WO2021141109A1 - Super-water-repellent surface member, metal copper surface member, and method for manufacturing same - Google Patents

Super-water-repellent surface member, metal copper surface member, and method for manufacturing same Download PDF

Info

Publication number
WO2021141109A1
WO2021141109A1 PCT/JP2021/000464 JP2021000464W WO2021141109A1 WO 2021141109 A1 WO2021141109 A1 WO 2021141109A1 JP 2021000464 W JP2021000464 W JP 2021000464W WO 2021141109 A1 WO2021141109 A1 WO 2021141109A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper
metallic copper
nanowire
surface member
Prior art date
Application number
PCT/JP2021/000464
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 幅▲ざき▼
春宇 朱
涼太 山本
瑞傑 朱
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2021570105A priority Critical patent/JPWO2021141109A1/ja
Publication of WO2021141109A1 publication Critical patent/WO2021141109A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a superhydrophobic surface member, a metallic copper surface member, and a method for producing the same.
  • Copper has high thermal conductivity and is widely used in condensers and heat exchangers.
  • the thermal conductivity is lowered and the efficiency of heat exchange is greatly lowered.
  • it is necessary to suppress the formation of this water film. It is desired to continuously remove the water that has aggregated on the copper surface, and it has been reported that the thermal efficiency is improved 5 to 7 times by aggregating the water in the form of water droplets and dropping it by gravity [Non-Patent Documents]. 1].
  • Non-Patent Documents 1]
  • Non-Patent Document 2 As a method of converting a water film into water droplets and easily dropping the water film, the use of a superhydrophobic surface can be considered.
  • a method for obtaining a super-water-repellent copper surface formation of Cu (OH) 2 or CuO nanowire surface by anodic oxidation in an aqueous NaOH solution of copper and organic coating on the nanowire surface are known [Non-Patent Document 2]. Further, it is known that a Cu (OH) 2 nanowire layer or a CuO nanowire layer is formed on a copper surface in a mixed aqueous solution of NaOH and (NH 4 ) 2S 2 O 8 and an organic coating is applied to the nanowire layer [Non-Patent Documents]. 3] However, in these configurations, although the superwater repellency was exhibited, the water aggregated on the copper surface was not sufficiently removed.
  • Non-Patent Document 1 J. W. Rose, Proc. Inst. Mech. Eng. , Part A: J.M. Power Eng. 216, 115 (2002)
  • Non-Patent Document 2 W. Jiang, J.M. He, F. Xiao, S.M. Yuan, H.M. Lu, B. Liang, Industrial & Engineering Chemistry Research 54 (27) (2015) 6874-6883.
  • Non-Patent Document 3 J. Mol. Feng, Z. Qin, S.M. Yao, Langmuir, 28 (2012) 6067-6075
  • the entire description of Non-Patent Documents 1 to 3 is incorporated herein by reference in particular.
  • An object of the present invention is to provide a new technique capable of suppressing the formation of a water film on the surface of a metal copper base material or a member having a metal copper surface and autonomously removing water droplets generated from agglomerated water.
  • the present inventors obtained a metallic copper surface member obtained by reducing a Cu (OH) 2 nanowire layer produced on the surface of a copper plate to form a metallic copper nanowire layer, and further provided a predetermined organic coating layer on the metallic copper surface member.
  • a super-water-repellent surface member in which the formation of a water film on the surface is suppressed and the water droplets generated from the aggregated water generated on the surface can be easily removed autonomously.
  • the present invention is as follows. [1] A superhydrophobic surface member having a metallic copper nanowire layer and an organic material coating layer on the surface of the base material in this order. The superhydrophobic surface member, wherein the organic coating layer is immobilized on the metallic copper nanowire layer via an affinity group for metallic copper. [2] The superhydrophobic surface member according to [1], wherein the nanowire of the metal copper nanowire layer has a diameter in the range of 1 to 500 nm observed in a surface SEM image. [3] The superhydrophobic surface member according to [1] or [2], wherein the surface density obtained by the surface SEM image of the metallic copper nanowire layer is 10 to 90%.
  • a method for producing a super-water-repellent surface member which comprises a step of forming an organic coating on the surface of the surface to obtain a super-water-repellent surface member.
  • the step of forming the layer of the copper hydroxide nanowire is (A) a step of immersing in an alkaline aqueous solution containing an oxidizing agent to form a layer of copper hydroxide nanowire on the surface, or (B) in an alkaline aqueous solution.
  • the production method according to [10] which is a step of forming a layer of copper hydroxide nanowires on the surface by anodic oxidation with.
  • the step of forming the layer of the copper hydroxide nanowire is (A) a step of immersing in an alkaline aqueous solution containing an oxidizing agent to form a layer of copper hydroxide nanowire on the surface, or (B) in an alkaline aqueous solution.
  • the production method according to [14] which is a step of forming a layer of copper hydroxide nanowires on the surface by anodic oxidation with.
  • the oxidizing agent is ammonium peroxodisulfate.
  • the production method according to any one of [10] to [17], wherein the reduction of the copper hydroxide nanowire layer is hydrogen reduction.
  • the superhydrophobic surface member of the present invention since the nanowire layer is made of copper, which is a metal, the superhydrophobic surface has high thermal conductivity, and water film formation is suppressed on the superhydrophobic surface, and the surface is surfaced. It has the advantage that water droplets generated from coagulated water can be easily removed (excellent in drainage). Further, according to the present invention, since the superhydrophobic surface can be formed directly on the surface of the member by using the metallic copper surface member, the superhydrophobic surface member of the present invention can be easily manufactured. Further, according to the present invention, a method for producing the above-mentioned metallic copper surface member and a method for producing a superhydrophobic surface member are also provided.
  • FIG. 1-1 shows the appearance and surface morphology of the sample when the solution immersion time was changed from 3 minutes to 60 minutes in a mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8.
  • FIG. 1-2 shows the results of measuring the film thickness by (a) an eddy current film thickness meter, (b) and (c) show cross-sectional SEM (secondary electron) images having different magnifications, and (d) and (E) shows cross-sectional BSE (backscattered electron) images having different magnifications.
  • FIG. 1-3 shows the results of (a) XRD and (b) Raman spectra of the sample when the immersion time was changed in a mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8.
  • FIG. 1-3 shows the results of (a) XRD and (b) Raman spectra of the sample when the immersion time was changed in a mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8.
  • FIG. 1-4 shows an overview and surface morphology of the sample reduced in the Ar-10% H 2 mixed gas of the sample when the immersion time was changed in the mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8. ..
  • FIG. 1-5 shows the XRD results of the sample subjected to the same hydrogen reduction as in FIG. 1-4.
  • FIG. 1-6 shows the surface morphology before and after lightly rubbing a sample immersed in a FAS solution with a sample immersed in a mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8 for 10 minutes. Show change.
  • FIG. 1-7 shows the change in surface morphology before and after lightly rubbing the hydrogen-reduced sample in the PFDT solution for 1 hour with a finger.
  • FIG. 2-1 shows a potential-time curve during constant current anodic oxidation.
  • FIG. 2-2 shows (a) XRD pattern, (b) surface SEM, (c) cross-sectional SEM and (d) TEM of a sample anodic oxidized at 3 mAcm-2 for 900 s.
  • FIG. 2-3 shows the appearance and SEM photograph of the sample oxidized with a constant current anode at 10 mAcm -2 at each time.
  • FIG. 2-4 shows a Raman spectrum of a sample anodic oxidized at a constant current of 10 mAcm-2 for each time.
  • FIG. 2-5 shows the appearance and SEM photograph of each sample after hydrogen reduction.
  • FIG. 2-6 shows the (a) 3mAcm -2 before and after hydrogen reduction of 900s anodized samples with XRD pattern (b) XRD patterns of samples anodized in 10mAcm -2.
  • FIG. 2-7 shows the results of a dew condensation experiment after coating a sample anodic oxidized at 3 mA cm-2 for 900 s.
  • FIG. 2-8 shows the results of a dew condensation experiment after coating a sample anodic oxidized at 10 mAcm-2 for 120 s.
  • FIG. 2-9 shows the time variation of water on the hydroxide (top) and metallic copper nanowire (bottom) samples becoming ice.
  • the super-water-repellent surface member of the present invention is a super-water-repellent surface member having a metallic copper nanowire layer and an organic material coating layer on the surface of the base material in this order, and the organic material coating layer is a metal via an affinity group for metallic copper. It is immobilized on a copper nanowire layer.
  • the present invention also includes a metallic copper surface member having a metallic copper nanowire layer on the surface of the base material, which is a precursor of the super-water-repellent surface member of the present invention.
  • the base material of the superhydrophobic surface member and the metallic copper surface member of the present invention is not particularly limited, and any member having a surface having excellent thermoconductivity and superhydrophobicity can be used as the base material. be able to. Examples of such a member include, but are not limited to, a condenser and a heat exchanger.
  • the material of the base material is not particularly limited as long as the whole or the surface is made of metallic copper.
  • the nanowires of the metallic copper nanowire layer provided on the surface of the base material are made of metallic copper, and the metallic copper nanowire layer is a layer in which a plurality of nanowires are irregularly present with voids in the vertical and horizontal directions. Since the entire surface or the surface of the base material is made of metallic copper, the vicinity of the substrate surface of the metallic copper nanowire layer is in close contact with the surface of the metallic copper substrate and can be recognized as being integrated in appearance.
  • the thickness of the nanowires in the metallic copper nanowire layer varies slightly depending on the location even with a single nanowire, but the diameter observed in the surface SEM image is, for example, in the range of 5 to 500 nm, preferably in the range of 20 to 250 nm.
  • the metallic copper nanowire layer is not particularly limited, but may be, for example, in the range of 1 to 20 ⁇ m, or in the range of 1 to 10 ⁇ m.
  • the vicinity of the substrate surface of the metallic copper nanowire layer is in close contact with the copper substrate surface and is apparently integrated, making the bonding of the metallic copper nanowire layer to the substrate surface stronger and the strength of the super-water-repellent surface. Can be improved.
  • the surface density of the metallic copper nanowire layer is, for example, 10 to 90%, preferably 30 to 60%, as the surface density obtained from the surface SEM image.
  • the surface density is obtained as follows. Using image analysis software such as ImageJ, the contrast of the surface SEM image was binarized between the part with nanowires and the void part, and the area ratio where nanowires exist was determined as the surface density.
  • the organic coating layer is immobilized on the metallic copper nanowire layer via an affinity group for metallic copper.
  • the affinity group for metallic copper may be a functional group that chemically bonds and / or physically adsorbs to copper, and examples thereof include a thiol group, a disulfide group, a silane group, and a nitrile group.
  • a thiol group is particularly preferable as the affinity group for metallic copper.
  • water-repellent groups such as a long-chain alkyl group, a fluorine-containing organic group, and an aromatic group can be mentioned in consideration of water repellency.
  • Organic substances for coating organic substances will be described in detail in the description of the production method.
  • the superhydrophobic surface of the superhydrophobic surface member of the present invention can have a forward contact angle and a receding contact angle of, for example, 150 ° or more, respectively. Further, the superhydrophobic surface member of the present invention not only has a superhydrophobic surface, but also has excellent drainage from the superhydrophobic surface. The drainage property can be evaluated by, for example, cooling the surface of the sample inclined at 10 to 45 ° to cause dew condensation, and observing the formation of water droplets and the run-off.
  • the superhydrophobic surface member since the surface of the base material is smooth, the superhydrophobic surface can also be a smooth surface, and the surface of the base material has regular or irregular irregularities.
  • the superhydrophobic surface can also be a surface with regular or irregular irregularities. Regular or irregular unevenness is not particularly limited in the depth and frequency of the unevenness.
  • the same applies to the metallic copper surface member, and the smooth surface of the base material allows the surface of the metallic copper to be a smooth surface, and the surface of the base material has regular or irregular irregularities.
  • the metallic copper surface can also be a surface having regular or irregular irregularities. Regular or irregular unevenness is not particularly limited in the depth and frequency of the unevenness.
  • the present invention includes a method for producing a metallic copper surface member and a superhydrophobic surface member, and the metal copper surface member and the superhydrophobic surface member of the present invention can be produced by this method.
  • the method for producing a super-water-repellent surface member of the present invention is a step of forming a layer of copper hydroxide nanowires on the surface of a metallic copper base material or a base material having a metallic copper surface, and reducing the layer of copper hydroxide nanowires to metal. It includes a step of forming a copper nanowire layer and a step of forming an organic coating on the surface of the metallic copper nanowire layer to obtain a super-water-repellent surface member.
  • the step of forming the layer of the copper hydroxide nanowire is, for example, (A) a step of immersing in an alkaline aqueous solution containing an oxidizing agent to form a layer of the copper hydroxide nanowire on the surface (immersion method step).
  • (B) is a step (anodoxidation method step) of forming a layer of copper hydroxide nanowires on the surface by anodic oxidation in an alkaline aqueous solution.
  • the method of going through the dipping method is a step (A1) of immersing a metallic copper base material or a base material having a metallic copper surface in an alkaline aqueous solution containing an oxidizing agent to form a layer of copper hydroxide nanowires on the surface.
  • the method for producing a super-water-repellent surface member of the present invention includes the step (A2) of reducing a layer of copper hydroxide nanowires to form a metallic copper nanowire layer to obtain a metallic copper surface member.
  • the step (A3) of forming an organic material coating on the surface of the metallic copper nanowire layer of the metallic copper surface member to obtain a super-water-repellent surface member is included.
  • the oxidizing agent may be a compound capable of oxidizing the surface of metallic copper in an alkaline aqueous solution to form a layer of copper hydroxide nanowires on the surface, and examples thereof include ammonium peroxodisulfate, hydrogen peroxide, and hypochlorite.
  • ammonium peroxodisulfate is preferable because the formation of the copper hydroxide nanowire layer is easy and reliable.
  • the method of going through the anodic oxidation method is a step of anodic oxidation of a metallic copper base material or a base material having a metallic copper surface in an alkaline aqueous solution to form a layer of copper hydroxide nanowires on the surface (B1), copper hydroxide.
  • the method for producing a super-water-repellent surface member of the present invention includes the step (B2) of reducing a layer of nanowires to form a metallic copper nanowire layer to obtain a metallic copper surface member, and the method for producing a super-water-repellent surface member of the present invention includes the above steps (B1) and (B2).
  • the step (B3) of forming an organic material coating on the surface of the metallic copper nanowire layer of the metallic copper surface member to obtain a super-water-repellent surface member is included.
  • a base material made of metallic copper or a base material having a surface made of metallic copper is immersed in an alkaline aqueous solution containing an oxidizing agent such as ammonium peroxodisulfate to form a layer of copper hydroxide nanowires on the surface. It is already known that a layer of copper hydroxide nanowires is formed on the surface of a metallic copper base material or a base material having a metallic copper surface by immersing it in an alkaline aqueous solution containing ammonium peroxodisulfate. It is described in 3.
  • the base material made of metallic copper or the base material having a metallic copper surface is the same as the description in the above-mentioned metallic copper surface member and superhydrophobic surface member.
  • the concentration of the oxidizing agent in the aqueous solution can be appropriately determined in consideration of the type of the oxidizing agent, the thickness of the copper hydroxide nanowire layer to be produced, and the like. Concentration when the oxidizing agent is ammonium peroxodisulfate is not particularly limited, for example, in the range of 0.01molL -1 ⁇ 1.0molL -1, preferably of 0.05molL -1 ⁇ 0.8molL -1 The range.
  • the alkaline compound in the alkaline aqueous solution is not particularly limited, and is, for example, a hydroxide (for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.) and a strong alkali-weak acid salt compound (for example, potassium carbonate, etc.).
  • Alkaline compounds in the aqueous solution concentration is not particularly limited, for example, in the range of 0.1molL -1 ⁇ 6.0molL -1, preferably in the range of 1.0molL -1 ⁇ 5.0molL -1.
  • the immersion temperature can be, for example, in the range of 0 to 25 ° C.
  • the immersion time can be, for example, in the range of 1 minute to 180 minutes, depending on the concentration and temperature of ammonium peroxodisulfate in the aqueous solution.
  • these numerical ranges are examples, and implementation is possible even outside this range.
  • a metal copper base material or a base material having a metal copper surface is anodized in an aqueous alkali metal hydroxide solution to form a layer of copper hydroxide nanowires on the surface.
  • This method is known and can be carried out as appropriate with reference to, for example, the methods described in the following documents.
  • C Industrial & Engineering Chemistry Research 54 (27) (2015) 6874-6883
  • the base material made of metallic copper or the base material having a metallic copper surface is the same as the description in the above-mentioned metallic copper surface member and superhydrophobic surface member.
  • the alkaline compound in the alkaline aqueous solution is not particularly limited, and is, for example, a hydroxide (for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.) and a strong alkali-weak acid salt compound (for example, potassium carbonate, etc.). There can be.
  • Alkaline compounds in the aqueous solution concentration is not particularly limited, for example, in the range of 0.1molL -1 ⁇ 6.0molL -1, preferably in the range of 1.0molL -1 ⁇ 5.0molL -1.
  • the current density, temperature, and electrolysis time which are the conditions for anodic oxidation, can be appropriately selected according to the thickness of the layer of the copper hydroxide nanowires to be formed, the shape and density of the copper hydroxide nanowires, and the like.
  • the current density is, for example, in the range of 0.1 to 20 mAcm-2
  • the temperature is, for example, in the range of 0 to 50 ° C.
  • the electrolysis time is, for example, in the range of 1 minute to 180 minutes, depending on the current density and temperature. be able to.
  • these numerical ranges are examples, and implementation is possible even outside this range. Due to this anodic oxidation, copper hydroxide nanowires grow on the surface of the substrate over time, and after a lapse of a predetermined time, a layer of copper hydroxide nanowires having a predetermined thickness is formed.
  • Steps (A2) and (B2) The layer of copper hydroxide nanowires produced in step (A1) or (B1) is reduced to form a metallic copper nanowire layer.
  • the reduction can be, for example, hydrogen reduction. Specifically, it can be carried out by placing the material to be reduced in a hydrogen atmosphere at a temperature in the range of 200 to 600 ° C. Even if the layer of the copper hydroxide nanowire is heated at the above temperature in the absence of a reducing gas such as hydrogen gas under normal pressure or reduced pressure, the reduction of copper hydroxide does not substantially occur, and the metal copper nanowire layer is formed. Virtually not formed.
  • the hydrogen atmosphere may be 100% hydrogen gas, but for example, 1 to 99% hydrogen gas and the balance may be an inert gas such as argon or nitrogen.
  • the reduction rate of the copper hydroxide nanowire layer can be controlled in consideration of the heating temperature.
  • the hydrogen reduction may be either hydrogen circulation or a hydrogen atmosphere (batch).
  • the reduction time can be appropriately determined in consideration of the temperature and the degree of reduction of the copper hydroxide nanowire layer, and is, for example, in the range of 10 minutes to 10 hours.
  • Steps (A3) and (B3) An organic coating is formed on the surface of the metallic copper nanowire layer of the metallic copper surface member obtained in the step (A2) and the step (B2) to obtain a superhydrophobic surface member.
  • the organic coating is formed by coating the surface of the metallic copper nanowire layer with an organic compound having an affinity group for metallic copper.
  • the organic compound having an affinity group for metallic copper include a thiol group, a disulfide group, a silane group, a nitrile group and the like as an affinity group for metallic copper, and a thiol group as an affinity group for metallic copper.
  • Organic compounds having the above are particularly preferable.
  • a water-repellent group such as a long-chain alkyl group, a fluorine-containing organic group, or an aromatic group can be mentioned in consideration of water repellency.
  • organic compounds having an affinity group for metallic copper are illustrated below, but the intention is not limited to these.
  • Decanoic acid, stearic acid 1H, 1H, 2H, 2H-perfluorodecanethiol (1H, 1H, 2H, 2H-perfluorodecanethiol), decyltriethoxysilane, 1H 2H, 2H-perfluorodecyltriethoxysilane (1H, 1H, 2H, 2H-Perfuodecil-triethoxysilane), decaneisocyanide.
  • the superhydrophobic surface of the superhydrophobic surface member having an organic coating has a forward contact angle and a receding contact angle of 150 ° or more, respectively, and has excellent drainage from the superhydrophobic surface. Since the organic coating is also formed on the inner surface of the metallic copper nanowire layer, it is presumed that, for example, water droplets generated by dew condensation inside the metallic copper nanowire layer are easily extruded to the super-water-repellent surface. To. Since the nanowire layer on the surface of the super-water-repellent surface member of the present invention is metallic copper, the surface has high thermal conductivity, the surface is super-water-repellent, and the drainage of water droplets generated by dew condensation is also excellent. , Very useful for condensers and heat exchangers.
  • Static water contact angle and dynamic water contact angle The still water contact angle and dynamic water contact angle on the surface of the test piece were measured using a contact angle meter (DM-CE1 optical, Kyowa, Japan) using FAMAS software. The static water contact angle was measured using 4 ⁇ L of water droplets, and the dynamic water contact angle was determined by the expansion contraction method. The contact angles were measured at four points on each test piece, and the average value and standard deviation were calculated. Hysteresis was determined as the difference between the hydrostatic contact angle and the running water contact angle.
  • (6) Observation behavior of water vapor condensation The test piece was cooled on a Perche cooling plate at 0 ° C. in a constant temperature and humidity chamber having a temperature of 25 ° C. and a relative humidity of 60%, and the condensation behavior of water vapor was observed. The surface was imaged using a digital camera (Togh TG-5, Olympus, Japan).
  • Example 1 (1) Preparation of Copper Hydroxide Nanowires by Immersion in Solution
  • Figures 1-1 (a) to (h) show 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 at a temperature of 4 to 5 ° C. in a mixed aqueous solution of O 8 an overview and surface morphology of the sample when the solution immersion time was changed from 3 minutes to 60 minutes. It was confirmed that a nanowire film was formed on the surface, and the color of the sample surface became deep blue by lengthening the immersion time.
  • the results of measuring the film thickness using an eddy current film thickness meter are shown in FIG. 1-2 (a). From FIG. 1-2 (a), it was confirmed that the thickness of the film was increased by increasing the immersion time.
  • the thickness of the film is about 1 to 2 ⁇ m from FIG. 1-2 (a), the cross-sectional SEM images of FIGS. 1-2 (b) and (d), and (c) and (e). ) was about 1 to 2 ⁇ m from the cross-sectional observation of the sample shown in the BSE image.
  • the thickness of the metallic copper nanowire layer is about the same as the thickness of the copper hydroxide nanowire layer shown in FIGS. 1-2 (a), and the thickness of the metallic copper nanowire layer in FIGS. 1-4 (a) and 1-4 (e) is about. It is 0.5 ⁇ m, the thickness of the nanowire is in the range of about 50 to 250 nm, the thickness of the metal copper nanowire layer of (b) and (f) is about 1.5 ⁇ m, and the thickness of the nanowire is about.
  • the thickness of the metal copper nanowire layer of (c) and (g) is in the range of 50 to 250 nm, the thickness of the nanowire is in the range of about 50 to 250 nm, and the thickness of the nanowire is in the range of about 50 to 250 nm.
  • the thickness of the metallic copper nanowire layer was about 7 ⁇ m, and the thickness of the nanowire was in the range of about 50 to 250 nm.
  • Figure 1-5 shows the XRD results of the hydrogen-reduced sample. From FIG. 1-5, only the diffraction line of metallic copper was confirmed, and it is considered that copper hydroxide was converted to metallic copper.
  • Table 1-2 shows the samples immersed in a mixed aqueous solution of 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. Ar-10% H 2 A sample reduced at 300 ° C. for 1 hour in a mixed gas was added to ethanol at 1 wt.
  • Figures 1-6 (a) to (d) show a mixture of 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. Changes in surface morphology before and after lightly rubbing a sample soaked in an aqueous solution for 10 minutes with a finger against a sample soaked in a 2 vol% 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (FAS) solution in ethanol for 2 hours.
  • FAS perfluorodecyltriethoxysilane
  • a sample obtained by immersing the sample in a mixed aqueous solution of 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. for 10 minutes was placed in ethanol at 2 vol% 1H.
  • a sample soaked in a 1H, 2H, 2H-perfluorodecyltrietothoxysylane (FAS) solution for 2 hours and a sample subjected to hydrogen reduction were immersed in a 1 wt% 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) solution in ethanol for 1 hour.
  • FAS perfluorodecyltrietothoxysylane
  • test piece was placed on a Perche cooling plate at 0 ° C in a constant temperature and humidity chamber with a temperature of 25 ° C and a relative humidity of 60% with the forward contact angle, backward contact angle and hysteresis (CAH) of the sample before and after lightly rubbing with a finger.
  • Table 1-3 shows an overview of the sample obtained by cooling the sample for 10 minutes and condensing the water vapor. From Table 1-3, the contact angle values of the copper hydroxide nanowires and the metallic copper nanowires after rubbing were smaller than those before rubbing, but the contact angle values still exceeded 150 ° on the superhydrophobic surface. .. In addition, although the number of condensed droplets was larger than that before rubbing, the droplets did not get wet and spread, and rolled easily when the sample was tilted.
  • Example 2 A copper plate having a thickness of 0.3 mm and a purity of 99.96% was washed with acetone and immersed in 18% hydrochloric acid for 10 minutes as a pretreatment. Then, anodic oxidation was carried out at 20 ° C. and 3M KOH at a current density of 10mAcm- 2 or 3mAcm- 2 for a predetermined time. This was followed by one hour hydrogen reduction at Ar-5% H 2 300 °C gas.
  • the organic coating was carried out by immersing in a 5 mmol dm-3 toluene solution of stearic acid (SA) or a 1.0 wt% 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) ethanol solution for 1 hour.
  • SA stearic acid
  • PFDT perfluorodecanethiol
  • Anode oxidation Figure 2-1 shows the voltage-time curve when anodic oxidation is performed with a constant current of 3 or 10 mAcm-2.
  • Anode oxidation proceeds at a substantially constant voltage at any current density, but then shows a rapid voltage rise.
  • the surface becomes a light blue surface peculiar to Cu (OH) 2 , but if anodic oxidation is continued after the voltage rises, film peeling starts around the time indicated by the arrow. Therefore, in order to obtain an anodic oxide film having good adhesion, it is desirable to terminate electrolysis before the voltage rises.
  • FIG. 2-2a The XRD pattern of the sample anodic oxidized at 3 mAcm- 2 for 900 s is shown in FIG. 2-2a.
  • the diffraction line of metallic Cu the diffraction line of Cu (OH) 2 can be seen, and it can be seen that the anodic oxide film is composed of Cu (OH) 2.
  • a surface SEM photograph of this sample is shown in FIG. 2-2b.
  • Cu (OH) 2 has a nanowire shape, which covers the entire copper surface. The thickness of the nanowires is about 100 nm, and it has a shape in which several nanowires are joined. Further, from the cross-sectional SEM observation result (Fig.
  • the thickness of the nanowire layer is about 20 ⁇ m, and a part having a relatively dense structure can be seen in the part of the nanowire layer near the copper plate surface, and this part is a nanowire. It is considered to be the portion that became the base on which the layer was deposited. In the present invention, the base portion is also a part of the nanowire layer.
  • the generated nanowire film was scratched with tweezers, peeled off from the substrate, dispersed in ethanol, placed on a Cu grid, and TEM-observed (Fig. 2-2d). It was confirmed that the nanowires were single crystals and that the nanowires grew parallel to the ⁇ 010 ⁇ plane.
  • the XRD pattern before and after the reduction is shown in FIG. 2-6.
  • the peak of copper hydroxide that was before the reduction disappeared after the reduction. From this, it can be seen that the reduction is appropriately performed to obtain the metallic copper nanowire layer. Further, the hydroxide peaks of samples anodized in 10MAcm -2 from weaker than samples anodized in 3MAcm -2, metallic copper nanowires layer is seen thinner.
  • the SA-coated sample had fewer water droplets than the PFDT-coated sample.
  • the PFDT-coated sample has far less adhesion of water droplets than the SA-coated sample, and the water droplets have fallen from the surface, and the drainage property is excellent. That is, it was found that the PFDT-coated sample, which is a member of the present invention, has a large effect of suppressing water film formation. This result shows that the effect of the coating on water repellency and drainage is different between the metal surface (after reduction) and the hydroxide surface (before reduction), and on the metal surface (after reduction), PFDT having an affinity group of thiol is used. It turns out to be valid.
  • FIG. 2-8 shows the results of the same dew condensation test on the samples (10/120 samples in FIGS. 2-5 and Table 2) that were anodic oxidized at 10 mAcm-2 for 120 s.
  • the SA coating before hydrogen reduction has more condensation than the sample anodic oxidized at 3 mAcm-2 in FIG. 2-7 for 900 s.
  • the PFDT-coated sample after hydrogen reduction has more dew condensation than the sample (3/900 sample) anodic-oxidized at 3 mAcm-2 in Fig. 2-7, but the amount of water droplets remaining on the surface is smaller than that of the SA-coated sample. You can see that.
  • the surface density of the nanowires of the 3/900 sample was estimated to be about 50% and the surface density of the nanowires of the 10/120 sample was estimated to be about 20% from the surface SEM photograph of FIG. 2-5. It can be judged that the higher the surface density of the nanowires, the better the drainage property of the condensed water droplets.
  • the nanowire layer produced by the anodic oxidation method shown in Example 2 is accompanied by gas generation during the formation of copper hydroxide nanowires, defects such as cracks are likely to occur between the nanowire layer and the substrate depending on the anodic oxidation conditions, and the nanowires. It is presumed that the adhesion of the layer to the substrate may be relatively weaker than that of the nanowire layer produced by the dipping method shown in Example 1. On the other hand, the nanowire layer produced by the dipping method does not generate gas when forming the copper hydroxide nanowire layer, and therefore does not generate gas, which is a factor that deteriorates the adhesion between the nanowire layer and the substrate in the manufacturing process. There is a possibility that the adhesion between the nanowire layer and the substrate is superior to that of the nanowire layer produced by the anodic oxidation method.
  • the present invention is useful in the technical field related to members having a superhydrophobic surface.

Abstract

The present invention pertains to: a super-water-repellent surface member that includes, on a substrate surface, a metal copper nanowire layer and an organic matter coating layer in this order, the organic matter coating layer being fixed to the metal copper nanowire layer via an affinity group for metal copper; a metal copper surface member having a metal copper nanowire layer on the substrate surface; and a method for manufacturing the metal copper surface member and the super-water-repellent surface member. The present invention can provide a novel technology with which, on a surface of a member having a copper base or a copper surface, a water film can be prevented from forming and water drops generated from condensed water can be autonomously removed.

Description

超撥水性表面部材、金属銅表面部材及びそれらの製造方法Superhydrophobic surface members, metallic copper surface members and their manufacturing methods
 本発明は、超撥水性表面部材、金属銅表面部材及びそれらの製造方法に関する。
関連出願の相互参照
 本出願は、2020年1月9日出願の日本特願2020-2362号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to a superhydrophobic surface member, a metallic copper surface member, and a method for producing the same.
Cross-reference to related applications This application claims the priority of Japanese Patent Application No. 2020-2362 filed on January 9, 2020, the entire description of which is incorporated herein by reference in particular.
 銅は熱伝導性が高く凝縮器や熱交換器などに広く利用されている。しかし、結露などで銅表面に水膜が生成すると、熱伝導性が低下し、熱交換の効率が大きく低下する。熱交換の効率を更に向上させるには、この水膜の生成を抑制する必要が生じている。銅表面に凝集した水を連続的に除去することが望まれ、水滴状に水を凝集させ、これを重力によって落下させることで5-7倍の熱効率の向上が報告されている[非特許文献1]。しかし、更なる改善が望まれる。 Copper has high thermal conductivity and is widely used in condensers and heat exchangers. However, when a water film is formed on the copper surface due to dew condensation or the like, the thermal conductivity is lowered and the efficiency of heat exchange is greatly lowered. In order to further improve the efficiency of heat exchange, it is necessary to suppress the formation of this water film. It is desired to continuously remove the water that has aggregated on the copper surface, and it has been reported that the thermal efficiency is improved 5 to 7 times by aggregating the water in the form of water droplets and dropping it by gravity [Non-Patent Documents]. 1]. However, further improvement is desired.
 水膜を水滴化し、これを容易に落下させる手法として、超撥水表面の利用が考えられる。超撥水銅表面を得る方法として、銅のNaOH水溶液中におけるアノード酸化によるCu(OH)やCuOナノワイヤ表面の生成とこのナノワイヤ表面への有機コーティングが知られている[非特許文献2]。また、NaOHと(NH)2Sの混合水溶液における銅表面へのCu(OH)ナノワイヤ層やCuOナノワイヤ層の生成とこのナノワイヤ層への有機コーティングが知られている[非特許文献3]しかし、これらの構成では、超撥水性は示すものの銅表面に凝集した水の除去が十分ではなかった。 As a method of converting a water film into water droplets and easily dropping the water film, the use of a superhydrophobic surface can be considered. As a method for obtaining a super-water-repellent copper surface , formation of Cu (OH) 2 or CuO nanowire surface by anodic oxidation in an aqueous NaOH solution of copper and organic coating on the nanowire surface are known [Non-Patent Document 2]. Further, it is known that a Cu (OH) 2 nanowire layer or a CuO nanowire layer is formed on a copper surface in a mixed aqueous solution of NaOH and (NH 4 ) 2S 2 O 8 and an organic coating is applied to the nanowire layer [Non-Patent Documents]. 3] However, in these configurations, although the superwater repellency was exhibited, the water aggregated on the copper surface was not sufficiently removed.
非特許文献1:J.W. Rose, Proc. Inst. Mech. Eng., Part A: J. Power Eng. 216, 115 (2002)
非特許文献2:W. Jiang, J. He, F. Xiao, S. Yuan, H. Lu, B. Liang, Industrial & Engineering Chemistry Research 54(27) (2015) 6874-6883.
非特許文献3:J.Feng,Z.Qin,S.Yao,Langmuir, 28(2012)6067-6075
非特許文献1~3の全記載は、ここに特に開示として援用される。
Non-Patent Document 1: J. W. Rose, Proc. Inst. Mech. Eng. , Part A: J.M. Power Eng. 216, 115 (2002)
Non-Patent Document 2: W. Jiang, J.M. He, F. Xiao, S.M. Yuan, H.M. Lu, B. Liang, Industrial & Engineering Chemistry Research 54 (27) (2015) 6874-6883.
Non-Patent Document 3: J. Mol. Feng, Z. Qin, S.M. Yao, Langmuir, 28 (2012) 6067-6075
The entire description of Non-Patent Documents 1 to 3 is incorporated herein by reference in particular.
 本発明の目的は、金属銅製基材又は金属銅製表面を有する部材の表面における水膜生成の抑制及び凝集水から生成した水滴の自律的な除去が可能な新たな技術を提供することにある。 An object of the present invention is to provide a new technique capable of suppressing the formation of a water film on the surface of a metal copper base material or a member having a metal copper surface and autonomously removing water droplets generated from agglomerated water.
 本発明者らは、銅板の表面に作製したCu(OH)ナノワイヤ層を還元して金属銅ナノワイヤ層とした金属銅表面部材を得、さらにその上に所定の有機物コーティング層を設けることで、表面における水膜生成が抑制され、かつ表面に生成した凝集水から生成した水滴の自律的除去が容易に行える超撥水性表面部材を提供することに成功した。 The present inventors obtained a metallic copper surface member obtained by reducing a Cu (OH) 2 nanowire layer produced on the surface of a copper plate to form a metallic copper nanowire layer, and further provided a predetermined organic coating layer on the metallic copper surface member. We have succeeded in providing a super-water-repellent surface member in which the formation of a water film on the surface is suppressed and the water droplets generated from the aggregated water generated on the surface can be easily removed autonomously.
 本発明は以下の通りである。
[1]
基材表面に金属銅ナノワイヤ層及び有機物コーティング層をこの順に有する超撥水性表面部材であって、
有機物コーティング層は、金属銅に対する親和性基を介して金属銅ナノワイヤ層に固定化されている、前記超撥水性表面部材。
[2]
金属銅ナノワイヤ層のナノワイヤは、表面SEM画像で観察される直径が1~500nmの範囲である、[1]に記載の超撥水性表面部材。
[3]
金属銅ナノワイヤ層の表面SEM画像で求まる表面密度は10~90%である、[1]又は[2]に記載の超撥水性表面部材。
[4]
金属銅ナノワイヤ層の厚みは、1~20μmの範囲である[1]~[3]のいずれかに記載の超撥水性表面部材。
[5]
超撥水性表面部材の超撥水性表面は、前進接触角及び後退接触角がそれぞれ150°以上である、[1]~[4]のいずれかに記載の超撥水性表面部材。
[6]
超撥水性表面部材の超撥水性表面は、平滑表面または規則的又は不規則な凹凸を有する表面である、[1]~[5]のいずれかに記載の超撥水性表面部材。
[7]
基材表面に金属銅ナノワイヤ層を有する、金属銅表面部材。
[8]
金属銅ナノワイヤ層のナノワイヤは、表面SEM画像で観察される直径が1~500nmの範囲である、[7]に記載の金属銅表面部材。
[9]
金属銅ナノワイヤ層の表面SEM画像で求まる表面密度は10~90%である、[7]又は[8]に記載の金属銅表面部材。
[10]
金属銅製基材又は金属銅製表面を有する基材の表面に水酸化銅ナノワイヤの層を形成する工程、水酸化銅ナノワイヤの層を還元して金属銅ナノワイヤ層を形成する工程、及び金属銅ナノワイヤ層の表面に有機物コーティングを形成して超撥水性表面部材を得る工程を含む、超撥水性表面部材の製造方法。
[11]
水酸化銅ナノワイヤの層を形成する工程は、(A)酸化剤を含有するアルカリ性水溶液に浸漬して、表面に水酸化銅ナノワイヤの層を形成する工程であるか、または(B)アルカリ性水溶液中でアノード酸化して、表面に水酸化銅ナノワイヤの層を形成する工程である、[10]に記載の製造方法。
[12]
酸化剤がペルオキソ二硫酸アンモニウムである[11]に記載の製造方法。
[13]
有機物コーティングの形成は、金属銅に対する親和性基を有する有機化合物を金属銅ナノワイヤ層表面に被覆することで行う、[10]~[12]のいずれかに記載の製造方法。
[14]
金属銅製基材又は金属銅製表面を有する基材の表面に水酸化銅ナノワイヤの層を形成する工程、水酸化銅ナノワイヤの層を還元して金属銅ナノワイヤ層を形成して金属銅表面部材を得る工程を含む、金属銅表面部材の製造方法。
[15]
水酸化銅ナノワイヤの層を形成する工程は、(A)酸化剤を含有するアルカリ性水溶液に浸漬して、表面に水酸化銅ナノワイヤの層を形成する工程であるか、または(B)アルカリ性水溶液中でアノード酸化して、表面に水酸化銅ナノワイヤの層を形成する工程である、[14]に記載の製造方法。
[16]
酸化剤がペルオキソ二硫酸アンモニウムである[15]に記載の製造方法。
[17]
アルカリ性水溶液がアルカリ金属水酸化物水溶液である、[11]~[16]のいずれかに記載の製造方法。
[18]
水酸化銅ナノワイヤ層の還元は水素還元である、[10]~[17]のいずれかに記載の製造方法。
The present invention is as follows.
[1]
A superhydrophobic surface member having a metallic copper nanowire layer and an organic material coating layer on the surface of the base material in this order.
The superhydrophobic surface member, wherein the organic coating layer is immobilized on the metallic copper nanowire layer via an affinity group for metallic copper.
[2]
The superhydrophobic surface member according to [1], wherein the nanowire of the metal copper nanowire layer has a diameter in the range of 1 to 500 nm observed in a surface SEM image.
[3]
The superhydrophobic surface member according to [1] or [2], wherein the surface density obtained by the surface SEM image of the metallic copper nanowire layer is 10 to 90%.
[4]
The superhydrophobic surface member according to any one of [1] to [3], wherein the thickness of the metallic copper nanowire layer is in the range of 1 to 20 μm.
[5]
The superhydrophobic surface member according to any one of [1] to [4], wherein the superhydrophobic surface of the superhydrophobic surface member has a forward contact angle and a receding contact angle of 150 ° or more, respectively.
[6]
The superhydrophobic surface member according to any one of [1] to [5], wherein the superhydrophobic surface of the superhydrophobic surface member is a smooth surface or a surface having regular or irregular irregularities.
[7]
A metallic copper surface member having a metallic copper nanowire layer on the surface of a base material.
[8]
The metal copper surface member according to [7], wherein the nanowire of the metal copper nanowire layer has a diameter in the range of 1 to 500 nm observed in a surface SEM image.
[9]
The metallic copper surface member according to [7] or [8], wherein the surface density obtained by the surface SEM image of the metallic copper nanowire layer is 10 to 90%.
[10]
A step of forming a layer of copper hydroxide nanowires on the surface of a metallic copper base material or a base material having a metallic copper surface, a step of reducing a layer of copper hydroxide nanowires to form a metallic copper nanowire layer, and a metallic copper nanowire layer. A method for producing a super-water-repellent surface member, which comprises a step of forming an organic coating on the surface of the surface to obtain a super-water-repellent surface member.
[11]
The step of forming the layer of the copper hydroxide nanowire is (A) a step of immersing in an alkaline aqueous solution containing an oxidizing agent to form a layer of copper hydroxide nanowire on the surface, or (B) in an alkaline aqueous solution. The production method according to [10], which is a step of forming a layer of copper hydroxide nanowires on the surface by anodic oxidation with.
[12]
The production method according to [11], wherein the oxidizing agent is ammonium peroxodisulfate.
[13]
The production method according to any one of [10] to [12], wherein the formation of the organic material coating is carried out by coating the surface of the metallic copper nanowire layer with an organic compound having an affinity group for metallic copper.
[14]
A step of forming a layer of copper hydroxide nanowires on the surface of a metallic copper base material or a base material having a metallic copper surface, reducing the layer of copper hydroxide nanowires to form a metallic copper nanowire layer to obtain a metallic copper surface member. A method for manufacturing a metallic copper surface member, including a step.
[15]
The step of forming the layer of the copper hydroxide nanowire is (A) a step of immersing in an alkaline aqueous solution containing an oxidizing agent to form a layer of copper hydroxide nanowire on the surface, or (B) in an alkaline aqueous solution. The production method according to [14], which is a step of forming a layer of copper hydroxide nanowires on the surface by anodic oxidation with.
[16]
The production method according to [15], wherein the oxidizing agent is ammonium peroxodisulfate.
[17]
The production method according to any one of [11] to [16], wherein the alkaline aqueous solution is an alkali metal hydroxide aqueous solution.
[18]
The production method according to any one of [10] to [17], wherein the reduction of the copper hydroxide nanowire layer is hydrogen reduction.
 本発明の超撥水性表面部材において、ナノワイヤ層は金属である銅製であるために超撥水性表面は高い熱伝導性を有し、なおかつ超撥水性表面においては水膜生成が抑制され、かつ表面において凝集水から生成した水滴の自律的な除去が容易に行える(排水性に優れる)、という利点を有する。さらに本発明によれば、金属銅表面部材を用いることで、部材の表面に直接、超撥水性表面を形成できるため、上記本発明の超撥水性表面部材を容易に製造することができる。さらに本発明によれば、上記金属銅表面部材の製造方法及び超撥水性表面部材の製造方法も提供される。 In the superhydrophobic surface member of the present invention, since the nanowire layer is made of copper, which is a metal, the superhydrophobic surface has high thermal conductivity, and water film formation is suppressed on the superhydrophobic surface, and the surface is surfaced. It has the advantage that water droplets generated from coagulated water can be easily removed (excellent in drainage). Further, according to the present invention, since the superhydrophobic surface can be formed directly on the surface of the member by using the metallic copper surface member, the superhydrophobic surface member of the present invention can be easily manufactured. Further, according to the present invention, a method for producing the above-mentioned metallic copper surface member and a method for producing a superhydrophobic surface member are also provided.
図1-1は、NaOHと(NHの混合水溶液中で溶液浸漬の時間を3分から60分変えた時の試料の概観と表面形態を示す。FIG. 1-1 shows the appearance and surface morphology of the sample when the solution immersion time was changed from 3 minutes to 60 minutes in a mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8. 図1-2は、(a)渦電流膜厚計による皮膜の厚さ測定結果を示し、(b)及び(c)は倍率が異なる断面SEM(二次電子)像を示し、(d)及び(e)は倍率が異なる断面BSE(反射電子)像を示す。FIG. 1-2 shows the results of measuring the film thickness by (a) an eddy current film thickness meter, (b) and (c) show cross-sectional SEM (secondary electron) images having different magnifications, and (d) and (E) shows cross-sectional BSE (backscattered electron) images having different magnifications. 図1-3は、NaOHと(NHの混合水溶液中で浸漬時間変えた時の試料の(a)XRDと(b)Ramanスペクトルの結果を示す。FIG. 1-3 shows the results of (a) XRD and (b) Raman spectra of the sample when the immersion time was changed in a mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8. 図1-4は、NaOHと(NHの混合水溶液中で浸漬時間変えた時の試料のAr-10%H混合ガス中で還元した試料の概観と表面形態を示す。FIG. 1-4 shows an overview and surface morphology of the sample reduced in the Ar-10% H 2 mixed gas of the sample when the immersion time was changed in the mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8. .. 図1-5は、図1-4と同様の水素還元を行った試料のXRDの結果を示す。FIG. 1-5 shows the XRD results of the sample subjected to the same hydrogen reduction as in FIG. 1-4. 図1-6は、NaOHと(NHの混合水溶液中で10分間溶液浸漬を行なった試料をFAS溶液に浸漬した試料に対して指で軽く擦った前後の表面形態の変化を示す。FIG. 1-6 shows the surface morphology before and after lightly rubbing a sample immersed in a FAS solution with a sample immersed in a mixed aqueous solution of NaOH and (NH 4 ) 2 S 2 O 8 for 10 minutes. Show change. 図1-7は、水素還元を行った試料をPFDT溶液に1時間浸漬した試料に対して指で軽く擦った前後の表面形態の変化を示す。FIG. 1-7 shows the change in surface morphology before and after lightly rubbing the hydrogen-reduced sample in the PFDT solution for 1 hour with a finger. 図2-1は、定電流アノード酸化時の電位-時間曲線を示す。FIG. 2-1 shows a potential-time curve during constant current anodic oxidation. 図2-2は、3mAcm-2で900sアノード酸化した試料の(a)XRDパターン、(b)表面SEM、(c)断面SEMおよび(d)TEMを示す。FIG. 2-2 shows (a) XRD pattern, (b) surface SEM, (c) cross-sectional SEM and (d) TEM of a sample anodic oxidized at 3 mAcm-2 for 900 s. 図2-3は、10mAcm-2で各時間定電流アノード酸化した試料の外観とSEM写真を示す。FIG. 2-3 shows the appearance and SEM photograph of the sample oxidized with a constant current anode at 10 mAcm -2 at each time. 図2-4は、10mAcm-2で各時間定電流アノード酸化した試料のRamanスペクトルを示す。FIG. 2-4 shows a Raman spectrum of a sample anodic oxidized at a constant current of 10 mAcm-2 for each time. 図2-5は、水素還元後の各試料の外観とSEM写真を示す。FIG. 2-5 shows the appearance and SEM photograph of each sample after hydrogen reduction. 図2-6は、(a)3mAcm-2で900sアノード酸化した試料の水素還元前後のXRDパターンと(b)10mAcm-2でアノード酸化した試料のXRDパターンを示す。Figure 2-6 shows the (a) 3mAcm -2 before and after hydrogen reduction of 900s anodized samples with XRD pattern (b) XRD patterns of samples anodized in 10mAcm -2. 図2-7は、3mAcm-2で900sアノード酸化した試料をコーティング後の結露実験結果を示す。FIG. 2-7 shows the results of a dew condensation experiment after coating a sample anodic oxidized at 3 mA cm-2 for 900 s. 図2-8は、10mAcm-2で120sアノード酸化した試料をコーティング後の結露実験結果を示す。FIG. 2-8 shows the results of a dew condensation experiment after coating a sample anodic oxidized at 10 mAcm-2 for 120 s. 図2-9は、水酸化物(上)、金属銅ナノワイヤ(下)試料上の水が氷になる時間変化を示す。FIG. 2-9 shows the time variation of water on the hydroxide (top) and metallic copper nanowire (bottom) samples becoming ice.
<超撥水性表面部材及び金属銅表面部材>
 本発明の超撥水性表面部材は、基材表面に金属銅ナノワイヤ層及び有機物コーティング層をこの順に有する超撥水性表面部材であって、有機物コーティング層は、金属銅に対する親和性基を介して金属銅ナノワイヤ層に固定化されている。
<Superhydrophobic surface member and metallic copper surface member>
The super-water-repellent surface member of the present invention is a super-water-repellent surface member having a metallic copper nanowire layer and an organic material coating layer on the surface of the base material in this order, and the organic material coating layer is a metal via an affinity group for metallic copper. It is immobilized on a copper nanowire layer.
 本発明は、本発明の超撥水性表面部材の前駆体となる、基材表面に金属銅ナノワイヤ層を有する、金属銅表面部材も包含する。 The present invention also includes a metallic copper surface member having a metallic copper nanowire layer on the surface of the base material, which is a precursor of the super-water-repellent surface member of the present invention.
 本発明の超撥水性表面部材及び金属銅表面部材の基材は特に制限はなく、熱電導性に優れ、かつ超撥水性を有する表面を設けた何れの部材であっても、基材とすることができる。そのような部材として凝縮器や熱交換器などを挙げることができるがこれらに限定されない。基材の材質は、全体又は表面が金属銅製であれば、特に制限はない。 The base material of the superhydrophobic surface member and the metallic copper surface member of the present invention is not particularly limited, and any member having a surface having excellent thermoconductivity and superhydrophobicity can be used as the base material. be able to. Examples of such a member include, but are not limited to, a condenser and a heat exchanger. The material of the base material is not particularly limited as long as the whole or the surface is made of metallic copper.
 基材表面に設ける金属銅ナノワイヤ層のナノワイヤは金属銅製であり、金属銅ナノワイヤ層は、複数のナノワイヤが不規則に縦横に空隙を伴って存在する層である。基材は、全体又は表面が金属銅製であるので、金属銅ナノワイヤ層の基板表面付近は金属銅製の基板表面と密着しており外見上は一体化したものとして認識され得る。金属銅ナノワイヤ層のナノワイヤの太さは1本のナノワイヤでも場所により多少の変動はあるが、表面SEM画像で観察される直径が例えば、5~500nmの範囲であり、好ましくは20~250nmの範囲であり、より好ましくは、50~200nmの範囲である。この範囲であれば、その上に所定の有機物コーティング層を設けることで、優れた超撥水性及び排水性を呈することができる。ナノワイヤの全て又は大半が上記ナノオーダーの範囲の直径を有することから、本願明細書では、これらのワイヤ形状体をナノワイヤと呼ぶ。金属銅ナノワイヤ層の厚みは、特に制限はないが、例えば、1~20μmの範囲であることができ、1~10μmの範囲であることもできる。 The nanowires of the metallic copper nanowire layer provided on the surface of the base material are made of metallic copper, and the metallic copper nanowire layer is a layer in which a plurality of nanowires are irregularly present with voids in the vertical and horizontal directions. Since the entire surface or the surface of the base material is made of metallic copper, the vicinity of the substrate surface of the metallic copper nanowire layer is in close contact with the surface of the metallic copper substrate and can be recognized as being integrated in appearance. The thickness of the nanowires in the metallic copper nanowire layer varies slightly depending on the location even with a single nanowire, but the diameter observed in the surface SEM image is, for example, in the range of 5 to 500 nm, preferably in the range of 20 to 250 nm. It is more preferably in the range of 50 to 200 nm. Within this range, excellent superhydrophobicity and drainage can be exhibited by providing a predetermined organic coating layer on the layer. In the present specification, these wire shapes are referred to as nanowires because all or most of the nanowires have diameters in the nanoorder range. The thickness of the metallic copper nanowire layer is not particularly limited, but may be, for example, in the range of 1 to 20 μm, or in the range of 1 to 10 μm.
 金属銅ナノワイヤ層の基板表面付近は、銅製の基板表面と密着しており外見上は一体化されており、金属銅ナノワイヤ層の基材表面への接合をより強力にし、超撥水性表面の強度を向上させることができる。金属銅ナノワイヤ層の表面密度は、表面SEM画像で求まる表面密度として、例えば、10~90%であり、好ましくは30~60%の範囲である。ここで表面密度は、以下のように求められる。ImageJのような画像解析ソフトを用いて、表面SEM像のコントラストをナノワイヤのある部分と空隙部分に二値化し、ナノワイヤの存在する面積割合を表面密度として求めた。 The vicinity of the substrate surface of the metallic copper nanowire layer is in close contact with the copper substrate surface and is apparently integrated, making the bonding of the metallic copper nanowire layer to the substrate surface stronger and the strength of the super-water-repellent surface. Can be improved. The surface density of the metallic copper nanowire layer is, for example, 10 to 90%, preferably 30 to 60%, as the surface density obtained from the surface SEM image. Here, the surface density is obtained as follows. Using image analysis software such as ImageJ, the contrast of the surface SEM image was binarized between the part with nanowires and the void part, and the area ratio where nanowires exist was determined as the surface density.
 有機物コーティング層は、金属銅に対する親和性基を介して金属銅ナノワイヤ層に固定化される。金属銅に対する親和性基は、銅に対して化学結合及び/又は物理吸着する官能基であれば良く、例えば、チオール基、ジスルフィド基、シラン基、ニトリル基などを挙げることができる。金属銅に対する親和性基としてはチオール基が特に好ましい。有機物コーティング層の親和性基以外の部位は、撥水性を考慮すれば、長鎖アルキル基、フッ素含有有機基、芳香族基などの撥水性基を挙げることができる。有機物コーティング用の有機物については製造方法の説明において詳述する。 The organic coating layer is immobilized on the metallic copper nanowire layer via an affinity group for metallic copper. The affinity group for metallic copper may be a functional group that chemically bonds and / or physically adsorbs to copper, and examples thereof include a thiol group, a disulfide group, a silane group, and a nitrile group. A thiol group is particularly preferable as the affinity group for metallic copper. As the site other than the affinity group of the organic coating layer, water-repellent groups such as a long-chain alkyl group, a fluorine-containing organic group, and an aromatic group can be mentioned in consideration of water repellency. Organic substances for coating organic substances will be described in detail in the description of the production method.
 本発明の超撥水性表面部材の超撥水性表面は、前進接触角及び後退接触角がそれぞれ例えば、150°以上であることができる。さらに本発明の超撥水性表面部材は、超撥水性表面を有するだけではなく、超撥水性表面からの排水性も優れる。排水性については、例えば、10~45°に傾斜させた試料表面を冷却して結露させ、水滴の形成及び流れ落ちを観察することで評価することができる。 The superhydrophobic surface of the superhydrophobic surface member of the present invention can have a forward contact angle and a receding contact angle of, for example, 150 ° or more, respectively. Further, the superhydrophobic surface member of the present invention not only has a superhydrophobic surface, but also has excellent drainage from the superhydrophobic surface. The drainage property can be evaluated by, for example, cooling the surface of the sample inclined at 10 to 45 ° to cause dew condensation, and observing the formation of water droplets and the run-off.
 超撥水性表面部材は、基材表面が平滑であることで、超撥水性表面も平滑表面であることができる他、基材表面が規則的又は不規則な凹凸を有する表面であることで、超撥水性表面も規則的又は不規則な凹凸を有する表面であることもできる。規則的又は不規則な凹凸は、凹凸の深さや頻度には特に制限はない。金属銅表面部材も同様であり、基材表面が平滑であることで、金属銅表面も平滑表面であることができる他、基材表面が規則的又は不規則な凹凸を有する表面であることで、金属銅表面も規則的又は不規則な凹凸を有する表面であることもできる。規則的又は不規則な凹凸は、凹凸の深さや頻度には特に制限はない。 In the superhydrophobic surface member, since the surface of the base material is smooth, the superhydrophobic surface can also be a smooth surface, and the surface of the base material has regular or irregular irregularities. The superhydrophobic surface can also be a surface with regular or irregular irregularities. Regular or irregular unevenness is not particularly limited in the depth and frequency of the unevenness. The same applies to the metallic copper surface member, and the smooth surface of the base material allows the surface of the metallic copper to be a smooth surface, and the surface of the base material has regular or irregular irregularities. The metallic copper surface can also be a surface having regular or irregular irregularities. Regular or irregular unevenness is not particularly limited in the depth and frequency of the unevenness.
<金属銅表面部材及び超撥水性表面部材の製造方法>
 本発明は、金属銅表面部材及び超撥水性表面部材の製造方法を包含し、この方法により上記本発明の金属銅表面部材及び超撥水性表面部材を製造することができる。本発明の超撥水性表面部材の製造方法は、金属銅製基材又は金属銅製表面を有する基材の表面に水酸化銅ナノワイヤの層を形成する工程、水酸化銅ナノワイヤの層を還元して金属銅ナノワイヤ層を形成する工程、及び金属銅ナノワイヤ層の表面に有機物コーティングを形成して超撥水性表面部材を得る工程を含む。
<Manufacturing method of metallic copper surface member and superhydrophobic surface member>
The present invention includes a method for producing a metallic copper surface member and a superhydrophobic surface member, and the metal copper surface member and the superhydrophobic surface member of the present invention can be produced by this method. The method for producing a super-water-repellent surface member of the present invention is a step of forming a layer of copper hydroxide nanowires on the surface of a metallic copper base material or a base material having a metallic copper surface, and reducing the layer of copper hydroxide nanowires to metal. It includes a step of forming a copper nanowire layer and a step of forming an organic coating on the surface of the metallic copper nanowire layer to obtain a super-water-repellent surface member.
 水酸化銅ナノワイヤの層を形成する工程は、例えば、(A)酸化剤を含有するアルカリ性水溶液に浸漬して、表面に水酸化銅ナノワイヤの層を形成する工程(浸漬法工程)であるか、または(B)アルカリ性水溶液中でアノード酸化して、表面に水酸化銅ナノワイヤの層を形成する工程(アノード酸化法工程)である。 The step of forming the layer of the copper hydroxide nanowire is, for example, (A) a step of immersing in an alkaline aqueous solution containing an oxidizing agent to form a layer of the copper hydroxide nanowire on the surface (immersion method step). Alternatively, (B) is a step (anodoxidation method step) of forming a layer of copper hydroxide nanowires on the surface by anodic oxidation in an alkaline aqueous solution.
 浸漬法工程を経る方法は、金属銅製基材又は金属銅製表面を有する基材を、酸化剤を含有するアルカリ性水溶液に浸漬して、表面に水酸化銅ナノワイヤの層を形成する工程(A1)、水酸化銅ナノワイヤの層を還元して金属銅ナノワイヤ層を形成して金属銅表面部材を得る工程(A2)を含み、本発明の超撥水性表面部材の製造方法は、上記工程(A1)及び(A2)に加えて、金属銅表面部材の金属銅ナノワイヤ層の表面に有機物コーティングを形成して超撥水性表面部材を得る工程(A3)を含む。酸化剤は、アルカリ性水溶液中で金属銅表面を酸化して、表面に水酸化銅ナノワイヤの層を形成できる化合物であればよく、ペルオキソ二硫酸アンモニウム、過酸化水素、次亜塩素酸塩などを挙げることができるが、ペルオキソ二硫酸アンモニウムであることが、水酸化銅ナノワイヤ層の形成が容易かつ確実であることから、好ましい。 The method of going through the dipping method is a step (A1) of immersing a metallic copper base material or a base material having a metallic copper surface in an alkaline aqueous solution containing an oxidizing agent to form a layer of copper hydroxide nanowires on the surface. The method for producing a super-water-repellent surface member of the present invention includes the step (A2) of reducing a layer of copper hydroxide nanowires to form a metallic copper nanowire layer to obtain a metallic copper surface member. In addition to (A2), the step (A3) of forming an organic material coating on the surface of the metallic copper nanowire layer of the metallic copper surface member to obtain a super-water-repellent surface member is included. The oxidizing agent may be a compound capable of oxidizing the surface of metallic copper in an alkaline aqueous solution to form a layer of copper hydroxide nanowires on the surface, and examples thereof include ammonium peroxodisulfate, hydrogen peroxide, and hypochlorite. However, ammonium peroxodisulfate is preferable because the formation of the copper hydroxide nanowire layer is easy and reliable.
 アノード酸化法工程を経る方法は、金属銅製基材又は金属銅製表面を有する基材をアルカリ性水溶液中でアノード酸化して、表面に水酸化銅ナノワイヤの層を形成する工程(B1)、水酸化銅ナノワイヤの層を還元して金属銅ナノワイヤ層を形成して金属銅表面部材を得る工程(B2)を含み、本発明の超撥水性表面部材の製造方法は、上記工程(B1)及び(B2)に加えて、金属銅表面部材の金属銅ナノワイヤ層の表面に有機物コーティングを形成して超撥水性表面部材を得る工程(B3)を含む。 The method of going through the anodic oxidation method is a step of anodic oxidation of a metallic copper base material or a base material having a metallic copper surface in an alkaline aqueous solution to form a layer of copper hydroxide nanowires on the surface (B1), copper hydroxide. The method for producing a super-water-repellent surface member of the present invention includes the step (B2) of reducing a layer of nanowires to form a metallic copper nanowire layer to obtain a metallic copper surface member, and the method for producing a super-water-repellent surface member of the present invention includes the above steps (B1) and (B2). In addition, the step (B3) of forming an organic material coating on the surface of the metallic copper nanowire layer of the metallic copper surface member to obtain a super-water-repellent surface member is included.
工程(A1)
 金属銅製基材又は金属銅製表面を有する基材を、ペルオキソ二硫酸アンモニウムなどの酸化剤を含有するアルカリ性水溶液に浸漬して、表面に水酸化銅ナノワイヤの層を形成する。金属銅製基材又は金属銅製表面を有する基材を、ペルオキソ二硫酸アンモニウムを含有するアルカリ性水溶液に浸漬することで表面に水酸化銅ナノワイヤの層を形成することは、既に知られており、非特許文献3に記載されている。
Process (A1)
A base material made of metallic copper or a base material having a surface made of metallic copper is immersed in an alkaline aqueous solution containing an oxidizing agent such as ammonium peroxodisulfate to form a layer of copper hydroxide nanowires on the surface. It is already known that a layer of copper hydroxide nanowires is formed on the surface of a metallic copper base material or a base material having a metallic copper surface by immersing it in an alkaline aqueous solution containing ammonium peroxodisulfate. It is described in 3.
 金属銅製基材又は金属銅製表面を有する基材は、前述の金属銅表面部材及び超撥水性表面部材における説明と同様である。水溶液における酸化剤の濃度は酸化剤の種類や生成する水酸化銅ナノワイヤ層の厚み等を考慮して適宜決定できる。酸化剤がペルオキソ二硫酸アンモニウムの場合の濃度は、特に制限はないが、例えば、0.01molL-1~1.0molL-1の範囲であり、好ましくは0.05molL-1~0.8molL-1の範囲である。アルカリ性水溶液におけるアルカリ性化合物は、特に制限はないが、例えば、水酸化物(例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなど)、及び強アルカリ-弱酸塩化合物(例えば、炭酸カリウムなど)であることができる。水溶液におけるアルカリ性化合物濃度は、特に制限はないが、例えば、0.1molL-1~6.0molL-1の範囲であり、好ましくは1.0molL-1~5.0molL-1の範囲である。浸漬温度は例えば、0~25℃の範囲、浸漬時間は、水溶液におけるペルオキソ二硫酸アンモニウムの濃度と温度にもよるが、例えば、1分から180分の範囲とすることができる。但し、これらの数値範囲は例示であって、この範囲外であっても、実施は可能である。この水溶液への浸漬により基材表面に水酸化銅ナノワイヤが経時的に成長し、所定時間経過後に、所定の厚みの水酸化銅ナノワイヤの層が形成する。 The base material made of metallic copper or the base material having a metallic copper surface is the same as the description in the above-mentioned metallic copper surface member and superhydrophobic surface member. The concentration of the oxidizing agent in the aqueous solution can be appropriately determined in consideration of the type of the oxidizing agent, the thickness of the copper hydroxide nanowire layer to be produced, and the like. Concentration when the oxidizing agent is ammonium peroxodisulfate is not particularly limited, for example, in the range of 0.01molL -1 ~ 1.0molL -1, preferably of 0.05molL -1 ~ 0.8molL -1 The range. The alkaline compound in the alkaline aqueous solution is not particularly limited, and is, for example, a hydroxide (for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.) and a strong alkali-weak acid salt compound (for example, potassium carbonate, etc.). There can be. Alkaline compounds in the aqueous solution concentration is not particularly limited, for example, in the range of 0.1molL -1 ~ 6.0molL -1, preferably in the range of 1.0molL -1 ~ 5.0molL -1. The immersion temperature can be, for example, in the range of 0 to 25 ° C., and the immersion time can be, for example, in the range of 1 minute to 180 minutes, depending on the concentration and temperature of ammonium peroxodisulfate in the aqueous solution. However, these numerical ranges are examples, and implementation is possible even outside this range. By immersing in this aqueous solution, copper hydroxide nanowires grow on the surface of the base material over time, and after a lapse of a predetermined time, a layer of copper hydroxide nanowires having a predetermined thickness is formed.
工程(B1)
 金属銅製基材又は金属銅製表面を有する基材をアルカリ金属水酸化物水溶液中でアノード酸化して、表面に水酸化銅ナノワイヤの層を形成する。この方法は公知であり、例えば、以下の文献に記載の方法を参照して適宜実施できる。
(a)Nano Letters 13(3)(2018)289-291
(b)Phys.Chem.B 109(48)(2005)22836-22842
(c)Industrial&Engineering Chemistry Research 54(27)(2015)6874-6883
Process (B1)
A metal copper base material or a base material having a metal copper surface is anodized in an aqueous alkali metal hydroxide solution to form a layer of copper hydroxide nanowires on the surface. This method is known and can be carried out as appropriate with reference to, for example, the methods described in the following documents.
(A) Nano Letters 13 (3) (2018) 289-291
(B) Phys. Chem. B 109 (48) (2005) 22863-22842
(C) Industrial & Engineering Chemistry Research 54 (27) (2015) 6874-6883
 金属銅製基材又は金属銅製表面を有する基材は、前述の金属銅表面部材及び超撥水性表面部材における説明と同様である。アルカリ性水溶液におけるアルカリ性化合物は、特に制限はないが、例えば、水酸化物(例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなど)、及び強アルカリ-弱酸塩化合物(例えば、炭酸カリウムなど)であることができる。水溶液におけるアルカリ性化合物濃度は、特に制限はないが、例えば、0.1molL-1~6.0molL-1の範囲であり、好ましくは1.0molL-1~5.0molL-1の範囲である。アノード酸化の条件である、電流密度、温度、及び電解時間は、形成したい水酸化銅ナノワイヤの層の厚みや水酸化銅ナノワイヤの形状や密度などに応じて適宜選択することができる。電流密度は、例えば、0.1~20mAcm-2の範囲、温度は例えば、0~50℃の範囲、電解時間は、電流密度と温度にもよるが、例えば、1分から180分の範囲とすることができる。但し、これらの数値範囲は例示であって、この範囲外であっても、実施は可能である。このアノード酸化により基材表面に水酸化銅ナノワイヤが経時的に成長し、所定時間経過後に、所定の厚みの水酸化銅ナノワイヤの層が形成する。 The base material made of metallic copper or the base material having a metallic copper surface is the same as the description in the above-mentioned metallic copper surface member and superhydrophobic surface member. The alkaline compound in the alkaline aqueous solution is not particularly limited, and is, for example, a hydroxide (for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc.) and a strong alkali-weak acid salt compound (for example, potassium carbonate, etc.). There can be. Alkaline compounds in the aqueous solution concentration is not particularly limited, for example, in the range of 0.1molL -1 ~ 6.0molL -1, preferably in the range of 1.0molL -1 ~ 5.0molL -1. The current density, temperature, and electrolysis time, which are the conditions for anodic oxidation, can be appropriately selected according to the thickness of the layer of the copper hydroxide nanowires to be formed, the shape and density of the copper hydroxide nanowires, and the like. The current density is, for example, in the range of 0.1 to 20 mAcm-2 , the temperature is, for example, in the range of 0 to 50 ° C., and the electrolysis time is, for example, in the range of 1 minute to 180 minutes, depending on the current density and temperature. be able to. However, these numerical ranges are examples, and implementation is possible even outside this range. Due to this anodic oxidation, copper hydroxide nanowires grow on the surface of the substrate over time, and after a lapse of a predetermined time, a layer of copper hydroxide nanowires having a predetermined thickness is formed.
工程(A2)及び(B2)
 工程(A1)又は(B1)で製造した水酸化銅ナノワイヤの層を還元して金属銅ナノワイヤ層を形成する。還元は、例えば、水素還元であることができる。具体的には、200~600℃の範囲の温度で水素雰囲気中に被還元物を置くことで実施できる。水酸化銅ナノワイヤの層を水素ガスのような還元性ガスの不存在下、常圧又は減圧下、上記温度で加熱しても水酸化銅の還元は実質的に生じず、金属銅ナノワイヤ層は事実上形成されない。水素雰囲気は、100%水素ガスであっても良いが、例えば、1~99%の水素ガスと残部はアルゴンや窒素などの不活性ガスとすることができる。水素ガス濃度を変動させることで、加熱温度も考慮して、水酸化銅ナノワイヤ層の還元速度を制御することができる。適度な還元速度で金属銅ナノワイヤ層を形成することで、強度に優れた金属銅ナノワイヤ層を得ることができる。水素還元は水素流通化又は水素雰囲気(バッチ)のいずれであってもよい。還元時間は、温度並びに水酸化銅ナノワイヤの層を還元の程度を考慮して適宜決定できるが、例えば、10分間~10時間の範囲である。浸漬法工程又はアノード酸化法工程により基材表面に形成した水酸化銅ナノワイヤの層を還元することで、金属銅ナノワイヤ層の基板表面付近が基材表面に密着した金属銅ナノワイヤ層が形成され、金属銅表面部材を得ることができる。また、金属銅ナノワイヤ層は金属銅製基材又は金属銅製表面を有する基材の銅製表面と密着しており、外見上一体化して見える状態になり得る。
Steps (A2) and (B2)
The layer of copper hydroxide nanowires produced in step (A1) or (B1) is reduced to form a metallic copper nanowire layer. The reduction can be, for example, hydrogen reduction. Specifically, it can be carried out by placing the material to be reduced in a hydrogen atmosphere at a temperature in the range of 200 to 600 ° C. Even if the layer of the copper hydroxide nanowire is heated at the above temperature in the absence of a reducing gas such as hydrogen gas under normal pressure or reduced pressure, the reduction of copper hydroxide does not substantially occur, and the metal copper nanowire layer is formed. Virtually not formed. The hydrogen atmosphere may be 100% hydrogen gas, but for example, 1 to 99% hydrogen gas and the balance may be an inert gas such as argon or nitrogen. By varying the hydrogen gas concentration, the reduction rate of the copper hydroxide nanowire layer can be controlled in consideration of the heating temperature. By forming the metal copper nanowire layer at an appropriate reduction rate, a metal copper nanowire layer having excellent strength can be obtained. The hydrogen reduction may be either hydrogen circulation or a hydrogen atmosphere (batch). The reduction time can be appropriately determined in consideration of the temperature and the degree of reduction of the copper hydroxide nanowire layer, and is, for example, in the range of 10 minutes to 10 hours. By reducing the layer of copper hydroxide nanowires formed on the surface of the base material by the dipping method step or the anodic oxidation method step, a metal copper nanowire layer in which the vicinity of the substrate surface of the metal copper nanowire layer is in close contact with the base material surface is formed. A metallic copper surface member can be obtained. Further, the metallic copper nanowire layer is in close contact with the copper surface of the metallic copper base material or the base material having the metallic copper surface, and can be seen as being integrated in appearance.
工程(A3)及び(B3)
 工程(A2)またみ(B2)で得られた金属銅表面部材の金属銅ナノワイヤ層の表面に有機物コーティングを形成して超撥水性表面部材を得る。有機物コーティングを形成は、金属銅に対する親和性基を有する有機化合物を金属銅ナノワイヤ層表面に被覆することで行う。金属銅に対する親和性基を有する有機化合物は、金属銅に対する親和性基としては、例えば、チオール基、ジスルフィド基、シラン基、ニトリル基などを挙げることができ、金属銅に対する親和性基としてチオール基を有する有機化合物が特に好ましい。親和性基以外の部位は、撥水性を考慮すれば、長鎖アルキル基、フッ素含有有機基、芳香族基などの撥水性基を挙げることができる。
Steps (A3) and (B3)
An organic coating is formed on the surface of the metallic copper nanowire layer of the metallic copper surface member obtained in the step (A2) and the step (B2) to obtain a superhydrophobic surface member. The organic coating is formed by coating the surface of the metallic copper nanowire layer with an organic compound having an affinity group for metallic copper. Examples of the organic compound having an affinity group for metallic copper include a thiol group, a disulfide group, a silane group, a nitrile group and the like as an affinity group for metallic copper, and a thiol group as an affinity group for metallic copper. Organic compounds having the above are particularly preferable. As the site other than the affinity group, a water-repellent group such as a long-chain alkyl group, a fluorine-containing organic group, or an aromatic group can be mentioned in consideration of water repellency.
 金属銅に対する親和性基を有する有機化合物を以下に例示するが、これらに限定される意図ではない。n-ドデカンチオール(n-dodecanethiol)、n-ドデカンセレノール(n-dodecaneselenol)、ジドデシルジスルフィド(didodecyl disulfide)、デドデシルジセレニド(didodecyl diselenide)、デカン-リン酸(decane-phosphonic acid)、デカン酸(decanoic acid)、セレン酸(stearic acid)、1H,1H,2H,2H-パーフルオロデカンチオール(1H,1H,2H,2H -perfluorodecanethiol)、デシルトリエトキシシラン(decyltriethoxysilane)、1H,1H,2H,2H-パーフルオロデシルトリエトキシシラン(1H,1H,2H,2H-Perfuorodecyl- triethoxysilane)、デカンイソシアニド(decaneisocyanide)。 The organic compounds having an affinity group for metallic copper are illustrated below, but the intention is not limited to these. n-dodecanethiol, n-dodecaneselenol, dododecil disulfide, dododecil disulfidee, decane-phosphate, decane-phosphate. Decanoic acid, stearic acid, 1H, 1H, 2H, 2H-perfluorodecanethiol (1H, 1H, 2H, 2H-perfluorodecanethiol), decyltriethoxysilane, 1H 2H, 2H-perfluorodecyltriethoxysilane (1H, 1H, 2H, 2H-Perfuodecil-triethoxysilane), decaneisocyanide.
 有機物コーティングを形成した超撥水性表面部材の超撥水性表面は、前進接触角及び後退接触角がそれぞれ150°以上であり、かつ超撥水性表面からの排水性も優れる。有機物コーティングが金属銅ナノワイヤ層の内部の表面にも形成されるために、例えば、金属銅ナノワイヤ層の内部において結露で生じた水滴が超撥水性表面にまで押し出され易くなっているからと推察される。本発明の超撥水性表面部材は、表面のナノワイヤ層が金属銅であるため熱伝導性が高く、かつその表面は超撥水性であり、しかも結露で生じた水滴の排水性にも優れることから、凝縮器や熱交換器などへの有用性が極めて高い。 The superhydrophobic surface of the superhydrophobic surface member having an organic coating has a forward contact angle and a receding contact angle of 150 ° or more, respectively, and has excellent drainage from the superhydrophobic surface. Since the organic coating is also formed on the inner surface of the metallic copper nanowire layer, it is presumed that, for example, water droplets generated by dew condensation inside the metallic copper nanowire layer are easily extruded to the super-water-repellent surface. To. Since the nanowire layer on the surface of the super-water-repellent surface member of the present invention is metallic copper, the surface has high thermal conductivity, the surface is super-water-repellent, and the drainage of water droplets generated by dew condensation is also excellent. , Very useful for condensers and heat exchangers.
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are examples of the present invention, and the present invention is not intended to be limited to the examples.
キャラクタリゼーション
(1)SEM画像
SEM(Micro Star Technologies Inc.)を用い、1kVの加速電圧で作動させて、SEM画像を得た。
(2)断面観察
試料の観察断面は、ダイヤモンドナイフを用いた超ミクロトーム(Power Tome X、RMC、英国)により調製した。
(3)試料の相は、Cu Kα線を用いたX線回折装置(XRD)(RINT-2200、リガク、日本)を用いて同定した。
(4)ラマン分光による試料の構造的特徴付けは、ラマン分光器(XploRa、堀場製作所、日本)を用いて行った。照射したレーザーの波長は532nm、gratingは2400grmm-1であった。
(5)静水接触角と動水接触角
試験片表面の静水接触角と動水接触角は、接触角計(DM-CE1 optical、協和、日本)を用いて、FAMASソフトウェアを用いて測定した。静的水接触角は4μLの水滴を用いて測定し,動的水接触角は拡張収縮法により求めた。各試験片の4箇所で接触角を測定し、平均値と標準偏差を求めた。ヒステリシスは、静水接触角と動水接触角の差として求めた。
(6)水蒸気の凝縮挙動観察
温度25℃、相対湿度60%の恒温恒湿槽内で0℃のペルチェ冷却板上で試験片を冷却して水蒸気の凝縮挙動を観察した。表面をデジタルカメラ(Tough TG-5、オリンパス、日本)を用いて撮像した。
Characterization (1) SEM image An SEM image was obtained by operating with an acceleration voltage of 1 kV using an SEM (Micro Star Technologies Inc.).
(2) Cross-section observation The cross-section of the sample was prepared by an ultramicrotome (Power Tome X, RMC, UK) using a diamond knife.
(3) The phase of the sample was identified using an X-ray diffractometer (XRD) (RINT-2200, Rigaku, Japan) using Cu Kα rays.
(4) Structural characterization of the sample by Raman spectroscopy was performed using a Raman spectroscope (XploRa, HORIBA, Ltd., Japan). The wavelength of the irradiated laser was 532 nm, and the grating was 2400 grmm -1 .
(5) Static water contact angle and dynamic water contact angle The still water contact angle and dynamic water contact angle on the surface of the test piece were measured using a contact angle meter (DM-CE1 optical, Kyowa, Japan) using FAMAS software. The static water contact angle was measured using 4 μL of water droplets, and the dynamic water contact angle was determined by the expansion contraction method. The contact angles were measured at four points on each test piece, and the average value and standard deviation were calculated. Hysteresis was determined as the difference between the hydrostatic contact angle and the running water contact angle.
(6) Observation behavior of water vapor condensation The test piece was cooled on a Perche cooling plate at 0 ° C. in a constant temperature and humidity chamber having a temperature of 25 ° C. and a relative humidity of 60%, and the condensation behavior of water vapor was observed. The surface was imaged using a digital camera (Togh TG-5, Olympus, Japan).
実施例1
(1)溶液浸漬による水酸化銅ナノワイヤの作製
 図1-1(a)~(h)に温度4~5℃で2.5moldm-3NaOHと0.1 moldm-3(NHの混合水溶液中で溶液浸漬の時間を3分から60分変えた時の試料の概観と表面形態を示す。表面にはナノワイヤ皮膜が形成されていることが確認され、浸漬時間を長くすることによって試料表面の色が濃く青色となった。渦電流膜厚計を用いて皮膜の厚さを測った結果を図1-2(a)に示す。図1-2(a)から浸漬時間を長くすることによって皮膜の厚さが増大していることが確認された。浸漬時間が10分では皮膜の厚さは図1-2(a)より、およそ1~2μmであり、図1-2(b)及び(d)の断面SEM像、並びに(c)及び(e)の断面BSE像に示す試料の断面観察からもおよそ1~2μm程度であった。
Example 1
(1) Preparation of Copper Hydroxide Nanowires by Immersion in Solution Figures 1-1 (a) to (h) show 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 at a temperature of 4 to 5 ° C. in a mixed aqueous solution of O 8 an overview and surface morphology of the sample when the solution immersion time was changed from 3 minutes to 60 minutes. It was confirmed that a nanowire film was formed on the surface, and the color of the sample surface became deep blue by lengthening the immersion time. The results of measuring the film thickness using an eddy current film thickness meter are shown in FIG. 1-2 (a). From FIG. 1-2 (a), it was confirmed that the thickness of the film was increased by increasing the immersion time. When the immersion time is 10 minutes, the thickness of the film is about 1 to 2 μm from FIG. 1-2 (a), the cross-sectional SEM images of FIGS. 1-2 (b) and (d), and (c) and (e). ) Was about 1 to 2 μm from the cross-sectional observation of the sample shown in the BSE image.
 図1-3(a)(b)に温度4~5℃で2.5moldm-3NaOHと0.1moldm-3(NHの混合水溶液中で浸漬時間変えた時の試料のXRDとRamanスペクトルの結果を示す。図1-3(a)のXRDより、Cu(OH)に帰属されるピークが確認されるが、浸漬時間が短いものはピークが検出されていない。これは生成したナノワイヤの量が少ないためと考えられる。図1-3(b)のRamanからも水酸化銅のピークが検出され溶液浸漬によって水酸化銅のナノワイヤが形成し、浸漬時間を延ばすことでナノワイヤ層の成長が確認された。 Samples shown in FIGS. 1-3 (a) and (b) when the immersion time was changed in a mixed aqueous solution of 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. The results of the XRD and Raman spectra of the above are shown. From the XRD of FIG. 1-3 (a), the peak attributed to Cu (OH) 2 was confirmed, but the peak was not detected in the case where the immersion time was short. It is considered that this is because the amount of nanowires produced is small. A peak of copper hydroxide was also detected from Raman in FIG. 1-3 (b), and copper hydroxide nanowires were formed by solution immersion, and growth of the nanowire layer was confirmed by extending the immersion time.
(2)水素還元による金属銅ナノワイヤの形成
 図1-4(a)~(h)に温度4~5℃で2.5moldm-3NaOHと0.1moldm-3(NHの混合水溶液中で溶液浸漬を行なった試料をAr-10%H混合ガス中,300℃で1時間還元した試料の概観と表面形態を示す。図1-4より水素還元後もナノワイヤ形態を維持していることが確認され、ナノワイヤの形状が変化しているが水素還元によって水酸化物が銅に変換されるときの体積変化と応力のためである。金属銅ナノワイヤの表面SEMでの観察により求まる表面密度は作製条件で異なり、例えば、浸漬法が5分の場合の試料では表面の約32%がナノワイヤで被覆されている(図1-4の(b)(f)のSEM画像参照)。それに対し、浸漬法が60分の場合の試料では表面密度は約37%である(図1-4の(d)(h)のSEM画像参照)。
(2) Formation of metallic copper nanowires by hydrogen reduction As shown in FIGS. 1-4 (a) to (h), 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. mixed sample through the Ar-10% H 2 gas mixture was subjected to solution immersion in an aqueous solution of an overview and surface morphology of 1 hour reduced samples at 300 ° C.. From Fig. 1-4, it was confirmed that the nanowire morphology was maintained even after hydrogen reduction, and the shape of the nanowire changed, but due to volume change and stress when hydroxide was converted to copper by hydrogen reduction. Is. The surface density obtained by observing the surface of metallic copper nanowires with SEM differs depending on the production conditions. For example, in the sample when the immersion method is 5 minutes, about 32% of the surface is covered with nanowires ((Fig. 1-4). b) See the SEM image in (f)). On the other hand, the surface density of the sample when the immersion method is 60 minutes is about 37% (see the SEM images of (d) and (h) of FIGS. 1-4).
 金属銅ナノワイヤ層の厚みは、図1-2(a)に示す水酸化銅ナノワイヤ層の厚みと同程度であり、図1-4(a)(e)の金属銅ナノワイヤ層の厚みは、約0.5μmであり、ナノワイヤの太さは、約50~250nmの範囲であり、(b)(f)の金属銅ナノワイヤ層の厚みは、約1.5μmであり、ナノワイヤの太さは、約50~250nmの範囲であり、(c)(g)の金属銅ナノワイヤ層の厚みは、約3μmであり、ナノワイヤの太さは、約50~250nmの範囲であり、(d)(h)の金属銅ナノワイヤ層の厚みは、約7μmであり、ナノワイヤの太さは、約50~250nmの範囲であった。 The thickness of the metallic copper nanowire layer is about the same as the thickness of the copper hydroxide nanowire layer shown in FIGS. 1-2 (a), and the thickness of the metallic copper nanowire layer in FIGS. 1-4 (a) and 1-4 (e) is about. It is 0.5 μm, the thickness of the nanowire is in the range of about 50 to 250 nm, the thickness of the metal copper nanowire layer of (b) and (f) is about 1.5 μm, and the thickness of the nanowire is about. The thickness of the metal copper nanowire layer of (c) and (g) is in the range of 50 to 250 nm, the thickness of the nanowire is in the range of about 50 to 250 nm, and the thickness of the nanowire is in the range of about 50 to 250 nm. The thickness of the metallic copper nanowire layer was about 7 μm, and the thickness of the nanowire was in the range of about 50 to 250 nm.
 図1-5に水素還元を行った試料のXRDの結果を示す。図1-5より金属銅の回折線のみが確認され水酸化銅が金属の銅に変換されたと考えられる。 Figure 1-5 shows the XRD results of the hydrogen-reduced sample. From FIG. 1-5, only the diffraction line of metallic copper was confirmed, and it is considered that copper hydroxide was converted to metallic copper.
(3)ナノワイヤ表面の濡れ性
 表1-1に温度4~5℃で2.5moldm-3NaOHと0.1moldm-3 (NHの混合水溶液中で溶液浸漬を行なった試料をエタノール中の2vol% 1H,1H,2H,2H-perfluorodecyltriethoxysilane(FAS)溶液に2時間浸漬した試料の前進接触角、後退接触角及びヒステリシスと温度25℃、相対湿度60%の恒温恒湿槽内で0℃のペルチェ冷却板上で試験片を10分間冷却して水蒸気の凝縮を行なった試料概観を示す。表1-1より全ての試料で150°を超える高い水に対する接触角を示し、接触角ヒステリシスは2°程度の低い値を示した。したがって水酸化銅ナノワイヤはFASでコーティングすることで超撥水性を示す表面となった。また水蒸気凝縮後の様子から低温条件下で水滴の付着が少なく、容易に水滴が転がり落ちる表面であった。
(3) Wetting property of nanowire surface Table 1-1 shows that the solution was immersed in a mixed aqueous solution of 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. A constant temperature and humidity chamber with a temperature of 25 ° C and a relative humidity of 60%, with a forward contact angle, a receding contact angle, and a hysteresis of the sample immersed in a 2 vol% 1H, 1H, 2H, 2H-perfluorodecyltriesothylane (FAS) solution in ethanol for 2 hours. An overview of the sample obtained by cooling the test piece on a Perche cooling plate at 0 ° C. for 10 minutes to condense water vapor is shown. From Table 1-1, all the samples showed a contact angle with respect to water higher than 150 °, and the contact angle hysteresis showed a low value of about 2 °. Therefore, the copper hydroxide nanowires were coated with FAS to have a surface showing superhydrophobicity. In addition, from the state after water vapor condensation, there was little adhesion of water droplets under low temperature conditions, and the surface was such that the water droplets easily rolled off.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1-2に温度4~5℃で2.5moldm-3NaOHと0.1moldm-3(NHの混合水溶液中で溶液浸漬を行なった試料をAr-10%H混合ガス中,300℃で1時間還元した試料をエタノール中の1wt.%1H,1H,2H,2H-perfluorodecanethiol(PFDT)溶液に1時間浸漬した試料の前進接触角、後退接触角及びヒステリシス(CAH)と温度25℃、相対湿度60%の恒温恒湿槽内で0℃のペルチェ冷却板上で試験片を10分間冷却して水蒸気の凝縮をおこなった試料概観を示す。表1-2より全ての試料で150°を超える高い水の接触角を示し、接触角ヒステリシスは2°程度の低い値を示した。したがって還元後の銅ナノワイヤはPFDTでコーティングすることで超撥水性を示す表面となった。また水蒸気凝縮後の様子から低温条件下で水滴の付着が少なく容易に水滴が転がり落ちる表面であった。 Table 1-2 shows the samples immersed in a mixed aqueous solution of 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. Ar-10% H 2 A sample reduced at 300 ° C. for 1 hour in a mixed gas was added to ethanol at 1 wt. 0 in a constant temperature and humidity chamber with a temperature of 25 ° C and a relative humidity of 60% with the forward contact angle, receding contact angle and hysteresis (CAH) of the sample immersed in the% 1H, 1H, 2H, 2H-percoolodecanetic (PFDT) solution for 1 hour An overview of the sample obtained by condensing water vapor by cooling the test piece for 10 minutes on a Perche cooling plate at ° C. is shown. From Table 1-2, all the samples showed a high contact angle of water exceeding 150 °, and the contact angle hysteresis showed a low value of about 2 °. Therefore, the reduced copper nanowires were coated with PFDT to obtain a surface showing superhydrophobicity. In addition, from the state after water vapor condensation, there was little adhesion of water droplets under low temperature conditions, and the surface was such that the water droplets easily rolled off.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(4)ナノワイヤの密着性評価
 図1-6(a)~(d)に温度4~5℃で2.5moldm-3NaOHと0.1 moldm-3(NHの混合水溶液中で10分間溶液浸漬を行なった試料をエタノール中の2vol% 1H,1H,2H,2H-perfluorodecyltriethoxysilane(FAS)溶液に2時間浸漬した試料に対して指で軽く擦った前後の表面形態の変化を示し、図1-7(a)~(d)に水素還元を行った試料をエタノール中の1wt% 1H,1H,2H,2H-perfluorodecanethiol(PFDT)溶液に1時間浸漬した試料に対して指で軽く擦った前後の表面形態の変化を示す。図1-6(c)(d)より水酸化銅ナノワイヤ指で軽く擦った後はナノワイヤが短くなっていたがナノワイヤ形態を維持したまま表面を覆っていることが確認された。同様に図1-7(c)(d)より金属銅ナノワイヤも指で軽く擦った後はナノワイヤが短くなっていたがナノワイヤ形態を維持したまま表面を覆っていることが確認された。
(4) Evaluation of adhesion of nanowires Figures 1-6 (a) to (d) show a mixture of 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. Changes in surface morphology before and after lightly rubbing a sample soaked in an aqueous solution for 10 minutes with a finger against a sample soaked in a 2 vol% 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (FAS) solution in ethanol for 2 hours. 1-7 (a) to (d) show, the sample subjected to hydrogen reduction was immersed in a 1 wt% 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) solution in ethanol for 1 hour. Shows the change in surface morphology before and after light rubbing with. From FIGS. 1-6 (c) and (d), it was confirmed that the copper hydroxide nanowire covered the surface while maintaining the nanowire morphology, although the nanowire was shortened after being lightly rubbed with a finger. Similarly, from FIGS. 1-7 (c) and 1-7 (d), it was confirmed that the metal copper nanowires were also shortened after being lightly rubbed with a finger, but covered the surface while maintaining the nanowire morphology.
 また、温度4~5℃で2.5moldm-3NaOHと0.1moldm-3(NHの混合水溶液中で10分間溶液浸漬を行なった試料をエタノール中の2vol% 1H,1H,2H,2H-perfluorodecyltriethoxysilane(FAS)溶液に2時間浸漬した試料と水素還元を行った試料をエタノール中の1wt% 1H,1H,2H,2H-perfluorodecanethiol(PFDT)溶液に1時間浸漬した試料に対して、指で軽く擦った前後の試料の前進接触角、後退接触角及びヒステリシス(CAH)と温度25℃、相対湿度60%の恒温恒湿槽内で0℃のペルチェ冷却板上で試験片を10分間冷却して水蒸気の凝縮をおこなった試料概観を表1-3に示す。表1-3より水酸化銅ナノワイヤ及び金属銅ナノワイヤは擦った後は接触角の値が擦る前に比べて小さくなっていたが接触角の値は依然として150°を超える超撥水性表面となった。また凝縮液滴は擦る前に比べて多くはなったが濡れ広がることはなく試料を傾けた際に容易に転がった。 Further, a sample obtained by immersing the sample in a mixed aqueous solution of 2.5 moldm -3 NaOH and 0.1 moldm -3 (NH 4 ) 2 S 2 O 8 at a temperature of 4 to 5 ° C. for 10 minutes was placed in ethanol at 2 vol% 1H. A sample soaked in a 1H, 2H, 2H-perfluorodecyltrietothoxysylane (FAS) solution for 2 hours and a sample subjected to hydrogen reduction were immersed in a 1 wt% 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) solution in ethanol for 1 hour. On the other hand, the test piece was placed on a Perche cooling plate at 0 ° C in a constant temperature and humidity chamber with a temperature of 25 ° C and a relative humidity of 60% with the forward contact angle, backward contact angle and hysteresis (CAH) of the sample before and after lightly rubbing with a finger. Table 1-3 shows an overview of the sample obtained by cooling the sample for 10 minutes and condensing the water vapor. From Table 1-3, the contact angle values of the copper hydroxide nanowires and the metallic copper nanowires after rubbing were smaller than those before rubbing, but the contact angle values still exceeded 150 ° on the superhydrophobic surface. .. In addition, although the number of condensed droplets was larger than that before rubbing, the droplets did not get wet and spread, and rolled easily when the sample was tilted.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例2
 厚さ0.3mmの純度99.96%、銅板をアセトンで洗浄し前処理として18%塩酸に10分間浸漬した。その後20℃、3M KOH中で電流密度10mAcm-2または3mAcm-2にて所定の時間アノード酸化を行った。その後、Ar-5%Hガス中300℃で一時間水素還元を行った。
Example 2
A copper plate having a thickness of 0.3 mm and a purity of 99.96% was washed with acetone and immersed in 18% hydrochloric acid for 10 minutes as a pretreatment. Then, anodic oxidation was carried out at 20 ° C. and 3M KOH at a current density of 10mAcm- 2 or 3mAcm- 2 for a predetermined time. This was followed by one hour hydrogen reduction at Ar-5% H 2 300 ℃ gas.
 また、有機物コーティングは5mmoldm-3のステアリン酸(SA)トルエン溶液または1.0wt% 1H、1H、2H、2H-ペルフルオロデカンチオール(PFDT)エタノール溶液に1時間浸漬して行った。 The organic coating was carried out by immersing in a 5 mmol dm-3 toluene solution of stearic acid (SA) or a 1.0 wt% 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) ethanol solution for 1 hour.
(1)アノード酸化
 3または10mAcm-2の定電流でアノード酸化したときの電圧-時間曲線を図2-1に示す。何れの電流密度においてもほぼ一定の電圧でアノード酸化が進行するが、その後急激な電圧上昇を示す。アノード酸化中は、表面にCu(OH)特有の水色の表面となるが、電圧が上昇したあとアノード酸化を継続すると、矢印で示した時間あたりで皮膜剥離が始まる。したがって、密着性のよいアノード酸化皮膜を得るには電圧上昇前に電解を終了することが望ましい。
(1) Anode oxidation Figure 2-1 shows the voltage-time curve when anodic oxidation is performed with a constant current of 3 or 10 mAcm-2. Anode oxidation proceeds at a substantially constant voltage at any current density, but then shows a rapid voltage rise. During anodic oxidation, the surface becomes a light blue surface peculiar to Cu (OH) 2 , but if anodic oxidation is continued after the voltage rises, film peeling starts around the time indicated by the arrow. Therefore, in order to obtain an anodic oxide film having good adhesion, it is desirable to terminate electrolysis before the voltage rises.
 3mAcm-2で900sアノード酸化した試料のXRDパターンを図2-2aに示す。金属Cuの回折線に加えてCu(OH)の回折線が見られ、アノード酸化皮膜はCu(OH)で構成されることがわかる。この試料の表面SEM写真が図2-2bである。Cu(OH)はナノワイヤ形状をしており、これが銅表面全体を覆っている。ナノワイヤの太さは約100nmであり、いくつかのナノワイヤが接合した形状となっている。また、断面SEM観察結果(図2-2c)から、ナノワイヤ層の厚さはおおよそ20μmであり、ナノワイヤ層の銅板表面に近い部分には比較的密な構造の部分が見られ、この部分はナノワイヤ層が析出する下地となった部分と考えられる。本発明においては、この下地となった部分もナノワイヤ層の一部である。生成したナノワイヤ皮膜をピンセットで引っ掻いて、素地から剥離し、これをエタノール中に分散させてCuグリッドに載せてTEM観察(図2-2d)を行った。ナノワイヤは単結晶であり、{010}面に平行にナノワイヤが成長していることが確認された。 The XRD pattern of the sample anodic oxidized at 3 mAcm- 2 for 900 s is shown in FIG. 2-2a. In addition to the diffraction line of metallic Cu, the diffraction line of Cu (OH) 2 can be seen, and it can be seen that the anodic oxide film is composed of Cu (OH) 2. A surface SEM photograph of this sample is shown in FIG. 2-2b. Cu (OH) 2 has a nanowire shape, which covers the entire copper surface. The thickness of the nanowires is about 100 nm, and it has a shape in which several nanowires are joined. Further, from the cross-sectional SEM observation result (Fig. 2-2c), the thickness of the nanowire layer is about 20 μm, and a part having a relatively dense structure can be seen in the part of the nanowire layer near the copper plate surface, and this part is a nanowire. It is considered to be the portion that became the base on which the layer was deposited. In the present invention, the base portion is also a part of the nanowire layer. The generated nanowire film was scratched with tweezers, peeled off from the substrate, dispersed in ethanol, placed on a Cu grid, and TEM-observed (Fig. 2-2d). It was confirmed that the nanowires were single crystals and that the nanowires grew parallel to the {010} plane.
 10mAcm-2の電流密度でアノード酸化を行うと30sから120sで表面に水酸化銅ナノワイヤ(図2-3)が試料表面を覆い、表面の色が、酸化時間が長くなるにつれて水酸化銅の青色が濃くなった。一方、10sのアノード酸化では、表面は褐色であり、表面にはナノ粒子状の生成物がみられる。Raman分光法によるアノード酸化皮膜の同定を行ったところ(図2-4)、10sで生成する非常に薄い皮膜はCuOであり、このCuOがナノワイヤ層の前駆体となり、その後Cu(OH)のナノワイヤ層が生成していることが明らかとなった。アノード酸化によって銅基板がCuOに酸化されるとともにCu2+が溶出し、その後溶出したCu2+がCu(OH)としてナノワイヤ形状で再析出してナノワイヤ層が形成したと推察される。 When anodic oxidation is performed at a current density of 10 mAcm -2 , copper hydroxide nanowires (Fig. 2-3) cover the surface of the sample in 30 s to 120 s, and the surface color becomes blue as the oxidation time increases. Has become darker. On the other hand, in 10s of anodic oxidation, the surface is brown and nanoparticulate products are seen on the surface. When the anodic oxide film was identified by Raman spectroscopy (Fig. 2-4), the very thin film formed in 10s was Cu 2 O, and this Cu 2 O became a precursor of the nanowire layer, and then Cu ( It was clarified that a nanowire layer of OH) 2 was formed. It is presumed that the copper substrate was oxidized to Cu 2 O by anodic oxidation and Cu 2+ was eluted, and then the eluted Cu 2+ was reprecipitated as Cu (OH) 2 in the form of nanowires to form a nanowire layer.
(2)水素還元
 その後、Cu(OH)ナノワイヤ試料を300℃にて1時間水素還元を行うと、Cu(OH)ナノワイヤの形状をほぼ維持した状態で還元が起こり、金属銅ナノワイヤが表面を覆った(図2-5)。金属銅ナノワイヤの表面SEM観察から求まる表面密度は作製条件で異なる。3mAcm-2で900sアノード酸化した試料では約50%である(図2-5の3/900のSEM画像参照)。それに対し、10mAcm-2で120sアノード酸化試料での表面密度は約20%に留まっている(図2-5の10/120のSEM画像参照)。
(2) Hydrogen reduction After that, when the Cu (OH) 2 nanowire sample is hydrogen-reduced at 300 ° C. for 1 hour , the reduction occurs while maintaining the shape of the Cu (OH) 2 nanowires, and the metallic copper nanowires are surfaced. Was covered (Fig. 2-5). The surface density obtained from the surface SEM observation of metallic copper nanowires differs depending on the fabrication conditions. It is about 50% in the sample anodic oxidized at 3 mAcm -2 for 900 s (see the SEM image of 3/900 in FIG. 2-5). On the other hand, at 10 mAcm-2 , the surface density of the 120 s anodic oxide sample remained at about 20% (see the SEM image of 10/120 in FIG. 2-5).
 還元前後のXRDパターンを図2-6に示す。いずれも還元前にあった水酸化銅のピークが還元後には消失している。このことから還元が適切に行われて金属銅ナノワイヤ層が得られていることがわかる。また、10mAcm-2でアノード酸化した試料の水酸化物ピークは3mAcm-2でアノード酸化した試料よりも弱いことから、金属銅ナノワイヤ層は薄いことがわかる。 The XRD pattern before and after the reduction is shown in FIG. 2-6. In both cases, the peak of copper hydroxide that was before the reduction disappeared after the reduction. From this, it can be seen that the reduction is appropriately performed to obtain the metallic copper nanowire layer. Further, the hydroxide peaks of samples anodized in 10MAcm -2 from weaker than samples anodized in 3MAcm -2, metallic copper nanowires layer is seen thinner.
 還元前後の試料に対して、ステアリン酸(SA)または1H、1H、2H、2H-ペルフルオロデカンチオール(PFDT)コーティングを施し、前進接触角、後退接触角及びヒステリシス(CAH)を測定した。その結果、ナノワイヤ層が表面に析出した試料は還元前後で接触角が全て150°を超え超撥水性を示した(表2)。 The samples before and after the reduction were coated with stearic acid (SA) or 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT), and the forward contact angle, receding contact angle and hysteresis (CAH) were measured. As a result, the samples in which the nanowire layer was precipitated on the surface showed superhydrophobicity with all contact angles exceeding 150 ° before and after reduction (Table 2).
 また電流密度を3mAcm-2で900sアノード酸化を行ったところ10 mAcm-2の時と比べて還元前はワイヤの形状に大きな違いはないが、還元後はナノワイヤの表面密度が3mAcm-2の方が大きいことが明らかとなった(前出の図2-5参照)。 In addition, when the current density was anodic oxidized at 3 mAcm -2 for 900 s, there was no significant difference in the shape of the wire before reduction compared to the case of 10 mA cm -2 , but after reduction, the surface density of the nanowire was 3 mA cm -2 . Was found to be large (see Figure 2-5 above).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(3)結露試験
 この3mAcm-2で900sアノード酸化を行い(図2-5及び表2中の3/900試料)かつSAまたはPFDTコーティングを行った試料について、20℃、湿度60%の恒温恒湿槽の中にペルチェ素子置いてその上に試料を置き、ペルチェステージの温度を0℃にすることで結露試験を行った。その際、ペルチェステージを約20°傾斜させて設置した。その結果(写真)を図2-7に示す。
(3) Condensation test A constant temperature constant at 20 ° C. and 60% humidity for a sample subjected to 900s anodic oxidation at 3mAcm-2 (3/900 sample in Fig. 2-5 and Table 2) and SA or PFDT coating. A dew condensation test was carried out by placing a Perche element in a wet bath, placing a sample on it, and setting the temperature of the Perche stage to 0 ° C. At that time, the Perche stage was installed at an angle of about 20 °. The result (photograph) is shown in FIG. 2-7.
 水素還元前の試料では、SAコーティング試料の方がPFDTコーティング試料より水滴が少なかった。しかし、水素還元後の試料では、SAコーティング試料に比べてPFDTコーティング試料の方が遥かに水滴の付着が少なく、水滴が表面から落下しており、排水性に優れていることが分かる。即ち、本発明の部材であるPFDTコーティング試料は、水膜生成抑制の効果が大きいことがわかった。この結果は、金属表面(還元後)と水酸化物表面(還元前)でコーティングの撥水性及び排水性に対する影響が異なり、金属表面(還元後)においては、親和性基がチオールであるPFDTが有効であることが分かる。 In the sample before hydrogen reduction, the SA-coated sample had fewer water droplets than the PFDT-coated sample. However, in the sample after hydrogen reduction, it can be seen that the PFDT-coated sample has far less adhesion of water droplets than the SA-coated sample, and the water droplets have fallen from the surface, and the drainage property is excellent. That is, it was found that the PFDT-coated sample, which is a member of the present invention, has a large effect of suppressing water film formation. This result shows that the effect of the coating on water repellency and drainage is different between the metal surface (after reduction) and the hydroxide surface (before reduction), and on the metal surface (after reduction), PFDT having an affinity group of thiol is used. It turns out to be valid.
 また、10mAcm-2で120sアノード酸化した試料(図2-5及び表2中の10/120試料)について、同じように結露試験を行った結果を図2-8に示す。水素還元前のSAコーティングは、図2-7の3mAcm-2で900sアノード酸化した試料よりも結露が多い。水素還元後のPFDTコーティング試料は、図2-7の3mAcm-2で900sアノード酸化した試料(3/900試料)よりも結露が多いが、SAコーティング試料よりは、表面に残存する水滴量は少ないことが分かる。図2-5の表面SEM写真から、3/900試料のナノワイヤの表面密度は約50%と見積もられ、10/120試料のナノワイヤの表面密度は約20%と見積もられたことを考慮すると、ナノワイヤの表面密度が多い試料ほど、結露した水滴の排水性に優れていると判断できる。 Further, FIG. 2-8 shows the results of the same dew condensation test on the samples (10/120 samples in FIGS. 2-5 and Table 2) that were anodic oxidized at 10 mAcm-2 for 120 s. The SA coating before hydrogen reduction has more condensation than the sample anodic oxidized at 3 mAcm-2 in FIG. 2-7 for 900 s. The PFDT-coated sample after hydrogen reduction has more dew condensation than the sample (3/900 sample) anodic-oxidized at 3 mAcm-2 in Fig. 2-7, but the amount of water droplets remaining on the surface is smaller than that of the SA-coated sample. You can see that. Considering that the surface density of the nanowires of the 3/900 sample was estimated to be about 50% and the surface density of the nanowires of the 10/120 sample was estimated to be about 20% from the surface SEM photograph of FIG. 2-5. It can be judged that the higher the surface density of the nanowires, the better the drainage property of the condensed water droplets.
(4)熱伝導性試験
 最後に、3mAcm-2で900sアノード酸化した試料(3/900試料)の水素還元前のSAコーティング試料(比較例)と、3mAcm-2で900sアノード酸化した試料(3/900試料)の水素還元後のPFDTコーティング試料(本発明の試料)の超撥水表面に水を載せ、試料をペルチェステージ上で-20℃に冷却したときの水の氷への変化速度を評価した。その結果を図2-9に示す。比較例の超撥水Cu(OH)ナノワイヤ表面では水が氷になるのに15分程度要したのに対し、本発明の試料であるCuメタルナノワイヤ超撥水表面では、わずか5分で水が凍結し氷になった。本発明の試料は、超撥水Cu(OH)ナノワイヤ表面に比べて熱伝導性が大幅に改善していることが確認された。
(4) Thermal conductivity test Finally, a SA-coated sample (comparative example) before hydrogen reduction of a sample (3/900 sample) anodic-oxidized at 3 mAcm -2 for 900 s and a sample (3/900 sample) anodic-oxidized at 3 mA cm -2 for 900 s. The rate of change of water to ice when water is placed on the super-water-repellent surface of the PFDT-coated sample (sample of the present invention) after hydrogen reduction of the / 900 sample) and the sample is cooled to -20 ° C on the Perche stage. evaluated. The results are shown in Fig. 2-9. On the surface of the superhydrophobic Cu (OH) 2 nanowire of the comparative example, it took about 15 minutes for the water to turn into ice, whereas on the surface of the superhydrophobic Cu metal nanowire, which is the sample of the present invention, water took only 5 minutes. Frozen and turned into ice. It was confirmed that the sample of the present invention had significantly improved thermal conductivity as compared with the surface of superhydrophobic Cu (OH) 2 nanowires.
 実施例2に示したアノード酸化法により作製したナノワイヤ層は、水酸化銅ナノワイヤ生成時にガス発生を伴うので、アノード酸化の条件によりナノワイヤ層と基板との間にクラックなどの欠陥が生じやすく、ナノワイヤ層の基板への密着性は、実施例1に示した浸漬法により作製したナノワイヤ層に比べて相対的に弱い場合があると推察される。それに対して浸漬法により作製したナノワイヤ層は、水酸化銅ナノワイヤ層形成の際にガス発生を伴わないため、ガス発生がないことから製造の過程でナノワイヤ層と基板との密着性を劣化させる要因は少なく、アノード酸化法により作製したナノワイヤ層 に比べてナノワイヤ層と基板との密着性に優れる可能性がある。 Since the nanowire layer produced by the anodic oxidation method shown in Example 2 is accompanied by gas generation during the formation of copper hydroxide nanowires, defects such as cracks are likely to occur between the nanowire layer and the substrate depending on the anodic oxidation conditions, and the nanowires. It is presumed that the adhesion of the layer to the substrate may be relatively weaker than that of the nanowire layer produced by the dipping method shown in Example 1. On the other hand, the nanowire layer produced by the dipping method does not generate gas when forming the copper hydroxide nanowire layer, and therefore does not generate gas, which is a factor that deteriorates the adhesion between the nanowire layer and the substrate in the manufacturing process. There is a possibility that the adhesion between the nanowire layer and the substrate is superior to that of the nanowire layer produced by the anodic oxidation method.
 本発明は、超撥水性表面を有する部材に関連する技術分野に有用である。
 
The present invention is useful in the technical field related to members having a superhydrophobic surface.

Claims (18)

  1. 基材表面に金属銅ナノワイヤ層及び有機物コーティング層をこの順に有する超撥水性表面部材であって、
    有機物コーティング層は、金属銅に対する親和性基を介して金属銅ナノワイヤ層に固定化されている、前記超撥水性表面部材。
    A superhydrophobic surface member having a metallic copper nanowire layer and an organic material coating layer on the surface of the base material in this order.
    The superhydrophobic surface member, wherein the organic coating layer is immobilized on the metallic copper nanowire layer via an affinity group for metallic copper.
  2. 金属銅ナノワイヤ層のナノワイヤは、表面SEM画像で観察される直径が1~500nmの範囲である、請求項1に記載の超撥水性表面部材。 The superhydrophobic surface member according to claim 1, wherein the nanowire of the metal copper nanowire layer has a diameter in the range of 1 to 500 nm observed in a surface SEM image.
  3. 金属銅ナノワイヤ層の表面SEM画像で求まる表面密度は10~90%である、請求項1又は2に記載の超撥水性表面部材。 The superhydrophobic surface member according to claim 1 or 2, wherein the surface density obtained by the surface SEM image of the metallic copper nanowire layer is 10 to 90%.
  4. 金属銅ナノワイヤ層の厚みは、1~20μmの範囲である請求項1~3のいずれかに記載の超撥水性表面部材。 The superhydrophobic surface member according to any one of claims 1 to 3, wherein the thickness of the metallic copper nanowire layer is in the range of 1 to 20 μm.
  5. 超撥水性表面部材の超撥水性表面は、前進接触角及び後退接触角がそれぞれ150°以上である、請求項1~4のいずれかに記載の超撥水性表面部材。 The superhydrophobic surface member according to any one of claims 1 to 4, wherein the superhydrophobic surface of the superhydrophobic surface member has a forward contact angle and a receding contact angle of 150 ° or more, respectively.
  6. 超撥水性表面部材の超撥水性表面は、平滑表面または規則的又は不規則な凹凸を有する表面である、請求項1~5のいずれかに記載の超撥水性表面部材。 The superhydrophobic surface member according to any one of claims 1 to 5, wherein the superhydrophobic surface of the superhydrophobic surface member is a smooth surface or a surface having regular or irregular irregularities.
  7. 基材表面に金属銅ナノワイヤ層を有する、金属銅表面部材。 A metallic copper surface member having a metallic copper nanowire layer on the surface of a base material.
  8. 金属銅ナノワイヤ層のナノワイヤは、表面SEM画像で観察される直径が1~500nmの範囲である、請求項7に記載の金属銅表面部材。 The metal copper surface member according to claim 7, wherein the nanowire of the metal copper nanowire layer has a diameter in the range of 1 to 500 nm observed in a surface SEM image.
  9. 金属銅ナノワイヤ層の表面SEM画像で求まる表面密度は10~90%である、請求項7又は8に記載の金属銅表面部材。 The metallic copper surface member according to claim 7 or 8, wherein the surface density obtained by the surface SEM image of the metallic copper nanowire layer is 10 to 90%.
  10. 金属銅製基材又は金属銅製表面を有する基材の表面に水酸化銅ナノワイヤの層を形成する工程、水酸化銅ナノワイヤの層を還元して金属銅ナノワイヤ層を形成する工程、及び金属銅ナノワイヤ層の表面に有機物コーティングを形成して超撥水性表面部材を得る工程を含む、超撥水性表面部材の製造方法。 A step of forming a layer of copper hydroxide nanowires on the surface of a metallic copper base material or a base material having a metallic copper surface, a step of reducing a layer of copper hydroxide nanowires to form a metallic copper nanowire layer, and a metallic copper nanowire layer. A method for producing a super-water-repellent surface member, which comprises a step of forming an organic coating on the surface of the surface to obtain a super-water-repellent surface member.
  11. 水酸化銅ナノワイヤの層を形成する工程は、(A)酸化剤を含有するアルカリ性水溶液に浸漬して、表面に水酸化銅ナノワイヤの層を形成する工程であるか、または(B)アルカリ性水溶液中でアノード酸化して、表面に水酸化銅ナノワイヤの層を形成する工程である、請求項10に記載の製造方法。 The step of forming the layer of copper hydroxide nanowire is (A) a step of immersing in an alkaline aqueous solution containing an oxidizing agent to form a layer of copper hydroxide nanowire on the surface, or (B) in an alkaline aqueous solution. The production method according to claim 10, which is a step of forming a layer of copper hydroxide nanowires on the surface by oxidizing with an alkali.
  12. 酸化剤がペルオキソ二硫酸アンモニウムである請求項11に記載の製造方法。 The production method according to claim 11, wherein the oxidizing agent is ammonium peroxodisulfate.
  13. 有機物コーティングの形成は、金属銅に対する親和性基を有する有機化合物を金属銅ナノワイヤ層表面に被覆することで行う、請求項10~12のいずれかに記載の製造方法。 The production method according to any one of claims 10 to 12, wherein the formation of the organic material coating is carried out by coating the surface of the metallic copper nanowire layer with an organic compound having an affinity group for metallic copper.
  14. 金属銅製基材又は金属銅製表面を有する基材の表面に水酸化銅ナノワイヤの層を形成する工程、及び水酸化銅ナノワイヤの層を還元して金属銅ナノワイヤ層を形成して金属銅表面部材を得る工程を含む、金属銅表面部材の製造方法。 A step of forming a layer of copper hydroxide nanowires on the surface of a metallic copper base material or a base material having a metallic copper surface, and reducing the layer of copper hydroxide nanowires to form a metallic copper nanowire layer to form a metallic copper surface member. A method for manufacturing a metallic copper surface member, which comprises a step of obtaining.
  15. 水酸化銅ナノワイヤの層を形成する工程は、(A)酸化剤を含有するアルカリ性水溶液に浸漬して、表面に水酸化銅ナノワイヤの層を形成する工程であるか、または(B)アルカリ性水溶液中でアノード酸化して、表面に水酸化銅ナノワイヤの層を形成する工程である、請求項14に記載の製造方法。 The step of forming the layer of copper hydroxide nanowire is (A) a step of immersing in an alkaline aqueous solution containing an oxidizing agent to form a layer of copper hydroxide nanowire on the surface, or (B) in an alkaline aqueous solution. The production method according to claim 14, which is a step of forming a layer of copper hydroxide nanowires on the surface by oxidizing with an alkali.
  16. 酸化剤がペルオキソ二硫酸アンモニウムである請求項15に記載の製造方法。 The production method according to claim 15, wherein the oxidizing agent is ammonium peroxodisulfate.
  17. アルカリ性水溶液がアルカリ金属水酸化物水溶液である、請求項11~16のいずれかに記載の製造方法。 The production method according to any one of claims 11 to 16, wherein the alkaline aqueous solution is an alkali metal hydroxide aqueous solution.
  18. 水酸化銅ナノワイヤ層の還元は水素還元である、請求項10~17のいずれかに記載の製造方法。 The production method according to any one of claims 10 to 17, wherein the reduction of the copper hydroxide nanowire layer is hydrogen reduction.
PCT/JP2021/000464 2020-01-09 2021-01-08 Super-water-repellent surface member, metal copper surface member, and method for manufacturing same WO2021141109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021570105A JPWO2021141109A1 (en) 2020-01-09 2021-01-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-002362 2020-01-09
JP2020002362 2020-01-09

Publications (1)

Publication Number Publication Date
WO2021141109A1 true WO2021141109A1 (en) 2021-07-15

Family

ID=76788626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000464 WO2021141109A1 (en) 2020-01-09 2021-01-08 Super-water-repellent surface member, metal copper surface member, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2021141109A1 (en)
WO (1) WO2021141109A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074710A (en) * 2022-04-26 2022-09-20 珠海鹏辉能源有限公司 Preparation method of super-hydrophobic structural material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513220A (en) * 2009-12-07 2013-04-18 デューク ユニバーシティ Compositions and methods for growing copper nanowires
CN104626680A (en) * 2015-03-03 2015-05-20 中国科学院上海硅酸盐研究所 Composite black titanium dioxide film and preparation method thereof
CN109108276A (en) * 2017-06-23 2019-01-01 北京纳米能源与系统研究所 Nano line electrode material and its preparation method and application
JP2019067760A (en) * 2017-09-28 2019-04-25 ユニチカ株式会社 Metal nanowire dispersion liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513220A (en) * 2009-12-07 2013-04-18 デューク ユニバーシティ Compositions and methods for growing copper nanowires
CN104626680A (en) * 2015-03-03 2015-05-20 中国科学院上海硅酸盐研究所 Composite black titanium dioxide film and preparation method thereof
CN109108276A (en) * 2017-06-23 2019-01-01 北京纳米能源与系统研究所 Nano line electrode material and its preparation method and application
JP2019067760A (en) * 2017-09-28 2019-04-25 ユニチカ株式会社 Metal nanowire dispersion liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074710A (en) * 2022-04-26 2022-09-20 珠海鹏辉能源有限公司 Preparation method of super-hydrophobic structural material

Also Published As

Publication number Publication date
JPWO2021141109A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
Xiao et al. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion
Shin et al. Nanoporous structures prepared by an electrochemical deposition process
JP7224068B2 (en) Method for producing anodic oxide film of 5000 series aluminum alloy having hydrophobic surface of pillar-on-pore structure
Zhao et al. Electrochemical synthesis of ordered CdTe nanowire arrays
JP6022087B2 (en) Carbon-coated thermal conductive material
Bocchetta et al. Microporous alumina membranes electrochemically grown
Li et al. Multipurpose surface functionalization on AZ31 magnesium alloys by atomic layer deposition: tailoring the corrosion resistance and electrical performance
WO2021141109A1 (en) Super-water-repellent surface member, metal copper surface member, and method for manufacturing same
Liang et al. Fabrication and corrosion resistance of superhydrophobic hydroxide zinc carbonate film on aluminum substrates
Raj et al. Comparative study of formation and corrosion performance of porous alumina and ceramic nanorods formed in different electrolytes by anodization
Gam-Derouich et al. Diazonium salt chemistry for the design of nano-textured anti-icing surfaces
Yamamoto et al. Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity
US8642187B2 (en) Structural member to be used in apparatus for manufacturing semiconductor or flat display, and method for producing the same
JPH08246163A (en) Method for imparting liquid pepellency to metallic surface
Zhao et al. Preparation and self-lubrication treatment of ordered porous anodic alumina film
CN1271248C (en) Production process of alumina template with nano holes
JP5812342B2 (en) Method for producing graphite film
JP2000239895A (en) Aluminum surface treated material excellent in water repellent property and its production
JP7421490B2 (en) Carbon-based composite material
Daroonparvar et al. Fabrication and Corrosion Resistance Evaluation of Novel Epoxy/Oxide Layer (MgO) Coating on Mg Alloy
KR102179028B1 (en) Method for superhydrophobic surface of the outer panel or component for heat exchanger
KR100819870B1 (en) Preparation method of vanadium penoxide thin films having mesoporous structure by electrochemical deposition and vanadium penoxide thin films prepared using the same
JP5591763B2 (en) Method for producing porous silicon
CN112981305A (en) Corrosion-resistant material and preparation method and application thereof
KR101465562B1 (en) Processing method for superhydrophobic copper substrate surface and copper substrate having the superhydrophobic surface prepared with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738835

Country of ref document: EP

Kind code of ref document: A1