WO2021140615A1 - Novel recombinant bacteriophage - Google Patents

Novel recombinant bacteriophage Download PDF

Info

Publication number
WO2021140615A1
WO2021140615A1 PCT/JP2020/000469 JP2020000469W WO2021140615A1 WO 2021140615 A1 WO2021140615 A1 WO 2021140615A1 JP 2020000469 W JP2020000469 W JP 2020000469W WO 2021140615 A1 WO2021140615 A1 WO 2021140615A1
Authority
WO
WIPO (PCT)
Prior art keywords
phage
gene
recombinant bacteriophage
protein
recombinant
Prior art date
Application number
PCT/JP2020/000469
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 近藤
Original Assignee
哲朗 近藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲朗 近藤 filed Critical 哲朗 近藤
Priority to PCT/JP2020/000469 priority Critical patent/WO2021140615A1/en
Publication of WO2021140615A1 publication Critical patent/WO2021140615A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors

Definitions

  • Phage that infects E. coli is used in the phage display method, and functions because foreign proteins and peptides fused with the coat protein of the phage can be presented on the surface of the phage in a form that can interact with other molecules. It has become one of the most powerful methods for exploring motifs. However, since a complicated method such as ELISA is used in the phage detection step in the functional motif screening process, there is a drawback that the screening requires enormous labor and time.
  • Non-Patent Documents 1 and 2 T7 phages (Non-Patent Documents 1 and 2), T4 phages (Non-Patent Documents 3), or lambda phage (Non-Patent Documents 4) have been visualized using fluorescent proteins such as GFP. There is a report to detect it. However, since the number of fluorescent proteins expressed on the phage is extremely small, 1 to 3, the fluorescence intensity is weak, and the number of fluorescent proteins per phage cannot be controlled, so that it is not constant and is accurate using the fluorescence intensity as an index. Cannot be screened or detected.
  • Non-Patent Documents 1 to 3 have a fluorescent protein fused to a capsid, there is a drawback that the fluorescent protein causes steric damage to the presented protein when used in the phage display method. There is. Similarly, a recombinant bacteriophage expressing the luciferase enzyme gene described in Patent Document 1 on the surface of a capsid may cause such steric hindrance.
  • the present inventor inserts a gene for a fluorescent protein, which is a labeling protein, or a gene for an enzyme that catalyzes a coloring reaction into a specific gene region of a T7 phage so as to be expressible.
  • a fluorescent protein which is a labeling protein
  • a gene for an enzyme that catalyzes a coloring reaction into a specific gene region of a T7 phage so as to be expressible.
  • the fluorescent protein is green fluorescent protein (GFP), and the enzyme that catalyzes the coloring reaction is one of luciferase, ⁇ -glucuronidase (GUS), ⁇ -galactosidase, and horseradish peroxidase.
  • GFP green fluorescent protein
  • the present invention also relates to a method using the random peptide phage library of recombinant bacteriophage T7 described in (8) below or the random peptide phage library of (9) and (10) below.
  • a random peptide is placed in the gp10 gene region of the genome of recombinant bacteriophage T7 in which the gene of the labeled protein is expressively inserted into the gp17 gene region of the genome of bacteriophage T7.
  • the number of fluorescent proteins expressed per phage molecule is as small as 1 to 3, but in the recombinant phage of the present invention, a large number of fluorescent proteins expressed by one order higher than in the conventional method are expressed, so that fluorescence is achieved. There is a difference in strength at each stage. Further, in the conventional method, the number of fluorescent proteins per phage molecule cannot be controlled, the number of fluorescent proteins differs depending on the phage, and the fluorescence intensity is not constant. Since the same number of fluorescent proteins are always expressed in the phage, screening with an accurate constant fluorescence intensity can be realized.
  • the unbound fluorescent protein is added to each round in which the selected phage is replicated and proliferated during the panning process in the screening. There is no need to separate the phages that emit the desired fluorescence each time, and it is not necessary to verify that the fluorescent protein is definitely bound to all the selectively amplified phages in each round.
  • the fluorescent protein is expressed in a structural portion different from the capsid moiety expressing the random peptide in the library portion, which causes a steric disorder of binding to the target. It has an excellent effect that it does not overlook the binding to the target, which is an important element in the phage display method.
  • FIG. 3 shows a solid fluorescence micrograph of a plaque of Escherichia coli infected with recombinant T7gp17-sfGFP.
  • Bacteriophage T7 is a lytic phage having double-stranded linear genomic DNA, binds to LPS on the surface of Escherichia coli, and injects DNA into Escherichia coli to infect.
  • the head of the phage that stores the genomic DNA is formed by the association of 415 G10 proteins, and the tail is added below it.
  • bacteriophage or "phage” is a virus that has evolved to use bacteria in nature as a means of replicating them.
  • the phage attaches the phage itself to the bacterium, injects its DNA into the bacterium, and induces the bacterium to replicate hundreds or even thousands of times the phage. Do. This is also called phage amplification.
  • genes of enzymes that catalyze luminescence or color reaction can be used, for example, luciferase (Luc), ⁇ -glucuronidase (GUS), ⁇ -galactosidase (Gal), horseradish peroxidase (HRP), alkaline phosphatase ( Examples include commercially available genes such as AP).
  • DNA encoding a peptide having a binding property to a fluorescent / photoprotein or a fluorescent dye can be used.
  • a biotinylated tag sequence peptide acceptor peptide of Escherichia coli biotin-ligase BirA
  • various tag sequences HA, myc, FLAG, His tag, etc.
  • the gp17 gene region into which a gene such as fluorescent protein is inserted is a region in which the expression of the gene such as fluorescent protein is functionally regulated by the promoter or regulatory region of the gp17 gene and the gp17 gene can be functionally expressed. Any area may be used as long as it is present. It is preferably in the coding region or in the transcription region near the end of the coding region of the gp17 gene, in which the function of the gp17 gene is less likely to be deleted, and more preferably at the 5'end or 3'end of the coding region of the gp17 gene.
  • the gp17 gene and a gene such as a fluorescent protein need to be linked so that the same promoter or regulatory region can control both genes, and may be linked via a spacer sequence or a linker sequence.
  • a fusion protein containing an amino acid sequence encoded by a gene such as gp17 gene and a fluorescent protein is expressed, once transcription is started by the promoter, transcription is performed through the coding region to the stop codon.
  • Genes such as gp17 gene and fluorescent protein exist in the 5' ⁇ 3'direction.
  • a gene recombination operation method for inserting a heterologous gene such as a fluorescent protein into a specific region of the phage genome is well known to those skilled in the art, and homologous recombination and genome editing techniques can be used.
  • the principle of the method of recombination operation is to prepare a DNA fragment containing a fragment to be incorporated and two recombination arms, for example by PCR amplification. These arms are homologous to the region adjacent to the gene to be inserted.
  • These DNA fragments can also be produced from nucleotides having a sequence of several tens of bases by PCR using primers containing homologous arms.
  • the recombinant T7 phage of the present invention can be used to prepare a phage display library for selection or screening well known in the art.
  • a nucleic acid molecule encoding a peptide having a random sequence is inserted into the gp10 gene region of the bacteriophage T7 genome in a state where the random peptide and capsid protein are expressed as a fusion protein, and the recombinant bacteriophage T7 is randomly expressed.
  • Each phage particle presents one polypeptide, and then the phage particle is selected based on its affinity interaction with the target, which is the molecule of interest.
  • Expression can be peptide is one per phage, but be used because it is possible to prepare the phage at a concentration of 10 12 / ml or more, the phage population that expressed various types of peptides as a library it can.
  • GTAGGTCAGGCCGTTGTGG SEQ ID NO: 1
  • 3'Primer GTTCTCTTCACGTGTCCTTGGGTACAG SEQ ID NO: 3
  • Each PCR product was subjected to agarose gel electrophoresis to cut out the corresponding band, and was eluted and purified using Gel Extension Kit.
  • the 5'and 3'ends of the purified 2.9 kb fragment were digested with restriction enzymes SfiI and PmlI, subjected to agarose gel electrophoresis again (results are shown in FIG. 4), and eluted and purified using Gel Extension Kit. did.
  • the infected BL21 was mixed with TOP agarose and sown on an LB plate, and it was confirmed by visual observation with a stereomicroscope that the plaques that appeared fluoresce. This stereomicrograph is shown in FIG.
  • the collected plaque is incubated with a phage extraction buffer (20 mM Tris-HCl, 100 mM NaCl, 6 mM sulfonyl 4 , pH 8.0) (4 ° C., 3 hours), mixed with a small amount of chloroform by inversion, and then centrifuged (3,000 ⁇ g). , 5 minutes), and the supernatant was collected to obtain a phage extract.
  • T7gp17-sfGFP phage genomic DNA was extracted by 2% SDS treatment, and the supernatant was centrifuged at 16,500 ⁇ g.
  • T7gp17-sfGFP phage genomic DNA (38.1 kb) was purified using QIAGEN).
  • the obtained phage genomic DNA was precipitated with ethanol and then digested with EcoRI and HindIII to obtain 21.5 kbp and 16.6 kbp fragments, subjected to 0.8% agarose gel electrophoresis and purified using QIAGEN GEL EXTRATION KIT. (Fig. 8).
  • the 5'and 3'ends of this PCR product were digested with EcoRI and HindIII and then purified by 2% agarose electrophoresis and QIAGEN GEL EXTRATION KIT.
  • the obtained insert DNA and 21.5 kbp And 16.6 kbp phage genomic DNA was subjected to a ligation reaction with T4 ligation, the ligation product was mixed with T7 Packing Exects (Merck Millipore), and an In vitro packing reaction was carried out.
  • the packing product was infected with Escherichia coli BL21.
  • T7gp17-sfGFP random peptide library (T7-sfGFP ⁇ 12) was dropped onto the nasal mucosa of anesthetized mice, and after a certain period of time, the brain was removed, homogenized and infected with Escherichia coli BL21, and spread on an LB plate (150 mm). After amplification (37 ° C., 2.5 hours), phage was recovered from the plaque. Using this phage, the process proceeded to the next round, and the same amount of phage as in Round 1 was dropped onto the nasal mucosa of the mouse, and the same operation as described above was repeated 4 times. As the round progressed, the “output / input” ratio of the recovered phage increased about 900-fold (Fig. 12).
  • Non-Patent Document 2 a fusion protein of fluorescent protein and T7 capsid protein is added to phage by overexpression by Escherichia coli using a helper plasmid, but in this method, wild-type T7 capsid protein is further excessively excessive. Simultaneous expression in E. coli is essential for phage production, which actually results in only a portion of all phages containing the fluorescent protein (6% -16%). That is, using this method, even if the positive phage group selected by screening is replicated and amplified for the next screening round, only a part (6% to 16%) of all phages are fluorescent.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention addresses the issue of providing: a recombinant T7 phage having a gene inserted into a T7 phage genome such that the gene can be expressed, said gene being for a fluorescent protein, which is a labeling protein, or for an enzyme that is a color reaction catalyst; a random peptide phage library for a recombinant T7 phage; and a method for using same. The present invention inserts a gene for a fluorescent protein or a gene for an enzyme that is a color reaction catalyst, into a gp17 genetic region of a T7 phage such that the gene can be expressed, and creates a recombinant T7 phage that stably expresses, in a caudal section, a certain number of fluorescent proteins or enzymes that are catalysts for a color reaction. This random peptide phage library for recombinant T7 phages can be used for in vitro and in vivo screening.

Description

新規組換えバクテリオファージNewly recombinant bacteriophage
 本発明は、バクテリオファージT7の組換えバクテリオファージに関する。 The present invention relates to a recombinant bacteriophage of bacteriophage T7.
 バクテリオファージT7(T7ファージ)は、ポドウイルス科に属するエンベロープを持たないDNAウイルスで、正20面体のカプシドの内部に、直鎖状の二本鎖DNAをゲノムとして持つファージである。宿主細胞の大腸菌に感染してファージDNAを宿主中で複製、増殖させて多数のファージ粒子を形成し、宿主の細胞膜を破り溶菌する。ゲノムは1983年に解読されており、約40kbpの核酸配列からなり、55の遺伝子を含む。 Bacteriophage T7 (T7 phage) is a non-enveloped DNA virus belonging to the family Podoviridae, and is a phage having a linear double-stranded DNA as a genome inside a regular icosaheda capsid. It infects Escherichia coli in the host cell and replicates and proliferates phage DNA in the host to form a large number of phage particles, breaking the cell membrane of the host and lysing. The genome was decoded in 1983 and consists of a nucleic acid sequence of about 40 kbp and contains 55 genes.
 大腸菌に感染するファージは、ファージディスプレイ法に利用されており、ファージの表面にファージのコートタンパク質と融合した外来タンパク質、ペプチドを、他の分子と相互作用できる形で提示することができるため、機能モチーフの探索のための最も有力な方法の一つとなっている。しかし、機能モチーフのスクリーニング過程におけるファージの検出工程に、ELISAなどの煩雑な方法を用いるため、スクリーニングに莫大な手間と時間を要するという欠点がある。 Phage that infects E. coli is used in the phage display method, and functions because foreign proteins and peptides fused with the coat protein of the phage can be presented on the surface of the phage in a form that can interact with other molecules. It has become one of the most powerful methods for exploring motifs. However, since a complicated method such as ELISA is used in the phage detection step in the functional motif screening process, there is a drawback that the screening requires enormous labor and time.
 最近、ファージのイメージングのために、GFPなどの蛍光タンパク質を用いて、T7ファージ(非特許文献1、2)、T4ファージ(非特許文献3)、またはラムダファージ(非特許文献4)を可視化して検出する報告がなされている。しかし、ファージに発現させる蛍光タンパク質の数が1~3個と極めて少ないため、蛍光強度が弱く、また、ファージ当たりの蛍光タンパク質の数が制御できないため一定でなく、蛍光強度を指標にした正確なスクリーニングや検出をすることができない。 Recently, for imaging of phages, T7 phages (Non-Patent Documents 1 and 2), T4 phages (Non-Patent Documents 3), or lambda phage (Non-Patent Documents 4) have been visualized using fluorescent proteins such as GFP. There is a report to detect it. However, since the number of fluorescent proteins expressed on the phage is extremely small, 1 to 3, the fluorescence intensity is weak, and the number of fluorescent proteins per phage cannot be controlled, so that it is not constant and is accurate using the fluorescence intensity as an index. Cannot be screened or detected.
 非特許文献1および2には、GFP-キャプシド融合タンパク質を発現するヘルパープラスミドを、大腸菌内で発現させてファージに補うこと、あるいは、ファージゲノムのキャプシドタンパクのプロモーター活性を極めて減弱させたT7ファージに、GFP-キャプシド融合タンパク質遺伝子を組み込んだ上で、野生型キャプシドタンパクをヘルパープラスミドにより大腸菌内で過剰に発現させてファージに補うことにより、いずれの場合も、T7ファージ1分子あたりGFPタンパク質を1個~3個含むT7ファージが得られたことが報告されている。しかし、この蛍光は極めて弱いものであり、また、発現させるGFPの数を制御できないため、ファージによってGFPの数が一定しておらず、蛍光強度を指標にしたスクリーニングを行うことができない。 In Non-Patent Documents 1 and 2, a helper plasmid expressing a GFP-capsid fusion protein is expressed in Escherichia coli to supplement the phage, or a T7 phage in which the promoter activity of the capsid protein in the phage genome is extremely attenuated. , GFP-capsid fusion protein gene is incorporated, and wild-type capsid protein is overexpressed in Escherichia coli by a helper plasmid to supplement the phage. In each case, one GFP protein is produced per molecule of T7 phage. It has been reported that T7 phage containing ~ 3 was obtained. However, since this fluorescence is extremely weak and the number of GFPs to be expressed cannot be controlled, the number of GFPs is not constant depending on the phage, and screening using the fluorescence intensity as an index cannot be performed.
 非特許文献3には、T4ファージキャプシドのアクセサリータンパクHocにGFPを融合させたタンパクを、ヘルパープラスミドを用いた大腸菌による過剰発現でT4ファージに付加することにより、蛍光ファージにしたことが記載されているが、ファージに結合しなかった遊離のHoc-GFPタンパク質をFPLCで分離する必要があり、しかも、得られた蛍光T4ファージは、GFPのついていないT4ファージに比べ、1.1倍程度の蛍光強度しか有さない。
 非特許文献4には、λファージのネック部分にGFPタンパクが取り込まれるように設計することが記載されているが、ファージに発現させる蛍光タンパク質の数が少なく、ファージ当たりの蛍光タンパク質の数が制御不能である点で変わらない。
Non-Patent Document 3 describes that a protein obtained by fusing GFP with the accessory protein Hoc of the T4 phage capside was added to the T4 phage by overexpression by Escherichia coli using a helper plasmid to obtain a fluorescent phage. However, it is necessary to separate the free Hoc-GFP protein that did not bind to the phage by FPLC, and the obtained fluorescent T4 phage has about 1.1 times the fluorescence of the T4 phage without GFP. It has only strength.
Non-Patent Document 4 describes that the design is such that the GFP protein is incorporated into the neck portion of the λ phage, but the number of fluorescent proteins expressed on the phage is small and the number of fluorescent proteins per phage is controlled. It does not change in that it is impossible.
 さらに、非特許文献1~3に記載されたファージは、蛍光タンパク質をキャプシドに融合させているために、ファージディスプレイ法に使用した場合に、蛍光タンパク質が、提示するタンパク質と立体障害を起こすという欠点がある。同様に、特許文献1に記載のルシフェラーゼ酵素遺伝子をキャプシド表面に発現させる組換えバクテリオファージにおいても、このような立体障害を起こす可能性がある。 Furthermore, since the phages described in Non-Patent Documents 1 to 3 have a fluorescent protein fused to a capsid, there is a drawback that the fluorescent protein causes steric damage to the presented protein when used in the phage display method. There is. Similarly, a recombinant bacteriophage expressing the luciferase enzyme gene described in Patent Document 1 on the surface of a capsid may cause such steric hindrance.
特表2017-511702号公報Special Table 2017-511702
 本発明は、T7ファージを十分に可視化することのできる強度で、活性を有する蛍光タンパク質を発現することができ、あるいは、T7ファージを可視化できる、活性を有する呈色反応を触媒する酵素を発現することのできる、ファージディスプレイ法に好適に使用できる組換えT7ファージを提供することをその課題とする。
 また、本発明は、そのような組換えT7ファージをファージディスプレイ法に使用する方法を提供することを課題とする。
The present invention expresses an enzyme that catalyzes an active color reaction that can express an active fluorescent protein or can visualize a T7 phage with a strength capable of sufficiently visualizing the T7 phage. It is an object of the present invention to provide recombinant T7 phage which can be suitably used for the phage display method.
Another object of the present invention is to provide a method for using such recombinant T7 phage in the phage display method.
 本発明者は、上記課題を解決すべく研究を重ねた結果、標識タンパク質である蛍光タンパク質の遺伝子または呈色反応を触媒する酵素の遺伝子を、T7ファージの特定の遺伝子領域に発現可能に挿入することにより、T7ファージが宿主に感染しその複製中に、蛍光タンパク質または呈色反応を触媒する酵素が正しく折り畳まれ、活性を有する立体構造でファージタンパク質の一部として発現されることを見出し、本発明の完成に至った。この組換えT7ファージは、このように異種遺伝子を発現できるだけでなく、溶菌後感染性ウイルスとして新たな宿主に感染することができる。 As a result of repeated studies to solve the above problems, the present inventor inserts a gene for a fluorescent protein, which is a labeling protein, or a gene for an enzyme that catalyzes a coloring reaction into a specific gene region of a T7 phage so as to be expressible. As a result, we found that during the replication of T7 phage by infecting the host, the fluorescent protein or the enzyme that catalyzes the coloring reaction is correctly folded and expressed as a part of the phage protein in an active three-dimensional structure. The invention was completed. Not only can this recombinant T7 phage express a heterologous gene in this way, but it can also infect a new host as a post-lytically infectious virus.
 すなわち、本発明は、以下の(1)~(7)の組換えバクテリオファージT7に関する。
(1)組換えバクテリオファージT7であって、バクテリオファージT7のゲノムのgp17遺伝子領域に、標識タンパク質の遺伝子が発現可能に挿入されていることを特徴とする、組換えバクテリオファージT7。
(2)前記標識タンパク質が、蛍光タンパク質または発光または呈色反応を触媒する酵素である、上記(1)に記載の組換えバクテリオファージT7。
(3)前記蛍光タンパク質が緑色蛍光タンパク質(GFP)であり、前記呈色反応を触媒する酵素が、ルシフェラーゼ、β-グルクロニダーゼ(GUS)、β-ガラクトシダーゼ、西洋ワサビペルオキシダーゼのいずれか一つである、上記(2)に記載の組換えバクテリオファージT7。
(4)前記標識タンパク質の遺伝子が、gp17遺伝子コード領域末端近傍に挿入されている、上記(1)に記載の組換えバクテリオファージT7。
(5)前記gp17遺伝子コード領域末端近傍が、3´末端領域である、上記(4)に記載の組換えバクテリオファージT7。
(6)組換えバクテリオファージT7が、宿主細胞に感染後の細胞質におけるファージ複製の間に、前記蛍光タンパク質の遺伝子または発光または呈色反応を触媒する酵素の遺伝子を発現して、活性を有する蛍光タンパク質または発光または呈色反応を触媒する酵素生成物を生じる、上記(2)に記載の組換えバクテリオファージT7。
(7)前記蛍光タンパク質または発光または呈色反応を触媒する酵素が、バクテリオファージT7の尾部に発現する、上記(6)に記載の組換えバクテリオファージT7。
That is, the present invention relates to the following recombinant bacteriophage T7 (1) to (7).
(1) Recombinant bacteriophage T7, wherein the gene of the labeled protein is expressively inserted into the gp17 gene region of the genome of the recombinant bacteriophage T7.
(2) The recombinant bacteriophage T7 according to (1) above, wherein the labeled protein is a fluorescent protein or an enzyme that catalyzes a luminescence or color reaction.
(3) The fluorescent protein is green fluorescent protein (GFP), and the enzyme that catalyzes the coloring reaction is one of luciferase, β-glucuronidase (GUS), β-galactosidase, and horseradish peroxidase. The recombinant bacterophage T7 according to (2) above.
(4) The recombinant bacteriophage T7 according to (1) above, wherein the gene of the labeled protein is inserted near the end of the gp17 gene coding region.
(5) The recombinant bacteriophage T7 according to (4) above, wherein the vicinity of the terminal of the gp17 gene coding region is the 3'terminal region.
(6) Recombinant bacteriophage T7 expresses the gene of the fluorescent protein or the gene of an enzyme that catalyzes a luminescence or coloring reaction during phage replication in the cytoplasm after infection of the host cell, and has activity. The recombinant bacteriophage T7 according to (2) above, which produces a protein or an enzyme product that catalyzes a luminescence or color reaction.
(7) The recombinant bacteriophage T7 according to (6) above, wherein the fluorescent protein or an enzyme that catalyzes a luminescence or color reaction is expressed in the tail of the bacteriophage T7.
 また、本発明は、以下(8)の組換えバクテリオファージT7のランダムペプチドファージライブラリー、または(9)、(10)のランダムペプチドファージライブラリーを使用する方法に関する。
(8)組換えバクテリオファージT7であって、バクテリオファージT7のゲノムのgp17遺伝子領域に標識タンパク質の遺伝子が発現可能に挿入されている組換えバクテリオファージT7のゲノムのgp10遺伝子領域に、ランダムペプチドをコードする核酸分子を挿入した、組換えバクテリオファージT7のランダムペプチドファージライブラリー。
(9)上記(8)に記載の組換えバクテリオファージT7のランダムペプチドファージライブラリーを使用するin vitroスクリーニング方法。
(10)上記(8)に記載の組換えバクテリオファージT7のランダムペプチドファージライブラリーを使用するin vivoスクリーニング方法。
The present invention also relates to a method using the random peptide phage library of recombinant bacteriophage T7 described in (8) below or the random peptide phage library of (9) and (10) below.
(8) In recombinant bacteriophage T7, a random peptide is placed in the gp10 gene region of the genome of recombinant bacteriophage T7 in which the gene of the labeled protein is expressively inserted into the gp17 gene region of the genome of bacteriophage T7. A random peptide phage library of recombinant bacteriophage T7 with the encoding nucleic acid molecule inserted.
(9) An in vitro screening method using the random peptide phage library of recombinant bacteriophage T7 according to (8) above.
(10) An in vivo screening method using the random peptide phage library of recombinant bacteriophage T7 according to (8) above.
 従来法では、1ファージ分子あたりの発現される蛍光タンパク質が1~3個までと少ないが、本発明の組換えファージでは、従来法に比べ1オーダー上の多数の蛍光タンパク質が発現するため、蛍光強度に各段の差がある。
 また、従来法では、ファージ分子あたりの蛍光タンパク質の数を制御することができず、ファージにより蛍光タンパクの数が異なり、蛍光強度が一定ではないが、本発明の組換えファージには、すべてのファージに必ず同じ数の蛍光タンパク質が発現するため、正確な一定の蛍光強度によるスクリーニングを実現できる。
In the conventional method, the number of fluorescent proteins expressed per phage molecule is as small as 1 to 3, but in the recombinant phage of the present invention, a large number of fluorescent proteins expressed by one order higher than in the conventional method are expressed, so that fluorescence is achieved. There is a difference in strength at each stage.
Further, in the conventional method, the number of fluorescent proteins per phage molecule cannot be controlled, the number of fluorescent proteins differs depending on the phage, and the fluorescence intensity is not constant. Since the same number of fluorescent proteins are always expressed in the phage, screening with an accurate constant fluorescence intensity can be realized.
 さらに、ファージにヘルパープラスミドを用いて大腸菌で蛍光タンパク質を過剰発現させて補充する必要がないので、スクリーニングにおけるパニングの過程で、選択したファージを複製・増殖するラウンドごとに、未結合の蛍光タンパク質と目的の蛍光を発するファージとを毎回分離する手間もかからず、また、選択増幅したすべてのファージに蛍光タンパク質が間違いなく結合しているかを、ラウンドのたびに検証する必要がない。
 また、本発明の組換えファージをファージディスプレイに使用する場合に、ライブラリー部分のランダムペプチドを発現するキャプシド部分とは異なる構造部分に蛍光タンパク質が発現することから、ターゲットに対する結合の立体障害を生じることなく、ファージディスプレイ法で重要な要素であるターゲットとの結合に対しても見逃しが起きないという優れた効果を奏する。
Furthermore, since it is not necessary to overexpress and supplement the fluorescent protein in E. coli using a helper plasmid in the phage, the unbound fluorescent protein is added to each round in which the selected phage is replicated and proliferated during the panning process in the screening. There is no need to separate the phages that emit the desired fluorescence each time, and it is not necessary to verify that the fluorescent protein is definitely bound to all the selectively amplified phages in each round.
In addition, when the recombinant phage of the present invention is used for phage display, the fluorescent protein is expressed in a structural portion different from the capsid moiety expressing the random peptide in the library portion, which causes a steric disorder of binding to the target. It has an excellent effect that it does not overlook the binding to the target, which is an important element in the phage display method.
制限酵素SfiIおよびPmlIによるT7ファージゲノムDNAの切断部位を示す。The cleavage sites of T7 phage genomic DNA by restriction enzymes SfiI and PmlI are shown. 制限酵素で切断後のDNAフラグメントのアガロースゲル電気泳動の結果を示す。The results of agarose gel electrophoresis of the DNA fragment after cleavage with a restriction enzyme are shown. GSスペーサーとsfGFP遺伝子を含む2.9kbフラグメントの調製方法を示す。A method for preparing a 2.9 kb fragment containing a GS spacer and the sfGFP gene is shown. 2.9kbフラグメントのアガロースゲル電気泳動の結果を示す。The results of agarose gel electrophoresis of the 2.9 kb fragment are shown. 組換えT7gp17-sfGFPのゲノムの概略を示す。The outline of the genome of recombinant T7gp17-sfGFP is shown. 組換えT7gp17-sfGFPを感染させた大腸菌のプラークの実体蛍光顕微鏡写真を示す。FIG. 3 shows a solid fluorescence micrograph of a plaque of Escherichia coli infected with recombinant T7gp17-sfGFP. 第2世代の組み換えファージのgp17-sfGFPのウエスタンブロットを示す。A Western blot of gp17-sfGFP of second generation recombinant phage is shown. T7gp17-sfGFPファージゲノム全長DNAと、制限酵素で切断後のDNAフラグメントのアガロースゲル電気泳動の結果を示す。The results of agarose gel electrophoresis of the T7gp17-sfGFP phage genome full-length DNA and the DNA fragment cleaved with a restriction enzyme are shown. 動物細胞発現用プラスミドベクターによるmLDLRext-mycの発現を示す抗myc抗体を用いたウエスタンブロット。Western blot using an anti-myc antibody showing the expression of mLDLRext-myc by a plasmid vector for animal cell expression. 実施例5におけるラウンド1→3でのLDLRext結合性を示すファージの占める割合の変化を示す。The change in the proportion of phage showing LDLRext binding property in rounds 1 → 3 in Example 5 is shown. 実施例5におけるラウンド3のファージが、mLDLR-mCherry発現細胞に特異的に結合することを示す、蛍光顕微鏡写真。(a、GFPシグナル(緑);b、mCherryシグナル(赤);c、aとbの重ね合わせ)Fluorescence micrographs showing that round 3 phage in Example 5 specifically binds to mLDLR-mCherry expressing cells. (a, GFP signal (green); b, mCherry signal (red); superposition of c, a and b) 実施例6におけるラウンド1→4でのマウス脳への侵入機能を示すファージの占める割合の変化を示す。The change in the proportion of phage showing the function of invading the mouse brain in Rounds 1 → 4 in Example 6 is shown. 実施例6でのファージの有するペプチドを末端TAMRA化し、マウスの鼻粘膜に滴下し一定時間後、頭蓋骨を落射型蛍光実体顕微鏡により観察した写真を示す。A photograph of the peptide possessed by the phage in Example 6 converted to terminal TAMRA, dropped onto the nasal mucosa of a mouse after a certain period of time, and the skull observed with an epi-illumination stereomicroscope is shown. 図13の頭蓋骨の凍結切片のTAMRAシグナルを、落射型蛍光顕微鏡により観察した写真を示す。スケールバー:50μm。The photograph which observed the TAMRA signal of the frozen section of the skull of FIG. 13 by the epi-illumination fluorescence microscope is shown. Scale bar: 50 μm.
 バクテリオファージT7(T7ファージ)は、二本鎖直鎖状のゲノムDNAを持つ溶菌性のファージであり、大腸菌表面にあるLPSに結合して、大腸菌内へDNAを注入して感染する。ゲノムDNAを格納するファージの頭部は、415個のG10タンパク質の会合により形成され、その下に尾部が付加されている。 Bacteriophage T7 (T7 phage) is a lytic phage having double-stranded linear genomic DNA, binds to LPS on the surface of Escherichia coli, and injects DNA into Escherichia coli to infect. The head of the phage that stores the genomic DNA is formed by the association of 415 G10 proteins, and the tail is added below it.
 ゲノムDNAは、約40kbpの核酸配列からなり55の遺伝子を含み、必須遺伝子には整数の番号が付けられている。gp1はDNA依存性RNAポリメラーゼ遺伝子で、感染初期に大腸菌由来RNAポリメラーゼによって転写された後、それ以降のウイルス遺伝子の転写を行い、gp5はDNAポリメラーゼ遺伝子でDNAの複製を行う。gp10は頭部キャプシドの主成分である外郭を構成する遺伝子であり、gp17は尾部の付け根から伸びる尾部繊維タンパク質遺伝子で、尾部繊維タンパク質は3分子で一本の繊維を形成し、この繊維が6本伸びて尾部の脚を形成する。 Genomic DNA consists of a nucleic acid sequence of about 40 kbp and contains 55 genes, and essential genes are numbered with integers. gp1 is a DNA-dependent RNA polymerase gene, which is transcribed by E. coli-derived RNA polymerase in the early stage of infection, and then the viral gene is transcribed, and gp5 is a DNA polymerase gene that replicates DNA. gp10 is a gene that constitutes the outer shell, which is the main component of the head capsid, gp17 is a tail fiber protein gene that extends from the base of the tail, and tail fiber protein forms one fiber with 3 molecules, and this fiber is 6 It stretches to form the tail leg.
 本発明において、「バクテリオファージ」もしくは「ファージ」とは、それらを複製する手段として、天然において細菌を使用するように進化したウイルスである。ファージは、このことを、ファージ自体を細菌に付着させ、そのDNAをその細菌の中に注入し、上記ファージを数百倍もしくはさらには数千倍も複製するようにその細菌を誘導することによって行う。これをファージ増幅ともいう。 In the present invention, "bacteriophage" or "phage" is a virus that has evolved to use bacteria in nature as a means of replicating them. The phage attaches the phage itself to the bacterium, injects its DNA into the bacterium, and induces the bacterium to replicate hundreds or even thousands of times the phage. Do. This is also called phage amplification.
 本発明において、「バクテリオファージT7」とは、天然のバクテリオファージT7と少なくとも99%、98%、97%、96%、95%、94%、93%、92%、91%、90%、89%、88%、87%、86%、85%、84%、83%、82%、81%、80%、79%、78%、77%、76%、75%の相同性を有するゲノムを有し、かつ上記ファージ増幅を行い、最終的に細菌の細胞壁を破り(溶菌)、細胞外に放出されるバクテリオファージをいう。
 また、「組換え」とは、他の方法では見いだされない遺伝的物質を一緒にするための遺伝的な改変をいう。
In the present invention, "bacteriophage T7" is at least 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89 with natural bacteriophage T7. %, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 75% homologous genomes A bacteriophage that has and performs the above-mentioned phage amplification, finally breaks the cell wall of the bacterium (lysis), and is released to the outside of the cell.
Also, "recombination" refers to a genetic modification to bring together genetic material that is not otherwise found.
 本発明の組換えファージに導入される標識タンパク質の遺伝子としては、基質が必要ない点で蛍光タンパク質の遺伝子が好ましい。蛍光タンパク質としては、市販されている緑色蛍光タンパク質(GFP)、赤色蛍光タンパク質(RFP)、黄色蛍光タンパク質(YFP)、またはシアン蛍光タンパク質(CFP)の遺伝子を用いることができ、これらのタンパク質の修飾型のすべてのvariantのいずれの遺伝子も用いることができる。 As the gene for the labeled protein introduced into the recombinant phage of the present invention, the gene for the fluorescent protein is preferable because it does not require a substrate. As the fluorescent protein, commercially available green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), or cyanide fluorescent protein (CFP) genes can be used, and modifications of these proteins can be used. Any gene of any variant of type can be used.
 また、発光または呈色反応を触媒する酵素の遺伝子を用いることができ、たとえば、ルシフェラーゼ(Luc)、β-グルクロニダーゼ(GUS)、β-ガラクトシダーゼ(Gal)、西洋ワサビペルオキシダーゼ(HRP)、アルカリホスファターゼ(AP)等の市販されている遺伝子が挙げられる。 In addition, genes of enzymes that catalyze luminescence or color reaction can be used, for example, luciferase (Luc), β-glucuronidase (GUS), β-galactosidase (Gal), horseradish peroxidase (HRP), alkaline phosphatase ( Examples include commercially available genes such as AP).
 また、蛍光・発光タンパク質や蛍光色素に対して結合性を有するペプチドをコードするDNAを用いることができ、それ以外にも、ビオチン化タグ配列ペプチド(大腸菌のビオチンライゲースBirAのアクセプターペプチド)、あるいは各種タグ配列(HA、myc、FLAG、Hisタグ等)も用いることができる。 In addition, DNA encoding a peptide having a binding property to a fluorescent / photoprotein or a fluorescent dye can be used. In addition, a biotinylated tag sequence peptide (acceptor peptide of Escherichia coli biotin-ligase BirA), Alternatively, various tag sequences (HA, myc, FLAG, His tag, etc.) can also be used.
 本発明において、「gp17遺伝子領域に、標識タンパク質の遺伝子が発現可能に挿入されている」とは、両遺伝子が発現する際に、gp17遺伝子の発現産物である尾部繊維タンパク質と蛍光タンパク質等とが融合タンパク質として発現される状態で、gp17遺伝子領域に標識タンパク質の遺伝子が挿入されている状態を意味する。gp17遺伝子は、尾部の付け根から伸びる尾部繊維タンパク質遺伝子であり、3分子で一本の繊維を形成する。T7ファージはその繊維からなる脚を6本有するため、gp17遺伝子領域に蛍光タンパク質等の遺伝子を発現可能に挿入することにより、3×6=18の18個の蛍光タンパク質、酵素、タグ配列等が脚表面に発現した尾部を有する組換えファージを作成することができる。 In the present invention, "the gene of the labeled protein is expressively inserted into the gp17 gene region" means that when both genes are expressed, the tail fiber protein, the fluorescent protein, etc., which are the expression products of the gp17 gene, are used. It means a state in which the gene of the labeled protein is inserted into the gp17 gene region in a state of being expressed as a fusion protein. The gp17 gene is a tail fiber protein gene that extends from the base of the tail, and three molecules form one fiber. Since T7 phage has 6 legs consisting of its fibers, 18 fluorescent proteins, enzymes, tag sequences, etc. of 3 × 6 = 18 can be obtained by inserting genes such as fluorescent proteins into the gp17 gene region so that they can be expressed. Recombinant phage having a tail expressed on the leg surface can be produced.
 蛍光タンパク質等の遺伝子が挿入されるgp17遺伝子領域は、蛍光タンパク質等の遺伝子の発現が、gp17遺伝子のプロモーターまたは調節領域により機能的に制御され、かつ、gp17遺伝子が機能的に発現可能な領域であればいかなる領域であってもよい。gp17遺伝子の機能が欠失しにくいgp17遺伝子のコード領域の末端近傍のコード領域内または転写領域内が好ましく、gp17遺伝子のコード領域の5´末端または3´末端がより好ましい。 The gp17 gene region into which a gene such as fluorescent protein is inserted is a region in which the expression of the gene such as fluorescent protein is functionally regulated by the promoter or regulatory region of the gp17 gene and the gp17 gene can be functionally expressed. Any area may be used as long as it is present. It is preferably in the coding region or in the transcription region near the end of the coding region of the gp17 gene, in which the function of the gp17 gene is less likely to be deleted, and more preferably at the 5'end or 3'end of the coding region of the gp17 gene.
 gp17遺伝子と蛍光タンパク質等の遺伝子は、同じプロモーターまたは調節領域が、両遺伝子を制御できるように連結される必要があり、スペーサー配列またはリンカー配列を介して連結してもよい。gp17遺伝子と蛍光タンパク質等の遺伝子によりコードされるアミノ酸配列を含む融合タンパク質が発現するように、インフレームで連結させることにより、一旦プロモーターで転写が始まると、コード領域を通って終止コドンまで転写が続く。gp17遺伝子および蛍光タンパク質等の遺伝子は、5´→3´方向に存在する。 The gp17 gene and a gene such as a fluorescent protein need to be linked so that the same promoter or regulatory region can control both genes, and may be linked via a spacer sequence or a linker sequence. By linking in-frame so that a fusion protein containing an amino acid sequence encoded by a gene such as gp17 gene and a fluorescent protein is expressed, once transcription is started by the promoter, transcription is performed through the coding region to the stop codon. Continue. Genes such as gp17 gene and fluorescent protein exist in the 5'→ 3'direction.
 蛍光タンパク質等の異種遺伝子をファージゲノムの特定の領域に挿入する遺伝子組換え操作方法は、当業者に周知であり、相同組み換えやゲノム編集技術を用いることができる。組換え操作の方法の原則は、たとえばPCR増幅によって、組み込むべき断片及び2つの組換えアームを含むDNA断片を作製することである。これらのアームは、挿入する遺伝子に隣接した領域に相同である。これらのDNA断片は、相同なアームを含んだプライマーを用いたPCRによって、数十塩基配列のヌクレオチドから作り出すことも可能である。 A gene recombination operation method for inserting a heterologous gene such as a fluorescent protein into a specific region of the phage genome is well known to those skilled in the art, and homologous recombination and genome editing techniques can be used. The principle of the method of recombination operation is to prepare a DNA fragment containing a fragment to be incorporated and two recombination arms, for example by PCR amplification. These arms are homologous to the region adjacent to the gene to be inserted. These DNA fragments can also be produced from nucleotides having a sequence of several tens of bases by PCR using primers containing homologous arms.
 本発明では、T7ゲノムの全長DNA中での切断部位がそれぞれ1か所である2つの制限酵素の制限部位が、T7ゲノムのgp17遺伝子の3´末端近傍のコード領域中と3´末端下流領域に存在するため、それらの制限酵素部位を利用して、gp17遺伝子コード領域の3´末端にGFP遺伝子を導入することができる。 In the present invention, the restriction sites of the two restriction enzymes having one cleavage site in the full-length DNA of the T7 genome are in the coding region near the 3'end of the gp17 gene of the T7 genome and in the downstream region of the 3'end. Since it is present in, the GFP gene can be introduced into the 3'end of the gp17 gene coding region by utilizing those restriction enzyme sites.
 後述する実施例では、T7ファージとして、野生型のT7ファージ(40kb)のキャプシドタンパク質のC末端に任意のペプチドを融合タンパク質として発現させることのできる改変体である、T7 Select 415-1b(Merk Millipore社製)を用いる。キャプシドタンパク質の発現に関わるDNA部分以外は、T7 Select 415-1bのDNAは、野生型T7ゲノムDNAと同じである。
 SfiI-PmlI間のみならず、gp17遺伝子を含んだ前後のゲノムはすべて保存されているので、本発明の組換えT7ファージの作成方法は、野生型T7を含めたすべてのT7改変体ファージ(T7 Select 415-1b,10-3b,1-1b,1-2a,1-2b,1-2c:Merk Millipore社製)に適用することができる。
In the examples described later, as T7 phage, T7 Select 415-1b (Merk Millipore), which is a variant capable of expressing an arbitrary peptide as a fusion protein at the C-terminal of the capsid protein of wild T7 phage (40 kb). (Manufactured by the company) is used. The DNA of T7 Select 415-1b is the same as the wild-type T7 genomic DNA, except for the DNA portion involved in the expression of the capsid protein.
Since all the genomes before and after containing the gp17 gene are conserved as well as between SfiI and PmlI, the method for producing recombinant T7 phage of the present invention is used for all T7 mutant phage (T7) including wild-type T7. It can be applied to Select 415-1b, 10-3b, 1-1b, 1-2a, 1-2b, 1-2c: manufactured by Merck Millipore).
 最初に、T7ファージのゲノムDNAを制限酵素SfiIおよびPmlIにより切断し、得られた切断断片である33.3kb、2.1kb、1.9kbの3本のDNA断片を、アガロースゲル電気泳動によりサイズ分離して、33.3kbと1.9kbのそれぞれのDNA断片のサイズのバンドのDNAを溶出させてそれぞれ精製する。各精製DNAフラグメントは、アガロース電気泳動で精製をさらに確認する。 First, the genomic DNA of T7 phage was cleaved with restriction enzymes SfiI and PmlI, and the obtained cleaved fragments, 33.3 kb, 2.1 kb, and 1.9 kb, were sized by agarose gel electrophoresis. The DNA is separated and the DNA of the band of the size of each DNA fragment of 33.3 kb and 1.9 kb is eluted and purified respectively. Each purified DNA fragment is further confirmed for purification by agarose gel electrophoresis.
 次いで、T7ゲノムのgp17配列内のSfiI制限部位からgp17下流にあるPmlI制限部位までの上記2.1kbのDNA断片において、gp17コード領域の3´末端にGSスペーサー配列をコードする遺伝子を介してGFP遺伝子が連結されている約2.9kbのフラグメントを、以下のオーバーラップ伸長PCR法を用いて作製する。 Next, in the above 2.1 kb DNA fragment from the SfiI restriction site in the gp17 sequence of the T7 genome to the PmlI restriction site downstream of gp17, GFP was mediated at the 3'end of the gp17 coding region via the gene encoding the GS spacer sequence. A fragment of about 2.9 kb to which the genes are linked is prepared using the following overlap extension PCR method.
 このフラグメントを作製するために、まず2.9kbを約1kbずつの3本のフラグメント(以下、それぞれA、B、Cという。)に分けて、それぞれ化学合成により作製する。A、B、Cのそれぞれの5´末端と3´末端に、30bpのオーバーラップ配列を付加する。フラグメントAとBのオーバーラップ伸長PCRにより、PCR産物A+Bが作製され、このA+B産物とフラグメントCとのオーバーラップ伸長PCRにより、PCR産物A+B+Cという目的の2.9kb産物を得る。各PCR産物はアガロースゲル電気泳動により分離して、該当するバンドを切り取り、精製した2.9kbフラグメントの5´末端と3´末端を、制限酵素SfiIおよびPmlIで消化する。 In order to prepare this fragment, first, 2.9 kb is divided into three fragments of about 1 kb each (hereinafter, referred to as A, B, and C, respectively), and each of them is prepared by chemical synthesis. A 30 bp overlap sequence is added to the 5'end and 3'end of A, B, and C, respectively. The PCR product A + B is prepared by the overlap extension PCR of fragments A and B, and the target 2.9 kb product of the PCR product A + B + C is obtained by the overlap extension PCR of the A + B product and the fragment C. Each PCR product is separated by agarose gel electrophoresis, the corresponding band is cut off, and the 5'end and 3'end of the purified 2.9 kb fragment are digested with restriction enzymes SfiI and PmlI.
 次に、T7ファージのゲノムDNAを制限酵素SfiIおよびPmlIにより切断して得られ、精製しておいた33.3kbと1.9kbの2つのフラグメントと、オーバーラップ伸長PCR産物である精製した2.9kbフラグメントの合計3本のフラグメントを、T4DNAリガーゼを用いてライゲーション反応により連結する。このライゲーション反応産物とT7ファージ抽出物とを混合してパッケージング反応を行い、組換えT7ファージを作成して大腸菌に感染させる。 Next, the genomic DNA of T7 phage was cleaved with restriction enzymes SfiI and PmlI, and the two fragments of 33.3 kb and 1.9 kb, which were purified, and the purified product, which is an overlap extension PCR product, were purified. A total of 3 fragments of 9 kb fragments are ligated by ligation reaction using T4 DNA ligase. The ligation reaction product and the T7 phage extract are mixed and subjected to a packaging reaction to prepare recombinant T7 phage and infect Escherichia coli.
 感染させた大腸菌をLBプレートに蒔いて、出現するプラークが蛍光を発することにより、蛍光タンパク質が正確に折り畳まれて発現する組換えT7ファージを得られることを確認する。そして、この蛍光を発する組換えT7ファージの感染性を、さらに大腸菌に感染させて液体培地中で増殖させ、溶菌を確認してから溶菌物を遠心して、上清中のファージ液が蛍光を発することにより確認する。 Sow the infected Escherichia coli on an LB plate and confirm that the emerging plaque fluoresces to obtain recombinant T7 phage on which the fluorescent protein is accurately folded and expressed. Then, the infectivity of the recombinant T7 phage that emits fluorescence is further infected with Escherichia coli and propagated in a liquid medium, and after confirming the lysis, the lysate is centrifuged, and the phage solution in the supernatant fluoresces. Confirm by.
 本発明の組換えT7ファージは、1ファージ分子あたり18個の蛍光タンパク質が発現するため、蛍光強度が強く、しかもすべてのファージに必ず同じ数の蛍光タンパク質が発現するため、正確な一定の蛍光強度によるスクリーニングを実現できる。 Since the recombinant T7 phage of the present invention expresses 18 fluorescent proteins per phage molecule, the fluorescence intensity is strong, and since the same number of fluorescent proteins are always expressed in all phages, an accurate constant fluorescence intensity is obtained. Screening can be realized.
 本発明の組換えT7ファージは、当技術分野において周知の選択またはスクリーニングのためのファージディスプレイライブラリーの作製に使用することができる。ランダムな配列を有するペプチドをコードする核酸分子を、バクテリオファージT7のゲノムのgp10遺伝子領域に、ランダムペプチドとキャプシドタンパク質とが融合タンパク質として発現される状態で挿入して、組換えバクテリオファージT7のランダムペプチドファージライブラリーを作成する。それぞれのファージ粒子は1つポリペプチドを提示し、次いでファージ粒子は、関心対象の分子であるターゲットとの親和性相互作用に基づいて選択する。発現できるペプチドは1ファージ当たり1種類であるが、1012個/ml以上の濃度でファージを調製することが可能であるため、さまざまな種類のペプチドを発現したファージ集団をライブラリーとして用いることができる。 The recombinant T7 phage of the present invention can be used to prepare a phage display library for selection or screening well known in the art. A nucleic acid molecule encoding a peptide having a random sequence is inserted into the gp10 gene region of the bacteriophage T7 genome in a state where the random peptide and capsid protein are expressed as a fusion protein, and the recombinant bacteriophage T7 is randomly expressed. Create a peptide phage library. Each phage particle presents one polypeptide, and then the phage particle is selected based on its affinity interaction with the target, which is the molecule of interest. Expression can be peptide is one per phage, but be used because it is possible to prepare the phage at a concentration of 10 12 / ml or more, the phage population that expressed various types of peptides as a library it can.
 本発明のファージディスプライブラリーを構成するファージは、蛍光を発するため、ファージライブラリーのin vitroスクリーニングだけでなく、in vivoスクリーニングの解析工程も可視化でき、一定強度のファージの極めて迅速かつ正確な選択増幅によるスクリーニングを実現できることが特徴である。
 本発明の組換えT7ファージは、ライブラリー部分のランダムペプチドを発現する頭部キャプシド部分とは異なる尾部部分に、蛍光タンパク質が発現することから、ターゲットに対する結合の立体障害を生じることなく、ファージディスプレイ法で重要な要素であるターゲットとの結合の見逃しが起きないという顕著な効果を有する。
Since the phages constituting the phage disp library of the present invention fluoresce, not only the in vitro screening of the phage library but also the analysis process of in vivo screening can be visualized, and extremely rapid and accurate selection of phages of constant intensity can be performed. The feature is that screening by amplification can be realized.
Since the recombinant T7 phage of the present invention expresses a fluorescent protein in the tail portion different from the head capsid portion expressing the random peptide in the library portion, the phage display does not cause a steric disorder of binding to the target. It has a remarkable effect that the coupling with the target, which is an important element in the law, is not overlooked.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
 T7 Select 415-1b DNAを制限酵素SfiIおよびPmlI(New England Biolab社製)で切断して、33.3kb、2.1kb、1.9kbの3本のDNA断片を得た。概略を図1に示す。この3本のDNAフラグメントをアガロースゲル電気泳動で分離し(結果を図2に示す。)、電気泳動後、ゲルから各フラグメントのそれぞれのバンドを切り出し、以下のように精製した。 T7 Select 415-1b DNA was cleaved with restriction enzymes SfiI and PmlI (manufactured by New England Biolabs) to obtain three DNA fragments of 33.3 kb, 2.1 kb and 1.9 kb. The outline is shown in FIG. These three DNA fragments were separated by agarose gel electrophoresis (results are shown in FIG. 2), and after electrophoresis, each band of each fragment was excised from the gel and purified as follows.
 33.3kbフラグメントは、GeBAflex-tube Dialysis Kit(MW:3500、WACO社製)を用いて、切り出したゲル片から電気泳動による溶出(100V,2h,4℃)を行い、回収した溶出液からエタノール沈殿により33.3kbDNAを得た。1.9kbフラグメントは、QIAGEN Gel Extraction Kit(QIAGEN社製)を用いて通常の方法で溶出精製した。得られた各精製DNAフラグメントの純度をアガロース電気泳動で確認した。 The 33.3 kb fragment was eluted by electrophoresis (100 V, 2 h, 4 ° C.) from the cut gel piece using a GeBAflex-tube Dialysis Kit (MW: 3500, manufactured by WACO), and ethanol was used from the recovered eluate. 33.3 kb DNA was obtained by precipitation. The 1.9 kb fragment was eluted and purified by a usual method using QIAGEN Gel Extraction Kit (manufactured by QIAGEN). The purity of each purified DNA fragment obtained was confirmed by agarose gel electrophoresis.
 T7ゲノムのTail fiber protein(gp17)の3´末端に、GSスペーサー配列(GGGGSGGGGSGGGGS)を介してsuperfolderGFPを連結した融合タンパクTail fiber-sfGFP(gp17-sfGFP)の遺伝子を設計した。Gp17配列内のSfiIサイトからgp17下流T7ゲノム上のPmlIサイトまでの約2.9kbフラグメント(中ほどにGSスペーサーおよびsfGFP遺伝子を含む)を、以下のオーバーラップ伸長PCRを行うことにより調製した。この調製方法を図3に示す。 We designed a gene for the fusion protein Tail fiber-sfGFP (gp17-sfGFP) in which a superfolderGFP was linked to the 3'end of the T7 genome's Tail fiber protein (gp17) via a GS spacer sequence (GGGGSGGGGSGGGGS). Approximately 2.9 kb fragments (including the GS spacer and sfGFP gene in the middle) from the SfiI site in the Gp17 sequence to the PmlI site on the gp17 downstream T7 genome were prepared by performing the following overlap extension PCR. This preparation method is shown in FIG.
 2.9kbを約1kbずつの3本のフラグメント(A、B、C)に分けて設計し、それぞれ5´および3´末端に30bpのオーバーラップ配列を配置して、A、B、Cの3本のDNAフラグメントを化学合成によって調製した。フラグメントAとBのオーバーラップ伸長PCR産物A+B(5´Primer GTAGGTCAGGCCGTTGTGG(配列番号1))、(3´Primer TAATCCTATCAGTGCTCCCTTCC(配列番号2))と、フラグメントCを用いてさらにオーバーラップ伸長PCR(5´Primer GTAGGTCAGGCCGTTGTGG(配列番号1))、(3´Primer GTTCTCTTCACGTGTCCTTGGGTACAG(配列番号3))を行い、目的の2.9kb産物を得た。各PCR産物はアガロースゲル電気泳動を行って該当するバンドを切り出し、Gel Extraction Kitを用いて溶出精製した。精製した2.9kbフラグメントの5´および3´末端を制限酵素SfiIおよびPmlIにて消化し、再度アガロースゲル電気泳動を行って(結果を図4に示す。)、Gel Extraction Kitを用いて溶出精製した。 2.9 kb was designed by dividing it into three fragments (A, B, C) of about 1 kb each, and 30 bp overlapping sequences were arranged at the 5'and 3'ends, respectively, to form 3 of A, B, and C. The DNA fragments of the book were prepared by chemical synthesis. Overlapping extension PCR products A + B (5'Primer GTAGGTCAGGCCGTTGTGG (SEQ ID NO: 1)) and (3'Primer TAATCCTATCAGTGCTCCCTTCC (SEQ ID NO: 2)) of fragments A and B, and further overlapping extension PCR (5'Primer) using fragment C. GTAGGTCAGGCCGTTGTGG (SEQ ID NO: 1)) and (3'Primer GTTCTCTTCACGTGTCCTTGGGTACAG (SEQ ID NO: 3)) were performed to obtain the desired 2.9 kb product. Each PCR product was subjected to agarose gel electrophoresis to cut out the corresponding band, and was eluted and purified using Gel Extension Kit. The 5'and 3'ends of the purified 2.9 kb fragment were digested with restriction enzymes SfiI and PmlI, subjected to agarose gel electrophoresis again (results are shown in FIG. 4), and eluted and purified using Gel Extension Kit. did.
 実施例1で精製したT7ゲノムDNAのSfiIおよびPmlI切断産物である33.3kb、1.9kbの2本のフラグメントと、オーバーラップ伸長PCR産物である2・9kbフラグメントの、合計3本のフラグメントを、T4 DNA ligase(Ligation High Ver.2,TOYOBO社製)を用いて ライゲーション反応により連結した。ライゲーション反応産物の概略を図5に示す。in vitro T7 Packaging Kit(Merk Millipore社製)を用いて、ライゲーション反応産物とT7ファージ抽出物とのパッケージング反応を行い(室温2時間)、対数増殖期に達した大腸菌 BL21(Merk Millipore社製)に感染させた。 Two fragments of 33.3 kb and 1.9 kb, which are SfiI and PmlI cleavage products of the T7 genomic DNA purified in Example 1, and a 2.9 kb fragment, which is an overlap extension PCR product, are used for a total of three fragments. , T4 DNA ligase (Ligation High Ver.2, manufactured by TOYOBO) was used for ligation reaction. The outline of the ligation reaction product is shown in FIG. Escherichia coli BL21 (manufactured by Merck Millipore) that has reached the logarithmic growth phase after packaging reaction between the ligation reaction product and T7 phage extract using in vitro T7 Packaging Kit (manufactured by Merck Millipore). Infected.
 感染させたBL21をTOP agaroseと混和してLBプレートに蒔き、出現したプラークが蛍光を発することを、実体顕微鏡による蛍光観察で、肉眼で観察して確認した。この実体顕微鏡写真を図6に示す。採取したプラークをファージ抽出緩衝液(20mM Tris-HCl,100mM NaCl,6mM MgSO,pH8.0)とインキュベート(4℃、3h)し、少量のクロロホルムと転倒混和後、遠心(3,000×g,5分)して上清を採取し、ファージ抽出液を得た。抽出したファージ液の蛍光を実体顕微鏡下でさらに確認後、抽出したファージDNAを鋳型にしてPCRを行い(5‘Primer TCAGATAACAACAATGACTGTACCTTCCAC(配列番号4))、(3‘Primer TCTTCACGTGTCCTTGGGTACAGAGC(配列番号5))、gp17-sfGFPが予想する分子量および単一バンドであること確認し、GSスペーサーおよびsfGFP配列がT7ゲノムDNAgp17の3´末端に挿入されていることを確認した。 The infected BL21 was mixed with TOP agarose and sown on an LB plate, and it was confirmed by visual observation with a stereomicroscope that the plaques that appeared fluoresce. This stereomicrograph is shown in FIG. The collected plaque is incubated with a phage extraction buffer (20 mM Tris-HCl, 100 mM NaCl, 6 mM sulfonyl 4 , pH 8.0) (4 ° C., 3 hours), mixed with a small amount of chloroform by inversion, and then centrifuged (3,000 × g). , 5 minutes), and the supernatant was collected to obtain a phage extract. After further confirming the fluorescence of the extracted phage solution under a stereomicroscope, PCR was performed using the extracted phage DNA as a template (5'Primer TCAGATAACAACAATGACTGTACCTTCCAC (SEQ ID NO: 4)), (3'Primer TCTTCACGTGTCCTTGGGTACAGAGC (SEQ ID NO: 5)), It was confirmed that gp17-sfGFP had the expected molecular weight and single band, and that the GS spacer and sfGFP sequence were inserted at the 3'end of T7 genomic DNA gp17.
 次に、得られたファージのゲノムDNAの塩基配列解析を行い、T7gp17-sfGFPファージが生成されたことを塩基配列レベルで確認した。このT7gp17-sfGFPファージを第1世代とし、さらに大腸菌BL21に感染させて液体培地(L-Broth)中で増殖させて、溶菌を確認したのち遠心(8,000×g,10分)し、上清を採取することによりT7gp17-sfGFPファージを得た(第2世代)。得られたT7gp17-sfGFPファージ液の蛍光を実体蛍光顕微鏡下で確認し、上記第1世代同様、これを鋳型にしてPCRを行い、gp17-sfGFに該当する単一バンドを確認後、さらにゲノムDNAの塩基配列解析を行って、世代を経たファージ増殖後もT7gp17-sfGFPが、ゲノム上の設計通りの位置に継代されていることを確認した。 Next, the nucleotide sequence analysis of the obtained phage genomic DNA was performed, and it was confirmed at the nucleotide sequence level that T7gp17-sfGFP phage was generated. This T7gp17-sfGFP phage was used as the first generation, further infected with Escherichia coli BL21, grown in a liquid medium (L-Bros), lysed, and then centrifuged (8,000 × g, 10 minutes) on the top. T7gp17-sfGFP phage was obtained by collecting Qing (second generation). The fluorescence of the obtained T7gp17-sfGFP phage solution was confirmed under a stereoscopic fluorescence microscope, and PCR was performed using this as a template as in the first generation above, and after confirming a single band corresponding to gp17-sfGF, further genomic DNA. It was confirmed that T7gp17-sfGFP was passaged to the designed position on the genome even after the generational phage proliferation.
 上記のように、作成したファージにsfGFPの蛍光が認められることから、sfGFPは正しくフォールディングされてファージに組み込まれていることが予想された。また、上記のシークエンス解析によって、sfGFPはgp17にインフレームで組み込まれていることが判明した。そこで、タンパク質レベルで設計どおりに翻訳されているかどうかを以下のように調べた。作成したgp17-sfGFPファージをSDS-PAGEおよびウエスタンブロットにより抗GFP抗体で検出し、検出されるバンドの分子量が、gp17タンパク質+GSスペーサー+sfGFPの総和分子量の約90kDa付近に認められるかどうかを調べた。 As described above, since fluorescence of sfGFP was observed in the prepared phage, it was expected that sfGFP was correctly folded and incorporated into the phage. In addition, the above sequence analysis revealed that sfGFP was incorporated into gp17 in-frame. Therefore, we investigated whether the translation was done as designed at the protein level as follows. The prepared gp17-sfGFP phage was detected by SDS-PAGE and Western blotting with an anti-GFP antibody, and it was examined whether the molecular weight of the detected band was observed near about 90 kDa of the total molecular weight of gp17 protein + GS spacer + sfGFP.
 コントロールサンプルとして、gp17-GSスペーサー-sfGFPタンパク質のみを大腸菌で作らせ、蛍光を発することを確認したのち、上記T7gp17-sfGFPファージと同様に、SDS-PAGEおよびウエスタンブロットして抗GFP抗体で検出した。結果は、大腸菌で作成したgp17-GSスペーサー-sfGFPタンパク質と、T7gp17-sfGFPファージとで同じ約90kDa付近に抗GFP抗体で認識されるバンドが検出された(図7)。このことから、上記GFPの蛍光を発するT7gp17-sfGFPファージは、塩基配列レベルおよびタンパク質レベル双方において、設計どおりに構築されていること、そして実際に強い蛍光を認めることから、sfGFPは正しくフォールディングされてT7ファージの尾部繊維タンパク質に組み込まれていることが確認された。 As a control sample, only the gp17-GS spacer-sfGFP protein was produced in Escherichia coli, and after confirming that it fluoresces, it was detected by SDS-PAGE and Western blotting with an anti-GFP antibody in the same manner as the above T7gp17-sfGFP phage. .. As a result, a band recognized by the anti-GFP antibody was detected in the same vicinity of about 90 kDa between the gp17-GS spacer-sfGFP protein prepared in Escherichia coli and the T7gp17-sfGFP phage (Fig. 7). From this, the T7gp17-sfGFP phage that fluoresces the above GFP is constructed as designed at both the base sequence level and the protein level, and actually shows strong fluorescence, so that the sfGFP is folded correctly. It was confirmed that it was integrated into the tail fiber protein of T7 phage.
[組換えファージのファージライブラリーの作製]
 実施例3で作製したT7gp17-sfGFPファージを、PEG沈殿により濃縮した後2%SDS処理によりファージゲノムDNAを抽出し、16,500×gで遠心した上清から、QIAGEN Genomic-tip 20/G(QIAGEN社)を用いてT7gp17-sfGFPファージゲノムDNA(38.1kb)を精製した。得られたファージゲノムDNAをエタノール沈殿後、EcoRIおよびHindIIIで消化し、21.5kbpおよび16.6kbpの断片を得、0.8%アガロースゲル電気泳動を行って、QIAGEN GEL EXTRACTION KITを用いて精製した(図8)。
[Preparation of phage library of recombinant phage]
The T7gp17-sfGFP phage prepared in Example 3 was concentrated by PEG precipitation, then the phage genomic DNA was extracted by 2% SDS treatment, and the supernatant was centrifuged at 16,500 × g. T7gp17-sfGFP phage genomic DNA (38.1 kb) was purified using QIAGEN). The obtained phage genomic DNA was precipitated with ethanol and then digested with EcoRI and HindIII to obtain 21.5 kbp and 16.6 kbp fragments, subjected to 0.8% agarose gel electrophoresis and purified using QIAGEN GEL EXTRATION KIT. (Fig. 8).
 ファージライブラリーのランダムペプチド(12アミノ酸残基)に該当する配列とスペーサー配列および6×Hisタグ配列、FLAGタグ配列を含む150bpのDNA配列(GGCGGCGGTGGTCATCACCATCACCATCATGGCGGTGGGTCGGGTGGCGGGTCTGGTGGCGGGTCAGGCGGTGGCNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKGGTGGCGGTGGCGGGGACTACAAAGACGATGACGACAAG(配列番号6))を合成し、これをテンプレートとしてEcoRI配列を含む(5′プライマー TATGAATTCGGGCGGCGGTGGTCATCACCATCAC((配列番号7))およびHindIII配列を含む(3′プライマー GCGAAGCTTACTTGTCGTCATCGTCTTTGTAGTC(配列番号8))を用いてPCR反応を行い、PCR産物として、ファージゲノムDNAに挿入するインサートDNAを得た。このPCR産物の5′および3′末端をEcoRIおよびHindIIIで消化した後、2%アガロース電気泳動およびQIAGEN GEL EXTRACTION KITにより精製した。得られたインサートDNAと、21.5kbpおよび16.6kbpのファージゲノムDNAをT4ライゲースによりライゲーション反応を行い、ライゲーション産物をT7 Packaging Extracts(メルクミリポア社)と混合して、In vitro packaging反応を行った。Packaging産物を大腸菌BL21に感染させて、LBプレート(150mm)に蒔いて増幅させ(37℃、2.5時間)、増幅したファージを、100mM NaClおよび6mM MgSOを含む緩衝液でプラークから回収し、遠心した上清を回収して、T7gp17-sfGFPランダムペプチドライブラリー(T7-sfGFP×12)を得た。 150bp DNA sequence including sequence corresponding to random peptide (12 amino acid residues) of phage library, 6 × His tag sequence, FLAG tag sequence (GGCGGCGGTGGTCATCACCATCACCATCATGGCGGTGGGTCGGGTGGCGGGTCTGGTGGCGGGTCAGGCGGTGGCNNKNNKNNKGGCGGGTCAGGCGGTGGCNNKNNKNNKGGT PCR reaction was performed using the EcoRI sequence (5'primer TATGAATTCGGGCGGCGGTGGTCATCACCATCAC ((SEQ ID NO: 7))) and the HindIII sequence (3'primer GCGAAGCTTACTTGTCGTCATCGTCTTTGTAGTC (SEQ ID NO: 8)), and inserted into the phage genomic DNA as a PCR product. The 5'and 3'ends of this PCR product were digested with EcoRI and HindIII and then purified by 2% agarose electrophoresis and QIAGEN GEL EXTRATION KIT. The obtained insert DNA and 21.5 kbp And 16.6 kbp phage genomic DNA was subjected to a ligation reaction with T4 ligation, the ligation product was mixed with T7 Packing Exects (Merck Millipore), and an In vitro packing reaction was carried out. The packing product was infected with Escherichia coli BL21. , Sowed on an LB plate (150 mm) and amplified (37 ° C., 2.5 hours), the amplified phage was recovered from the plaque with a buffer containing 100 mM NaCl and 6 mM Then 4 and the centrifuged supernatant was recovered. , T7gp17-sfGFP random peptide library (T7-sfGFP × 12) was obtained.
[ランダムペプチドファージライブラリーを用いたin vitroスクリーニング]
 動物細胞発現用プラスミドベクターpCAGEN(Addgene社)のマルチクローニングサイトに、マウスLDL受容体(mLDLR)の細胞外領域(ext)(mLDLRext)とその3’末端にmycタグ配列を連結させた断片(mLDLRext-myc)を挿入した動物細胞発現ベクタ―を作成した。これをHEK293-T細胞にトランスフェクションし、48時間後に培養上清にmLDLRext-mycが分泌されていることを、抗myc抗体(マウスIgG)を用いてウエスタンブロットにて確認した(図9)。この培養上清から、抗myc抗体(マウスIgG)および抗マウスIgG-磁気ビーズ(Dynabeads M-280 Sheep anti-Mouse IgG、ベリタス社)を用いて、免疫沈降法によりmLDLRext-myc-磁気ビーズを作成した。これをリガンドとして、上記ランダムペプチドライブラリー(T7-sfGFP×12)と4℃、1時間インキュベートし、緩衝液で洗浄したのちに、mLDLRext-myc-磁気ビーズに結合したファージプールを得、1%SDSで溶出して、LDL受容体細胞外領域(LDLRext)に結合性を示すファージの1次プールとした(ラウンド1)。
 これを大腸菌BL21に感染させて増幅し、ラウンド1のインプットと同じ量のファージを次のラウンド2のスクリーニングのインプットとして用い、上記同様の操作を続けて、合計3回のバイオパニングを実施した。ラウンドを進めるにつれて回収されるファージの「アウトプット/インプット」の比が上昇し、最終的には、LDLRext結合性を示すファージの占める割合がラウンド1の1000倍以上に上昇した(図10)。
[In vitro screening using random peptide phage library]
A fragment (mLDLRext) in which the extracellular region (ext) (mLDLRext) of the mouse LDL receptor (mLDLR) and the myc tag sequence are linked to the 3'end of the multicloning site of the plasmid vector pCAGEN (Addgene) for animal cell expression An animal cell expression vector into which -myc) was inserted was prepared. This was transfected into HEK293-T cells, and it was confirmed by Western blotting using an anti-myc antibody (mouse IgG) that mLDLRext-myc was secreted into the culture supernatant 48 hours later (Fig. 9). From this culture supernatant, mLDLRext-myc-magnetic beads were prepared by immunoprecipitation using anti-myc antibody (mouse IgG) and anti-mouse IgG-magnetic beads (Dynabeads M-280 Sheep anti-Mouse IgG, Veritas). did. Using this as a ligand, it was incubated with the above random peptide library (T7-sfGFP × 12) at 4 ° C. for 1 hour, washed with a buffer solution, and then a phage pool bound to mLDLRext-myc-magnetic beads was obtained, and 1%. It was eluted with SDS to form a primary pool of phage exhibiting binding to the extracellular region of the LDL receptor (LDLLext) (Round 1).
This was infected with Escherichia coli BL21 and amplified, and the same amount of phage as the input of Round 1 was used as the input for the screening of the next Round 2, and the same operation as described above was continued, and biopanning was performed a total of 3 times. As the round progressed, the "output / input" ratio of the recovered phage increased, and finally, the proportion of phage showing LDLRext binding increased to more than 1000 times that of Round 1 (Fig. 10).
 得られたラウンド3のファージをPEG沈殿により濃縮し、HEK293-T細胞培養液(DMEM、10%FCS)に懸濁し、マウスLDL受容体(細胞内C末端にmCherryを連結)を発現させたHEK293-T細胞の培養上清に添加した。室温で10-15分のインキュベーション後、蛍光顕微鏡で観察すると、ファージはmLDLR-mCherry発現細胞に特異的に結合することが確認された(図11)。図11中、a、GFPシグナル(緑);b、mCherryシグナル(赤);c、aとbの重ね合わせ。 The obtained round 3 phage was concentrated by PEG precipitation, suspended in HEK293-T cell culture medium (DMEM, 10% FCS), and expressed in mouse LDL receptor (mCherry linked to intracellular C-terminal) HEK293. -Added to the culture supernatant of T cells. After incubation for 10-15 minutes at room temperature, observation with a fluorescence microscope confirmed that the phage specifically bound to mLDLR-mCherry-expressing cells (Fig. 11). In FIG. 11, a, GFP signal (green); b, mCherry signal (red); c, a and b are superposed.
 以上、図10および図11の結果は、本発明により創出した新規蛍光ファージT7gp17-sfGFPは、(1)これを用いてランダムペプチド蛍光ファージライブラリーの作製が可能であること、(2)目的とする機能ペプチド配列を有する蛍光ファージが標的へ結合する様子を、ライブイメージングすることが可能であることを示す。
 このように、本発明のファージの放つ蛍光を検知することにより、受容体などの標的に結合性を示す機能ペプチド配列を持つファージをリアルタイムで追尾しながら、バイオパニングを迅速に遂行することができ、目的とする機能ペプチドの創出を、従来のファージを用いたスクリーニング・バイオパニングに比べて、極めて高速に創出することが可能となることを示すものである。
As described above, the results of FIGS. 10 and 11 show that the novel fluorescent phage T7gp17-sfGFP created by the present invention can (1) be used to prepare a random peptide fluorescent phage library, and (2) purpose. It is shown that it is possible to perform live imaging of how fluorescent phage having a functional peptide sequence binds to a target.
In this way, by detecting the fluorescence emitted by the phage of the present invention, biopanning can be rapidly performed while tracking the phage having a functional peptide sequence exhibiting binding to a target such as a receptor in real time. This shows that the production of the target functional peptide can be performed at an extremely high speed as compared with the conventional screening / biopanning using phages.
[ランダムペプチドファージライブラリーを用いたin vivoスクリーニング]
 T7gp17-sfGFPランダムペプチドライブラリー(T7-sfGFP×12)を、麻酔したマウス鼻粘膜に滴下し、一定時間後に脳を摘出し、ホモジナイズして大腸菌BL21に感染させ、LBプレート(150mm)にまいて増幅(37℃、2.5時間)後、プラークからファージを回収した。このファージを用いて次のラウンドへ進み、ラウンド1と等量のファージをマウス鼻粘膜に滴下し、上記同様の操作を4回繰り返した。ラウンドを進めるにつれて回収されるファージの「アウトプット/インプット」の比が約900倍上昇した(図12)。
[In vivo screening using random peptide phage library]
The T7gp17-sfGFP random peptide library (T7-sfGFP × 12) was dropped onto the nasal mucosa of anesthetized mice, and after a certain period of time, the brain was removed, homogenized and infected with Escherichia coli BL21, and spread on an LB plate (150 mm). After amplification (37 ° C., 2.5 hours), phage was recovered from the plaque. Using this phage, the process proceeded to the next round, and the same amount of phage as in Round 1 was dropped onto the nasal mucosa of the mouse, and the same operation as described above was repeated 4 times. As the round progressed, the “output / input” ratio of the recovered phage increased about 900-fold (Fig. 12).
 ラウンド4で得られたファージから任意に約100クローンを選択し、ファージDNAのランダムペプチド部分に該当する塩基配列を、BigDyeTMTerminator v3.1 Cycle Sequencing Kit(ThermoFisher社)を用いて解析した。得られた塩基配列のうち、出現頻度の極めて高い塩基配列を持つファージクローン群から1つを選んで(クローンA)、ペプチド該当部分の12アミノ酸残基のペプチドを化学合成し、N末端にTAMRA蛍光標識を行った。 Approximately 100 clones were arbitrarily selected from the phages obtained in Round 4, and the nucleotide sequence corresponding to the random peptide portion of the phage DNA was analyzed using a BigDye TM Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher). From the obtained nucleotide sequences, one is selected from a group of phage clones having an extremely frequent nucleotide sequence (clone A), a peptide having 12 amino acid residues of the peptide-corresponding portion is chemically synthesized, and TAMRA at the N-terminal. Fluorescent labeling was performed.
 上記の末端TAMRA化したペプチドをPBSに溶解し麻酔下のマウスの鼻粘膜に滴下(1mM、5μL)、1~2時間後に4%パラホルムアルデヒド・リン酸緩衝液を用いて灌流固定を行った。断頭後に頭皮を除去して落射型蛍光実体顕微鏡(OLYMPUS SZX16)下、低倍率でTAMRAシグナルの観察を頭蓋骨の上から行った。TAMRAシグナルは嗅球付近に強いシグナルを骨の外から検出できた(図13)。 The above terminal TAMRA-ized peptide was dissolved in PBS and dropped onto the nasal mucosa of anesthetized mice (1 mM, 5 μL), and after 1 to 2 hours, perfusion fixation was performed using 4% paraformaldehyde / phosphate buffer. After decapitation, the scalp was removed and the TAMRA signal was observed from above the skull under an epi-illumination stereomicroscope (OLYMPUS SZX16) at low magnification. As for the TAMRA signal, a strong signal near the olfactory bulb could be detected from outside the bone (Fig. 13).
 上記観察後、0.5M EDTA溶液(pH8.0)を用いて脱カルシウム処理(4℃、overnight×7days)を行い,30%スクロース・リン酸緩衝液に置換後、頭骨ごと凍結切片(50μm thick、矢状断)を作製して落射型蛍光顕微鏡(OLYMPUS
BX53)を用いてTAMRAシグナルの観察を行った。結果を図14に示す。鼻粘膜から嗅上皮および呼吸上皮の神経細胞内(図14(a)(b))に侵入した機能ペプチドの強いシグナルを検出した。
 以上、実施例5および6の結果は、本発明にて創出した新規蛍光ファージT7gp17-sfGFP、およびこれを用いて作成したランダムペプチド蛍光ファージライブラリーがin vitroだけでなくin vivoにおいてもスクリーニングやバイオパニングに応用が可能であることを示しており、生体反応を利用した機能ペプチド配列スクリーニングを、in vivoでファージの蛍光をリアルタイムに追尾しながら極めて迅速に遂行することが可能になることを示すものである。
After the above observation, decalcification treatment (4 ° C., overnight × 7 days) was performed using 0.5 M EDTA solution (pH 8.0), replaced with 30% sucrose / phosphate buffer, and then frozen sections (50 μm microscope) together with the occipital bone. , Sagittal section) and epi-illumination fluorescence microscope (OLYMPUS)
The TAMRA signal was observed using BX53). The results are shown in FIG. Strong signals of functional peptides that invaded the olfactory epithelium and respiratory epithelium neurons (FIGS. 14 (a) and 14 (b)) from the nasal mucosa were detected.
As described above, the results of Examples 5 and 6 show that the novel fluorescent phage T7gp17-sfGFP created in the present invention and the random peptide fluorescent phage library prepared using the same are screened and bio-screened not only in vitro but also in vivo. It shows that it can be applied to panning, and shows that functional peptide sequence screening using biological reactions can be performed extremely quickly while tracking phage fluorescence in vivo in real time. Is.
 本発明の組換えバクテリオファージT7は、ファージ分子あたりの発現する標識タンパク質である蛍光タンパク質の数が一定であり、数も多くて蛍光強度が高いので、正確な一定の蛍光強度によるスクリーニングを実現することができる。
 また、本発明の組換えファージをファージディスプレイに使用する場合に、ライブラリー部分のランダムペプチドを発現するキャプシド部分とは異なる構造部分に蛍光タンパク質等が発現することから、ターゲットに対する結合の立体障害を生じることなく、ファージディスプレイ法で重要な要素であるターゲットとの結合の見逃しが起きないという優れた効果を有する。
The recombinant bacteriophage T7 of the present invention has a constant number of fluorescent proteins, which are labeling proteins expressed per phage molecule, and has a large number and high fluorescence intensity, so that screening with an accurate constant fluorescence intensity is realized. be able to.
In addition, when the recombinant phage of the present invention is used for phage display, a fluorescent protein or the like is expressed in a structural part different from the capsid part expressing the random peptide in the library part, so that the steric disorder of binding to the target is caused. It has an excellent effect that the binding to the target, which is an important element in the phage display method, is not overlooked without occurring.
 本発明の蛍光ファージは、自身の放つ蛍光によってリアルタイム検出ができるので、従来法のELISAなどを用いた間接的で時間と手間のかかるファージ検出法を省略できるのみならず、先行研究のように蛍光タンパク質をヘルパープラスミドを用いた大腸菌による過剰発現でファージに付加しないので、スクリーニングにおけるパニングの過程で、選択したファージを複製・増幅するラウンドごとに、未結合蛍光タンパク質と目的の蛍光を発するファージとを分離する手間もかからない。選択増幅したすべてのファージに蛍光タンパク質が間違いなく結合しているかを、ラウンドのたびに検証する必要がなく、一定強度のファージの極めて迅速かつ正確な選択増幅によるスクリーニングを実現できる。 Since the fluorescent phage of the present invention can be detected in real time by its own fluorescence, not only can the indirect, time-consuming and time-consuming phage detection method using the conventional method such as ELISA be omitted, but also fluorescence as in the previous research. Since the protein is not added to the phage by overexpression by E. coli using a helper plasmid, the unbound fluorescent protein and the phage that emits the desired fluorescence are selected for each round of replication and amplification of the selected phage during the panning process in the screening. There is no need to separate them. It is not necessary to verify that the fluorescent protein is definitely bound to all the selectively amplified phages every round, and it is possible to realize a very rapid and accurate selective amplification screening of phages of constant intensity.
 さらに、非特許文献2では、蛍光タンパク質とT7キャプシドタンパク質の融合タンパク質をヘルパープラスミドを用いて大腸菌による過剰発現でファージに付加しているが、この方法では、野生型のT7キャプシドタンパク質をさらに大過剰に同時に発現させることがファージ生成に必須であり、このことにより、実際は全ファージの一部にしか蛍光タンパク質が入らない(6%~16%)。すなわち、この方法を用いると、スクリーニングにより選択して得た陽性ファージ群を次のスクリーニングのラウンドのために複製・増幅しても、全ファージの一部(6%~16%)にしか蛍光が入らず、残りの大部分(84%~94%)は選択済みの陽性ファージ集団であるにも関わらず、蛍光の無いファージである。選択したファージは、元々ランダムペプチドライブラリーから選択したヘテロな配列のファージ集団なので、この蛍光が入らなかった84%~94%のファージ群の中に、最も目標とする配列を持つファージが含まれてしまう可能性は極めて高く、蛍光タンパク質を大腸菌による過剰発現で付加する方法では、目標とするペプチド配列を持つファージを見逃す可能性が高い。 Further, in Non-Patent Document 2, a fusion protein of fluorescent protein and T7 capsid protein is added to phage by overexpression by Escherichia coli using a helper plasmid, but in this method, wild-type T7 capsid protein is further excessively excessive. Simultaneous expression in E. coli is essential for phage production, which actually results in only a portion of all phages containing the fluorescent protein (6% -16%). That is, using this method, even if the positive phage group selected by screening is replicated and amplified for the next screening round, only a part (6% to 16%) of all phages are fluorescent. Most of the remaining (84% -94%) are non-fluorescent phages, even though they are selected positive phage populations. Since the selected phage is a heterogeneous sequence of phage population originally selected from the random peptide library, the 84% to 94% of phage groups that did not receive this fluorescence include the phage having the most targeted sequence. In the method of adding the fluorescent protein by overexpression by E. coli, there is a high possibility that the phage having the target peptide sequence will be missed.
 しかも、6%~16%の蛍光が入ったファージ群でも、有する蛍光タンパク質は1ファージ当たり1個から最大3個相当なので、前述のように蛍光そのものが弱く強度が一定していないので、スクリーニングには適さない。本発明では、スクリーニングで選択したファージは、選択と増幅のラウンドを重ねてもすべてのファージに蛍光が入った状態で増幅され、陽性ファージの取りこぼしがない。すべてが一定数18個の蛍光タンパク質を有し、極めて高度の蛍光強度を有することからも、in vitroのみならずin vivoでのスクリーニングに極めて有用なものである。
 
Moreover, even in the phage group containing 6% to 16% of fluorescence, the number of fluorescent proteins contained in each phage is equivalent to 1 to 3 at maximum, and as described above, the fluorescence itself is weak and the intensity is not constant, so that it is suitable for screening. Is not suitable. In the present invention, the phages selected by screening are amplified with fluorescence in all the phages even if the selection and amplification rounds are repeated, and positive phages are not missed. Since all of them have a certain number of 18 fluorescent proteins and have extremely high fluorescence intensity, they are extremely useful for screening not only in vitro but also in vivo.

Claims (10)

  1.  組換えバクテリオファージT7であって、バクテリオファージT7のゲノムのgp17遺伝子領域に、標識タンパク質をコードする遺伝子が発現可能に挿入されていることを特徴とする、組換えバクテリオファージT7。 Recombinant bacteriophage T7, characterized in that a gene encoding a labeled protein is expressively inserted into the gp17 gene region of the genome of the recombinant bacteriophage T7.
  2.  前記標識タンパク質が、蛍光タンパク質または発光または呈色反応を触媒する酵素である、請求項1に記載の組換えバクテリオファージT7。 The recombinant bacteriophage T7 according to claim 1, wherein the labeled protein is a fluorescent protein or an enzyme that catalyzes a luminescence or color reaction.
  3.  前記蛍光タンパク質が緑色蛍光タンパク質(GFP)であり、前記発光または呈色反応を触媒する酵素が、ルシフェラーゼ、β-グルクロニダーゼ(GUS)、β-ガラクトシダーゼ、西洋ワサビペルオキシダーゼのいずれか一つである、請求項2に記載の組換えバクテリオファージT7。 Claimed that the fluorescent protein is green fluorescent protein (GFP) and the enzyme that catalyzes the luminescence or color reaction is one of luciferase, β-glucuronidase (GUS), β-galactosidase, and horseradish peroxidase. Item 2. The recombinant bacterophage T7 according to Item 2.
  4.  前記標識タンパク質の遺伝子が、gp17遺伝子コード領域末端近傍に挿入されている、請求項1に記載の組換えバクテリオファージT7。 The recombinant bacteriophage T7 according to claim 1, wherein the gene of the labeled protein is inserted near the end of the gp17 gene coding region.
  5.  前記gp17遺伝子コード領域末端近傍が、3´末端領域である、請求項4に記載の組換えバクテリオファージT7。 The recombinant bacteriophage T7 according to claim 4, wherein the vicinity of the terminal of the gp17 gene coding region is the 3'terminal region.
  6.  組換えバクテリオファージT7が、宿主細胞に感染後の細胞質におけるファージ複製の間に、前記蛍光タンパク質の遺伝子または発光または呈色反応を触媒する酵素の遺伝子を発現して、活性を有する蛍光タンパク質または発光または呈色反応を触媒する酵素生成物を生じる、請求項2に記載の組換えバクテリオファージT7。 Recombinant bacteriophage T7 expresses the gene for the fluorescent protein or the gene for an enzyme that catalyzes a luminescence or color reaction during phage replication in the cytoplasm after infection of the host cell, resulting in an active fluorescent protein or luminescence. Alternatively, the recombinant bacteriophage T7 according to claim 2, which produces an enzyme product that catalyzes a color reaction.
  7.  前記蛍光タンパク質または発光または呈色反応を触媒する酵素が、バクテリオファージT7の尾部に発現する、請求項6に記載の組換えバクテリオファージT7。 The recombinant bacteriophage T7 according to claim 6, wherein the fluorescent protein or an enzyme that catalyzes a luminescence or color reaction is expressed in the tail of the bacteriophage T7.
  8.  組換えバクテリオファージT7であって、バクテリオファージT7のゲノムのgp17遺伝子領域に標識タンパク質の遺伝子が発現可能に挿入されている組換えバクテリオファージT7のゲノムのgp10遺伝子領域に、ランダムペプチドをコードする核酸分子を挿入した、組換えバクテリオファージT7のランダムペプチドファージライブラリー。 Recombinant bacteriophage T7, a nucleic acid encoding a random peptide in the gp10 gene region of the recombinant bacteriophage T7 genome, in which the gene for the labeled protein is expressively inserted into the gp17 gene region of the bacteriophage T7 genome. Random peptide phage library of recombinant bacteriophage T7 with molecules inserted.
  9.  請求項8に記載の組換えバクテリオファージT7のランダムペプチドファージライブラリーを使用するin vitroスクリーニング方法。 An in vitro screening method using the random peptide phage library of recombinant bacteriophage T7 according to claim 8.
  10.  請求項8に記載の組換えバクテリオファージT7のランダムペプチドファージライブラリーを使用するin vivoスクリーニング方法。
     
    An in vivo screening method using the random peptide phage library of recombinant bacteriophage T7 according to claim 8.
PCT/JP2020/000469 2020-01-09 2020-01-09 Novel recombinant bacteriophage WO2021140615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000469 WO2021140615A1 (en) 2020-01-09 2020-01-09 Novel recombinant bacteriophage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000469 WO2021140615A1 (en) 2020-01-09 2020-01-09 Novel recombinant bacteriophage

Publications (1)

Publication Number Publication Date
WO2021140615A1 true WO2021140615A1 (en) 2021-07-15

Family

ID=76787781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000469 WO2021140615A1 (en) 2020-01-09 2020-01-09 Novel recombinant bacteriophage

Country Status (1)

Country Link
WO (1) WO2021140615A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093183A (en) * 2010-04-09 2016-05-26 ザ・キャソリック・ユニバーシティ・オブ・アメリカThe Catholic University Of America Protein and nucleic acid delivery vehicles, components and mechanisms thereof
WO2018081502A1 (en) * 2016-10-28 2018-05-03 Massachusetts Intitute Of Technology Synthetic bacteriophages and bacteriophage compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093183A (en) * 2010-04-09 2016-05-26 ザ・キャソリック・ユニバーシティ・オブ・アメリカThe Catholic University Of America Protein and nucleic acid delivery vehicles, components and mechanisms thereof
WO2018081502A1 (en) * 2016-10-28 2018-05-03 Massachusetts Intitute Of Technology Synthetic bacteriophages and bacteriophage compositions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIANA P. PIRES, SARA CLETO, SANNA SILLANKORVA, JOANA AZEREDO, TIMOTHY K. LU: "SUMMARY", MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 80, no. 3, 1 September 2016 (2016-09-01), US, pages 523 - 543, XP055545757, ISSN: 1092-2172, DOI: 10.1128/MMBR.00069-15 *
DIETERLE, MARIA EUGENIA ET AL.: "Exposing the Secrets of Two Well-Known Lactobacillus casei Phages, J-1 and PL -1, by Genomic and Structural Analysis", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 80, 2014, pages 7107 - 7121, XP055840180 *
SCHUCH, RAYMOND ET AL.: "Detailed Genomic Analysis of the W beta and y Phages Infecting Bacillus anthracis: Implications for Evolution of Environmental Fitness and Antibiotic Resistance", J OURNAL OF BACTERIOLOGY, vol. 188, 2006, pages 3037 - 3051, XP009070264, DOI: 10.1128/JB.188.8.3037-3051.2006 *

Similar Documents

Publication Publication Date Title
Larocca et al. Evolving phage vectors for cell targeted gene delivery
JP3640958B2 (en) Methods and applications for efficient constraining gene elements
EP2519627B1 (en) Plasmids and methods for peptide display and affinity-selection on virus-like particles of rna bacteriophages
JP2000503536A (en) Humanized green fluorescent protein genes and methods
JP2001513995A (en) Methods using phage display to select internalization ligands for gene delivery
JP2004089197A (en) Method for obtaining dna, rna, peptide, polypeptide or protein by recombinant dna technique
KR20010074429A (en) Modified adenovirus containing a fiber replacement protein
EP2997148B1 (en) Bacteriophage
CN113736801A (en) mRNA and novel coronavirus mRNA vaccine containing same
JP2020002138A (en) Isolating traffic-enhancing mutants of drug delivery protein
DK2288618T3 (en) CHEMICAL FUSION PROTEINS AND VIRUS LIKE PARTICLES FROM BIRNAVIRUS VP2
KR20210125990A (en) Anellosomes for transporting protein replacement therapy modalities
KR20210131310A (en) Anellosome and how to use it
JPH10501403A (en) Cell-type-specific gene transfer using retroviral vectors containing antibody-envelope fusion proteins and wild-type envelope fusion proteins
CN114560915A (en) Modified high-titer SARS-CoV-2 pseudovirus
WO2021140615A1 (en) Novel recombinant bacteriophage
Legendre et al. Construction and exploitation in model experiments of functional selection of a landscape library expressed from a phagemid
AU2004238979B2 (en) Broadening adenovirus tropism
JP2020005600A (en) Novel recombinant bacteriophage
WO2019094669A2 (en) Self-assembling protein structures and components thereof
US7449322B2 (en) Avian leukosis viruses and polypeptide display
TWI515203B (en) Nuclear localization signal peptides derived from vp2 protein of chicken anemia virus and uses of said peptides
WO2023156985A1 (en) Production of biological scalable nanorods
EP4342538A1 (en) Simultaneous production of structural proteins from heterologous bacteriophage in cell-free expression system
Sheldon Two Dimensional Genetic Approach to the Development of a Controllable Lytic Phage Display System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP