WO2021142585A1 - 电池、可移动装置和组件 - Google Patents

电池、可移动装置和组件 Download PDF

Info

Publication number
WO2021142585A1
WO2021142585A1 PCT/CN2020/071825 CN2020071825W WO2021142585A1 WO 2021142585 A1 WO2021142585 A1 WO 2021142585A1 CN 2020071825 W CN2020071825 W CN 2020071825W WO 2021142585 A1 WO2021142585 A1 WO 2021142585A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
processing circuit
determined
information
safety
Prior art date
Application number
PCT/CN2020/071825
Other languages
English (en)
French (fr)
Inventor
李鹏
许柏皋
林宋荣
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080006495.2A priority Critical patent/CN113169574A/zh
Priority to PCT/CN2020/071825 priority patent/WO2021142585A1/zh
Publication of WO2021142585A1 publication Critical patent/WO2021142585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention generally relates to the field of battery technology, and more specifically to a battery, a movable device and a component.
  • the battery has stable voltage and stable current, is convenient to carry, and the charging and discharging operation is simple and easy, so it is a convenient and reliable energy source.
  • Due to the variety of usage scenarios once the battery is dropped, impacted, etc., it will often be squeezed, short-circuited or needle punctured (such as when the battery is installed in a movable device due to the drop or impact of the movable device, which is strongly squeezed. Pressure), which will cause the internal diaphragm to rupture and lead to short circuit of the positive and negative electrodes of the battery. A large amount of heat is generated inside the battery in a short time.
  • the embodiment of the present invention provides a battery, which obtains the movement information of the battery through a sensing circuit, determines whether the battery is dropped or hit according to this, and implements a safety strategy for the battery when it is determined that the battery has been dropped or hit, thereby improving battery usage Safety, reduce the occurrence of safety accidents.
  • a battery including: one or more battery cells; a sensing circuit for acquiring movement information of the battery; a processing circuit for obtaining movement information of the battery; The obtained result of the test circuit determines whether the battery has been dropped or impacted. If it is determined that the battery has been dropped or impacted, a safety strategy is executed on the battery.
  • the safety strategy includes at least one of the following: recording abnormal information, Abnormal prompt, limit the charge and discharge of the battery, and control the self-discharge of the battery.
  • a battery which is applied to a mobile device, the battery includes a processing circuit, a sensing circuit, and a communication interface, wherein: the processing circuit communicates with the communication interface via the communication interface.
  • the movable device communicates to determine whether the movable device is in a moving state, and enables the sensing circuit to work when it is determined that the movable device is in a moving state; the sensing circuit is being used by the processing circuit After being able to work, obtain the movement information of the battery; the processing circuit is further configured to determine whether the battery has been dropped or hit based on the acquisition result of the sensing circuit, and if it is determined that the battery has been dropped or hit, then A safety strategy is performed on the battery, and the safety strategy includes at least one of the following: recording abnormal information, performing abnormal prompts, restricting charging and discharging of the battery, and controlling self-discharge of the battery.
  • a battery applied to a mobile device the battery includes a processing circuit and a communication interface, the battery is used to communicate with the mobile device through the communication interface,
  • the processing circuit is configured to obtain the movement information of the movable device from the sensing circuit of the movable device via the communication interface, and determine whether the battery is dropped or hit based on the acquisition result of the sensing circuit If it is determined that the battery has been dropped or impacted, a safety strategy is implemented for the battery, including at least one of the following: recording abnormal information, giving an abnormal prompt, restricting the charging and discharging of the battery, and controlling the self-discharge of the battery .
  • a movable device is provided, and the movable device includes the above-mentioned battery.
  • a movable device includes a battery, the battery is used to provide power for the movement of the movable device, the movable device further includes a processing circuit and A sensing circuit for acquiring motion information of the movable device, and the processing circuit for determining whether the battery in the movable device is dropped or impacted based on the acquisition result of the sensing circuit If it is determined that the battery has been dropped or impacted, a safety strategy is executed on the battery, and the safety strategy includes at least one of the following: recording abnormal information, giving an abnormal prompt, restricting the charging and discharging of the battery, and controlling the Self-discharge of the battery.
  • a component including: a movable platform; and the above-mentioned battery, the battery is used to be installed on the movable platform and used to provide electricity.
  • the battery, the movable device, and the component according to the embodiment of the present invention obtain the movement information of the battery through the sensing circuit, determine whether the battery is dropped or hit according to this, and implement a safety strategy for the battery when it is determined that the battery has been dropped or hit, thereby Improve the safety of battery use and reduce the occurrence of safety accidents.
  • Fig. 1A shows a schematic block diagram of a mobile component according to an embodiment of the present invention.
  • Fig. 1B shows a schematic block diagram of a battery according to an embodiment of the present invention.
  • Fig. 2 shows a schematic flowchart of determining whether a battery has fallen down according to an embodiment of the present invention.
  • Fig. 3 shows a schematic flowchart of a battery judging whether an impact has occurred on the battery according to an embodiment of the present invention.
  • Fig. 4 shows a schematic block diagram of a battery according to another embodiment of the present invention.
  • Fig. 5 shows a schematic flowchart of determining whether a battery has fallen down according to another embodiment of the present invention.
  • Fig. 6 shows a schematic flowchart of a battery judging whether an impact has occurred on the battery according to another embodiment of the present invention.
  • Fig. 7 shows a schematic block diagram of a battery according to still another embodiment of the present invention.
  • Fig. 8 shows a schematic flowchart of determining whether a battery has fallen down according to another embodiment of the present invention.
  • Fig. 9 shows a schematic flow chart of a battery judging whether it has an impact according to another embodiment of the present invention.
  • Fig. 10 shows a schematic block diagram of a movable device according to an embodiment of the present invention.
  • Fig. 11 shows a schematic flow chart of a mobile device according to an embodiment of the present invention to determine whether a battery installed therein has fallen.
  • Fig. 12 shows a schematic flow chart of a mobile device according to an embodiment of the present invention to determine whether a battery installed therein has an impact.
  • Fig. 13 shows a schematic flowchart of a method for circuit safety protection according to an embodiment of the present invention.
  • FIG. 14 shows a schematic flowchart of a method for circuit safety protection according to another embodiment of the present invention.
  • FIG. 1A is a schematic block diagram of a mobile component according to an embodiment of the present invention.
  • the mobile assembly 10 includes a battery 11 and a movable platform 12, and the battery 11 is used to supply power to the movable platform 12 and the load mounted on the movable platform 12.
  • the battery 11 can be fixedly installed on the movable platform 12 or detachably installed on the movable platform 12.
  • the battery 11 includes a micro-controller unit (MCU), which may also be referred to as a smart battery, and can communicate with the movable platform 12 through the micro-controller unit, so as to realize information interaction with the movable platform 12. For example, receiving a control instruction from the movable platform 12, and controlling the battery to output a voltage with a preset voltage amplitude, a current with a preset current amplitude, or output power with a preset power amplitude according to the control instruction, or to obtain a movable The operating power of the platform 12 and so on.
  • MCU micro-controller unit
  • the movable platform 12 includes an aircraft, a robot, an electric vehicle or an autonomous unmanned vehicle, etc.
  • the battery 11 supplies power to a motor without an aircraft to control the rotation of the propeller connected to the motor, so as to realize the take-off or hover of the aircraft; for another example, the battery 11 powers the camera mounted on the aircraft to realize aerial photography and so on.
  • the aircraft includes drones, which include rotary-wing drones, such as quad-rotor drones, hexa-rotor drones, and octo-rotor drones. It can also be a fixed-wing drone or The combination of rotary wing and fixed-wing UAV is not limited here.
  • drones can include agricultural drones, which can be used for spreading, spraying water/medicine; industrial drones can be used for transporting materials, inspections, and sampling; consumer drones, which can be used for shooting Equipment, etc.
  • the robots include educational robots, which use a Mecanum wheel omnidirectional chassis, and are equipped with multiple pieces of intelligent armor.
  • Each intelligent armor has a built-in impact detection module that can quickly detect physical strikes.
  • it also includes a two-axis pan/tilt, which can be flexibly rotated, matched with the transmitter to accurately, stably and continuously fire crystal bombs or infrared beams, and matched with ballistic light effects, giving users a more realistic shooting experience.
  • a battery 11 is installed in the movable platform 12, and the battery 11 is used to provide power for the movable platform 12.
  • the movable platform 12 may fall, hit and other accidents.
  • the battery 11 may also fall, hit, etc.
  • the internal diaphragm ruptures and the positive and negative electrodes of the battery are short-circuited. A large amount of heat is generated inside the battery in a short period of time.
  • the embodiment of the present invention proposes a battery drop/impact detection solution, which can detect related parameters of the battery, for example, motion information.
  • the motion information may include at least one of the following: acceleration, velocity, displacement, and motion time. Determine whether the battery has fallen or impacted based on the obtained result. If it is determined that the battery has fallen or impacted, a safety strategy is implemented on the battery.
  • the safety strategy includes at least one of the following: record abnormal information, perform abnormal prompts, and restrict battery charging and discharging , Control the self-discharge of the battery.
  • the battery may be a smart battery, and the smart battery can communicate with the control terminal.
  • a battery is provided.
  • the battery and its safety protection scheme according to the embodiment of the present invention will be described below with reference to FIG. 1B to FIG. 7.
  • FIG. 1B shows a schematic block diagram of a battery 100 according to an embodiment of the present invention.
  • the battery 100 includes one or more battery cells 110, a sensing circuit 120 and a processing circuit 130.
  • the sensing circuit 120 is used to obtain movement information of the battery 100.
  • the sensing circuit 120 can directly detect the movement information of the battery 100, and can also obtain the detection results of other detection circuits.
  • the processing circuit 130 is configured to determine whether the battery 100 has been dropped or hit based on the result obtained by the sensing circuit 120, and if it is determined that the battery 100 has been dropped or hit, it executes a safety strategy on the battery 100, and the safety strategy includes at least one of the following: Record abnormal information, perform abnormal notifications, limit the charge and discharge of the battery 100, and control the self-discharge of the battery 100.
  • the motion information of the battery 100 is acquired by the sensing circuit 120 included in the battery 100, and the processing circuit 130 determines whether the battery 100 is dropped or impacted according to the acquisition result of the sensing circuit 120 , It can detect whether the battery 100 has a safety hazard in real time and reliably, and implement a safety strategy on the battery 100 when it is determined that the battery 100 has a safety hazard, thereby improving the safety of battery use and reducing the occurrence of safety accidents.
  • the sensing circuit 120 may be used to obtain movement information of the battery 100 at least in the direction of gravity, and the processing circuit 130 may be used to determine whether the battery 100 has fallen based on the acquisition result of the sensing circuit 120.
  • the processing circuit 130 can be used to determine whether the battery 100 has fallen based on the results obtained by the sensing circuit 120, and then determine whether the movable platform has occurred. Drop/shock. It provides a basis for judging the liability problem caused by the mobile platform bomber, which is helpful to determine whether the bomber is caused by the drop/impact of the movable platform or the bomber caused by the abnormal output power of the battery itself.
  • the sensing circuit 120 obtains at least the movement information of the battery 100 in the direction of gravity; then, the processing circuit 130 determines whether the movement information of the battery 100 in the direction of gravity is at a predetermined level based on the acquisition result of the sensing circuit 120. If it is, the processing circuit 130 determines that the movement information of the battery 100 in the direction of gravity continues to exceed the predetermined threshold within the predetermined time, and then it is determined that the battery 100 has fallen; if not, the processing circuit 130 determines that the battery If the movement information of 100 in the direction of gravity does not continuously exceed the predetermined threshold within a predetermined time, it is determined that the battery 100 has not fallen.
  • the predetermined time and the predetermined threshold can be set according to requirements.
  • the number of the aforementioned predetermined threshold may be one.
  • the processing circuit 130 determines whether the battery 100 falls based on whether the motion information of the battery 100 in the direction of gravity continues to exceed the predetermined threshold within a predetermined time.
  • a safety strategy may be executed on the battery 100, and the safety strategy may include at least one of the following: recording abnormal information, performing abnormal prompts, limiting the charge and discharge of the battery 100, and controlling the self-discharge of the battery 100. The following describes these security policies one by one.
  • the processing circuit 130 may execute a safety strategy on the battery 100, and the safety strategy may include recording abnormal information.
  • the abnormal information may include information related to the fall event (such as the time of the fall, etc.). In this way, if a safety accident occurs in the future, the cause of the battery safety accident can be traced based on the abnormal information recorded by the processing circuit 130.
  • the battery 100 may also include a memory (not shown).
  • the processing circuit 130 may record the relevant information of the fall event as abnormal information and store it in the memory.
  • the processing circuit 130 may also record the abnormal information in another storage device outside the battery 100. Recording the abnormal information is conducive to the subsequent search for the record and facilitates the analysis of responsibility.
  • the processing circuit 130 may execute a safety strategy on the battery 100, and the safety strategy may include an abnormal prompt.
  • the processing circuit 130 may issue an audible and/or visual safety prompt when it is determined that the battery 100 has fallen, so as to remind the user to pay attention.
  • the battery 100 may also include an audible and/or visual device (such as a speaker and/or a display) to present audible and/or visual safety prompts to the user.
  • the processing circuit 130 may execute a safety strategy on the battery 100, and the safety strategy may include restricting the charge and discharge of the battery 100.
  • limiting the charge and discharge of the battery 100 may include at least one of the following: limiting the number of charge and discharge of the battery 100, limiting the time for each charge and discharge of the battery 100, and prohibiting the charge and discharge of the battery 100.
  • the processing circuit 130 limits the charging and discharging use of the battery 100, which can fundamentally improve the safety of battery use and reduce the occurrence of safety accidents.
  • the processing circuit 130 may execute a safety strategy on the battery 100, and the safety strategy may include controlling the self-discharge of the battery 100.
  • controlling the self-discharge of the battery 100 may issue at least one of the following prompts: strengthening maintenance, keeping clean, and keeping dry.
  • the battery 100 may also include an audible and/or visual device (such as a speaker and/or a display) to present the prompt to the user.
  • the processing circuit 130 may also execute other suitable safety policies on the battery 100, which is not limited in the present invention.
  • the number of the aforementioned predetermined thresholds may be multiple.
  • the processing circuit 130 may determine the degree to which the battery 100 falls based on the difference in the predetermined threshold that the movement information of the battery 100 in the direction of gravity continuously exceeds within a predetermined time. For example, when the predetermined threshold value includes a first threshold value, a second threshold value, and a third threshold value, wherein the first threshold value is smaller than the second threshold value, and the second threshold value is smaller than the third threshold value.
  • the movement information of the battery 100 in the direction of gravity continues to exceed the first threshold within a predetermined time, it is determined that the battery 100 has a slight drop; if the movement information of the battery 100 in the direction of gravity continues to exceed the second threshold within the predetermined time, it is determined that the battery 100 A moderate fall occurs in the battery 100; if the movement information of the battery 100 in the direction of gravity continuously exceeds the third threshold within a predetermined time, it is determined that the battery 100 has experienced a severe fall.
  • the processing circuit 130 may also be used to execute a corresponding safety strategy based on the determined degree to which the battery 100 has fallen.
  • the processing circuit 130 may record abnormal information.
  • the battery 100 may further include a memory (not shown), and the processing circuit 130 may record and store relevant information about the drop event as abnormal information in the memory.
  • the related information of the drop event may include the time and/or the degree of the drop of the battery 100.
  • the processing circuit 130 may perform an abnormality prompt.
  • the battery 100 may also include an audible and/or visual device (such as a speaker and/or a display), and the processing circuit 130 may issue an audible and/or visual safety prompt when it is determined that the battery 100 has been slightly dropped. To remind users to pay attention.
  • the processing circuit 130 can also control the self-discharge of the battery 100 in addition to the aforementioned abnormal information recording and abnormal prompting.
  • the battery 100 may also include an audible and/or visual device (such as a speaker and/or a display) to present prompts for enhancing maintenance, keeping clean, and keeping dry to the user.
  • the processing circuit 130 can also limit the charging and discharging of the battery 100, such as limiting the charging and discharging of the battery 100.
  • the number of charge and discharge limits the time for each charge and discharge of the battery 100, and even prohibits the charge and discharge of the battery 100.
  • the processing circuit 130 can be used to execute a corresponding safety strategy based on the determined degree of the battery 100 falling, so as to improve the safety of battery use as much as possible and reduce the occurrence of safety accidents. It should be understood that the above-mentioned different security policies executed according to the degree of fall are only exemplary.
  • the sensing circuit 120 can be used to obtain the movement information of the battery 100 in any direction, and the processing circuit 130 can be used to determine whether the battery 100 has occurred based on the acquisition result of the sensing circuit 120. Impact or whether an impact is about to occur. It should be understood that any one of the directions may include the direction of gravity and other directions other than the direction of gravity.
  • the processing circuit 130 can determine whether the battery 100 falls based on the movement information of the battery 100 in the direction of gravity by the sensing circuit 120. The fall can be understood as a type of impact (because the fall may impact the ground or objects below). The following describes a schematic flowchart of determining whether the battery 100 has crashed itself according to an embodiment of the present invention with reference to FIG. 3.
  • the sensing circuit 120 acquires the movement information of the battery 100 in any direction; then, the processing circuit 130 determines whether the movement information of the battery 100 in any direction is within a predetermined time based on the acquisition result of the sensing circuit 120. If it is, the processing circuit 130 determines that the movement information of the battery 100 in any direction continues to exceed the predetermined threshold within a predetermined time, then it is determined that the battery 100 has an impact; if not, the processing circuit 130 determines that the battery 100 If the motion information in either direction does not continuously exceed the predetermined threshold within a predetermined time, it is determined that the battery 100 has not hit.
  • the number of the aforementioned predetermined threshold may be one.
  • the processing circuit 130 determines whether the battery 100 has an impact based on whether the motion information of the battery 100 in any direction continuously exceeds the predetermined threshold within a predetermined time.
  • a safety strategy may be executed on the battery 100, and the safety strategy may include at least one of the following: recording abnormal information, giving an abnormal prompt, limiting the charging and discharging of the battery 100, and controlling the self-discharge of the battery 100. The following describes these security policies one by one.
  • the processing circuit 130 may execute a safety strategy on the battery 100, and the safety strategy may include recording abnormal information.
  • the abnormal information may include relevant information about the impact event (such as impact time, etc.). In this way, if a safety accident occurs in the future, the cause of the battery safety accident can be traced based on the abnormal information recorded by the processing circuit 130.
  • the battery 100 may also include a memory (not shown).
  • the processing circuit 130 may record the relevant information of the impact event as abnormal information and store it in the memory. Alternatively, the processing circuit 130 may also record the abnormal information in another storage device outside the battery 100.
  • the processing circuit 130 may execute a safety strategy on the battery 100, and the safety strategy may include an abnormal prompt.
  • the processing circuit 130 may issue an audible and/or visual safety prompt when it is determined that the battery 100 is impacted to remind the user to pay attention.
  • the battery 100 may also include an audible and/or visual device (such as a speaker and/or a display) to present audible and/or visual safety prompts to the user.
  • the processing circuit 130 may execute a safety strategy on the battery 100, and the safety strategy may include restricting the charge and discharge of the battery 100.
  • limiting the charging and discharging use of the battery 100 may include at least one of the following: limiting the number of charging and discharging of the battery 100, limiting the time for each charge and discharge of the battery 100, and prohibiting the charging and discharging of the battery 100.
  • the processing circuit 130 limits the charge and discharge of the battery 100, which can fundamentally improve the safety of battery use and reduce the occurrence of safety accidents.
  • the processing circuit 130 may execute a safety strategy on the battery 100, and the safety strategy may include controlling the self-discharge of the battery 100.
  • controlling the self-discharge of the battery 100 may issue at least one of the following prompts: strengthening maintenance, keeping clean, and keeping dry.
  • the battery 100 may also include an audible and/or visual device (such as a speaker and/or a display) to present the prompt to the user.
  • the processing circuit 130 may also execute other suitable safety policies on the battery 100, which is not limited in the present invention.
  • the number of the aforementioned predetermined thresholds may be multiple.
  • the processing circuit 130 may determine the degree of impact of the battery 100 based on the difference in the predetermined threshold continuously exceeded by the movement information of the battery 100 in any direction within a predetermined time. For example, when the predetermined threshold value includes a first threshold value, a second threshold value, and a third threshold value, wherein the first threshold value is smaller than the second threshold value, and the second threshold value is smaller than the third threshold value.
  • the movement information of the battery 100 in either direction continuously exceeds the first threshold within a predetermined time, it is determined that the battery has a slight impact; if the movement information of the battery 100 in either direction continues to exceed the second threshold within the predetermined time, it is determined that the battery has occurred Moderate impact; if the movement information of the battery 100 in any direction continuously exceeds the third threshold within a predetermined time, it is determined that the battery has a severe impact.
  • the processing circuit 130 may also be used to execute a corresponding safety strategy based on the determined degree of impact of the battery 100.
  • the processing circuit 130 may record abnormality information.
  • the battery 100 may further include a memory (not shown), and the processing circuit 130 may record and store information related to the impact event as abnormal information in the memory.
  • the related information of the impact event may include the time and/or degree of impact of the battery 100.
  • the processing circuit 130 may perform an abnormality prompt.
  • the battery 100 may also include an audible and/or visual device (such as a speaker and/or a display), and the processing circuit 130 may issue an audible and/or visual safety prompt when it is determined that the battery 100 has a slight impact. To remind users to pay attention.
  • the processing circuit 130 can also control the self-discharge of the battery 100.
  • the battery 100 may also include an audible and/or visual device (such as a speaker and/or a display) to present prompts for enhancing maintenance, keeping clean, and keeping dry to the user.
  • the processing circuit 130 can also limit the charging and discharging of the battery 100, such as limiting the charging and discharging of the battery 100.
  • the number of charge and discharge limits the time for each charge and discharge of the battery 100, and even prohibits the charge and discharge of the battery 100.
  • the processing circuit 130 can be used to execute a corresponding safety strategy based on the determined degree of impact of the battery 100, so as to improve the safety of battery use as much as possible and reduce the occurrence of safety accidents. It should be understood that the above-mentioned different security policies executed according to the degree of impact are only exemplary.
  • the processing circuit 130 may also be used to obtain a control operation triggered by the user on the battery 100 before the security policy is executed on the battery 100, and the control operation is used to control the execution of the security policy on the battery 100.
  • the control operation is used to control the execution of the security policy on the battery 100.
  • the control terminal may be a terminal on which the battery 100 is installed, or may be another terminal.
  • the control operation may be triggered by the user on the battery 100, or may be triggered by the user on the control terminal.
  • the aforementioned sensing circuit 120 may include an acceleration sensor.
  • the motion information may be acceleration, and the acceleration of the battery is sensed by an acceleration sensor.
  • the detection method has high accuracy and low detection cost.
  • the aforementioned processing circuit 130 may include a microprocessor or a micro control unit.
  • the aforementioned battery 100 may include at least one of the following: a lithium battery, a lead storage battery, a nickel-cadmium battery, and a nickel-hydrogen battery.
  • the battery according to the embodiment of the present invention obtains the movement information of the battery through the sensing circuit, determines whether the battery is dropped or impacted accordingly, and implements a safety strategy for the battery when it is determined that the battery has been dropped or impacted, thereby improving The safety of battery use reduces the occurrence of safety accidents.
  • FIG. 4 shows a schematic block diagram of a battery 400 according to another embodiment of the present invention.
  • the battery 400 may be applied to a movable device.
  • the battery 400 includes a communication interface 410, a sensing circuit 420 and a processing circuit 430.
  • the processing circuit 430 communicates with a movable device (not shown) via the communication interface 410 to determine whether the movable device is in a moving state, and enables the sensing circuit 420 when it is determined that the movable device is in a moving state. jobs.
  • the sensing circuit 420 obtains the movement information of the battery 400 after being enabled by the processing circuit 430 to work.
  • the processing circuit 430 is further configured to determine whether the battery 400 has been dropped or hit based on the result obtained by the sensing circuit 420, and if it is determined that the battery 400 has been dropped or hit, a safety strategy is executed on the battery 400, and the safety strategy includes at least one of the following : Record abnormal information, perform abnormal prompts, limit the charge and discharge of the battery, and control the self-discharge of the battery.
  • the motion information of the battery 400 is acquired by the sensing circuit 420 included in the battery 400, and the processing circuit 430 determines whether the battery 400 falls or hits according to the acquisition result of the sensing circuit 400. , It can detect whether the battery 400 has a safety hazard in real time and reliably, and implement a safety strategy on the battery 400 when it is determined that the battery 400 has a safety hazard, thereby improving the safety of battery use and reducing the occurrence of safety accidents.
  • the processing circuit 430 communicates with the movable device via the communication interface 410 to determine whether the movable device is in a moving state, and enables the sensing when it is determined that the movable device is in the moving state.
  • the sensing circuit 420 works, and the sensing circuit 420 obtains the movement information of the battery 400 after being enabled by the processing circuit 430 to work. Therefore, the processing circuit 430 activates the sensing circuit 420 only when the movable device is moving, and does not make the sensing circuit 420 work when the movable device is not moving and when the electric energy is stored. Since the battery 400 is installed in the movable device, it can be moved. Generally, the device can only be dropped or impacted when it is moving. Therefore, only when the movable device is moving, starting the sensing circuit 420 can improve the safety of the battery while reducing the battery storage power consumption, ensuring that the battery will not be stored for a long time. Was over-released.
  • the sensing circuit 420 may be used to obtain movement information of the battery 400 at least in the direction of gravity, and the processing circuit 430 may be used to determine whether the battery 400 has fallen based on the acquisition result of the sensing circuit 420.
  • the following describes a schematic flowchart of determining whether the battery 400 itself has fallen according to an embodiment of the present invention with reference to FIG. 5.
  • the sensing circuit 420 acquires the movement information of the battery 400 at least in the direction of gravity; then, the processing circuit 430 determines whether the movement information of the battery 400 in the direction of gravity is predetermined based on the acquisition result of the sensing circuit 420. If it is, the processing circuit 430 determines that the movement information of the battery 400 in the direction of gravity continues to exceed the predetermined threshold within the predetermined time, and then it is determined that the battery 400 has fallen; if not, the processing circuit 430 determines that the battery If the movement information of 400 in the direction of gravity does not continuously exceed the predetermined threshold within a predetermined time, it is determined that the battery 400 has not fallen.
  • the number of the aforementioned predetermined threshold may be one.
  • the processing circuit 430 determines whether the battery 400 falls based on whether the motion information of the battery 400 in the direction of gravity continues to exceed the predetermined threshold within a predetermined time.
  • a safety strategy may be executed on the battery 400, and the safety strategy may include at least one of the following: recording abnormal information, giving an abnormal prompt, limiting the charge and discharge of the battery 400, and controlling the self-discharge of the battery 400. The following describes these security policies one by one.
  • the processing circuit 430 may execute a safety strategy on the battery 400, and the safety strategy may include recording abnormal information.
  • the abnormal information may include information related to the fall event (such as the time of the fall, etc.). In this way, if a safety accident occurs in the future, the cause of the battery safety accident can be traced based on the abnormal information recorded by the processing circuit 430.
  • the battery 400 may also include a memory (not shown).
  • the processing circuit 430 may record the relevant information of the fall event as abnormal information and store it in the memory. Alternatively, the processing circuit 430 may also record the abnormal information in another storage device outside the battery 400.
  • the processing circuit 430 may execute a safety strategy on the battery 400, and the safety strategy may include an abnormal prompt.
  • the processing circuit 430 may issue an audible and/or visual safety prompt when it is determined that the battery 400 has fallen, so as to remind the user to pay attention.
  • the battery 400 may also include an audible and/or visual device (such as a speaker and/or a display) to present audible and/or visual safety prompts to the user.
  • the processing circuit 430 may execute a safety strategy on the battery 400, and the safety strategy may include restricting the charging and discharging use of the battery 400.
  • limiting the charge and discharge of the battery 400 may include at least one of the following: limiting the number of charge and discharge of the battery 400, limiting the time for each charge and discharge of the battery 400, and prohibiting the charge and discharge of the battery 400.
  • the processing circuit 430 limits the charging and discharging use of the battery 400, which can fundamentally improve the safety of battery use and reduce the occurrence of safety accidents.
  • the processing circuit 430 may execute a safety strategy on the battery 400, and the safety strategy may include controlling the self-discharge of the battery 400.
  • controlling the self-discharge of the battery 400 may issue at least one of the following prompts: strengthening maintenance, keeping clean, and keeping dry.
  • the battery 400 may also include an audible and/or visual device (such as a speaker and/or a display) to present the prompt to the user.
  • the processing circuit 430 may also execute other suitable safety policies on the battery 400, which is not limited in the present invention.
  • the number of the aforementioned predetermined thresholds may be multiple.
  • the processing circuit 430 may determine the extent to which the battery 400 falls based on the difference in the predetermined threshold that the movement information of the battery 400 in the direction of gravity continuously exceeds within a predetermined time. For example, when the predetermined threshold value includes a first threshold value, a second threshold value, and a third threshold value, wherein the first threshold value is smaller than the second threshold value, and the second threshold value is smaller than the third threshold value.
  • the movement information of the battery 400 in the direction of gravity continues to exceed the first threshold within a predetermined time, it is determined that the battery 400 has a slight drop; if the movement information of the battery 400 in the direction of gravity continues to exceed the second threshold within the predetermined time, it is determined that the battery 400 A moderate drop occurred at 400; if the movement information of the battery 400 in the direction of gravity continues to exceed the third threshold within a predetermined time, it is determined that the battery 400 has suffered a severe drop.
  • the processing circuit 430 may also be used to execute a corresponding safety strategy based on the determined degree to which the battery 400 has fallen.
  • the processing circuit 430 may record abnormal information.
  • the battery 400 may further include a memory (not shown), and the processing circuit 430 may record and store the relevant information of this fall event as abnormal information in the memory.
  • the related information of the drop event may include the time and/or the degree of the drop of the battery 400.
  • the processing circuit 430 may perform an abnormality prompt.
  • the battery 400 may also include an audible and/or visual device (such as a speaker and/or a display), and the processing circuit 430 may issue an audible and/or visual safety prompt when it is determined that the battery 400 has been slightly dropped. To remind users to pay attention.
  • the processing circuit 430 can also control the self-discharge of the battery 400.
  • the battery 400 may also include an audible and/or visual device (such as a speaker and/or a display) to present prompts for enhancing maintenance, keeping clean, and keeping dry to the user.
  • the processing circuit 430 can also limit the charging and discharging of the battery 400, such as limiting the battery 400 The number of charge and discharge limits the time for each charge and discharge of the battery 400, and even prohibits the charge and discharge of the battery 400.
  • the processing circuit 430 can be used to execute a corresponding safety strategy based on the determined degree of the battery 400 falling, so as to improve the safety of battery use as much as possible and reduce the occurrence of safety accidents. It should be understood that the above-mentioned different security policies executed according to the degree of fall are only exemplary.
  • the sensing circuit 420 can be used to obtain movement information of the battery 400 in any direction, and the processing circuit 430 can be used to determine whether the battery 400 has occurred based on the acquisition result of the sensing circuit 420. Hit. It should be understood that any one of the directions may include the direction of gravity and other directions other than the direction of gravity.
  • the processing circuit 430 can determine whether the battery 400 has fallen based on the movement information of the battery 400 in the direction of gravity by the sensing circuit 420, and the fall can be understood as a kind of impact. The following describes a schematic flowchart of determining whether the battery 400 has an impact according to an embodiment of the present invention with reference to FIG. 6.
  • the sensing circuit 420 acquires the movement information of the battery 400 in any direction; then, the processing circuit 430 determines whether the movement information of the battery 400 in any direction is within a predetermined time based on the acquisition result of the sensing circuit 420. If it is, the processing circuit 430 determines that the movement information of the battery 400 in any direction continues to exceed the predetermined threshold within a predetermined time, then it is determined that the battery 400 has an impact; if not, the processing circuit 430 determines that the battery 400 If the motion information in either direction does not continuously exceed the predetermined threshold within a predetermined time, it is determined that the battery 400 has not hit.
  • the number of the aforementioned predetermined threshold may be one.
  • the processing circuit 430 determines whether the battery 400 has an impact based on whether the motion information of the battery 400 in any direction continuously exceeds the predetermined threshold within a predetermined time.
  • a safety strategy may be executed on the battery 400, and the safety strategy may include at least one of the following: recording abnormal information, performing abnormal prompts, limiting the charging and discharging of the battery 400, and controlling the self-discharge of the battery 400. The following describes these security policies one by one.
  • the processing circuit 430 may execute a safety strategy on the battery 400, and the safety strategy may include recording abnormal information.
  • the abnormal information may include relevant information about the impact event (such as impact time, etc.). In this way, if a safety accident occurs in the future, the cause of the battery safety accident can be traced based on the abnormal information recorded by the processing circuit 430.
  • the battery 400 may also include a memory (not shown).
  • the processing circuit 430 may record the relevant information of the impact event as abnormal information and store it in the memory. Alternatively, the processing circuit 430 may also record the abnormal information in another storage device outside the battery 400.
  • the processing circuit 430 may execute a safety strategy on the battery 400, and the safety strategy may include an abnormal prompt.
  • the processing circuit 430 may issue an audible and/or visual safety prompt when it is determined that the battery 400 is impacted to remind the user to pay attention.
  • the battery 400 may also include an audible and/or visual device (such as a speaker and/or a display) to present audible and/or visual safety prompts to the user.
  • the processing circuit 430 may execute a safety strategy on the battery 400, and the safety strategy may include restricting the charging and discharging use of the battery 400.
  • limiting the charge and discharge of the battery 400 may include at least one of the following: limiting the number of charge and discharge of the battery 400, limiting the time for each charge and discharge of the battery 400, and prohibiting the charge and discharge of the battery 400.
  • the processing circuit 430 can fundamentally improve the safety of battery use and reduce the occurrence of safety accidents by restricting the charging and discharging use of the battery 400.
  • the processing circuit 430 may execute a safety strategy on the battery 400, and the safety strategy may include controlling the self-discharge of the battery 400.
  • controlling the self-discharge of the battery 400 may issue at least one of the following prompts: strengthening maintenance, keeping clean, and keeping dry.
  • the battery 400 may also include an audible and/or visual device (such as a speaker and/or a display) to present the prompt to the user.
  • the processing circuit 430 may also execute other suitable safety policies on the battery 400, which is not limited in the present invention.
  • the number of the aforementioned predetermined thresholds may be multiple.
  • the processing circuit 430 may determine the degree of impact of the battery 400 based on the difference in the predetermined threshold continuously exceeded by the movement information of the battery 400 in any direction within a predetermined time. For example, when the predetermined threshold value includes a first threshold value, a second threshold value, and a third threshold value, wherein the first threshold value is smaller than the second threshold value, and the second threshold value is smaller than the third threshold value.
  • the movement information of the battery 400 in any direction continuously exceeds the first threshold within a predetermined time, it is determined that the battery has a slight impact; if the movement information of the battery 400 in either direction continues to exceed the second threshold within the predetermined time, it is determined that the battery has occurred Moderate impact; if the movement information of the battery 400 in any direction continues to exceed the third threshold within a predetermined time, it is determined that the battery has a severe impact.
  • the processing circuit 430 may also be used to execute a corresponding safety strategy based on the determined degree of impact of the battery 400.
  • the processing circuit 430 may record abnormal information.
  • the battery 400 may further include a memory (not shown), and the processing circuit 430 may record and store information related to the impact event as abnormal information in the memory.
  • the related information of the impact event may include the time and/or degree of impact of the battery 400.
  • the processing circuit 430 may perform an abnormality prompt.
  • the battery 400 may also include an audible and/or visual device (such as a speaker and/or a display), and the processing circuit 430 may issue an audible and/or visual safety prompt when it is determined that the battery 400 has a slight impact. To remind users to pay attention.
  • the processing circuit 430 can also control the self-discharge of the battery 400.
  • the battery 400 may also include an audible and/or visual device (such as a speaker and/or a display) to present prompts for enhancing maintenance, keeping clean, and keeping dry to the user.
  • the processing circuit 430 can also limit the charging and discharging of the battery 400, such as limiting the battery 400 The number of charge and discharge limits the time for each charge and discharge of the battery 400, and even prohibits the charge and discharge of the battery 400.
  • the processing circuit 430 can be used to execute a corresponding safety strategy based on the determined degree of impact of the battery 400, so as to improve the safety of battery use as much as possible and reduce the occurrence of safety accidents. It should be understood that the above-mentioned different security policies executed according to the degree of impact are only exemplary.
  • the processing circuit 430 may also be used to obtain a control operation triggered by the user on the battery 400 before the security policy is executed on the battery 400, and the control operation is used to control the execution of the security policy on the battery 400.
  • control of the execution of the security policy on the battery 400 may be implemented based on user instructions, for example, by controlling the terminal.
  • the control terminal may be a terminal on which the battery 400 is installed (for example, the mobile device), or may be another terminal.
  • the control operation may be triggered by the user on the battery 400, or may be triggered by the user on the control terminal.
  • the aforementioned sensing circuit 420 may include an acceleration sensor.
  • the aforementioned processing circuit 430 may include a microprocessor or a micro control unit.
  • the aforementioned battery 400 may include at least one of the following: a lithium battery, a lead storage battery, a nickel-cadmium battery, and a nickel-hydrogen battery.
  • the battery according to the embodiment of the present invention obtains the movement information of the battery through the sensing circuit, determines whether the battery is dropped or impacted accordingly, and implements a safety strategy for the battery when it is determined that the battery has been dropped or impacted, thereby improving
  • the safety of battery use can reduce the occurrence of safety accidents, and at the same time can reduce the power consumption of battery storage, and ensure that the battery will not be over-discharged in long-term storage.
  • FIG. 7 shows a schematic block diagram of a battery 700 according to still another embodiment of the present invention.
  • the battery 700 may be applied to a movable device.
  • the battery 700 includes a communication interface 710 and a processing circuit 720.
  • the battery 700 is used to communicate with a mobile device (not shown) through the communication interface 710, and the processing circuit 720 is used to communicate with a mobile device (not shown) via the communication interface 710.
  • a sensing circuit (not shown) acquires the movement information of the movable device, and based on the acquisition result of the sensing circuit, determines whether the battery 700 has been dropped or hit.
  • the execution of a safety strategy includes at least one of the following: recording abnormal information, performing abnormal prompts, restricting the charging and discharging of the battery, and controlling the self-discharge of the battery.
  • the movement information of the movable device is acquired through the sensing circuit in the movable device, that is, the movement information of the battery 700 installed therein is acquired, and the processing circuit 720 included in the battery 700 passes through
  • the communication interface 710 acquires the acquisition result of the sensing circuit in the movable device, and based on the acquisition result, determines whether the battery 700 has fallen or hits. It can detect whether the battery 700 has a potential safety hazard in real time and reliably, and determine whether the battery 700 has a safety hazard. When there is a potential safety hazard, a safety strategy is executed on the battery 700, which can improve the safety of battery use and reduce the occurrence of safety accidents.
  • the processing circuit 720 communicates with the mobile device via the communication interface 710 to obtain the acquisition result of the sensing circuit in the mobile device for determining whether the battery 700 is dropped or impacted, so that the battery 700 There is no need to include a sensing circuit, which further simplifies the structure of the battery 700.
  • the battery 700 may obtain the movement information of the movable device at least in the direction of gravity from the sensing circuit in the movable device via the communication interface 710, that is, obtain the movement information of the battery 700 at least in the direction of gravity, and the processing circuit 720 may be used to determine whether the battery 700 has fallen based on the acquisition result of the sensing circuit.
  • the following describes a schematic flowchart of determining whether the battery 700 has fallen according to an embodiment of the present invention with reference to FIG. 8. For the sake of brevity, it will not be repeated here.
  • the processing circuit 720 acquires the movement information of the movable device in the direction of gravity acquired by the sensing circuit in the movable device via the communication interface 710; then, the processing circuit 720 acquires the result based on the sensing circuit.
  • the number of the aforementioned predetermined threshold may be one.
  • the processing circuit 720 determines whether the battery 700 falls based on whether the movement information of the movable device in the direction of gravity continues to exceed the predetermined threshold within a predetermined time.
  • a safety strategy may be executed on the battery 700, and the safety strategy may include at least one of the following: recording abnormal information, performing abnormal prompts, limiting the charge and discharge of the battery 700, and controlling the self-discharge of the battery 700. The following describes these security policies one by one.
  • the processing circuit 720 may execute a safety strategy on the battery 700, and the safety strategy may include recording abnormal information.
  • the abnormal information may include information related to the fall event (such as the time of the fall, etc.). In this way, if a safety accident occurs in the future, the cause of the battery safety accident can be traced based on the abnormal information recorded by the processing circuit 720.
  • the battery 700 may also include a memory (not shown).
  • the processing circuit 720 may record the relevant information of the fall event as abnormal information and store it in the memory. Alternatively, the processing circuit 720 may also record the abnormal information in another storage device outside the battery 700.
  • the processing circuit 720 may execute a safety policy on the battery 700, and the safety policy may include an abnormal prompt.
  • the processing circuit 720 may issue an audible and/or visual safety prompt to remind the user when it is determined that the battery 700 has fallen.
  • the battery 700 may also include an audible and/or visual device (such as a speaker and/or a display) to present audible and/or visual safety prompts to the user.
  • the processing circuit 720 may execute a safety strategy on the battery 700, and the safety strategy may include restricting the charging and discharging use of the battery 700.
  • limiting the charge and discharge of the battery 700 may include at least one of the following: limiting the number of charge and discharge of the battery 700, limiting the time for each charge and discharge of the battery 700, and prohibiting the charge and discharge of the battery 700.
  • the processing circuit 720 limits the charging and discharging use of the battery 700, which can fundamentally improve the safety of battery use and reduce the occurrence of safety accidents.
  • the processing circuit 720 may execute a safety strategy on the battery 700, and the safety strategy may include controlling the self-discharge of the battery 700.
  • controlling the self-discharge of the battery 700 may issue at least one of the following prompts: strengthening maintenance, keeping clean, and keeping dry.
  • the battery 700 may also include an audible and/or visual device (such as a speaker and/or a display) to present the prompt to the user.
  • the processing circuit 720 may also execute other suitable safety policies on the battery 700, which is not limited in the present invention.
  • the number of the aforementioned predetermined thresholds may be multiple.
  • the processing circuit 720 may determine the extent to which the battery 700 falls based on the difference in the predetermined threshold that the movement information of the movable device in the direction of gravity continuously exceeds within a predetermined time. For example, when the predetermined threshold value includes a first threshold value, a second threshold value, and a third threshold value, wherein the first threshold value is smaller than the second threshold value, and the second threshold value is smaller than the third threshold value.
  • the movement information of the movable device in the direction of gravity continues to exceed the first threshold within a predetermined time, it is determined that the battery 700 has a slight drop; if the movement information of the movable device in the direction of gravity continues to exceed the second threshold within the predetermined time, then It is determined that the battery 700 has suffered a moderate fall; if the movement information of the movable device in the direction of gravity continues to exceed the third threshold within a predetermined time, it is determined that the battery 700 has suffered a severe fall.
  • the processing circuit 720 may also be used to execute a corresponding safety strategy based on the determined degree to which the battery 700 has fallen.
  • the processing circuit 720 may record abnormality information.
  • the battery 700 may further include a memory (not shown), and the processing circuit 720 may record and store information related to this fall event as abnormal information in the memory.
  • the relevant information about the drop event may include the time and/or the degree of the drop of the battery 700.
  • the processing circuit 720 may perform an abnormality prompt.
  • the battery 700 may also include an audible and/or visual device (such as a speaker and/or a display), and the processing circuit 720 may issue an audible and/or visual safety prompt when it is determined that the battery 700 has been slightly dropped. To remind users to pay attention.
  • the processing circuit 720 can also control the self-discharge of the battery 700 in addition to the aforementioned abnormal information recording and abnormal prompting.
  • the battery 700 may also include an audible and/or visual device (such as a speaker and/or a display) to present prompts for enhancing maintenance, keeping clean, and keeping dry to the user.
  • the processing circuit 720 can also limit the charging and discharging of the battery 700, such as limiting the battery 700 The number of charge and discharge limits the time for each charge and discharge of the battery 700, and even prohibits the charge and discharge of the battery 700.
  • the processing circuit 720 can be used to execute a corresponding safety strategy based on the determined degree of the battery 700 falling, so as to improve the safety of battery use as much as possible and reduce the occurrence of safety accidents. It should be understood that the above-mentioned different security policies executed according to the degree of fall are only exemplary.
  • the sensing circuit can be used to obtain the movement information of the movable device in any direction
  • the processing circuit 720 can be used to determine whether the battery 700 is impacted based on the obtained result of the sensing circuit.
  • any one of the directions may include the direction of gravity and other directions other than the direction of gravity.
  • the processing circuit 720 can determine whether the battery 700 has fallen based on the movement information of the sensing circuit on the movable device in the direction of gravity, and the fall can be understood as a kind of impact.
  • the following describes a schematic flowchart of determining whether the battery 700 has an impact according to an embodiment of the present invention with reference to FIG. 9.
  • the processing circuit 720 acquires the movement information of the movable device in any direction acquired by the sensing circuit in the movable device via the communication interface 710; then, the processing circuit 720 determines based on the acquisition result of the sensing circuit.
  • the processing circuit 720 determines that the movement information of the movable device in any direction continues to exceed the predetermined threshold within the predetermined time, then it is determined that the battery 700 occurs Impact; on the contrary, if not, that is, the processing circuit 720 determines that the movement information of the movable device in any direction does not continue to exceed the predetermined threshold within a predetermined time, then it is determined that the battery 700 does not impact.
  • the number of the aforementioned predetermined threshold may be one.
  • the processing circuit 720 determines whether the battery 700 has an impact based on whether the motion information of the battery 700 in any direction continuously exceeds the predetermined threshold within a predetermined time.
  • a safety strategy may be executed on the battery 700, and the safety strategy may include at least one of the following: recording abnormal information, performing abnormal prompts, limiting the charging and discharging of the battery 700, and controlling the self-discharge of the battery 700. The following describes these security policies one by one.
  • the processing circuit 720 may execute a safety strategy on the battery 700, and the safety strategy may include recording abnormal information.
  • the abnormal information may include relevant information about the impact event (such as impact time, etc.). In this way, if a safety accident occurs in the future, the cause of the battery safety accident can be traced based on the abnormal information recorded by the processing circuit 720.
  • the battery 700 may also include a memory (not shown).
  • the processing circuit 720 may record the relevant information of the impact event as abnormal information and store it in the memory. Alternatively, the processing circuit 720 may also record the abnormal information in another storage device outside the battery 700.
  • the processing circuit 720 may execute a safety strategy on the battery 700, and the safety strategy may include an abnormal prompt.
  • the processing circuit 720 may issue an audible and/or visual safety prompt when it is determined that the battery 700 is impacted to remind the user to pay attention.
  • the battery 700 may also include an audible and/or visual device (such as a speaker and/or a display) to present audible and/or visual safety prompts to the user.
  • the processing circuit 720 may execute a safety strategy on the battery 700, and the safety strategy may include restricting the charging and discharging use of the battery 700.
  • limiting the charge and discharge of the battery 700 may include at least one of the following: limiting the number of charge and discharge of the battery 700, limiting the time for each charge and discharge of the battery 700, and prohibiting the charge and discharge of the battery 700.
  • the processing circuit 720 can fundamentally improve the safety of battery use and reduce the occurrence of safety accidents by restricting the charging and discharging use of the battery 700.
  • the processing circuit 720 may execute a safety strategy on the battery 700, and the safety strategy may include controlling the self-discharge of the battery 700.
  • controlling the self-discharge of the battery 700 may issue at least one of the following prompts: strengthening maintenance, keeping clean, and keeping dry.
  • the battery 700 may also include an audible and/or visual device (such as a speaker and/or a display) to present the prompt to the user.
  • the processing circuit 720 may also execute other suitable safety policies on the battery 700, which is not limited in the present invention.
  • the number of the aforementioned predetermined thresholds may be multiple.
  • the processing circuit 720 may determine the degree of impact of the battery 700 based on the difference in the predetermined threshold that the movement information of the movable device in any direction continuously exceeds within a predetermined time. For example, when the predetermined threshold value includes a first threshold value, a second threshold value, and a third threshold value, wherein the first threshold value is smaller than the second threshold value, and the second threshold value is smaller than the third threshold value.
  • the movement information of the movable device in any direction continues to exceed the first threshold within a predetermined time, it is determined that the battery has a slight impact; if the movement information of the movable device in any direction continues to exceed the second threshold within the predetermined time, it is determined The battery has a moderate impact; if the movement information of the movable device in any direction continuously exceeds the third threshold within a predetermined time, it is determined that the battery has a severe impact.
  • the processing circuit 720 may also be used to execute a corresponding safety policy based on the determined degree of impact of the battery 700.
  • the processing circuit 720 may record abnormal information.
  • the battery 700 may further include a memory (not shown), and the processing circuit 720 may record and store information related to the impact event as abnormal information in the memory.
  • the related information of the impact event may include the time and/or the degree of impact of the battery 700.
  • the processing circuit 720 may perform an abnormality prompt.
  • the battery 700 may also include an audible and/or visual device (such as a speaker and/or a display), and the processing circuit 720 may issue an audible and/or visual safety prompt when it is determined that the battery 700 has a slight impact To remind users to pay attention.
  • an audible and/or visual device such as a speaker and/or a display
  • the processing circuit 720 may issue an audible and/or visual safety prompt when it is determined that the battery 700 has a slight impact To remind users to pay attention.
  • the processing circuit 720 can also control the self-discharge of the battery 700 in addition to the aforementioned abnormal information recording and abnormal prompting.
  • the battery 700 may also include audible and/or visual devices (e.g., speakers and/or displays) to present prompts to the user to enhance maintenance, keep clean, and keep dry.
  • the processing circuit 720 can also limit the charging and discharging of the battery 700, such as limiting the battery 700 The number of charge and discharge limits the time for each charge and discharge of the battery 700, and even prohibits the charge and discharge of the battery 700.
  • the processing circuit 720 can be used to execute a corresponding safety strategy based on the determined degree of impact of the battery 700, so as to improve the safety of battery use as much as possible and reduce the occurrence of safety accidents. It should be understood that the above-mentioned different security policies executed according to the degree of impact are only exemplary.
  • the processing circuit 720 may also be used to obtain a control operation triggered by the user on the battery 700 before the security policy is executed on the battery 700, and the control operation is used to control the execution of the security policy on the battery 700.
  • the control terminal may be a terminal on which the battery 700 is installed (for example, the mobile device), or may be another terminal.
  • the control operation may be triggered by the user on the battery 700, or may be triggered by the user on the control terminal.
  • the aforementioned sensing circuit may include an acceleration sensor.
  • the aforementioned processing circuit 720 may include a microprocessor or a micro control unit.
  • the aforementioned battery 700 may include at least one of the following: a lithium battery, a lead storage battery, a nickel-cadmium battery, and a nickel-hydrogen battery.
  • the battery according to the embodiment of the present invention determines the movement information of the battery through the movement information of the movable device acquired by the sensing circuit of the battery installed in the movable device, and judges whether the battery is dropped or impacted accordingly, and When it is determined that the battery has been dropped or impacted, a safety strategy is performed on the battery, thereby improving the safety of battery use, reducing the occurrence of safety accidents, and simplifying the structure of the battery because it does not need to include a sensing circuit.
  • a movable device may be a drone or a mobile terminal.
  • the movable device may include the battery 400 shown in the foregoing in conjunction with FIGS. 4 to 6.
  • the movable device may include the battery 700 shown in the foregoing in conjunction with FIGS. 7 to 9.
  • the movable device needs to include a sensing circuit to obtain the movement information of the movable device, so as to determine whether the battery installed therein has been dropped or impacted.
  • FIGS. 7 to 9 For the sake of brevity, details are not repeated here.
  • FIG. 10 shows a schematic block diagram of a movable device 1000 according to an embodiment of the present invention.
  • the mobile device 1000 includes a battery 1010 and also includes a sensing circuit 1020 and a processing circuit 1030.
  • the sensing circuit 1020 is used to obtain the movement information of the movable device 1000, and the processing circuit 1030 is used to determine whether the battery 1010 in the movable device 1000 has fallen or impacted based on the acquisition result of the sensing circuit 1020, if it is determined that the battery 1010 has fallen Or impact, a safety strategy is executed on the battery 1010, and the safety strategy includes at least one of the following: recording abnormal information, giving an abnormal prompt, restricting the charging and discharging of the battery, and controlling the self-discharge of the battery.
  • the motion information of the mobile device 1000 is acquired by the sensing circuit 1020 in the mobile device 1000, that is, the motion information of the battery 1010 in the mobile device 1000 is acquired, and the processing circuit 1030 is based on
  • the result obtained by the sensing circuit 1020 is used to determine whether the battery 1010 in the mobile device 1000 has fallen or hit, and it can detect whether the battery 1010 has a safety hazard in real time and reliably, and execute the execution on the battery 1010 when it is determined that the pool 1010 has a safety hazard.
  • the safety strategy can improve the safety of battery use and reduce the occurrence of safety accidents.
  • the sensing circuit 1020 can be used to obtain movement information of the movable device 1000 at least in the direction of gravity, that is, to obtain movement information of the battery 1010 of the movable device 1000 at least in the direction of gravity
  • the processing circuit 1030 can be used Based on the acquisition result of the sensing circuit 1020, it is determined whether the battery 1010 has fallen.
  • a schematic flowchart of determining whether the battery 1010 installed in the mobile device 1000 according to an embodiment of the present invention is dropped will be described with reference to FIG. 11.
  • the sensing circuit 1020 acquires the movement information of the movable device 1000 at least in the direction of gravity, that is, the movement information of the battery 1010 of the movable device 1000 at least in the direction of gravity is acquired; then, the processing circuit 1030 is based on The acquisition result of the sensing circuit 1020 determines whether the movement information of the movable device 1000 in the direction of gravity continues to exceed a predetermined threshold within a predetermined time; if so, the processing circuit 1030 determines that the movement information of the movable device 1000 in the direction of gravity is within a predetermined time If it continues to exceed the predetermined threshold, it is determined that the battery 1010 has fallen; if not, that is, the processing circuit 1030 determines that the movement information of the movable device 1000 in the direction of gravity does not continue to exceed the predetermined threshold within a predetermined time, then it is determined that the battery 1010 does not fall.
  • the number of the aforementioned predetermined threshold may be one.
  • the processing circuit 1030 determines whether the battery 1010 falls based on whether the movement information of the movable device 1000 in the direction of gravity continues to exceed the predetermined threshold within a predetermined time.
  • a safety strategy may be executed on the battery 1010, and the safety strategy may include at least one of the following: recording abnormal information, giving an abnormal prompt, limiting the charging and discharging of the battery 1010, and controlling the self-discharge of the battery 1010. The following describes these security policies one by one.
  • the processing circuit 1030 may execute a safety strategy on the battery 1010, and the safety strategy may include recording abnormal information.
  • the abnormal information may include information related to the fall event (such as the time of the fall, etc.). In this way, if a safety accident occurs in the future, the cause of the battery safety accident can be traced based on the abnormal information recorded by the processing circuit 1030.
  • the movable device 1000 may further include a memory (not shown).
  • the processing circuit 1030 may record the relevant information of the fall event as abnormal information and store it in the memory.
  • the processing circuit 1030 may also record the abnormal information in another storage device outside the movable device 1000.
  • the processing circuit 1030 may execute a safety strategy on the battery 1010, and the safety strategy may include an abnormal prompt.
  • the processing circuit 130 may issue an audible and/or visual safety prompt when it is determined that the battery 1010 has fallen, so as to remind the user to pay attention.
  • the movable device 1000 may also include an audible and/or visual device (such as a speaker and/or a display) to present audible and/or visual safety prompts to the user.
  • the processing circuit 1030 may execute a safety strategy on the battery 1010, and the safety strategy may include restricting the charge and discharge of the battery 1010.
  • restricting the charging and discharging use of the battery 1010 may include at least one of the following: restricting the number of charging and discharging of the battery 1010, restricting the time for each charge and discharge of the battery 1010, and prohibiting the charging and discharging of the battery 1010.
  • the processing circuit 1030 limits the charging and discharging use of the battery 1010, which can fundamentally improve the safety of battery use and reduce the occurrence of safety accidents.
  • the processing circuit 1030 may execute a safety strategy on the battery 1010, and the safety strategy may include controlling the self-discharge of the battery 1010.
  • controlling the self-discharge of the battery 1010 may issue at least one of the following prompts: strengthening maintenance, keeping clean, and keeping dry.
  • the movable device 1000 may further include an audible and/or visual device (such as a speaker and/or a display) to present the prompt to the user.
  • the processing circuit 1030 may also execute other suitable safety policies on the battery 1010, which is not limited in the present invention.
  • the number of the aforementioned predetermined thresholds may be multiple.
  • the processing circuit 1030 may determine the degree to which the battery 1010 falls based on the difference in the predetermined threshold that the movement information of the movable device 1000 in the direction of gravity continuously exceeds within a predetermined time. For example, when the predetermined threshold value includes a first threshold value, a second threshold value, and a third threshold value, wherein the first threshold value is smaller than the second threshold value, and the second threshold value is smaller than the third threshold value.
  • the movement information of the movable device 1000 in the direction of gravity continues to exceed the first threshold within a predetermined time, it is determined that the battery 1010 has been slightly dropped; if the movement information of the movable device 1000 in the direction of gravity continues to exceed the second threshold within the predetermined time , It is determined that the battery 1010 has a moderate drop; if the movement information of the movable device 1000 in the direction of gravity continues to exceed the third threshold within a predetermined time, it is determined that the battery 1010 has been severely dropped.
  • the processing circuit 1030 may also be used to execute a corresponding safety strategy based on the determined degree to which the battery 1010 has fallen.
  • the processing circuit 1030 may record abnormal information.
  • the mobile device 1000 may further include a memory (not shown), and the processing circuit 1030 may record and store the relevant information of the drop event as abnormal information in the memory.
  • the relevant information about the drop event may include the time and/or the degree of the drop of the battery 1010.
  • the processing circuit 1030 may perform an abnormality prompt.
  • the movable device 1000 may also include an audible and/or visual device (such as a speaker and/or a display), and the processing circuit 1030 may emit an audible and/or visual device when it is determined that the battery 1010 has been slightly dropped. Safety tips to remind users to pay attention.
  • an audible and/or visual device such as a speaker and/or a display
  • the processing circuit 1030 may emit an audible and/or visual device when it is determined that the battery 1010 has been slightly dropped. Safety tips to remind users to pay attention.
  • the processing circuit 1030 can also control the self-discharge of the battery 1010.
  • the movable device 1000 may further include an audible and/or visual device (such as a speaker and/or a display) to present prompts for enhancing maintenance, keeping clean, and keeping dry to the user.
  • the processing circuit 1030 can also limit the charging and discharging of the battery 1010, such as restricting the battery 1010.
  • the number of charge and discharge limits the time for each charge and discharge of the battery 1010, or even prohibit the charge and discharge of the battery 1010.
  • the processing circuit 1030 can be used to execute a corresponding safety strategy based on the determined degree of the battery 1010 falling, so as to improve the safety of battery use as much as possible and reduce the occurrence of safety accidents. It should be understood that the above-mentioned different security policies executed according to the degree of fall are only exemplary.
  • the sensing circuit 1020 can be used to obtain the movement information of the movable device 1000 in any direction, that is, to obtain the movement information of the battery 1010 in any direction
  • the processing circuit 1030 can be used to Based on the acquisition result of the sensing circuit 1020, it is determined whether the battery 1010 is impacted. It should be understood that any one of the directions may include the direction of gravity and other directions other than the direction of gravity.
  • the processing circuit 1030 can determine whether the battery 1010 has fallen based on the movement information of the movable device 1000 in the direction of gravity by the sensing circuit 1020, and the fall can be understood as a kind of impact.
  • FIG. 12 a schematic flowchart of determining whether the battery 1010 installed in the mobile device 1000 is impacted according to an embodiment of the present invention will be described with reference to FIG. 12.
  • the sensing circuit 1020 obtains the movement information of the movable device 1000 in any direction, that is, the movement information of the battery 1010 in the movable device 1000 in any direction;
  • the acquisition result of the detection circuit 1020 determines whether the movement information of the movable device 1000 in any direction continues to exceed a predetermined threshold within a predetermined time; if so, the processing circuit 1030 determines that the movement information of the movable device 1000 in any direction continues within a predetermined time If the predetermined threshold is exceeded, it is determined that the battery 1010 is impacted; otherwise, if not, that is, the processing circuit 1030 determines that the movement information of the movable device 1000 in any direction does not continuously exceed the predetermined threshold within a predetermined time, and then it is determined that the battery 1010 has not impacted.
  • the number of the aforementioned predetermined threshold may be one.
  • the processing circuit 1030 determines whether the battery 1010 has an impact based on whether the movement information of the movable device 1000 in any direction continuously exceeds the predetermined threshold within a predetermined time.
  • a safety strategy may be executed on the battery 1010.
  • the safety strategy may include at least one of the following: recording abnormal information, giving an abnormal prompt, restricting the charging and discharging of the battery 1010, and controlling the self-discharge of the battery 1010. The following describes these security policies one by one.
  • the processing circuit 1030 may execute a safety strategy on the battery 1010, and the safety strategy may include recording abnormal information.
  • the abnormal information may include relevant information about the impact event (such as impact time, etc.). In this way, if a safety accident occurs in the future, the cause of the battery safety accident can be traced based on the abnormal information recorded by the processing circuit 1030.
  • the movable device 1000 may further include a memory (not shown).
  • the processing circuit 1030 may record the relevant information of the impact event as abnormal information and store it in the memory.
  • the processing circuit 1030 may also record the abnormal information in another storage device outside the movable device 1000.
  • the processing circuit 1030 may execute a safety strategy on the battery 1010, and the safety strategy may include an abnormal prompt.
  • the processing circuit 1030 may issue an audible and/or visual safety prompt when it is determined that the battery 1010 is impacted to remind the user to pay attention.
  • the movable device 1000 may also include an audible and/or visual device (such as a speaker and/or a display) to present audible and/or visual safety prompts to the user.
  • the processing circuit 1030 may execute a safety strategy on the battery 1010, and the safety strategy may include restricting the charge and discharge of the battery 1010.
  • restricting the charging and discharging use of the battery 1010 may include at least one of the following: restricting the number of charging and discharging of the battery 1010, restricting the time for each charge and discharge of the battery 1010, and prohibiting the charging and discharging of the battery 1010.
  • the processing circuit 1030 can fundamentally improve the safety of battery use and reduce the occurrence of safety accidents by restricting the charging and discharging use of the battery 1010.
  • the processing circuit 1030 may execute a safety strategy on the battery 1010, and the safety strategy may include controlling the self-discharge of the battery 1010.
  • controlling the self-discharge of the battery 1010 may issue at least one of the following prompts: strengthen maintenance, keep clean, and keep dry.
  • the movable device 1000 may further include an audible and/or visual device (such as a speaker and/or a display) to present the prompt to the user.
  • the processing circuit 1030 may also execute other suitable safety policies on the battery 1010, which is not limited in the present invention.
  • the number of the aforementioned predetermined thresholds may be multiple.
  • the processing circuit 1030 may determine the degree of impact of the battery 1010 based on the difference in the predetermined threshold that the movement information of the movable device 1000 in any direction continuously exceeds within a predetermined time. For example, when the predetermined threshold value includes a first threshold value, a second threshold value, and a third threshold value, wherein the first threshold value is smaller than the second threshold value, and the second threshold value is smaller than the third threshold value.
  • the movement information of the movable device 1000 in any direction continuously exceeds the first threshold within a predetermined time, it is determined that the battery 1010 has a slight impact; if the movement information of the movable device 1000 in any direction continues to exceed the second threshold within the predetermined time , It is determined that the battery 1010 has a moderate impact; if the movement information of the movable device 1000 in any direction continuously exceeds the third threshold within a predetermined time, it is determined that the battery 1010 has a severe impact.
  • the processing circuit 1030 may also be used to execute a corresponding safety strategy based on the determined degree of impact of the battery 1010.
  • the processing circuit 1030 may record abnormality information.
  • the movable device 1000 may further include a memory (not shown), and the processing circuit 1030 may record and store information related to the impact event as abnormal information in the memory.
  • the related information of the impact event may include the time and/or the degree of impact of the battery 1010.
  • the processing circuit 1030 may perform an abnormality prompt.
  • the movable device 1000 may also include an audible and/or visual device (such as a speaker and/or a display), and the processing circuit 130 may emit an audible and/or visual device when it is determined that the battery 1010 has a slight impact. Safety tips to remind users to pay attention.
  • an audible and/or visual device such as a speaker and/or a display
  • the processing circuit 130 may emit an audible and/or visual device when it is determined that the battery 1010 has a slight impact. Safety tips to remind users to pay attention.
  • the processing circuit 1030 can also control the self-discharge of the battery 1010.
  • the movable device 1000 may further include an audible and/or visual device (such as a speaker and/or a display) to present prompts for enhancing maintenance, keeping clean, and keeping dry to the user.
  • the processing circuit 1030 can also limit the charge and discharge of the battery 1010, such as limiting the battery 1010 The number of charge and discharge limits the time for each charge and discharge of the battery 1010, or even prohibit the charge and discharge of the battery 1010.
  • the processing circuit 1030 can be used to execute a corresponding safety strategy based on the determined degree of impact of the battery 1010, so as to improve the safety of battery use as much as possible and reduce the occurrence of safety accidents. It should be understood that the above-mentioned different security policies executed according to the degree of impact are only exemplary.
  • the processing circuit 1030 may also be used to obtain a control operation triggered by the user on the battery 1010 before the security policy is executed on the battery 1010, and the control operation is used to control the execution of the security policy on the battery 1010.
  • control of the execution of the security policy on the battery 1010 may be implemented based on user instructions, for example, by controlling the terminal.
  • the control terminal may be a terminal on which the battery 1010 is installed (for example, the mobile device 1000), or may be another terminal.
  • the control operation may be triggered by the user on the battery 1010, or may be triggered by the user on the control terminal.
  • the aforementioned sensing circuit 1020 may include an acceleration sensor.
  • the aforementioned processing circuit 1030 may include a microprocessor or a micro control unit.
  • the aforementioned battery 1010 may include at least one of the following: a lithium battery, a lead storage battery, a nickel-cadmium battery, and a nickel-hydrogen battery.
  • the mobile device obtains its own motion information through the sensing circuit, and then obtains the motion information of the battery installed in it, determines whether the battery is dropped or hit, and determines whether the battery is dropped or hit.
  • a safety strategy is implemented for the battery, thereby improving the safety of battery use and reducing the occurrence of safety accidents.
  • an assembly which may include a movable platform and the battery described above in conjunction with FIG. 1 to FIG.
  • the movable platform provides power.
  • the battery, the movable device, and the component according to the embodiments of the present invention obtain the movement information of the battery through the sensing circuit, and determine whether the battery is dropped or hit according to this, and when it is determined that the battery has been dropped or hit, the battery is Implement safety strategies to improve the safety of battery use and reduce the occurrence of safety accidents.
  • a method for battery safety protection is also provided.
  • the method may also include: after determining that the battery has been dropped or hit, The processing circuit (such as the processing circuit 130, 430, 720, or 1030 described above) performs short-circuit detection on the battery, and if it is determined that the battery is short-circuited, a protection strategy is executed. This process can be described in conjunction with FIG. 13 and FIG. 14.
  • FIG. 13 shows a schematic flowchart of a method 1300 for battery safety protection according to an embodiment of the present invention.
  • the method 1300 for battery safety protection may include the following steps:
  • step S1310 after it is determined that the battery has been dropped or hit, the battery parameters of the battery are acquired.
  • the battery parameters include at least one of constant voltage charging time, constant voltage charging capacity, charge-discharge capacity ratio, and battery temperature.
  • the battery parameters collected through the battery circuit can be obtained. For example, when the battery is charged, it enters the constant voltage charging phase, and the constant voltage charging time is obtained by acquiring the time of the constant voltage charging phase.
  • the battery temperature collected by a temperature sensor can be acquired, and the temperature sensor can be located on the surface of the battery or inside the battery. The battery circuit can communicate with the temperature sensor to obtain battery temperature data.
  • the calculated battery parameters can also be obtained, for example, the charge and discharge capacity of the battery, that is, the charge capacity and the discharge capacity, can be calculated by the ampere-hour integral calculation, and then the charge and discharge capacity ratio can be calculated according to the charge capacity and the discharge capacity.
  • step S1320 it is determined whether the battery has a short circuit according to the battery parameter.
  • determining whether the battery has a short circuit according to the battery parameters is specifically: obtaining the standard parameters of the battery; determining whether the battery has a short circuit according to the difference between the battery parameters and the standard parameters.
  • the preset range can accurately determine whether the battery is short-circuited.
  • the preset range is set according to the type of battery. Different types of batteries have different preset ranges. Different types of batteries include different battery capacities or different battery cell materials, such as lithium ion batteries and lead storage batteries.
  • the standard parameter is the standard constant voltage charging time. Determine whether the battery is short-circuited, specifically: determine whether the constant voltage charging time is greater than the standard constant voltage charging time; if the constant voltage charging time is greater than the standard constant voltage charging time, determine whether the battery is short-circuited; if the constant voltage charging time is less than or equal to the standard constant voltage Charging time, make sure the battery is not short-circuited.
  • battery charging generally includes a constant current charging stage and a constant voltage charging stage, for batteries of the same type and with a fixed capacity, the charging time in the constant voltage charging stage is basically the same, which can be based on the constant voltage charging time of the constant voltage charging stage To determine whether the battery is short-circuited.
  • lithium batteries are charged with constant current and constant voltage, and the time for constant voltage charging is generally 20-30 minutes.
  • the time for constant voltage charging of the battery will be greatly extended. It may be 40-50 minutes, or it may be a couple of hours. Therefore, it is possible to determine whether the battery is short-circuited by detecting the charging time of the constant voltage charging stage of the battery.
  • the standard parameter is the standard constant voltage charging capacity. Determine whether the battery is short-circuited, specifically: determine whether the constant voltage charging capacity is greater than the standard constant voltage charging capacity; if the constant voltage charging capacity is greater than the standard constant voltage charging capacity, confirm that the battery is short-circuited; if the constant voltage charging capacity is less than or equal to the standard constant voltage Charging capacity, make sure the battery is not short-circuited.
  • the constant voltage charging capacity of the battery In the normal state, the constant voltage charging capacity of the battery is fixed. If there is a short circuit, the battery will have a leakage phenomenon, which will cause the constant voltage charging capacity of the battery to be larger, even far greater than the constant voltage charging of the battery in the normal state. capacitance. Therefore, the constant voltage charging capacity can be used to quickly and accurately determine whether the battery has a short circuit, such as a micro short circuit.
  • the standard parameter is the standard charge-discharge capacity ratio. Determine whether the battery is short-circuited, specifically: determine whether the charge-discharge capacity ratio is greater than the standard charge-discharge capacity ratio; if the charge-discharge capacity ratio is greater than the standard charge-discharge capacity ratio, determine whether the battery is short-circuited; if the charge-discharge capacity ratio is less than or equal to the standard charge-discharge capacity ratio Discharge capacity ratio, it is determined that the battery does not have a short circuit.
  • the charge-discharge capacity ratio of the battery is generally in a fixed range, while the charge-discharge capacity ratio of the short-circuited battery is larger. Therefore, it can be determined whether the battery is short-circuited according to the change of the charge-discharge capacity ratio.
  • the charge-discharge capacity ratio will fluctuate in the range of 1.01-1.05 under normal conditions, while for lithium-ion batteries with micro-short circuits, the charge-discharge capacity ratio will be much greater than 1, which is based on the charge-discharge capacity ratio. Change to determine whether the battery is short-circuited. For example, when the charge-discharge capacity ratio is greater than 1.1, it can be determined that the battery has a micro short circuit.
  • the corresponding charging voltage and charging time can also be obtained when the battery is being charged.
  • the charging voltage and charging time are used to indicate the battery parameters of the battery to determine whether the battery is short-circuited. .
  • the battery temperature rises to a certain threshold, which is often caused by a battery short circuit.
  • the battery temperature can be detected. When the battery temperature rises to a certain threshold range, it is determined that the battery may have a short circuit.
  • step S1330 if the battery is short-circuited, a battery protection strategy corresponding to the battery's short-circuit is determined.
  • the battery protection strategy corresponding to the short-circuit of the battery is a preset battery protection strategy, and the battery protection strategy is a strategy for protecting the battery when the battery is short-circuited.
  • the battery protection strategy includes at least one of the following: discharging the battery to a preset voltage range corresponding to the safe storage of the battery, and controlling the battery to be in a locked state.
  • the battery protection strategy can also include other strategies.
  • the prompt information may be voice prompt information, text prompt information, indicator prompt information, etc.
  • the battery protection strategy includes a multi-level battery protection strategy.
  • the protection mode of each level of the battery protection strategy is different, and the degree of short circuit corresponding to each level of the battery protection strategy is also different, so that The corresponding protection strategy is determined according to the short-circuit degree of the battery, and then the battery is effectively and reasonably protected.
  • the multi-level battery protection strategy includes at least one of the following: a first-level battery protection strategy, a second-level battery protection strategy, and a third-level battery protection strategy.
  • the first-level battery protection strategy includes: outputting prompt information for prompting the user to return for repair and maintenance.
  • the second-level battery protection strategy includes: controlling the battery to enter a self-discharge procedure to discharge the battery, and/or outputting a prompt message for prompting the user that the battery is unusable.
  • the third-level battery protection strategy includes: controlling the battery to be in a locked state, and/or outputting prompt information for prompting the user that the battery has been scrapped.
  • the degree of short circuit corresponding to the short circuit of the battery can be determined first; and then the multi-level battery protection strategy corresponding to the short circuit can be determined according to the degree of short circuit.
  • the degree of short circuit includes the degree of short circuit a, the degree of short circuit b, and the degree of short circuit c, respectively corresponding to the first-level battery protection strategy, the second-level battery protection strategy, and the third-level battery protection strategy.
  • determining the degree of short circuit of the short circuit specifically includes: determining the degree of difference between battery parameters and standard parameters, and determining the degree of short circuit according to the degree of difference.
  • the constant voltage charging time of the battery exceeds the standard constant voltage charging time by 10 minutes, which is defined as the degree of short circuit a; the constant voltage charging time of the battery exceeds the standard constant voltage charging time by 20 minutes, and is defined as the short circuit degree b; The charging time exceeds the standard constant voltage charging time for 30 minutes, which is defined as the degree of short circuit c.
  • the short circuit degree of the battery can be determined as the short circuit degree b. Therefore, the multi-level battery protection strategy corresponding to the short circuit of the battery is determined to be the second level Battery protection strategy.
  • step S1340 the battery is controlled to execute the battery protection strategy.
  • the battery is discharged through a discharge resistor preset in the battery management system, and discharged to a preset voltage range; and/or, the charging switch and the discharging switch of the battery are controlled to be in an off state, so that the battery is in a locked state , That is, permanent failure.
  • the preset voltage range is a safe voltage range, and a range value near 0V can be set, and the specific range value is not limited here.
  • the prompt information includes voice prompt information, text prompt information, and/or indicator prompt information.
  • the indicator prompt information uses different LEDs to form a light language to prompt the user that the battery is short-circuited.
  • the micro-control unit can send a control signal to the charging switch circuit to turn off the charging switch circuit; of course, the micro-control unit can also send a control signal to the charger to stop the charger from charging.
  • the battery is stopped continuing to charge, and the battery is discharged to a preset voltage range, or the battery is controlled to be in a locked state. This prevents the short-circuited battery from being used by the user, thereby improving the safety of the battery.
  • the drone is equipped with a battery.
  • the micro-control unit of the battery determines that the battery is short-circuited according to the battery parameters. For example, the battery is short-circuited according to the charge-discharge capacity ratio.
  • the flight controller of the drone sends instructions to instruct the drone to return home. After the flight controller receives the instruction, it controls the aircraft to return home and feeds it back to the micro-control unit of the battery. After receiving the feedback information, the micro control unit executes the battery protection strategy.
  • the micro-control unit of the battery sends an instruction to the drone's flight controller to instruct the drone to return to home, and the flight controller sends the instruction to the ground control terminal, and the user knows that the battery is short-circuited and sends the return instruction to Flight controller, the flight controller starts to return home after receiving the return-to-home instruction from the ground control terminal.
  • the battery can be discharged to a preset voltage range when the drone returns to home or when the return home is completed, and the battery is controlled to be in a locked state when the drone stops running, thereby improving the safety of the battery and Ensure the flight safety of drones.
  • the battery protection strategy also includes a multi-level battery protection strategy
  • the battery can also be controlled to execute a determined multi-level battery protection strategy.
  • the battery can be controlled to enter the self-discharge program to discharge the battery, and/or output a prompt message to remind the user that the battery is unavailable .
  • the method further includes: when it is detected that the battery is connected to the movable platform, outputting an alarm message to prompt the user that the battery is short-circuited. Not only can the safety of the battery be ensured, but also the operational safety of the movable platform can be improved.
  • the battery when the method is applied to a battery, the battery itself can accurately and quickly identify whether the battery is short-circuited, and when the battery is short-circuited, the battery protection strategy is used to protect the battery.
  • This method enables the battery to execute related protection strategies without user's operation or permission when it recognizes that it has a short circuit, avoiding dangerous situations such as spontaneous combustion of the battery, thereby improving the safety of battery use.
  • the method when the method is used in other electronic devices that communicate with the battery, it can accurately and quickly identify whether the battery is short-circuited online, and when the battery is short-circuited, the battery protection strategy is used to protect the battery and adjust The working state of the electronic device ensures that the electronic device is also in a safe working state, which further avoids the use risk caused by the short circuit of the battery. For example, when the charger/charging manager is charging/discharging the battery, if it recognizes that the battery is short-circuited, it controls to reduce or stop charging/discharging to improve the safety of the battery.
  • the mobile platform When the battery is supplying power to the mobile platform, if the mobile platform recognizes that the battery is short-circuited, it controls to reduce the discharge current of the battery and/or gives corresponding prompts to improve the safety of the battery. Specifically, the discharge current of the battery can be reduced by restricting the operation of the movable platform, for example, adjusting the rotation speed of the motor, and restricting the camera mounted on the movable platform from shooting.
  • the methods provided by the foregoing embodiments can accurately and quickly identify whether the battery is short-circuited online after it is determined that the battery has been dropped or hit, and when the battery is short-circuited, the battery protection strategy is used to protect the battery, thereby improving Improve the safety of battery use.
  • Fig. 14 shows a schematic flowchart of a method 1400 for battery safety protection according to an embodiment of the present invention.
  • the method 1400 for battery safety protection may include the following steps:
  • step S1410 after it is determined that the battery has been dropped or hit, the working state of the battery is acquired.
  • step S1420 a target parameter is determined according to the working state, and the target parameter of the battery is acquired as the battery parameter of the battery.
  • step S1430 determine whether the battery is short-circuited according to the battery parameters
  • step S1440 if the battery is short-circuited, determine a battery protection strategy corresponding to the battery's short-circuit;
  • step S1450 the battery is controlled to execute the battery protection strategy.
  • the working state of the battery includes a charging state and a discharging state
  • the target parameter is one or more battery parameters related to the working state, that is, different working states need to use different battery parameters to identify whether the battery is short-circuited.
  • the states of the charging switch and the discharging switch in the battery circuit can be detected, and the working state of the battery can be determined according to the states of the charging switch and the discharging switch.
  • the charging switch when the charging switch is turned on, it is determined that the working state of the battery is the charging state; the discharging switch is turned on to determine that the working state of the battery is the discharging state; the charging switch is off and the discharging switch is off, and the working state of the battery is determined to be the non-use state.
  • the micro-control unit can detect and determine the working state of the battery, or the related circuit can send a signal that can characterize the working state of the battery to the micro-control unit, so that the micro-control unit can determine the working state of the battery.
  • the target parameter is determined according to the working state of the battery, and the target parameter of the battery is obtained as the battery parameter of the battery.
  • the working state of the battery is the charging state
  • the constant voltage charging time and/or the constant voltage charging capacity are determined as the target parameters according to the charging state; or, if the working state is the discharging state, the charge-discharge capacity ratio is determined according to the discharging state as the target parameter Target parameters.
  • the battery when the battery is in the charging state, obtain the constant voltage charging time as the target parameter to determine whether the battery is short-circuited; for example, when the battery is in the discharging state, obtain the charge-discharge capacity ratio as the target parameter to determine Whether the battery is short-circuited.
  • the battery protection strategy includes at least one of the following: discharging the battery to a preset voltage range corresponding to the safe storage of the battery, and controlling the battery to be in a locked state.
  • the battery temperature may be higher due to the short circuit of the battery. And in some cases, such as when an aircraft is flying, the battery cannot be discharged or locked out. Therefore, over-temperature use of the battery will result. Over-temperature use cannot guarantee the flight safety of the aircraft, nor can it guarantee the safety of battery use, and it is more prone to safety accidents.
  • the battery protection strategy includes a preset multi-level temperature protection strategy, the preset multi-level battery protection strategy corresponds to the preset multi-level battery temperature range, and is used to control the battery to execute the battery protection strategy corresponding to the current battery temperature to control the mobile platform Running.
  • the mobile platform After determining that the battery is short-circuited, obtain the current battery temperature of the battery; determine the battery protection strategy corresponding to the current battery temperature according to the current battery temperature and the preset multi-level battery protection strategy; control the mobile platform to perform the determined battery protection Strategy.
  • the safety of the mobile platform and the battery can be improved.
  • the preset multi-level battery protection strategy includes a first-level battery protection strategy, a second-level battery protection strategy, a third-level battery protection strategy, and a fourth-level battery protection strategy;
  • the preset multi-level battery temperature range includes The corresponding first-level battery temperature range, second-level battery temperature range, third-level battery temperature range, and fourth-level battery temperature range.
  • the first-level battery temperature range includes below the normal use temperature threshold
  • the second-level battery temperature range includes between the normal use temperature threshold and the restricted use temperature threshold
  • the third-level battery temperature range includes the restricted use temperature threshold and the first impact life.
  • the fourth-level battery temperature range includes the second life-influencing temperature threshold and above.
  • the preset multi-level battery protection strategy refers to a pre-set, multiple-level strategy for protecting battery safety.
  • the preset multi-level battery protection strategy corresponds to the temperature range of multiple levels of the battery, and is used to control the battery to execute a battery protection strategy corresponding to the current battery temperature to control the operation of the movable platform.
  • a preset-level battery protection strategy can include one strategy or more than two strategies; a preset-level battery protection strategy can include battery-related (that is, battery-related) strategies, and can also include mobile platform-related strategies. Related (that is, mobile platform) strategies can also include user-related (that is, user-related) strategies.
  • the preset multi-level battery protection strategy includes at least one of the following: controlling the battery to continue normal operation, reducing the discharge current of the battery, issuing an instruction for instructing the mobile platform to prepare to return to home before stopping operation, and telling the user Issue a reminder that the battery is over-temperature recommended to return home, issue a command to control the movable platform to warn the user to return home, issue a serious warning to the user that the battery temperature is recommended to return as soon as possible, record the current discharge temperature of the battery, and lock the battery.
  • the battery temperature range of multiple levels includes at least one of the following: below the normal use temperature threshold, between the normal use temperature threshold and the restricted use temperature threshold, between the restricted use temperature threshold and the first life-influencing temperature threshold, The second influence is above the lifetime temperature threshold.
  • controlling the movable platform to execute the determined battery protection strategy is specifically: if the current battery temperature is below the normal use temperature threshold, controlling the movable platform to continue normal operation. If the movable platform is flying, normal operation includes normal flight mode.
  • the mobile platform is controlled to execute a certain battery protection strategy, specifically: if the current battery temperature is between the normal use temperature threshold and the restricted use temperature threshold, the discharge current of the battery is reduced, and the mobile platform is controlled to limit sexual operation.
  • controlling the movable platform to perform restricted operations includes: reducing the discharge current of the battery, and controlling the aircraft to limit the flight attitude.
  • restricting the flight attitude includes: controlling the aircraft to restrict variable-speed flight; or, controlling the aircraft to restrict the flying height.
  • the flying height of the aircraft is lowered from H1 to H2, and the flying speed of the aircraft is reduced from V1 to V2, and the speed V1 is greater than V2, thereby ensuring the flight safety of the aircraft.
  • controlling the movable platform to execute the determined battery protection strategy is specifically: if the current battery temperature is between the limited use temperature threshold and the first life-influencing temperature threshold, controlling the movable platform to execute the first time before stopping operation.
  • a preparatory strategy wherein the first preparatory strategy is used to make preparations for returning home before the movable platform stops operating.
  • the aircraft is controlled to make preparations for returning home, and the user is prompted to return home when the battery is overheated.
  • controlling the movable platform to execute the determined battery protection strategy is specifically: if the current battery temperature is above the second life-influencing temperature threshold, controlling the movable platform to execute the second preparatory strategy before stopping operation, wherein, The second preparatory strategy is used to warn the user to return home before the movable platform stops running.
  • the aircraft is controlled to send a warning to the user that the battery temperature is severe and suggest returning home as soon as possible.
  • the battery is controlled to record the current discharge temperature of the battery.
  • the battery is discharged to a safe storage voltage for storage and/or the battery is locked, so as to prohibit the battery from reusing the battery. Movable platform power supply.
  • the normal use temperature threshold includes 65°C
  • the restricted use temperature threshold includes 75°C
  • the first life-influencing temperature threshold includes 85°C
  • the second life-influencing temperature threshold includes 90°C
  • the method provided in the above embodiments can determine the corresponding battery parameters according to the working state of the battery after it is determined that the battery has been dropped or impacted, so as to quickly and accurately determine whether the battery is short-circuited, and adopt the corresponding Protection, and when the temperature of the battery rises, the mobile platform is controlled to execute a corresponding protection strategy, thereby improving the safety performance of the battery and ensuring the safe operation of the mobile platform.
  • an embodiment of the present invention also provides a method for battery safety protection. The method includes: after detecting that the battery is short-circuited or disconnected, obtaining battery parameter information, such as acceleration data, and then determining according to the parameter information Whether the battery has been dropped/shocked. According to the parameter information, it is determined whether the battery has been dropped/impacted.
  • any battery drop/impact detection scheme described above (for example, combined with Figure 2, Figure 3, Figure 5, Figure 6 , Figure 8, Figure 9, Figure 11, or Figure 12) Determine whether the battery has been dropped/impacted.
  • the processing circuit (such as the processing circuit 130, 430, 720, or 1030 described in the foregoing) can perform short-circuit or open-circuit detection on the battery. If it is determined that the battery is short-circuited or open, then pass the method described in the foregoing The battery drop/impact detection program performs battery drop/impact judgment. After it is determined that the battery has been dropped/impacted and there is no conflict, the safety strategy disclosed in any of the above-mentioned embodiments can also be executed on the battery.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for implementing the present invention may be stored on a computer-readable storage medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种电池、可移动装置和组件,所述电池包括:一个或多个电芯;感测电路,用于获取所述电池的运动信息;处理电路,用于基于所述感测电路的获取结果确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。根据本发明实施例的电池、可移动装置和组件通过感测电路获取电池的运动信息,依此判断电池是否发生跌落或撞击,并在确定电池发生过跌落或撞击时对电池执行安全策略,从而提高电池使用的安全性,减少安全事故的发生。

Description

电池、可移动装置和组件
说明书
技术领域
本发明总体上涉及电池技术领域,更具体地涉及一种电池、可移动装置和组件。
背景技术
电池在现代社会生活中的各个方面发挥着很大的作用。电池具有稳定电压和稳定电流,携带方便,充放电操作简便易行,因此是一种便利可靠的能量来源。由于使用场景的多种多样,电池一旦发生跌落、撞击等情况,往往会出现挤压、短路或针刺的时候(诸如电池安装在可移动装置中因可移动装置的坠落、撞击等受到强烈挤压),会导致内部隔膜破裂从而导致电芯正负极短路,电芯内部短时间内产生大量的热量,受到电池结构的限制,这些热量无法快速扩散到电池外部,导致电池温度过高,从而引发活性物质和电解液的分解燃烧,导致热失控,电池温度爆炸式升高,引起燃烧或爆炸。因此,发生过跌落、撞击等情况的电池如果继续使用,将为使用电池的用户带来极大的安全隐患,威胁人身及财产安全,且一旦产生燃烧或爆炸问题,电池已烧坏,使得很难调查分析。
发明内容
为了解决上述问题而提出了本发明。本发明实施例提供一种电池,其通过感测电路获取电池的运动信息,依此判断电池是否发生跌落或撞击,并在确定电池发生过跌落或撞击时对电池执行安全策略,从而提高电池使用的安全性,减少安全事故的发生。下面简要描述本发明提出的电池,更多细节将在后续结合附图在具体实施方式中加以描述。
根据本发明实施例的一方面,提供了一种电池,所述电池包括:一个或多个电芯;感测电路,用于获取所述电池的运动信息;处理电路,用于基于所述感测电路的获取结果确定所述电池是否发生跌落或撞击,若确定所 述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
根据本发明实施例的另一方面,提供了一种电池,应用于可移动装置,所述电池包括处理电路、感测电路和通信接口,其中:所述处理电路经由所述通信接口与所述可移动装置通信,以确定所述可移动装置是否处于移动状态,并在确定所述可移动装置处于移动状态时使能所述感测电路工作;所述感测电路在被所述处理电路使能工作后,获取所述电池的运动信息;所述处理电路进一步用于基于所述感测电路的获取结果确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
根据本发明实施例的又一方面,提供了一种电池,应用于可移动装置,所述电池包括处理电路和通信接口,所述电池用于通过所述通信接口与所述可移动装置通信,所述处理电路用于经由所述通信接口从所述可移动装置的感测电路获取所述可移动装置的运动信息,并基于所述感测电路的获取结果确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
根据本发明实施例的再一方面,提供了一种可移动装置,所述可移动装置包括上述的电池。
根据本发明的又一方面,提供了一种可移动装置,所述可移动装置包括电池,所述电池用于为所述可移动装置的移动提供电力,所述可移动装置还包括处理电路和感测电路,所述感测电路用于获取所述可移动装置的运动信息,所述处理电路用于基于所述感测电路的获取结果确定所述可移动装置中的电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
根据本发明实施例给的再一方面,提供了一种组件,包括:可移动平台;以及上述的电池,所述电池用于安装于所述可移动平台,用于为所述 可移动平台提供电力。
根据本发明实施例的电池、可移动装置和组件通过感测电路获取电池的运动信息,依此判断电池是否发生跌落或撞击,并在确定电池发生过跌落或撞击时对电池执行安全策略,从而提高电池使用的安全性,减少安全事故的发生。
附图说明
图1A示出根据本发明实施例的移动组件的示意性框图。
图1B示出根据本发明一个实施例的电池的示意性框图。
图2示出根据本发明一个实施例的电池判断自身是否发生跌落的示意性流程图。
图3示出根据本发明一个实施例的电池判断自身是否发生撞击的示意性流程图。
图4示出根据本发明另一个实施例的电池的示意性框图。
图5示出根据本发明另一个实施例的电池判断自身是否发生跌落的示意性流程图。
图6示出根据本发明另一个实施例的电池判断自身是否发生撞击的示意性流程图。
图7示出根据本发明再一个实施例的电池的示意性框图。
图8示出根据本发明再一个实施例的电池判断自身是否发生跌落的示意性流程图。
图9示出根据本发明再一个实施例的电池判断自身是否发生撞击的示意性流程图。
图10示出根据本发明一个实施例的可移动装置的示意性框图。
图11示出根据本发明一个实施例的可移动装置判断安装在其中的电池是否发生跌落的示意性流程图。
图12示出根据本发明一个实施例的可移动装置判断安装在其中的电池是否发生撞击的示意性流程图。
图13示出根据本发明一个实施例的用于电路安全保护的方法的示意性流程图。
图14示出根据本发明另一个实施例的用于电路安全保护的方法的示意性流程图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
请参阅图1A,图1A是本发明的实施例提供的一种移动组件的示意性框图。如图1A所示,该移动组件10包括电池11和可移动平台12,电池11用于给可移动平台12及搭载在可移动平台12上的负载供电。其中,电 池11可以固定安装在可移动平台12上,或者可拆卸地安装在可移动平台12上。
电池11包括微控制单元(Micro-controller Unit,MCU),也可以称为智能电池,通过微控制单元可与可移动平台12通信连接,以实现与可移动平台12的信息交互。比如,接收可移动平台12的控制指令,根据控制指令控制电池输出具有预设电压幅值的电压、具有预设电流幅值的电流或输出具有预设功率幅值的输出功率,或者获取可移动平台12的运行功率等等。
可移动平台12包括飞行器、机器人、电动车或自动无人驾驶车辆等。
比如,电池11给无飞行器的电机供电控制连接在该电机的螺旋桨转动,进而实现飞行器的起飞或悬停等;再比如,电池11给搭载在飞行器的拍摄装置供电,实现航拍等等。
其中,飞行器包括无人机,该无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。按照使用场景,无人机可以包括农业无人机,可以用于播撒、喷水/药;工业无人机可以用于运送物资、巡检、采样;消费级无人机,其上可以搭载拍摄设备,等等。
其中,机器人包括教育机器人,使用了麦克纳姆轮全向底盘,且全身设有多块智能装甲,每个智能装甲内置击打检测模块,可迅速检测物理打击。同时还包括两轴云台,可以灵活转动,配合发射器准确、稳定、连续地发射水晶弹或红外光束,配合弹道光效,给用户更为真实的射击体验。
如图1A所示,可移动平台12中安装有电池11,电池11用于为可移动平台12提供动力。然而由于使用场景的多种多样,可移动平台12可能会发生跌落、撞击等事故,相应的,电池11也发生跌落、撞击等情况。电池11一旦发生跌落、撞击等情况,往往会出现挤压、短路或针刺的时候(诸如电池11安装在可移动平台12中因可移动平台12的坠落、撞击等受到强烈挤压),会导致内部隔膜破裂从而导致电芯正负极短路,电芯内部短时间内产生大量的热量,受到电池结构的限制,这些热量无法快速扩散到电池外部,导致电池温度过高,从而引发活性物质和电解液的分解燃烧,导致 热失控,电池温度爆炸式升高,引起燃烧或爆炸。一旦这类电池继续使用,将为使用电池的用户带来极大的安全隐患,威胁人身及财产安全,且一旦产生燃烧或爆炸问题,电池已烧坏,使得很难调查分析。对于这类问题,传统的处理方式通常是通过对电池进行外观检查来判断电池是否发生过跌落或撞击,或者通过电池外壳问题提示或说明书提醒,来建议用户不要将电池跌落或使电池发生撞击,并不要使用发生过跌落或撞击的电池,这样的方式无法杜绝安全隐患。
基于此,本发明实施例提出了一种电池跌落/撞击检测方案,能够检测电池的相关参数,例如,运动信息。运动信息可以包括如下至少一种:加速度、速度、位移、运动时间。基于获取结果确定电池是否发生跌落或撞击,若确定电池发生过跌落或撞击,则对电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制电池的充放电、控制电池的自放电。该电池可以是智能电池,该智能电池能够与控制终端通信。
根据本发明的一方面,提供了一种电池,下面参照附图1B到附图7描述根据本发明实施例的电池及其安全保护方案。
图1B示出了根据本发明一个实施例的电池100的示意性框图。如图1B所示,电池100包括一个或多个电芯110、感测电路120和处理电路130。其中,感测电路120用于获取电池100的运动信息。感测电路120可以直接检测电池100的运动信息,也可以获取其他检测电路的检测结果。处理电路130用于基于感测电路120的获取结果确定电池100是否发生跌落或撞击,若确定电池100发生过跌落或撞击,则对电池100执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制电池100的充放电、控制电池100的自放电。
在本发明的实施例中,通过由包括在电池100中的感测电路120来获取电池100的运动信息,并由处理电路130根据感测电路120的获取结果来确定电池100是否发生跌落或撞击,能够实时且可靠性地检测电池100是否存在安全隐患,并在确定电池100存在安全隐患时对电池100执行安全策略,因而能够提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,感测电路120可以用于获取电池100至少在重 力方向的运动信息,处理电路130可以用于基于感测电路120的获取结果确定电池100是否发生跌落。当可移动平台发生跌落或撞击时,其搭载的电池也相应的发生跌落/撞击,处理电路130可以用于基于感测电路120的获取结果确定电池100是否发生跌落,进而确定可移动平台发生了跌落/撞击。为因可移动平台炸机造成的定责问题提供了判断依据,有利于判断是由于可移动平台的跌落/撞击造成的炸机,还是由于电池本身输出动力异常造成的炸机。下面结合图2来描述根据本发明一个实施例的电池100判断自身是否发生跌落的示意性流程图。
如图2所示,首先,由感测电路120获取电池100至少在重力方向的运动信息;接着,由处理电路130基于感测电路120的获取结果确定电池100在重力方向的运动信息是否在预定时间内持续超过预定阈值;如果是,即处理电路130确定电池100在重力方向的运动信息在预定时间内持续超过预定阈值,则确定电池100发生跌落;反之,如果否,即处理电路130确定电池100在重力方向的运动信息未在预定时间内持续超过预定阈值,则确定电池100未发生跌落。在本文描述的各实施例中,预定时间和预定阈值可以根据需求来进行设置。
在本发明的实施例中,前述的预定阈值的数目可以是一个。当预定阈值的数目为一个时,处理电路130基于电池100在重力方向的运动信息是否在预定时间内持续超过该预定阈值,来确定电池100是否发生跌落。当确定电池100发生跌落时,可以对电池100执行安全策略,所述安全策略可以包括如下至少一种:记录异常信息、进行异常提示、限制电池100的充放电、控制电池100的自放电等。下面对这些安全策略进行逐一描述。
在本发明的实施例中,当确定电池100发生跌落时,处理电路130可以对电池100执行安全策略,所述安全策略可以包括记录异常信息。其中,该异常信息可以包括此次跌落事件的相关信息(诸如跌落时间等)。这样,如果以后发生安全事故,可以根据处理电路130记录的异常信息追溯电池发生安全事故的原因。在该示例中,电池100还可以包括存储器(未示出)。当处理电路130确定电池100发生跌落时,处理电路130可以将此次跌落事件的相关信息作为异常信息记录并存储在所述存储器中。或者,处理电路130还可以将该异常信息记录在电池100外部的其他存储设备中。记录 该异常信息,有利于后续查找该记录,方便定责分析。
在本发明的实施例中,当确定电池100发生跌落时,处理电路130可以对电池100执行安全策略,所述安全策略可以包括进行异常提示。例如,处理电路130可以在确定电池100发生跌落时发出可听和/或可视安全提示,以提醒用户注意。在该示例中,电池100还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现可听和/或可视安全提示。
在本发明的实施例中,当确定电池100发生跌落时,处理电路130可以对电池100执行安全策略,所述安全策略可以包括限制电池100的充放电使用。示例性地,限制电池100的充放电使用可以包括如下至少一种:限制电池100的充放电次数、限制电池100每次充放电的时间、禁止电池100充放电。在该实施例中,当确定电池100发生跌落时,处理电路130通过限制电池100的充放电使用,可以从根本上提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,当确定电池100发生跌落时,处理电路130可以对电池100执行安全策略,所述安全策略可以包括控制电池100的自放电。示例性地,控制电池100的自放电可以发出如下至少一种提示:加强保养、保持清洁、保持干燥。在该实施例中,电池100还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现所述提示。
在其他实施例中,当确定电池100发生跌落时,处理电路130还可以对电池100执行其他合适的安全策略,本发明对此不作限制。
现在继续参考图2,在本发明的实施例中,前述的预定阈值的数目可以是多个。当预定阈值的数目为多个时,处理电路130可以基于电池100在重力方向的运动信息在预定时间内持续超过的预定阈值的不同,相应地确定电池100发生跌落的程度。例如,当预定阈值包括第一阈值、第二阈值和第三阈值时,其中,第一阈值小于第二阈值,第二阈值小于第三阈值。如果电池100在重力方向的运动信息在预定时间内持续超过第一阈值,则确定电池100发生轻度跌落;如果电池100在重力方向的运动信息在预定时间内持续超过第二阈值,则确定电池100发生中度跌落;如果电池100在重力方向的运动信息在预定时间内持续超过第三阈值,则确定电池100发生重度跌落。
在本发明的实施例中,处理电路130还可以用于基于所确定的电池100发生跌落的程度执行对应的安全策略。
在一个示例中,接着上文的示例,当确定电池100发生轻度跌落时,处理电路130可以记录异常信息。在该示例中,电池100还可以包括存储器(未示出),处理电路130可以将此次跌落事件的相关信息作为异常信息记录并存储在所述存储器中。示例性地,所述跌落事件的相关信息可以包括电池100跌落的时间和/或跌落的程度。在另一个示例中,当确定电池100发生轻度跌落时,处理电路130可以进行异常提示。在该示例中,电池100还可以包括可听和/或可视装置(例如扬声器和/或显示器),处理电路130可以在确定电池100发生轻度跌落时发出可听和/或可视安全提示,以提醒用户注意。
在再一个示例中,当确定电池100发生中度跌落时,除了前述的记录异常信息、进行异常提示,处理电路130还可以控制电池100的自放电。在示例中,电池100还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现加强保养、保持清洁、保持干燥的提示。在又一个示例中,当确定电池100发生重度跌落时,除了前述的记录异常信息、进行异常提示、控制电池100的自放电,处理电路130还可以限制电池100的充放电,诸如限制电池100的充放电次数,限制电池100每次充放电的时间,甚至禁止电池100充放电。总之,处理电路130可以用于基于所确定的电池100发生跌落的程度执行对应的安全策略,以尽可能地提高电池使用的安全性,减少安全事故的发生。应理解,上述根据跌落程度执行的不同安全策略仅是示例性的。
现在返回参考图1,在本发明的实施例中,感测电路120可以用于获取电池100在任一方向的运动信息,处理电路130可以用于基于感测电路120的获取结果确定电池100是否发生撞击或者是否即将发生撞击。应理解,所述任一方向可以包括重力方向和重力方向以外的其余方向。其中,处理电路130可以基于感测电路120对电池100在重力方向的运动信息确定电池100是否发生跌落,跌落可以理解为是撞击的一种(因为跌落可能会与地面或者下方物体发生撞击)。下面结合图3来描述根据本发明一个实施例的电池100判断自身是否发生撞击的示意性流程图。
如图3所示,首先,由感测电路120获取电池100在任一方向的运动信息;接着,由处理电路130基于感测电路120的获取结果确定电池100在任一方向的运动信息是否在预定时间内持续超过预定阈值;如果是,即处理电路130确定电池100在任一方向的运动信息在预定时间内持续超过预定阈值,则确定电池100发生撞击;反之,如果否,即处理电路130确定电池100在任一方向的运动信息未在预定时间内持续超过预定阈值,则确定电池100未发生撞击。
在本发明的实施例中,前述的预定阈值的数目可以是一个。当预定阈值的数目为一个时,处理电路130基于电池100在任一方向的运动信息是否在预定时间内持续超过该预定阈值,来确定电池100是否发生撞击。当确定电池100发生撞击时,可以对电池100执行安全策略,所述安全策略可以包括如下至少一种:记录异常信息、进行异常提示、限制电池100的充放电、控制电池100的自放电等。下面对这些安全策略进行逐一描述。
在本发明的实施例中,当确定电池100发生撞击时,处理电路130可以对电池100执行安全策略,所述安全策略可以包括记录异常信息。其中,该异常信息可以包括此次撞击事件的相关信息(诸如撞击时间等)。这样,如果以后发生安全事故,可以根据处理电路130记录的异常信息追溯电池发生安全事故的原因。在该示例中,电池100还可以包括存储器(未示出)。当处理电路130确定电池100发生撞击时,处理电路130可以将此次撞击事件的相关信息作为异常信息记录并存储在所述存储器中。或者,处理电路130还可以将该异常信息记录在电池100外部的其他存储设备中。
在本发明的实施例中,当确定电池100发生撞击时,处理电路130可以对电池100执行安全策略,所述安全策略可以包括进行异常提示。例如,处理电路130可以在确定电池100发生撞击时发出可听和/或可视安全提示,以提醒用户注意。在该示例中,电池100还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现可听和/或可视安全提示。
在本发明的实施例中,当确定电池100发生撞击时,处理电路130可以对电池100执行安全策略,所述安全策略可以包括限制电池100的充放电使用。示例性地,限制电池100的充放电使用可以包括如下至少一种:限制电池100的充放电次数、限制电池100每次充放电的时间、禁止电池 100充放电。在该实施例中,当确定电池100发生撞击时,处理电路130通过限制电池100的充放电使用,可以从根本上提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,当确定电池100发生撞击时,处理电路130可以对电池100执行安全策略,所述安全策略可以包括控制电池100的自放电。示例性地,控制电池100的自放电可以发出如下至少一种提示:加强保养、保持清洁、保持干燥。在该实施例中,电池100还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现所述提示。
在其他实施例中,当确定电池100发生撞击时,处理电路130还可以对电池100执行其他合适的安全策略,本发明对此不作限制。
现在继续参考图3,在本发明的实施例中,前述的预定阈值的数目可以是多个。当预定阈值的数目为多个时,处理电路130可以基于电池100在任一方向的运动信息在预定时间内持续超过的预定阈值的不同,相应地确定电池100发生撞击的程度。例如,当预定阈值包括第一阈值、第二阈值和第三阈值时,其中,第一阈值小于第二阈值,第二阈值小于第三阈值。如果电池100在任一方向的运动信息在预定时间内持续超过第一阈值,则确定电池发生轻度撞击;如果电池100在任一方向的运动信息在预定时间内持续超过第二阈值,则确定电池发生中度撞击;如果电池100在任一方向的运动信息在预定时间内持续超过第三阈值,则确定电池发生重度撞击。
在本发明的实施例中,处理电路130还可以用于基于所确定的电池100发生撞击的程度执行对应的安全策略。
在一个示例中,接着上文的示例,当确定电池100发生轻度撞击时,处理电路130可以记录异常信息。在该示例中,电池100还可以包括存储器(未示出),处理电路130可以将此次撞击事件的相关信息作为异常信息记录并存储在所述存储器中。示例性地,所述撞击事件的相关信息可以包括电池100撞击的时间和/或撞击的程度。在另一个示例中,当确定电池100发生轻度撞击时,处理电路130可以进行异常提示。在该示例中,电池100还可以包括可听和/或可视装置(例如扬声器和/或显示器),处理电路130可以在确定电池100发生轻度撞击时发出可听和/或可视安全提示,以提醒用户注意。
在再一个示例中,当确定电池100发生中度撞击时,除了前述的记录异常信息、进行异常提示,处理电路130还可以控制电池100的自放电。在示例中,电池100还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现加强保养、保持清洁、保持干燥的提示。在又一个示例中,当确定电池100发生重度撞击时,除了前述的记录异常信息、进行异常提示、控制电池100的自放电,处理电路130还可以限制电池100的充放电,诸如限制电池100的充放电次数,限制电池100每次充放电的时间,甚至禁止电池100充放电。总之,处理电路130可以用于基于所确定的电池100发生撞击的程度执行对应的安全策略,以尽可能地提高电池使用的安全性,减少安全事故的发生。应理解,上述根据撞击程度执行的不同安全策略仅是示例性的。
在本发明的实施例中,处理电路130还可以用于:在对电池100执行安全策略之前,获取用户对电池100触发的控制操作,所述控制操作用于控制对电池100执行安全策略。在该实施例中,可以基于用户指令例如通过控制终端实现对电池100执行安全策略的控制。该控制终端可以是电池100所安装在的终端,也可以是其他的终端。所述控制操作可以是用户对电池100触发的,也可以是用户对控制终端触发的。
在本发明的实施例中,上述的感测电路120可以包括加速度传感器。运动信息可以是加速度,通过加速度传感器感测电池的加速度。检测方法准确性高、检测成本低。在本发明的实施例中,上述的处理电路130可以包括微处理器或微控制单元。在本发明的实施例中,上述的电池100可以包括以下中的至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
基于上面的描述,根据本发明实施例的电池通过感测电路获取电池的运动信息,依此判断电池是否发生跌落或撞击,并在确定电池发生过跌落或撞击时对电池执行安全策略,从而提高电池使用的安全性,减少安全事故的发生。
下面结合图4到图6描述根据本发明另一个实施例的电池。图4示出了根据本发明另一个实施例的电池400的示意性框图,电池400可以应用于可移动装置。如图4所示,电池400包括通信接口410、感测电路420和处理电路430。其中,处理电路430经由通信接口410与可移动装置(未 示出)通信,以确定所述可移动装置是否处于移动状态,并在确定所述可移动装置处于移动状态时使能感测电路420工作。感测电路420在被处理电路430使能工作后,获取电池400的运动信息。处理电路430进一步用于基于感测电路420的获取结果确定电池400是否发生跌落或撞击,若确定电池400发生过跌落或撞击,则对电池400执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
在本发明的实施例中,通过由包括在电池400中的感测电路420来获取电池400的运动信息,并由处理电路430根据感测电路400的获取结果来确定电池400是否发生跌落或撞击,能够实时且可靠性地检测电池400是否存在安全隐患,并在确定电池400存在安全隐患时对电池400执行安全策略,因而能够提高电池使用的安全性,减少安全事故的发生。此外,在本发明的实施例中,处理电路430经由通信接口410与可移动装置通信,以确定所述可移动装置是否处于移动状态,并在确定所述可移动装置处于移动状态时使能感测电路420工作,感测电路420在被处理电路430使能工作后,获取电池400的运动信息。因此,处理电路430在可移动装置移动时才启动感测电路420工作,在可移动装置不移动以及电能存储时不使感测电路420工作,由于电池400安装在可移动装置中,因此可移动装置一般只有移动过程中才可能发生跌落或者撞击,因此仅在可移动装置移动时启动感测电路420工作能够在提高电池使用的安全性的同时降低电池存储功耗,保证电池长时间存储不至于被过放。
在本发明的实施例中,感测电路420可以用于获取电池400至少在重力方向的运动信息,处理电路430可以用于基于感测电路420的获取结果确定电池400是否发生跌落。下面结合图5来描述根据本发明一个实施例的电池400判断自身是否发生跌落的示意性流程图。
如图5所示,首先,由感测电路420获取电池400至少在重力方向的运动信息;接着,由处理电路430基于感测电路420的获取结果确定电池400在重力方向的运动信息是否在预定时间内持续超过预定阈值;如果是,即处理电路430确定电池400在重力方向的运动信息在预定时间内持续超过预定阈值,则确定电池400发生跌落;反之,如果否,即处理电路430 确定电池400在重力方向的运动信息未在预定时间内持续超过预定阈值,则确定电池400未发生跌落。
在本发明的实施例中,前述的预定阈值的数目可以是一个。当预定阈值的数目为一个时,处理电路430基于电池400在重力方向的运动信息是否在预定时间内持续超过该预定阈值,来确定电池400是否发生跌落。当确定电池400发生跌落时,可以对电池400执行安全策略,所述安全策略可以包括如下至少一种:记录异常信息、进行异常提示、限制电池400的充放电、控制电池400的自放电等。下面对这些安全策略进行逐一描述。
在本发明的实施例中,当确定电池400发生跌落时,处理电路430可以对电池400执行安全策略,所述安全策略可以包括记录异常信息。其中,该异常信息可以包括此次跌落事件的相关信息(诸如跌落时间等)。这样,如果以后发生安全事故,可以根据处理电路430记录的异常信息追溯电池发生安全事故的原因。在该示例中,电池400还可以包括存储器(未示出)。当处理电路430确定电池400发生跌落时,处理电路430可以将此次跌落事件的相关信息作为异常信息记录并存储在所述存储器中。或者,处理电路430还可以将该异常信息记录在电池400外部的其他存储设备中。
在本发明的实施例中,当确定电池400发生跌落时,处理电路430可以对电池400执行安全策略,所述安全策略可以包括进行异常提示。例如,处理电路430可以在确定电池400发生跌落时发出可听和/或可视安全提示,以提醒用户注意。在该示例中,电池400还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现可听和/或可视安全提示。
在本发明的实施例中,当确定电池400发生跌落时,处理电路430可以对电池400执行安全策略,所述安全策略可以包括限制电池400的充放电使用。示例性地,限制电池400的充放电使用可以包括如下至少一种:限制电池400的充放电次数、限制电池400每次充放电的时间、禁止电池400充放电。在该实施例中,当确定电池400发生跌落时,处理电路430通过限制电池400的充放电使用,可以从根本上提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,当确定电池400发生跌落时,处理电路430可以对电池400执行安全策略,所述安全策略可以包括控制电池400的自放 电。示例性地,控制电池400的自放电可以发出如下至少一种提示:加强保养、保持清洁、保持干燥。在该实施例中,电池400还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现所述提示。
在其他实施例中,当确定电池400发生跌落时,处理电路430还可以对电池400执行其他合适的安全策略,本发明对此不作限制。
现在继续参考图5,在本发明的实施例中,前述的预定阈值的数目可以是多个。当预定阈值的数目为多个时,处理电路430可以基于电池400在重力方向的运动信息在预定时间内持续超过的预定阈值的不同,相应地确定电池400发生跌落的程度。例如,当预定阈值包括第一阈值、第二阈值和第三阈值时,其中,第一阈值小于第二阈值,第二阈值小于第三阈值。如果电池400在重力方向的运动信息在预定时间内持续超过第一阈值,则确定电池400发生轻度跌落;如果电池400在重力方向的运动信息在预定时间内持续超过第二阈值,则确定电池400发生中度跌落;如果电池400在重力方向的运动信息在预定时间内持续超过第三阈值,则确定电池发生400重度跌落。
在本发明的实施例中,处理电路430还可以用于基于所确定的电池400发生跌落的程度执行对应的安全策略。
在一个示例中,接着上文的示例,当确定电池400发生轻度跌落时,处理电路430可以记录异常信息。在该示例中,电池400还可以包括存储器(未示出),处理电路430可以将此次跌落事件的相关信息作为异常信息记录并存储在所述存储器中。示例性地,所述跌落事件的相关信息可以包括电池400跌落的时间和/或跌落的程度。在另一个示例中,当确定电池400发生轻度跌落时,处理电路430可以进行异常提示。在该示例中,电池400还可以包括可听和/或可视装置(例如扬声器和/或显示器),处理电路430可以在确定电池400发生轻度跌落时发出可听和/或可视安全提示,以提醒用户注意。
在再一个示例中,当确定电池400发生中度跌落时,除了前述的记录异常信息、进行异常提示,处理电路430还可以控制电池400的自放电。在示例中,电池400还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现加强保养、保持清洁、保持干燥的提示。在又一个示例 中,当确定电池400发生重度跌落时,除了前述的记录异常信息、进行异常提示、控制电池400的自放电,处理电路430还可以限制电池400的充放电,诸如限制电池400的充放电次数,限制电池400每次充放电的时间,甚至禁止电池400充放电。总之,处理电路430可以用于基于所确定的电池400发生跌落的程度执行对应的安全策略,以尽可能地提高电池使用的安全性,减少安全事故的发生。应理解,上述根据跌落程度执行的不同安全策略仅是示例性的。
现在返回参考图4,在本发明的实施例中,感测电路420可以用于获取电池400在任一方向的运动信息,处理电路430可以用于基于感测电路420的获取结果确定电池400是否发生撞击。应理解,所述任一方向可以包括重力方向和重力方向以外的其余方向。其中,处理电路430可以基于感测电路420对电池400在重力方向的运动信息确定电池400是否发生跌落,跌落可以理解为是撞击的一种。下面结合图6来描述根据本发明一个实施例的电池400判断自身是否发生撞击的示意性流程图。
如图6所示,首先,由感测电路420获取电池400在任一方向的运动信息;接着,由处理电路430基于感测电路420的获取结果确定电池400在任一方向的运动信息是否在预定时间内持续超过预定阈值;如果是,即处理电路430确定电池400在任一方向的运动信息在预定时间内持续超过预定阈值,则确定电池400发生撞击;反之,如果否,即处理电路430确定电池400在任一方向的运动信息未在预定时间内持续超过预定阈值,则确定电池400未发生撞击。
在本发明的实施例中,前述的预定阈值的数目可以是一个。当预定阈值的数目为一个时,处理电路430基于电池400在任一方向的运动信息是否在预定时间内持续超过该预定阈值,来确定电池400是否发生撞击。当确定电池400发生撞击时,可以对电池400执行安全策略,所述安全策略可以包括如下至少一种:记录异常信息、进行异常提示、限制电池400的充放电、控制电池400的自放电等。下面对这些安全策略进行逐一描述。
在本发明的实施例中,当确定电池400发生撞击时,处理电路430可以对电池400执行安全策略,所述安全策略可以包括记录异常信息。其中,该异常信息可以包括此次撞击事件的相关信息(诸如撞击时间等)。这样, 如果以后发生安全事故,可以根据处理电路430记录的异常信息追溯电池发生安全事故的原因。在该示例中,电池400还可以包括存储器(未示出)。当处理电路430确定电池400发生撞击时,处理电路430可以将此次撞击事件的相关信息作为异常信息记录并存储在所述存储器中。或者,处理电路430还可以将该异常信息记录在电池400外部的其他存储设备中。
在本发明的实施例中,当确定电池400发生撞击时,处理电路430可以对电池400执行安全策略,所述安全策略可以包括进行异常提示。例如,处理电路430可以在确定电池400发生撞击时发出可听和/或可视安全提示,以提醒用户注意。在该示例中,电池400还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现可听和/或可视安全提示。
在本发明的实施例中,当确定电池400发生撞击时,处理电路430可以对电池400执行安全策略,所述安全策略可以包括限制电池400的充放电使用。示例性地,限制电池400的充放电使用可以包括如下至少一种:限制电池400的充放电次数、限制电池400每次充放电的时间、禁止电池400充放电。在该实施例中,当确定电池400发生撞击时,处理电路430通过限制电池400的充放电使用,可以从根本上提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,当确定电池400发生撞击时,处理电路430可以对电池400执行安全策略,所述安全策略可以包括控制电池400的自放电。示例性地,控制电池400的自放电可以发出如下至少一种提示:加强保养、保持清洁、保持干燥。在该实施例中,电池400还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现所述提示。
在其他实施例中,当确定电池400发生撞击时,处理电路430还可以对电池400执行其他合适的安全策略,本发明对此不作限制。
现在继续参考图6,在本发明的实施例中,前述的预定阈值的数目可以是多个。当预定阈值的数目为多个时,处理电路430可以基于电池400在任一方向的运动信息在预定时间内持续超过的预定阈值的不同,相应地确定电池400发生撞击的程度。例如,当预定阈值包括第一阈值、第二阈值和第三阈值时,其中,第一阈值小于第二阈值,第二阈值小于第三阈值。如果电池400在任一方向的运动信息在预定时间内持续超过第一阈值,则 确定电池发生轻度撞击;如果电池400在任一方向的运动信息在预定时间内持续超过第二阈值,则确定电池发生中度撞击;如果电池400在任一方向的运动信息在预定时间内持续超过第三阈值,则确定电池发生重度撞击。
在本发明的实施例中,处理电路430还可以用于基于所确定的电池400发生撞击的程度执行对应的安全策略。
在一个示例中,接着上文的示例,当确定电池400发生轻度撞击时,处理电路430可以记录异常信息。在该示例中,电池400还可以包括存储器(未示出),处理电路430可以将此次撞击事件的相关信息作为异常信息记录并存储在所述存储器中。示例性地,所述撞击事件的相关信息可以包括电池400撞击的时间和/或撞击的程度。在另一个示例中,当确定电池400发生轻度撞击时,处理电路430可以进行异常提示。在该示例中,电池400还可以包括可听和/或可视装置(例如扬声器和/或显示器),处理电路430可以在确定电池400发生轻度撞击时发出可听和/或可视安全提示,以提醒用户注意。
在再一个示例中,当确定电池400发生中度撞击时,除了前述的记录异常信息、进行异常提示,处理电路430还可以控制电池400的自放电。在示例中,电池400还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现加强保养、保持清洁、保持干燥的提示。在又一个示例中,当确定电池400发生重度撞击时,除了前述的记录异常信息、进行异常提示、控制电池400的自放电,处理电路430还可以限制电池400的充放电,诸如限制电池400的充放电次数,限制电池400每次充放电的时间,甚至禁止电池400充放电。总之,处理电路430可以用于基于所确定的电池400发生撞击的程度执行对应的安全策略,以尽可能地提高电池使用的安全性,减少安全事故的发生。应理解,上述根据撞击程度执行的不同安全策略仅是示例性的。
在本发明的实施例中,处理电路430还可以用于:在对电池400执行安全策略之前,获取用户对电池400触发的控制操作,所述控制操作用于控制对电池400执行安全策略。在该实施例中,可以基于用户指令例如通过控制终端实现对电池400执行安全策略的控制。该控制终端可以是电池400所安装在的终端(例如所述可移动装置),也可以是其他的终端。所述 控制操作可以是用户对电池400触发的,也可以是用户对控制终端触发的。
在本发明的实施例中,上述的感测电路420可以包括加速度传感器。在本发明的实施例中,上述的处理电路430可以包括微处理器或微控制单元。在本发明的实施例中,上述的电池400可以包括以下中的至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
基于上面的描述,根据本发明实施例的电池通过感测电路获取电池的运动信息,依此判断电池是否发生跌落或撞击,并在确定电池发生过跌落或撞击时对电池执行安全策略,从而提高电池使用的安全性,减少安全事故的发生,同时能够降低电池存储功耗,保证电池长时间存储不至于被过放。
下面结合图7描述根据本发明再一个实施例的电池。图7示出了根据本发明再一个实施例的电池700的示意性框图,电池700可以应用于可移动装置。如图7所示,电池700包括通信接口710和处理电路720,电池700用于通过通信接口710与可移动装置(未示出)通信,处理电路720用于经由通信接口710从可移动装置的感测电路(未示出)获取所述可移动装置的运动信息,并基于所述感测电路的获取结果确定电池700是否发生跌落或撞击,若确定电池700发生过跌落或撞击,则对电池700执行安全策略,包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
在本发明的实施例中,通过可移动装置中的感测电路来获取可移动装置的运动信息,即获取安装于其中的电池700的运动信息,并由包括在电池700中的处理电路720经由通信接口710获取可移动装置中的感测电路的获取结果,并基于该获取结果来确定电池700是否发生跌落或撞击,能够实时且可靠性地检测电池700是否存在安全隐患,并在确定电池700存在安全隐患时对电池700执行安全策略,因而能够提高电池使用的安全性,减少安全事故的发生。此外,在本发明的实施例中,处理电路720经由通信接口710与可移动装置通信,以获取可移动装置中的感测电路的获取结果用于判断电池700是否发生跌落或撞击,使得电池700本身无需包括感测电路,进一步简化了电池700的结构。
在本发明的实施例中,电池700可以经由通信接口710从可移动装置 中的感测电路获取可移动装置至少在重力方向的运动信息,即获取电池700至少在重力方向的运动信息,处理电路720可以用于基于感测电路的获取结果确定电池700是否发生跌落。下面结合图8描述根据本发明一个实施例的电池700判断自身是否发生跌落的示意性流程图,为了简洁,此处不再赘述。
如图8所示,首先,处理电路720经由通信接口710获取可移动装置中的感测电路获取的可移动装置至少在重力方向的运动信息;接着,由处理电路720基于感测电路的获取结果确定可移动装置在重力方向的运动信息是否在预定时间内持续超过预定阈值;如果是,即处理电路720确定可移动装置在重力方向的运动信息在预定时间内持续超过预定阈值,则确定电池700发生跌落;反之,如果否,即处理电路720确定可移动装置在重力方向的运动信息未在预定时间内持续超过预定阈值,则确定电池700未发生跌落。
在本发明的实施例中,前述的预定阈值的数目可以是一个。当预定阈值的数目为一个时,处理电路720基于可移动装置在重力方向的运动信息是否在预定时间内持续超过该预定阈值,来确定电池700是否发生跌落。当确定电池700发生跌落时,可以对电池700执行安全策略,所述安全策略可以包括如下至少一种:记录异常信息、进行异常提示、限制电池700的充放电、控制电池700的自放电等。下面对这些安全策略进行逐一描述。
在本发明的实施例中,当确定电池700发生跌落时,处理电路720可以对电池700执行安全策略,所述安全策略可以包括记录异常信息。其中,该异常信息可以包括此次跌落事件的相关信息(诸如跌落时间等)。这样,如果以后发生安全事故,可以根据处理电路720记录的异常信息追溯电池发生安全事故的原因。在该示例中,电池700还可以包括存储器(未示出)。当处理电路720确定电池700发生跌落时,处理电路720可以将此次跌落事件的相关信息作为异常信息记录并存储在所述存储器中。或者,处理电路720还可以将该异常信息记录在电池700外部的其他存储设备中。
在本发明的实施例中,当确定电池700发生跌落时,处理电路720可以对电池700执行安全策略,所述安全策略可以包括进行异常提示。例如,处理电路720可以在确定电池700发生跌落时发出可听和/或可视安全提 示,以提醒用户注意。在该示例中,电池700还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现可听和/或可视安全提示。
在本发明的实施例中,当确定电池700发生跌落时,处理电路720可以对电池700执行安全策略,所述安全策略可以包括限制电池700的充放电使用。示例性地,限制电池700的充放电使用可以包括如下至少一种:限制电池700的充放电次数、限制电池700每次充放电的时间、禁止电池700充放电。在该实施例中,当确定电池700发生跌落时,处理电路720通过限制电池700的充放电使用,可以从根本上提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,当确定电池700发生跌落时,处理电路720可以对电池700执行安全策略,所述安全策略可以包括控制电池700的自放电。示例性地,控制电池700的自放电可以发出如下至少一种提示:加强保养、保持清洁、保持干燥。在该实施例中,电池700还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现所述提示。
在其他实施例中,当确定电池700发生跌落时,处理电路720还可以对电池700执行其他合适的安全策略,本发明对此不作限制。
现在继续参考图8,在本发明的实施例中,前述的预定阈值的数目可以是多个。当预定阈值的数目为多个时,处理电路720可以基于可移动装置在重力方向的运动信息在预定时间内持续超过的预定阈值的不同,相应地确定电池700发生跌落的程度。例如,当预定阈值包括第一阈值、第二阈值和第三阈值时,其中,第一阈值小于第二阈值,第二阈值小于第三阈值。如果可移动装置在重力方向的运动信息在预定时间内持续超过第一阈值,则确定电池700发生轻度跌落;如果可移动装置在重力方向的运动信息在预定时间内持续超过第二阈值,则确定电池700发生中度跌落;如果可移动装置在重力方向的运动信息在预定时间内持续超过第三阈值,则确定电池700发生重度跌落。
在本发明的实施例中,处理电路720还可以用于基于所确定的电池700发生跌落的程度执行对应的安全策略。
在一个示例中,接着上文的示例,当确定电池700发生轻度跌落时,处理电路720可以记录异常信息。在该示例中,电池700还可以包括存储 器(未示出),处理电路720可以将此次跌落事件的相关信息作为异常信息记录并存储在所述存储器中。示例性地,所述跌落事件的相关信息可以包括电池700跌落的时间和/或跌落的程度。在另一个示例中,当确定电池700发生轻度跌落时,处理电路720可以进行异常提示。在该示例中,电池700还可以包括可听和/或可视装置(例如扬声器和/或显示器),处理电路720可以在确定电池700发生轻度跌落时发出可听和/或可视安全提示,以提醒用户注意。
在再一个示例中,当确定电池700发生中度跌落时,除了前述的记录异常信息、进行异常提示,处理电路720还可以控制电池700的自放电。在示例中,电池700还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现加强保养、保持清洁、保持干燥的提示。在又一个示例中,当确定电池700发生重度跌落时,除了前述的记录异常信息、进行异常提示、控制电池700的自放电,处理电路720还可以限制电池700的充放电,诸如限制电池700的充放电次数,限制电池700每次充放电的时间,甚至禁止电池700充放电。总之,处理电路720可以用于基于所确定的电池700发生跌落的程度执行对应的安全策略,以尽可能地提高电池使用的安全性,减少安全事故的发生。应理解,上述根据跌落程度执行的不同安全策略仅是示例性的。
现在返回参考图7,在本发明的实施例中,感测电路可以用于获取可移动装置在任一方向的运动信息,处理电路720可以用于基于感测电路的获取结果确定电池700是否发生撞击。应理解,所述任一方向可以包括重力方向和重力方向以外的其余方向。其中,处理电路720可以基于感测电路对可移动装置在重力方向的运动信息确定电池700是否发生跌落,跌落可以理解为是撞击的一种。下面结合图9来描述根据本发明一个实施例的电池700判断自身是否发生撞击的示意性流程图。
如图9所示,首先,处理电路720经由通信接口710获取可移动装置中的感测电路获取的可移动装置在任一方向的运动信息;接着,由处理电路720基于感测电路的获取结果确定可移动装置在任一方向的运动信息是否在预定时间内持续超过预定阈值;如果是,即处理电路720确定可移动装置在任一方向的运动信息在预定时间内持续超过预定阈值,则确定电池 700发生撞击;反之,如果否,即处理电路720确定可移动装置在任一方向的运动信息未在预定时间内持续超过预定阈值,则确定电池700未发生撞击。
在本发明的实施例中,前述的预定阈值的数目可以是一个。当预定阈值的数目为一个时,处理电路720基于电池700在任一方向的运动信息是否在预定时间内持续超过该预定阈值,来确定电池700是否发生撞击。当确定电池700发生撞击时,可以对电池700执行安全策略,所述安全策略可以包括如下至少一种:记录异常信息、进行异常提示、限制电池700的充放电、控制电池700的自放电等。下面对这些安全策略进行逐一描述。
在本发明的实施例中,当确定电池700发生撞击时,处理电路720可以对电池700执行安全策略,所述安全策略可以包括记录异常信息。其中,该异常信息可以包括此次撞击事件的相关信息(诸如撞击时间等)。这样,如果以后发生安全事故,可以根据处理电路720记录的异常信息追溯电池发生安全事故的原因。在该示例中,电池700还可以包括存储器(未示出)。当处理电路720确定电池700发生撞击时,处理电路720可以将此次撞击事件的相关信息作为异常信息记录并存储在所述存储器中。或者,处理电路720还可以将该异常信息记录在电池700外部的其他存储设备中。
在本发明的实施例中,当确定电池700发生撞击时,处理电路720可以对电池700执行安全策略,所述安全策略可以包括进行异常提示。例如,处理电路720可以在确定电池700发生撞击时发出可听和/或可视安全提示,以提醒用户注意。在该示例中,电池700还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现可听和/或可视安全提示。
在本发明的实施例中,当确定电池700发生撞击时,处理电路720可以对电池700执行安全策略,所述安全策略可以包括限制电池700的充放电使用。示例性地,限制电池700的充放电使用可以包括如下至少一种:限制电池700的充放电次数、限制电池700每次充放电的时间、禁止电池700充放电。在该实施例中,当确定电池700发生撞击时,处理电路720通过限制电池700的充放电使用,可以从根本上提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,当确定电池700发生撞击时,处理电路720可 以对电池700执行安全策略,所述安全策略可以包括控制电池700的自放电。示例性地,控制电池700的自放电可以发出如下至少一种提示:加强保养、保持清洁、保持干燥。在该实施例中,电池700还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现所述提示。
在其他实施例中,当确定电池700发生撞击时,处理电路720还可以对电池700执行其他合适的安全策略,本发明对此不作限制。
现在继续参考图9,在本发明的实施例中,前述的预定阈值的数目可以是多个。当预定阈值的数目为多个时,处理电路720可以基于可移动装置在任一方向的运动信息在预定时间内持续超过的预定阈值的不同,相应地确定电池700发生撞击的程度。例如,当预定阈值包括第一阈值、第二阈值和第三阈值时,其中,第一阈值小于第二阈值,第二阈值小于第三阈值。如果可移动装置在任一方向的运动信息在预定时间内持续超过第一阈值,则确定电池发生轻度撞击;如果可移动装置在任一方向的运动信息在预定时间内持续超过第二阈值,则确定电池发生中度撞击;如果可移动装置在任一方向的运动信息在预定时间内持续超过第三阈值,则确定电池发生重度撞击。
在本发明的实施例中,处理电路720还可以用于基于所确定的电池700发生撞击的程度执行对应的安全策略。
在一个示例中,接着上文的示例,当确定电池700发生轻度撞击时,处理电路720可以记录异常信息。在该示例中,电池700还可以包括存储器(未示出),处理电路720可以将此次撞击事件的相关信息作为异常信息记录并存储在所述存储器中。示例性地,所述撞击事件的相关信息可以包括电池700撞击的时间和/或撞击的程度。在另一个示例中,当确定电池700发生轻度撞击时,处理电路720可以进行异常提示。在该示例中,电池700还可以包括可听和/或可视装置(例如扬声器和/或显示器),处理电路720可以在确定电池700发生轻度撞击时发出可听和/或可视安全提示,以提醒用户注意。
在再一个示例中,当确定电池700发生中度撞击时,除了前述的记录异常信息、进行异常提示,处理电路720还可以控制电池700的自放电。在示例中,电池700还可以包括可听和/或可视装置(例如扬声器和/或显示 器),以向用户呈现加强保养、保持清洁、保持干燥的提示。在又一个示例中,当确定电池700发生重度撞击时,除了前述的记录异常信息、进行异常提示、控制电池700的自放电,处理电路720还可以限制电池700的充放电,诸如限制电池700的充放电次数,限制电池700每次充放电的时间,甚至禁止电池700充放电。总之,处理电路720可以用于基于所确定的电池700发生撞击的程度执行对应的安全策略,以尽可能地提高电池使用的安全性,减少安全事故的发生。应理解,上述根据撞击程度执行的不同安全策略仅是示例性的。
在本发明的实施例中,处理电路720还可以用于:在对电池700执行安全策略之前,获取用户对电池700触发的控制操作,所述控制操作用于控制对电池700执行安全策略。在该实施例中,可以基于用户指令例如通过控制终端实现对电池700执行安全策略的控制。该控制终端可以是电池700所安装在的终端(例如所述可移动装置),也可以是其他的终端。所述控制操作可以是用户对电池700触发的,也可以是用户对控制终端触发的。
在本发明的实施例中,上述的感测电路可以包括加速度传感器。在本发明的实施例中,上述的处理电路720可以包括微处理器或微控制单元。在本发明的实施例中,上述的电池700可以包括以下中的至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
基于上面的描述,根据本发明实施例的电池通过其安装在的可移动装置中的感测电路获取的可移动装置的运动信息确定电池的运动信息,依此判断电池是否发生跌落或撞击,并在确定电池发生过跌落或撞击时对电池执行安全策略,从而提高电池使用的安全性,减少安全事故的发生,同时由于无需包括感测电路而简化了电池的结构。
根据本发明的又一方面,提供了一种可移动装置,该可移动装置可以为无人机或者移动终端。在一个示例中,所述可移动装置可以包括前文结合图4到图6示出的电池400。本领域技术人员可以参见前文关于图4到图6的描述理解该实施例的可移动装置及其所包括的电池的结构和操作,为了简洁,此处不再赘述。在另一个示例中,所述可移动装置可以包括前文结合图7到图9示出的电池700。在该示例中,可移动装置需要包括感测电路,来获取可移动装置的运动信息,从而用于判断安装在其中的电池 是否发生跌落或者撞击。本领域技术人员可以参见前文关于图7到图9的描述理解该实施例的可移动装置及其所包括的电池的结构和操作,为了简洁,此处不再赘述。
根据本发明再一方面,提供了一种可移动装置,下面结合图10进行描述。图10示出了根据本发明一个实施例的可移动装置1000的示意性框图。如图10所示,可移动装置1000包括电池1010还包括感测电路1020和处理电路1030。感测电路1020用于获取可移动装置1000的运动信息,处理电路1030用于基于感测电路1020的获取结果确定可移动装置1000中的电池1010是否发生跌落或撞击,若确定电池1010发生过跌落或撞击,则对电池1010执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
在本发明的实施例中,通过由可移动装置1000中的感测电路1020来获取可移动装置1000的运动信息,即获取可移动装置1000中的电池1010的运动信息,并由处理电路1030根据感测电路1020的获取结果来确定可移动装置1000中的电池1010是否发生跌落或撞击,能够实时且可靠性地检测电池1010是否存在安全隐患,并在确定池1010存在安全隐患时对电池1010执行安全策略,因而能够提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,感测电路1020可以用于获取可移动装置1000至少在重力方向的运动信息,即获取可移动装置1000的电池1010至少在重力方向的运动信息,处理电路1030可以用于基于感测电路1020的获取结果确定电池1010是否发生跌落。下面结合图11来描述根据本发明一个实施例的可移动装置1000判断安装在其中的电池1010是否发生跌落的示意性流程图。
如图11所示,首先,由感测电路1020获取可移动装置1000至少在重力方向的运动信息,即获取可移动装置1000的电池1010至少在重力方向的运动信息;接着,由处理电路1030基于感测电路1020的获取结果确定可移动装置1000在重力方向的运动信息是否在预定时间内持续超过预定阈值;如果是,即处理电路1030确定可移动装置1000在重力方向的运动信息在预定时间内持续超过预定阈值,则确定电池1010发生跌落;反之, 如果否,即处理电路1030确定可移动装置1000在重力方向的运动信息未在预定时间内持续超过预定阈值,则确定电池1010未发生跌落。
在本发明的实施例中,前述的预定阈值的数目可以是一个。当预定阈值的数目为一个时,处理电路1030基于可移动装置1000在重力方向的运动信息是否在预定时间内持续超过该预定阈值,来确定电池1010是否发生跌落。当确定电池1010发生跌落时,可以对电池1010执行安全策略,所述安全策略可以包括如下至少一种:记录异常信息、进行异常提示、限制电池1010的充放电、控制电池1010的自放电等。下面对这些安全策略进行逐一描述。
在本发明的实施例中,当确定电池1010发生跌落时,处理电路1030可以对电池1010执行安全策略,所述安全策略可以包括记录异常信息。其中,该异常信息可以包括此次跌落事件的相关信息(诸如跌落时间等)。这样,如果以后发生安全事故,可以根据处理电路1030记录的异常信息追溯电池发生安全事故的原因。在该示例中,可移动装置1000还可以包括存储器(未示出)。当处理电路1030确定电池1010发生跌落时,处理电路1030可以将此次跌落事件的相关信息作为异常信息记录并存储在所述存储器中。或者,处理电路1030还可以将该异常信息记录在可移动装置1000外部的其他存储设备中。
在本发明的实施例中,当确定电池1010发生跌落时,处理电路1030可以对电池1010执行安全策略,所述安全策略可以包括进行异常提示。例如,处理电路130可以在确定电池1010发生跌落时发出可听和/或可视安全提示,以提醒用户注意。在该示例中,可移动装置1000还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现可听和/或可视安全提示。
在本发明的实施例中,当确定电池1010发生跌落时,处理电路1030可以对电池1010执行安全策略,所述安全策略可以包括限制电池1010的充放电使用。示例性地,限制电池1010的充放电使用可以包括如下至少一种:限制电池1010的充放电次数、限制电池1010每次充放电的时间、禁止电池1010充放电。在该实施例中,当确定电池1010发生跌落时,处理电路1030通过限制电池1010的充放电使用,可以从根本上提高电池使用 的安全性,减少安全事故的发生。
在本发明的实施例中,当确定电池1010发生跌落时,处理电路1030可以对电池1010执行安全策略,所述安全策略可以包括控制电池1010的自放电。示例性地,控制电池1010的自放电可以发出如下至少一种提示:加强保养、保持清洁、保持干燥。在该实施例中,可移动装置1000还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现所述提示。
在其他实施例中,当确定电池1010发生跌落时,处理电路1030还可以对电池1010执行其他合适的安全策略,本发明对此不作限制。
现在继续参考图11,在本发明的实施例中,前述的预定阈值的数目可以是多个。当预定阈值的数目为多个时,处理电路1030可以基于可移动装置1000在重力方向的运动信息在预定时间内持续超过的预定阈值的不同,相应地确定电池1010发生跌落的程度。例如,当预定阈值包括第一阈值、第二阈值和第三阈值时,其中,第一阈值小于第二阈值,第二阈值小于第三阈值。如果可移动装置1000在重力方向的运动信息在预定时间内持续超过第一阈值,则确定电池1010发生轻度跌落;如果可移动装置1000在重力方向的运动信息在预定时间内持续超过第二阈值,则确定电池1010发生中度跌落;如果可移动装置1000在重力方向的运动信息在预定时间内持续超过第三阈值,则确定电池1010发生重度跌落。
在本发明的实施例中,处理电路1030还可以用于基于所确定的电池1010发生跌落的程度执行对应的安全策略。
在一个示例中,接着上文的示例,当确定电池1010发生轻度跌落时,处理电路1030可以记录异常信息。在该示例中,可移动装置1000还可以包括存储器(未示出),处理电路1030可以将此次跌落事件的相关信息作为异常信息记录并存储在所述存储器中。示例性地,所述跌落事件的相关信息可以包括电池1010跌落的时间和/或跌落的程度。在另一个示例中,当确定电池1010发生轻度跌落时,处理电路1030可以进行异常提示。在该示例中,可移动装置1000还可以包括可听和/或可视装置(例如扬声器和/或显示器),处理电路1030可以在确定电池1010发生轻度跌落时发出可听和/或可视安全提示,以提醒用户注意。
在再一个示例中,当确定电池1010发生中度跌落时,除了前述的记录异常信息、进行异常提示,处理电路1030还可以控制电池1010的自放电。在示例中,可移动装置1000还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现加强保养、保持清洁、保持干燥的提示。在又一个示例中,当确定电池1010发生重度跌落时,除了前述的记录异常信息、进行异常提示、控制电池1010的自放电,处理电路1030还可以限制电池1010的充放电,诸如限制电池1010的充放电次数,限制电池1010每次充放电的时间,甚至禁止电池1010充放电。总之,处理电路1030可以用于基于所确定的电池1010发生跌落的程度执行对应的安全策略,以尽可能地提高电池使用的安全性,减少安全事故的发生。应理解,上述根据跌落程度执行的不同安全策略仅是示例性的。
现在返回参考图1,在本发明的实施例中,感测电路1020可以用于获取可移动装置1000在任一方向的运动信息,即获取电池1010在任一方向的运动信息,处理电路1030可以用于基于感测电路1020的获取结果确定电池1010是否发生撞击。应理解,所述任一方向可以包括重力方向和重力方向以外的其余方向。其中,处理电路1030可以基于感测电路1020对可移动装置1000在重力方向的运动信息确定电池1010是否发生跌落,跌落可以理解为是撞击的一种。下面结合图12来描述根据本发明一个实施例的可移动装置1000判断安装在其中的电池1010是否发生撞击的示意性流程图。
如图12所示,首先,由感测电路1020获取可移动装置1000在任一方向的运动信息,即获取可移动装置1000中的电池1010在任一方向的运动信息;接着,由处理电路1030基于感测电路1020的获取结果确定可移动装置1000在任一方向的运动信息是否在预定时间内持续超过预定阈值;如果是,即处理电路1030确定可移动装置1000在任一方向的运动信息在预定时间内持续超过预定阈值,则确定电池1010发生撞击;反之,如果否,即处理电路1030确定可移动装置1000在任一方向的运动信息未在预定时间内持续超过预定阈值,则确定电池1010未发生撞击。
在本发明的实施例中,前述的预定阈值的数目可以是一个。当预定阈值的数目为一个时,处理电路1030基于可移动装置1000在任一方向的运 动信息是否在预定时间内持续超过该预定阈值,来确定电池1010是否发生撞击。当确定电池1010发生撞击时,可以对电池1010执行安全策略,所述安全策略可以包括如下至少一种:记录异常信息、进行异常提示、限制电池1010的充放电、控制电池1010的自放电等。下面对这些安全策略进行逐一描述。
在本发明的实施例中,当确定电池1010发生撞击时,处理电路1030可以对电池1010执行安全策略,所述安全策略可以包括记录异常信息。其中,该异常信息可以包括此次撞击事件的相关信息(诸如撞击时间等)。这样,如果以后发生安全事故,可以根据处理电路1030记录的异常信息追溯电池发生安全事故的原因。在该示例中,可移动装置1000还可以包括存储器(未示出)。当处理电路1030确定电池1010发生撞击时,处理电路1030可以将此次撞击事件的相关信息作为异常信息记录并存储在所述存储器中。或者,处理电路1030还可以将该异常信息记录在可移动装置1000外部的其他存储设备中。
在本发明的实施例中,当确定电池1010发生撞击时,处理电路1030可以对电池1010执行安全策略,所述安全策略可以包括进行异常提示。例如,处理电路1030可以在确定电池1010发生撞击时发出可听和/或可视安全提示,以提醒用户注意。在该示例中,可移动装置1000还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现可听和/或可视安全提示。
在本发明的实施例中,当确定电池1010发生撞击时,处理电路1030可以对电池1010执行安全策略,所述安全策略可以包括限制电池1010的充放电使用。示例性地,限制电池1010的充放电使用可以包括如下至少一种:限制电池1010的充放电次数、限制电池1010每次充放电的时间、禁止电池1010充放电。在该实施例中,当确定电池1010发生撞击时,处理电路1030通过限制电池1010的充放电使用,可以从根本上提高电池使用的安全性,减少安全事故的发生。
在本发明的实施例中,当确定电池1010发生撞击时,处理电路1030可以对电池1010执行安全策略,所述安全策略可以包括控制电池1010的自放电。示例性地,控制电池1010的自放电可以发出如下至少一种提示: 加强保养、保持清洁、保持干燥。在该实施例中,可移动装置1000还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现所述提示。
在其他实施例中,当确定电池1010发生撞击时,处理电路1030还可以对电池1010执行其他合适的安全策略,本发明对此不作限制。
现在继续参考图12,在本发明的实施例中,前述的预定阈值的数目可以是多个。当预定阈值的数目为多个时,处理电路1030可以基于可移动装置1000在任一方向的运动信息在预定时间内持续超过的预定阈值的不同,相应地确定电池1010发生撞击的程度。例如,当预定阈值包括第一阈值、第二阈值和第三阈值时,其中,第一阈值小于第二阈值,第二阈值小于第三阈值。如果可移动装置1000在任一方向的运动信息在预定时间内持续超过第一阈值,则确定电池1010发生轻度撞击;如果可移动装置1000在任一方向的运动信息在预定时间内持续超过第二阈值,则确定电池1010发生中度撞击;如果可移动装置1000在任一方向的运动信息在预定时间内持续超过第三阈值,则确定电池1010发生重度撞击。
在本发明的实施例中,处理电路1030还可以用于基于所确定的电池1010发生撞击的程度执行对应的安全策略。
在一个示例中,接着上文的示例,当确定电池1010发生轻度撞击时,处理电路1030可以记录异常信息。在该示例中,可移动装置1000还可以包括存储器(未示出),处理电路1030可以将此次撞击事件的相关信息作为异常信息记录并存储在所述存储器中。示例性地,所述撞击事件的相关信息可以包括电池1010撞击的时间和/或撞击的程度。在另一个示例中,当确定电池1010发生轻度撞击时,处理电路1030可以进行异常提示。在该示例中,可移动装置1000还可以包括可听和/或可视装置(例如扬声器和/或显示器),处理电路130可以在确定电池1010发生轻度撞击时发出可听和/或可视安全提示,以提醒用户注意。
在再一个示例中,当确定电池1010发生中度撞击时,除了前述的记录异常信息、进行异常提示,处理电路1030还可以控制电池1010的自放电。在示例中,可移动装置1000还可以包括可听和/或可视装置(例如扬声器和/或显示器),以向用户呈现加强保养、保持清洁、保持干燥的提示。 在又一个示例中,当确定电池1010发生重度撞击时,除了前述的记录异常信息、进行异常提示、控制电池1010的自放电,处理电路1030还可以限制电池1010的充放电,诸如限制电池1010的充放电次数,限制电池1010每次充放电的时间,甚至禁止电池1010充放电。总之,处理电路1030可以用于基于所确定的电池1010发生撞击的程度执行对应的安全策略,以尽可能地提高电池使用的安全性,减少安全事故的发生。应理解,上述根据撞击程度执行的不同安全策略仅是示例性的。
在本发明的实施例中,处理电路1030还可以用于:在对电池1010执行安全策略之前,获取用户对电池1010触发的控制操作,所述控制操作用于控制对电池1010执行安全策略。在该实施例中,可以基于用户指令例如通过控制终端实现对电池1010执行安全策略的控制。该控制终端可以是电池1010所安装在的终端(例如可移动装置1000),也可以是其他的终端。所述控制操作可以是用户对电池1010触发的,也可以是用户对控制终端触发的。
在本发明的实施例中,上述的感测电路1020可以包括加速度传感器。在本发明的实施例中,上述的处理电路1030可以包括微处理器或微控制单元。在本发明的实施例中,上述的电池1010可以包括以下中的至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
基于上面的描述,根据本发明实施例的可移动装置通过感测电路获取其自身的运动信息,进而获取安装在其中的电池的运动信息,依此判断电池是否发生跌落或撞击,并在确定电池发生过跌落或撞击时对电池执行安全策略,从而提高电池使用的安全性,减少安全事故的发生。
根据本发明的再一方面,提供了一种组件,该组件可以包括可移动平台以及前文结合图1到图3描述的电池,所述电池用于安装于所述可移动平台,用于为所述可移动平台提供电力。本领域技术人员可以参见前文关于图1到图3的描述理解该实施例的组件及其所包括的电池的结构和操作,为了简洁,此处不再赘述。
基于上面的描述,根据本发明实施例的电池、可移动装置和组件通过感测电路获取电池的运动信息,依此判断电池是否发生跌落或撞击,并在确定电池发生过跌落或撞击时对电池执行安全策略,从而提高电池使用的 安全性,减少安全事故的发生。
根据本发明的又一方面,还提供了一种用于电池安全保护的方法,该方法除了包括前文中描述电池跌落/撞击检测方案,还可以包括:在确定电池发生过跌落或撞击后,由所述处理电路(如前文中描述的处理电路130、430、720或1030)对所述电池进行短路检测,如果确定所述电池出现短路,则执行保护策略。该过程可以结合图13和图14来描述,图13示出了根据本发明实施例的用于电池安全保护的方法1300的示意图流程图。
如图13所示,该用于电池安全保护的方法1300可以包括以下步骤:
在步骤S1310,在确定电池发生过跌落或撞击后,获取所述电池的电池参数。
其中,电池参数包括恒压充电时间、恒压充电容量、充放电容量比值、电池温度中的至少一项。
具体地,可以获取通过电池电路采集的电池参数。比如,在电池充电时进入恒压充电阶段,通过获取采集恒压充电阶段的时间,得到恒压充电时间。又例如,可以获取通过温度传感器采集的电池温度,温度传感器可以设于电池表面,或者电池内部。电池电路可以和温度传感器通信,以获取电池温度数据。
具体地,还可以获取经过计算得到的电池参数,比如通过安时积分计算得到电池的充放电容量,即充电容量和放电容量,再根据充电容量和放电容量计算充放电容量比值。
在步骤S1320,根据所述电池参数确定所述电池是否出现短路。
可以通过判断电池参数是否出现异常,以确定该电池是否出现短路。比如通过与标准参数作比较确定电池参数是否出现异常,标准参数为电池正常时的参数。
示例性的,根据电池参数确定电池是否出现短路,具体为:获取电池的标准参数;根据电池参数与标准参数之间的差异确定电池是否出现短路。
比如,确定电池参数与标准参数之间的差异是否在预设范围内;若电池参数与标准参数之间的差异在预设范围内,确定电池未出现短路;若电池参数与标准参数之间的差异不在预设范围内,确定电池出现短路。通过预设范围可以准确地确定电池是否出现短路。
其中,预设范围根据电池的类型进行设定,不同类型的电池预设范围不同,不同类型电池包括电池容量大小不同或者电芯材料不同,比如锂离子电池和铅蓄电池。
再比如,确定电池参数是否大于标准参数;若电池参数大于标准参数,确定电池出现短路;若电池参数小于或等于标准参数,确定电池未出现短路。由此可以快速地确定电池是否出现短路。
在一些实施例中,若电池参数为恒压充电时间,则标准参数为标准恒压充电时间。确定电池是否出现短路,具体为:确定恒压充电时间是否大于标准恒压充电时间;若恒压充电时间大于标准恒压充电时间,确定电池出现短路;若恒压充电时间小于或等于标准恒压充电时间,确定电池未出现短路。
由于,电池充电一般包括恒流充电阶段和恒压充电阶段,对于同类型且具有固定容量的电池,在恒压充电阶段的充电时间基本相同,由此可以根据恒压充电阶段的恒压充电时间,确定电池是否出现短路。
比如,锂电池采用恒流恒压充电,恒压充电阶段的时间一般为20-30分钟,当电池微短路时,电池恒压充电的时间会大大延长,可能为40-50分钟,也可能是几个小时。由此可以通过检测电池恒压充电阶段的充电时间,判断电池是否微短路。
在一些实施例中,若电池参数为恒压充电容量,则标准参数为标准恒压充电容量。确定电池是否出现短路,具体为:确定恒压充电容量是否大于标准恒压充电容量;若恒压充电容量大于标准恒压充电容量,确定电池出现短路;若恒压充电容量小于或等于标准恒压充电容量,确定电池未出现短路。
在正常状态时,电池的恒压充电容量是固定的,若是出现短路,电池会存在漏电现象,进而导致电池的恒压充电容量较大,甚至会远远大于电池在正常状态时的恒压充电电容。因此,可以通过恒压充电容量快速准确地确定电池是否出现短路,比如微短路。
示例性的,若电池参数为充放电容量比值,则标准参数为标准充放电容量比值。确定电池是否出现短路,具体为:确定充放电容量比值是否大于标准充放电容量比值;若充放电容量比值大于标准充放电容量比值,则 确定电池出现短路;若充放电容量比值小于或等于标准充放电容量比值,则确定电池未出现短路。
在正常状态时,电池的充放电容量比值一般在一个固定范围,而出现短路的电池的充放电容量比值较大,由此可以根据充放电容量比值的变化确定电池是否出现短路。
比如,锂离子电池,在正常状态下充放电容量比值会在1.01-1.05范围内波动,而出现微短路的锂离子电池,充放电容量比值会远远大于1,由此根据充放电容量比值的变化,确定电池是否出现短路。比如,当充放电容量比值大于1.1时,即可以判定电池已经出现微短路。
在一些实施例中,为了准确地确定电池出现短路,还可以获取电池充电时对应的充电电压以及充电时间,该充电电压以及充电时间用于表示电池的电池参数,以用于确定电池是否出现短路。
相应地,确定电池是否出现短路,可以根据电池充电时对应的充电电压以及充电时间确定电池是否出现短路。
由于,电池出现短路时其充电电压随着充电时间的变化趋势,与正常状态时充电电压随着充电时间的变化趋势不同,因此可以根据充电电压以及充电时间,确定电池是否出现短路。
在一些实施例中,电池温度升高到某一阈值,往往是由电池短路引起的,可以通过检测电池温度,当电池温度升高至某一阈值范围,则确定电池可能出现短路。
在步骤S1330,若所述电池出现短路,确定与所述电池出现短路对应的电池保护策略。
与电池出现短路对应的电池保护策略为预先设置电池保护策略,该电池保护策略为在电池出现短路时对电池进行保护的策略方式。
其中,该电池保护策略包括如下至少一种:将电池放电至电池安全存储对应预设电压范围内、控制电池处于锁死状态。
当然,电池保护策略还可以包括其他策略方式。比如,输出提示信息,以提示用于按照提示信息会电池进行处理,该提示信息可以为语音提示信息、文字提示信息、指示灯提示信息等。
在一些实施例中,电池保护策略包括多级电池保护策略,多级电池保 护策略中的每一级电池保护策略的保护方式不同,且每一级电池保护策略对应的短路的程度也不同,以便根据电池的短路程度确定对应保护策略,进而对电池进行有效合理的保护。
示例性的,多级电池保护策略包括如下至少一种:第一级电池保护策略、第二级电池保护策略和第三级电池保护策略。
其中,第一级电池保护策略包括:输出用于提示用户返修保养的提示信息。
其中,第二级电池保护策略包括:控制所述电池进入自放电程序对所述电池进行放电,和/或,输出用于提示用户所述电池不可使用的提示信息。
其中,第三级电池保护策略包括:控制所述电池处于锁死状态,和/或,输出用于提示用户所述电池已报废的提示信息。
具体地,可以先确定电池的短路对应的短路程度;再根据短路程度确定短路对应的多级电池保护策略。
比如,短路程度包括短路程度a、短路程度b和短路程度c,分别对应第一级电池保护策略、第二级电池保护策略和第三级电池保护策略。
其中,确定所述短路的短路程度,具体为:确定电池参数与标准参数之间的差异程度,根据差异程度确定短路程度。
示例性的,电池的恒压充电时间超过标准恒压充电时间10分钟,定义为短路程度a;电池的恒压充电时间超过标准恒压充电时间20分钟,定义为短路程度b;电池的恒压充电时间超过标准恒压充电时间30分钟,定义为短路程度c。
比如,电池的恒压充电时间为45分钟,标准恒压充电时间为20分钟,则可以确定电池的短路程度为短路程度b,因此确定该电池出现短路对应的多级电池保护策略为第二级电池保护策略。
在步骤S1340,控制所述电池执行所述电池保护策略。
具体地,通过电池管理系统中预置的放电电阻对电池进行放电,并放电至预设电压范围;和/或,控制电池的充电开关和放电开关处于断开状态,以使电池处于锁死状态,即永久失效。
其中,预设电压范围为安全电压范围,可以设置0V附近范围值,具体范围值在此不做限定。
在一些实施例中,当然还可以采用其他电池保护策略,比如输出提示信息,用于提示用户电池出现短路。提示信息包括语音提示信息、文字提示信息和/或指示灯提示信息,指示灯提示信息比如用不同LED组成灯语以提示用户电池出现短路。
可以理解的是,当电池在充电状态时,检测当电池出现短路,停止充电后再执行所述电池保护策略;当电池处于放电状态时,在确保使用该电池的可移动平台安全时,执行所述电池保护策略。
若在电池充电过程中,确定电池出现短路,停止对电池充电,并执行所述电池保护策略。其中,停止对电池充电,可以为微控制单元向充电开关电路发送控制信号,以使充电开关电路断开;当然也可以为微控制单元向充电器发送控制信号,以使充电器停止充电。
比如,根据恒压充电时间、或者充电电压及对应的充电时间,确定该电池存现短路,停止对该电池继续充电,并将电池放电至预设电压范围内,或者控制电池处于锁死状态。避免了出现短路的电池被用户使用,由此提高了电池的使用安全性。
示例性的,无人机安装有电池,在无人机的飞行过程中,电池的微控制单元根据电池参数确定电池出现短路,比如根据充放电容量比值确定电池出现短路,电池的微控制单元向无人机的飞行控制器发送用于指示无人机返航的指令。飞行控制器接收到该指令后,控制飞行器返航,并反馈至电池的微控制单元。微控制单元在接收到反馈信息后,执行所述电池保护策略。
当然,电池的微控制单元向无人机的飞行控制器发送用于指示无人机返航的指令,飞行控制器再将该指令发送至地面控制端,由用户知晓电池出现短路后发送返航指令给飞行控制器,飞行控制器接收地面控制端的返航指令后开始返航。
具体地,可以在无人机返航时或者返航结束时,将电池放电至预设电压范围内,并无人机停止运行时控制电池处于锁死状态,由此可以提高电池的使用安全性,并确保了无人机的飞行安全性。
可以理解的是,若电池保护策略还包括多级电池保护策略,则还可以控制电池执行确定的多级电池保护策略。
比如,确定的电池出现短路对应的多级电池保护策略为第二级电池保护策略,则可以控制电池进入自放电程序对电池进行放电,和/或,输出用于提示用户电池不可使用的提示信息。
在一些实施例中,控制电池执行电池保护策略之后,该方法还包括:检测到电池接入到可移动平台时,输出告警提示信息以提示用户电池出现短路。不仅可以确保电池的安全,还可以提高可移动平台的运行安全。
在一些实施例中,该方法用于电池时,电池自身能够准确快速地识别到电池是否出现短路,并在电池出现短路时,通过电池保护策略实现对电池的保护。该方法使得电池在识别到自身出现短路时,可以不经过用户的操作或许可,自身执行相关保护策略,避免了电池的自燃等危险情况,由此提高了电池使用的安全性。
在一些实施例中,该方法用于与电池通信的其他电子设备时,可以在线准确快速地识别到电池是否出现短路,并在电池出现短路时,通过电池保护策略实现对电池的保护,并调整该电子设备的工作状态,使该电子设备也处于安全的工作状态下,进一步避免了因电池短路而造成的使用风险。例如,当充电器/充电管家在为电池进行充/放电时,若识别到电池出现短路,则控制减小或停止充/放电,提高电池的安全性。当电池在为可移动平台供电时,若可移动平台识别到电池出现短路,则控制减小电池的放电电流,和/或进行相应的提示,以提高电池的安全性。具体的,可以通过限制可移动平台运行的方式减小电池的放电电流,例如:调整电机转速、限制可移动平台搭载的拍摄装置进行拍摄等。
上述各实施例提供的方法,可以在确定电池发生过跌落或撞击后,在线准确快速地识别到电池是否出现短路,并在电池出现短路时,通过电池保护策略实现对电池的保护,由此提高了电池使用的安全性。
现有的电池,比如锂离子电池在使用的时候,经常会发生一些内部短路情况,比如微短路,短路会造成电池失效着火等等事故。由于电池的内部短路的发生具有偶然性,给检测带来了难度。在电池的不同工作状态下都有可能发生短路,因此导致电池出现短路的检测更为困难,同时还存在检测到短路后无法进行有效的保护等问题。
图14示出了根据本发明实施例的用于电池安全保护的方法1400的示 意图流程图。
如图14所示,该用于电池安全保护的方法1400可以包括以下步骤:
在步骤S1410,在确定电池发生过跌落或撞击后,获取所述电池的工作状态。
在步骤S1420,根据所述工作状态确定目标参数,获取所述电池的目标参数作为所述电池的电池参数。
在步骤S1430,根据所述电池参数确定所述电池是否出现短路;
在步骤S1440,若所述电池出现短路,确定与所述电池出现短路对应的电池保护策略;
在步骤S1450,控制所述电池执行所述电池保护策略。
其中,电池的工作状态包括充电状态和放电状态,目标参数为与工作状态相关的一种或多种电池参数,即不同的工作状态需要使用不同的电池参数识别电池是否出现短路。
具体地,可以检测电池电路中的充电开关和放电开关的状态,根据充电开关和放电开关的状态确定电池的工作状态。
比如,充电开关导通,确定电池的工作状态为充电状态;放电开关导通,确定电池的工作状态为放电状态;充电开关断开且放电开关断开,确定电池的工作状态为不使用状态。
需要说明的是,微控制单元可以检测判断电池的工作状态,也可以由相关的电路将可以表征电池工作状态的信号发送给微控制单元,以使微控制单元确定电池的工作状态。
具体地,在获取电池的工作状态后,根据该电池的工作状态确定目标参数,获取所述电池的目标参数作为所述电池的电池参数。
示例性的,若电池的工作状态为充电状态,根据充电状态确定恒压充电时间和/或恒压充电容量作为目标参数;或者,若工作状态为放电状态,根据放电状态确定充放电容量比值作为目标参数。
比如,在电池处于充电状态时,获取作为目标参数的恒压充电时间,用于确定电池是否出现短路;再比如,在电池处于放电状态时,获取作为目标参数的充放电容量比值,用于确定电池是否出现短路。
在确定电池出现短路后,确定与电池出现短路对应的电池保护策略, 并控制电池执行确定的电池保护策略。其中,电池保护策略包括如下至少一种:将电池放电至电池安全存储对应预设电压范围内、控制电池处于锁死状态。
对安装在可移动平台上的电池,由于电池出现短路,可能导致电池的温度较高。并且在某些情况下,比如飞行器飞行时,无法对电池进行放电或锁死保护。因此会造成超温使用电池,超温使用即无法保障飞行器的飞行安全性,又无法保障电池使用的安全性,更容易发生安全事故。
因此电池保护策略包括预设多级温度保护策略,预设多级电池保护策略与预设多级电池温度范围对应,用于控制电池执行与当前电池温度对应的电池保护策略,以控制可移动平台的运行。
具体地,在确定电池出现短路后,获取电池的当前电池温度;根据当前电池温度以及预设多级电池保护策略,确定与当前电池温度对应的电池保护策略;控制可移动平台执行确定的电池保护策略。通过控制电池执行与当前电池温度对应的电池保护策略,,进而可以提高可移动平台和电池的安全性。
在一些实施例中,预设多级电池保护策略包括第一级电池保护策略、第二级电池保护策略、第三级电池保护策略以及第四级电池保护策略;预设多级电池温度范围包括对应的第一级电池温度范围、第二级电池温度范围、第三级电池温度范围以及第四级电池温度范围。
其中,第一级电池温度范围包括正常使用温度阈值以下,第二级电池温度范围包括正常使用温度阈值与限制使用温度阈值之间,第三级电池温度范围包括限制使用温度阈值与第一影响寿命温度阈值之间,以及第四级电池温度范围包括第二影响寿命温度阈值以上。
预设多级电池保护策略是指预先设定的、多个级别的、用以保护电池安全性的策略。该预设多级电池保护策略与电池的多个级别的温度范围相对应,其用于控制电池执行与当前电池温度对应的电池保护策略,以控制可移动平台的运行。
其中,一个预设级别电池保护策略可以包括一个策略,也可以包括两个以上的策略;一个预设级别电池保护策略可以包括与电池相关(即电池方面)的策略,也可以包括与可移动平台相关(即可移动平台方面)的策 略,还可以包括与用户相关(即用户方面)的策略。
在一实施例中,预设多级电池保护策略包括如下至少一种:控制电池继续正常运行、降低电池的放电电流、发出用于指示可移动平台在停止运行前进行返航准备的指令、向用户发出电池超温使用建议返航的提示、发出控制可移动平台警告用户返航的指令、向用户发出电池温度严重警告建议尽快返航的指令、记录电池当前的放电温度、将电池锁死。
在一应用中,多个级别的电池温度范围包括如下至少一种:正常使用温度阈值以下,正常使用温度阈值与限制使用温度阈值之间,限制使用温度阈值与第一影响寿命温度阈值之间,第二影响寿命温度阈值以上。在一些实施例中,控制可移动平台执行确定的电池保护策略,具体为:若当前电池温度处于正常使用温度阈值以下,则控制可移动平台继续正常运行。若可移动平台为飞行,正常运行包括正常的飞行方式。
示例性的,控制可移动平台执行确定的电池保护策略,具体为:若当前电池温度处于正常使用温度阈值与限制使用温度阈值之间,则降低所述电池的放电电流,并控制可移动平台限制性运行。
其中,控制可移动平台执行限制性运行,具体包括:降低电池的放电电流,并控制飞行器限制飞行姿态。
示例性的,限制飞行姿态,包括:控制飞行器限制变速飞行;或者,控制飞行器限制飞行高度。
比如,将飞行器的飞行高度从H1下降至H2,以及将飞行器的飞行速度由V1减小至V2,速度V1大于V2,由此确保飞行器的飞行安全。
在一些实施例中,控制可移动平台执行确定的电池保护策略,具体为:若当前电池温度处于限制使用温度阈值与第一影响寿命温度阈值之间,则控制可移动平台执行停止运行前的第一预备策略,其中,第一预备策略用于在所述可移动平台停止运行前做返航准备。
比如,若当前电池温度处于限制使用温度阈值与较影响寿命温度阈值之间,则控制飞行器做出返航准备,并向用户发出电池超温使用建议返航的提示。
在一些实施例中,控制可移动平台执行确定的电池保护策略,具体为:若当前电池温度处于第二影响寿命温度阈值以上,则控制可移动平台执行 停止运行前的第二预备策略,其中,第二预备策略用于在所述可移动平台停止运行前警告用户返航。
比如,若当前电池温度处于第二影响寿命温度阈值以上,则控制飞行器向用户发出电池温度严重警告建议尽快返航的提示。
比如,若当前电池温度处于第二影响寿命温度阈值以上,控制所述电池记录所述电池当前的放电温度。
具体地,若可移动平台停止运行且电池记录的放电温度在所述第二影响寿命温度阈值以上,则将电池放电至安全储存电压进行储存和/或电池锁死,以禁止电池再对所述可移动平台供电。
在本申请的实施例中正常使用温度阈值包括65℃,限制使用温度阈值包括75℃,第一影响寿命温度阈值包括85℃,第二影响寿命温度阈值包括90℃。
上述实施例提供的方法,可以在确定电池发生过跌落或撞击后,根据电池的工作状态,确定相应的电池参数,以快速准确地确定电池是否出现短路,并在确定电池出现短路后采用相应的保护,以及在电池温度升高时,控制可移动平台执行相应的保护策略,进而提高了电池的安全性能以及确保了可移动平台的安全运行。
电池在跌落或撞击后,往往会带来不同程度的损伤,例如,造成电池短路。若检测到电池出现短路或断路的情况,可以考虑电池是否出现过跌落或撞击,从而可以为电池出现短路或断路的情况提供一个异常分析的依据。基于此,本发明实施例还提供了一种用于电池安全保护的方法,该方法包括:在检测到电池出现短路或者断路后,获取电池的参数信息,例如加速度数据,再根据该参数信息确定电池是否发生过跌落/撞击。根据该参数信息确定电池是否发生过跌落/撞击的方法,在不冲突的情况下,可以由前文中描述的任一电池跌落/撞击检测方案(例如结合图2、图3、图5、图6、图8、图9、图11、或图12所描述的方法过程)确定电池是否发生过跌落/撞击。例如,可以由所述处理电路(如前文中描述的处理电路130、430、720或1030)对所述电池进行短路或断路检测,如果确定所述电池出现短路或断路,则通过前文中描述的电池跌落/撞击检测方案进行电池跌落/撞击判断。在确定电池发生过跌落/撞击后,不冲突的情况下,还可以在对 所述电池执行上述任一实施例公开的安全策略。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非 另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读存储介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (86)

  1. 一种电池,其特征在于,所述电池包括:
    一个或多个电芯;
    感测电路,用于获取所述电池的运动信息;
    处理电路,用于基于所述感测电路的获取结果确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
  2. 根据权利要求1所述的电池,其特征在于,所述感测电路用于获取所述电池至少在重力方向的运动信息,所述处理电路用于基于所述感测电路的获取结果确定所述电池是否发生跌落。
  3. 根据权利要求2所述的电池,其特征在于,所述处理电路进一步用于基于所述感测电路的获取结果确定所述电池在重力方向的运动信息是否在预定时间内持续超过预定阈值,如果是,则确定所述电池发生跌落。
  4. 根据权利要求3所述的电池,其特征在于,所述预定阈值的数目为一个或更多个,当所述预定阈值的数目不止一个时,所述处理电路基于所述电池在重力方向的运动信息在所述预定时间内持续超过的所述预定阈值的不同,相应地确定所述电池发生跌落的程度。
  5. 根据权利要求1所述的电池,其特征在于,所述处理电路用于基于所述感测电路的获取结果确定所述电池在任一方向的运动信息在预设时间内的变化值是否超过预设阈值,如果是,则确定所述电池发生撞击。
  6. 根据权利要求5所述的电池,其特征在于,所述预设阈值的数目为一个或更多个,当所述预设阈值的数目不止一个时,所述处理电路基于所述电池在任一方向的运动信息在所述预设时间内的变化值超过的预设阈值的不同,相应地确定所述电池发生撞击的程度。
  7. 根据权利要求4或6所述的电池,其特征在于,所述处理电路还用于基于所确定的所述电池发生跌落的程度和/或发生撞击的程度执行对应的安全策略。
  8. 根据权利要求1-7中的任一项所述的电池,其特征在于,所述处理电路在确定所述电池发生跌落或撞击时发出可听和/或可视安全提示。
  9. 根据权利要求1-8中的任一项所述的电池,其特征在于,所述电池还包括存储器,当所述处理电路确定所述电池发生跌落或撞击时,所述处理电路将此次跌落事件或撞击事件的相关信息作为异常信息记录并存储在所述存储器中。
  10. 根据权利要求9所述的电池,其特征在于,所述跌落事件的相关信息包括所述电池跌落的时间和/或跌落的程度,所述撞击事件的相关信息包括所述电池撞击的时间和/或撞击的程度。
  11. 根据权利要求1-10中的任一项所述的电池,其特征在于,所述处理电路进一步用于在确定所述电池发生跌落或撞击后限制所述电池的充放电使用,包括如下至少一种:限制所述电池的充放电次数、限制所述电池每次充放电的时间、禁止所述电池充放电。
  12. 根据权利要求1-11中的任一项所述的电池,其特征在于,所述处理电路进一步用于在确定所述电池发生跌落或撞击后控制所述电池的自放电,包括发出如下至少一种提示:加强保养、保持清洁、保持干燥。
  13. 根据权利要求1-12中的任一项所述的电池,其特征在于,所述感测电路包括加速度传感器;和/或,
    所述处理电路包括微处理器。
  14. 根据权利要求1-13中的任一项所述的电池,其特征在于,所述运动信息包括如下至少一种:速度、加速度、位移、运动时间。
  15. 根据权利要求1-14中的任一项所述的电池,其特征在于,所述电池包括如下至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
  16. 根据权利要求1-15中的任一项所述的电池,其特征在于,所述处理电路用于对所述电池执行安全策略之前,获取用户对所述电池触发的控制操作,所述控制操作用于控制对所述电池执行安全策略。
  17. 一种电池,应用于可移动装置,其特征在于,所述电池包括处理电路、感测电路和通信接口,其中:
    所述处理电路经由所述通信接口与所述可移动装置通信,以确定所述可移动装置是否处于移动状态,并在确定所述可移动装置处于移动状态时使能所述感测电路工作;
    所述感测电路在被所述处理电路使能工作后,获取所述电池的运动信 息;
    所述处理电路进一步用于基于所述感测电路的获取结果确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
  18. 一种电池,应用于可移动装置,其特征在于,所述电池包括处理电路和通信接口,所述电池用于通过所述通信接口与所述可移动装置通信,所述处理电路用于经由所述通信接口从所述可移动装置的感测电路获取所述可移动装置的运动信息,并基于所述感测电路的获取结果确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
  19. 根据权利要求17或18所述的电池,其特征在于,所述感测电路用于获取所述电池或所述可移动装置至少在重力方向的运动信息,所述处理电路用于基于所述感测电路的获取结果确定所述电池是否发生跌落。
  20. 根据权利要求19所述的电池,其特征在于,所述处理电路进一步用于基于所述感测电路的获取结果确定所述电池或所述可移动装置在重力方向的运动信息是否在预定时间内持续超过预定阈值,如果是,则确定所述电池发生跌落。
  21. 根据权利要求20所述的电池,其特征在于,当所述预定阈值的数目为一个或更多个,当所述预定阈值的数目不止一个时,所述处理电路基于所述电池或所述可移动装置在重力方向的运动信息在所述预定时间内持续超过的所述预定阈值的不同,相应地确定所述电池发生跌落的程度。
  22. 根据权利要求17或18所述的电池,其特征在于,所述处理电路进一步用于基于所述感测电路的获取结果确定所述电池或所述可移动装置在任一方向的运动信息在预设时间内的变化值是否超过预设阈值,如果是,则确定所述电池发生撞击。
  23. 根据权利要求22所述的电池,其特征在于,所述预设阈值的数目为一个或更多个,当所述预设阈值的数目不止一个时,所述处理电路基于所述电池或所述可移动装置在任一方向的运动信息在所述预设时间内的 变化值超过的预设阈值的不同,相应地确定所述电池发生撞击的程度。
  24. 根据权利要求21或23所述的电池,其特征在于,所述处理电路还用于基于所确定的所述电池发生跌落的程度和/或发生撞击的程度执行对应的安全策略。
  25. 根据权利要求17-24中的任一项所述的电池,其特征在于,所述处理电路在确定所述电池发生跌落或撞击时发出可听和/或可视安全提示。
  26. 根据权利要求17-25中的任一项所述的电池,其特征在于,所述电池还包括存储器,当所述处理电路确定所述电池发生跌落或撞击时,所述处理电路将此次跌落事件或撞击事件的相关信息作为异常信息记录并存储在所述存储器中。
  27. 根据权利要求26所述的电池,其特征在于,所述跌落事件的相关信息包括所述电池跌落的时间和/或跌落的程度,所述撞击事件的相关信息包括所述电池撞击的时间和/或撞击的程度。
  28. 根据权利要求17-27所述的电池,其特征在于,所述处理电路进一步用于在确定所述电池发生跌落或撞击后限制所述电池的充放电使用,包括如下至少一种:限制所述电池的充放电次数、限制所述电池每次充放电的时间、禁止所述电池充放电。
  29. 根据权利要求17-28中的任一项所述的电池,其特征在于,所述处理电路进一步用于在确定所述电池发生跌落或撞击后控制所述电池的自放电,包括发出如下至少一种提示:加强保养、保持清洁、保持干燥。
  30. 根据权利要求17-29中的任一项所述的电池,其特征在于,所述感测电路包括加速度传感器;和/或,
    所述处理电路包括微处理器。
  31. 根据权利要求17-30中的任一项所述的电池,其特征在于,所述运动信息包括如下至少一种:速度、加速度、位移、运动时间。
  32. 根据权利要求17-31中的任一项所述的电池,其特征在于,所述电池包括如下至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
  33. 根据权利要求17-32中的任一项所述的电池,其特征在于,所述处理电路用于对所述电池执行安全策略之前,获取用户对所述电池触发的控制操作,所述控制操作用于控制对所述电池执行安全策略。
  34. 一种可移动装置,其特征在于,所述可移动装置包括权利要求17-33中的任一项所述的电池。
  35. 根据权利要求34所述的可移动装置,其特征在于,所述可移动装置为无人机或移动终端。
  36. 一种可移动装置,其特征在于,所述可移动装置包括电池,所述电池用于为所述可移动装置的移动提供电力,所述可移动装置还包括处理电路和感测电路,所述感测电路用于获取所述可移动装置的运动信息,所述处理电路用于基于所述感测电路的获取结果确定所述可移动装置中的电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
  37. 根据权利要求36所述的可移动装置,其特征在于,所述感测电路用于获取所述可移动装置至少在重力方向的运动信息,所述处理电路用于基于所述感测电路的获取结果确定所述电池是否发生跌落。
  38. 根据权利要求37所述的可移动装置,其特征在于,所述处理电路进一步用于基于所述感测电路的获取结果确定所述可移动装置在重力方向的运动信息是否在预定时间内持续超过预定阈值,如果是,则确定所述电池发生跌落。
  39. 根据权利要求38所述的可移动装置,其特征在于,所述预定阈值的数目为一个或更多个,当所述预定阈值的数目不止一个时,所述处理电路基于所述可移动装置在重力方向的运动信息在所述预定时间内持续超过的所述预定阈值的不同,相应地确定所述电池发生跌落的程度。
  40. 根据权利要求36所述的可移动装置,其特征在于,所述处理电路进一步用于基于所述感测电路的获取结果确定所述可移动装置在任一方向的运动信息在预设时间内的变化值是否超过预设阈值,如果是,则确定所述电池发生撞击。
  41. 根据权利要求40所述的可移动装置,其特征在于,所述预设阈值的数目为一个或更多个,当所述预设阈值的数目不止一个时,所述处理电路基于所述可移动装置在任一方向的运动信息在所述预设时间内的变化值超过的预设阈值的不同,相应地确定所述电池发生撞击的程度。
  42. 根据权利要求39或41所述的可移动装置,其特征在于,所述处理电路还用于基于所确定的所述电池发生跌落的程度和/或发生撞击的程度执行对应的安全策略。
  43. 根据权利要求36-42中的任一项所述的可移动装置,其特征在于,所述处理电路在确定所述电池发生跌落或撞击时发出可听和/或可视安全提示。
  44. 根据权利要求36-43中的任一项所述的可移动装置,其特征在于,所述可移动装置还包括存储器,当所述处理电路确定所述电池发生跌落或撞击时,所述处理电路将此次跌落事件或撞击事件的相关信息作为异常信息记录并存储在所述存储器中。
  45. 根据权利要求36-43中的任一项所述的可移动装置,其特征在于,所述电池还包括存储器,当所述处理电路确定所述电池发生跌落或撞击时,所述处理电路将此次跌落事件或撞击事件的相关信息作为异常信息记录并存储在所述存储器中。
  46. 根据权利要求44或45所述的可移动装置,其特征在于,所述跌落事件的相关信息包括所述电池跌落的时间和/或跌落的程度,所述撞击事件的相关信息包括所述电池撞击的时间和/或撞击的程度。
  47. 根据权利要求36-46中的任一项所述的可移动装置,其特征在于,所述处理电路进一步用于在确定所述电池发生跌落或撞击后限制所述电池的充放电使用,包括如下至少一种:限制所述电池的充放电次数、限制所述电池每次充放电的时间、、禁止所述电池充放电。
  48. 根据权利要求36-47中的任一项所述的可移动装置,其特征在于,所述处理电路进一步用于在确定所述电池发生跌落或撞击后控制所述电池的自放电,包括发出如下至少一种提示:加强保养、保持清洁、保持干燥。
  49. 根据权利要求36-48中的任一项所述的可移动装置,其特征在于,所述感测电路包括加速度传感器;和/或,
    所述处理电路包括微处理器。
  50. 根据权利要求36-49中的任一项所述的可移动装置,其特征在于,所述运动信息包括如下至少一种:速度、加速度、位移、运动时间。
  51. 根据权利要求36-50中的任一项所述的可移动装置,其特征在于, 所述电池包括如下至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
  52. 根据权利要求36-51中的任一项所述的可移动装置,其特征在于,所述处理电路用于对所述电池执行安全策略之前,获取用户对所述电池触发的控制操作,所述控制操作用于控制对所述电池执行安全策略。
  53. 一种组件,包括:
    可移动平台;以及,
    权利要求1-16任一项所述的电池,所述电池用于安装于所述可移动平台,用于为所述可移动平台提供电力。
  54. 一种用于电池安全保护的方法,其特征在于,所述方法包括:
    获取所述电池的运动信息;
    根据所述电池的运动信息确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
  55. 根据权利要求54所述的方法,其特征在于,
    所述获取所述电池的运动信息,进一步包括:获取所述电池至少在重力方向的运动信息;
    所述根据所述电池的运动信息确定所述电池是否发生跌落或撞击,进一步包括:根据所述电池的运动信息确定所述电池是否发生跌落。
  56. 根据权利要求55所述的方法,其特征在于,所述根据所述电池的运动信息确定所述电池是否发生跌落,进一步包括:
    根据所述电池的运动信息确定所述电池在重力方向的运动信息是否在预定时间内持续超过预定阈值,如果是,则确定所述电池发生跌落。
  57. 根据权利要求56所述的方法,其特征在于,所述预定阈值的数目为一个或更多个,当所述预定阈值的数目不止一个时,基于所述电池在重力方向的运动信息在所述预定时间内持续超过的所述预定阈值的不同,相应地确定所述电池发生跌落的程度。
  58. 根据权利要求54所述的方法,其特征在于,所述根据所述电池的运动信息确定所述电池是否发生跌落或撞击,进一步包括:
    根据所述电池的运动信息确定所述电池在任一方向的运动信息在预 设时间内的变化值是否超过预设阈值,如果是,则确定所述电池发生撞击。
  59. 根据权利要求58所述的方法,其特征在于,所述预设阈值的数目为一个或更多个,当所述预设阈值的数目不止一个时,基于所述电池在任一方向的运动信息在所述预设时间内的变化值超过的预设阈值的不同,相应地确定所述电池发生撞击的程度。
  60. 根据权利要求57或59所述的方法,其特征在于,所述对所述电池执行安全策略,进一步包括:
    基于所确定的所述电池发生跌落的程度和/或发生撞击的程度执行对应的安全策略。
  61. 根据权利要求54-60中的任一项所述的方法,其特征在于,所述方法还包括:
    在确定所述电池发生跌落或撞击时发出可听和/或可视安全提示。
  62. 根据权利要求54-61中的任一项所述的方法,其特征在于,所述方法还包括:当确定所述电池发生跌落或撞击时,将此次跌落事件或撞击事件的相关信息作为异常信息记录并存储在存储器中。
  63. 根据权利要求62所述的方法,其特征在于,所述跌落事件的相关信息包括所述电池跌落的时间和/或跌落的程度,所述撞击事件的相关信息包括所述电池撞击的时间和/或撞击的程度。
  64. 根据权利要求54-63中的任一项所述的方法,其特征在于,所述限制所述电池的充放电使用,包括如下至少一种:限制所述电池的充放电次数、限制所述电池每次充放电的时间、禁止所述电池充放电。
  65. 根据权利要求54-64中的任一项所述的方法,其特征在于,所述控制所述电池的自放电,包括发出如下至少一种提示:加强保养、保持清洁、保持干燥。
  66. 根据权利要求54-65中的任一项所述的方法,其特征在于,所述运动信息包括如下至少一种:速度、加速度、位移、运动时间。
  67. 根据权利要求54-66中的任一项所述的方法,其特征在于,所述电池包括如下至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
  68. 根据权利要求54-67中的任一项所述的方法,其特征在于,所述方法还包括:对所述电池执行安全策略之前,获取用户对所述电池触发的 控制操作,所述控制操作用于控制对所述电池执行安全策略。
  69. 一种用于电池安全保护的方法,其特征在于,所述电池应用于可移动装置,所述方法包括:
    确定所述可移动装置是否处于移动状态,并在确定所述可移动装置处于移动状态时获取所述电池的运动信息;
    根据所述电池的运动信息确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,所述安全策略包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
  70. 一种用于电池安全保护的方法,其特征在于,所述电池应用于可移动装置,所述方法包括:
    获取所述可移动装置的运动信息,以得到所述电池的运动信息;
    根据所述电池的运动信息确定所述电池是否发生跌落或撞击,若确定所述电池发生过跌落或撞击,则对所述电池执行安全策略,包括如下至少一种:记录异常信息、进行异常提示、限制所述电池的充放电、控制所述电池的自放电。
  71. 根据权利要求69或70所述的方法,其特征在于,获取所述电池或所述可移动装置的运动信息,进一步包括:
    获取所述电池或所述可移动装置至少在重力方向的运动信息;
    所述根据所述电池的运动信息确定所述电池是否发生跌落或撞击,进一步包括:根据所述电池的运动信息确定所述电池是否发生跌落。
  72. 根据权利要求71所述的方法,其特征在于,所述根据所述电池的运动信息确定所述电池是否发生跌落,进一步包括:
    根据所述电池的运动信息确定所述电池或所述可移动装置在重力方向的运动信息是否在预定时间内持续超过预定阈值,如果是,则确定所述电池发生跌落。
  73. 根据权利要求72所述的方法,其特征在于,当所述预定阈值的数目为一个或更多个,当所述预定阈值的数目不止一个时,基于所述电池或所述可移动装置在重力方向的运动信息在所述预定时间内持续超过的所述预定阈值的不同,相应地确定所述电池发生跌落的程度。
  74. 根据权利要求69或70所述的方法,其特征在于,所述根据所述电池的运动信息确定所述电池是否发生跌落或撞击,进一步包括:
    根据所述电池的运动信息确定所述电池或所述可移动装置在任一方向的运动信息在预设时间内的变化值是否超过预设阈值,如果是,则确定所述电池发生撞击。
  75. 根据权利要求74所述的方法,其特征在于,所述预设阈值的数目为一个或更多个,当所述预设阈值的数目不止一个时,基于所述电池或所述可移动装置在任一方向的运动信息在所述预设时间内的变化值超过的预设阈值的不同,相应地确定所述电池发生撞击的程度。
  76. 根据权利要求73或75所述的方法,其特征在于,所述对所述电池执行安全策略,进一步包括:
    基于所确定的所述电池发生跌落的程度和/或发生撞击的程度执行对应的安全策略。
  77. 根据权利要求69-76中的任一项所述的方法,其特征在于,所述方法还包括:
    在确定所述电池发生跌落或撞击时发出可听和/或可视安全提示。
  78. 根据权利要求69-77中的任一项所述的方法,其特征在于,所述方法还包括:当确定所述电池发生跌落或撞击时,将此次跌落事件或撞击事件的相关信息作为异常信息记录并存储在存储器中。
  79. 根据权利要求78所述的方法,其特征在于,所述跌落事件的相关信息包括所述电池跌落的时间和/或跌落的程度,所述撞击事件的相关信息包括所述电池撞击的时间和/或撞击的程度。
  80. 根据权利要求69-79所述的方法,其特征在于,所述限制所述电池的充放电使用,包括如下至少一种:限制所述电池的充放电次数、限制所述电池每次充放电的时间、禁止所述电池充放电。
  81. 根据权利要求69-80中的任一项所述的方法,其特征在于,所述控制所述电池的自放电,包括发出如下至少一种提示:加强保养、保持清洁、保持干燥。
  82. 根据权利要求69-81中的任一项所述的方法,其特征在于,所述运动信息包括如下至少一种:速度、加速度、位移、运动时间。
  83. 根据权利要求69-82中的任一项所述的方法,其特征在于,所述电池包括如下至少一种:锂电池、铅蓄电池、镉镍电池、氢镍电池。
  84. 根据权利要求69-83中的任一项所述的方法,其特征在于,所述方法还包括:对所述电池执行安全策略之前,获取用户对所述电池触发的控制操作,所述控制操作用于控制对所述电池执行安全策略。
  85. 根据权利要求54-84中的任一项所述的方法,其特征在于,所述方法还包括:在确定所述电池发生过跌落或撞击后,对所述电池进行短路检测,如果确定所述电池出现短路,则执行保护策略。
  86. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求54至85中任一项所述的电池控制方法。
PCT/CN2020/071825 2020-01-13 2020-01-13 电池、可移动装置和组件 WO2021142585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080006495.2A CN113169574A (zh) 2020-01-13 2020-01-13 电池、可移动装置和组件
PCT/CN2020/071825 WO2021142585A1 (zh) 2020-01-13 2020-01-13 电池、可移动装置和组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071825 WO2021142585A1 (zh) 2020-01-13 2020-01-13 电池、可移动装置和组件

Publications (1)

Publication Number Publication Date
WO2021142585A1 true WO2021142585A1 (zh) 2021-07-22

Family

ID=76863568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071825 WO2021142585A1 (zh) 2020-01-13 2020-01-13 电池、可移动装置和组件

Country Status (2)

Country Link
CN (1) CN113169574A (zh)
WO (1) WO2021142585A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218827629U (zh) * 2022-02-25 2023-04-07 罗伯特·博世有限公司 电动工具及其可拆卸地适配于电动工具的电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140205A (ja) * 1997-07-18 1999-02-12 Hitachi Ltd リチウム電池システム
CN101315995A (zh) * 2007-05-29 2008-12-03 联想(新加坡)私人有限公司 电池组、设备以及充电控制方法
CN110646740A (zh) * 2018-06-27 2020-01-03 东莞新能德科技有限公司 电池组的监控方法及其监控装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140205A (ja) * 1997-07-18 1999-02-12 Hitachi Ltd リチウム電池システム
CN101315995A (zh) * 2007-05-29 2008-12-03 联想(新加坡)私人有限公司 电池组、设备以及充电控制方法
CN110646740A (zh) * 2018-06-27 2020-01-03 东莞新能德科技有限公司 电池组的监控方法及其监控装置

Also Published As

Publication number Publication date
CN113169574A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2021142597A1 (zh) 电池控制方法、设备及存储介质
US20200365954A1 (en) Battery preheating methods, devices, and apparatus
CN113948781A (zh) 一种电池热失控预警方法和装置
EP3340337B1 (en) Battery pack comprising fire extinguishing device, and control method using same
WO2018076193A1 (zh) 电池温度检测方法、控制系统、电池及无人飞行器
WO2021217314A1 (zh) 电池的均衡方法、智能电池、充电系统及存储介质
KR101855092B1 (ko) 릴레이 제어신호 독립 모니터링 장치 및 방법
CN106505268A (zh) 一种新能源汽车动力电池安全系统
US11139514B2 (en) Battery pack heating apparatus for double vehicle heating and control method
US20210313817A1 (en) Method and device for warning overdischarge of battery, battery and aerial vehicle
KR20210075235A (ko) 리튬이온 배터리용 화재감지 센서모듈 및 그를 포함하는 화재감지 시스템
WO2021142585A1 (zh) 电池、可移动装置和组件
CN108767929B (zh) 无人飞行器电池安全处理方法及其装置
CN110015149A (zh) 一种无人机电池管理方法及系统
CN206332134U (zh) 一种新能源汽车动力电池安全系统
WO2021142598A1 (zh) 电池保护方法、系统、可移动平台、电池及存储介质
CN106025404A (zh) 锂离子可充电电池内短路预警侦测方法
WO2019184386A1 (zh) 无人飞行器电池安全保护方法及其装置
CN106345086A (zh) 一种新能源汽车动力电池安全系统
CN206526428U (zh) 一种新能源汽车动力电池安全系统
KR20160134601A (ko) 스마트폰 리튬이온 배터리 폭발방지 및 안전을 위한 시스템
CN105966257B (zh) 一种车用动力电池欠压充电的方法
Batteries Technical Handbook
WO2021223172A1 (zh) 供电电路、电源装置、移动平台和剩余电量的调节方法
CN113682481A (zh) 一种电池管理方法、装置及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914458

Country of ref document: EP

Kind code of ref document: A1