WO2021141032A1 - 生体情報計測装置 - Google Patents

生体情報計測装置 Download PDF

Info

Publication number
WO2021141032A1
WO2021141032A1 PCT/JP2021/000146 JP2021000146W WO2021141032A1 WO 2021141032 A1 WO2021141032 A1 WO 2021141032A1 JP 2021000146 W JP2021000146 W JP 2021000146W WO 2021141032 A1 WO2021141032 A1 WO 2021141032A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
contact
measuring device
differential amplifier
measurement
Prior art date
Application number
PCT/JP2021/000146
Other languages
English (en)
French (fr)
Inventor
小野 健児
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to CN202180006981.9A priority Critical patent/CN114786581A/zh
Priority to DE112021000192.2T priority patent/DE112021000192T5/de
Publication of WO2021141032A1 publication Critical patent/WO2021141032A1/ja
Priority to US17/810,754 priority patent/US20220346718A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/308Input circuits therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053

Definitions

  • the present invention belongs to the technical field related to healthcare, and particularly relates to a biometric information measuring device.
  • biological information information on an individual's body and health
  • biological information such as blood pressure value and electrocardiographic waveform
  • blood pressure value and electrocardiographic waveform is measured by a measuring device, and the measurement result is recorded and analyzed by an information terminal to manage health. What you do is becoming widespread.
  • a portable electrocardiographic measuring device that immediately measures the electrocardiographic waveform when an abnormality such as chest pain or palpitation occurs in daily life has been proposed, and early detection of heart disease or It is expected to contribute to appropriate treatment (for example, Patent Document 1).
  • Patent Document 1 discloses a portable electrocardiograph in which the main body is provided with three electrodes for measurement.
  • the baseline sway of the electrocardiographic signal due to the pressure change of the hand holding the main body is prevented.
  • a technique for obtaining an accurate electrocardiographic signal has been proposed. Specifically, a third measurement electrode having a part of the hand holding the electrocardiograph as a reference potential is provided, and the potential difference between the third measurement electrode and the first measurement electrode in contact with the chest is defined as a potential difference. It is described that the difference between the third measurement electrode and the potential difference between the second measurement electrode in which the gripped hand comes into contact is amplified as an electrocardiographic signal.
  • the present invention performs measurement only when all the three electrodes are in appropriate contact with the measurement target.
  • the purpose is to provide a technology that enables accurate measurement of biological information.
  • the biological information measuring device is A biometric information measuring device comprising a first electrode, a second electrode, and a third electrode, and measuring biometric information to be measured based on a potential difference between the first electrode and the second electrode.
  • An electrode contact detecting means that detects and outputs a state in which the first electrode, the second electrode, and the third electrode are all in contact with the surface of the measurement target.
  • the electrode contact detecting means includes a control means for executing a measurement process for measuring the biological information.
  • a bias power supply that applies a voltage to each of the first electrode and the second electrode so that the first electrode and the second electrode have a contact detection potential higher than that of the third electrode.
  • a first comparator and a second comparator which are connected to each of the first electrode and the second electrode and compare the contact detection potential with the potentials of the first electrode and the second electrode, respectively. Based on the outputs of the first comparator and the second comparator, all the electrodes of the first electrode, the second electrode, and the third electrode are in contact with the surface of the measurement target. It is equipped with a contact state determination unit that determines whether or not there is a contact state.
  • the control means When the electrode contact detecting means outputs that all the electrodes of the first electrode, the second electrode, and the third electrode are in contact with the surface of the measurement target, the first electrode The second electrode and the bias power supply are released, and the measurement process is executed.
  • the bias power supply may be a common power supply for the first electrode and the second electrode, or may be a separate power supply for each electrode.
  • control means performs a process of turning off the bias power supply from the circuit before executing the measurement process, noise generated by the connection of the power supply can be eliminated.
  • the third electrode is a ground electrode, and the third electrode is a ground electrode. It is provided with a first differential amplifier which is connected to the first electrode and the second electrode and amplifies and outputs a potential difference between the first electrode and the second electrode.
  • the control means may be one that measures the biological information of the measurement target based on the output of the first differential amplifier.
  • the AD (Analog to Digital) converter of the signal and the ground (GND) can be shared, and it becomes easy to remove the in-phase noise of the signal at the time of AD conversion.
  • a second differential amplifier which is connected to the first electrode and the third electrode and amplifies and outputs the potential difference between the first electrode and the third electrode.
  • a third differential amplifier that is connected to the second electrode and the third electrode and amplifies and outputs the potential difference between the second electrode and the third electrode. It is connected to the output side of the second differential amplifier and the third differential amplifier, and amplifies and outputs the potential difference between the output voltage of the second differential amplifier and the output voltage of the third differential amplifier. Equipped with a 4th differential amplifier
  • the control means may be one that measures the biological information of the measurement target based on the output of the fourth differential amplifier.
  • the biometric information may be an electrocardiographic waveform, that is, the biometric information measuring device may be an electrocardiograph. Since it is necessary to measure more delicate changes in the signal in the measurement of the electrocardiographic waveform, it is suitable for applying the present invention capable of obtaining a highly accurate signal with less noise.
  • a biometric information measuring device using three or more electrodes it is possible to perform measurement only when all the three electrodes are in appropriate contact with the measurement target, and the biometric information can be accurately measured. It is possible to provide a technology that can measure.
  • FIG. 1 is a six-view view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1A is a front view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1B is a rear view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1C is a left side view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1D is a right side view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1E is a plan view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1F is a bottom view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1A is a front view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1B is a rear view showing the configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 1C is a left
  • FIG. 2 is a block diagram illustrating a functional configuration of the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 3 is a circuit diagram showing a part of the electric circuit configuration of the portable electrocardiographic measuring device according to the first embodiment.
  • FIG. 4 is a flowchart showing the flow of the electrocardiographic waveform measurement process in the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 5 is a flowchart showing a subroutine that performs electrode contact detection processing in the portable electrocardiographic measuring device according to the embodiment.
  • FIG. 6 is a circuit diagram showing a part of the electric circuit configuration of the portable electrocardiographic measuring device according to the modified example.
  • FIG. 1 is a diagram showing a configuration of a portable electrocardiograph 10 in the present embodiment.
  • 1A is a front view showing the front of the main body, similarly, FIG. 1B is a rear view, FIG. 1C is a left side view, FIG. 1D is a right side view, FIG. 1E is a plan view, and FIG. 1F is a bottom view. ..
  • the bottom surface of the portable electrocardiograph 10 is provided with a left electrode 12a that contacts the left side of the body during electrocardiography measurement, and the upper surface side of the opposite side surface also contacts the middle phalanx of the index finger of the right hand.
  • a second right electrode 12c that brings the right electrode 12b into contact with the proximal phalanx of the index finger of the right hand is provided.
  • the portable electrocardiograph 10 is held by the right hand, and the index finger of the right hand is placed on the upper surface of the portable electrocardiograph 10 so as to make correct contact with the first right electrode 12b and the second right electrode 12c. ..
  • the left electrode is then brought into contact with the skin at a position corresponding to the desired measurement method.
  • the left electrode is placed on the palm of the left hand to make contact, and when measuring with the so-called V4 lead, the epigastric region of the left chest is slightly to the left and the skin below the nipple. Make contact.
  • various operation units and indicators are arranged on the left side surface of the portable electrocardiograph 10. Specifically, it includes a power switch 16, a power LED 16a, a BLE (Bluetooth (registered trademark) Low Energy) communication button 17, a BLE communication LED 17a, a memory remaining display LED 18, a battery replacement LED 19, and the like.
  • a power switch 16 a power LED 16a
  • BLE communication LED 17a a BLE communication LED 17a
  • memory remaining display LED 18 a battery replacement LED 19, and the like.
  • a measurement status notification LED 13 and an analysis result notification LED 14 are provided on the front surface of the portable electrocardiograph 10, and a battery storage port and a battery cover 15 are arranged on the back surface of the portable electrocardiograph 10. There is.
  • FIG. 2 shows a block diagram showing the functional configuration of the portable electrocardiograph 10.
  • the portable electrocardiograph 10 includes a control unit 101, an electrode unit 12, an amplifier unit 102, an AD conversion unit 103, a timer unit 104, a storage unit 105, a display unit 106, an operation unit 107, and a power supply unit 108.
  • the communication unit 109 is configured to include each functional unit of the analysis unit 110 and the contact detection unit 111.
  • the control unit 101 is a means for controlling the portable electrocardiograph 10, and includes, for example, a CPU (Central Processing Unit) and the like.
  • the control unit 101 controls each component of the portable electrocardiograph 10 so as to execute various processes such as electrocardiographic measurement and information communication according to a predetermined program. ..
  • the predetermined program is stored in the storage unit 105, which will be described later, and is read from here.
  • control unit 101 includes an analysis unit 110 that analyzes an electrocardiographic waveform as a functional module.
  • the analysis unit 110 analyzes the measured electrocardiographic waveform for the presence or absence of waveform disturbance, and outputs at least the result of whether or not the electrocardiographic waveform at the time of measurement is normal.
  • the electrode portion 12 includes a left side electrode 12a, a first right side electrode 12b, and a second right side electrode 12c, and functions as a sensor for detecting an electrocardiographic waveform.
  • the amplifier unit 102 has a function of amplifying a signal indicating an electrocardiographic waveform output from the electrode unit 12 as described later.
  • the AD conversion unit 103 has a function of converting an analog signal amplified by the amplifier 102 into a digital signal and transmitting the analog signal to the control unit 101.
  • the timer unit 104 has a function of measuring the time with reference to the RTC (Real Time Clock). For example, as will be described later, when the electrode contact detection process is performed, the time during which all the electrodes of the left electrode 12a, the first right electrode 12b, and the second right electrode 12c are in contact with the body is counted. In addition, the time until the end of measurement may be counted at the time of electrocardiographic measurement and output.
  • RTC Real Time Clock
  • the storage unit 105 is configured to include a main storage device such as a RAM (Random Access Memory), and stores various information such as an application program, a measured electrocardiographic waveform, and an analysis result. Further, in addition to the RAM, a long-term storage medium such as a flash memory may be provided.
  • a main storage device such as a RAM (Random Access Memory)
  • RAM Random Access Memory
  • a long-term storage medium such as a flash memory
  • the display unit 106 includes the above-mentioned power supply LED 16a, BLE communication LED 17a, memory remaining display LED 18, battery replacement LED 19, and the like, and transmits the state of the device to the user by lighting or blinking the LED.
  • the operation unit 107 includes a power switch 16, a communication button 17, and the like, and has a function of receiving an input operation from the user and causing the control unit 101 to execute a process according to the operation.
  • the power supply unit 108 is configured to include a battery that supplies electric power necessary for operating the device.
  • the battery may be a secondary battery such as a lithium ion battery, or may be a primary battery.
  • the communication unit 109 includes an antenna for wireless communication and has a function of communicating with other devices such as an information processing terminal by at least BLE communication. Further, it may be provided with a terminal for wired communication.
  • the contact detection unit 111 includes an electric circuit connected to the left side electrode 12a and the first right side electrode 12b, and all the electrodes of the left side electrode 12a, the first right side electrode 12b, and the second right side electrode 12c are correctly displayed on the body. It has a function to detect and output the state of being in contact with each part of.
  • the contact detection unit 111 will be described in detail with reference to FIG.
  • FIG. 3 is a circuit diagram illustrating an electric circuit constituting the contact detection unit 111.
  • the contact detection unit 111 is roughly based on the outputs of the left side detection unit 91 connected to the left side electrode 12a, the right side detection unit 92 connected to the first right side electrode 12b, and the left side detection unit 91 and the right side detection unit 92. It is configured to have a contact state determination unit 93 for determining whether or not all the electrodes are in contact.
  • the left side detector 91 includes a left side comparator 910, a left side bias power supply 911, a left side switching element 912, a left side pull-up resistor 913, a left side RC filter 914, a left side reference voltage power supply 915, and a left side reference voltage resistor 916a. It includes 916b and left-side hysteresis resistors 917a and 917b.
  • the left side bias power supply 911 applies a bias voltage (for example, about 3V) to the left side electrode 12a so that the left side electrode 12a has a bias potential higher than that of the second right side electrode 12c.
  • the left side switching element 912 is composed of, for example, a field effect transistor (FET) or the like, and the left side bias power supply 911 and the circuit are turned ON / OFF by the control of the control unit 101.
  • the left pull-up resistor 913 keeps the potential of the connected circuit high, and the left RC filter 914 removes high frequency components and inputs the voltage from the left bias power supply 911 to the-input terminal of the left comparator 910.
  • the potential input to the-input terminal of the left side comparator 910 is referred to as a left side bias potential.
  • a predetermined contact detection reference voltage (for example, about 1.5V) supplied from the left reference voltage power supply 915 and adjusted by the left reference voltage resistors 916a and 916b is input to the + input terminal of the left side comparator 910.
  • the potential input to the + input terminal of the left side comparator 910 is referred to as the left side detection reference potential.
  • the left side comparator 910 is composed of, for example, an operational amplifier, and outputs High when the left side bias potential is lowered by a predetermined hysteresis with respect to the left side detection reference potential. On the other hand, when the left bias potential is equal to or higher than the left detection reference potential, Low is output.
  • both the left electrode 12a and the second right electrode 12c are in correct contact with the skin of the body, a current flows through the impedance of the human body to the second right electrode 12c having a lower potential than the left electrode 12a, and the left side A voltage drop occurs in the pull-up resistor 913, and the left side bias potential drops. Then, the output of the left comparator 910 changes from Low to High.
  • the circuit shown by the broken line in the figure shows the path of the current via the impedance of the human body.
  • the right side detector 92 also includes a right side comparator 920, a right side bias power supply 921, a right side switching element 922, a right side pull-up resistor 923, a right side RC filter 924, and a right side reference voltage power supply 925.
  • the right side bias power supply 921 applies a bias voltage to the first right side electrode 12b so that the first right side electrode 12b has a bias potential higher than that of the second right side electrode 12c.
  • the configuration and function of each element of the right side detection unit 92 are the same as those of the left side detection unit 91 with respect to the first right side electrode 12b, detailed description thereof will be omitted.
  • the contact state determination unit 93 is composed of, for example, an AND circuit, and when both the left side comparator 910 and the right side comparator 920 output High, the left side electrode 12a, the first right side electrode 12b, and the second right side electrode 12c It is determined that all the electrodes of, are in the correct contact state, and that fact is output to the control unit 101.
  • the left electrode 12a is connected to the + input terminal of the differential amplifier 94
  • the first right electrode 12b is connected to the ⁇ input terminal of the differential amplifier 94
  • the second right side is connected.
  • the electrode 12c is connected to the GND.
  • the differential amplifier 94 amplifies and outputs the potential difference between the left side electrode 12a and the first right side electrode 12b, and the output is transmitted to the amplifier unit 102 and the AD conversion unit 103 via a filter circuit (not shown). Therefore, electrocardiographic measurement is performed.
  • FIG. 4 is a flowchart showing a processing procedure when performing electrocardiographic measurement using the portable electrocardiograph 10
  • FIG. 5 shows a subroutine that performs electrode contact detection processing in the portable electrocardiograph 10. It is a flowchart.
  • the user first operates the power switch 16 to turn on the power of the portable electrocardiograph 10 prior to the measurement. Then, the power LED 16a lights up to indicate that the power is on. Then, the portable electrocardiograph 10 is held by the right hand, the index finger of the right hand is brought into contact with the first right electrode 12b and the second right electrode 12c, and the left electrode 12a is brought into contact with the skin at the measurement site. Then, the control unit 101 detects the contact state for detecting the contact state of each electrode via the electrode unit 12 and the contact state detection unit 111 (S101).
  • step S101 when the power switch 16 is turned on, the control unit 101 turns on the left side switching element 912 and the right side switching element 922, and applies a bias voltage to the left side electrode 12a and the first right side electrode 12b (S201).
  • the left side comparator 910 and the right side comparator 920 all output High and are in contact with each other.
  • the determination unit 93 outputs to that effect to the control unit 101.
  • the High signal is continuously output for a predetermined time (for example, 3 seconds)
  • the control unit 101 measures the time in which all the electrodes are in contact in step S202, and the timer count value (hereinafter, contact). Reset (set to 0) the time count value.
  • step S203 when the control unit 101 determines that the left side electrode 12a, the first right side electrode 12b, and the second right side electrode 12c are in contact with the body, the process proceeds to step S204, and in that state, a predetermined state is determined. Determine if time has passed. On the other hand, if it is determined in step S203 that all the electrodes are not in correct contact, the process returns to step S202 to reset the contact time count value, and the subsequent processing is repeated.
  • step S204 If it is determined in step S204 that the predetermined time has not elapsed, the process returns to step S203 and the subsequent processing is repeated. On the other hand, if it is determined in step S204 that the predetermined time has elapsed, the left switching element 912 and the right switching element 922 are turned off to invalidate the pull-up resistor (step S205), and the subroutine is terminated.
  • step S102 the control unit 101 executes the actual electrocardiographic measurement process. While the electrocardiographic measurement is being performed, the control unit 101 stores the measured values in the storage unit 105 at any time, and blinks the measurement status notification LED 13 on the front of the main body at a predetermined rhythm to perform the electrocardiographic measurement. Is displayed (S103).
  • control unit 101 performs a process of determining whether or not the electrocardiographic measurement time has elapsed a predetermined measurement time (for example, 30 seconds) (step S104).
  • a predetermined measurement time for example, 30 seconds
  • the process returns to step S102 and the subsequent processes are repeated.
  • the measurement is terminated and the measurement status notification LED 13 is terminated from blinking (step S105).
  • the analysis unit 110 of the control unit 101 analyzes the measurement data (electrocardiographic waveform) stored in the storage unit 105 (S106), and the analysis result is stored in the long-term storage device together with the electrocardiographic waveform. (S107). Then, the control unit 101 displays the analysis result by the analysis result notification LED 14 (S108), and ends the series of processes.
  • the analysis result may be displayed, for example, the LED may be turned on only when an abnormality is found in the electrocardiographic waveform, or the LED may be turned on by a lighting / blinking method according to the analysis result. ..
  • the user after operating the power switch 16, the user starts the measurement without performing any operation other than contacting the electrode with the measurement site. At the same time, the measurement is not started unless all the electrodes are properly contacted, so that an accurate measurement result can be obtained.
  • the first right electrode 12b is connected to the GND and functions as a GND electrode, the signal AD converter and the GND can be shared, and it is easy to remove the common mode noise of the signal at the time of AD conversion. become.
  • the first right electrode 12b functions as a GND electrode, but it is not always necessary to have such a configuration.
  • FIG. 6 shows another configuration example of the portable electrocardiograph. The same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the portable electrocardiograph according to the present modification includes three differential amplifiers, a left-side differential amplifier 95a, a right-side differential amplifier 95b, and a left-right differential amplifier 95c.
  • the configuration is such that the electrocardiographic waveform is measured.
  • the left differential amplifier 95a the potential of the left electrode 12a is input to the + side input, the potential of the second right electrode 12c is input to the-side input, and these potential differences are output.
  • the right-side differential amplifier 95b the potential of the first right electrode 12b is input to the + side input, the potential of the second right electrode 12c is input to the-side input, and these potential differences are output.
  • the output potential of the left differential amplifier 95a is input to the + side input of the left and right differential amplifier 95c, the output potential of the right differential amplifier 95b is input to the-side input, and these potential differences are output. Then, the signal output from the left-right differential amplifier 95c is transmitted to the amplifier unit 102 and the AD conversion unit 103 via a filter circuit (not shown) to perform electrocardiographic measurement.
  • the second right electrode 12c is used as a reference electrode, and the potential difference between the left electrode 12a and the first right electrode 12b is amplified to obtain a signal. Therefore, when the signal is amplified, the common mode noise is generated. It can be easily removed.
  • the switching element in the above embodiment is not limited to FET, and the comparator and differential amplifier do not necessarily have to be operational amplifiers.
  • the electrocardiograph and other information terminal devices can be used in cooperation with each other by the BLE communication function by the communication unit 109. On the contrary, it is also possible to use an electrocardiograph that does not have a communication function or an LED display unit.
  • the present invention has been applied to a portable electrocardiograph in the above, it can be applied to a non-portable electrocardiograph, and can also be applied to other biometric devices such as a body composition analyzer. ..

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

第1電極と第2電極と第3電極と、前記電極の全てが計測対象の表面に接触している状態を検知して出力する電極接触検知手段と、生体情報の計測処理を実行する制御手段と、を有しており、前記電極接触検知手段は、前記第1電極及び前記第2電極のそれぞれに電圧を印加するバイアス用電源と、第1比較器及び第2比較器と、前記第1比較器及び前記第2比較器の出力に基づいて、前記全ての電極が、前記計測対象の表面に接触しているかを判定する、接触状態判定部と、を備え、前記制御手段は、前記全ての電極が前記計測対象の表面に接触している場合にのみ、前記バイアス用電源を開放する処理を実行し、計測処理を実行する。

Description

生体情報計測装置
 本発明は、ヘルスケア関連の技術分野に属し、特に、生体情報計測装置に関する。
 近年、血圧値、心電波形などの、個人の身体・健康に関する情報(以下、生体情報ともいう)を計測機器によって計測し、当該計測結果を情報端末で記録、分析することで、健康管理を行うことが普及しつつある。
 上記のような計測機器の一例として、日常生活において胸部の痛みや動悸などの異常発生時にすぐに心電波形を計測する携帯型の心電計測装置が提案されており、心疾患の早期発見や適切な治療への貢献が期待されている(例えば、特許文献1など)。
 特許文献1には、本体に測定用の3つの電極を備える携帯型心電計が開示されており、当該文献において、本体を把持する手の押圧変化による心電信号の基線動揺を防止し、正確な心電信号を得る技術が提案されている。具体的には、心電計を把持する手の一部を基準電位とする第3の測定電極を設け、該第3の測定電極と胸部に接触させた第1の測定電極間の電位差と、第3の測定電極と把持した手が接触する第2の測定電極間の電位差との差分を、心電信号として増幅する、ことが記載されている。
特開平9-56686号公報
 しかしながら、当該特許文献1に記載の技術によっても、3つの電極が正しく計測対象に接触されていない状態で計測を行った場合、電極と計測対象(の皮膚)との接触抵抗が十分に小さくならず、結局は正確な生体情報の計測ができないという問題がある。
 上記のような従来の技術に鑑み、本発明は、3つ以上の電極を用いる生体情報計測装置において、前記3つの電極の全てが適切に計測対象に接触している場合のみ計測を実行することを可能にし、精度よく生体情報を計測できる技術を提供することを目的とする。
 上記の課題を解決するため、本発明に係る生体情報計測装置は、
 第1電極と、第2電極と、第3電極と、を備え、前記第1電極と前記第2電極の電位差に基づいて計測対象の生体情報を計測する生体情報計測装置であって、
 前記第1電極、前記第2電極、前記第3電極の全てが前記計測対象の表面に接触している状態を検知して出力する、電極接触検知手段と、
 前記生体情報を計測する計測処理を実行する制御手段と、を有しており
 前記電極接触検知手段は、
 前記第1電極及び前記第2電極が、前記第3電極よりも高電位である接触検知電位になるように、前記第1電極及び前記第2電極のそれぞれに電圧を印加するバイアス用電源と、
 前記第1電極及び前記第2電極のそれぞれに接続され、前記接触検知電位と、前記第1電極、前記第2電極のそれぞれの電位と、を比較する第1比較器及び第2比較器と、
 前記第1比較器及び前記第2比較器の出力に基づいて、前記第1電極、前記第2電極、及び前記第3電極の全ての電極が、前記計測対象の表面に接触している状態であるか否かを判定する、接触状態判定部と、を備え、
 前記制御手段は、
 前記電極接触検知手段が、前記第1電極、前記第2電極、前記第3電極の全ての電極が前記計測対象の表面に接触している状態であることを出力した場合に、前記第1電極及び前記第2電極と、前記バイアス用電源とを開放する処理を実行し、前記計測処理を実行する、ことを特徴とする。
 ここで、前記バイアス用電源は前記第1電極と前記第2電極とで共通の電源であってもよいし、それぞれの電極に対する別個の電源であってもよい。
 上記のような構成により、3つの電極の全てが適切に計測対象の表面に接触しないと計測が開始されないため、S(Signal)/N(Noise)比の高い信号により精度よく生体情報を計測することが可能になる。また、前記制御手段は、前記計測処理を実行する前に前記バイアス用電源を回路からOFFする処理を行うため、当該電源が接続されていることにより発生するノイズを排除することができる。
 また、前記第3電極はグランド電極であって、
 前記第1電極と前記第2電極とに接続され、前記第1電極と前記第2電極間の電位差を増幅して出力する第1差動増幅器を、備えており、
 前記制御手段は、前記第1差動増幅器の出力に基づいて、前記計測対象の生体情報を計測する、ものであってもよい。
 このような構成であると、信号のAD(Analog to Digital)変換器とグランド(GND)を共通にすることができ、AD変換時に信号の同相ノイズを除去することが容易になる。
 また、前記第1電極と前記第3電極とに接続され、前記第1電極と前記第3電極間の電位差を増幅して出力する第2差動増幅器と、
 前記第2電極と前記第3電極とに接続され、前記第2電極と前記第3電極間の電位差を増幅して出力する第3差動増幅器と、
 前記第2差動増幅器及び前記第3差動増幅器の出力側に接続され、前記第2差動増幅器の出力電圧と、前記第3差動増幅器の出力電圧との電位差を増幅して出力する、第4差動増幅器と、を備え、
 前記制御手段は、前記第4差動増幅器の出力に基づいて、前記計測対象の生体情報を計測する、ものであってもよい。
 このような構成であると、前記第4差動増幅器が出力するアナログ信号を増幅する際に、信号の同相ノイズを容易に除去することができる。
 また、前記生体情報は心電波形、即ち前記生体情報計測装置は心電計であってもよい。心電波形の計測においては、より繊細な信号の変化を計測する必要があるため、ノイズが少なく、精度の高い信号を得ることができる本願発明を適用するのに好適である。
 本発明によれば、3つ以上の電極を用いる生体情報計測装置において、前記3つの電極の全てが適切に計測対象に接触している場合のみ計測を実行することを可能にし、精度よく生体情報を計測できる技術を提供することができる。
図1は、実施形態に係る携帯型心電計測装置の構成を示す六面図である。図1Aは、実施形態に係る携帯型心電計測装置の構成を示す正面図である。図1Bは、実施形態に係る携帯型心電計測装置の構成を示す背面図である。図1Cは、実施形態に係る携帯型心電計測装置の構成を示す左側面図である。図1Dは、実施形態に係る携帯型心電計測装置の構成を示す右側面図である。図1Eは、実施形態に係る携帯型心電計測装置の構成を示す平面図である。図1Fは、実施形態に係る携帯型心電計測装置の構成を示す底面図である。 図2は、実施形態に係る携帯型心電計測装置の機能構成を説明するブロック図である。 図3は、第1の実施形態に係る携帯型心電計測装置の電気回路構成の一部を示す回路図である。 図4は、実施形態に係る携帯型心電計測装置における心電波形計測処理の流れを示すフローチャートである。 図5は、実施形態に係る携帯型心電計測装置において電極接触検知の処理を行うサブルーチンを示すフローチャートである。 図6は、変形例に係る携帯型心電計測装置の電気回路構成の一部を示す回路図である。
 <実施形態1>
 以下、本発明の具体的な実施形態について図面に基づいて説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (心電計測装置)
 図1は、本実施形態における携帯型心電計10の構成を示す図である。図1Aは本体の正面を示す正面図であり、同様に図1Bは背面図、図1C左側面図、図1Dは右側面図、図1Eは平面図、図1Fは底面図、となっている。
 携帯型心電計10の底面には、心電計測時に身体の左側に接触させる左側電極12aが設けられており、反対側面の上面側には、同様に右手人差し指の中節を接触させる第一右側電極12bと、右手人指し指の基節を接触させる第二右側電極12cが設けられている。
 心電計測時には、右手で携帯型心電計10を保持し、右手人差し指を、第一右側電極12b、第二右側電極12cに正しく接触するように携帯型心電計10の上面部に配置する。そのうえで、左側電極を所望の計測法に対応する位置の皮膚に接触させる。例えば、いわゆるI誘導で計測を行う場合には、左側電極を左手の掌に当てて接触させ、いわゆるV4誘導で計測を行う場合には、左胸部の心窩部やや左方・乳頭下方の肌に接触させる。
 また、携帯型心電計10の左側面には各種の操作部、及びインジケータが配置されている。具体的には、電源スイッチ16、電源LED16a、BLE(Bluetooth(登録商標) Low Energy)通信ボタン17、BLE通信LED17a、メモリー残表示LED18、電池交換LED19、等を備えている。
 また、携帯型心電計10の正面には、計測状態通知LED13、解析結果通知LED14、が設けられ、携帯型心電計10の背面には、バッテリーの収容口、電池カバー15が配置されている。
 また、図2には携帯型心電計10の機能構成を示すブロック図が記載されている。図2に示すように、携帯型心電計10は制御部101、電極部12、アンプ部102、AD変換部103、タイマ部104、記憶部105、表示部106、操作部107、電源部108、通信部109の、解析部110、接触検知部111の各機能部を備える構成となっている。
 制御部101は、携帯型心電計10の制御を司る手段であり、例えば、CPU(Central Processing Unit)などを含んで構成される。制御部101は、操作部107を介してユーザーの操作を受け付けると、所定のプログラムに従って心電計測、情報通信など各種の処理を実行するように携帯型心電計10の各構成要素を制御する。なお、所定のプログラムは後述の記憶部105に保存され、ここから読み出される。
 また、制御部101は、機能モジュールとして、心電波形の解析を行う解析部110を備えている。解析部110は計測された心電波形について、波形の乱れの有無などを解析し、少なくとも計測時の心電波形が正常か否かの結果をアウトプットする。
 電極部12は、左側電極12a、第一右側電極12b、第二右側電極12cからなり、心電波形を検出するセンサとして機能する。アンプ部102は、後述するように電極部12から出力された心電波形を示す信号を増幅する機能を有している。AD変換部103は、アンプ102で増幅されたアナログ信号をデジタル信号に変換し、制御部101へ伝送する機能を有している。
 タイマ部104はRTC(Real Time Clock)を参照して、時間を計測する機能を有している。例えば、後述するように、電極接触検知の処理を行う際、左側電極12a、第一右側電極12b、第二右側電極12cの全ての電極が身体に接触している時間をカウントする。また、心電計測時に計測終了までの時間をカウントし、これをアウトプットしてもよい。
 記憶部105は、RAM(Random Access Memory)などの主記憶装置を含んで構成され、アプリケーションプログラム、計測心電波形、解析結果などの各種の情報を記憶する。また、RAMに加えて、例えばフラッシュメモリなどの長期記憶媒体を備えていても良い。
 表示部106は、前述の電源LED16a、BLE通信LED17a、メモリー残表示LED18、電池交換LED19などを含んで構成され、LEDの点灯、点滅などによって装置の状態をユーザーに伝達する。また、操作部107は、電源スイッチ16、通信ボタン17等を含み、ユーザーからの入力操作を受け付け、制御部101に操作に応じた処理を実行させるための機能を有する。
 電源部108は、装置の稼働に必要な電力を供給するバッテリーを含んで構成される。バッテリーは、例えばリチウムイオンバッテリーなどの二次電池であっても良いし、一次電池としても良い。
 通信部109は、無線通信用のアンテナを含み、少なくともBLE通信により、情報処理端末などの他の機器と通信する機能を有する。また、有線による通信のための端子を備えていても良い。
 接触検知部111は、左側電極12a及び第一右側電極12bと接続される電気回路を含んで構成され、左側電極12a、第一右側電極12b、第二右側電極12cの全ての電極が、正しく身体の各部位に接触されている状態を検知して出力する機能を有する。以下、図3に基づいて、接触検知部111について詳細に説明する。図3は、接触検知部111を構成する電気回路について説明する回路図である。
 接触検知部111は概略、左側電極12aと接続される左側検知部91と、第一右側電極12bと接続される右側検知部92と、左側検知部91と右側検知部92の出力に基づいて、全ての電極が接触状態であるか否かを判定する、接触状態判定部93とを有する構成となっている。
 左側検知部91は、左側比較器910と、左側バイアス電源911と、左側スイッチング素子912と、左側プルアップ抵抗913と、左側RCフィルタ914と、左側基準電圧電源915と、左側基準電圧抵抗916a、916bと、左側ヒステリシス抵抗917a、917bとを含んで構成される。
 左側バイアス電源911は左側電極12aが第二右側電極12cよりも高電位であるバイアス電位になるように、左側電極12aにバイアス電圧(例えば3V程度)を印加する。左側スイッチング素子912は例えば、電界効果トランジスタ(FET)などで構成されており、制御部101の制御により、左側バイアス電源911と回路とをON/OFFする。左側プルアップ抵抗913は接続されている回路の電位を高電位に保ち、左側RCフィルタ914は高周波成分を除去して左側バイアス電源911からの電圧を左側比較器910の-入力端子に入力する。以下、左側比較器910の-入力端子に入力される電位を左側バイアス電位という。
 左側比較器910の+入力端子には、左側基準電圧電源915から供給され、左側基準電圧抵抗916a、916bによって調整される所定の接触検知基準電圧(例えば1.5V程度)が入力される。以下、左側比較器910の+入力端子に入力される電位を左側検知基準電位という。
 左側比較器910は、例えばオペアンプで構成されており、左側バイアス電位が、左側検知基準電位に対して所定のヒステリシス分低下した場合に、Highを出力する。一方、左側バイアス電位が、左側検知基準電位と同程度以上である場合にはLowを出力する。
 左側電極12aと第二右側電極12cとが、ともに身体の皮膚に正しく接触されていると、人体のインピーダンスを経由して左側電極12aよりも低電位の第二右側電極12cに電流が流れ、左側プルアップ抵抗913において電圧降下が発生し、左側バイアス電位が低下する。そうすると、左側比較器910の出力はLowからHighに変化する。なお、図中の破線部の回路が人体のインピーダンスを経由した電流の経路を示している。
 右側検知部92も、左側検知部91と同様に、右側比較器920と右側バイアス電源921と、右側スイッチング素子922と、右側プルアップ抵抗923と、右側RCフィルタ924と、右側基準電圧電源925と、右側基準電圧抵抗926a、926bと、右側ヒステリシス抵抗927a、927bとを含んで構成される。
 右側バイアス電源921は第一右側電極12bが第二右側電極12cよりも高電位であるバイアス電位になるように、第一右側電極12bにバイアス電圧を印加する。その他、右側検知部92の各要素の構成・機能は、第一右側電極12bに対する左側検知部91のそれと同様であるため、詳細な説明は省略する。
 接触状態判定部93は、例えばAND回路などで構成され、左側比較器910及び右側比較器920のいずれもがHighを出力した場合に、左側電極12a、第一右側電極12b、第二右側電極12c、の全ての電極が正しく接触されている状態であると判断し、その旨を制御部101に対して出力する。
 なお、図3に示すように、左側電極12aは差動増幅器94の+入力端子と接続されており、第一右側電極12bは差動増幅器94の-入力端子と接続されており、第二右側電極12cはGNDに接続されている。差動増幅器94は、左側電極12aと第一右側電極12bとの電位差を増幅して出力し、当該出力が、図示しないフィルタ回路を介して、アンプ部102、AD変換部103へと伝達されることで心電計測が行われる。
 (携帯型心電計を用いた心電計測処理)
 次に、心電計測を行う際の携帯型心電計10の動作について、図1から図5に基づいて説明する。図4は、携帯型心電計10を用いて心電計測を行う際の処理の手順を示すフローチャートであり、図5は、携帯型心電計10において電極接触検知の処理を行うサブルーチンを示すフローチャートである。
 図4を参照すると、ユーザーはまず、計測に先立ち、電源スイッチ16を操作し携帯型心電計10の電源をONにする。そうすると、電源LED16aが点灯して電源がONであることを表示する。そして、右手で携帯型心電計10を保持し、右手人差し指を、第一右側電極12b、第二右側電極12cに接触させ、計測を行う箇所の肌に、左側電極12aを接触させる。そうすると、制御部101は電極部12、接触状態検知部111を介して、各電極の接触状態を検出する接触状態を検出する(S101)。
 ここで、図5に基づいて、ステップS101のサブルーチンの処理を説明する。まず電源スイッチ16がONにされると、制御部101は左側スイッチング素子912、右側スイッチング素子922をONにし、左側電極12a、第一右側電極12bにバイアス電圧を印加する(S201)。
 既に述べたように、左側電極12a、第一右側電極12b、第二右側電極12cが全て身体に接触されていれば、左側比較器910と右側比較器920はいずれもHighを出力し、接触状態判定部93がその旨を制御部101に出力する。そして、当該Highの信号が所定時間(例えば3秒)継続して出力されれば、各電極が正しく計測対象に接触されている状態であるとする。ここで、所定時間が経過したか否かはタイマ部104を参照して行えばよく、制御部101は、ステップS202において、全電極が接触状態である時間を計測するタイマカウント値(以下、接触時間カウント値という)をリセット(0に設定)する。
 次にステップS203において、制御部101は、左側電極12a、第一右側電極12b、第二右側電極12cがそれぞれ身体に接触されていると判定した場合には、ステップS204に進み、その状態で所定時間が経過したか否かを判定する。一方、ステップS203において、全ての電極が正しく接触されていないと判定した場合には、ステップS202に戻って接触時間カウント値をリセットし、以後の処理を繰り返す。
 ステップS204において、所定時間が経過していないと判定した場合には、ステップS203に戻り、以後の処理を繰り返す。一方、ステップS204において、所定時間が経過していると判定した場合には、左側スイッチング素子912及び右側スイッチング素子922をOFFにしてプルアップ抵抗を無効にし(ステップS205)、サブルーチンを終了する。
 図4の説明に戻ると、ステップS101のサブルーチンが終了した後、制御部101は実際の心電計測処理を実行する(ステップS102)。制御部101は、心電計測を行っている間は、随時計測値を記憶部105に保存するとともに、本体正面の計測状態通知LED13を所定のリズムで点滅させることにより、心電計測中であることを表示する(S103)。
 次に、制御部101は心電計測の時間が所定の計測時間(例えば30秒)を経過したか否かを判定する処理を行う(ステップS104)。ここで、まだ所定の時間を経過していないと判断した場合には、ステップS102に戻って以降の処理を繰り返す。一方、所定の計測時間が経過したと判断した場合には、計測を終了するとともに、計測状態通知LED13の点滅を終了する処理を行う(ステップS105)。
 次に、制御部101の解析部110により、記憶部105に保存された計測データ(心電波形)の解析が行われ(S106)、解析結果は、心電波形と共に長期記憶装置に保存される(S107)。そして、制御部101は、解析結果通知LED14により、解析の結果を表示して(S108)、一連の処理を終了する。なお、解析結果の表示は、例えば、心電波形に異常がみられる場合のみLEDを点灯するのであっても良いし、解析結果に応じた点灯・点滅方法によりLEDを点灯させるようにしても良い。
 以上のような構成の本実施形態に係る携帯型心電計10によれば、ユーザーは電源スイッチ16を操作した後、計測部位に電極を接触させる以外の操作をすることなく計測を開始することができるとともに、全ての電極が適切に接触しないと計測が開始されないため、精度の良い計測結果を得ることができる。
 また、第一右側電極12bはGNDに接続され、GND電極としての機能を果たすため、信号のAD変換器とGNDを共通にすることができ、AD変換時に信号の同相ノイズを除去することが容易になる。
 <変形例>
 なお、上記の実施形態では、第一右側電極12bはGND電極として機能していたが、必ずしもこのような構成とする必要はない。図6に携帯型心電計の他の構成例を示す。なお、実施形態1と同様の構成については、同一の符号を付しており、詳細な説明は省略する。
 図6に示すように、本変形例に係る携帯型心電計は、左側差動増幅器95a、右側差動増幅器95b、左右差動増幅器95cの、三つの差動増幅器を備え、これらの出力によって心電波形が計測される構成となっている。
 具体的には、左側差動増幅器95aは+側入力に左側電極12aの電位が入力され、-側入力に第二右側電極12cの電位が入力され、これらの電位差が出力される。また、右側差動増幅器95bは+側入力に第一右側電極12bの電位が入力され、-側入力に第二右側電極12cの電位が入力され、これらの電位差が出力される。
 また、左右差動増幅器95cの+側入力に左側差動増幅器95aの出力電位が入力され、-側入力に右側差動増幅器95bの出力電位が入力され、これらの電位差が出力される。そして、左右差動増幅器95cから出力された信号が、図示しないフィルタ回路を介して、アンプ部102、AD変換部103へと伝達されることで心電計測が行われる。
 このような構成であると、第二右側電極12cを基準電極として、左側電極12a、第一右側電極12bとの電位差を増幅して信号を得るため、信号を増幅する際に、その同相ノイズを容易に除去することが可能になる。
 <その他>
 上記の実施形態の説明は、本発明を例示的に説明するものに過ぎず、本発明は上記の具体的な形態には限定されない。本発明は、その技術的思想の範囲内で種々の変形及び組み合わせが可能である。
 例えば、上記実施形態におけるスイッチング素子はFETに限られず、比較器、差動増幅器も必ずしもオペアンプによるものでなくてもよい。また、上記の実施形態では詳しく説明していないが、通信部109によるBLE通信機能によって、心電計と他の情報端末機器とを連携して活用することも可能である。逆に、通信機能やLED表示部を備えない心電計とすることも可能である。
 なお、上記では本発明を携帯型の心電計に適用したが、携帯型でない心電計にも適用可能であるし、体組成計などの他の生体計測装置に適用することも可能である。
 10・・・携帯型心電計
 13・・・計測状態通知LED
 12a・・・左側電極
 12b・・・第一右側電極
 12c・・・第二右側電極
 14・・・解析結果通知LED
 15・・・電池カバー
 16・・・電源スイッチ
 16a・・・電源LED
 17・・・通信ボタン
 17a・・・BLE通信LED
 18・・・メモリー残表示LED
 19・・・電池交換LED
 91・・・左側検知部
 910・・・左側比較器
 911・・・左側バイアス電源
 912・・・左側スイッチング素子
 913・・・左側プルアップ抵抗
 914・・・左側RCフィルタ
 915・・・左側基準電圧電源
 916a、916b・・・左側基準電圧抵抗
 917a、917b・・・左側ヒステリシス抵抗
 92・・・右側検知部
 93・・・接触状態判定部
 94・・・差動増幅器
 95a・・・左側差動増幅器
 95b・・・右側差動増幅器
 95c・・・左右差動増幅器
 

Claims (5)

  1.  第1電極と、第2電極と、第3電極と、を備え、前記第1電極と前記第2電極の電位差に基づいて計測対象の生体情報を計測する生体情報計測装置であって、
     前記第1電極、前記第2電極、前記第3電極の全てが前記計測対象の表面に接触している状態を検知して出力する、電極接触検知手段と、
     前記生体情報を計測する計測処理を実行する制御手段と、を有しており
     前記電極接触検知手段は、
     前記第1電極及び前記第2電極が、前記第3電極よりも高電位である接触検知電位になるように、前記第1電極及び前記第2電極のそれぞれに電圧を印加するバイアス用電源と、
     前記第1電極及び前記第2電極のそれぞれに接続され、前記接触検知電位と、前記第1電極、前記第2電極のそれぞれの電位と、を比較する第1比較器、及び第2比較器と、
     前記第1比較器及び前記第2比較器の出力に基づいて、前記第1電極、前記第2電極、及び前記第3電極の全ての電極が、前記計測対象の表面に接触している状態であるか否かを判定する、接触状態判定部と、を備え、
     前記制御手段は、
     前記電極接触検知手段が、前記第1電極、前記第2電極、前記第3電極の全ての電極が前記計測対象の表面に接触している状態であることを出力した場合に、前記第1電極及び前記第2電極と、前記バイアス用電源とを開放する処理を実行し、前記計測処理を実行する、
     ことを特徴とする、生体情報計測装置。
  2.  前記第3電極はグランド電極であって、
     前記第1電極と前記第2電極とに接続され、前記第1電極と前記第2電極間の電位差を増幅して出力する第1差動増幅器を備え、
     前記制御手段は、前記第1差動増幅器の出力に基づいて、前記計測対象の生体情報を計測する、
     ことを特徴とする、請求項1に記載の生体情報計測装置。
  3.  前記第1電極と前記第3電極とに接続され、前記第1電極と前記第3電極間の電位差を増幅して出力する第2差動増幅器と、
     前記第2電極と前記第3電極とに接続され、前記第2電極と前記第3電極間の電位差を増幅して出力する第3差動増幅器と、
     前記第2差動増幅器及び前記第3差動増幅器の出力側に接続され、前記第2差動増幅器の出力電圧と、前記第3差動増幅器の出力電圧との電位差を増幅して出力する、第4差動増幅器と、を備え、
     前記制御手段は、前記第4差動増幅器の出力に基づいて、前記計測対象の生体情報を計測する、
     ことを特徴とする、請求項1に記載の生体情報計測装置。
  4.  前記生体情報は心電波形である、
     ことを特徴とする、請求項1から3のいずれか一項に記載の生体情報計測装置。
  5.  前記生体情報計測装置は、携帯型の装置である、
     ことを特徴とする請求項1から4のいずれか一項に記載の生体情報計測装置。
     
PCT/JP2021/000146 2020-01-10 2021-01-06 生体情報計測装置 WO2021141032A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180006981.9A CN114786581A (zh) 2020-01-10 2021-01-06 生物体信息测量装置
DE112021000192.2T DE112021000192T5 (de) 2020-01-10 2021-01-06 Messvorrichtung für biologische informationen
US17/810,754 US20220346718A1 (en) 2020-01-10 2022-07-05 Biological information measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-003051 2020-01-10
JP2020003051A JP7388198B2 (ja) 2020-01-10 2020-01-10 生体情報計測装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/810,754 Continuation US20220346718A1 (en) 2020-01-10 2022-07-05 Biological information measuring device

Publications (1)

Publication Number Publication Date
WO2021141032A1 true WO2021141032A1 (ja) 2021-07-15

Family

ID=76788028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000146 WO2021141032A1 (ja) 2020-01-10 2021-01-06 生体情報計測装置

Country Status (5)

Country Link
US (1) US20220346718A1 (ja)
JP (1) JP7388198B2 (ja)
CN (1) CN114786581A (ja)
DE (1) DE112021000192T5 (ja)
WO (1) WO2021141032A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113796872B (zh) 2020-06-12 2022-12-30 华为技术有限公司 心电图检测设备以及检测电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956686A (ja) * 1995-08-28 1997-03-04 Casio Comput Co Ltd 心電計
JP2007508095A (ja) * 2003-10-17 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 個体との生体電気相互作用を実施するための装置及びオンデマンドリードオフ検出を行なうための方法
JP2012532740A (ja) * 2009-07-14 2012-12-20 チュウ チャンアン 手持ち型心電計
JP2013052138A (ja) * 2011-09-05 2013-03-21 Denso Corp 心電計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956686A (ja) * 1995-08-28 1997-03-04 Casio Comput Co Ltd 心電計
JP2007508095A (ja) * 2003-10-17 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 個体との生体電気相互作用を実施するための装置及びオンデマンドリードオフ検出を行なうための方法
JP2012532740A (ja) * 2009-07-14 2012-12-20 チュウ チャンアン 手持ち型心電計
JP2013052138A (ja) * 2011-09-05 2013-03-21 Denso Corp 心電計

Also Published As

Publication number Publication date
DE112021000192T5 (de) 2022-09-22
US20220346718A1 (en) 2022-11-03
JP7388198B2 (ja) 2023-11-29
JP2021108972A (ja) 2021-08-02
CN114786581A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US11642066B2 (en) Electrocardiogram measurement apparatus
WO2021141032A1 (ja) 生体情報計測装置
KR102213513B1 (ko) 심전도 측정 장치
KR102389907B1 (ko) 웨어러블 디바이스를 이용하는 심전도 측정 방법 및 시스템
JP3677394B2 (ja) 生体情報測定装置
CN114599285A (zh) 便携式心电装置
WO2021095646A1 (ja) 心電計測装置
US20240081718A1 (en) Biological information measurement device
KR102269411B1 (ko) 심전도 측정 장치
JP7404951B2 (ja) 生体情報計測装置、生体情報計測装置の制御方法及びプログラム
WO2024042749A1 (ja) 生体情報測定装置
GRUNDLEHNER Wearable sensing technologies
JPH0228888Y2 (ja)
WO2008120950A1 (en) Apparatus and methods for single-channel portable wireless ecg monitoring device
CN115066204A (zh) 用于获取和监测生物电信号的装置、系统和方法
CN111329490A (zh) 一种非侵入式抗干扰血糖检测仪及其检测血糖的方法
JP2008099757A (ja) 痛み計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738036

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21738036

Country of ref document: EP

Kind code of ref document: A1