substrate; the buffer layer is disposed on the substrate.
其中,基底可以为硅(Si)或玻璃等化学性能稳定且表面平整的材料。Among them, the substrate may be a material with stable chemical properties and a smooth surface, such as silicon (Si) or glass.
在其中一种实施例中,还包括:人造反铁磁层;人造反铁磁层设置在参考铁磁层结构上。In one of the embodiments, it further includes: an artificial antiferromagnetic layer; the artificial antiferromagnetic layer is arranged on the reference ferromagnetic layer structure.
其中,人造反铁磁层用于增强参考铁磁层结构的磁各向异性以及磁化方向。组成人造反铁磁层的材料由下到上依次为钌(Ru)层、多个第一钴镍(Co/Ni)层、钌(Ru)层和多个第二钴镍(Co/Ni)层。第一钴镍(Co/Ni)层的数量与第二钴镍(Co/Ni)层的数量不同;第一钴镍层的整体表现为第一磁化方向,第二钴镍层的整体表现为第二磁化方向,且第一磁化方向与第二磁化方向相反。Among them, the artificial antiferromagnetic layer is used to enhance the magnetic anisotropy and magnetization direction of the reference ferromagnetic layer structure. The materials that make up the artificial antiferromagnetic layer are ruthenium (Ru) layer, multiple first cobalt nickel (Co/Ni) layers, ruthenium (Ru) layer and multiple second cobalt nickel (Co/Ni) layers from bottom to top. Floor. The number of the first cobalt-nickel (Co/Ni) layer is different from the number of the second cobalt-nickel (Co/Ni) layer; the overall appearance of the first cobalt-nickel layer is the first magnetization direction, and the overall appearance of the second cobalt-nickel layer is The second magnetization direction, and the first magnetization direction is opposite to the second magnetization direction.
在其中一种实施例中,还包括:覆盖层;覆盖层设置在人造反铁磁层上。In one of the embodiments, it further includes: a cover layer; the cover layer is arranged on the artificial antiferromagnetic layer.
其中,覆盖层可以为金属材料或者合金材料,例如钽(Ta)、铱(Ir)、铪(Hf)、铋(Bi)、钨(W)和钼(Mo)的其中之一或任意组合,厚度可以为0.2nm-200nm。Wherein, the covering layer may be a metal material or an alloy material, such as one or any combination of tantalum (Ta), iridium (Ir), hafnium (Hf), bismuth (Bi), tungsten (W) and molybdenum (Mo), The thickness can be 0.2nm-200nm.
在其中一种实施例中,还包括:保护层;保护层设置在覆盖层上。In one of the embodiments, it further includes: a protective layer; the protective layer is disposed on the cover layer.
其中,保护层可以为金属材料或者非金属材料,例如,保护层可以为钽(Ta)、钌(Ru)和二氧化硅(SiO 2)的其中之一或任意组合,厚度可以为0.5nm-1000nm。 Wherein, the protective layer may be a metallic material or a non-metallic material. For example, the protective layer may be one or any combination of tantalum (Ta), ruthenium (Ru) and silicon dioxide (SiO 2 ), and the thickness may be 0.5 nm- 1000nm.
制备本发明实施例的磁存储器时,可以采用传统的磁控溅射、分子束外延或原子层沉积等方法将各层材料按照从下到上的顺序生长在热氧化的基底或者其他多层膜上,然后通过光刻、刻蚀等加工工艺来制造磁存储器,且每一薄膜层的横截面积基本相等,横截面形状一般为圆形、椭圆形、正方形或长方形中的一种。When preparing the magnetic memory of the embodiment of the present invention, traditional magnetron sputtering, molecular beam epitaxy, or atomic layer deposition can be used to grow each layer of material on a thermally oxidized substrate or other multilayer film in the order from bottom to top. Then, the magnetic memory is manufactured through processing techniques such as photolithography and etching, and the cross-sectional area of each film layer is basically the same, and the cross-sectional shape is generally one of a circle, an ellipse, a square, or a rectangle.
本发明的其中一个具体实施例如下:One of the specific embodiments of the present invention is as follows:
缓冲层的材料是钽,厚度为2nm;覆盖层的材料是钨,厚度为3nm;反铁磁层的材料是铱锰合金,厚度为5nm;插入层的材料是钨,厚度为0.5nm;第一铁磁层的材料是Co 20Fe 60B 20,厚度为1.1nm;第一势垒层的材料是氧化镁,厚度为1nm;第二铁磁层的材料是Co 20Fe 60B 20,厚度为1nm;保护层的材料是二氧化硅,厚度为5nm。 The material of the buffer layer is tantalum with a thickness of 2nm; the material of the cover layer is tungsten with a thickness of 3nm; the material of the antiferromagnetic layer is an iridium-manganese alloy with a thickness of 5nm; the material of the insertion layer is tungsten with a thickness of 0.5nm; The material of a ferromagnetic layer is Co 20 Fe 60 B 20 with a thickness of 1.1 nm; the material of the first barrier layer is magnesium oxide with a thickness of 1 nm; the material of the second ferromagnetic layer is Co 20 Fe 60 B 20 with a thickness It is 1nm; the material of the protective layer is silicon dioxide, and the thickness is 5nm.
因为插入层的材料钨能够在退火过程中阻挡锰的扩散,所以本发明的磁存储器具有高退火温度。同时,因为钨与钴铁硼之间的界面具有很强的垂直磁各向异性,所以本发明的磁存储器具有很强的垂直磁各向异性和热稳定性。此外,在一定范围内缩小本发明的横截面积后,本发明仍然能够保持较高的热稳定性,因此能够减小器件尺寸、增大磁存储密度。因为插入层采用了具有较高自旋霍尔角的重金属材料钨,因此本发明的磁存储器具有较高的电荷流-自旋流转化效率,临界翻转电流较小,功耗较低。因为本发明中插入层和覆盖层的材料都是钨,且两个铁磁层的材料都是钴铁硼,从而形成了关于氧化镁对称的钨/钴铁硼/氧化镁/钴铁硼/钨结构,有助于获得较强的隧穿磁阻率;同时,钨/钴铁硼/氧化镁/钴铁硼/钨结构具有较强的共振隧穿效应,从而可以获得较强的隧穿磁阻率,有助于提高磁存储器的数据读取可靠性。最后,在铱锰合金与钴铁硼之间的界面插入钨有可能增强面内交换偏置场,从而有助于实现确定磁化翻转。Because tungsten, the material of the insertion layer, can block the diffusion of manganese during the annealing process, the magnetic memory of the present invention has a high annealing temperature. At the same time, because the interface between tungsten and cobalt-iron-boron has strong perpendicular magnetic anisotropy, the magnetic memory of the present invention has strong perpendicular magnetic anisotropy and thermal stability. In addition, after reducing the cross-sectional area of the present invention within a certain range, the present invention can still maintain high thermal stability, and therefore can reduce the size of the device and increase the magnetic storage density. Because the insertion layer uses heavy metal material tungsten with a higher spin Hall angle, the magnetic memory of the present invention has a higher charge flow-spin current conversion efficiency, a smaller critical switching current, and lower power consumption. Because the materials of the insertion layer and the cover layer in the present invention are both tungsten, and the materials of the two ferromagnetic layers are both cobalt-iron-boron, a symmetrical tungsten/cobalt-iron-boron/magnesium oxide/cobalt-iron-boron/ The tungsten structure helps to obtain a strong tunneling magnetoresistance; at the same time, the tungsten/cobalt-iron-boron/magnesium oxide/cobalt-iron-boron/tungsten structure has a strong resonance tunneling effect, so that a strong tunneling can be obtained Magnetoresistance helps to improve the reliability of data reading of magnetic memory. Finally, the insertion of tungsten at the interface between the iridium-manganese alloy and the cobalt-iron-boron may enhance the in-plane exchange bias field, thereby helping to determine the magnetization reversal.
另外,如果插入层的材料选为Cr,本发明具有退火温度高的特点,可以兼容CMOS后期热处理工艺。如果插入层的材料选为Mo,除了具有退火温度高的优点,本发明还具有垂直磁各向异性强的特点,可以提高热稳定性,保证数据读取的可靠性;如果进一步形成关于势垒层对称的Mo/CoFeB/MgO/CoFeB/Mo结构,本发明还具有隧穿磁阻率高的特点,可以提高数据读取的可靠稳定性。In addition, if the material of the insertion layer is selected as Cr, the present invention has the characteristic of high annealing temperature and can be compatible with the CMOS post-heat treatment process. If the material of the insertion layer is selected as Mo, in addition to the advantage of high annealing temperature, the present invention also has the characteristics of strong perpendicular magnetic anisotropy, which can improve thermal stability and ensure the reliability of data reading; if further formation of related barriers With the layer symmetrical Mo/CoFeB/MgO/CoFeB/Mo structure, the present invention also has the characteristic of high tunneling magnetoresistance, which can improve the reliability and stability of data reading.
综上,本发明实施例的磁存储器包括:第一反铁磁层,用于提供交换偏置场;插入层,设置在反铁磁层上,用于阻挡退火过程中第一反铁磁层的材料的扩散;自由铁磁层结构,设置在插入层上;第一势垒层,设置在自由铁磁层结构上;参考铁磁层结构,设置在第一势垒层上,自由铁磁层结构的磁化方向与参考铁磁层结构的磁化方向平行或反平行。本发明具有退火温度高的特点,可以兼容CMOS后期热处理工艺。本发明还具有垂直磁各向异性强、临界翻转电流小、隧穿磁阻率高的特点,可以保证数据存储和读取的可靠稳定性,降低功耗,实现确定性磁化翻转。In summary, the magnetic memory of the embodiment of the present invention includes: a first antiferromagnetic layer for providing an exchange bias field; an insertion layer, which is provided on the antiferromagnetic layer, for blocking the first antiferromagnetic layer during the annealing process Diffusion of the material; free ferromagnetic layer structure, set on the insertion layer; first barrier layer, set on the free ferromagnetic layer structure; refer to the ferromagnetic layer structure, set on the first barrier layer, free ferromagnetic The magnetization direction of the layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure. The invention has the characteristics of high annealing temperature and can be compatible with the CMOS post heat treatment process. The invention also has the characteristics of strong perpendicular magnetic anisotropy, small critical switching current, and high tunneling magnetoresistance rate, which can ensure the reliability and stability of data storage and reading, reduce power consumption, and realize deterministic magnetization switching.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in further detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. The scope of protection, any modification, equivalent replacement, improvement, etc., made within the spirit and principle of the present invention shall be included in the scope of protection of the present invention.

Claims (10)

  1. 一种磁存储器,其特征在于,包括:A magnetic memory is characterized in that it comprises:
    第一反铁磁层,用于提供交换偏置场;The first antiferromagnetic layer is used to provide an exchange bias field;
    插入层,设置在所述反铁磁层上,用于阻挡退火过程中第一反铁磁层的材料的扩散;The insertion layer is arranged on the antiferromagnetic layer and is used to block the diffusion of the material of the first antiferromagnetic layer during the annealing process;
    自由铁磁层结构,设置在所述插入层上;A free ferromagnetic layer structure, arranged on the insertion layer;
    第一势垒层,设置在所述自由铁磁层结构上;The first barrier layer is arranged on the free ferromagnetic layer structure;
    参考铁磁层结构,设置在所述第一势垒层上,具有固定的磁化方向;With reference to the ferromagnetic layer structure, it is arranged on the first barrier layer and has a fixed magnetization direction;
    其中,所述自由铁磁层结构的磁化方向与所述参考铁磁层结构的磁化方向平行或反平行。Wherein, the magnetization direction of the free ferromagnetic layer structure is parallel or antiparallel to the magnetization direction of the reference ferromagnetic layer structure.
  2. 根据权利要求1所述的磁存储器,其特征在于,还包括:The magnetic memory according to claim 1, further comprising:
    缓冲层;所述第一反铁磁层设置在所述缓冲层上。Buffer layer; the first antiferromagnetic layer is disposed on the buffer layer.
  3. 根据权利要求2所述的磁存储器,其特征在于,还包括:The magnetic memory according to claim 2, further comprising:
    基底;所述缓冲层设置在所述基底上。The substrate; the buffer layer is provided on the substrate.
  4. 根据权利要求1所述的磁存储器,其特征在于,还包括:The magnetic memory according to claim 1, further comprising:
    人造反铁磁层;所述人造反铁磁层设置在所述参考铁磁层结构上。Artificial antiferromagnetic layer; the artificial antiferromagnetic layer is arranged on the reference ferromagnetic layer structure.
  5. 根据权利要求4所述的磁存储器,其特征在于,还包括:The magnetic memory according to claim 4, further comprising:
    覆盖层;所述覆盖层设置在所述人造反铁磁层上。Covering layer; The covering layer is arranged on the artificial antiferromagnetic layer.
  6. 根据权利要求5所述的磁存储器,其特征在于,还包括:The magnetic memory according to claim 5, further comprising:
    保护层;所述保护层设置在所述覆盖层上。Protective layer; The protective layer is arranged on the covering layer.
  7. 根据权利要求1-6任一权利要求所述的磁存储器,其特征在于,The magnetic memory according to any one of claims 1 to 6, characterized in that,
    所述自由铁磁层结构包括:第一铁磁层;The free ferromagnetic layer structure includes: a first ferromagnetic layer;
    所述参考铁磁层结构包括:第二铁磁层。The reference ferromagnetic layer structure includes: a second ferromagnetic layer.
  8. 根据权利要求1-6任一权利要求所述的磁存储器,其特征在于,The magnetic memory according to any one of claims 1 to 6, characterized in that,
    所述自由铁磁层结构包括:第三铁磁层;The free ferromagnetic layer structure includes: a third ferromagnetic layer;
    所述参考铁磁层结构包括:The reference ferromagnetic layer structure includes:
    第四铁磁层、第一金属层、第五铁磁层和第二势垒层;A fourth ferromagnetic layer, a first metal layer, a fifth ferromagnetic layer, and a second barrier layer;
    所述第四铁磁层设置在所述第一势垒层上;The fourth ferromagnetic layer is disposed on the first barrier layer;
    所述第一金属层位于所述第四铁磁层与所述第五铁磁层之间;The first metal layer is located between the fourth ferromagnetic layer and the fifth ferromagnetic layer;
    所述第五铁磁层位于所述第一金属层和所述第二势垒层之间。The fifth ferromagnetic layer is located between the first metal layer and the second barrier layer.
  9. 根据权利要求1-6任一权利要求所述的磁存储器,其特征在于,所述自由铁磁层结构包括:The magnetic memory according to any one of claims 1 to 6, wherein the free ferromagnetic layer structure comprises:
    第六铁磁层、第二金属层和第七铁磁层;The sixth ferromagnetic layer, the second metal layer and the seventh ferromagnetic layer;
    所述第六铁磁层设置在所述插入层上;The sixth ferromagnetic layer is disposed on the insertion layer;
    所述第二金属层位于所述第六铁磁层和所述第七铁磁层之间;The second metal layer is located between the sixth ferromagnetic layer and the seventh ferromagnetic layer;
    所述参考铁磁层结构包括:第八铁磁层。The reference ferromagnetic layer structure includes: an eighth ferromagnetic layer.
  10. 根据权利要求1-6任一权利要求所述的磁存储器,其特征在于,所述自由铁磁层结构包括:The magnetic memory according to any one of claims 1 to 6, wherein the free ferromagnetic layer structure comprises:
    第九铁磁层、第三势垒层和第十铁磁层;The ninth ferromagnetic layer, the third barrier layer and the tenth ferromagnetic layer;
    所述第九铁磁层设置在所述插入层上;The ninth ferromagnetic layer is disposed on the insertion layer;
    所述第三势垒层位于所述第九铁磁层和所述第十铁磁层之间;The third barrier layer is located between the ninth ferromagnetic layer and the tenth ferromagnetic layer;
    所述参考铁磁层结构包括:第十一铁磁层。The reference ferromagnetic layer structure includes: an eleventh ferromagnetic layer.
PCT/CN2020/072929 2020-01-19 2020-01-19 Magnetic memory WO2021142817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072929 WO2021142817A1 (en) 2020-01-19 2020-01-19 Magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072929 WO2021142817A1 (en) 2020-01-19 2020-01-19 Magnetic memory

Publications (1)

Publication Number Publication Date
WO2021142817A1 true WO2021142817A1 (en) 2021-07-22

Family

ID=76863189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072929 WO2021142817A1 (en) 2020-01-19 2020-01-19 Magnetic memory

Country Status (1)

Country Link
WO (1) WO2021142817A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047228A (en) * 2006-03-30 2007-10-03 富士通株式会社 Magnetoresistance effect device, magnetic head, magnetic recording system, and magnetic random access memory
US20150340597A1 (en) * 2012-11-28 2015-11-26 Crocus Technology Sa Magnetoresistive element having enhanced exchange bias and thermal stability for spintronic devices
KR101710269B1 (en) * 2015-06-23 2017-02-27 한양대학교 산학협력단 Magnetic tunnel junction structure with perpendicular magnetic anisotropy and Magnetic element including the same
US20180287052A1 (en) * 2016-12-02 2018-10-04 Regents Of The University Of Minnesota MAGNETIC STRUCTURES INCLUDING FePd
WO2019135743A1 (en) * 2018-01-03 2019-07-11 Intel Corporation Filter layer for an in-plane top synthetic antiferromagnet (saf) stack for a spin orbit torque (sot) memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047228A (en) * 2006-03-30 2007-10-03 富士通株式会社 Magnetoresistance effect device, magnetic head, magnetic recording system, and magnetic random access memory
US20150340597A1 (en) * 2012-11-28 2015-11-26 Crocus Technology Sa Magnetoresistive element having enhanced exchange bias and thermal stability for spintronic devices
KR101710269B1 (en) * 2015-06-23 2017-02-27 한양대학교 산학협력단 Magnetic tunnel junction structure with perpendicular magnetic anisotropy and Magnetic element including the same
US20180287052A1 (en) * 2016-12-02 2018-10-04 Regents Of The University Of Minnesota MAGNETIC STRUCTURES INCLUDING FePd
WO2019135743A1 (en) * 2018-01-03 2019-07-11 Intel Corporation Filter layer for an in-plane top synthetic antiferromagnet (saf) stack for a spin orbit torque (sot) memory

Similar Documents

Publication Publication Date Title
CN108232003B (en) Vertical magneto-resistance element and manufacturing method thereof
US9419210B2 (en) Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
CN107403821B (en) Multilayer film with double spacer layers and capable of forming ferromagnetic or antiferromagnetic coupling
US7443639B2 (en) Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
US7270896B2 (en) High performance magnetic tunnel barriers with amorphous materials
US7351483B2 (en) Magnetic tunnel junctions using amorphous materials as reference and free layers
US8790798B2 (en) Magnetoresistive element and method of manufacturing the same
US7369427B2 (en) Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements
US7300711B2 (en) Magnetic tunnel junctions with high tunneling magnetoresistance using non-bcc magnetic materials
US20120241878A1 (en) Magnetic tunnel junction with iron dusting layer between free layer and tunnel barrier
JP6194752B2 (en) Storage element, storage device, magnetic head
KR20130107376A (en) High speed low power magnetic devices based on current induced spin-momentum transfer
US8860158B2 (en) High speed STT-MRAM with orthogonal pinned layer
US20200357983A1 (en) Magnetic tunnel junction reference layer, magnetic tunnel junctions and magnetic random access memory
CN102779939A (en) Storage element and storage device
JP2014072392A (en) Storage element, storage device, magnetic head
Chatterjee et al. Novel multifunctional RKKY coupling layer for ultrathin perpendicular synthetic antiferromagnet
JP2012151213A (en) Storage device and memory unit
US8981506B1 (en) Magnetic random access memory with switchable switching assist layer
JP6567272B2 (en) Magnetic multilayer stack
JP2012160681A (en) Memory element, memory device
KR101636492B1 (en) Memory device
WO2021212780A1 (en) Magnetic tunnel junction and manufacturing method therefor
CN111244266A (en) Magnetic memory
US11450466B2 (en) Composite seed structure to improve PMA for perpendicular magnetic pinning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913423

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20913423

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.05.2023)