WO2021142785A1 - 信号处理方法、装置、存储介质、处理器及电子装置 - Google Patents

信号处理方法、装置、存储介质、处理器及电子装置 Download PDF

Info

Publication number
WO2021142785A1
WO2021142785A1 PCT/CN2020/072791 CN2020072791W WO2021142785A1 WO 2021142785 A1 WO2021142785 A1 WO 2021142785A1 CN 2020072791 W CN2020072791 W CN 2020072791W WO 2021142785 A1 WO2021142785 A1 WO 2021142785A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
control signaling
user equipment
control channel
target
Prior art date
Application number
PCT/CN2020/072791
Other languages
English (en)
French (fr)
Inventor
徐伟杰
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20914114.2A priority Critical patent/EP4093082A4/en
Priority to CN202080092749.7A priority patent/CN115004756A/zh
Priority to PCT/CN2020/072791 priority patent/WO2021142785A1/zh
Publication of WO2021142785A1 publication Critical patent/WO2021142785A1/zh
Priority to US17/812,877 priority patent/US20220353895A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0241Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where no transmission is received, e.g. out of range of the transmitter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular to a signal processing method, device, storage medium, processor and electronic device.
  • the energy-saving enhancement of the user equipment is supported.
  • the physical downlink control channel Physical downlink control channel, PDCCH for short
  • the detection period of the downlink control channel is semi-static configuration, and the reconfiguration delay is more than hundreds of milliseconds.
  • a more common situation is that most PDCCH detection opportunities do not detect data scheduling, but the user equipment still needs to buffer data after the PDCCH. That is, as long as the PDCCH period is reached, even if no data scheduling is detected, the user equipment needs to buffer data after the PDCCH.
  • a mechanism is introduced to notify the terminal to enter the Cross-slot scheduling state through the network side device. That is, the network side device can notify the terminal of the cross-slot scheduling status through the PDCCH.
  • the above-mentioned scheduling process has the following technical defects: by semi-statically configuring the control channel detection method of the user equipment, the control channel monitoring period of the user equipment can be changed after a long semi-static reconfiguration, and during the reconfiguration period There is an ambiguous time window, which results in a lack of consistency between the control channel transmission and detection of the network side equipment and the user equipment.
  • At least some of the embodiments of the present invention provide a signal processing method, device, storage medium, processor, and electronic device to at least solve the control channel detection method of semi-statically configured user equipment in the related art, which requires a long experience.
  • the control channel monitoring period of the user equipment can be changed only after semi-static reconfiguration, and there is an ambiguous time window during the reconfiguration, which leads to the technical problem that the control channel transmission and detection of the network side equipment and the user equipment lack consistency.
  • a signal processing method including:
  • another signal processing method including:
  • the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the application delay is the delay for the user equipment to switch the signal receiving mode; the dynamic control signaling is sent to the user equipment so that the user equipment
  • the application time delay is determined based on the dynamic control signaling, and the signal receiving mode after the handover is adopted to perform the signal receiving operation.
  • a signal receiving processing device including:
  • the receiving module is set to receive the dynamic control signaling from the network side device in a preset time period within the first time length unit, where the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the application delay is the user equipment Switch the time delay of the signal receiving mode; the determining module is set to determine the application time delay based on the dynamic control signaling; the processing module is set to perform the signal receiving operation in the second time length unit using the switched signal receiving method, where the second time length The unit is determined by the first duration unit and the application delay.
  • another signal receiving processing device including:
  • the configuration module is set to configure dynamic control signaling, where the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the application delay is the delay for the user equipment to switch the signal receiving mode; the sending module is set to configure the dynamic control signal The command is sent to the user equipment, so that the user equipment determines the application delay based on the dynamic control signaling, and uses the signal receiving mode after the handover to perform the signal receiving operation.
  • a storage medium is further provided, and a computer program is stored in the storage medium, wherein the computer program is configured to execute the signal processing method in any one of the foregoing when running.
  • a processor which is configured to run a program, wherein the program is set to execute any of the above-mentioned signal processing methods when running.
  • an electronic device including a memory and a processor, a computer program is stored in the memory, and the processor is configured to run the computer program to execute any of the above-mentioned signal processing methods.
  • a chip including a processor, configured to call and run a computer program from a memory, so that a device with the chip installed executes any of the above-mentioned signal processing methods.
  • a computer program product including computer program instructions, which cause a computer to execute the signal processing method in any one of the foregoing.
  • a computer program is also provided.
  • the computer program enables the computer to execute the signal processing method in any one of the above.
  • a preset time period in the first time length unit is used to receive dynamic control signaling from the network side device, where the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the Application delay is a way for the user equipment to switch the time delay of the signal receiving mode.
  • the application time delay is determined by dynamic control signaling and the signal receiving operation is performed in the second time length unit using the switched signal receiving method.
  • the second time length unit is determined by the second time length unit.
  • the one-time unit and the application delay are determined, and the application delay determined by the dynamic control signaling is reached, so that the network side device and the user equipment perform signal sending and signal receiving operations in the same time unit (for example: according to the same control Channel detection period to send and receive the control channel), so as to achieve the technical effect of ensuring the consistency of signal transmission and signal reception between the network side equipment and the user equipment by introducing an application delay mechanism, thereby solving the problem of semi-static
  • Figure 1 is a schematic diagram of saving power consumption in cross-slot scheduling according to related technologies
  • FIG. 2 is a schematic diagram of the configuration of a physical downlink control channel and a physical downlink shared channel according to related technologies
  • Fig. 3 is a schematic diagram of semi-static handover according to related technologies
  • Figure 4 is a schematic diagram of cross-carrier scheduling handover according to related technologies
  • Fig. 5 is a flowchart of a signal processing method according to one of the embodiments of the present invention.
  • Fig. 6 is a schematic diagram of a state transition mode of lengthening or shortening a PDCCH monitoring period of a user equipment on a carrier according to an optional embodiment of the present invention
  • Fig. 7 is a flowchart of another signal processing method according to one of the embodiments of the present invention.
  • Fig. 8 is a structural block diagram of a signal receiving processing device according to one of the embodiments of the present invention.
  • FIG. 9 is a structural block diagram of a signal receiving processing device according to one of the optional embodiments of the present invention.
  • Fig. 10 is a structural block diagram of another signal receiving processing device according to one of the embodiments of the present invention.
  • Fig. 1 is a schematic diagram of saving power consumption by cross-slot scheduling according to related technologies.
  • the PDCCH is configured to be periodically detected.
  • k0 represents the offset value of the slot where the PDCCH is located and the slot where the scheduled PDSCH is located.
  • k0 represents the offset value of the slot where the PDCCH is located and the slot where the scheduled PDSCH is located.
  • a more common situation is that most PDCCH detection opportunities do not detect data scheduling, but the user equipment still needs to buffer data after the PDCCH. That is, as long as the PDCCH period is reached, even if no data scheduling is detected, the user equipment needs to buffer data after the PDCCH.
  • the shaded part indicates that the radio frequency module of the user equipment cannot sleep and needs to be buffered.
  • the shaded part indicates that the radio frequency module of the user equipment can sleep, and its power consumption is significantly reduced. Therefore, after the cross-slot scheduling is implemented, the user equipment can omit the buffering link after the PDCCH, and then turn off the radio frequency module immediately after the PDCCH.
  • a mechanism is introduced to notify the terminal to enter the Cross-slot scheduling state through the network side device. That is, the network side device can notify the terminal of the cross-slot scheduling status through the PDCCH.
  • the user equipment may assume that the k0 value given by the network side device scheduling each time is greater than a preset threshold (that is, the Minimum k0 value).
  • the preset threshold is pre-configured by the network side device to the user equipment.
  • the PDCCH is configured for periodic detection.
  • the detection period of the existing downlink control channel is semi-statically configured, and the reconfiguration delay is more than hundreds of milliseconds.
  • Figure 2 is a schematic diagram of the configuration of a physical downlink control channel and a physical downlink shared channel according to related technologies. As shown in Figure 2, after the user equipment enters cross-carrier scheduling, the physical downlink shared channel (PDSCH) data The scheduling frequency will be reduced accordingly.
  • PDSCH physical downlink shared channel
  • FIG 3 is a schematic diagram of a semi-static handover according to related technologies. As shown in Figure 3, although the PDCCH can be used to directly instruct the user equipment to enter the cross-slot energy saving mode, which can better adapt to dynamic scheduling changes, the detection period of the PDCCH is Switching takes too long.
  • FIG. 4 is a schematic diagram of cross-carrier scheduling switching according to related technologies. As shown in FIG. 4, after the cross-carrier scheduling switching, the PDCCH monitoring period cannot be adjusted accordingly. When the user equipment receives the energy saving indication for cross-slot scheduling, the user equipment may still need to perform PDCCH detection in each slot. Therefore, it will be difficult for the user equipment to continuously turn off the downlink reception to achieve the goal of better energy saving.
  • PDSCH data scheduling also has some problems that need to be considered. For example, because the PDCCH signal has a certain probability of missed detection, once the user equipment loses the control channel periodic switching signal sent by the network side device, it will Lack of consistency between the user equipment and the network side equipment may occur, and the problem of continuous subsequent downlink control signaling loss may occur. In addition, since the detection period of the existing downlink control channel is a semi-static configuration, it takes too long for the semi-static conversion, which cannot meet the demand for better power saving of the user equipment.
  • an embodiment of a signal processing method is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and Although the logical sequence is shown in the flowchart, in some cases, the steps shown or described can be performed in a different order than here.
  • the method embodiment can be executed in a mobile terminal, a computer terminal or a similar computing device.
  • the mobile terminal may include one or more processors (the processor may include but is not limited to a central processing unit (CPU), a graphics processing unit (GPU), a digital signal processing (DSP) chip, a micro Processor (MCU) or programmable logic device (FPGA) and other processing devices) and memory for storing data.
  • the above-mentioned mobile terminal may also include a transmission device, an input/output device, and a display device for communication functions.
  • the mobile terminal may also include more or fewer components than the above-mentioned structural description, or have a different configuration from the above-mentioned structural description.
  • the memory can be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the signal processing method in the embodiment of the present invention.
  • the processor executes various functional applications by running the computer programs stored in the memory. And data processing, that is, to realize the above-mentioned signal processing method.
  • the memory may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory may further include a memory remotely provided with respect to the processor, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission equipment is used to receive or send data via a network.
  • the above-mentioned specific examples of the network may include a wireless network provided by a communication provider of a mobile terminal.
  • the transmission device includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device may be a radio frequency (Radio Frequency, referred to as RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • the display device may be, for example, a touch screen liquid crystal display (LCD) and a touch display (also referred to as a "touch screen” or a “touch display screen”).
  • the liquid crystal display can enable the user to interact with the user interface of the mobile terminal.
  • the above-mentioned mobile terminal has a graphical user interface (GUI), and the user can interact with the GUI by touching finger contacts and/or gestures on the touch-sensitive surface.
  • GUI graphical user interface
  • the human-computer interaction function here is optional.
  • the executable instructions of the machine interaction function are configured/stored in one or more processor-executable computer program products or readable storage media.
  • FIG. 5 is a flowchart of a signal processing method according to one of the embodiments of the present invention. As shown in FIG. 5, the method includes the following steps:
  • Step S50 Receive dynamic control signaling from the network side device in a preset time period within the first time length unit, where the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the application delay is the user equipment handover signal Delay in receiving mode;
  • Step S52 Determine the application time delay based on the dynamic control signaling
  • step S54 the signal receiving operation is performed in the second time length unit using the switched signal receiving manner, where the second time length unit is determined by the first time length unit and the application time delay.
  • the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the application delay is the user
  • the device switches the time delay of the signal receiving mode by determining the application time delay through dynamic control signaling and adopts the switched signal receiving mode to perform the signal receiving operation in the second time length unit.
  • the second time length unit is composed of the first time length unit and the application
  • the delay determination reaches the application delay determined by the dynamic control signaling, so that the network side device and the user equipment perform signal sending and signal receiving operations in the same time length unit (for example: sending and receiving signals according to the same control channel detection cycle).
  • the purpose of receiving the control channel is to achieve the technical effect of ensuring the consistency of signal transmission and signal reception between the network side device and the user equipment by introducing an application delay mechanism, and thus solve the problem of semi-static configuration of user equipment control in related technologies.
  • the channel detection method requires a long semi-static reconfiguration to be able to change the control channel monitoring period of the user equipment, and there is an ambiguous time window during the reconfiguration, which results in the control channels of both the network side equipment and the user equipment.
  • the first time length unit, the second time length unit, and the time length unit of the application delay may all be a time slot, that is, a slot.
  • the foregoing signal receiving manner may include, but is not limited to:
  • control channel reception methods for example, control channel reception methods aimed at reducing PDCCH detection
  • control channel detection reduction methods involved can be further applied to other reduction functions.
  • Scenarios for consumption operations for example: reception methods related to signal measurement.
  • the implementation process of the present invention will be described in further detail below by taking the control channel receiving mode as an example. It should be noted that the implementation process is also applicable to other scenarios where power consumption is reduced.
  • the minimum k value of cross-slot scheduling is usually converted only through dynamic control signaling.
  • the PDCCH monitoring period cannot be changed in time, and due to the high power consumption of the PDCCH monitoring performed on the user equipment, it is difficult to achieve better energy-saving effects.
  • the user equipment dynamically adjusts the control channel monitoring period, it is easy to produce fuzzy time windows. On this fuzzy time window, the control channel cannot be detected, which results in a lack of consistency between the control channel transmission and detection of the network side equipment and the user equipment.
  • the embodiment of the present invention uses dynamic control signaling to trigger the user equipment to determine the mechanism of application delay, so that the network side device more flexibly triggers the user equipment to implement fine energy-saving functions without increasing the complexity of the control channel format.
  • the network side device more flexibly triggers the user equipment to implement fine energy-saving functions without increasing the complexity of the control channel format.
  • the aforementioned preset time period can be pre-configured through high-level signaling.
  • the downlink control channel does not occupy the entire first duration unit for transmission, and it usually occupies the entire first duration unit. Part of the time for transmission. If the slot is divided into 14 symbols in the time dimension, the downlink control channel usually occupies 1-3 symbols among them for transmission. Therefore, if the user equipment receives the above-mentioned dynamic control signaling in slot n and determines that the application delay is x slots, the user equipment will perform the signal receiving operation in slot n+x in the signal receiving mode after switching. For example, the user equipment will use a new detection period and detection position to perform PDCCH detection in slot n+x.
  • the above-mentioned dynamic control signaling may be downlink control information (Downlink control information, referred to as DCI for short).
  • DCI Downlink control information
  • step S50 after the first duration unit receives the dynamic control signaling from the network side device, the method further includes the following execution steps:
  • Step S51 triggered by at least one bit in the dynamic control signaling, switch from the source physical downlink control channel search space group to the target physical downlink control channel search space group, where the source physical downlink control channel search space group includes at least: A source search space set, the target physical downlink control channel search space group includes: at least one target search space set; or, triggered by at least one bit in the dynamic control signaling, from the same physical downlink control channel search space group
  • the source parameter is switched to the target parameter, where the source parameter includes at least one of the following: a source detection period and a source detection position, and the target parameter includes at least one of the following: a target detection period and a target detection position.
  • the network side device can trigger the user equipment to switch from the source physical downlink control channel search space (Search Space, referred to as SS) group to the target physical downlink control channel search space group by configuring at least one bit in the dynamic control signaling.
  • the source physical downlink control channel search space set includes: at least one source search space set (Search Space Set, referred to as SS Set), and the target physical downlink control channel search space set includes: at least one target search space set.
  • the PDCCH search space group after the handover is the target PDCCH search space group
  • the PDCCH search space group before the handover is the source PDCCH search space group.
  • the network side device can trigger the user equipment to switch from the source parameter of the same physical downlink control channel search space group to the target parameter by configuring at least one bit in the dynamic control signaling.
  • the source parameter includes at least one of the following: a source detection period and a source detection position
  • the target parameter includes at least one of the following: a target detection period and a target detection position.
  • determining the application delay based on the dynamic control signaling may include:
  • Step S521 Under the trigger of dynamic control signaling, determine the value of the minimum monitoring period in at least one source search space set as the application delay;
  • the value of the minimum monitoring period in at least one source search space set may be determined as the application delay.
  • the user equipment switches from the source physical downlink control channel search space group A to the target physical downlink control channel search space group B.
  • the source physical downlink control channel search space group A includes: source SS Set 1, source SS Set 2, and source SS Set 3.
  • the application delay can be determined by the value of the minimum monitoring period in the source SS Set 1, the source SS Set 2, and the source SS Set 3.
  • Step S522 Under the trigger of dynamic control signaling, determine the value of the maximum monitoring period in at least one source search space set as the application delay;
  • the value of the maximum monitoring period in at least one source search space set may be determined as the application delay.
  • the user equipment switches from the source physical downlink control channel search space group A to the target physical downlink control channel search space group B.
  • the source physical downlink control channel search space group A includes: source SS Set 1, source SS Set 2, and source SS Set 3.
  • the application delay can be determined by the value of the maximum monitoring period in the source SS Set 1, the source SS Set 2, and the source SS Set 3.
  • Step S523 Under the trigger of dynamic control signaling, determine the value of the minimum monitoring period in at least one target search space set as the application delay;
  • the value of the minimum monitoring period in at least one source search space set may be determined as the application delay.
  • the user equipment switches from the source physical downlink control channel search space group A to the target physical downlink control channel search space group B.
  • the target physical downlink control channel search space group B includes: target SS Set 1, target SS Set 2, and target SS Set 3.
  • the application delay can be determined by the value of the minimum monitoring period in the target SS Set 1, target SS Set 2, and target SS Set 3.
  • Step S524 Under the trigger of dynamic control signaling, determine the value of the maximum monitoring period in at least one target search space set as the application delay.
  • the value of the maximum monitoring period in at least one source search space set may be determined as the application delay.
  • the user equipment switches from the source physical downlink control channel search space group A to the target physical downlink control channel search space group B.
  • the target physical downlink control channel search space group B includes: target SS Set 1, target SS Set 2, and target SS Set 3.
  • the application delay can be determined by the value of the maximum monitoring period in the target SS Set 1, target SS Set 2, and target SS Set 3.
  • determining the application delay based on the dynamic control signaling may include:
  • Step S525 Under the trigger of the dynamic control signaling, the minimum offset value of the source is used to determine the application delay
  • the user equipment uses the source Minimum k0 value to determine the application delay.
  • Step S526 Under the trigger of the dynamic control signaling, the target minimum offset value is used to determine the application delay.
  • the user equipment uses the target Minimum k0 value to determine the application delay.
  • the minimum offset value is configured on the scheduled carrier, and the search space collection monitoring period is configured at On the scheduled carrier, the application delay is switched from the scheduled carrier to the scheduled carrier.
  • the user equipment can set the first parameter, the second parameter, and the third parameter as the input parameters of the preset function, and calculate the application delay.
  • the first parameter is the minimum offset value of the active bandwidth part of the scheduled carrier
  • the second parameter is the subcarrier spacing coefficient of the active bandwidth part of the scheduled carrier
  • the third parameter is the subcarrier spacing coefficient of the active bandwidth part of the scheduled carrier.
  • the preset function is a round-up or round-down function.
  • the user equipment can determine the application delay based on the following formula:
  • minK0, scheduled is the Minimum k0 value of the activated BWP of the scheduled carrier
  • ⁇ scheudling is the subcarrier spacing (Subcarrier Spacing, referred to as SCS) coefficient of the activated BWP of the scheduled carrier
  • ⁇ scheudled is the SCS coefficient of the activated BWP of the scheduled carrier
  • f() is a specific function, for example: round-up function or round-down function.
  • determining the application delay based on the dynamic control signaling may include the following execution steps:
  • Step S527 Under the trigger of the dynamic control signaling, the pre-configured value set by the network side device for the user equipment is determined as the application delay.
  • the network side device triggers the user equipment to switch from the source physical downlink control channel search space group to the target physical downlink control channel search space group by configuring at least one bit in the dynamic control signaling, or triggers the user equipment to switch from the same physical downlink
  • the source parameter of the control channel search space group is switched to the target parameter, and the pre-configured value can also be set, so that the user equipment can directly set the network side device to the pre-configured value of the user equipment under the trigger of the dynamic control signaling
  • the value is determined as the application delay.
  • the foregoing method may further include the following execution steps:
  • Step S55 If the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group is not received before the timer preconfigured by the network side device expires, fall back to the source physical downlink control channel search space group.
  • the timer can be started. That is, in the process of sending dynamic control signaling twice adjacently, if the value of the bit does not change, there is no need to start the timer; if the value of the bit changes, the timer needs to be started.
  • the function of this timer is: in the process of switching between different PDCCH search space groups, if the user equipment does not receive the control of the target PDCCH search space group to be transmitted to the user equipment before the timer preconfigured by the network side device expires Signaling, fall back to the source PDCCH search space group.
  • the foregoing method may further include the following execution steps:
  • Step S56 If the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group is not received before the timer preconfigured by the network side device expires, fall back to the default physical configuration preconfigured by the network side device. Downlink control channel search space group.
  • the user equipment In the process of switching between different PDCCH search space groups, if the user equipment does not receive the control signaling to be transmitted to the user equipment on the target PDCCH search space group before the timer preconfigured by the network side device expires, the user equipment In addition to performing the operation of falling back to the source PDCCH search space group, it can also fall back to the default PDCCH search space group pre-configured by the network side device.
  • the foregoing method may further include the following execution steps:
  • Step S57 If the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group is received before the timer preconfigured by the network side device expires, the timer is updated or reset.
  • the user equipment In the process of switching between different PDCCH search space groups, if the user equipment receives the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group before the timer preconfigured by the network side device expires, it can Update the timer (ie update from the first timer value to the second timer value) or reset the timer (ie reset from the current timer value to the default timer value).
  • FIG. 7 is a flowchart of another signal processing method according to one of the embodiments of the present invention. As shown in FIG. 7, the method includes the following step:
  • Step S70 Configure dynamic control signaling, where the dynamic control signaling is used to instruct the user equipment to determine the application time delay, and the application time delay is the time delay for the user equipment to switch the signal receiving mode;
  • step S72 the dynamic control signaling is sent to the user equipment, so that the user equipment determines the application delay based on the dynamic control signaling, and performs the signal receiving operation in the signal receiving mode after the handover.
  • the dynamic control signaling is used to instruct the user equipment to determine the application delay
  • the application delay is the delay for the user equipment to switch the signal receiving mode.
  • the command is sent to the user equipment so that the user equipment determines the application delay based on the dynamic control signaling and uses the signal receiving mode after the handover to perform the signal receiving operation, so as to achieve the application delay determined by the dynamic control signaling, so that the network side device.
  • the purpose of performing signal sending and signal receiving operations for example: sending and receiving control channels according to the same control channel detection cycle) in the same time unit as the user equipment, thus realizing the introduction of an application delay mechanism to ensure that the network side equipment and the user
  • the technical effect of the consistency of signal transmission and signal reception between the two devices and thus solves the problem of the semi-static configuration of the control channel detection method of the user equipment in the related technology, and the user equipment can only be changed after a long semi-static reconfiguration.
  • the duration unit of the aforementioned application delay may all be a time slot, that is, a slot.
  • the foregoing signal receiving manner may include, but is not limited to:
  • control channel reception methods for example, control channel reception methods aimed at reducing PDCCH detection
  • control channel detection reduction methods involved can be further applied to other reduction functions.
  • Scenarios for consumption operations for example: reception methods related to signal measurement.
  • the implementation process of the present invention will be described in further detail below by taking the control channel receiving mode as an example. It should be noted that the implementation process is also applicable to other scenarios where power consumption is reduced.
  • Step S701 Configure at least one bit in the dynamic control signaling, where at least one bit is used to trigger the user equipment to switch from the source physical downlink control channel search space group to the target physical downlink control channel search space group, and the source physical downlink control channel search
  • the space group includes: at least one source search space set
  • the target physical downlink control channel search space group includes: at least one target search space set;
  • the network side device can trigger the user equipment to switch from the source physical downlink control channel search space (Search Space, referred to as SS) group to the target physical downlink control channel search space group by configuring at least one bit in the dynamic control signaling.
  • the source physical downlink control channel search space set includes: at least one source search space set (Search Space Set, referred to as SS Set), and the target physical downlink control channel search space set includes: at least one target search space set.
  • the PDCCH search space group after the handover is the target PDCCH search space group
  • the PDCCH search space group before the handover is the source PDCCH search space group.
  • Step S702 Configure at least one bit in the dynamic control signaling, where the at least one bit is used to trigger the user equipment to switch from the source parameter of the same physical downlink control channel search space group to the target parameter, and the source parameter includes at least one of the following: The source detection period, the source detection position, and the target parameter include at least one of the following: the target detection period, the target detection position.
  • the network side device can trigger the user equipment to switch from the source parameter to the target parameter of the same physical downlink control channel search space group by configuring at least one bit in the dynamic control signaling.
  • the source parameter includes at least one of the following: a source detection period and a source detection position
  • the target parameter includes at least one of the following: a target detection period and a target detection position.
  • configuring dynamic control signaling may include:
  • Step S703 Configure the value of the minimum monitoring period in at least one source search space set as an application delay in the dynamic control signaling
  • the value of the minimum monitoring period in at least one source search space set can be determined as the application delay.
  • the user equipment switches from the source physical downlink control channel search space group A to the target physical downlink control channel search space group B.
  • the source physical downlink control channel search space group A includes: source SS Set 1, source SS Set 2, and source SS Set 3.
  • the application delay can be determined by the value of the minimum monitoring period in the source SS Set 1, the source SS Set 2, and the source SS Set 3.
  • Step S704 Configure the value of the maximum monitoring period in at least one source search space set as an application delay in the dynamic control signaling
  • the value of the maximum monitoring period in at least one source search space set may be determined as the application delay.
  • the user equipment switches from the source physical downlink control channel search space group A to the target physical downlink control channel search space group B.
  • the source physical downlink control channel search space group A includes: source SS Set 1, source SS Set 2, and source SS Set 3.
  • the application delay can be determined by the value of the maximum monitoring period in the source SS Set 1, the source SS Set 2, and the source SS Set 3.
  • Step S705 Configure the value of the minimum monitoring period in at least one target search space set as the application delay in the dynamic control signaling
  • the value of the minimum monitoring period in at least one source search space set may be determined as the application delay.
  • the user equipment switches from the source physical downlink control channel search space group A to the target physical downlink control channel search space group B.
  • the target physical downlink control channel search space group B includes: target SS Set 1, target SS Set 2, and target SS Set 3.
  • the application delay can be determined by the value of the minimum monitoring period in the target SS Set 1, target SS Set 2, and target SS Set 3.
  • Step S706 Configure the value of the maximum monitoring period in at least one target search space set as the application delay in the dynamic control signaling.
  • the value of the maximum monitoring period in at least one source search space set may be determined as the application delay.
  • the user equipment switches from the source physical downlink control channel search space group A to the target physical downlink control channel search space group B.
  • the target physical downlink control channel search space group B includes: target SS Set 1, target SS Set 2, and target SS Set 3.
  • the application delay can be determined by the value of the maximum monitoring period in the target SS Set 1, target SS Set 2, and target SS Set 3.
  • configuring dynamic control signaling may include:
  • Step S707 Configure the source minimum offset value as the application delay in the dynamic control signaling
  • the user equipment uses the source Minimum k0 value to determine the application delay.
  • Step S708 Configure the target minimum offset value as the application delay in the dynamic control signaling.
  • the user equipment uses the target Minimum k0 value to determine the application delay.
  • step S70 configuring dynamic control signaling may include the following execution steps:
  • Step S709 Configure the set pre-configured value as an application delay in the dynamic control signaling.
  • the network side device triggers the user equipment to switch from the source physical downlink control channel search space group to the target physical downlink control channel search space group by configuring at least one bit in the dynamic control signaling, or triggers the user equipment to switch from the same physical downlink
  • the source parameter of the control channel search space group is switched to the target parameter, and the pre-configured value can also be set, so that the user equipment can directly set the network side device to the pre-configured value of the user equipment under the trigger of the dynamic control signaling
  • the value is determined as the application delay.
  • the foregoing method may further include the following execution steps:
  • Step S73 Configure a timer for the user equipment to control the user equipment to fall back to the source physical downlink control if it does not receive the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group before the timer expires Channel search space group; or, if the control user equipment receives the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group before the timer expires, it triggers the user equipment to update or reset the timer.
  • the timer can be started.
  • the function of this timer is: in the process of switching between different PDCCH search space groups, if the user equipment does not receive the control of the target PDCCH search space group to be transmitted to the user equipment before the timer preconfigured by the network side device expires Signaling, fall back to the source PDCCH search space group.
  • the user equipment In the process of switching between different PDCCH search space groups, if the user equipment receives the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group before the timer preconfigured by the network side device expires, it can Update the timer (ie update from the first timer value to the second timer value) or reset the timer (ie reset from the current timer value to the default timer value).
  • the foregoing method may further include the following execution steps:
  • Step S74 Configure a timer and a default physical downlink control channel search space group for the user equipment to control if the user equipment does not receive a control signal to be transmitted to the user equipment on the target physical downlink control channel search space group before the timer expires. Command, then fall back to the default physical downlink control channel search space group.
  • the user equipment In the process of switching between different PDCCH search space groups, if the user equipment does not receive the control signaling to be transmitted to the user equipment on the target PDCCH search space group before the timer preconfigured by the network side device expires, the user equipment In addition to performing the operation of falling back to the source PDCCH search space group, it can also fall back to the default PDCCH search space group pre-configured by the network side device.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a signal receiving processing device is also provided, which is used to implement the above-mentioned embodiments and preferred implementations, and those that have been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 8 is a structural block diagram of a signal receiving processing device according to one of the embodiments of the present invention.
  • the device includes: a receiving module 10 configured to receive a signal from The dynamic control signaling of the network side equipment, where the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the application delay is the delay for the user equipment to switch the signal receiving mode; the determining module 11 is set to be based on the dynamic control signaling Determine the application time delay; the processing module 12 is configured to perform the signal receiving operation in the second time length unit using the switched signal receiving mode, where the second time length unit is determined by the first time length unit and the application time delay.
  • the signal receiving mode includes: a control channel receiving mode; or, a signal measurement receiving mode.
  • FIG. 9 is a structural block diagram of a signal receiving processing device according to an optional embodiment of the present invention.
  • the device includes all the modules shown in FIG. 8, and the above-mentioned device also includes:
  • the switching module 13 is configured to switch from the source physical downlink control channel search space group to the target physical downlink control channel search space group under the trigger of at least one bit in the dynamic control signaling, wherein the source physical downlink control channel search space group Including: at least one source search space set, the target physical downlink control channel search space group includes: at least one target search space set; or, triggered by at least one bit in the dynamic control signaling, searching from the same physical downlink control channel
  • the source parameter of the space group is switched to the target parameter, where the source parameter includes at least one of the following: a source detection period and a source detection position, and the target parameter includes at least one of the following: a target detection period and a target detection position.
  • the determining module 11 is configured to determine the minimum monitoring period value in at least one source search space set as the application delay when triggered by dynamic control signaling; or, when triggered by dynamic control signaling, Determine the value of the maximum monitoring period in at least one source search space set as the application delay; or, under the trigger of dynamic control signaling, determine the value of the minimum monitoring period in at least one target search space set as the application delay Or, under the trigger of dynamic control signaling, the value of the maximum monitoring period in at least one target search space set is determined as the application delay.
  • the determining module 11 is configured to use the source minimum offset value to determine the application time delay when triggered by dynamic control signaling; or, when triggered by the dynamic control signaling, use the target minimum offset value to determine the application time delay. Extension.
  • the determining module 11 is configured to configure the minimum offset value on the scheduled carrier when the cross-carrier handover or cross-bandwidth partial handover is performed.
  • the determining module 11 is configured to configure the search space collection monitoring period on the scheduling carrier when cross-carrier handover or cross-bandwidth partial handover.
  • the determining module 11 is configured to apply a delay to switch from the scheduled carrier to the scheduled carrier when the cross-carrier handover or cross-bandwidth partial handover occurs.
  • the determining module 11 is configured to set the first parameter, the second parameter, and the third parameter as input parameters of the preset function when the cross-carrier handover or cross-bandwidth partial handover is performed, and the application time delay is calculated, wherein,
  • the first parameter is the minimum offset value of the active bandwidth part of the scheduled carrier
  • the second parameter is the subcarrier spacing coefficient of the active bandwidth part of the scheduled carrier
  • the third parameter is the subcarrier spacing coefficient of the active bandwidth part of the scheduled carrier.
  • the preset function is a round-up or round-down function.
  • the determining module 11 is configured to determine the pre-configured value set by the network side device for the user equipment as the application delay under the trigger of the dynamic control signaling.
  • the first duration unit, the second duration unit, and the duration unit of the application delay are time slots.
  • the device includes all the modules shown in FIG. 8, and the above-mentioned device further includes: the above-mentioned device also includes: a fallback module 14, which is set as a timer pre-configured if the device on the network side If the control signaling on the target physical downlink control channel search space group to be transmitted to the user equipment is not received before the timeout, fall back to the source physical downlink control channel search space group; or, if the timer pre-configured on the network side device expires If the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group is not received before, it falls back to the default physical downlink control channel search space group pre-configured by the network side device.
  • a fallback module 14 which is set as a timer pre-configured if the device on the network side If the control signaling on the target physical downlink control channel search space group to be transmitted to the user equipment is not received before the timeout, fall back to the source physical downlink control channel search space group; or, if the
  • the device also includes: the device also includes: an adjustment module 15 configured to expire if a pre-configured timer on the network side device expires Before receiving the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group, the timer is updated or reset.
  • the device further includes: the device further includes: a start module 16, which is set to correspond to the timer in the dynamic control signaling When the value of the bit changes, the timer is started.
  • module can implement a combination of software and/or hardware with predetermined functions.
  • devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 10 is a structural block diagram of another signal receiving processing device according to one of the embodiments of the present invention.
  • the device includes: a configuration module 20 configured to configure dynamic control signaling, wherein the dynamic control signal The command is used to instruct the user equipment to determine the application delay, and the application delay is the delay for the user equipment to switch the signal receiving mode; the sending module 21 is configured to send dynamic control signaling to the user equipment, so that the user equipment is based on the dynamic control signaling Determine the application delay, and use the signal receiving mode after switching to perform the signal receiving operation.
  • the signal receiving mode includes: a control channel receiving mode; or, a signal measurement receiving mode.
  • the configuration module 20 is configured to configure at least one bit in the dynamic control signaling, where the at least one bit is used to trigger the user equipment to switch from the source physical downlink control channel search space group to the target physical downlink control channel search space group ,
  • the source physical downlink control channel search space group includes: at least one source search space set
  • the target physical downlink control channel search space group includes: at least one target search space set; or, at least one bit is configured in the dynamic control signaling, where, At least one bit is used to trigger the user equipment to switch from the source parameter to the target parameter of the same physical downlink control channel search space group
  • the source parameter includes at least one of the following: a source detection period, a source detection position
  • the target parameter includes at least one of the following: Target detection cycle, target detection position.
  • the configuration module 20 is configured to configure the value of the minimum monitoring period in the at least one source search space set as the application delay in the dynamic control signaling; or, configure the at least one source search space in the dynamic control signaling
  • the value of the maximum monitoring period in the set is configured as the application delay; or, in the dynamic control signaling, the value of the minimum monitoring period in at least one target search space set is configured as the application delay; or, in the dynamic control signaling
  • the value of the maximum monitoring period in at least one target search space set is configured as the application delay.
  • the configuration module 20 is configured to configure the source minimum offset value as the application delay in the dynamic control signaling; or configure the target minimum offset value as the application delay in the dynamic control signaling.
  • the configuration module 20 is configured to configure the set pre-configuration value as an application delay in the dynamic control signaling.
  • the configuration module 20 is further configured to configure a timer to control the user equipment to fall back if the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group is not received before the timer expires To the source physical downlink control channel search space group; or, if the control user equipment receives the control signaling to be transmitted to the user equipment on the target physical downlink control channel search space group before the timer expires, it triggers the user equipment to update or reset Timer.
  • the configuration module 20 is further configured to configure a timer and a default physical downlink control channel search space group to control the user equipment if it does not receive the target physical downlink control channel search space group before the timer expires to be transmitted to The control signaling of the user equipment falls back to the default physical downlink control channel search space group.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination.
  • the forms are located in different processors.
  • the embodiment of the present invention also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the aforementioned storage medium may be configured to store a computer program for executing the following steps:
  • S1 Receive dynamic control signaling from the network side device in a preset time period within the first time length unit, where the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the application delay is the user equipment handover signal reception Way delay;
  • the signal receiving operation is performed in the second time length unit using the switched signal receiving mode, where the second time length unit is determined by the first time length unit and the application time delay.
  • the storage medium is also configured to store a computer program for executing the following steps:
  • S2 Send the dynamic control signaling to the user equipment, so that the user equipment determines the application time delay based on the dynamic control signaling, and performs the signal receiving operation in the signal receiving mode after the handover.
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short), Various media that can store computer programs such as mobile hard disks, magnetic disks, or optical disks.
  • U disk Read-Only Memory
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Various media that can store computer programs such as mobile hard disks, magnetic disks, or optical disks.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in any of the foregoing method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the following steps through a computer program:
  • S1 Receive dynamic control signaling from the network side device in a preset time period within the first time length unit, where the dynamic control signaling is used to instruct the user equipment to determine the application delay, and the application delay is the user equipment handover signal reception Way delay;
  • the signal receiving operation is performed in the second time length unit using the switched signal receiving manner, where the second time length unit is determined by the first time length unit and the application time delay.
  • the above-mentioned processor may also be configured to execute the following steps through a computer program:
  • S2 Send the dynamic control signaling to the user equipment, so that the user equipment determines the application time delay based on the dynamic control signaling, and performs the signal receiving operation in the signal receiving mode after the handover.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network side device, etc.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号处理方法、装置、存储介质、处理器及电子装置。该方法包括:在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;基于动态控制信令确定应用时延;在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,第二时长单位由第一时长单位和应用时延确定。本发明解决了相关技术中通过半静态配置用户设备的控制信道检测方式,需要在经历用时较长的半静态重配之后才能够改变用户设备的控制信道监控周期,而且在重配期间存在模糊时间窗口,由此导致网络侧设备和用户设备双方的控制信道发射和检测缺乏一致性的技术问题。

Description

信号处理方法、装置、存储介质、处理器及电子装置 技术领域
本发明涉及通信领域,具体而言,涉及一种信号处理方法、装置、存储介质、处理器及电子装置。
背景技术
在第五代移动通信技术(5G)演进项目中,支持用户设备(UE)的节能增强。相关技术中,物理下行控制信道(Physical downlink control channel,简称为PDCCH)被配置为周期性检测。下行控制信道的检测周期为半静态配置,重配时延在数百毫秒以上。一种较为常见的情况在于多数的PDCCH检测机会上并没有检测到数据调度,但是用户设备仍然需要在PDCCH之后缓存数据。即,只要到达PDCCH周期,即便没有检测到数据调度,用户设备也需要在PDCCH之后缓存数据。另外,相关技术中,引入了一种通过网络侧设备通知终端进入Cross-slot调度状态的机制。即,网络侧设备可以通过PDCCH来通知终端的Cross-slot调度的状态。
然而,上述调度过程存在如下技术缺陷:通过半静态配置用户设备的控制信道检测方式,需要在经历用时较长的半静态重配之后才能够改变用户设备的控制信道监控周期,而且在重配期间存在模糊时间窗口,由此导致网络侧设备和用户设备双方的控制信道发射和检测缺乏一致性。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明至少部分实施例提供了一种信号处理方法、装置、存储介质、处理器及电子装置,以至少解决相关技术中通过半静态配置用户设备的控制信道检测方式,需要在经历用时较长的半静态重配之后才能够改变用户设备的控制信道监控周期,而且在重配期间存在模糊时间窗口,由此导致网络侧设备和用户设备双方的控制信道发射和检测缺乏一致性的技术问题。
根据本发明其中一实施例,提供了一种信号处理方法,包括:
在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;基于动态控制信令确定应用时延;在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,第二时长单位由第一时长单位和应用时延确定。
根据本发明其中一实施例,还提供了另一种信号处理方法,包括:
配置动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;将动态控制信令发送至用户设备,以使用户设备基于动态控制信令确定应用时延,并采用切换后的信号接收方式执行信号接收操作。
根据本发明其中一实施例,还提供了一种信号接收的处理装置,包括:
接收模块,设置为在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;确定模块,设置为基于动态控制信令确定应用时延;处理模块,设置为在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,第二时长单位由第一时长单位和应用时延确定。
根据本发明其中一实施例,还提供了另一种信号接收的处理装置,包括:
配置模块,设置为配置动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;发送模块,设置为将动态控制信令发送至用户设备,以使用户设备基于动态控制信令确定应用时延,并采用切换后的信号接收方式执行信号接收操作。
根据本发明其中一实施例,还提供了一种存储介质,存储介质中存储有计算机程序,其中,计算机程序被设置为运行时执行上述任一项中的信号处理方法。
根据本发明其中一实施例,还提供了一种处理器,处理器用于运行程序,其中,程序被设置为运行时执行上述任一项中的信号处理方法。
根据本发明其中一实施例,还提供了一种电子装置,包括存储器和处理器,存储器中存储有计算机程序,处理器被设置为运行计算机程序以执行上述任一项中的信号处理方法。
根据本发明其中一实施例,还提供了一种芯片,包括:处理器,设置为从存储器中调用并运行计算机程序,使得安装有芯片的设备执行上述任一项中的信号处理方法。
根据本发明其中一实施例,还提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述任一项中的信号处理方法。
根据本发明其中一实施例,还提供了一种计算机程序,计算机程序使得计算机执行上述任一项中的信号处理方法。
在本发明至少部分实施例中,采用在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,该动态控制信令用于指示用户设备确定应用时延,以及该应用时延为用户设备切换信号接收方式的时延的方式,通过动态控制信令确定应用时延并在第二时长单位采用切换后的信号接收方式执行信号接收操作,该第二时长单位由第一时长单位和应用时延确定,达到了通过动态控制信令所确定的应用时延,使得网络侧设备与用户设备在相同的时长单位内执行信号发送和信号接收操作(例如:按照相同的控制信道检测周期发送和接收控制信道)的目的,从而实现了通过引入应用时延机制确保网络侧设备和用户设备双方的信号发射与信号接收一致性的技术效果,进而解决了相关技术中通过半静态配置用户设备的控制信道检测方式,需要在经历用时较长的半静态重配之后才能够改变用户设备的控制信道监控周期,而且在重配期间存在模糊时间窗口,由此导致网络侧设备和用户设备双方的控制信道发射和检测缺乏一致性的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术的跨slot调度节约功耗示意图;
图2是根据相关技术的物理下行控制信道和物理下行共享信道的配置示意图;
图3是根据相关技术的半静态切换示意图;
图4是根据相关技术的跨载波调度切换示意图;
图5是根据本发明其中一实施例的信号处理方法的流程图;
图6是根据本发明其中一可选实施例的用户设备在一个载波上的拉长或缩短PDCCH监控周期的状态转换方式示意图;
图7是根据本发明其中一实施例的另一种信号处理方法的流程图;
图8是根据本发明其中一实施例的信号接收的处理装置的结构框图;
图9是根据本发明其中一可选实施例的信号接收的处理装置的结构框图;
图10是根据本发明其中一实施例的另一种信号接收的处理装置的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单 元。
图1是根据相关技术的跨slot调度节约功耗示意图,如图1所示,PDCCH被配置为周期性检测。k0表示PDCCH所在的slot与被调度的PDSCH所在的slot偏移值。一种较为常见的情况在于多数的PDCCH检测机会上并没有检测到数据调度,但是用户设备仍然需要在PDCCH之后缓存数据。即,只要到达PDCCH周期,即便没有检测到数据调度,用户设备也需要在PDCCH之后缓存数据。例如,在slot n之内,阴影部分说明用户设备的射频模块无法休眠且需要缓存。如果PDCCH处理时间向后推迟一个slot,则在slot n+1之内,阴影部分说明用户设备的射频模块可休眠,其功耗明显减少。由此,在实现跨slot调度之后,用户设备可以省略PDCCH之后的缓存环节,进而在PDCCH之后立即关闭射频模块。
相关技术中,引入了一种通过网络侧设备通知终端进入Cross-slot调度状态的机制。即,网络侧设备可以通过PDCCH来通知终端的Cross-slot调度的状态。在Cross-slot调度的状态下,用户设备可以假定每次网络侧设备调度所给定的k0值大于一个预设阈值(即Minimum k0值)。该预设阈值由网络侧设备预配置给用户设备。
如上所述,PDCCH被配置为周期性检测。现有的下行控制信道的检测周期为半静态配置,重配时延在数百毫秒以上。图2是根据相关技术的物理下行控制信道和物理下行共享信道的配置示意图,如图2所示,在用户设备进入跨载波调度之后,物理下行共享信道(Physical downlink shared channel,简称为PDSCH)数据调度频率也会相应地减少。
图3是根据相关技术的半静态切换示意图,如图3所示,虽然可以采用PDCCH直接指示用户设备进入跨slot节能方式,由此能够更好地适应动态的调度变化,但是PDCCH的检测周期的切换用时过长。
图4是根据相关技术的跨载波调度切换示意图,如图4所示,在跨载波调度切换之后,PDCCH监控周期无法得到相应的调整。当用户设备接收到跨slot调度的节能指示时,用户设备可能仍然需要在每个slot进行PDCCH检测。由此用户设备将难以达到连续关断下行接收,以实现更好节能的目标。
除此之外,在PDCCH指示方式下,PDSCH数据调度也存在一些问题需要考虑,例如:由于PDCCH信号存在一定的漏检概率,因此一旦用户设备丢失网络侧设备发送的控制信道周期切换信号,便会发生用户设备与网络侧设备缺乏一致性,从而会发生连续的后继下行控制信令丢失的问题。另外,由于现有的下行控制信道的检测周期为半静态配置,因此导致半静态转换用时过长,从而无法满足更好地用户设备节电需求。
根据本发明其中一实施例,提供了一种信号处理方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
该方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,移动终端可以包括一个或多个处理器(处理器可以包括但不限于中央处理器(CPU)、图形处理器(GPU)、数字信号处理(DSP)芯片、微处理器(MCU)或可编程逻辑器件(FPGA)等的处理装置)和用于存储数据的存储器。可选地,上述移动终端还可以包括用于通信功能的传输设备、输入输出设备以及显示设备。本领域普通技术人员可以理解,上述结构描述仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比上述结构描述更多或者更少的组件,或者具有与上述结构描述不同的配置。
存储器可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本发明实施例中的信号处理方法对应的计算机程序,处理器通过运行存储在存储器内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的信号处理方法。存储器可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输设备包括一个网络适配 器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输设备可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
显示设备可以例如触摸屏式的液晶显示器(LCD)和触摸显示器(也被称为“触摸屏”或“触摸显示屏”)。该液晶显示器可使得用户能够与移动终端的用户界面进行交互。在一些实施例中,上述移动终端具有图形用户界面(GUI),用户可以通过触摸触敏表面上的手指接触和/或手势来与GUI进行人机交互,此处的人机交互功能可选的包括如下交互:创建网页、绘图、文字处理、制作电子文档、游戏、视频会议、即时通信、收发电子邮件、通话界面、播放数字视频、播放数字音乐和/或网络浏览等、用于执行上述人机交互功能的可执行指令被配置/存储在一个或多个处理器可执行的计算机程序产品或可读存储介质中。
在本实施例中提供了一种运行于上述移动终端的信号处理方法,图5是根据本发明其中一实施例的信号处理方法的流程图,如图5所示,该方法包括如下步骤:
步骤S50,在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;
步骤S52,基于动态控制信令确定应用时延;
步骤S54,在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,第二时长单位由第一时长单位和应用时延确定。
通过上述步骤,可以采用在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,该动态控制信令用于指示用户设备确定应用时延,该应用时延为用户设备切换信号接收方式的时延的方式,通过动态控制信令确定应用时延并在第二时长单位采用切换后的信号接收方式执行信号接收操作,该第二时长单位由第一时长单位和应用时延确定,达到了通过动态控制信令所确定的应用时延,使得网络侧设备与用户设备在相同的时长单位内执行信号发送和信号接收操作(例如:按照相同的控制信道检测周期发送和接收控制信道)的目的,从而实现了通过引入应 用时延机制确保网络侧设备和用户设备双方的信号发射与信号接收一致性的技术效果,进而解决了相关技术中通过半静态配置用户设备的控制信道检测方式,需要在经历用时较长的半静态重配之后才能够改变用户设备的控制信道监控周期,而且在重配期间存在模糊时间窗口,由此导致网络侧设备和用户设备双方的控制信道发射和检测缺乏一致性的技术问题。
在可选实施例中,上述第一时长单位、第二时长单位以及应用时延的时长单位均可以为时隙,即slot。
可选地,上述信号接收方式可以包括但不限于:
(1)控制信道接收方式;或者,
(2)信号测量接收方式。
本发明实施例所适用的应用场景并不局限于控制信道接收方式(例如:以减少PDCCH检测为目标的控制信道接收方式),其所涉及的控制信道检测减少方式还可以进一步适用于其他减少功耗操作的场景,例如:与信号测量相关的接收方式。下面将以控制信道接收方式为例对本发明的实施过程做进一步详细描述。需要说明的是,其实施过程同样适用于其他减少功耗操作的场景。
相关技术中通常只会通过动态控制信令来转换cross-slot调度的最小k值。然而,PDCCH监控周期无法得到及时变换,而且由于在用户设备执行PDCCH监控的功耗较大,由此难以达到更佳的节能功效。另外,如果用户设备动态地调整控制信道监控周期,则容易产生模糊时间窗口。在该模糊时间窗口上会导致无法检测控制信道,从而导致网络侧设备和用户设备双方的控制信道发射和检测缺乏一致性。为此,本发明实施例通过动态控制信令来触发用户设备确定应用时延的机制,使得网络侧设备更加灵活地触发用户设备实现精细的节能功能,而且不增加控制信道格式的复杂程度。另外,还可以不增加专用节能信号去指示每个载波上的省电信号,以及不需要配置额外的节能物理层信号的专用控制信令。
上述预设时间段可以通过高层信令预先配置完成。在控制信道接收方式中,尽管下行控制信道的传输周期是以slot为单位进行配置的,但是下行控制信道并不会 占用整个第一时长单位进行传输,其通常会占用整个第一时长单位内的部分时间段进行传输。如果slot在时间维度上划分为14个符号,则下行控制信道通常会占用其中的1-3个符号进行传输。由此,如果用户设备在slot n接收到上述动态控制信令,并确定应用时延为x个slot,那么用户设备将会在slot n+x采用切换后的信号接收方式执行信号接收操作。例如:用户设备将会在slot n+x采用新的检测周期和检测位置进行PDCCH检测。
在一个可选实施例中,上述动态控制信令可以为下行控制信息(Downlink control information,简称为DCI)。图6是根据本发明其中一可选实施例的用户设备在一个载波上的拉长或缩短PDCCH监控周期的状态转换方式示意图,如图6所示,该转换可以通过载波上的一个PDCCH DCI来触发。该DCI还可以用于调度数据。通过该可选实施例可以达到PDCCH监控周期=Minimum k0+1的技术效果。
可选地,在步骤S50,第一时长单位接收来自于网络侧设备的动态控制信令之后,还包括以下执行步骤:
步骤S51,在动态控制信令中的至少一个比特的触发下,从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,其中,源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合,目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合;或者,在动态控制信令中的至少一个比特的触发下,从同一个物理下行控制信道搜索空间组的源参数切换至目标参数,其中,源参数包括以下至少之一:源检测周期、源检测位置,目标参数包括以下至少之一:目标检测周期、目标检测位置。
网络侧设备可以通过在动态控制信令中配置至少一个比特(bit)来触发用户设备从源物理下行控制信道搜索空间(Search Space,简称为SS)组切换至目标物理下行控制信道搜索空间组。源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合(Search Space Set,简称为SS Set),目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合。在不同PDCCH搜索空间组之间的切换过程中,切换后的PDCCH搜索空间组为目标PDCCH搜索空间组,而切换前的PDCCH搜索空间组为源PDCCH搜索空间组。
另外,网络侧设备可以通过在动态控制信令中配置至少一个bit来触发用户设备从同一个物理下行控制信道搜索空间组的源参数切换至目标参数。源参数包括以下至少之一:源检测周期、源检测位置,目标参数包括以下至少之一:目标检测周期、目标检测位置。在同一个PDCCH搜索空间组中不同参数之间的切换过程中,切换后的参数为目标参数,而切换前的参数为源参数。需要说明的是,上述检测周期越长,用户设备的节能效果越好。
可选地,当源物理下行控制信道搜索空间组被触发切换至目标物理下行控制信道搜索空间组时,在步骤S52中,基于动态控制信令确定应用时延可以包括:
步骤S521,在动态控制信令的触发下,将至少一个源搜索空间集合中的最小监控周期的数值确定为应用时延;
在不同PDCCH搜索空间组之间的切换过程中,在动态控制信令的触发下,可以将至少一个源搜索空间集合中的最小监控周期的数值确定为应用时延。例如:用户设备从源物理下行控制信道搜索空间组A切换至目标物理下行控制信道搜索空间组B。源物理下行控制信道搜索空间组A包括:源SS Set 1,源SS Set 2和源SS Set 3。此时,可以通过源SS Set 1,源SS Set 2和源SS Set 3中最小监控周期的数值来确定应用时延。
步骤S522,在动态控制信令的触发下,将至少一个源搜索空间集合中的最大监控周期的数值确定为应用时延;
在不同PDCCH搜索空间组之间的切换过程中,在动态控制信令的触发下,可以将至少一个源搜索空间集合中的最大监控周期的数值确定为应用时延。例如:用户设备从源物理下行控制信道搜索空间组A切换至目标物理下行控制信道搜索空间组B。源物理下行控制信道搜索空间组A包括:源SS Set 1,源SS Set 2和源SS Set 3。此时,可以通过源SS Set 1,源SS Set 2和源SS Set 3中最大监控周期的数值来确定应用时延。
步骤S523,在动态控制信令的触发下,将至少一个目标搜索空间集合中的最小监控周期的数值确定为应用时延;
在不同PDCCH搜索空间组之间的切换过程中,在动态控制信令的触发下,可以将至少一个源搜索空间集合中的最小监控周期的数值确定为应用时延。例如:用户设备从源物理下行控制信道搜索空间组A切换至目标物理下行控制信道搜索空间组B。目标物理下行控制信道搜索空间组B包括:目标SS Set 1,目标SS Set 2和目标SS Set 3。此时,可以通过目标SS Set 1,目标SS Set 2和目标SS Set 3中最小监控周期的数值来确定应用时延。
步骤S524,在动态控制信令的触发下,将至少一个目标搜索空间集合中的最大监控周期的数值确定为应用时延。
在不同PDCCH搜索空间组之间的切换过程中,在动态控制信令的触发下,可以将至少一个源搜索空间集合中的最大监控周期的数值确定为应用时延。例如:用户设备从源物理下行控制信道搜索空间组A切换至目标物理下行控制信道搜索空间组B。目标物理下行控制信道搜索空间组B包括:目标SS Set 1,目标SS Set 2和目标SS Set 3。此时,可以通过目标SS Set 1,目标SS Set 2和目标SS Set 3中最大监控周期的数值来确定应用时延。
可选地,当源物理下行控制信道搜索空间组被触发切换至目标物理下行控制信道搜索空间组以及源最小偏移值(即源Minimum k0值)被触发切换至目标最小偏移值(即目标Minimum k0值)时,在步骤S52中,基于动态控制信令确定应用时延可以包括:
步骤S525,在动态控制信令的触发下,采用源最小偏移值确定应用时延;
即,用户设备采用源Minimum k0值确定应用时延。
步骤S526,在动态控制信令的触发下,采用目标最小偏移值确定应用时延。
即,用户设备采用目标Minimum k0值确定应用时延。
可选地,在多载波调度情况下,当跨载波切换或跨带宽部分(Bandwidth part,简称为BWP)切换时,最小偏移值被配置在被调度载波上,搜索空间集合监控周期被配置在调度载波上,应用时延从被调度载波转换至调度载波。此时,用户设备可以将第一参数、第二参数以及第三参数设置为预设函数的输入参数,计算得到应用 时延。第一参数为被调度载波的激活带宽部分的最小偏移值,第二参数为调度载波的激活带宽部分的子载波间隔系数,第三参数为被调度载波的激活带宽部分的子载波间隔系数,预设函数为向上取整或向下取整函数。
即,用户设备可以基于如下公式来确定应用时延:
f(minK0,scheduled*2^μscheudling/2^μscheudled)–1;
其中,minK0,scheduled为被调度载波的激活BWP的Minimum k0值,μscheudling为调度载波的激活BWP的子载波间隔(Subcarrier Spacing,简称为SCS)系数,μscheudled为被调度载波的激活BWP的SCS系数,而f()为特定函数,例如:向上取整函数或向下取整函数。
可选地,在步骤S52中,基于动态控制信令确定应用时延可以包括以下执行步骤:
步骤S527,在动态控制信令的触发下,将网络侧设备为用户设备设定的预先配置值确定为应用时延。
网络侧设备除了上述通过在动态控制信令中配置至少一个bit来触发用户设备从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,或者,触发用户设备从同一个物理下行控制信道搜索空间组的源参数切换至目标参数之外,还可以设定的预先配置值,以便用户设备在动态控制信令的触发下,可以直接将网络侧设备为用户设备设定的预先配置值确定为应用时延。
可选地,上述方法还可以包括以下执行步骤:
步骤S55,如果在网络侧设备预先配置的定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则回退至源物理下行控制信道搜索空间组。
关于用户设备在丢失切换信令之后的处理方式,当动态控制信令中与定时器对应的bit位的数值发生变化时,可以启动定时器。即,在相邻两次发送动态控制信令的过程中,如果bit位的数值未发生变化,则无需启动定时器;如果bit位的数值发 生变化,则需要启动定时器。该定时器的作用在于:在不同PDCCH搜索空间组之间的切换过程中,如果用户设备在网络侧设备预先配置的定时器超时前未接收到目标PDCCH搜索空间组上待传输至用户设备的控制信令,则回退至源PDCCH搜索空间组。
可选地,上述方法还可以包括以下执行步骤:
步骤S56,如果在网络侧设备预先配置的定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则回退至网络侧设备预先配置的缺省物理下行控制信道搜索空间组。
在不同PDCCH搜索空间组之间的切换过程中,用户设备在网络侧设备预先配置的定时器超时前未接收到目标PDCCH搜索空间组上待传输至用户设备的控制信令的情况下,用户设备除了可以执行回退至源PDCCH搜索空间组的操作之外,还可以回退至网络侧设备预先配置的缺省PDCCH搜索空间组。
可选地,上述方法还可以包括以下执行步骤:
步骤S57,如果在网络侧设备预先配置的定时器超时前接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则更新或重置定时器。
在不同PDCCH搜索空间组之间的切换过程中,如果用户设备在网络侧设备预先配置的定时器超时前接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则可以更新定时器(即从第一定时器数值更新为第二定时器数值)或重置定时器(即从当前定时器数值重置为默认定时器数值)。
根据本发明其中一实施例,还提供了另一种信号处理方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在本实施例中提供了一种运行于网络侧设备的信号处理方法,图7是根据本发 明其中一实施例的另一种信号处理方法的流程图,如图7所示,该方法包括如下步骤:
步骤S70,配置动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;
步骤S72,将动态控制信令发送至用户设备,以使用户设备基于动态控制信令确定应用时延,并采用切换后的信号接收方式执行信号接收操作。
通过上述步骤,可以采用配置动态控制信令,该动态控制信令用于指示用户设备确定应用时延,以及该应用时延为用户设备切换信号接收方式的时延的方式,通过将动态控制信令发送至用户设备,以使用户设备基于动态控制信令确定应用时延并采用切换后的信号接收方式执行信号接收操作,达到了通过动态控制信令所确定的应用时延,使得网络侧设备与用户设备在相同的时长单位内执行信号发送和信号接收操作(例如:按照相同的控制信道检测周期发送和接收控制信道)的目的,从而实现了通过引入应用时延机制确保网络侧设备和用户设备双方的信号发射与信号接收一致性的技术效果,进而解决了相关技术中通过半静态配置用户设备的控制信道检测方式,需要在经历用时较长的半静态重配之后才能够改变用户设备的控制信道监控周期,而且在重配期间存在模糊时间窗口,由此导致网络侧设备和用户设备双方的控制信道发射和检测缺乏一致性的技术问题。
在可选实施例中,上述应用时延的时长单位均可以为时隙,即slot。
可选地,上述信号接收方式可以包括但不限于:
(1)控制信道接收方式;或者,
(2)信号测量接收方式。
本发明实施例所适用的应用场景并不局限于控制信道接收方式(例如:以减少PDCCH检测为目标的控制信道接收方式),其所涉及的控制信道检测减少方式还可以进一步适用于其他减少功耗操作的场景,例如:与信号测量相关的接收方式。下面将以控制信道接收方式为例对本发明的实施过程做进一步详细描述。需要说明的是,其实施过程同样适用于其他减少功耗操作的场景。
可选地,在步骤S70中,配置动态控制信令可以包括:
步骤S701,在动态控制信令中配置至少一个比特,其中,至少一个比特用于触发用户设备从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合,目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合;
网络侧设备可以通过在动态控制信令中配置至少一个比特(bit)来触发用户设备从源物理下行控制信道搜索空间(Search Space,简称为SS)组切换至目标物理下行控制信道搜索空间组。源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合(Search Space Set,简称为SS Set),目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合。在不同PDCCH搜索空间组之间的切换过程中,切换后的PDCCH搜索空间组为目标PDCCH搜索空间组,而切换前的PDCCH搜索空间组为源PDCCH搜索空间组。
步骤S702,在动态控制信令中配置至少一个比特,其中,至少一个比特用于触发用户设备从同一个物理下行控制信道搜索空间组的源参数切换至目标参数,源参数包括以下至少之一:源检测周期、源检测位置,目标参数包括以下至少之一:目标检测周期、目标检测位置。
网络侧设备可以通过在动态控制信令中配置至少一个bit来触发用户设备从同一个物理下行控制信道搜索空间组的源参数切换至目标参数。源参数包括以下至少之一:源检测周期、源检测位置,目标参数包括以下至少之一:目标检测周期、目标检测位置。在同一个PDCCH搜索空间组中不同参数之间的切换过程中,切换后的参数为目标参数,而切换前的参数为源参数。
可选地,当源物理下行控制信道搜索空间组被触发切换至目标物理下行控制信道搜索空间组时,在步骤S70中,配置动态控制信令可以包括:
步骤S703,在动态控制信令中将至少一个源搜索空间集合中的最小监控周期的数值配置为应用时延;
在不同PDCCH搜索空间组之间的切换过程中,在动态控制信令的触发下,可 以将至少一个源搜索空间集合中的最小监控周期的数值确定为应用时延。例如:用户设备从源物理下行控制信道搜索空间组A切换至目标物理下行控制信道搜索空间组B。源物理下行控制信道搜索空间组A包括:源SS Set 1,源SS Set 2和源SS Set 3。此时,可以通过源SS Set 1,源SS Set 2和源SS Set 3中最小监控周期的数值来确定应用时延。
步骤S704,在动态控制信令中将至少一个源搜索空间集合中的最大监控周期的数值配置为应用时延;
在不同PDCCH搜索空间组之间的切换过程中,在动态控制信令的触发下,可以将至少一个源搜索空间集合中的最大监控周期的数值确定为应用时延。例如:用户设备从源物理下行控制信道搜索空间组A切换至目标物理下行控制信道搜索空间组B。源物理下行控制信道搜索空间组A包括:源SS Set 1,源SS Set 2和源SS Set 3。此时,可以通过源SS Set 1,源SS Set 2和源SS Set 3中最大监控周期的数值来确定应用时延。
步骤S705,在动态控制信令中将至少一个目标搜索空间集合中的最小监控周期的数值配置为应用时延;
在不同PDCCH搜索空间组之间的切换过程中,在动态控制信令的触发下,可以将至少一个源搜索空间集合中的最小监控周期的数值确定为应用时延。例如:用户设备从源物理下行控制信道搜索空间组A切换至目标物理下行控制信道搜索空间组B。目标物理下行控制信道搜索空间组B包括:目标SS Set 1,目标SS Set 2和目标SS Set 3。此时,可以通过目标SS Set 1,目标SS Set 2和目标SS Set 3中最小监控周期的数值来确定应用时延。
步骤S706,在动态控制信令中将至少一个目标搜索空间集合中的最大监控周期的数值配置为应用时延。
在不同PDCCH搜索空间组之间的切换过程中,在动态控制信令的触发下,可以将至少一个源搜索空间集合中的最大监控周期的数值确定为应用时延。例如:用户设备从源物理下行控制信道搜索空间组A切换至目标物理下行控制信道搜索空间 组B。目标物理下行控制信道搜索空间组B包括:目标SS Set 1,目标SS Set 2和目标SS Set 3。此时,可以通过目标SS Set 1,目标SS Set 2和目标SS Set 3中最大监控周期的数值来确定应用时延。
可选地,当源物理下行控制信道搜索空间组被触发切换至目标物理下行控制信道搜索空间组以及源最小偏移值(即源Minimum k0值)被触发切换至目标最小偏移值(即目标Minimum k0值)时,在步骤S70中,配置动态控制信令可以包括:
步骤S707,在动态控制信令中将源最小偏移值配置为应用时延;
即,用户设备采用源Minimum k0值确定应用时延。
步骤S708,在动态控制信令中将目标最小偏移值配置为应用时延。
即,用户设备采用目标Minimum k0值确定应用时延。
可选地,在步骤S70中,配置动态控制信令可以包括以下执行步骤:
步骤S709,在动态控制信令中将设定的预先配置值配置为应用时延。
网络侧设备除了上述通过在动态控制信令中配置至少一个bit来触发用户设备从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,或者,触发用户设备从同一个物理下行控制信道搜索空间组的源参数切换至目标参数之外,还可以设定的预先配置值,以便用户设备在动态控制信令的触发下,可以直接将网络侧设备为用户设备设定的预先配置值确定为应用时延。
可选地,上述方法还可以包括以下执行步骤:
步骤S73,为用户设备配置定时器,以控制用户设备如果在定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则回退至源物理下行控制信道搜索空间组;或者,控制用户设备如果在定时器超时前接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则触发用户设备更新或重置定时器。
关于用户设备在丢失切换信令之后的处理方式,当动态控制信令中与定时器对 应的比特位的数值发生变化时,可以启动定时器。该定时器的作用在于:在不同PDCCH搜索空间组之间的切换过程中,如果用户设备在网络侧设备预先配置的定时器超时前未接收到目标PDCCH搜索空间组上待传输至用户设备的控制信令,则回退至源PDCCH搜索空间组。
在不同PDCCH搜索空间组之间的切换过程中,如果用户设备在网络侧设备预先配置的定时器超时前接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则可以更新定时器(即从第一定时器数值更新为第二定时器数值)或重置定时器(即从当前定时器数值重置为默认定时器数值)。
可选地,上述方法还可以包括以下执行步骤:
步骤S74,为用户设备配置定时器和缺省物理下行控制信道搜索空间组,以控制用户设备如果在定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则回退至缺省物理下行控制信道搜索空间组。
在不同PDCCH搜索空间组之间的切换过程中,用户设备在网络侧设备预先配置的定时器超时前未接收到目标PDCCH搜索空间组上待传输至用户设备的控制信令的情况下,用户设备除了可以执行回退至源PDCCH搜索空间组的操作之外,还可以回退至网络侧设备预先配置的缺省PDCCH搜索空间组。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种信号接收的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可 以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是根据本发明其中一实施例的信号接收的处理装置的结构框图,如图8所示,该装置包括:接收模块10,设置为在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;确定模块11,设置为基于动态控制信令确定应用时延;处理模块12,设置为在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,第二时长单位由第一时长单位和应用时延确定。
可选地,信号接收方式包括:控制信道接收方式;或者,信号测量接收方式。
可选地,图9是根据本发明其中一可选实施例的信号接收的处理装置的结构框图,如图9所示,该装置除包括图8所示的所有模块外,上述装置还包括:切换模块13,设置为在动态控制信令中的至少一个比特的触发下,从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,其中,源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合,目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合;或者,在动态控制信令中的至少一个比特的触发下,从同一个物理下行控制信道搜索空间组的源参数切换至目标参数,其中,源参数包括以下至少之一:源检测周期、源检测位置,目标参数包括以下至少之一:目标检测周期、目标检测位置。
可选地,确定模块11,设置为在动态控制信令的触发下,将至少一个源搜索空间集合中的最小监控周期的数值确定为应用时延;或者,在动态控制信令的触发下,将至少一个源搜索空间集合中的最大监控周期的数值确定为应用时延;或者,在动态控制信令的触发下,将至少一个目标搜索空间集合中的最小监控周期的数值确定为应用时延;或者,在动态控制信令的触发下,将至少一个目标搜索空间集合中的最大监控周期的数值确定为应用时延。
可选地,确定模块11,设置为在动态控制信令的触发下,采用源最小偏移值确定应用时延;或者,在动态控制信令的触发下,采用目标最小偏移值确定应用时延。
可选地,确定模块11,设置为当跨载波切换或跨带宽部分切换时,最小偏移值被配置在被调度载波上。
可选地,确定模块11,设置为当跨载波切换或跨带宽部分切换时,搜索空间集合监控周期被配置在调度载波上。
可选地,确定模块11,设置为当跨载波切换或跨带宽部分切换时,应用时延从被调度载波转换至调度载波。
可选地,确定模块11,设置为当跨载波切换或跨带宽部分切换时,将第一参数、第二参数以及第三参数设置为预设函数的输入参数,计算得到应用时延,其中,第一参数为被调度载波的激活带宽部分的最小偏移值,第二参数为调度载波的激活带宽部分的子载波间隔系数,第三参数为被调度载波的激活带宽部分的子载波间隔系数,预设函数为向上取整或向下取整函数。
可选地,确定模块11,设置为在动态控制信令的触发下,将网络侧设备为用户设备设定的预先配置值确定为应用时延。
可选地,第一时长单位、第二时长单位以及应用时延的时长单位为时隙。
可选地,如图9所示,该装置除包括图8所示的所有模块外,上述装置还包括:上述装置还包括:回退模块14,设置为如果在网络侧设备预先配置的定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则回退至源物理下行控制信道搜索空间组;或者,如果在网络侧设备预先配置的定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则回退至网络侧设备预先配置的缺省物理下行控制信道搜索空间组。
可选地,如图9所示,该装置除包括图8所示的所有模块外,上述装置还包括:上述装置还包括:调整模块15,设置为如果在网络侧设备预先配置的定时器超时前接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则更新或重置定时器。
可选地,如图9所示,该装置除包括图8所示的所有模块外,上述装置还包括:上述装置还包括:启动模块16,设置为当动态控制信令中与定时器对应的比特位的 数值发生变化时,启动定时器。
在本实施例中还提供了另一种信号接收的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本发明其中一实施例的另一种信号接收的处理装置的结构框图,如图10所示,该装置包括:配置模块20,设置为配置动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;发送模块21,设置为将动态控制信令发送至用户设备,以使用户设备基于动态控制信令确定应用时延,并采用切换后的信号接收方式执行信号接收操作。
可选地,信号接收方式包括:控制信道接收方式;或者,信号测量接收方式。
可选地,配置模块20,设置为在动态控制信令中配置至少一个比特,其中,至少一个比特用于触发用户设备从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合,目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合;或者,在动态控制信令中配置至少一个比特,其中,至少一个比特用于触发用户设备从同一个物理下行控制信道搜索空间组的源参数切换至目标参数,源参数包括以下至少之一:源检测周期、源检测位置,目标参数包括以下至少之一:目标检测周期、目标检测位置。
可选地,配置模块20,设置为在动态控制信令中将至少一个源搜索空间集合中的最小监控周期的数值配置为应用时延;或者,在动态控制信令中将至少一个源搜索空间集合中的最大监控周期的数值配置为应用时延;或者,在动态控制信令中将至少一个目标搜索空间集合中的最小监控周期的数值配置为应用时延;或者,在动态控制信令中将至少一个目标搜索空间集合中的最大监控周期的数值配置为应用时延。
可选地,配置模块20,设置为在动态控制信令中将源最小偏移值配置为应用时延;或者,在动态控制信令中将目标最小偏移值配置为应用时延。
可选地,配置模块20,设置为在动态控制信令中将设定的预先配置值配置为应用时延。
可选地,配置模块20,还设置为配置定时器,以控制用户设备如果在定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则回退至源物理下行控制信道搜索空间组;或者,控制用户设备如果在定时器超时前接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则触发用户设备更新或重置定时器。
可选地,配置模块20,还设置为配置定时器和缺省物理下行控制信道搜索空间组,以控制用户设备如果在定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至用户设备的控制信令,则回退至缺省物理下行控制信道搜索空间组。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;
S2,基于动态控制信令确定应用时延;
S3,在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,第 二时长单位由第一时长单位和应用时延确定。
可选地,存储介质还被设置为存储用于执行以下步骤的计算机程序:
S1,配置动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;
S2,将动态控制信令发送至用户设备,以使用户设备基于动态控制信令确定应用时延,并采用切换后的信号接收方式执行信号接收操作。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;
S2,基于动态控制信令确定应用时延;
S3,在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,第二时长单位由第一时长单位和应用时延确定。
可选地,在本实施例中,上述处理器还可以被设置为通过计算机程序执行以下 步骤:
S1,配置动态控制信令,其中,动态控制信令用于指示用户设备确定应用时延,应用时延为用户设备切换信号接收方式的时延;
S2,将动态控制信令发送至用户设备,以使用户设备基于动态控制信令确定应用时延,并采用切换后的信号接收方式执行信号接收操作。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用 时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络侧设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (51)

  1. 一种信号处理方法,包括:
    在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,所述动态控制信令用于指示用户设备确定应用时延,所述应用时延为所述用户设备切换信号接收方式的时延;
    基于所述动态控制信令确定所述应用时延;
    在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,所述第二时长单位由所述第一时长单位和所述应用时延确定。
  2. 根据权利要求1所述的方法,其中,所述信号接收方式包括:
    控制信道接收方式;或者,
    信号测量接收方式。
  3. 根据权利要求1或2所述的方法,其中,在所述第一时长单位接收来自于所述网络侧设备的所述动态控制信令之后,还包括:
    在所述动态控制信令中的至少一个比特的触发下,从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,其中,所述源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合,所述目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合;或者,
    在所述动态控制信令中的至少一个比特的触发下,从同一个物理下行控制信道搜索空间组的源参数切换至目标参数,其中,所述源参数包括以下至少之一:源检测周期、源检测位置,所述目标参数包括以下至少之一:目标检测周期、目标检测位置。
  4. 根据权利要求1至3中任一项所述的方法,其中,当源物理下行控制信道搜索空间组被触发切换至目标物理下行控制信道搜索空间组时,基于所述动态控制信令确定所述应用时延包括:
    在所述动态控制信令的触发下,将至少一个源搜索空间集合中的最小监控周期的数值确定为所述应用时延;或者,
    在所述动态控制信令的触发下,将至少一个源搜索空间集合中的最大监控周期的数值确定为所述应用时延;或者,
    在所述动态控制信令的触发下,将至少一个目标搜索空间集合中的最小监控周期的数值确定为所述应用时延;或者,
    在所述动态控制信令的触发下,将至少一个目标搜索空间集合中的最大监控周期的数值确定为所述应用时延。
  5. 根据权利要求1至3中任一项所述的方法,其中,当源物理下行控制信道搜索空间组被触发切换至目标物理下行控制信道搜索空间组以及源最小偏移值被触发切换至目标最小偏移值时,基于所述动态控制信令确定所述应用时延包括:
    在所述动态控制信令的触发下,采用所述源最小偏移值确定所述应用时延;或者,
    在所述动态控制信令的触发下,采用所述目标最小偏移值确定所述应用时延。
  6. 根据权利要求5所述的方法,其中,当跨载波切换或跨带宽部分切换时,最小偏移值被配置在被调度载波上。
  7. 根据权利要求5所述的方法,其中,当跨载波切换或跨带宽部分切换时,搜索空间集合监控周期被配置在调度载波上。
  8. 根据权利要求5所述的方法,其中,当跨载波切换或跨带宽部分切换时,所述应用时延从被调度载波转换至所述调度载波。
  9. 根据权利要求5所述的方法,其中,当跨载波切换或跨带宽部分切换时,将第一参数、第二参数以及第三参数设置为预设函数的输入参数,计算得到所述应用时延,其中,所述第一参数为被调度载波的激活带宽部分的最小偏移值,所述第二参数为所述调度载波的激活带宽部分的子载波间隔系数,所述第三参数为所述被调度载波的激活带宽部分的子载波间隔系数,所述预设函数为向上取整或向下取整函数。
  10. 根据权利要求1所述的方法,其中,基于所述动态控制信令确定所述应用时延包括:
    在所述动态控制信令的触发下,将所述网络侧设备为所述用户设备设定的预先配置值确定为所述应用时延。
  11. 根据权利要求1所述的方法,其中,所述第一时长单位、所述第二时长单位以及所述应用时延的时长单位为时隙。
  12. 根据权利要求1至3中任一项所述的方法,其中,所述方法还包括:
    如果在所述网络侧设备预先配置的定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则回退至源物理下行控制信道搜索空间组。
  13. 根据权利要求1至3中任一项所述的方法,其中,所述方法还包括:
    如果在所述网络侧设备预先配置的定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则回退至所述网络侧设备预先配置的缺省物理下行控制信道搜索空间组。
  14. 根据权利要求1至3中任一项所述的方法,其中,所述方法还包括:
    如果在所述网络侧设备预先配置的定时器超时前接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则更新或重置所述定时器。
  15. 根据权利要求12至14中任一项所述的方法,其中,当所述动态控制信令中与所述定时器对应的比特位的数值发生变化时,启动所述定时器。
  16. 一种信号处理方法,包括:
    配置动态控制信令,其中,所述动态控制信令用于指示用户设备确定应用时延,所述应用时延为所述用户设备切换信号接收方式的时延;
    将所述动态控制信令发送至所述用户设备,以使所述用户设备基于所述动态控制信令确定所述应用时延,并采用切换后的信号接收方式执行信号接收操作。
  17. 根据权利要求16所述的方法,其中,所述信号接收方式包括:
    控制信道接收方式;或者,
    信号测量接收方式。
  18. 根据权利要求16或17所述的方法,其中,配置所述动态控制信令包括:
    在所述动态控制信令中配置至少一个比特,其中,所述至少一个比特用于触发所述用户设备从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,所述源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合,所述目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合;或者,
    在所述动态控制信令中配置至少一个比特,其中,所述至少一个比特用于触发所述用户设备从同一个物理下行控制信道搜索空间组的源参数切换至目标参数,所述源参数包括以下至少之一:源检测周期、源检测位置,所述目标参数包括以下至少之一:目标检测周期、目标检测位置。
  19. 根据权利要求16至18中任一项所述的方法,其中,当源物理下行控制信道搜索空间组被触发切换至目标物理下行控制信道搜索空间组时,配置所述动态控制信令包括:
    在所述动态控制信令中将至少一个源搜索空间集合中的最小监控周期的数值配置为所述应用时延;或者,
    在所述动态控制信令中将至少一个源搜索空间集合中的最大监控周期的数值配置为所述应用时延;或者,
    在所述动态控制信令中将至少一个目标搜索空间集合中的最小监控周期的数值配置为所述应用时延;或者,
    在所述动态控制信令中将至少一个目标搜索空间集合中的最大监控周期的数值配置为所述应用时延。
  20. 根据权利要求16至18中任一项所述的方法,其中,当源物理下行控制信道搜索空间组被触发切换至目标物理下行控制信道搜索空间组以及源最小偏移值被触发切换至目标最小偏移值时,配置所述动态控制信令包括:
    在所述动态控制信令中将所述源最小偏移值配置为所述应用时延;或者,
    在所述动态控制信令中将所述目标最小偏移值配置为所述应用时延。
  21. 根据权利要求16所述的方法,其中,配置所述动态控制信令包括:
    在所述动态控制信令中将设定的预先配置值配置为所述应用时延。
  22. 根据权利要求16至18中任一项所述的方法,其中,所述方法还包括:
    为所述用户设备配置定时器,以控制所述用户设备如果在所述定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则回退至源物理下行控制信道搜索空间组;或者,控制所述用户设备如果在所述定时器超时前接收到所述目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则触发所述用户设备更新或重置所述定时器。
  23. 根据权利要求16至18中任一项所述的方法,其中,所述方法还包括:
    为所述用户设备配置定时器和缺省物理下行控制信道搜索空间组,以控制所述用户设备如果在所述定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则回退至所述缺省物理下行控制信道搜索空间组。
  24. 一种信号接收的处理装置,包括:
    接收模块,设置为在第一时长单位内的预设时间段接收来自于网络侧设备的动态控制信令,其中,所述动态控制信令用于指示用户设备确定应用时延,所述应用时延为所述用户设备切换信号接收方式的时延;
    确定模块,设置为基于所述动态控制信令确定所述应用时延;
    处理模块,设置为在第二时长单位采用切换后的信号接收方式执行信号接收操作,其中,所述第二时长单位由所述第一时长单位和所述应用时延确定。
  25. 根据权利要求24所述的装置,其中,所述信号接收方式包括:
    控制信道接收方式;或者,
    信号测量接收方式。
  26. 根据权利要求24或25所述的装置,其中,所述装置还包括:
    切换模块,设置为在所述动态控制信令中的至少一个比特的触发下,从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,其中,所述源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合,所述目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合;或者,在所述动态控制信令中的至少一个比特的触发下,从同一个物理下行控制信道搜索空间组的源参数切换至目标参数,其中,所述源参数包括以下至少之一:源 检测周期、源检测位置,所述目标参数包括以下至少之一:目标检测周期、目标检测位置。
  27. 根据权利要求24至26中任一项所述的装置,其中,所述确定模块,设置为在所述动态控制信令的触发下,将至少一个源搜索空间集合中的最小监控周期的数值确定为所述应用时延;或者,在所述动态控制信令的触发下,将至少一个源搜索空间集合中的最大监控周期的数值确定为所述应用时延;或者,在所述动态控制信令的触发下,将至少一个目标搜索空间集合中的最小监控周期的数值确定为所述应用时延;或者,在所述动态控制信令的触发下,将至少一个目标搜索空间集合中的最大监控周期的数值确定为所述应用时延。
  28. 根据权利要求24至26中任一项所述的装置,其中,所述确定模块,设置为在所述动态控制信令的触发下,采用源最小偏移值确定所述应用时延;或者,在所述动态控制信令的触发下,采用目标最小偏移值确定所述应用时延。
  29. 根据权利要求28所述的装置,其中,所述确定模块,设置为当跨载波切换或跨带宽部分切换时,最小偏移值被配置在被调度载波上。
  30. 根据权利要求28所述的装置,其中,所述确定模块,设置为当跨载波切换或跨带宽部分切换时,搜索空间集合监控周期被配置在调度载波上。
  31. 根据权利要求28所述的装置,其中,所述确定模块,设置为当跨载波切换或跨带宽部分切换时,所述应用时延从被调度载波转换至所述调度载波。
  32. 根据权利要求28所述的装置,其中,所述确定模块,设置为当跨载波切换或跨带宽部分切换时,将第一参数、第二参数以及第三参数设置为预设函数的输入参数,计算得到所述应用时延,其中,所述第一参数为被调度载波的激活带宽部分的最小偏移值,所述第二参数为所述调度载波的激活带宽部分的子载波间隔系数,所述第三参数为所述被调度载波的激活带宽部分的子载波间隔系数,所述预设函数为向上取整或向下取整函数。
  33. 根据权利要求24所述的装置,其中,所述确定模块,设置为在所述动态控制信令的触发下,将所述网络侧设备为所述用户设备设定的预先配置值确定为所述应用时延。
  34. 根据权利要求24所述的装置,其中,所述第一时长单位、所述第二时长单位以及所述应用时延的时长单位为时隙。
  35. 根据权利要求24至26中任一项所述的装置,其中,所述装置还包括:
    回退模块,设置为如果在所述网络侧设备预先配置的定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则回退至源物理下行控制信道搜索空间组;或者,如果在所述网络侧设备预先配置的定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则回退至所述网络侧设备预先配置的缺省物理下行控制信道搜索空间组。
  36. 根据权利要求24至26中任一项所述的装置,其中,所述装置还包括:
    调整模块,设置为如果在所述网络侧设备预先配置的定时器超时前接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则更新或重置所述定时器。
  37. 根据权利要求35或36所述的装置,其中,所述装置还包括:
    启动模块,设置为当所述动态控制信令中与所述定时器对应的比特位的数值发生变化时,启动所述定时器。
  38. 一种信号处理装置,包括:
    配置模块,设置为配置动态控制信令,其中,所述动态控制信令用于指示用户设备确定应用时延,所述应用时延为所述用户设备切换信号接收方式的时延;
    发送模块,设置为将所述动态控制信令发送至所述用户设备,以使所述用户设备基于所述动态控制信令确定所述应用时延,并采用切换后的信号接收方式执行信号接收操作。
  39. 根据权利要求38所述的装置,其中,所述信号接收方式包括:
    控制信道接收方式;或者,
    信号测量接收方式。
  40. 根据权利要求38或39所述的装置,其中,所述配置模块,设置为在所述动态控制信令中配置至少一个比特,其中,所述至少一个比特用于触发所述用户设备从源物理下行控制信道搜索空间组切换至目标物理下行控制信道搜索空间组,所述源物理下行控制信道搜索空间组包括:至少一个源搜索空间集合,所述目标物理下行控制信道搜索空间组包括:至少一个目标搜索空间集合;或者,在所述动态控制信令中配置至少一个比特,其中,所述至少一个比特用于触发所述用户设备从同一个物理下行控制信道搜索空间组的源参数切换至目标参数,所述源参数包括以下至少之一:源检测周期、源检测位置,所述目标参数包括以下至少之一:目标检测周期、目标检测位置。
  41. 根据权利要求38至40中任一项所述的装置,其中,所述配置模块,设置为在所述动态控制信令中将至少一个源搜索空间集合中的最小监控周期的数值配置为所述应用时延;或者,在所述动态控制信令中将至少一个源搜索空间集合中的最大监控周期的数值配置为所述应用时延;或者,在所述动态控制信令中将至少一个目标搜索空间集合中的最小监控周期的数值配置为所述应用时延;或者,在所述动态控制信令中将至少一个目标搜索空间集合中的最大监控周期的数值配置为所述应用时延。
  42. 根据权利要求38至40中任一项所述的装置,其中,所述配置模块,设置为在所述动态控制信令中将源最小偏移值配置为所述应用时延;或者,在所述动态控制信令中将目标最小偏移值配置为所述应用时延。
  43. 根据权利要求38所述的装置,其中,所述配置模块,设置为在所述动态控制信令中将设定的预先配置值配置为所述应用时延。
  44. 根据权利要求38至40中任一项所述的装置,其中,所述配置模块,还设置为为所述用户设备配置定时器,以控制所述用户设备如果在所述定时器超时前未接收到目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则回退至源物理下行控制信道搜索空间组;或者,控制所述用户设备如果在所述定时器超时前接收到所述目标物理下行控制信道搜索空间组上待传输至所述用户设备的控制信令,则触发所述用户设备更新或重置所述定时器。
  45. 根据权利要求38至40中任一项所述的装置,其中,所述配置模块,还设置为为所述用户设备配置定时器和缺省物理下行控制信道搜索空间组,以控制所述用户设备如果在所述定时器超时前未接收到目标物理下行控制信道搜索空间组 上待传输至所述用户设备的控制信令,则回退至所述缺省物理下行控制信道搜索空间组。
  46. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至15任一项中所述的信号处理方法或权利要求16至23任一项中所述的信号处理方法。
  47. 一种处理器,所述处理器用于运行程序,其中,所述程序被设置为运行时执行所述权利要求1至15任一项中所述的信号处理方法或权利要求16至23任一项中所述的信号处理方法。
  48. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至15任一项中所述的信号处理方法或权利要求16至23任一项中所述的信号处理方法。
  49. 一种芯片,其特征在于,包括:处理器,设置为从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行所述权利要求1至15任一项中所述的信号处理方法或权利要求16至23任一项中所述的信号处理方法。
  50. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行所述权利要求1至15任一项中所述的信号处理方法或权利要求16至23任一项中所述的信号处理方法。
  51. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行所述权利要求1至15任一项中所述的信号处理方法或权利要求16至23任一项中所述的信号处理方法。
PCT/CN2020/072791 2020-01-17 2020-01-17 信号处理方法、装置、存储介质、处理器及电子装置 WO2021142785A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20914114.2A EP4093082A4 (en) 2020-01-17 2020-01-17 SIGNAL PROCESSING METHOD AND DEVICE, STORAGE MEDIUM, PROCESSOR AND ELECTRONIC DEVICE
CN202080092749.7A CN115004756A (zh) 2020-01-17 2020-01-17 信号处理方法、装置、存储介质、处理器及电子装置
PCT/CN2020/072791 WO2021142785A1 (zh) 2020-01-17 2020-01-17 信号处理方法、装置、存储介质、处理器及电子装置
US17/812,877 US20220353895A1 (en) 2020-01-17 2022-07-15 Signal processing method and apparatus, storage medium, processor, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072791 WO2021142785A1 (zh) 2020-01-17 2020-01-17 信号处理方法、装置、存储介质、处理器及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/812,877 Continuation US20220353895A1 (en) 2020-01-17 2022-07-15 Signal processing method and apparatus, storage medium, processor, and electronic device

Publications (1)

Publication Number Publication Date
WO2021142785A1 true WO2021142785A1 (zh) 2021-07-22

Family

ID=76863505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072791 WO2021142785A1 (zh) 2020-01-17 2020-01-17 信号处理方法、装置、存储介质、处理器及电子装置

Country Status (4)

Country Link
US (1) US20220353895A1 (zh)
EP (1) EP4093082A4 (zh)
CN (1) CN115004756A (zh)
WO (1) WO2021142785A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417762A (zh) * 2018-10-11 2019-03-01 北京小米移动软件有限公司 搜索空间参数配置和调整方法及装置
CN109548062A (zh) * 2017-08-15 2019-03-29 普天信息技术有限公司 一种离散频谱通信系统中dci传输方法及设备
CN109565338A (zh) * 2016-07-29 2019-04-02 三星电子株式会社 用于在移动通信系统中报告信道状态信息的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565338A (zh) * 2016-07-29 2019-04-02 三星电子株式会社 用于在移动通信系统中报告信道状态信息的方法和设备
CN109548062A (zh) * 2017-08-15 2019-03-29 普天信息技术有限公司 一种离散频谱通信系统中dci传输方法及设备
CN109417762A (zh) * 2018-10-11 2019-03-01 北京小米移动软件有限公司 搜索空间参数配置和调整方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Cross-slot scheduling power saving techniques", 3GPP DRAFT; R1-1911130 CROSS-SLOT SCHEDULING POWER SAVING TECHNIQUES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 18, XP051789906 *
See also references of EP4093082A4 *

Also Published As

Publication number Publication date
CN115004756A (zh) 2022-09-02
EP4093082A4 (en) 2023-01-25
US20220353895A1 (en) 2022-11-03
EP4093082A1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2022037664A1 (zh) 非连续接收drx配置方法、装置和设备
WO2021013144A1 (zh) 通信方法及装置
CN110881208B (zh) 一种通信方法及设备
JP7234381B2 (ja) リソース設定方法、リソース取得方法、ネットワーク機器及び端末
WO2021190522A1 (zh) 物理下行控制信道监听方法、用户终端及可读存储介质
US11445441B2 (en) PDCCH blind detection method, terminal and network side device
WO2022100678A1 (zh) 节能指示方法、装置、设备及可读存储介质
US20230101796A1 (en) Power headroom report phr reporting method and apparatus, and terminal
WO2021142785A1 (zh) 信号处理方法、装置、存储介质、处理器及电子装置
WO2023030189A1 (zh) 监听方法、唤醒信号传输方法、装置、终端及网络侧设备
WO2022127850A1 (zh) Pdcch监听方法、终端和网络侧设备
JP2023548174A (ja) リソース測定の調整方法及び装置、端末並びに可読記憶媒体
EP4009709A1 (en) Energy-saving downlink control channel transmission method, terminal and network-side device
JP2024502344A (ja) 省電力処理方法、及び省電力処理装置
CN115190500A (zh) 传输处理方法、终端及网络侧设备
WO2023051450A1 (zh) 时间窗的确定方法、装置、终端及存储介质
WO2022037673A1 (zh) 非连续接收drx配置方法、装置和设备
WO2022028480A1 (zh) 信息传输方法、信息传输装置、终端及网络侧设备
WO2024027561A1 (zh) 传输方法及装置
WO2022171085A1 (zh) 搜索空间组切换方法及装置
WO2023011309A1 (zh) 反馈方法、相关设备及可读存储介质
WO2023020505A1 (zh) 传输处理方法、装置、终端、网络侧设备及存储介质
KR20240071412A (ko) 시간창의 결정 방법, 장치, 단말 및 저장매체
WO2023103966A1 (zh) 确定时间窗的方法、装置、终端和可读存储介质
WO2022143659A1 (zh) 信号配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020914114

Country of ref document: EP

Effective date: 20220816