WO2021140580A1 - Calibration device, calibration method, calibration program, repeating device, and satellite communication system - Google Patents

Calibration device, calibration method, calibration program, repeating device, and satellite communication system Download PDF

Info

Publication number
WO2021140580A1
WO2021140580A1 PCT/JP2020/000214 JP2020000214W WO2021140580A1 WO 2021140580 A1 WO2021140580 A1 WO 2021140580A1 JP 2020000214 W JP2020000214 W JP 2020000214W WO 2021140580 A1 WO2021140580 A1 WO 2021140580A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
calibration
unit
element antennas
Prior art date
Application number
PCT/JP2020/000214
Other languages
French (fr)
Japanese (ja)
Inventor
侑 栗山
紀平 一成
深沢 徹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/000214 priority Critical patent/WO2021140580A1/en
Priority to JP2021561928A priority patent/JP7034394B2/en
Publication of WO2021140580A1 publication Critical patent/WO2021140580A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present disclosure implements a calibration device, a calibration method and a calibration program for calibrating each characteristic of a plurality of receiving element antennas and each characteristic of a plurality of transmitting element antennas, a relay device provided with the calibration device, and a relay device. It relates to a satellite communication system equipped with a communication satellite.
  • Patent Document 1 discloses a mobile communication system including a transmission array antenna for performing transmission digital beamforming (hereinafter, referred to as “transmission DBF”).
  • the transmitting array antenna has a plurality of element antennas.
  • the variation in characteristics includes the variation in amplitude and the variation in phase.
  • the pickup antenna installed in the vicinity of the transmitting array antenna receives the calibration signal transmitted from the transmitting array antenna.
  • the adaptive filter calculates the variation in the characteristics of the plurality of element antennas by performing digital arithmetic processing on the calibration signal received by the pickup antenna.
  • the transmission DBF circuit calibrates the characteristics of each of the plurality of element antennas based on the calculation result of the variation by the adaptive filter.
  • the mobile communication system disclosed in Patent Document 1 is a system for transmitting radio waves, not a repeater for receiving and transmitting radio waves, but is a pickup disclosed in Patent Document 1. It is assumed that each of the antenna, the adaptive filter, and the transmission DBF circuit is applied to the repeater. In this case, even if the characteristics of the plurality of element antennas included in the transmitting array antenna of the repeater can be calibrated, the characteristics of the plurality of element antennas included in the receiving array antenna of the repeater are calibrated. There was a problem that it could not be done.
  • the present disclosure has been made to solve the above-mentioned problems, and is a calibration device, a calibration method, and a calibration device capable of calibrating each characteristic of a plurality of receiving element antennas and each characteristic of a plurality of transmitting element antennas.
  • the purpose is to obtain a calibration program.
  • the calibration device has a first antenna that receives radio waves related to transmission signals radiated from each of a plurality of transmitting element antennas of the repeater and outputs the reception signals of the radio waves, and a first antenna.
  • a second antenna that radiates radio waves related to the received signal output from the antenna toward the plurality of receiving element antennas of the repeater, and a plurality of antennas that the repeater can use for the transmission frequency of the radio waves.
  • the repeater detects the unused frequency and transmits the calibration signal having the unused frequency.
  • a calibration unit that calibrates each characteristic of the antenna and calibrates each characteristic of the plurality of transmitting element antennas using the calibration signal included in the received signal of the radio wave received by each of the plurality of receiving element antennas. It is designed to be equipped with.
  • FIG. 1 It is a block diagram which shows the relay device which includes the calibration apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram which shows the hardware in the signal superimposition part 31 and the calibration part 39 of the calibration apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the computer when a part of the calibration apparatus 2 is realized by software, firmware and the like. It is a flowchart which shows each processing procedure in the signal superimposition unit 31 and the calibration unit 39. It is explanatory drawing which shows the characteristic of each part in the relay device shown in FIG. It is a block diagram which shows the relay device which includes the other calibration apparatus 2 which concerns on Embodiment 1.
  • FIG. 1 It is a block diagram which shows the relay device which includes the other calibration apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the relay device which includes the other calibration apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the relay device which includes the calibration apparatus 2 which concerns on Embodiment 2.
  • FIG. It is a hardware block diagram which shows the hardware in the signal superimposition part 31 and the calibration part 39 of the calibration apparatus 2 which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows the satellite communication system which concerns on Embodiment 3.
  • FIG. 1 is a configuration diagram showing a relay device including the calibration device 2 according to the first embodiment.
  • FIG. 2 is a hardware configuration diagram showing the respective hardware in the signal superimposing unit 31 and the calibration unit 39 of the calibration device 2 according to the first embodiment.
  • the repeater 1 includes a receiving array antenna 11, receivers 12-1 to 12-K, a relay processing unit 13, transmitters 22-1 to 22-M, and a transmitting array antenna 23.
  • K is an integer of 2 or more
  • M is an integer of 2 or more.
  • the calibration device 2 includes a signal superimposing unit 31, a first antenna 36, a frequency conversion unit 37, a second antenna 38, and a calibration unit 39.
  • the calibrator 2 has a plurality of characteristics of the receiving element antennas 11-1 to 11-K of the receiving array antenna 11 of the repeater 1 and a plurality of transmitting array antennas 23 of the repeater 1.
  • the characteristics of the transmitting element antennas 23-1 to 23-M are calibrated.
  • the characteristics here include, for example, an amplitude characteristic and a phase characteristic.
  • the receiving array antenna 11 includes a plurality of receiving element antennas 11-1 to 11-K.
  • the output is output to the demultiplexing unit 14-k, which will be described later, of the processing unit 13.
  • reception processing As reception processing, amplification processing, frequency conversion processing for converting the frequency of the received device signal R k, filtering of removing high-frequency components and the like contained in the received element signal R k for amplifying the received element signal R k, or , Analog-digital conversion processing for converting the receiving element signal Rk from an analog signal to a digital signal is assumed.
  • the relay processing unit 13 includes a demultiplexing unit 14-1 to 14-K, a receiving extraction unit 15-1 to 15-K, a receiving DBF (Digital Beamforming) unit 16, and a switch unit (hereinafter, "SW unit"). 17), a transmission DBF unit 18, a transmission extraction unit 19-1 to 19-M, an injection unit 20-1 to 20-M, and a combiner unit 21-1 to 21-M. ..
  • the demultiplexing unit 14-k is The signal R k'after the reception process is demultiplexed into a signal having a frequency f 1, a signal having a frequency f 2 , and ... a signal having a frequency f 10 .
  • the demultiplexing unit 14-k outputs the signal Rf k after demultiplexing to the reception / extraction unit 15-k.
  • the signal Rf k after demultiplexing is a set of a plurality of signals demultiplexed from each other. For example, a set of a signal having a frequency f 1, a signal having a frequency f 2 , and ... a signal having a frequency f 10. Is.
  • the weight values Wr k and j of the receiving element antenna 11-k may be stored in the internal memory of the receiving DBF unit 16 or may be given from the outside of the receiving DBF unit 16.
  • N is an integer of 1 or more.
  • the SW unit 17 outputs each of the N transmission beam signals TB 1 to TB N to the transmission DBF unit 18.
  • the amplitudes and phases of the transmitted beam signals TB m, 1 to TB m, and N are adjusted. Further, the transmission DBF unit 18 multiplies the transmission beam signals TB m, n'after the amplitude phase adjustment by the weight values Wt m, n of the transmission element antenna 23-m when the transmission DBF is performed.
  • the weight values Wt m and n of the transmitting element antenna 23-m may be stored in the internal memory of the transmitting DBF unit 18 or may be given from the outside of the transmitting DBF unit 18.
  • the transmission element signal Tx m is a signal divided into frequency division units.
  • the transmission element signal Tx m has a frequency f 3 of. and the signal, and the signal of frequency f 4, which is a set of the signal of ... frequency f 12.
  • the injection unit 20-m injects the calibration signal S m output from the calibration signal generation unit 35 described later of the signal superimposition unit 31 into the transmission element signal Tx m output from the transmission extraction unit 19-m.
  • Multiplexing section 21-m transmits the transmission element signal Tx m 'after calibration signal injection by injecting section 20-m for multiplexing in the frequency direction.
  • Transmitting device signal Tx m after calibration signal injection ' is, for example, a signal of a frequency f 3, and a signal of a frequency f 4, if a set of signals ... frequency f 12, the multiplexing unit 21 m is a signal of a frequency f 3, and a signal of a frequency f 4, and a signal of ... frequency f 12 for multiplexing in the frequency direction.
  • the combiner 21-m outputs the transmission element signal Tx m "after the combiner to the transmitter 22-m.
  • the transmitter 22-m performs transmission processing on the transmission element signal Tx m "output from the combiner 21-m, and outputs the signal T m after the transmission processing to the transmission element antenna 23-m as a transmission signal.
  • the transmission element signal Tx m digital-to-analog conversion for converting an analog signal from the digital signal, the transmitting element signal Tx m" frequency conversion processing for converting a frequency of, is included in the transmission element signal Tx m " Filter processing that removes high-frequency components and the like, or amplification processing that amplifies the transmission element signal Tx m ”is assumed.
  • the transmission array antenna 23 includes a plurality of transmission element antennas 23-1 to 23-M.
  • the signal superimposing unit 31 includes a received power calculation unit 32, a transmission power calculation unit 33, an unused frequency detection unit 34, and a calibration signal generation unit 35.
  • the signal superimposition unit 31 is among a plurality of frequencies that the repeater 1 can use for the radio wave transmission frequency, among the frequencies that are common to the frequencies that the repeater 1 can use for the radio wave reception frequency.
  • the repeater 1 detects an unused frequency and generates a calibration signal S m having an unused frequency.
  • Signal superimposing section 31 superimposes the calibration signal S m with a signal supplied to each of the plurality of transmit antenna elements 23-1 ⁇ 23-M.
  • the received power calculation unit 32 is realized by, for example, the received power calculation circuit 41 shown in FIG.
  • the received power calculation unit 32 calculates the power of a plurality of frequency components included in the received signal of the radio wave received by each of the plurality of receiving element antennas 11-1 to 11-K. That is, the reception power calculation unit 32 calculates the power of a plurality of frequency components included in the signal Rf k after each demultiplexing output from the reception extraction units 15-1 to 15-K.
  • the transmission power calculation unit 33 is realized by, for example, the transmission power calculation circuit 42 shown in FIG.
  • the transmission power calculation unit 33 calculates the power of a plurality of frequency components included in the transmission signals given to each of the plurality of transmission element antennas 23-1 to 23-M. That is, the transmission power calculation unit 33 calculates the power of a plurality of frequency components included in the respective transmission element signals Tx m output from the transmission extraction units 19-1 to 19-M.
  • the unused frequency detection unit 34 is realized by, for example, the unused frequency detection circuit 43 shown in FIG.
  • the unused frequency detection unit 34 is a repeater in a common frequency based on each power calculated by the reception power calculation unit 32 and each power calculated by the transmission power calculation unit 33. 1 detects an unused frequency.
  • the calibration signal generation unit 35 is realized by, for example, the calibration signal generation circuit 44 shown in FIG.
  • the calibration signal generation unit 35 generates a calibration signal S m having a frequency detected by the unused frequency detection unit 34.
  • the calibration signal generation unit 35 outputs the calibration signal S m to each of the injection units 20-1 to 20-M, thereby supplying the transmission element signal Tx m output from the transmission extraction unit 19-m for calibration.
  • the signal S m is superimposed.
  • the first antenna 36 is a reception pickup antenna that receives radio waves radiated from each of the plurality of transmitting element antennas 23-1 to 23-M and outputs the reception signal of the radio waves to the frequency conversion unit 37.
  • the frequency conversion unit 37 converts the frequency of the received signal output from the first antenna 36 into a frequency that can be received by the receivers 12-1 to 12-M of the repeater 1, and converts the received signal after frequency conversion into a frequency that can be received. Output to the second antenna 38.
  • the calibration device 2 shown in FIG. 1 includes a frequency conversion unit 37. However, if the frequency receivable by the receivers 12-1 to 12-M and the frequency receivable by the transmitters 22-1 to 22-M are the same frequency, the calibrator 2 sets the frequency conversion unit 37. No need to implement.
  • the second antenna 38 is a transmission pickup antenna that radiates radio waves related to the received signal after frequency conversion by the frequency conversion unit 37 toward each of the plurality of receiving element antennas 11-1 to 11-K.
  • the calibration unit 39 is realized by, for example, the calibration circuit 45 shown in FIG.
  • the calibration unit 39 uses the received signals of the radio waves received by each of the plurality of receiving element antennas 11-1 to 11-K to calibrate the characteristics of the receiving element antennas 11-1 to 11-K.
  • the calibration unit 39 calibrates the respective characteristics of the receiving element antennas 11-1 to 11-K by outputting each of the calibration values CVr 1 to CVr K to the receiving DBF unit 16.
  • each of the received power calculation unit 32, the transmission power calculation unit 33, the unused frequency detection unit 34, the calibration signal generation unit 35, and the calibration unit 39 which are some components of the calibration device 2 is shown in FIG. It is assumed that it will be realized by dedicated hardware as shown in. That is, it is assumed that a part of the calibration device 2 is realized by the received power calculation circuit 41, the transmission power calculation circuit 42, the unused frequency detection circuit 43, the calibration signal generation circuit 44, and the calibration circuit 45.
  • Each of the received power calculation circuit 41, the transmission power calculation circuit 42, the unused frequency detection circuit 43, the calibration signal generation circuit 44, and the calibration circuit 45 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel programming.
  • the processor, ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware for executing a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
  • FIG. 3 is a hardware configuration diagram of a computer when a part of the calibration device 2 is realized by software, firmware, or the like.
  • a part of the calibration device 2 is realized by software, firmware, or the like, each of the received power calculation unit 32, the transmission power calculation unit 33, the unused frequency detection unit 34, the calibration signal generation unit 35, and the calibration unit 39, respectively.
  • a program for causing the computer to execute the processing procedure is stored in the memory 51.
  • the processor 52 of the computer executes the program stored in the memory 51.
  • the receiving element antenna 11-k receives radio waves transmitted from an external device (not shown) in addition to the radio waves radiated from the second antenna 38.
  • the demultiplexing unit 14-k outputs the signal Rf k after demultiplexing to the reception / extraction unit 15-k.
  • the reception DBF unit 16 receives the signal Rf k after demultiplexing. , Output to each of the received power calculation unit 32 and the calibration unit 39.
  • the receiving DBF unit 16 multiplies the received demultiplexing signal Rf k, j'after the amplitude phase adjustment by the weight value Wr k, j of the receiving element antenna 11-k.
  • the SW unit 17 outputs each of the N transmission beam signals TB 1 to TB N to the transmission DBF unit 18.
  • the amplitudes and phases of the transmitted beam signals TB m, 1 to TB m, and N are adjusted.
  • the transmission DBF unit 18 multiplies the transmission beam signals TB m, n'after the amplitude phase adjustment by the weight values Wt m, n of the transmission element antenna 23-m when the transmission DBF is performed.
  • the transmission DBF unit 18 adds N signals TB m, n ⁇ CVt m ⁇ Wt m, n related to the mth transmission beam signal among the transmission beam signals after multiplication of M ⁇ N weight values to each other. ..
  • the transmission element signal Tx m is a signal divided into frequency division units.
  • the calibration signal Sm is injected.
  • Injection unit 20-m outputs the transmission element signal Tx m after calibration signal injection 'to the multiplexing unit 21-m.
  • the combiner 21-m outputs the transmission element signal Tx m "after the combiner to the transmitter 22-m.
  • the transmitter 22-m When the transmitter 22-m receives the transmitted element signal Tx m "after the combined wave from the combining unit 21-m, the transmitter 22-m executes a transmission process for the transmitting element signal Tx m " and transmits the signal T m after the transmission process. Output to the element antenna 23-m.
  • FIG. 4 is a flowchart showing each processing procedure in the signal superimposing unit 31 and the calibration unit 39.
  • the frequency conversion unit 37 converts the frequency of the received signal output from the first antenna 36 into a frequency that can be received by the receivers 12-1 to 12-M of the repeater 1.
  • the frequency band of the received signal output from the first antenna 36 is a f a ⁇ f b
  • a frequency band which can be received receivers 12-1 ⁇ 12-M is found is f c ⁇ f d
  • the second antenna 38 receives the radio wave related to the received signal output from the first antenna 36 with the receiving element antenna 11-k (k).
  • the receiver 12-k is unable to carry out the reception processing for the received element signal R k output from the receiving antenna elements 11-k. Therefore, the frequency converter 37, as f a ⁇ f b frequency after frequency conversion of the f a ' ⁇ f b', for example, the f c ⁇ f a ' ⁇ f b' ⁇ f d, the The frequency of the received signal output from the antenna 36 of 1 is converted.
  • the frequency conversion unit 37 outputs the frequency-converted signal to the second antenna 38.
  • the second antenna 38 radiates radio waves related to the frequency-converted signal by the frequency conversion unit 37 toward each of the plurality of receiving element antennas 11-1 to 11-K.
  • the frequency band of the signal R k after the reception processing is f 1 to f 10
  • the frequency division unit is 1/10 of the frequency band
  • the frequency of the frequency division unit is f 1 , f 2. ,..., it is f 10.
  • the received power calculation unit 32 uses the power Pr f of a plurality of frequency components included in the signal Rf k after demultiplexing. as calculates the power Pr 1 frequency component of the frequency f 1, a power Pr 2 frequency components of the frequency f 2, a power Pr 10 frequency components ... frequency f 10.
  • the received power calculation unit 32 outputs the received power information IPr f indicating the power Pr f of a plurality of frequency components to the unused frequency detection unit 34.
  • the powers Pt f of the plurality of frequency components are calculated respectively (step ST2 in FIG. 4). For example, when the frequency band of the transmitting element signal Tx m is f 3 to f 12 , and the frequency division unit is one tenth of the frequency band, the frequency of the frequency division unit is f 3 , f 4 , ... ..., it is f 12.
  • the transmission power calculation unit 33 sets the power Pt f of a plurality of frequency components included in the transmission element signal Tx m as the power Pt f. calculating the power Pt 3 frequency component of the frequency f 3, the power Pt 4 frequency component of the frequency f 4, the frequency component of ... frequency f 12 and a power Pt 12.
  • the transmission power calculation unit 33 outputs the transmission power information IPt f indicating the power Pt f of a plurality of frequency components to the unused frequency detection unit 34.
  • the unused frequency detection unit 34 acquires the received power information IPr f output from the received power calculation unit 32 and the transmission power information IPt f output from the transmission power calculation unit 33.
  • the unused frequency detection unit 34 is among common frequencies from the power Pr f of a plurality of frequency components indicated by the received power information IPr f and the power Pt f of the plurality of frequency components indicated by the transmission power information IPt f.
  • the repeater 1 detects an unused frequency (step ST3 in FIG. 4).
  • the common frequency is a frequency common to the frequencies that can be received by the receivers 12-1 to 12-K among the plurality of frequencies that can be transmitted by the transmitters 22-1 to 22-M.
  • the unused frequency detection process by the unused frequency detection unit 34 will be specifically described.
  • Multiple frequencies that the transmitters 22-1 to 22-M can transmit are, for example, f 1 , f 2 , f 3 , f 4 , f 5 , f 6 , f 7 , f 8 , f 9 , and f 10 .
  • the common frequencies are f 3 , f 4 , f 5 , f 6 , f 7 , f 8 , f 9 , and f 10 .
  • the threshold value Th may be stored in the internal memory of the unused frequency detection unit 34, or may be given from the outside of the unused frequency detection unit 34.
  • the unused frequency detection unit 34 is, for example, Pr 3 ⁇ Th, Pr 6 ⁇ Th, Pr 7 ⁇ Th, Pr 4 ⁇ Th, Pr 5 ⁇ Th, Pr 8 ⁇ Th, Pr 9 ⁇ Th, Pr 10 ⁇ If Th, the powers Pr 3, Pr 6, and Pr 7 are detected as the power Pr f smaller than the threshold value Th.
  • the unused frequency detection unit 34 is, for example, Pt 3 ⁇ Th, Pt 4 ⁇ Th, Pt 6 ⁇ Th, Pt 5 ⁇ Th, Pt 7 ⁇ Th, Pt 8 ⁇ Th, Pt 9 ⁇ Th, Pt 10 ⁇ . If Th, the powers Pt 3, Pt 4, and Pt 6 are detected as the power Pt f smaller than the threshold value Th.
  • the frequencies of the electric powers Pr 3, Pr 6, and Pr 7 detected by the unused frequency detection unit 34 are f 3 , f 6 , and f 7 .
  • the frequencies of the electric powers Pt 3, Pt 4, and Pt 6 detected by the unused frequency detection unit 34 are f 3 , f 4 , and f 6 .
  • Unused frequency detector 34 a power Pr 3, Pr 6, in each of the frequency f 3, f 6, f 7 of Pr 7, power Pt 3, Pt 4, each of the frequency f 3 of Pt 6, f 4, detects a frequency that is common to f 6.
  • the unused frequency detection unit 34 detects the frequency f 3 and the frequency f 6 as common frequencies, and determines that the frequencies f 3 and f 6 are unused frequencies.
  • Calibration signal generator 35 by outputting the generated calibration signal S m to each of the injection section 20-1 ⁇ 20-M, are transmitted from each of the plurality of transmit antenna elements 23-1 ⁇ 23-M The calibration signal S is superimposed on the signal (step ST5 in FIG. 4).
  • the calibration unit 39 calibrates the respective characteristics of the receiving element antennas 11-1 to 11-K and calibrates the respective characteristics of the transmitting element antennas 23-1 to 23-M (step ST6 in FIG. 4).
  • the characteristic calibration process by the calibration unit 39 will be specifically described.
  • FIG. 5 is an explanatory diagram showing the characteristics of each part in the relay device shown in FIG.
  • passage characteristics leading to transmitting antenna elements 23-m from the multiplexing unit 21-m is PCt m
  • the binding characteristics of the transmitting antenna elements 23-m to the first antenna 36 is a BCT m To do.
  • the passing characteristic from the first antenna 36 to the second antenna 38 is PCa.
  • the binding characteristics of the receiving antenna elements 11-k from the second antenna 38 is BCr k
  • passing characteristic leading from the receiving antenna elements 11-k to the demultiplexing unit 14-k is assumed to be PCr k.
  • Each binding characteristics BCT m and binding properties BCr k are determined in advance, for example, are stored in the internal memory of the calibration unit 39. However, this is only an example, each of the binding characteristics BCT m and binding properties BCr k, or may be given from the outside of the calibration unit 39.
  • the calibration signal included in the signal T m output to 23-m is represented as PCt m ⁇ S m (t).
  • t is a variable indicating time.
  • the radio wave radiated from the transmitting element antenna 23-m is received by the first antenna 36.
  • the signal input to the second antenna 38 after the radio wave is received by the first antenna 36 is g (t)
  • the signal g (t) is expressed by the following equation (1). Will be done.
  • the radio wave radiated from the second antenna 38 is received by the receiving element antenna 11-k.
  • the signal Rf k (t) after the radio wave is received by the receiving element antenna 11-k and then demultiplexed by the demultiplexing unit 14-k is expressed by the following equation (2).
  • the calibration signals V k and m are signals included in the signal Rf k (t) after demultiplexing, and the calibration signal S m (t) is a signal included in the transmission element signal Tx m.
  • the calibration signals V k and m can be extracted by using a known element electric field vector rotation method (REV method: Rotating element Electrical Vector method). Further, among the M calibration signals S 1 (t) to SM (t), the m-th calibration signal S m (t) and the calibration signals other than the m-th calibration signal S h (t) (h ⁇ m).
  • REV method Rotating element Electrical Vector method
  • the calibration signal S m (t) and the calibration signal S h (t) are multiplied, and the multiplication result of the calibration signal S m (t) and the calibration signal S h (t) is integrated. By doing so, the calibration signal V k, m (t) can be extracted.
  • the orthogonal condition between the calibration signal S m (t) and the calibration signal S h (t) is expressed by the following equation (3).
  • the first signal Rf 1 (t) and the second signal Rf 2 (t) are the first.
  • calibration signal V k which is included in th signal Rf 1 (t) 1 and each of the calibration signals V k, 2 contained in the second signal Rf 1 (t), the following equation (4 ) (5).
  • the calibration unit 39 sets a calibration value CVt 2 for calibrating the characteristics of the transmission element antenna 23-2 as shown in the following equation (9) with reference to the first transmission element antenna 23-1. calculate.
  • the calibration value CVt 1 for calibrating the characteristics of the transmitting element antenna 23-1 is 1.
  • the calibration unit 39 sets the calibration value CVr 2 for calibrating the characteristics of the receiving element antenna 11-2 as shown in the following equation (13) with reference to the first receiving element antenna 11-1. calculate.
  • the calibration value CVr 1 for calibrating the characteristics of the receiving element antenna 11-1 is 1.
  • the radio wave related to the transmission signal radiated from each of the plurality of transmitting element antennas 23-1 to 23-M included in the repeater 1 is received, and the reception signal of the radio wave is output.
  • a second antenna 36 and a second radio wave related to a reception signal output from the first antenna 36 are radiated toward a plurality of receiving element antennas 11-1 to 11-K included in the repeater 1.
  • the calibration device 2 was configured to include the antenna 38. Further, among a plurality of frequencies that the repeater 1 can use for the radio wave transmission frequency, the calibration device 2 has a frequency that is common to the frequency that the repeater 1 can use for the radio wave reception frequency.
  • the repeater 1 detects an unused frequency, generates a calibration signal having an unused frequency, and calibrates the transmission signal given to each of the plurality of transmission element antennas 23-1 to 23-M.
  • the signal superimposing unit 31 for superimposing the signals and the received signals of the radio waves received by each of the plurality of receiving element antennas 11-1 to 11-K
  • each of the plurality of receiving element antennas 11-1 to 11-K are used to calibrate the characteristics of the plurality of transmitting element antennas 23-1 to 23-.
  • It is configured to include a calibration unit 39 for calibrating each characteristic of the M. Therefore, the calibration device 2 can calibrate the respective characteristics of the plurality of receiving element antennas 11-1 to 11-K and the respective characteristics of the plurality of transmitting element antennas 23-1 to 23-M.
  • the receiving DBF unit 16 multiplies the received demultiplexing signals Rf k, j'after the amplitude phase adjustment by the weight values Wr k, j of the receiving element antenna 11-k.
  • Receiving and demultiplexing signals Rf k after amplitude and phase adjusting, among the j ', the weight value Wr k to be multiplied by the signal of the same frequency as the frequency of the calibration signal S m output from the calibration signal generation unit 35, for j is , 0 may be set.
  • the calibration device 2 shown in FIG. 1 includes a first antenna 36, a frequency conversion unit 37, and a second antenna 38. As shown in FIG. 6, the calibration device 2 may further include a variable attenuator 40.
  • FIG. 6 is a configuration diagram showing a relay device including another calibration device 2 according to the first embodiment. In FIG. 6, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the variable attenuator 40 is provided between the frequency conversion unit 37 and the second antenna 38, attenuates the signal after frequency conversion by the frequency conversion unit 37, and outputs the attenuated signal to the second antenna 38. To do. In the calibration device 2 shown in FIG.
  • variable attenuator 40 is provided between the frequency conversion unit 37 and the second antenna 38.
  • the variable attenuator 40 may be provided between the first antenna 36 and the frequency conversion unit 37.
  • the variable attenuator 40 has a frequency. By attenuating the converted signal, saturation at the receiver 12-k can be prevented.
  • the power Pr f of the frequency component is calculated respectively.
  • the power Pt f of the frequency component is calculated respectively.
  • FIG. 7 is a configuration diagram showing a relay device including the other calibration device 2 according to the first embodiment. In FIG. 7, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the characteristics of the plurality of receiving element antennas 11-1 to 11-K and the respective characteristics of the plurality of transmitting element antennas 23-1 to 23-M are also used. The characteristics can be calibrated.
  • the calibration device when the frequency of the frequency division unit is, for example, f 1 , f 2 , ..., F 10 , and the unused frequency is, for example, frequency f 3 , the calibration device. 2, by using the calibration signal frequency f 3, and calculates the respective calibration values CVr k and calibration values CVT m. Then, the calibration unit 39, by using the calibration value CVr k, to calibrate the characteristics of the receiving antenna elements 11-k, using the calibration value CVT m, are calibrated characteristics of transmission antenna elements 23-m.
  • each of the calibration values CVr k and calibration values CVT m since a calibration value according to the frequency f 3 of the unused calibration unit 39 calibrates accurately the characteristics according to the frequency f 3 in the receiving antenna elements 11-k be able to. Further, the calibration unit 39 can be calibrated accurately the characteristics according to the frequency f 3 in the transmission antenna elements 23-m. Calibration unit 39, for the characteristics of the frequency other than the frequency f 3 in the receiving antenna elements 11-k, are calibrated using the calibration value CVr k. Further, the calibration unit 39, for the characteristics of the frequency other than the frequency f 3 in the transmission antenna elements 23-m, are calibrated using the calibration value CVT m.
  • the calibration signal generation unit 35 has a calibration signal S m having a frequency f 3 and a calibration signal having a frequency f 6. Generate S m and. Then, the calibration signal generation unit 35 outputs each of the calibration signal S m to each of the injection section 20-1 ⁇ 20-M in order.
  • the calibration unit 39 calculates a respective calibration value CVr k and calibration values CVT m for frequencies f 3, and calculates the respective calibration values CVr k and calibration values CVT m for frequencies f 6.
  • the calibration unit 39 has the calibration values CV r k and the calibration value CV t m for the frequency f 3 and the frequency f 6 respectively. calculated by linear interpolation using the respective calibration values CVr k and calibration values CVT m for.
  • the calibration unit 39 calculates by linear interpolation processing, but this is only an example, and may be calculated by, for example, interpolation processing or extrapolation processing.
  • the frequency f A calibration accuracy substantially similar to that of the calibration of the characteristics according to No. 3 can be obtained. Further, calibration of the characteristic according to a frequency other than the frequency f 3 in the transmission antenna elements 23-m is also substantially the same calibration accuracy and calibration characteristics of the frequency f 3 is obtained.
  • Embodiment 2 the calibration device in which the signal superimposing unit 31 includes the frequency information acquisition unit 71 and the calibration signal generation unit 72 will be described.
  • FIG. 8 is a configuration diagram showing a relay device including the calibration device 2 according to the second embodiment.
  • the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • FIG. 9 is a hardware configuration diagram showing the respective hardware in the signal superimposing unit 31 and the calibration unit 39 of the calibration device 2 according to the second embodiment.
  • the frequency information acquisition unit 71 is realized by, for example, the frequency information acquisition circuit 46 shown in FIG.
  • the frequency information acquisition unit 71 is among a plurality of frequencies that the repeater 1 can use for the radio wave transmission frequency, which are common to the frequencies that the repeater 1 can use for the radio wave reception frequency. Then, the repeater 1 acquires frequency information indicating an unused frequency.
  • the frequency information acquisition unit 71 acquires, for example, from a ground station that transmits frequency information.
  • the frequency information acquisition unit 71 outputs the acquired frequency information to the calibration signal generation unit 72.
  • the frequency information acquisition unit 71 acquires frequency information from, for example, a ground station, but any information can be used as long as it can detect unused frequencies. May be good.
  • the frequency information acquisition unit 71 may acquire the routing information used for the routing process of the SW unit 7 from the ground station and detect the unused frequency from the routing information.
  • the routing information is information indicating before and after the arrangement of frequencies, that is, information indicating the frequency of the receiving beam and the frequency of the transmitting beam. Therefore, routing information is a concept included in frequency information.
  • the calibration signal generation unit 72 is realized by, for example, the calibration signal generation circuit 47 shown in FIG.
  • the calibration signal generation unit 72 detects an unused frequency by the repeater 1 by referring to the frequency information acquired by the frequency information acquisition unit 71.
  • the calibration signal Sm is superimposed on the signals transmitted from each of 1 to 23-M.
  • each of the frequency information acquisition unit 71, the calibration signal generation unit 72, and the calibration unit 39, which are a part of the calibration device 2 is realized by dedicated hardware as shown in FIG. Is assumed. That is, it is assumed that a part of the calibration device 2 is realized by the frequency information acquisition circuit 46, the calibration signal generation circuit 47, and the calibration circuit 45.
  • Each of the frequency information acquisition circuit 46, the calibration signal generation circuit 47, and the calibration circuit 45 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. The thing is applicable.
  • Some components of the calibration device 2 are not limited to those realized by dedicated hardware, and a part of the calibration device 2 is realized by software, firmware, or a combination of software and firmware. It may be a thing.
  • a program for causing a computer to execute each processing procedure of the frequency information acquisition unit 71, the calibration signal generation unit 72, and the calibration unit 39 is shown in FIG. It is stored in the memory 51 shown in. Then, the processor 52 of the computer executes the program stored in the memory 51.
  • the frequency information acquisition unit 71 acquires frequency information indicating an unused frequency from, for example, a ground station
  • the frequency information acquisition unit 71 outputs the frequency information to the calibration signal generation unit 72.
  • the characteristics of the plurality of receiving element antennas 11-1 to 11-K and the respective characteristics of the plurality of transmitting element antennas 23-1 to 23-M are also used. The characteristics can be calibrated.
  • FIG. 10 is a configuration diagram showing a satellite communication system according to the third embodiment.
  • the satellite communication system includes a communication satellite 81, a control station 82, a user station 83, and a user station 84.
  • the satellite communication system shown in FIG. 10 includes two user stations 83 and 84. However, this is only an example, and may include, for example, three or more user stations.
  • the communication satellite 81 is equipped with the relay device shown in FIGS. 1, 6, 7, or 8.
  • the communication satellite 81 receives the radio wave transmitted from the user station 83, and transmits the radio wave related to the reception signal of the radio wave to the control station 82.
  • the communication satellite 81 receives the radio wave transmitted from the control station 82, and transmits the radio wave related to the reception signal of the radio wave to the user station 83.
  • the communication satellite 81 receives the radio wave transmitted from the user station 84, and transmits the radio wave related to the reception signal of the radio wave to the control station 82. Further, the communication satellite 81 receives the radio wave transmitted from the control station 82, and transmits the radio wave related to the reception signal of the radio wave to the user station 84. If the relay device mounted on the communication satellite 81 is the relay device shown in FIG. 8, the communication satellite 81 acquires frequency information from the control station 82.
  • the control station 82 is, for example, a ground station installed on the ground.
  • the control station 82 transmits and receives radio waves to and from the communication satellite 81. If the relay device mounted on the communication satellite 81 is the relay device shown in FIG. 8, the control station 82 transmits the frequency information to the communication satellite 81.
  • Each of the user station 83 and the user station 84 transmits and receives radio waves to and from the communication satellite 81.
  • the user station 83 when the user station 83 provides data to the control station 82, the user station 83 transmits radio waves including the data to the communication satellite 81.
  • the relay device mounted on the communication satellite 81 as shown in the first and second embodiments, the characteristics of the receiving element antennas 11-1 to 11-K are calibrated, and the transmitting element antennas 23-1 to 23 are calibrated. -Each characteristic in M is calibrated.
  • the relay device mounted on the communication satellite 81 receives the radio wave including the data transmitted from the user station 83, and transmits the radio wave including the data to the control station 82.
  • the present disclosure is suitable for a calibration device, a calibration method, and a calibration program for calibrating each characteristic of a plurality of receiving element antennas and each characteristic of a plurality of transmitting element antennas. Further, the present disclosure is suitable for a relay device including a calibration device. Further, the present disclosure is suitable for a satellite communication system including a communication satellite on which a relay device is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A calibration device (2) is configured to include: a first antenna (36) that receives radio waves related to a transmission signal radiated from each of a plurality of transmission element antennas (23-1) to (23-M) belonging to a repeater (1) and that outputs a reception signal of the radio waves; and a second antenna (38) for radiating, towards a plurality of reception element antennas (11-1) to (11-K) belonging to the repeater (1), radio waves related to the reception signal output from the first antenna (36). The calibration device (2) is also configured to include: a signal superimposing unit (31) that detects a frequency unused by the repeater (1) from among frequencies in common with a plurality of frequencies that can be used by the repeater (1) as a transmission frequency of radio waves and frequencies that can be used by the repeater (1) as a reception frequency of radio waves, that generates a calibration signal having the unused frequency, and that superimposes the calibration signal on a transmission signal given to each of the plurality of transmission element antennas (23-1) to (23-M); and a calibration unit (39) that calibrates characteristics in each of the plurality of reception element antennas (11-1) to (11-K) by using the reception signal of radio waves received by each of the plurality of reception element antennas (11-1) to (11-K) and that calibrates characteristics in each of the plurality of transmission element antennas (23-1) to (23-M) by using a calibration signal included in the reception signal of radio waves received by each of the plurality of reception element antennas (11-1) to (11-K).

Description

校正装置、校正方法、校正プログラム、中継装置及び衛星通信システムCalibration equipment, calibration methods, calibration programs, relay equipment and satellite communication systems
 本開示は、複数の受信素子アンテナにおけるそれぞれの特性及び複数の送信素子アンテナにおけるそれぞれの特性を校正する校正装置、校正方法及び校正プログラムと、校正装置を備える中継装置と、中継装置を実装している通信衛星を備える衛星通信システムとに関するものである。 The present disclosure implements a calibration device, a calibration method and a calibration program for calibrating each characteristic of a plurality of receiving element antennas and each characteristic of a plurality of transmitting element antennas, a relay device provided with the calibration device, and a relay device. It relates to a satellite communication system equipped with a communication satellite.
 例えば、以下の特許文献1には、送信デジタルビームフォーミング(以下、「送信DBF」と称する)を実施するための送信アレーアンテナを備える移動体通信システムが開示されている。送信アレーアンテナは、複数の素子アンテナを有している。送信DBFによって所望の方向に送信ビームを形成するには、複数の素子アンテナにおける特性のばらつきを事前に補償しておく必要がある。特性のばらつきは、振幅のばらつきと、位相のばらつきとを含んでいる。
 当該移動体通信システムでは、送信アレーアンテナの近傍に設置されているピックアップアンテナが、送信アレーアンテナから送信された校正用信号を受信している。そして、適応フィルタが、ピックアップアンテナにより受信された校正用信号に対するデジタル演算処理を実施することによって、複数の素子アンテナにおける特性のばらつきを算出している。そして、送信DBF回路が、適応フィルタによるばらつきの算出結果に基づいて、複数の素子アンテナにおけるそれぞれの特性を校正している。
For example, Patent Document 1 below discloses a mobile communication system including a transmission array antenna for performing transmission digital beamforming (hereinafter, referred to as “transmission DBF”). The transmitting array antenna has a plurality of element antennas. In order to form a transmission beam in a desired direction by the transmission DBF, it is necessary to compensate in advance for variations in characteristics of the plurality of element antennas. The variation in characteristics includes the variation in amplitude and the variation in phase.
In the mobile communication system, the pickup antenna installed in the vicinity of the transmitting array antenna receives the calibration signal transmitted from the transmitting array antenna. Then, the adaptive filter calculates the variation in the characteristics of the plurality of element antennas by performing digital arithmetic processing on the calibration signal received by the pickup antenna. Then, the transmission DBF circuit calibrates the characteristics of each of the plurality of element antennas based on the calculation result of the variation by the adaptive filter.
特開2011-259369号公報Japanese Unexamined Patent Publication No. 2011-259369
 特許文献1に開示されている移動体通信システムは、電波を送信するためのシステムであって、電波の受信と電波の送信とを行う中継器ではないが、特許文献1に開示されているピックアップアンテナ、適応フィルタ及び送信DBF回路のそれぞれを中継器に適用した場合を想定する。この場合、中継器の送信アレーアンテナに含まれている複数の素子アンテナにおけるそれぞれの特性を校正できても、中継器の受信アレーアンテナに含まれている複数の素子アンテナにおけるそれぞれの特性を校正することができないという課題があった。 The mobile communication system disclosed in Patent Document 1 is a system for transmitting radio waves, not a repeater for receiving and transmitting radio waves, but is a pickup disclosed in Patent Document 1. It is assumed that each of the antenna, the adaptive filter, and the transmission DBF circuit is applied to the repeater. In this case, even if the characteristics of the plurality of element antennas included in the transmitting array antenna of the repeater can be calibrated, the characteristics of the plurality of element antennas included in the receiving array antenna of the repeater are calibrated. There was a problem that it could not be done.
 本開示は、上記のような課題を解決するためになされたもので、複数の受信素子アンテナにおけるそれぞれの特性及び複数の送信素子アンテナにおけるそれぞれの特性を校正することができる校正装置、校正方法及び校正プログラムを得ることを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and is a calibration device, a calibration method, and a calibration device capable of calibrating each characteristic of a plurality of receiving element antennas and each characteristic of a plurality of transmitting element antennas. The purpose is to obtain a calibration program.
 本開示に係る校正装置は、中継器が有している複数の送信素子アンテナのそれぞれから放射された送信信号に係る電波を受信し、電波の受信信号を出力する第1のアンテナと、第1のアンテナから出力された受信信号に係る電波を中継器が有している複数の受信素子アンテナに向けて放射する第2のアンテナと、中継器が電波の送信周波数に用いることが可能な複数の周波数のうち、中継器が電波の受信周波数に用いることが可能な周波数と共通している周波数の中で、中継器が未使用の周波数を検出して、未使用の周波数を有する校正用信号を生成し、複数の送信素子アンテナのそれぞれに与えられる送信信号に校正用信号を重畳させる信号重畳部と、複数の受信素子アンテナのそれぞれにより受信された電波の受信信号を用いて、複数の受信素子アンテナにおけるそれぞれの特性を校正し、複数の受信素子アンテナのそれぞれにより受信された電波の受信信号に含まれている校正信号を用いて、複数の送信素子アンテナにおけるそれぞれの特性を校正する校正部とを備えるようにしたものである。 The calibration device according to the present disclosure has a first antenna that receives radio waves related to transmission signals radiated from each of a plurality of transmitting element antennas of the repeater and outputs the reception signals of the radio waves, and a first antenna. A second antenna that radiates radio waves related to the received signal output from the antenna toward the plurality of receiving element antennas of the repeater, and a plurality of antennas that the repeater can use for the transmission frequency of the radio waves. Among the frequencies, among the frequencies common to the frequencies that the repeater can use for the reception frequency of the radio wave, the repeater detects the unused frequency and transmits the calibration signal having the unused frequency. Multiple receiving elements using the signal superimposing unit that generates and superimposes the calibration signal on the transmitting signal given to each of the plurality of transmitting element antennas and the received signal of the radio wave received by each of the plurality of receiving element antennas. A calibration unit that calibrates each characteristic of the antenna and calibrates each characteristic of the plurality of transmitting element antennas using the calibration signal included in the received signal of the radio wave received by each of the plurality of receiving element antennas. It is designed to be equipped with.
 本開示によれば、複数の受信素子アンテナにおけるそれぞれの特性及び複数の送信素子アンテナにおけるそれぞれの特性を校正することができる。 According to the present disclosure, it is possible to calibrate each characteristic of a plurality of receiving element antennas and each characteristic of a plurality of transmitting element antennas.
実施の形態1に係る校正装置2を含む中継装置を示す構成図である。It is a block diagram which shows the relay device which includes the calibration apparatus 2 which concerns on Embodiment 1. FIG. 実施の形態1に係る校正装置2の信号重畳部31及び校正部39におけるそれぞれのハードウェアを示すハードウェア構成図である。It is a hardware block diagram which shows the hardware in the signal superimposition part 31 and the calibration part 39 of the calibration apparatus 2 which concerns on Embodiment 1. FIG. 校正装置2の一部が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。It is a hardware block diagram of the computer when a part of the calibration apparatus 2 is realized by software, firmware and the like. 信号重畳部31及び校正部39におけるそれぞれの処理手順を示すフローチャートである。It is a flowchart which shows each processing procedure in the signal superimposition unit 31 and the calibration unit 39. 図1に示す中継装置における各部の特性を示す説明図である。It is explanatory drawing which shows the characteristic of each part in the relay device shown in FIG. 実施の形態1に係る他の校正装置2を含む中継装置を示す構成図である。It is a block diagram which shows the relay device which includes the other calibration apparatus 2 which concerns on Embodiment 1. FIG. 実施の形態1に係る他の校正装置2を含む中継装置を示す構成図である。It is a block diagram which shows the relay device which includes the other calibration apparatus 2 which concerns on Embodiment 1. FIG. 実施の形態2に係る校正装置2を含む中継装置を示す構成図である。It is a block diagram which shows the relay device which includes the calibration apparatus 2 which concerns on Embodiment 2. FIG. 実施の形態2に係る校正装置2の信号重畳部31及び校正部39におけるそれぞれのハードウェアを示すハードウェア構成図である。It is a hardware block diagram which shows the hardware in the signal superimposition part 31 and the calibration part 39 of the calibration apparatus 2 which concerns on Embodiment 2. FIG. 実施の形態3に係る衛星通信システムを示す構成図である。It is a block diagram which shows the satellite communication system which concerns on Embodiment 3.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, a mode for carrying out the present disclosure will be described with reference to the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る校正装置2を含む中継装置を示す構成図である。
 図2は、実施の形態1に係る校正装置2の信号重畳部31及び校正部39におけるそれぞれのハードウェアを示すハードウェア構成図である。
 図1において、中継器1は、受信アレーアンテナ11と、受信機12-1~12-Kと、中継処理部13と、送信機22-1~22-Mと、送信アレーアンテナ23とを備えている。Kは、2以上の整数、Mは、2以上の整数である。
 校正装置2は、信号重畳部31、第1のアンテナ36、周波数変換部37、第2のアンテナ38及び校正部39を備えている。
 校正装置2は、中継器1の受信アレーアンテナ11が有している複数の受信素子アンテナ11-1~11-Kにおけるそれぞれの特性及び中継器1の送信アレーアンテナ23が有している複数の送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正する。ここでの特性は、例えば、振幅の特性と、位相の特性とを含んでいる。
Embodiment 1.
FIG. 1 is a configuration diagram showing a relay device including the calibration device 2 according to the first embodiment.
FIG. 2 is a hardware configuration diagram showing the respective hardware in the signal superimposing unit 31 and the calibration unit 39 of the calibration device 2 according to the first embodiment.
In FIG. 1, the repeater 1 includes a receiving array antenna 11, receivers 12-1 to 12-K, a relay processing unit 13, transmitters 22-1 to 22-M, and a transmitting array antenna 23. ing. K is an integer of 2 or more, and M is an integer of 2 or more.
The calibration device 2 includes a signal superimposing unit 31, a first antenna 36, a frequency conversion unit 37, a second antenna 38, and a calibration unit 39.
The calibrator 2 has a plurality of characteristics of the receiving element antennas 11-1 to 11-K of the receiving array antenna 11 of the repeater 1 and a plurality of transmitting array antennas 23 of the repeater 1. The characteristics of the transmitting element antennas 23-1 to 23-M are calibrated. The characteristics here include, for example, an amplitude characteristic and a phase characteristic.
 受信アレーアンテナ11は、複数の受信素子アンテナ11-1~11-Kを備えている。
 受信素子アンテナ11-k(k=1,・・・,K)は、電波を受信し、電波の受信信号を受信素子信号Rとして受信機12-kに出力する。
 受信機12-k(k=1,・・・,K)は、受信素子アンテナ11-kから出力された受信素子信号Rに対する受信処理を実施し、受信処理後の信号R’を中継処理部13の後述する分波部14-kに出力する。
 受信処理としては、受信素子信号Rを増幅する増幅処理、受信素子信号Rの周波数を変換する周波数変換処理、受信素子信号Rに含まれている高周波成分等を除去するフィルタ処理、又は、受信素子信号Rをアナログ信号からデジタル信号に変換するアナログデジタル変換処理等が想定される。
The receiving array antenna 11 includes a plurality of receiving element antennas 11-1 to 11-K.
The receiving element antenna 11-k (k = 1, ..., K) receives the radio wave and outputs the received signal of the radio wave to the receiver 12-k as the receiving element signal Rk.
The receiver 12-k (k = 1, ..., K) performs reception processing on the reception element signal R k output from the reception element antenna 11-k, and relays the signal R k'after the reception processing. The output is output to the demultiplexing unit 14-k, which will be described later, of the processing unit 13.
As reception processing, amplification processing, frequency conversion processing for converting the frequency of the received device signal R k, filtering of removing high-frequency components and the like contained in the received element signal R k for amplifying the received element signal R k, or , Analog-digital conversion processing for converting the receiving element signal Rk from an analog signal to a digital signal is assumed.
 中継処理部13は、分波部14-1~14-Kと、受信抽出部15-1~15-Kと、受信DBF(Digital Beam Forming)部16と、スイッチ部(以下、「SW部」と称する)17と、送信DBF部18と、送信抽出部19-1~19-Mと、注入部20-1~20-Mと、合波部21-1~21-Mとを備えている。
 分波部14-k(k=1,・・・,K)は、受信機12-kから出力された受信処理後の信号R’を所定の周波数分割単位で分波する。受信処理後の信号R’の周波数帯域が、例えば、f~f10であるとき、周波数分割単位が当該周波数帯域の10分の1であるとすれば、分波部14-kは、受信処理後の信号R’を、周波数fの信号と、周波数fの信号と、・・・周波数f10の信号とに分波する。
 分波部14-kは、分波後の信号Rfを受信抽出部15-kに出力する。分波後の信号Rfは、互いに分波されている複数の信号の集合であり、例えば、周波数fの信号と、周波数fの信号と、・・・周波数f10の信号との集合である。
The relay processing unit 13 includes a demultiplexing unit 14-1 to 14-K, a receiving extraction unit 15-1 to 15-K, a receiving DBF (Digital Beamforming) unit 16, and a switch unit (hereinafter, "SW unit"). 17), a transmission DBF unit 18, a transmission extraction unit 19-1 to 19-M, an injection unit 20-1 to 20-M, and a combiner unit 21-1 to 21-M. ..
Demultiplexing unit 14-k (k = 1, ···, K) demultiplexes after reception processing outputted from the receiver 12-k of the signal R k 'at a predetermined frequency division units. If the frequency band of the signal R k'after the reception processing is, for example, f 1 to f 10 , and the frequency division unit is one tenth of the frequency band, the demultiplexing unit 14-k is The signal R k'after the reception process is demultiplexed into a signal having a frequency f 1, a signal having a frequency f 2 , and ... a signal having a frequency f 10 .
The demultiplexing unit 14-k outputs the signal Rf k after demultiplexing to the reception / extraction unit 15-k. The signal Rf k after demultiplexing is a set of a plurality of signals demultiplexed from each other. For example, a set of a signal having a frequency f 1, a signal having a frequency f 2 , and ... a signal having a frequency f 10. Is.
 受信抽出部15-k(k=1,・・・,K)は、分波部14-kから出力された分波後の信号Rfを、受信DBF部16、信号重畳部31の後述する受信電力算出部32及び校正部39のそれぞれに出力する。 The reception extraction unit 15-k (k = 1, ..., K) outputs the signal Rf k after demultiplexing output from the demultiplexing unit 14-k to the reception DBF unit 16 and the signal superimposition unit 31, which will be described later. It is output to each of the received power calculation unit 32 and the calibration unit 39.
 受信DBF部16は、受信抽出部15-k(k=1,・・・,K)から出力されたK個の分波後の信号Rf~RfのそれぞれをJ個に分配することによって、K×J個の分波後の受信素子信号である受信分波信号Rfk,j(k=1,・・・,K:j=1,・・・,J)を生成する。Jは、1以上の整数である。即ち、受信DBF部16は、全部でK×J個の受信分波信号として、受信分波信号Rf1,1~RfK,1と、受信分波信号Rf1,2~RfK,2と、・・・、受信分波信号Rf1,J~RfK,Jとを生成する。
 受信DBF部16は、受信分波信号Rfk,1~Rfk,J(k=1,・・・,K)のそれぞれに、校正部39により算出された校正値CVrを乗算することにより、受信分波信号Rf1,J~RfK,Jにおけるそれぞれの振幅及び位相をそれぞれ調整する。
 また、受信DBF部16は、振幅位相調整後の受信分波信号Rfk,j’(k=1,・・・,K:j=1,・・・,J)に、受信素子アンテナ11-kの重み値Wrk,jを乗算する。受信素子アンテナ11-kの重み値Wrk,jは、受信DBF部16の内部メモリに格納されていてもよいし、受信DBF部16の外部から与えられるものであってもよい。
 受信DBF部16は、K×J個の重み値乗算後の受信分波信号のうち、j番目の受信分波信号に係るK個の信号Rfk,j×CVr×Wrk,j(k=1,・・・,K)を互いに加算する。
 受信DBF部16は、J個の加算後の信号のそれぞれを受信ビーム信号RB(j=1,・・・,J)としてSW部17に出力する。
Figure JPOXMLDOC01-appb-I000001
The reception DBF unit 16 distributes each of the K demultiplexed signals Rf 1 to Rf K output from the reception extraction unit 15-k (k = 1, ..., K) to J. , K × J reception element signals after demultiplexing, reception demultiplexing signals Rf k, j (k = 1, ..., K: j = 1, ..., J) are generated. J is an integer of 1 or more. That is, the reception DBF unit 16 has K × J reception demultiplexing signals Rf 1,1 to Rf K, 1 and reception demultiplexing signals Rf 1,2 to Rf K, 2 as a total of K × J reception demultiplexing signals. , ..., Received demultiplexing signals Rf 1, J to Rf K, J are generated.
The receiving DBF unit 16 multiplies each of the received demultiplexing signals Rf k, 1 to Rf k, J (k = 1, ..., K) by the calibration value CVr k calculated by the calibration unit 39. , The amplitude and phase of each of the received demultiplexing signals Rf 1, J to Rf K, J are adjusted.
Further, the receiving DBF unit 16 attaches the receiving element antenna 11- to the received demultiplexing signal Rf k, j '(k = 1, ..., K: j = 1, ..., J) after adjusting the amplitude phase. Multiply the weight values Wr k and j of k. The weight values Wr k and j of the receiving element antenna 11-k may be stored in the internal memory of the receiving DBF unit 16 or may be given from the outside of the receiving DBF unit 16.
The reception DBF unit 16 receives K signals Rf k, j × CVr k × Wr k, j (k) related to the j-th received demultiplexing signal among the received demultiplexing signals obtained by multiplying K × J weight values. = 1, ..., K) are added to each other.
The reception DBF unit 16 outputs each of the J added signals to the SW unit 17 as a reception beam signal RB j (j = 1, ..., J).
Figure JPOXMLDOC01-appb-I000001
 SW部17は、受信DBF部16から出力されたそれぞれの受信ビーム信号RBが示す受信ビームの周波数配置を変換するルーティング処理を実施することにより、M個の送信ビーム信号TB(n=1,・・・,N)を生成する。Nは、1以上の整数である。
 SW部17は、N個の送信ビーム信号TB~TBのそれぞれを送信DBF部18に出力する。
The SW unit 17 performs a routing process for converting the frequency arrangement of the received beam indicated by each received beam signal RB j output from the received DBF unit 16, thereby performing M transmission beam signals TB n (n = 1). , ..., N) is generated. N is an integer of 1 or more.
The SW unit 17 outputs each of the N transmission beam signals TB 1 to TB N to the transmission DBF unit 18.
 送信DBF部18は、SW部17から出力されたN個の送信ビーム信号TB~TBのそれぞれをM個に分配することによって、M×N個の送信ビーム信号TBm,n(m=1,・・・,M:n=1,・・・,N)を生成する。即ち、送信DBF部18は、全部でM×N個の送信ビーム信号として、送信ビーム信号TB1,1~TBM,1と、送信ビーム信号TB1,2~TBM,2と、・・・、送信ビーム信号TB1,N~TBM,Nとを生成する。
 送信DBF部18は、送信ビーム信号TBm,1~TBm,N(m=1,・・・,M)のそれぞれに、校正部39により算出された校正値CVtを乗算することにより、送信ビーム信号TBm,1~TBm,Nにおけるそれぞれの振幅及び位相をそれぞれ調整する。
 また、送信DBF部18は、振幅位相調整後の送信ビーム信号TBm,n’に、送信DBFを実施する際の送信素子アンテナ23-mの重み値Wtm,nを乗算する。送信素子アンテナ23-mの重み値Wtm,nは、送信DBF部18の内部メモリに格納されていてもよいし、送信DBF部18の外部から与えられるものであってもよい。
 送信DBF部18は、M×N個の重み値乗算後の送信ビーム信号のうち、m番目の送信ビーム信号に係るN個の信号TBm,n×CVt×Wtm,n(n=1,・・・,N)を互いに加算する。
 送信DBF部18は、M個の加算後の信号のそれぞれを送信素子信号Tx(m=1,・・・,M)として、送信抽出部19-mに出力する。送信素子信号Txは、周波数分割単位に分割されている信号である。
Figure JPOXMLDOC01-appb-I000002

 送信素子信号Txの周波数帯域が、例えば、f~f12であるとき、周波数分割単位が当該周波数帯域の10分の1であるとすれば、送信素子信号Txは、周波数fの信号と、周波数fの信号と、・・・周波数f12の信号との集合である。
The transmission DBF unit 18 distributes each of the N transmission beam signals TB 1 to TB N output from the SW unit 17 to M, so that M × N transmission beam signals TB m, n (m =). 1, ..., M: n = 1, ..., N) is generated. That is, the transmission DBF unit 18 has transmission beam signals TB 1, 1 to TB M, 1 and transmission beam signals TB 1, 2 to TB M, 2 as a total of M × N transmission beam signals. -Generate transmission beam signals TB 1, N to TB M, N.
The transmission DBF unit 18 multiplies each of the transmission beam signals TB m, 1 to TB m, N (m = 1, ..., M) by the calibration value CVt m calculated by the calibration unit 39. The amplitudes and phases of the transmitted beam signals TB m, 1 to TB m, and N are adjusted.
Further, the transmission DBF unit 18 multiplies the transmission beam signals TB m, n'after the amplitude phase adjustment by the weight values Wt m, n of the transmission element antenna 23-m when the transmission DBF is performed. The weight values Wt m and n of the transmitting element antenna 23-m may be stored in the internal memory of the transmitting DBF unit 18 or may be given from the outside of the transmitting DBF unit 18.
The transmission DBF unit 18 has N (n) signals TB m, n × CVt m × Wt m, n (n = 1) related to the m-th transmission beam signal among the transmission beam signals after multiplication of M × N weight values. , ..., N) are added to each other.
The transmission DBF unit 18 outputs each of the M added signals as a transmission element signal Tx m (m = 1, ..., M) to the transmission extraction unit 19-m. The transmission element signal Tx m is a signal divided into frequency division units.
Figure JPOXMLDOC01-appb-I000002

If the frequency band of the transmission element signal Tx m is, for example, f 3 to f 12 , and the frequency division unit is one tenth of the frequency band, the transmission element signal Tx m has a frequency f 3 of. and the signal, and the signal of frequency f 4, which is a set of the signal of ... frequency f 12.
 送信抽出部19-m(m=1,・・・,M)は、送信DBF部18から出力された送信素子信号Txを、注入部20-m及び信号重畳部31の後述する送信電力算出部33のそれぞれに出力する。
 注入部20-mは、送信抽出部19-mから出力された送信素子信号Txに、信号重畳部31の後述する校正用信号生成部35から出力された校正用信号Sを注入する。
 合波部21-mは、注入部20-mによる校正用信号注入後の送信素子信号Tx’を周波数方向に合波する。
 校正用信号注入後の送信素子信号Tx’が、例えば、周波数fの信号と、周波数fの信号と、・・・周波数f12の信号との集合であれば、合波部21-mは、周波数fの信号と、周波数fの信号と、・・・周波数f12の信号とを周波数方向に合波する。
 合波部21-mは、合波後の送信素子信号Tx”を送信機22-mに出力する。
The transmission extraction unit 19-m (m = 1, ..., M) calculates the transmission power of the transmission element signal Tx m output from the transmission DBF unit 18 by the injection unit 20-m and the signal superimposition unit 31, which will be described later. Output to each of the units 33.
The injection unit 20-m injects the calibration signal S m output from the calibration signal generation unit 35 described later of the signal superimposition unit 31 into the transmission element signal Tx m output from the transmission extraction unit 19-m.
Multiplexing section 21-m transmits the transmission element signal Tx m 'after calibration signal injection by injecting section 20-m for multiplexing in the frequency direction.
Transmitting device signal Tx m after calibration signal injection 'is, for example, a signal of a frequency f 3, and a signal of a frequency f 4, if a set of signals ... frequency f 12, the multiplexing unit 21 m is a signal of a frequency f 3, and a signal of a frequency f 4, and a signal of ... frequency f 12 for multiplexing in the frequency direction.
The combiner 21-m outputs the transmission element signal Tx m "after the combiner to the transmitter 22-m.
 送信機22-mは、合波部21-mから出力された送信素子信号Tx”に対する送信処理を実施し、送信処理後の信号Tを送信信号として、送信素子アンテナ23-mに出力する。
 送信処理としては、送信素子信号Tx”をデジタル信号からアナログ信号に変換するデジタルアナログ変換処理、送信素子信号Tx”の周波数を変換する周波数変換処理、送信素子信号Tx”に含まれている高周波成分等を除去するフィルタ処理、又は、送信素子信号Tx”を増幅する増幅処理等が想定される。
 送信アレーアンテナ23は、複数の送信素子アンテナ23-1~23-Mを備えている。
 送信素子アンテナ23-m(m=1,・・・,M)は、送信機22-mによる送信処理後の信号Tに係る電波を空間に放射する。
The transmitter 22-m performs transmission processing on the transmission element signal Tx m "output from the combiner 21-m, and outputs the signal T m after the transmission processing to the transmission element antenna 23-m as a transmission signal. To do.
As a transmission processing, the transmission element signal Tx m "digital-to-analog conversion for converting an analog signal from the digital signal, the transmitting element signal Tx m" frequency conversion processing for converting a frequency of, is included in the transmission element signal Tx m " Filter processing that removes high-frequency components and the like, or amplification processing that amplifies the transmission element signal Tx m ”is assumed.
The transmission array antenna 23 includes a plurality of transmission element antennas 23-1 to 23-M.
The transmitting element antenna 23-m (m = 1, ..., M) radiates radio waves related to the signal T m after transmission processing by the transmitter 22-m into space.
 信号重畳部31は、受信電力算出部32、送信電力算出部33、未使用周波数検出部34及び校正用信号生成部35を備えている。
 信号重畳部31は、中継器1が電波の送信周波数に用いることが可能な複数の周波数のうち、中継器1が電波の受信周波数に用いることが可能な周波数と共通している周波数の中で、中継器1が未使用の周波数を検出して、未使用の周波数を有する校正用信号Sを生成する。
 信号重畳部31は、複数の送信素子アンテナ23-1~23-Mのそれぞれに与えられる信号に校正用信号Sを重畳させる。
The signal superimposing unit 31 includes a received power calculation unit 32, a transmission power calculation unit 33, an unused frequency detection unit 34, and a calibration signal generation unit 35.
The signal superimposition unit 31 is among a plurality of frequencies that the repeater 1 can use for the radio wave transmission frequency, among the frequencies that are common to the frequencies that the repeater 1 can use for the radio wave reception frequency. , The repeater 1 detects an unused frequency and generates a calibration signal S m having an unused frequency.
Signal superimposing section 31 superimposes the calibration signal S m with a signal supplied to each of the plurality of transmit antenna elements 23-1 ~ 23-M.
 受信電力算出部32は、例えば、図2に示す受信電力算出回路41によって実現される。
 受信電力算出部32は、複数の受信素子アンテナ11-1~11-Kのそれぞれにより受信された電波の受信信号に含まれている複数の周波数成分の電力をそれぞれ算出する。
 即ち、受信電力算出部32は、受信抽出部15-1~15-Kから出力されたそれぞれの分波後の信号Rfに含まれている複数の周波数成分の電力をそれぞれ算出する。
The received power calculation unit 32 is realized by, for example, the received power calculation circuit 41 shown in FIG.
The received power calculation unit 32 calculates the power of a plurality of frequency components included in the received signal of the radio wave received by each of the plurality of receiving element antennas 11-1 to 11-K.
That is, the reception power calculation unit 32 calculates the power of a plurality of frequency components included in the signal Rf k after each demultiplexing output from the reception extraction units 15-1 to 15-K.
 送信電力算出部33は、例えば、図2に示す送信電力算出回路42によって実現される。
 送信電力算出部33は、複数の送信素子アンテナ23-1~23-Mのそれぞれに与えられる送信信号に含まれている複数の周波数成分の電力をそれぞれ算出する。
 即ち、送信電力算出部33は、送信抽出部19-1~19-Mから出力されたそれぞれの送信素子信号Txに含まれている複数の周波数成分の電力をそれぞれ算出する。
The transmission power calculation unit 33 is realized by, for example, the transmission power calculation circuit 42 shown in FIG.
The transmission power calculation unit 33 calculates the power of a plurality of frequency components included in the transmission signals given to each of the plurality of transmission element antennas 23-1 to 23-M.
That is, the transmission power calculation unit 33 calculates the power of a plurality of frequency components included in the respective transmission element signals Tx m output from the transmission extraction units 19-1 to 19-M.
 未使用周波数検出部34は、例えば、図2に示す未使用周波数検出回路43によって実現される。
 未使用周波数検出部34は、受信電力算出部32により算出されたそれぞれの電力と、送信電力算出部33により算出されたそれぞれの電力とに基づいて、共通している周波数の中で、中継器1が未使用の周波数を検出する。
The unused frequency detection unit 34 is realized by, for example, the unused frequency detection circuit 43 shown in FIG.
The unused frequency detection unit 34 is a repeater in a common frequency based on each power calculated by the reception power calculation unit 32 and each power calculated by the transmission power calculation unit 33. 1 detects an unused frequency.
 校正用信号生成部35は、例えば、図2に示す校正用信号生成回路44によって実現される。
 校正用信号生成部35は、未使用周波数検出部34により検出された周波数を有する校正用信号Sを生成する。
 校正用信号生成部35は、校正用信号Sを注入部20-1~20-Mのそれぞれに出力することにより、送信抽出部19-mから出力された送信素子信号Txに、校正用信号Sを重畳させる。
The calibration signal generation unit 35 is realized by, for example, the calibration signal generation circuit 44 shown in FIG.
The calibration signal generation unit 35 generates a calibration signal S m having a frequency detected by the unused frequency detection unit 34.
The calibration signal generation unit 35 outputs the calibration signal S m to each of the injection units 20-1 to 20-M, thereby supplying the transmission element signal Tx m output from the transmission extraction unit 19-m for calibration. The signal S m is superimposed.
 第1のアンテナ36は、複数の送信素子アンテナ23-1~23-Mのそれぞれから放射された電波を受信し、当該電波の受信信号を周波数変換部37に出力する受信ピックアップアンテナである。 The first antenna 36 is a reception pickup antenna that receives radio waves radiated from each of the plurality of transmitting element antennas 23-1 to 23-M and outputs the reception signal of the radio waves to the frequency conversion unit 37.
 周波数変換部37は、第1のアンテナ36から出力された受信信号の周波数を、中継器1の受信機12-1~12-Mが受信可能な周波数に変換し、周波数変換後の受信信号を第2のアンテナ38に出力する。
 図1に示す校正装置2は、周波数変換部37を備えている。しかし、受信機12-1~12-Mが受信可能な周波数と、送信機22-1~22-Mが送信可能な周波数とが同じ周波数であれば、校正装置2は、周波数変換部37を実装する必要がない。
 第2のアンテナ38は、周波数変換部37による周波数変換後の受信信号に係る電波を複数の受信素子アンテナ11-1~11-Kのそれぞれに向けて放射する送信ピックアップアンテナである。
The frequency conversion unit 37 converts the frequency of the received signal output from the first antenna 36 into a frequency that can be received by the receivers 12-1 to 12-M of the repeater 1, and converts the received signal after frequency conversion into a frequency that can be received. Output to the second antenna 38.
The calibration device 2 shown in FIG. 1 includes a frequency conversion unit 37. However, if the frequency receivable by the receivers 12-1 to 12-M and the frequency receivable by the transmitters 22-1 to 22-M are the same frequency, the calibrator 2 sets the frequency conversion unit 37. No need to implement.
The second antenna 38 is a transmission pickup antenna that radiates radio waves related to the received signal after frequency conversion by the frequency conversion unit 37 toward each of the plurality of receiving element antennas 11-1 to 11-K.
 校正部39は、例えば、図2に示す校正回路45によって実現される。
 校正部39は、複数の受信素子アンテナ11-1~11-Kのそれぞれにより受信された電波の受信信号を用いて、受信素子アンテナ11-1~11-Kにおけるそれぞれの特性を校正するための校正値CVr(k=1,・・・,K)を算出する。
 即ち、校正部39は、受信抽出部15-1~15-Kから出力されたそれぞれの分波後の信号Rfを用いて、校正値CVr(k=1,・・・,K)を算出する。
 校正部39は、校正値CVr~CVrのそれぞれを受信DBF部16に出力することにより、受信素子アンテナ11-1~11-Kにおけるそれぞれの特性を校正する。
The calibration unit 39 is realized by, for example, the calibration circuit 45 shown in FIG.
The calibration unit 39 uses the received signals of the radio waves received by each of the plurality of receiving element antennas 11-1 to 11-K to calibrate the characteristics of the receiving element antennas 11-1 to 11-K. The calibration value CVr k (k = 1, ..., K) is calculated.
That is, the calibration unit 39 uses the signals Rf k after each demultiplexing output from the reception extraction units 15-1 to 15-K to set the calibration value CVr k (k = 1, ..., K). calculate.
The calibration unit 39 calibrates the respective characteristics of the receiving element antennas 11-1 to 11-K by outputting each of the calibration values CVr 1 to CVr K to the receiving DBF unit 16.
 校正部39は、複数の受信素子アンテナ11-1~11-Kのそれぞれにより受信された電波の受信信号に含まれている校正信号U(k=1,・・・,K)を用いて、複数の送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正するための校正値CVt(m=1,・・・,M)を算出する。
 即ち、校正部39は、受信抽出部15-1~15-Kから出力されたそれぞれの分波後の信号Rfに含まれている校正信号Uを抽出し、校正信号U~Uを用いて、校正値CVt(m=1,・・・,M)を算出する。
 校正部39は、校正値CVt~CVtのそれぞれを送信DBF部18に出力することにより、送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正する。
The calibration unit 39 uses the calibration signal Uk (k = 1, ..., K) included in the reception signal of the radio wave received by each of the plurality of receiving element antennas 11-1 to 11-K. , Calculate the calibration value CVt m (m = 1, ..., M) for calibrating each characteristic of the plurality of transmitting element antennas 23-1 to 23-M.
That is, the calibration unit 39 extracts the calibration signals U k included in the signals Rf k after each demultiplexing output from the reception extraction units 15-1 to 15-K, and the calibration signals U 1 to UK. Is used to calculate the calibration value CVt m (m = 1, ..., M).
The calibration unit 39 calibrates the respective characteristics of the transmission element antennas 23-1 to 23-M by outputting each of the calibration values CVt 1 to CVt M to the transmission DBF unit 18.
 図1では、校正装置2の一部の構成要素である受信電力算出部32、送信電力算出部33、未使用周波数検出部34、校正用信号生成部35及び校正部39のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、校正装置2の一部が、受信電力算出回路41、送信電力算出回路42、未使用周波数検出回路43、校正用信号生成回路44及び校正回路45によって実現されるものを想定している。
 受信電力算出回路41、送信電力算出回路42、未使用周波数検出回路43、校正用信号生成回路44及び校正回路45のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 1, each of the received power calculation unit 32, the transmission power calculation unit 33, the unused frequency detection unit 34, the calibration signal generation unit 35, and the calibration unit 39, which are some components of the calibration device 2, is shown in FIG. It is assumed that it will be realized by dedicated hardware as shown in. That is, it is assumed that a part of the calibration device 2 is realized by the received power calculation circuit 41, the transmission power calculation circuit 42, the unused frequency detection circuit 43, the calibration signal generation circuit 44, and the calibration circuit 45.
Each of the received power calculation circuit 41, the transmission power calculation circuit 42, the unused frequency detection circuit 43, the calibration signal generation circuit 44, and the calibration circuit 45 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel programming. The processor, ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
 校正装置2の一部の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、校正装置2の一部が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
Some components of the calibration device 2 are not limited to those realized by dedicated hardware, and a part of the calibration device 2 is realized by software, firmware, or a combination of software and firmware. It may be a thing.
The software or firmware is stored as a program in the memory of the computer. A computer means hardware for executing a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
 図3は、校正装置2の一部が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 校正装置2の一部が、ソフトウェア又はファームウェア等によって実現される場合、受信電力算出部32、送信電力算出部33、未使用周波数検出部34、校正用信号生成部35及び校正部39のそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ51に格納される。そして、コンピュータのプロセッサ52がメモリ51に格納されているプログラムを実行する。
FIG. 3 is a hardware configuration diagram of a computer when a part of the calibration device 2 is realized by software, firmware, or the like.
When a part of the calibration device 2 is realized by software, firmware, or the like, each of the received power calculation unit 32, the transmission power calculation unit 33, the unused frequency detection unit 34, the calibration signal generation unit 35, and the calibration unit 39, respectively. A program for causing the computer to execute the processing procedure is stored in the memory 51. Then, the processor 52 of the computer executes the program stored in the memory 51.
 次に、図1に示す中継装置の動作について説明する。
 最初に、中継器1の動作について説明する。
 受信素子アンテナ11-k(k=1,・・・,K)は、第2のアンテナ38から放射された電波を受信し、電波の受信信号を受信素子信号Rとして、受信機12-kに出力する。
 中継器1が電波を送受信する実運用中であれば、受信素子アンテナ11-kは、第2のアンテナ38から放射された電波のほかに、図示せぬ、外部の装置から送信された電波を受信する。
 受信機12-k(k=1,・・・,K)は、受信素子アンテナ11-kから出力された受信素子信号Rに対する受信処理を実施し、受信処理後の信号R’を分波部14-kに出力する。
Next, the operation of the relay device shown in FIG. 1 will be described.
First, the operation of the repeater 1 will be described.
The receiving element antenna 11-k (k = 1, ..., K) receives the radio wave radiated from the second antenna 38, and the received signal of the radio wave is used as the receiving element signal Rk , and the receiver 12-k. Output to.
During actual operation in which the repeater 1 transmits and receives radio waves, the receiving element antenna 11-k receives radio waves transmitted from an external device (not shown) in addition to the radio waves radiated from the second antenna 38. Receive.
Receiver 12-k (k = 1, ···, K) was performed reception processing for the received element signal R k output from the receiving antenna elements 11-k, min signal R k 'after receiving processing Output to the wave section 14-k.
 分波部14-k(k=1,・・・,K)は、受信機12-kから受信処理後の信号R’を受けると、受信処理後の信号R’を所定の周波数分割単位で分波する。
 分波部14-kは、分波後の信号Rfを受信抽出部15-kに出力する。
When the demultiplexing unit 14-k (k = 1, ..., K) receives the signal R k'after the reception processing from the receiver 12-k, the demultiplexing unit 14-k (k = 1, ..., K) divides the signal R k'after the reception processing into a predetermined frequency. Demultiplexes in units.
The demultiplexing unit 14-k outputs the signal Rf k after demultiplexing to the reception / extraction unit 15-k.
 受信抽出部15-k(k=1,・・・,K)は、分波部14-kから分波後の信号Rfを受けると、分波後の信号Rfを、受信DBF部16、受信電力算出部32及び校正部39のそれぞれに出力する。 When the reception extraction unit 15-k (k = 1, ..., K) receives the signal Rf k after demultiplexing from the demultiplexing unit 14-k, the reception DBF unit 16 receives the signal Rf k after demultiplexing. , Output to each of the received power calculation unit 32 and the calibration unit 39.
 受信DBF部16は、受信抽出部15-k(k=1,・・・,K)からK個の分波後の信号Rfを受けると、K個の分波後の信号RfのそれぞれをJ個に分配することによって、K×J個の受信分波信号Rfk,j(k=1,・・・,K:j=1,・・・,J)を生成する。
 受信DBF部16は、受信分波信号Rfk,1~Rfk,J(k=1,・・・,K)のそれぞれに、校正部39により算出された校正値CVrを乗算することにより、受信分波信号Rf1,J~RfK,Jにおけるそれぞれの振幅及び位相をそれぞれ調整する。
 また、受信DBF部16は、振幅位相調整後の受信分波信号Rfk,j’に、受信素子アンテナ11-kの重み値Wrk,jを乗算する。
 受信DBF部16は、K×J個の重み値乗算後の受信分波信号のうち、j番目の受信分波信号に係るK個の信号Rfk,j×CVr×Wrk,j(k=1,・・・,K)を互いに加算する。
 受信DBF部16は、J個の加算後の信号のそれぞれを受信ビーム信号RB(j=1,・・・,J)としてSW部17に出力する。
Figure JPOXMLDOC01-appb-I000003
When the receiving DBF unit 16 receives K signals Rf k after demultiplexing from the receiving extraction unit 15-k (k = 1, ..., K), each of the K demultiplexed signals Rf k . Is distributed to J to generate K × J received demultiplexing signals Rf k, j (k = 1, ..., K: j = 1, ..., J).
The receiving DBF unit 16 multiplies each of the received demultiplexing signals Rf k, 1 to Rf k, J (k = 1, ..., K) by the calibration value CVr k calculated by the calibration unit 39. , The amplitude and phase of each of the received demultiplexing signals Rf 1, J to Rf K, J are adjusted.
Further, the receiving DBF unit 16 multiplies the received demultiplexing signal Rf k, j'after the amplitude phase adjustment by the weight value Wr k, j of the receiving element antenna 11-k.
The reception DBF unit 16 receives K signals Rf k, j × CVr k × Wr k, j (k) related to the j-th received demultiplexing signal among the received demultiplexing signals obtained by multiplying K × J weight values. = 1, ..., K) are added to each other.
The reception DBF unit 16 outputs each of the J added signals to the SW unit 17 as a reception beam signal RB j (j = 1, ..., J).
Figure JPOXMLDOC01-appb-I000003
 SW部17は、受信DBF部16からJ個の受信ビーム信号RBを受けると、J個の受信ビーム信号RBが示す受信ビームの周波数配置を変換するルーティング処理を実施することにより、N個の送信ビーム信号TB(n=1,・・・,N)を生成する。受信ビームの周波数配置を変換するルーティング処理自体は、公知の技術であるため詳細な説明を省略する。
 SW部17は、N個の送信ビーム信号TB~TBのそれぞれを送信DBF部18に出力する。
When the SW unit 17 receives J received beam signals RB j from the received DBF unit 16, N units perform a routing process for converting the frequency arrangement of the received beams indicated by the J received beam signals RB j. Generates the transmitted beam signal TB n (n = 1, ..., N) of. Since the routing process itself for converting the frequency arrangement of the received beam is a known technique, detailed description thereof will be omitted.
The SW unit 17 outputs each of the N transmission beam signals TB 1 to TB N to the transmission DBF unit 18.
 送信DBF部18は、SW部17からN個の送信ビーム信号TB~TBを受けると、N個の送信ビーム信号TB(n=1,・・・,N)のそれぞれをM個に分配することによって、M×N個の送信ビーム信号TBm,n(m=1,・・・,M:n=1,・・・,N)を生成する。
 送信DBF部18は、送信ビーム信号TBm,1~TBm,N(m=1,・・・,M)のそれぞれに、校正部39により算出された校正値CVtを乗算することにより、送信ビーム信号TBm,1~TBm,Nにおけるそれぞれの振幅及び位相をそれぞれ調整する。
 また、送信DBF部18は、振幅位相調整後の送信ビーム信号TBm,n’に、送信DBFを実施する際の送信素子アンテナ23-mの重み値Wtm,nを乗算する。
 送信DBF部18は、M×N個の重み値乗算後の送信ビーム信号のうち、m番目の送信ビーム信号に係るN個の信号TBm,n×CVt×Wtm,nを互いに加算する。
 送信DBF部18は、M個の加算後の信号のそれぞれを送信素子信号Tx(m=1,・・・,M)として、送信抽出部19-mに出力する。送信素子信号Txは、周波数分割単位に分割されている信号である。
Figure JPOXMLDOC01-appb-I000004
When the transmission DBF unit 18 receives N transmission beam signals TB 1 to TB N from the SW unit 17, each of the N transmission beam signals TB n (n = 1, ..., N) is reduced to M. By distributing, M × N transmission beam signals TB m, n (m = 1, ..., M: n = 1, ..., N) are generated.
The transmission DBF unit 18 multiplies each of the transmission beam signals TB m, 1 to TB m, N (m = 1, ..., M) by the calibration value CVt m calculated by the calibration unit 39. The amplitudes and phases of the transmitted beam signals TB m, 1 to TB m, and N are adjusted.
Further, the transmission DBF unit 18 multiplies the transmission beam signals TB m, n'after the amplitude phase adjustment by the weight values Wt m, n of the transmission element antenna 23-m when the transmission DBF is performed.
The transmission DBF unit 18 adds N signals TB m, n × CVt m × Wt m, n related to the mth transmission beam signal among the transmission beam signals after multiplication of M × N weight values to each other. ..
The transmission DBF unit 18 outputs each of the M added signals as a transmission element signal Tx m (m = 1, ..., M) to the transmission extraction unit 19-m. The transmission element signal Tx m is a signal divided into frequency division units.
Figure JPOXMLDOC01-appb-I000004
 送信抽出部19-m(m=1,・・・,M)は、送信DBF部18から出力された送信素子信号Txを、注入部20-m及び送信電力算出部33のそれぞれに出力する。
 注入部20-m(m=1,・・・,M)は、送信抽出部19-mから送信素子信号Txを受けると、送信素子信号Txに、校正用信号生成部35から出力された校正用信号Sを注入する。
 注入部20-mは、校正用信号注入後の送信素子信号Tx’を合波部21-mに出力する。
 合波部21-m(m=1,・・・,M)は、注入部20-mによる校正用信号注入後の送信素子信号Tx’、即ち、周波数分割単位に分割されている送信素子信号Tx’を周波数方向に合波する。
 合波部21-mは、合波後の送信素子信号Tx”を送信機22-mに出力する。
The transmission extraction unit 19-m (m = 1, ..., M) outputs the transmission element signal Tx m output from the transmission DBF unit 18 to the injection unit 20-m and the transmission power calculation unit 33, respectively. ..
When the injection unit 20-m (m = 1, ..., M) receives the transmission element signal Tx m from the transmission extraction unit 19-m, it is output to the transmission element signal Tx m from the calibration signal generation unit 35. The calibration signal Sm is injected.
Injection unit 20-m outputs the transmission element signal Tx m after calibration signal injection 'to the multiplexing unit 21-m.
Multiplexing section 21-m (m = 1, ···, M) is transmitting element signal Tx m after calibration signal injection by injecting section 20-m ', i.e., transmission elements are divided into frequency division unit multiplexing the signal Tx m 'in the frequency direction.
The combiner 21-m outputs the transmission element signal Tx m "after the combiner to the transmitter 22-m.
 送信機22-mは、合波部21-mから合波後の送信素子信号Tx”を受けると、送信素子信号Tx”に対する送信処理を実施し、送信処理後の信号Tを送信素子アンテナ23-mに出力する。
 送信素子アンテナ23-m(m=1,・・・,M)は、送信機22-mによる送信処理後の信号Tに係る電波を空間に放射する。
When the transmitter 22-m receives the transmitted element signal Tx m "after the combined wave from the combining unit 21-m, the transmitter 22-m executes a transmission process for the transmitting element signal Tx m " and transmits the signal T m after the transmission process. Output to the element antenna 23-m.
The transmitting element antenna 23-m (m = 1, ..., M) radiates radio waves related to the signal T m after transmission processing by the transmitter 22-m into space.
 次に、校正装置2の動作について説明する。
 図4は、信号重畳部31及び校正部39におけるそれぞれの処理手順を示すフローチャートである。
 第1のアンテナ36は、複数の送信素子アンテナ23-1~23-Mのそれぞれから放射された電波を受信すると、当該電波の受信信号を周波数変換部37に出力する。
Next, the operation of the calibration device 2 will be described.
FIG. 4 is a flowchart showing each processing procedure in the signal superimposing unit 31 and the calibration unit 39.
When the first antenna 36 receives the radio waves radiated from each of the plurality of transmitting element antennas 23-1 to 23-M, the first antenna 36 outputs the received signal of the radio waves to the frequency conversion unit 37.
 周波数変換部37は、第1のアンテナ36から出力された受信信号の周波数を、中継器1の受信機12-1~12-Mが受信可能な周波数に変換する。
 例えば、第1のアンテナ36から出力された受信信号の周波数帯域が、f~fであり、受信機12-1~12-Mが受信可能な周波数帯域が、f~fであるとする。
 このとき、例えば、f<f<f<fであれば、第2のアンテナ38が、第1のアンテナ36から出力された受信信号に係る電波を受信素子アンテナ11-k(k=1,・・・,K)に向けて放射しても、受信機12-kが、受信素子アンテナ11-kから出力された受信素子信号Rに対する受信処理を実施することができない。
 そこで、周波数変換部37は、f~fを周波数変換した後の周波数f’~f ’が、例えば、f<f’<f’<fとなるように、第1のアンテナ36から出力された受信信号の周波数を変換する。
 周波数変換部37は、周波数変換後の信号を第2のアンテナ38に出力する。
 第2のアンテナ38は、周波数変換部37による周波数変換後の信号に係る電波を複数の受信素子アンテナ11-1~11-Kのそれぞれに向けて放射する。
The frequency conversion unit 37 converts the frequency of the received signal output from the first antenna 36 into a frequency that can be received by the receivers 12-1 to 12-M of the repeater 1.
For example, the frequency band of the received signal output from the first antenna 36 is a f a ~ f b, a frequency band which can be received receivers 12-1 ~ 12-M is found is f c ~ f d And.
At this time, for example, if fa <f b <f c <f d , the second antenna 38 receives the radio wave related to the received signal output from the first antenna 36 with the receiving element antenna 11-k (k). = 1, ..., be radiated toward the K), the receiver 12-k is unable to carry out the reception processing for the received element signal R k output from the receiving antenna elements 11-k.
Therefore, the frequency converter 37, as f a ~ f b frequency after frequency conversion of the f a '~ f b', for example, the f c <f a '<f b'<f d, the The frequency of the received signal output from the antenna 36 of 1 is converted.
The frequency conversion unit 37 outputs the frequency-converted signal to the second antenna 38.
The second antenna 38 radiates radio waves related to the frequency-converted signal by the frequency conversion unit 37 toward each of the plurality of receiving element antennas 11-1 to 11-K.
 受信電力算出部32は、受信抽出部15-1~15-Kから分波後の信号Rf~Rfを受けると、それぞれの分波後の信号Rf(k=1,・・・,K)に含まれている複数の周波数成分の電力Prをそれぞれ算出する(図4のステップST1)。
 例えば、受信処理後の信号Rの周波数帯域がf~f10であるとき、周波数分割単位が当該周波数帯域の10分の1であれば、周波数分割単位の周波数は、f,f,・・・,f10である。周波数分割単位の周波数が、f,f,・・・,f10であれば、受信電力算出部32は、分波後の信号Rfに含まれている複数の周波数成分の電力Prとして、周波数fの周波数成分の電力Prと、周波数fの周波数成分の電力Prと、・・・周波数f10の周波数成分の電力Pr10とを算出する。
 受信電力算出部32は、複数の周波数成分の電力Prを示す受信電力情報IPrを未使用周波数検出部34に出力する。
When the reception power calculation unit 32 receives the demultiplexed signals Rf 1 to Rf K from the reception extraction units 15-1 to 15-K, the demultiplexed signals Rf k (k = 1, ..., ..., The power Pr f of the plurality of frequency components included in K) is calculated, respectively (step ST1 in FIG. 4).
For example, when the frequency band of the signal R k after the reception processing is f 1 to f 10 , and the frequency division unit is 1/10 of the frequency band, the frequency of the frequency division unit is f 1 , f 2. ,..., it is f 10. If the frequency of the frequency division unit is f 1 , f 2 , ..., F 10 , the received power calculation unit 32 uses the power Pr f of a plurality of frequency components included in the signal Rf k after demultiplexing. as calculates the power Pr 1 frequency component of the frequency f 1, a power Pr 2 frequency components of the frequency f 2, a power Pr 10 frequency components ... frequency f 10.
The received power calculation unit 32 outputs the received power information IPr f indicating the power Pr f of a plurality of frequency components to the unused frequency detection unit 34.
 送信電力算出部33は、送信抽出部19-1~19-Mから送信素子信号Tx~Txを受けると、それぞれの送信素子信号Tx(m=1,・・・,M)に含まれている複数の周波数成分の電力Ptをそれぞれ算出する(図4のステップST2)。
 例えば、送信素子信号Txの周波数帯域がf~f12であるとき、周波数分割単位が当該周波数帯域の10分の1であれば、周波数分割単位の周波数は、f,f,・・・,f12である。周波数分割単位の周波数が、f,f,・・・,f12であれば、送信電力算出部33は、送信素子信号Txに含まれている複数の周波数成分の電力Ptとして、周波数fの周波数成分の電力Ptと、周波数fの周波数成分の電力Ptと、・・・周波数f12の周波数成分の電力Pt12とを算出する。
 送信電力算出部33は、複数の周波数成分の電力Ptを示す送信電力情報IPtを未使用周波数検出部34に出力する。
When the transmission power calculation unit 33 receives the transmission element signals Tx 1 to Tx M from the transmission extraction units 19-1 to 19-M, the transmission power calculation unit 33 is included in the respective transmission element signals Tx m (m = 1, ..., M). The powers Pt f of the plurality of frequency components are calculated respectively (step ST2 in FIG. 4).
For example, when the frequency band of the transmitting element signal Tx m is f 3 to f 12 , and the frequency division unit is one tenth of the frequency band, the frequency of the frequency division unit is f 3 , f 4 , ... ..., it is f 12. If the frequency of the frequency division unit is f 3 , f 4 , ..., F 12 , the transmission power calculation unit 33 sets the power Pt f of a plurality of frequency components included in the transmission element signal Tx m as the power Pt f. calculating the power Pt 3 frequency component of the frequency f 3, the power Pt 4 frequency component of the frequency f 4, the frequency component of ... frequency f 12 and a power Pt 12.
The transmission power calculation unit 33 outputs the transmission power information IPt f indicating the power Pt f of a plurality of frequency components to the unused frequency detection unit 34.
 未使用周波数検出部34は、受信電力算出部32から出力された受信電力情報IPrと、送信電力算出部33から出力された送信電力情報IPtとを取得する。
 未使用周波数検出部34は、受信電力情報IPrが示す複数の周波数成分の電力Prと、送信電力情報IPtが示す複数の周波数成分の電力Ptとから、共通している周波数の中で、中継器1が未使用の周波数を検出する(図4のステップST3)。
 共通している周波数は、送信機22-1~22-Mが送信可能な複数の周波数のうち、受信機12-1~12-Kが受信可能な周波数と共通している周波数である。
 以下、未使用周波数検出部34による未使用周波数の検出処理を具体的に説明する。
The unused frequency detection unit 34 acquires the received power information IPr f output from the received power calculation unit 32 and the transmission power information IPt f output from the transmission power calculation unit 33.
The unused frequency detection unit 34 is among common frequencies from the power Pr f of a plurality of frequency components indicated by the received power information IPr f and the power Pt f of the plurality of frequency components indicated by the transmission power information IPt f. Then, the repeater 1 detects an unused frequency (step ST3 in FIG. 4).
The common frequency is a frequency common to the frequencies that can be received by the receivers 12-1 to 12-K among the plurality of frequencies that can be transmitted by the transmitters 22-1 to 22-M.
Hereinafter, the unused frequency detection process by the unused frequency detection unit 34 will be specifically described.
 送信機22-1~22-Mが送信可能な複数の周波数が、例えば、f,f,f,f,f,f,f,f,f,f10であり、受信機12-1~12-Kが受信可能な複数の周波数が、例えば、f,f,f,f,f,f,f,f10,f11,f12であるとする。この場合、共通している周波数は、f,f,f,f,f,f,f,f10である。
 未使用周波数検出部34は、受信電力情報IPrが示す複数の周波数成分の電力Pr(f=3,4,5,6,7,8,9,10)と閾値Thとを比較する。
 また、未使用周波数検出部34は、送信電力情報IPtが示す複数の周波数成分の電力Pt(f=3,4,5,6,7,8,9,10)と閾値Thとを比較する。閾値Thは、未使用周波数検出部34の内部メモリに格納されていてもよいし、未使用周波数検出部34の外部から与えられるものであってもよい。
Multiple frequencies that the transmitters 22-1 to 22-M can transmit are, for example, f 1 , f 2 , f 3 , f 4 , f 5 , f 6 , f 7 , f 8 , f 9 , and f 10 . There are multiple frequencies that the receivers 12-1 to 12-K can receive, for example, f 3 , f 4 , f 5 , f 6 , f 7 , f 8 , f 9 , f 10 , f 11 , f. It is assumed that it is 12. In this case, the common frequencies are f 3 , f 4 , f 5 , f 6 , f 7 , f 8 , f 9 , and f 10 .
The unused frequency detection unit 34 compares the power Pr f (f = 3,4,5,6,7,8,9,10) of a plurality of frequency components indicated by the received power information IPr f with the threshold value Th.
Further, the unused frequency detection unit 34 compares the power Pt f (f = 3,4,5,6,7,8,9,10) of a plurality of frequency components indicated by the transmission power information IPt f with the threshold value Th. To do. The threshold value Th may be stored in the internal memory of the unused frequency detection unit 34, or may be given from the outside of the unused frequency detection unit 34.
 未使用周波数検出部34は、複数の周波数成分の電力Pr(f=3,4,5,6,7,8,9,10)の中で、閾値Thよりも小さい電力Prを検出する。
 未使用周波数検出部34は、例えば、Pr<Th、Pr<Th、Pr<Thであり、Pr≧Th、Pr≧Th、Pr≧Th、Pr≧Th、Pr10≧Thであれば、閾値Thよりも小さい電力Prとして、電力Pr3,Pr6,Prを検出する。
Unused frequency detector 34 in a plurality of frequency component power Pr f (f = 3,4,5,6,7,8,9,10), for detecting a small power Pr f than the threshold value Th ..
The unused frequency detection unit 34 is, for example, Pr 3 <Th, Pr 6 <Th, Pr 7 <Th, Pr 4 ≧ Th, Pr 5 ≧ Th, Pr 8 ≧ Th, Pr 9 ≧ Th, Pr 10 ≧ If Th, the powers Pr 3, Pr 6, and Pr 7 are detected as the power Pr f smaller than the threshold value Th.
 また、未使用周波数検出部34は、複数の周波数成分の電力Pt(f=3,4,5,6,7,8,9,10)の中で、閾値Thよりも小さい電力Ptを検出する。
 未使用周波数検出部34は、例えば、Pt<Th、Pt<Th、Pt<Thであり、Pt≧Th、Pt≧Th、Pt≧Th、Pt≧Th、Pt10≧Thであれば、閾値Thよりも小さい電力Ptとして、電力Pt3,Pt4,Ptを検出する。
Moreover, the unused frequency detector 34 in a plurality of frequency component power Pt f (f = 3,4,5,6,7,8,9,10), a small power Pt f than the threshold value Th To detect.
The unused frequency detection unit 34 is, for example, Pt 3 <Th, Pt 4 <Th, Pt 6 <Th, Pt 5 ≧ Th, Pt 7 ≧ Th, Pt 8 ≧ Th, Pt 9 ≧ Th, Pt 10 ≧. If Th, the powers Pt 3, Pt 4, and Pt 6 are detected as the power Pt f smaller than the threshold value Th.
 未使用周波数検出部34により検出された電力Pr3,Pr6,Prのそれぞれの周波数は、f,f,fである。
 また、未使用周波数検出部34により検出された電力Pt3,Pt4,Ptのそれぞれの周波数は、f,f,fである。
 未使用周波数検出部34は、電力Pr3,Pr6,Prのそれぞれの周波数f,f,fの中で、電力Pt3,Pt4,Ptのそれぞれの周波数f,f,fと共通している周波数を検出する。
 この場合、未使用周波数検出部34は、共通している周波数として、周波数fと周波数fとを検出し、周波数f,fが未使用周波数であると判定する。
The frequencies of the electric powers Pr 3, Pr 6, and Pr 7 detected by the unused frequency detection unit 34 are f 3 , f 6 , and f 7 .
The frequencies of the electric powers Pt 3, Pt 4, and Pt 6 detected by the unused frequency detection unit 34 are f 3 , f 4 , and f 6 .
Unused frequency detector 34, a power Pr 3, Pr 6, in each of the frequency f 3, f 6, f 7 of Pr 7, power Pt 3, Pt 4, each of the frequency f 3 of Pt 6, f 4, detects a frequency that is common to f 6.
In this case, the unused frequency detection unit 34 detects the frequency f 3 and the frequency f 6 as common frequencies, and determines that the frequencies f 3 and f 6 are unused frequencies.
 校正用信号生成部35は、未使用周波数検出部34が、未使用周波数として、例えば、周波数fと周波数fとを検出すると、周波数fを有する校正用信号S(m=1,・・・,M)、又は、周波数fを有する校正用信号Sを生成する(図4のステップST4)。
 校正用信号生成部35は、生成した校正用信号Sを注入部20-1~20-Mのそれぞれに出力することにより、複数の送信素子アンテナ23-1~23-Mのそれぞれから送信される信号に校正用信号Sを重畳させる(図4のステップST5)。
 注入部20-1~20-Mのそれぞれは、校正用信号生成部35から出力された校正用信号Sの周波数が、例えば周波数fであれば、周波数分割単位に分割されている送信素子信号Tx、即ち、周波数がfの信号と、周波数がfの信号と、・・・周波数がf10の信号との集合である送信素子信号Txのうち、周波数がfの信号に、校正用信号Sを注入する。
Calibration signal generator 35, the unused frequency detection unit 34, as an unused frequency, e.g., upon detecting a frequency f 3 and the frequency f 6, calibration signal S m (m = 1 having a frequency f 3, · · ·, M), or to generate a calibration signal S m having a frequency f 6 (step ST4 in FIG. 4).
Calibration signal generator 35, by outputting the generated calibration signal S m to each of the injection section 20-1 ~ 20-M, are transmitted from each of the plurality of transmit antenna elements 23-1 ~ 23-M The calibration signal S is superimposed on the signal (step ST5 in FIG. 4).
Each injecting section 20-1 ~ 20-M, the frequency of the calibration signal S m output from the calibration signal generation unit 35, for example, if the frequency f 3, transmission elements are divided into frequency division unit Signal Tx m , that is, a signal having a frequency of f 3 among transmission element signals Tx m , which is a set of a signal having a frequency of f 1, a signal having a frequency of f 2 , and ... a signal having a frequency of f 10. to, injecting the calibration signal S m.
 校正部39は、受信素子アンテナ11-1~11-Kにおけるそれぞれの特性を校正し、送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正する(図4のステップST6)。
 以下、校正部39による特性の校正処理を具体的に説明する。
The calibration unit 39 calibrates the respective characteristics of the receiving element antennas 11-1 to 11-K and calibrates the respective characteristics of the transmitting element antennas 23-1 to 23-M (step ST6 in FIG. 4).
Hereinafter, the characteristic calibration process by the calibration unit 39 will be specifically described.
 図5は、図1に示す中継装置における各部の特性を示す説明図である。
 図5に示すように、合波部21-mから送信素子アンテナ23-mに至る通過特性がPCt、送信素子アンテナ23-mから第1のアンテナ36への結合特性がBCtであるとする。
 また、第1のアンテナ36から第2のアンテナ38に至る通過特性がPCaであるとする。
 また、第2のアンテナ38から受信素子アンテナ11-kへの結合特性がBCr、受信素子アンテナ11-kから分波部14-kに至る通過特性がPCrであるとする。
 結合特性BCt及び結合特性BCrのそれぞれは、事前に測定されており、例えば、校正部39の内部メモリに格納されている。ただし、これは一例に過ぎず、結合特性BCt及び結合特性BCrのそれぞれは、校正部39の外部から与えられるものであってもよい。
FIG. 5 is an explanatory diagram showing the characteristics of each part in the relay device shown in FIG.
As shown in FIG. 5, passage characteristics leading to transmitting antenna elements 23-m from the multiplexing unit 21-m is PCt m, the binding characteristics of the transmitting antenna elements 23-m to the first antenna 36 is a BCT m To do.
Further, it is assumed that the passing characteristic from the first antenna 36 to the second antenna 38 is PCa.
The binding characteristics of the receiving antenna elements 11-k from the second antenna 38 is BCr k, passing characteristic leading from the receiving antenna elements 11-k to the demultiplexing unit 14-k is assumed to be PCr k.
Each binding characteristics BCT m and binding properties BCr k, are determined in advance, for example, are stored in the internal memory of the calibration unit 39. However, this is only an example, each of the binding characteristics BCT m and binding properties BCr k, or may be given from the outside of the calibration unit 39.
 注入部20-m(m=1,・・・,M)によって、送信素子信号Txに注入される校正用信号がS(t)であるとすると、送信機22-mから送信素子アンテナ23-mに出力される信号Tに含まれる校正信号は、PCt×S(t)のように表される。tは、時間を示す変数である。
 送信素子アンテナ23-mから放射された電波は、第1のアンテナ36に受信される。第1のアンテナ36により電波が受信されたのち、第2のアンテナ38に入力される信号がg(t)であるとすると、信号g(t)は、以下の式(1)のように表される。

Figure JPOXMLDOC01-appb-I000005
Assuming that the calibration signal injected into the transmitter signal Tx m by the injection unit 20-m (m = 1, ..., M) is S m (t), the transmitter antenna from the transmitter 22-m. The calibration signal included in the signal T m output to 23-m is represented as PCt m × S m (t). t is a variable indicating time.
The radio wave radiated from the transmitting element antenna 23-m is received by the first antenna 36. Assuming that the signal input to the second antenna 38 after the radio wave is received by the first antenna 36 is g (t), the signal g (t) is expressed by the following equation (1). Will be done.

Figure JPOXMLDOC01-appb-I000005
 第2のアンテナ38から放射された電波は、受信素子アンテナ11-kに受信される。受信素子アンテナ11-kにより電波が受信されたのち、分波部14-kによる分波後の信号Rf(t)は、以下の式(2)のように表される。

Figure JPOXMLDOC01-appb-I000006
The radio wave radiated from the second antenna 38 is received by the receiving element antenna 11-k. The signal Rf k (t) after the radio wave is received by the receiving element antenna 11-k and then demultiplexed by the demultiplexing unit 14-k is expressed by the following equation (2).

Figure JPOXMLDOC01-appb-I000006
 校正部39による送信素子アンテナ23-m(m=1,・・・,M)の特性の校正処理は、以下の通りである。
 合波部21-mから送信素子アンテナ23-mに至る通過特性PCt~PCtの相対関係を把握できれば、送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正することができる。
 式(2)に示すように、第k番目の分波部14-kによる分波後の信号Rf(t)は、M個の校正信号S(t)の全てを含んでいる。
 校正部39は、分波部14-kによる分波後の信号Rf(t)から校正信号Vk,mを抽出する。校正信号Vk,mは、分波後の信号Rf(t)に含まれている信号であり、校正信号S(t)は、送信素子信号Txに含まれている信号である。
 校正信号Vk,mは、公知の素子電界ベクトル回転法(REV法:Rotating element Electric field Vector method)を用いて、抽出することが可能である。
 また、M個の校正信号S(t)~S(t)のうち、第m番目の校正信号S(t)と、第m番目以外の校正信号S(t)(h≠m)とが直交していれば、校正信号S(t)と校正信号S(t)とを乗算し、校正信号S(t)と校正信号S(t)との乗算結果を積分することで、校正信号Vk,m(t)を抽出することができる。
 校正信号S(t)と校正信号S(t)との直交条件は、以下の式(3)のように表される。

Figure JPOXMLDOC01-appb-I000007
The calibration process of the characteristics of the transmitting element antenna 23-m (m = 1, ..., M) by the calibration unit 39 is as follows.
If the relative relationship between the passing characteristics PCt 1 to PCt M from the wave combining portion 21-m to the transmitting element antenna 23-m can be grasped, the respective characteristics of the transmitting element antennas 23-1 to 23-M can be calibrated.
As shown in the equation (2), the signal Rf k (t) after the demultiplexing by the kth demultiplexing unit 14-k includes all of the M calibration signals S m (t).
The calibration unit 39 extracts the calibration signals V k, m from the signal Rf k (t) after the demultiplexing by the demultiplexing unit 14-k. The calibration signals V k and m are signals included in the signal Rf k (t) after demultiplexing, and the calibration signal S m (t) is a signal included in the transmission element signal Tx m.
The calibration signals V k and m can be extracted by using a known element electric field vector rotation method (REV method: Rotating element Electrical Vector method).
Further, among the M calibration signals S 1 (t) to SM (t), the m-th calibration signal S m (t) and the calibration signals other than the m-th calibration signal S h (t) (h ≠ m). ) Are orthogonal to each other, the calibration signal S m (t) and the calibration signal S h (t) are multiplied, and the multiplication result of the calibration signal S m (t) and the calibration signal S h (t) is integrated. By doing so, the calibration signal V k, m (t) can be extracted.
The orthogonal condition between the calibration signal S m (t) and the calibration signal S h (t) is expressed by the following equation (3).

Figure JPOXMLDOC01-appb-I000007
 M個の分波後の信号Rf(t)~Rf(t)のうち、第1番目の信号Rf(t)と第2番目の信号Rf(t)とに着目すると、第1番目の信号Rf(t)に含まれている校正信号Vk,1及び第2番目の信号Rf(t)に含まれている校正信号Vk,2のそれぞれは、以下の式(4)(5)のように表される。また、第m(m=3,・・・,M)番目の信号Rf(t)に含まれている校正信号Vk,mは、以下の式(6)のように表される。

Figure JPOXMLDOC01-appb-I000008
Of the M signals Rf 1 (t) to Rf M (t) after demultiplexing, the first signal Rf 1 (t) and the second signal Rf 2 (t) are the first. calibration signal V k, which is included in th signal Rf 1 (t) 1 and each of the calibration signals V k, 2 contained in the second signal Rf 1 (t), the following equation (4 ) (5). Further, the calibration signals V k and m included in the m (m = 3, ..., M) th signal Rf m (t) are expressed by the following equation (6).

Figure JPOXMLDOC01-appb-I000008
 送信素子アンテナ23-1~23-Mのうち、第1番目の送信素子アンテナ23-1を基準とすると、送信素子アンテナ23-1に対する送信素子アンテナ23-2の特性のばらつきは、以下の式(7)のように表される。
 また、送信素子アンテナ23-1に対する送信素子アンテナ23-m(m=3,・・・,M)の特性のばらつきは、以下の式(8)のように表される。

Figure JPOXMLDOC01-appb-I000009
With reference to the first transmitting element antenna 23-1 of the transmitting element antennas 23-1 to 23-M, the variation in the characteristics of the transmitting element antenna 23-2 with respect to the transmitting element antenna 23-1 is as follows. It is expressed as (7).
Further, the variation in the characteristics of the transmitting element antenna 23-m (m = 3, ..., M) with respect to the transmitting element antenna 23-1 is expressed by the following equation (8).

Figure JPOXMLDOC01-appb-I000009
 校正部39において、結合特性BCt、結合特性BCt及び結合特性BCtのそれぞれは、既値であるため、式(7)及び式(8)より、通過特性PCt~PCtの相対関係を把握することができる。
 そこで、校正部39は、第1番目の送信素子アンテナ23-1を基準として、以下の式(9)に示すように、送信素子アンテナ23-2の特性を校正するための校正値CVtを算出する。

Figure JPOXMLDOC01-appb-I000010
In the calibration unit 39, the coupling characteristics BCt 1 , the coupling characteristics BCt 2, and the coupling characteristics BCt m are already values, so from the equations (7) and (8), the relative relationship between the passing characteristics PCt 1 to PCt M Can be grasped.
Therefore, the calibration unit 39 sets a calibration value CVt 2 for calibrating the characteristics of the transmission element antenna 23-2 as shown in the following equation (9) with reference to the first transmission element antenna 23-1. calculate.

Figure JPOXMLDOC01-appb-I000010
 また、校正部39は、第1番目の送信素子アンテナ23-1を基準として、以下の式(10)に示すように、送信素子アンテナ23-m(m=3,・・・,M)の特性を校正するための校正値CVtを算出する。

Figure JPOXMLDOC01-appb-I000011
Further, the calibration unit 39 uses the first transmitting element antenna 23-1 as a reference, and as shown in the following equation (10), the calibration unit 39 of the transmitting element antenna 23-m (m = 3, ..., M). Calculate the calibration value CVt m for calibrating the characteristics.

Figure JPOXMLDOC01-appb-I000011
 第1番目の送信素子アンテナ23-1を基準とする場合、送信素子アンテナ23-1の特性を校正するための校正値CVtは、1である。
 校正部39は、校正値CVt(m=1,・・・,M)を送信DBF部18に出力することにより、送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正する。
When the first transmitting element antenna 23-1 is used as a reference, the calibration value CVt 1 for calibrating the characteristics of the transmitting element antenna 23-1 is 1.
The calibration unit 39 calibrates the respective characteristics of the transmission element antennas 23-1 to 23-M by outputting the calibration value CVt m (m = 1, ..., M) to the transmission DBF unit 18.
 校正部39による受信素子アンテナ11-k(k=1,・・・,K)の特性の校正処理は、以下の通りである。
 受信素子アンテナ11-kから分波部14-kに至る通過特性がPCr~PCrの相対関係を把握できれば、受信素子アンテナ11-1~11-Kにおけるそれぞれの特性を校正することができる。
The calibration process of the characteristics of the receiving element antenna 11-k (k = 1, ..., K) by the calibration unit 39 is as follows.
If the passage characteristics from the receiving element antenna 11-k to the demultiplexing portion 14-k can grasp the relative relationship between PCr 1 to PCr K , the respective characteristics of the receiving element antennas 11-1 to 11-K can be calibrated. ..
 受信素子アンテナ11-1~11-Kのうち、第1番目の受信素子アンテナ11-1を基準とすると、受信素子アンテナ11-1に対する受信素子アンテナ11-2の特性のばらつきは、以下の式(11)のように表される。
 また、受信素子アンテナ11-1に対する受信素子アンテナ11-k(k=3,・・・,K)の特性のばらつきは、以下の式(12)のように表される。

Figure JPOXMLDOC01-appb-I000012
With reference to the first receiving element antenna 11-1 among the receiving element antennas 11-1 to 11-K, the variation in the characteristics of the receiving element antenna 11-2 with respect to the receiving element antenna 11-1 is as follows. It is expressed as (11).
Further, the variation in the characteristics of the receiving element antenna 11-k (k = 3, ..., K) with respect to the receiving element antenna 11-1 is expressed by the following equation (12).

Figure JPOXMLDOC01-appb-I000012
 校正部39において、結合特性BCr、結合特性BCr及び結合特性BCrのそれぞれは、既値であるため、式(11)及び式(12)より、通過特性PCr~PCrの相対関係を把握することができる。
 そこで、校正部39は、第1番目の受信素子アンテナ11-1を基準として、以下の式(13)に示すように、受信素子アンテナ11-2の特性を校正するための校正値CVrを算出する。

Figure JPOXMLDOC01-appb-I000013
In the calibration unit 39, the coupling characteristic BCr 1 , the coupling characteristic BCr 2, and the coupling characteristic BCr m are already values, and therefore, from the equations (11) and (12), the relative relationship between the passing characteristics PCr 1 to PCr K. Can be grasped.
Therefore, the calibration unit 39 sets the calibration value CVr 2 for calibrating the characteristics of the receiving element antenna 11-2 as shown in the following equation (13) with reference to the first receiving element antenna 11-1. calculate.

Figure JPOXMLDOC01-appb-I000013
 また、校正部39は、第1番目の受信素子アンテナ11-1を基準として、以下の式(14)に示すように、受信素子アンテナ11-k(k=3,・・・,K)の特性を校正するための校正値CVrを算出する。

Figure JPOXMLDOC01-appb-I000014
Further, the calibration unit 39 of the receiving element antenna 11-k (k = 3, ..., K) with reference to the first receiving element antenna 11-1 as shown in the following equation (14). Calculate the calibration value CVr k for calibrating the characteristics.

Figure JPOXMLDOC01-appb-I000014
 第1番目の受信素子アンテナ11-1を基準とする場合、受信素子アンテナ11-1の特性を校正するための校正値CVrは、1である。
 校正部39は、校正値CVr(k=1,・・・,K)を受信DBF部16に出力することにより、受信素子アンテナ11-1~11-Kにおけるそれぞれの特性を校正する。
When the first receiving element antenna 11-1 is used as a reference, the calibration value CVr 1 for calibrating the characteristics of the receiving element antenna 11-1 is 1.
The calibration unit 39 calibrates the respective characteristics of the receiving element antennas 11-1 to 11-K by outputting the calibration value CVr k (k = 1, ..., K) to the receiving DBF unit 16.
 以上の実施の形態1では、中継器1が有している複数の送信素子アンテナ23-1~23-Mのそれぞれから放射された送信信号に係る電波を受信し、電波の受信信号を出力する第1のアンテナ36と、第1のアンテナ36から出力された受信信号に係る電波を中継器1が有している複数の受信素子アンテナ11-1~11-Kに向けて放射する第2のアンテナ38とを備えるように、校正装置2を構成した。また、校正装置2が、中継器1が電波の送信周波数に用いることが可能な複数の周波数のうち、中継器1が電波の受信周波数に用いることが可能な周波数と共通している周波数の中で、中継器1が未使用の周波数を検出して、未使用の周波数を有する校正用信号を生成し、複数の送信素子アンテナ23-1~23-Mのそれぞれに与えられる送信信号に校正用信号を重畳させる信号重畳部31と、複数の受信素子アンテナ11-1~11-Kのそれぞれにより受信された電波の受信信号を用いて、複数の受信素子アンテナ11-1~11-Kにおけるそれぞれの特性を校正し、複数の受信素子アンテナ11-1~11-Kのそれぞれにより受信された電波の受信信号に含まれている校正信号を用いて、複数の送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正する校正部39とを備えるように構成した。したがって、校正装置2は、複数の受信素子アンテナ11-1~11-Kにおけるそれぞれの特性及び複数の送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正することができる。 In the above-described first embodiment, the radio wave related to the transmission signal radiated from each of the plurality of transmitting element antennas 23-1 to 23-M included in the repeater 1 is received, and the reception signal of the radio wave is output. A second antenna 36 and a second radio wave related to a reception signal output from the first antenna 36 are radiated toward a plurality of receiving element antennas 11-1 to 11-K included in the repeater 1. The calibration device 2 was configured to include the antenna 38. Further, among a plurality of frequencies that the repeater 1 can use for the radio wave transmission frequency, the calibration device 2 has a frequency that is common to the frequency that the repeater 1 can use for the radio wave reception frequency. Then, the repeater 1 detects an unused frequency, generates a calibration signal having an unused frequency, and calibrates the transmission signal given to each of the plurality of transmission element antennas 23-1 to 23-M. Using the signal superimposing unit 31 for superimposing the signals and the received signals of the radio waves received by each of the plurality of receiving element antennas 11-1 to 11-K, each of the plurality of receiving element antennas 11-1 to 11-K. The characteristics of the above are calibrated, and the calibration signals included in the received signals of the radio waves received by each of the plurality of receiving element antennas 11-1 to 11-K are used to calibrate the characteristics of the plurality of transmitting element antennas 23-1 to 23-. It is configured to include a calibration unit 39 for calibrating each characteristic of the M. Therefore, the calibration device 2 can calibrate the respective characteristics of the plurality of receiving element antennas 11-1 to 11-K and the respective characteristics of the plurality of transmitting element antennas 23-1 to 23-M.
 図1に示す中継装置では、受信DBF部16が、振幅位相調整後の受信分波信号Rfk,j’に、受信素子アンテナ11-kの重み値Wrk,jを乗算している。
 振幅位相調整後の受信分波信号Rfk,j’のうち、校正用信号生成部35から出力された校正用信号Sの周波数と同じ周波数の信号に乗算する重み値Wrk,jについては、0としてもよい。当該重み値Wrk,jを0とすることで、受信素子アンテナ11-k(k=1,・・・,K)の受信信号に含まれている校正用信号が、送信素子アンテナ23-m(m=1,・・・,M)から再び放射されるのを防ぐことができる。
In the relay device shown in FIG. 1, the receiving DBF unit 16 multiplies the received demultiplexing signals Rf k, j'after the amplitude phase adjustment by the weight values Wr k, j of the receiving element antenna 11-k.
Receiving and demultiplexing signals Rf k after amplitude and phase adjusting, among the j ', the weight value Wr k to be multiplied by the signal of the same frequency as the frequency of the calibration signal S m output from the calibration signal generation unit 35, for j is , 0 may be set. By setting the weight values Wr k and j to 0, the calibration signal included in the received signal of the receiving element antenna 11-k (k = 1, ..., K) becomes the transmitting element antenna 23-m. It is possible to prevent the radiation from (m = 1, ..., M) again.
 図1に示す校正装置2は、第1のアンテナ36、周波数変換部37及び第2のアンテナ38を備えている。図6に示すように、校正装置2が、さらに、可変アッテネータ40を備えるようにしてもよい。
 図6は、実施の形態1に係る他の校正装置2を含む中継装置を示す構成図である。図6において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 可変アッテネータ40は、周波数変換部37と第2のアンテナ38との間に設けられており、周波数変換部37による周波数変換後の信号を減衰し、減衰後の信号を第2のアンテナ38に出力する。
 図6に示す校正装置2では、可変アッテネータ40が、周波数変換部37と第2のアンテナ38との間に設けられている。しかし、これは一例に過ぎず、可変アッテネータ40が、第1のアンテナ36と周波数変換部37との間に設けられていてもよい。
 第2のアンテナ38から放射される電波の電力が大きいために、受信機12-k(k=1,・・・,K)が飽和してしまう可能性があるとき、可変アッテネータ40が、周波数変換後の信号を減衰することで、受信機12-kでの飽和を防ぐことができる。
The calibration device 2 shown in FIG. 1 includes a first antenna 36, a frequency conversion unit 37, and a second antenna 38. As shown in FIG. 6, the calibration device 2 may further include a variable attenuator 40.
FIG. 6 is a configuration diagram showing a relay device including another calibration device 2 according to the first embodiment. In FIG. 6, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The variable attenuator 40 is provided between the frequency conversion unit 37 and the second antenna 38, attenuates the signal after frequency conversion by the frequency conversion unit 37, and outputs the attenuated signal to the second antenna 38. To do.
In the calibration device 2 shown in FIG. 6, a variable attenuator 40 is provided between the frequency conversion unit 37 and the second antenna 38. However, this is only an example, and the variable attenuator 40 may be provided between the first antenna 36 and the frequency conversion unit 37.
When the receiver 12-k (k = 1, ..., K) may be saturated due to the high power of the radio wave radiated from the second antenna 38, the variable attenuator 40 has a frequency. By attenuating the converted signal, saturation at the receiver 12-k can be prevented.
 図1に示す中継装置では、受信電力算出部32が、受信抽出部15-k(k=1,・・・,K)から出力された分波後の信号Rfに含まれている複数の周波数成分の電力Prをそれぞれ算出している。
 また、図1に示す中継装置では、送信電力算出部33が、送信抽出部19-m(m=1,・・・,M)から出力された送信素子信号Txに含まれている複数の周波数成分の電力Ptをそれぞれ算出している。
 しかし、これは一例に過ぎず、図7に示すように、受信電力算出部63が、受信ビーム抽出部61-j(j=1,・・・,J)から出力された受信ビーム信号RBに含まれている複数の周波数成分の電力Prをそれぞれ算出するようにしてもよい。また、送信電力算出部64が、送信ビーム抽出部62-m(m=1,・・・,M)から出力された送信ビーム信号TBに含まれている複数の周波数成分の電力Ptをそれぞれ算出するようにしてもよい。
 図7は、実施の形態1に係る他の校正装置2を含む中継装置を示す構成図である。図7において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 受信ビーム抽出部61-j(j=1,・・・,J)は、受信DBF部16から出力された受信ビーム信号RBを、SW部17及び受信電力算出部63のそれぞれに出力する。
 送信ビーム抽出部62-m(m=1,・・・,M)は、SW部17から出力された送信ビーム信号TBを、送信DBF部18及び送信電力算出部64のそれぞれに出力する。
 図7に示す中継装置でも、図1に示す中継装置と同様に、複数の受信素子アンテナ11-1~11-Kにおけるそれぞれの特性及び複数の送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正することができる。
In the relay device shown in FIG. 1, the received power calculation unit 32 is included in a plurality of demultiplexed signals Rf k output from the reception extraction unit 15-k (k = 1, ..., K). The power Pr f of the frequency component is calculated respectively.
Further, in the relay device shown in FIG. 1, the transmission power calculation unit 33 is included in a plurality of transmission element signals Tx m output from the transmission extraction unit 19-m (m = 1, ..., M). The power Pt f of the frequency component is calculated respectively.
However, this is only an example, and as shown in FIG. 7, the received power calculation unit 63 receives the received beam signal RB j output from the received beam extraction unit 61-j (j = 1, ..., J). The power Pr f of a plurality of frequency components included in may be calculated respectively. Further, the transmission power calculation unit 64 calculates the power Pt f of a plurality of frequency components included in the transmission beam signal TB m output from the transmission beam extraction unit 62-m (m = 1, ..., M). Each may be calculated.
FIG. 7 is a configuration diagram showing a relay device including the other calibration device 2 according to the first embodiment. In FIG. 7, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The reception beam extraction unit 61-j (j = 1, ..., J) outputs the reception beam signal RB j output from the reception DBF unit 16 to the SW unit 17 and the reception power calculation unit 63, respectively.
The transmission beam extraction unit 62-m (m = 1, ..., M) outputs the transmission beam signal TB m output from the SW unit 17 to each of the transmission DBF unit 18 and the transmission power calculation unit 64.
In the relay device shown in FIG. 7, similarly to the relay device shown in FIG. 1, the characteristics of the plurality of receiving element antennas 11-1 to 11-K and the respective characteristics of the plurality of transmitting element antennas 23-1 to 23-M are also used. The characteristics can be calibrated.
 図1に示す中継装置では、周波数分割単位の周波数が、例えば、f,f,・・・,f10であるとき、未使用の周波数が、例えば、周波数fであれば、校正装置2が、周波数fの校正用信号を用いて、校正値CVr及び校正値CVtのそれぞれを算出している。
 そして、校正部39は、校正値CVrを用いて、受信素子アンテナ11-kの特性を校正し、校正値CVtを用いて、送信素子アンテナ23-mの特性を校正している。
 校正値CVr及び校正値CVtのそれぞれは、未使用の周波数fに係る校正値であるため、校正部39は、受信素子アンテナ11-kにおける周波数fに係る特性を精度よく校正することができる。また、校正部39は、送信素子アンテナ23-mにおける周波数fに係る特性を精度よく校正することができる。
 校正部39は、受信素子アンテナ11-kにおける周波数f以外の周波数に係る特性についても、校正値CVrを用いて校正している。また、校正部39は、送信素子アンテナ23-mにおける周波数f以外の周波数に係る特性についても、校正値CVtを用いて校正している。
 したがって、受信素子アンテナ11-kにおける周波数f以外の周波数に係る特性の校正は、周波数fに係る特性の校正よりも校正精度が低下する。また、送信素子アンテナ23-mにおける周波数f以外の周波数に係る特性の校正は、周波数fに係る特性の校正よりも校正精度が低下する。
 そこで、未使用の周波数が、例えば、周波数fと周波数fとであれば、校正用信号生成部35が、周波数fを有する校正用信号Sと、周波数fを有する校正用信号Sとを生成する。そして、校正用信号生成部35が、それぞれの校正用信号Sを順番に注入部20-1~20-Mのそれぞれに出力する。そして、校正部39が、周波数fについての校正値CVr及び校正値CVtのそれぞれを算出し、周波数fについての校正値CVr及び校正値CVtのそれぞれを算出する。
 周波数f,f以外の周波数についての校正値CVr及び校正値CVtのそれぞれは、校正部39が、周波数fについての校正値CVr及び校正値CVtのそれぞれと、周波数fについての校正値CVr及び校正値CVtのそれぞれとを用いる線形補間処理によって算出する。ここでは、校正部39が、線形補間処理によって算出するとしているが、これは一例に過ぎず、例えば、内挿処理、又は、外挿処理によって算出するものであってもよい。
 これにより、周波数分割単位の周波数の全てについて、校正値CVr及び校正値CVtのそれぞれが得られるので、受信素子アンテナ11-kにおける周波数f以外の周波数に係る特性の校正も、周波数fに係る特性の校正と概ね同様の校正精度が得られる。また、送信素子アンテナ23-mにおける周波数f以外の周波数に係る特性の校正も、周波数fに係る特性の校正と概ね同様の校正精度が得られる。
In the relay device shown in FIG. 1, when the frequency of the frequency division unit is, for example, f 1 , f 2 , ..., F 10 , and the unused frequency is, for example, frequency f 3 , the calibration device. 2, by using the calibration signal frequency f 3, and calculates the respective calibration values CVr k and calibration values CVT m.
Then, the calibration unit 39, by using the calibration value CVr k, to calibrate the characteristics of the receiving antenna elements 11-k, using the calibration value CVT m, are calibrated characteristics of transmission antenna elements 23-m.
Each of the calibration values CVr k and calibration values CVT m, since a calibration value according to the frequency f 3 of the unused calibration unit 39 calibrates accurately the characteristics according to the frequency f 3 in the receiving antenna elements 11-k be able to. Further, the calibration unit 39 can be calibrated accurately the characteristics according to the frequency f 3 in the transmission antenna elements 23-m.
Calibration unit 39, for the characteristics of the frequency other than the frequency f 3 in the receiving antenna elements 11-k, are calibrated using the calibration value CVr k. Further, the calibration unit 39, for the characteristics of the frequency other than the frequency f 3 in the transmission antenna elements 23-m, are calibrated using the calibration value CVT m.
Therefore, calibration of the characteristic according to a frequency other than the frequency f 3 in the receiving antenna elements 11-k, the calibration accuracy is lower than the calibration characteristics of the frequency f 3. Further, calibration of the characteristic according to a frequency other than the frequency f 3 in the transmission antenna elements 23-m, the calibration accuracy is lower than the calibration characteristics of the frequency f 3.
Therefore, if the unused frequencies are, for example, a frequency f 3 and a frequency f 6 , the calibration signal generation unit 35 has a calibration signal S m having a frequency f 3 and a calibration signal having a frequency f 6. Generate S m and. Then, the calibration signal generation unit 35 outputs each of the calibration signal S m to each of the injection section 20-1 ~ 20-M in order. Then, the calibration unit 39 calculates a respective calibration value CVr k and calibration values CVT m for frequencies f 3, and calculates the respective calibration values CVr k and calibration values CVT m for frequencies f 6.
For the calibration values CVr k and the calibration value CVt m for frequencies other than the frequencies f 3 and f 6 , the calibration unit 39 has the calibration values CV r k and the calibration value CV t m for the frequency f 3 and the frequency f 6 respectively. calculated by linear interpolation using the respective calibration values CVr k and calibration values CVT m for. Here, the calibration unit 39 calculates by linear interpolation processing, but this is only an example, and may be calculated by, for example, interpolation processing or extrapolation processing.
Thus, for all frequencies of the frequency division units, since each of the calibration values CVr k and calibration values CVT m is obtained, also the calibration of the characteristic according to a frequency other than the frequency f 3 in the receiving antenna elements 11-k, the frequency f A calibration accuracy substantially similar to that of the calibration of the characteristics according to No. 3 can be obtained. Further, calibration of the characteristic according to a frequency other than the frequency f 3 in the transmission antenna elements 23-m is also substantially the same calibration accuracy and calibration characteristics of the frequency f 3 is obtained.
実施の形態2.
 実施の形態2では、信号重畳部31が、周波数情報取得部71及び校正用信号生成部72を備える校正装置について説明する。
Embodiment 2.
In the second embodiment, the calibration device in which the signal superimposing unit 31 includes the frequency information acquisition unit 71 and the calibration signal generation unit 72 will be described.
 図8は、実施の形態2に係る校正装置2を含む中継装置を示す構成図である。図8において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 図9は、実施の形態2に係る校正装置2の信号重畳部31及び校正部39におけるそれぞれのハードウェアを示すハードウェア構成図である。
 周波数情報取得部71は、例えば、図9に示す周波数情報取得回路46によって実現される。
 周波数情報取得部71は、中継器1が電波の送信周波数に用いることが可能な複数の周波数のうち、中継器1が電波の受信周波数に用いることが可能な周波数と共通している周波数の中で、中継器1が未使用の周波数を示す周波数情報を取得する。周波数情報取得部71は、例えば、周波数情報を送信する地上局から取得する。
 周波数情報取得部71は、取得した周波数情報を校正用信号生成部72に出力する。
 図9に示す校正装置2では、周波数情報取得部71が、例えば、地上局から周波数情報を取得しているが、未使用の周波数を検出可能な情報であれば、どのような情報であってもよい。例えば、周波数情報取得部71は、地上局から、SW部7のルーティング処理に用いるルーティング情報を取得し、ルーティング情報から未使用の周波数を検出するようにしてもよい。ルーティング情報は、周波数の配置前後を示す情報、即ち、受信ビームの周波数と、送信ビームの周波数とを示す情報である。したがって、ルーティング情報は、周波数情報に含まれる概念である。
FIG. 8 is a configuration diagram showing a relay device including the calibration device 2 according to the second embodiment. In FIG. 8, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
FIG. 9 is a hardware configuration diagram showing the respective hardware in the signal superimposing unit 31 and the calibration unit 39 of the calibration device 2 according to the second embodiment.
The frequency information acquisition unit 71 is realized by, for example, the frequency information acquisition circuit 46 shown in FIG.
The frequency information acquisition unit 71 is among a plurality of frequencies that the repeater 1 can use for the radio wave transmission frequency, which are common to the frequencies that the repeater 1 can use for the radio wave reception frequency. Then, the repeater 1 acquires frequency information indicating an unused frequency. The frequency information acquisition unit 71 acquires, for example, from a ground station that transmits frequency information.
The frequency information acquisition unit 71 outputs the acquired frequency information to the calibration signal generation unit 72.
In the calibration device 2 shown in FIG. 9, the frequency information acquisition unit 71 acquires frequency information from, for example, a ground station, but any information can be used as long as it can detect unused frequencies. May be good. For example, the frequency information acquisition unit 71 may acquire the routing information used for the routing process of the SW unit 7 from the ground station and detect the unused frequency from the routing information. The routing information is information indicating before and after the arrangement of frequencies, that is, information indicating the frequency of the receiving beam and the frequency of the transmitting beam. Therefore, routing information is a concept included in frequency information.
 校正用信号生成部72は、例えば、図9に示す校正用信号生成回路47によって実現される。
 校正用信号生成部72は、周波数情報取得部71により取得された周波数情報を参照することによって、中継器1が未使用の周波数を検出する。
 校正用信号生成部72は、未使用の周波数を有する校正用信号S(m=1,・・・,M)を生成する。
 校正用信号生成部72は、図1に示す校正用信号生成部35と同様に、校正用信号を注入部20-1~20-Mのそれぞれに出力することにより、複数の送信素子アンテナ23-1~23-Mのそれぞれから送信される信号に校正用信号Sを重畳させる。
The calibration signal generation unit 72 is realized by, for example, the calibration signal generation circuit 47 shown in FIG.
The calibration signal generation unit 72 detects an unused frequency by the repeater 1 by referring to the frequency information acquired by the frequency information acquisition unit 71.
The calibration signal generation unit 72 generates a calibration signal S m (m = 1, ..., M) having an unused frequency.
Similar to the calibration signal generation unit 35 shown in FIG. 1, the calibration signal generation unit 72 outputs the calibration signal to each of the injection units 20-1 to 20-M, so that the plurality of transmitting element antennas 23- The calibration signal Sm is superimposed on the signals transmitted from each of 1 to 23-M.
 図8では、校正装置2の一部の構成要素である周波数情報取得部71、校正用信号生成部72及び校正部39のそれぞれが、図9に示すような専用のハードウェアによって実現されるものを想定している。即ち、校正装置2の一部が、周波数情報取得回路46、校正用信号生成回路47及び校正回路45によって実現されるものを想定している。
 周波数情報取得回路46、校正用信号生成回路47及び校正回路45のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
In FIG. 8, each of the frequency information acquisition unit 71, the calibration signal generation unit 72, and the calibration unit 39, which are a part of the calibration device 2, is realized by dedicated hardware as shown in FIG. Is assumed. That is, it is assumed that a part of the calibration device 2 is realized by the frequency information acquisition circuit 46, the calibration signal generation circuit 47, and the calibration circuit 45.
Each of the frequency information acquisition circuit 46, the calibration signal generation circuit 47, and the calibration circuit 45 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. The thing is applicable.
 校正装置2の一部の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、校正装置2の一部が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 校正装置2の一部が、ソフトウェア又はファームウェア等によって実現される場合、周波数情報取得部71、校正用信号生成部72及び校正部39のそれぞれの処理手順をコンピュータに実行させるためのプログラムが図3に示すメモリ51に格納される。そして、コンピュータのプロセッサ52がメモリ51に格納されているプログラムを実行する。
Some components of the calibration device 2 are not limited to those realized by dedicated hardware, and a part of the calibration device 2 is realized by software, firmware, or a combination of software and firmware. It may be a thing.
When a part of the calibration device 2 is realized by software, firmware, or the like, a program for causing a computer to execute each processing procedure of the frequency information acquisition unit 71, the calibration signal generation unit 72, and the calibration unit 39 is shown in FIG. It is stored in the memory 51 shown in. Then, the processor 52 of the computer executes the program stored in the memory 51.
 次に、図8に示す中継装置の動作について説明する。
 周波数情報取得部71及び校正用信号生成部72以外は、図1に示す中継装置と同様であるため、ここでは、周波数情報取得部71及び校正用信号生成部72の動作について説明する。
 周波数情報取得部71は、例えば、地上局から、未使用の周波数を示す周波数情報を取得すると、周波数情報を校正用信号生成部72に出力する。
 校正用信号生成部72は、周波数情報取得部71から周波数情報を受けると、周波数情報を参照することによって、中継器1が未使用の周波数を検出し、検出した周波数を有する校正用信号S(m=1,・・・,M)を生成する。
 校正用信号生成部72は、図1に示す校正用信号生成部35と同様に、校正用信号を注入部20-1~20-Mのそれぞれに出力することにより、複数の送信素子アンテナ23-1~23-Mのそれぞれから送信される信号に校正用信号を重畳させる。
Next, the operation of the relay device shown in FIG. 8 will be described.
Since the same as the relay device shown in FIG. 1 except for the frequency information acquisition unit 71 and the calibration signal generation unit 72, the operations of the frequency information acquisition unit 71 and the calibration signal generation unit 72 will be described here.
When the frequency information acquisition unit 71 acquires frequency information indicating an unused frequency from, for example, a ground station, the frequency information acquisition unit 71 outputs the frequency information to the calibration signal generation unit 72.
Calibration signal generation unit 72 receives the frequency information from the frequency information acquisition unit 71, by referring to the frequency information, repeater 1 detects the frequency of the unused calibration signal S m having a detected frequency (M = 1, ..., M) is generated.
Similar to the calibration signal generation unit 35 shown in FIG. 1, the calibration signal generation unit 72 outputs the calibration signal to each of the injection units 20-1 to 20-M, so that the plurality of transmitting element antennas 23- The calibration signal is superimposed on the signal transmitted from each of 1 to 23-M.
 図8に示す中継装置でも、図1に示す中継装置と同様に、複数の受信素子アンテナ11-1~11-Kにおけるそれぞれの特性及び複数の送信素子アンテナ23-1~23-Mにおけるそれぞれの特性を校正することができる。 In the relay device shown in FIG. 8, similarly to the relay device shown in FIG. 1, the characteristics of the plurality of receiving element antennas 11-1 to 11-K and the respective characteristics of the plurality of transmitting element antennas 23-1 to 23-M are also used. The characteristics can be calibrated.
実施の形態3.
 実施の形態3では、実施の形態1,2に係る中継装置が適用される衛星通信システムについて説明する。
 図10は、実施の形態3に係る衛星通信システムを示す構成図である。
 衛星通信システムは、通信衛星81、制御局82、ユーザ局83及びユーザ局84を備えている。図10に示す衛星通信システムは、2つのユーザ局83,84を備えている。しかし、これは一例に過ぎず、例えば、3つ以上のユーザ局を備えていてもよい。
 通信衛星81は、図1、図6、図7又は図8に示す中継装置を実装している。
 通信衛星81は、ユーザ局83から送信された電波を受信し、当該電波の受信信号に係る電波を制御局82に送信する。
 また、通信衛星81は、制御局82から送信された電波を受信し、当該電波の受信信号に係る電波をユーザ局83に送信する。
 通信衛星81は、ユーザ局84から送信された電波を受信し、当該電波の受信信号に係る電波を制御局82に送信する。
 また、通信衛星81は、制御局82から送信された電波を受信し、当該電波の受信信号に係る電波をユーザ局84に送信する。
 通信衛星81が実装している中継装置が、図8に示す中継装置であれば、通信衛星81は、制御局82から、周波数情報を取得する。
Embodiment 3.
In the third embodiment, the satellite communication system to which the relay device according to the first and second embodiments is applied will be described.
FIG. 10 is a configuration diagram showing a satellite communication system according to the third embodiment.
The satellite communication system includes a communication satellite 81, a control station 82, a user station 83, and a user station 84. The satellite communication system shown in FIG. 10 includes two user stations 83 and 84. However, this is only an example, and may include, for example, three or more user stations.
The communication satellite 81 is equipped with the relay device shown in FIGS. 1, 6, 7, or 8.
The communication satellite 81 receives the radio wave transmitted from the user station 83, and transmits the radio wave related to the reception signal of the radio wave to the control station 82.
Further, the communication satellite 81 receives the radio wave transmitted from the control station 82, and transmits the radio wave related to the reception signal of the radio wave to the user station 83.
The communication satellite 81 receives the radio wave transmitted from the user station 84, and transmits the radio wave related to the reception signal of the radio wave to the control station 82.
Further, the communication satellite 81 receives the radio wave transmitted from the control station 82, and transmits the radio wave related to the reception signal of the radio wave to the user station 84.
If the relay device mounted on the communication satellite 81 is the relay device shown in FIG. 8, the communication satellite 81 acquires frequency information from the control station 82.
 制御局82は、例えば、地上に設置されている地上局である。
 制御局82は、通信衛星81と電波の送受信を行う。
 制御局82は、通信衛星81が実装している中継装置が、図8に示す中継装置であれば、周波数情報を通信衛星81に送信する。
 ユーザ局83及びユーザ局84のそれぞれは、通信衛星81と電波の送受信を行う。
The control station 82 is, for example, a ground station installed on the ground.
The control station 82 transmits and receives radio waves to and from the communication satellite 81.
If the relay device mounted on the communication satellite 81 is the relay device shown in FIG. 8, the control station 82 transmits the frequency information to the communication satellite 81.
Each of the user station 83 and the user station 84 transmits and receives radio waves to and from the communication satellite 81.
 次に、図10に示す衛星通信システムの動作について説明する。
 例えば、ユーザ局83が、データを制御局82に提供する場合、ユーザ局83は、データを含む電波を通信衛星81に送信する。
 通信衛星81に実装されている中継装置では、実施の形態1,2に示している通り、受信素子アンテナ11-1~11-Kにおけるそれぞれの特性が校正され、送信素子アンテナ23-1~23-Mにおけるそれぞれの特性が校正される。
 通信衛星81に実装されている中継装置は、ユーザ局83から送信されたデータを含む電波を受信し、データを含む電波を制御局82に送信する。
Next, the operation of the satellite communication system shown in FIG. 10 will be described.
For example, when the user station 83 provides data to the control station 82, the user station 83 transmits radio waves including the data to the communication satellite 81.
In the relay device mounted on the communication satellite 81, as shown in the first and second embodiments, the characteristics of the receiving element antennas 11-1 to 11-K are calibrated, and the transmitting element antennas 23-1 to 23 are calibrated. -Each characteristic in M is calibrated.
The relay device mounted on the communication satellite 81 receives the radio wave including the data transmitted from the user station 83, and transmits the radio wave including the data to the control station 82.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present disclosure, it is possible to freely combine the embodiments, modify any component of each embodiment, or omit any component in each embodiment.
 本開示は、複数の受信素子アンテナにおけるそれぞれの特性及び複数の送信素子アンテナにおけるそれぞれの特性を校正する校正装置、校正方法及び校正プログラムに適している。
 また、本開示は、校正装置を備える中継装置に適している。
 また、本開示は、中継装置を実装している通信衛星を備える衛星通信システムに適している。
The present disclosure is suitable for a calibration device, a calibration method, and a calibration program for calibrating each characteristic of a plurality of receiving element antennas and each characteristic of a plurality of transmitting element antennas.
Further, the present disclosure is suitable for a relay device including a calibration device.
Further, the present disclosure is suitable for a satellite communication system including a communication satellite on which a relay device is mounted.
 1 中継器、2 校正装置、11 受信アレーアンテナ、11-1~11-K 受信素子アンテナ、12-1~12-K 受信機、13 中継処理部、14-1~14-K 分波部、15-1~15-K 受信抽出部、16 受信DBF部、17 SW部、18 送信DBF部、19-1~19-M 送信抽出部、20-1~20-M 注入部、21-1~21-M 合波部、22-1~22-M 送信機、23 送信アレーアンテナ、23-1~23-M 送信素子アンテナ、31 信号重畳部、32 受信電力算出部、33 送信電力算出部、34 未使用周波数検出部、35 校正用信号生成部、36 第1のアンテナ、37 周波数変換部、38 第2のアンテナ、39 校正部、40 可変アッテネータ、41 受信電力算出回路、42 送信電力算出回路、43 未使用周波数検出回路、44 校正用信号生成回路、45 校正回路、46 周波数情報取得回路、47 校正用信号生成回路、51 メモリ、52 プロセッサ、61-1~61-J 受信ビーム抽出部、62-1~62-M 送信ビーム抽出部、63 受信電力算出部、64 送信電力算出部、71 周波数情報取得部、72 校正用信号生成部、81 通信衛星、82 制御局、83,84 ユーザ局。 1 repeater, 2 calibration device, 11 receiving array antenna, 11-1 to 11-K receiving element antenna, 12-1 to 12-K receiver, 13 relay processing unit, 14-1 to 14-K demultiplexing unit, 15-1 to 15-K reception extraction unit, 16 reception DBF unit, 17 SW unit, 18 transmission DBF unit, 19-1 to 19-M transmission extraction unit, 20-1 to 20-M injection unit, 21-1 to 21-M combiner, 22-1 to 22-M transmitter, 23 transmission array antenna, 23-1 to 23-M transmitter element antenna, 31 signal superimposition unit, 32 received power calculation unit, 33 transmission power calculation unit, 34 unused frequency detection unit, 35 calibration signal generation unit, 36 first antenna, 37 frequency conversion unit, 38 second antenna, 39 calibration unit, 40 variable attenuator, 41 received power calculation circuit, 42 transmission power calculation circuit , 43 unused frequency detection circuit, 44 calibration signal generation circuit, 45 calibration circuit, 46 frequency information acquisition circuit, 47 calibration signal generation circuit, 51 memory, 52 processor, 61-1 to 61-J reception beam extractor, 62-1 to 62-M transmission beam extraction unit, 63 reception power calculation unit, 64 transmission power calculation unit, 71 frequency information acquisition unit, 72 calibration signal generation unit, 81 communication antenna, 82 control station, 83,84 user station ..

Claims (9)

  1.  中継器が有している複数の送信素子アンテナのそれぞれから放射された送信信号に係る電波を受信し、前記電波の受信信号を出力する第1のアンテナと、
     前記第1のアンテナから出力された受信信号に係る電波を前記中継器が有している複数の受信素子アンテナに向けて放射する第2のアンテナと、
     前記中継器が電波の送信周波数に用いることが可能な複数の周波数のうち、前記中継器が電波の受信周波数に用いることが可能な周波数と共通している周波数の中で、前記中継器が未使用の周波数を検出して、前記未使用の周波数を有する校正用信号を生成し、前記複数の送信素子アンテナのそれぞれに与えられる送信信号に前記校正用信号を重畳させる信号重畳部と、
     前記複数の受信素子アンテナのそれぞれにより受信された電波の受信信号を用いて、前記複数の受信素子アンテナにおけるそれぞれの特性を校正し、前記複数の受信素子アンテナのそれぞれにより受信された電波の受信信号に含まれている校正信号を用いて、前記複数の送信素子アンテナにおけるそれぞれの特性を校正する校正部と
     を備えた校正装置。
    A first antenna that receives radio waves related to transmission signals radiated from each of the plurality of transmitting element antennas of the repeater and outputs the reception signals of the radio waves.
    A second antenna that radiates radio waves related to a received signal output from the first antenna toward a plurality of receiving element antennas included in the repeater, and a second antenna.
    Among the plurality of frequencies that the repeater can use for the radio wave transmission frequency, among the frequencies that the repeater can use for the radio wave reception frequency, the repeater has not yet been used. A signal superimposing unit that detects a used frequency, generates a calibration signal having the unused frequency, and superimposes the calibration signal on the transmission signal given to each of the plurality of transmitting element antennas.
    Using the received signal of the radio wave received by each of the plurality of receiving element antennas, the characteristics of each of the plurality of receiving element antennas are calibrated, and the received signal of the radio wave received by each of the plurality of receiving element antennas is calibrated. A calibration device including a calibration unit that calibrates the characteristics of each of the plurality of transmitting element antennas using the calibration signal included in the above.
  2.  前記信号重畳部は、
     前記複数の受信素子アンテナのそれぞれにより受信された電波の受信信号に含まれている複数の周波数成分の電力をそれぞれ算出する受信電力算出部と、
     前記複数の送信素子アンテナのそれぞれに与えられる送信信号に含まれている複数の周波数成分の電力をそれぞれ算出する送信電力算出部と、
     前記受信電力算出部により算出されたそれぞれの電力と、前記送信電力算出部により算出されたそれぞれの電力とに基づいて、前記共通している周波数の中で、前記中継器が未使用の周波数を検出する未使用周波数検出部と、
     前記未使用周波数検出部により検出された周波数を有する校正用信号を生成し、前記複数の送信素子アンテナのそれぞれに与えられる送信信号に前記校正用信号を重畳させる校正用信号生成部と
     を備えていることを特徴とする請求項1記載の校正装置。
    The signal superimposing unit is
    A reception power calculation unit that calculates the power of a plurality of frequency components included in the reception signal of the radio wave received by each of the plurality of reception element antennas, and a reception power calculation unit that calculates the power of each of the plurality of frequency components.
    A transmission power calculation unit that calculates the power of a plurality of frequency components included in the transmission signals given to each of the plurality of transmission element antennas, and a transmission power calculation unit.
    Based on the respective powers calculated by the received power calculation unit and the respective powers calculated by the transmission power calculation unit, among the common frequencies, the frequency that the repeater does not use is selected. Unused frequency detector to detect and
    It is provided with a calibration signal generation unit that generates a calibration signal having a frequency detected by the unused frequency detection unit and superimposes the calibration signal on the transmission signal given to each of the plurality of transmitting element antennas. The calibration device according to claim 1, wherein the calibration device is provided.
  3.  前記信号重畳部は、
     前記共通している周波数の中で、前記中継器が未使用の周波数を示す周波数情報を取得する周波数情報取得部と、
     前記周波数情報取得部により取得された周波数情報を参照することによって、前記中継器が未使用の周波数を検出して、前記未使用の周波数を有する校正用信号を生成し、前記複数の送信素子アンテナのそれぞれに与えられる送信信号に前記校正用信号を重畳させる校正用信号生成部と
     を備えていることを特徴とする請求項1記載の校正装置。
    The signal superimposing unit is
    Among the common frequencies, a frequency information acquisition unit that acquires frequency information indicating an unused frequency of the repeater, and a frequency information acquisition unit.
    By referring to the frequency information acquired by the frequency information acquisition unit, the repeater detects an unused frequency, generates a calibration signal having the unused frequency, and the plurality of transmitting element antennas. The calibration device according to claim 1, further comprising a calibration signal generation unit that superimposes the calibration signal on the transmission signal given to each of the above.
  4.  前記第1のアンテナにより受信された電波の受信信号の周波数を、前記中継器が受信可能な周波数に変換し、周波数変換後の受信信号を前記第2のアンテナに出力する周波数変換部を備えたことを特徴とする請求項1記載の校正装置。 It is provided with a frequency conversion unit that converts the frequency of the received signal of the radio wave received by the first antenna into a frequency that can be received by the repeater and outputs the received signal after frequency conversion to the second antenna. The calibrator according to claim 1, wherein the calibrator device is characterized in that.
  5.  前記第1のアンテナにより受信された電波の受信信号を減衰し、減衰後の受信信号を前記第2のアンテナに出力する可変アッテネータを備えたことを特徴とする請求項1記載の校正装置。 The calibration device according to claim 1, further comprising a variable attenuator that attenuates the received signal of the radio wave received by the first antenna and outputs the attenuated received signal to the second antenna.
  6.  第1のアンテナが、中継器が有している複数の送信素子アンテナのそれぞれから放射された送信信号に係る電波を受信して、前記電波の受信信号を出力し、第2のアンテナが、前記第1のアンテナから出力された受信信号に係る電波を前記中継器が有している複数の受信素子アンテナに向けて放射すると、
     信号重畳部が、前記中継器が電波の送信周波数に用いることが可能な複数の周波数のうち、前記中継器が電波の受信周波数に用いることが可能な周波数と共通している周波数の中で、前記中継器が未使用の周波数を検出して、前記未使用の周波数を有する校正用信号を生成し、前記複数の送信素子アンテナのそれぞれに与えられる送信信号に前記校正用信号を重畳させる信号重畳部と、
     校正部が、前記複数の受信素子アンテナのそれぞれにより受信された電波の受信信号を用いて、前記複数の受信素子アンテナにおけるそれぞれの特性を校正し、前記複数の受信素子アンテナのそれぞれにより受信された電波の受信信号に含まれている校正信号を用いて、前記複数の送信素子アンテナにおけるそれぞれの特性を校正する
     校正方法。
    The first antenna receives the radio wave related to the transmission signal radiated from each of the plurality of transmitting element antennas of the repeater, outputs the reception signal of the radio wave, and the second antenna is the said. When the radio wave related to the received signal output from the first antenna is radiated toward the plurality of receiving element antennas of the repeater,
    Among the plurality of frequencies that the repeater can use for the radio wave transmission frequency, the signal superimposing unit has a frequency that is common to the frequency that the repeater can use for the radio wave reception frequency. The repeater detects an unused frequency, generates a calibration signal having the unused frequency, and superimposes the calibration signal on the transmission signal given to each of the plurality of transmitting element antennas. Department and
    The calibration unit calibrates the characteristics of each of the plurality of receiving element antennas by using the received signal of the radio wave received by each of the plurality of receiving element antennas, and receives the radio waves by each of the plurality of receiving element antennas. A calibration method for calibrating the characteristics of each of the plurality of transmitting element antennas using a calibration signal included in a radio wave reception signal.
  7.  中継器が有している複数の受信素子アンテナにおけるそれぞれの特性と、前記中継器が有している複数の送信素子アンテナにおけるそれぞれの特性とを校正するコンピュータの処理手順を示す校正プログラムであって、
     第1のアンテナが、前記複数の送信素子アンテナのそれぞれから放射された送信信号に係る電波を受信して、前記電波の受信信号を出力し、第2のアンテナが、前記第1のアンテナから出力された受信信号に係る電波を前記複数の受信素子アンテナに向けて放射すると、
     信号重畳部が、前記中継器が電波の送信周波数に用いることが可能な複数の周波数のうち、前記中継器が電波の受信周波数に用いることが可能な周波数と共通している周波数の中で、前記中継器が未使用の周波数を検出して、前記未使用の周波数を有する校正用信号を生成し、前記複数の送信素子アンテナのそれぞれに与えられる送信信号に前記校正用信号を重畳させる処理手順と、
     校正部が、前記複数の受信素子アンテナのそれぞれにより受信された電波の受信信号を用いて、前記複数の受信素子アンテナにおけるそれぞれの特性を校正し、前記複数の受信素子アンテナのそれぞれにより受信された電波の受信信号に含まれている校正信号を用いて、前記複数の送信素子アンテナにおけるそれぞれの特性を校正する処理手順と
     を備えていることを特徴とする校正プログラム。
    A calibration program showing a computer processing procedure for calibrating each characteristic of a plurality of receiving element antennas of a repeater and each characteristic of a plurality of transmitting element antennas of the repeater. ,
    The first antenna receives the radio wave related to the transmission signal radiated from each of the plurality of transmitting element antennas, outputs the reception signal of the radio wave, and the second antenna outputs from the first antenna. When the radio wave related to the received signal is radiated toward the plurality of receiving element antennas,
    Among the plurality of frequencies that the repeater can use for the radio wave transmission frequency, the signal superimposing unit has a frequency that is common to the frequency that the repeater can use for the radio wave reception frequency. A processing procedure in which the repeater detects an unused frequency, generates a calibration signal having the unused frequency, and superimposes the calibration signal on the transmission signal given to each of the plurality of transmitting element antennas. When,
    The calibration unit calibrates the characteristics of each of the plurality of receiving element antennas by using the received signal of the radio wave received by each of the plurality of receiving element antennas, and receives the radio waves by each of the plurality of receiving element antennas. A calibration program comprising a processing procedure for calibrating the characteristics of each of the plurality of transmitting element antennas using a calibration signal included in a radio wave reception signal.
  8.  複数の受信素子アンテナと、複数の送信素子アンテナと、前記複数の受信素子アンテナのそれぞれにより受信された電波の受信信号からビームを生成し、前記ビームから、前記複数の送信素子アンテナのそれぞれに与える送信信号を生成する中継処理部とを含む中継器と、
     請求項1から請求項5のうちのいずれか1項記載の校正装置と
     を備えた中継装置。
    A beam is generated from a plurality of receiving element antennas, a plurality of transmitting element antennas, and reception signals of radio waves received by each of the plurality of receiving element antennas, and the beam is provided to each of the plurality of transmitting element antennas. A repeater including a relay processing unit that generates a transmission signal,
    A relay device including the calibration device according to any one of claims 1 to 5.
  9.  請求項8記載の中継装置を実装している通信衛星を備える衛星通信システム。 A satellite communication system including a communication satellite equipped with the relay device according to claim 8.
PCT/JP2020/000214 2020-01-08 2020-01-08 Calibration device, calibration method, calibration program, repeating device, and satellite communication system WO2021140580A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/000214 WO2021140580A1 (en) 2020-01-08 2020-01-08 Calibration device, calibration method, calibration program, repeating device, and satellite communication system
JP2021561928A JP7034394B2 (en) 2020-01-08 2020-01-08 Calibration equipment, calibration method, calibration program, relay equipment and satellite communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000214 WO2021140580A1 (en) 2020-01-08 2020-01-08 Calibration device, calibration method, calibration program, repeating device, and satellite communication system

Publications (1)

Publication Number Publication Date
WO2021140580A1 true WO2021140580A1 (en) 2021-07-15

Family

ID=76788816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000214 WO2021140580A1 (en) 2020-01-08 2020-01-08 Calibration device, calibration method, calibration program, repeating device, and satellite communication system

Country Status (2)

Country Link
JP (1) JP7034394B2 (en)
WO (1) WO2021140580A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385435B1 (en) * 2000-04-20 2002-05-07 Jhong Sam Lee Coupled interference concellation system for wideband repeaters in a cellular system
US20100254299A1 (en) * 2009-04-01 2010-10-07 Peter Kenington Radio system and a method for relaying packetized radio signals
US20130235962A1 (en) * 2010-11-17 2013-09-12 Socowave Technologies Limited Mimo antenna calibration device, integrated circuit and method for compensating phase mismatch
US20130279399A1 (en) * 2010-10-29 2013-10-24 Telefonaktiebolaget L. M. Ericsson (Publ) Self-interference suppression control for a relay node

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385435B1 (en) * 2000-04-20 2002-05-07 Jhong Sam Lee Coupled interference concellation system for wideband repeaters in a cellular system
US20100254299A1 (en) * 2009-04-01 2010-10-07 Peter Kenington Radio system and a method for relaying packetized radio signals
US20130279399A1 (en) * 2010-10-29 2013-10-24 Telefonaktiebolaget L. M. Ericsson (Publ) Self-interference suppression control for a relay node
US20130235962A1 (en) * 2010-11-17 2013-09-12 Socowave Technologies Limited Mimo antenna calibration device, integrated circuit and method for compensating phase mismatch

Also Published As

Publication number Publication date
JP7034394B2 (en) 2022-03-11
JPWO2021140580A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US20190020400A1 (en) Transceiver array
JP4531607B2 (en) Calibration device
US20120020396A1 (en) Calibration of smart antenna systems
EP2299774B1 (en) Active antenna, base station, method for updating amplitude and phase and method for signal processing
JP2003218621A (en) Apparatus and method for calibrating array antenna
KR100268748B1 (en) Radio communication apparatus in cdma communication system
KR20080096202A (en) Apparatus and method for low power amplification in mobile communication system
JP2012514407A (en) Calibration apparatus and calibration method
EP2911323A1 (en) Method and apparatus for self-calibrating antenna arrays
KR20080006155A (en) Apparatus and method for calibration in a communication system
KR102416438B1 (en) Method to control transmitting and receiving signal based on channel estimation in multi-antenna apparatus and multi-antenna apparatus thereof
US10330775B2 (en) Transmitter, transmission method, phase adjustment device, and phase adjustment method
US6654618B2 (en) Variation compensating unit
EP1126544B1 (en) System and method for calibrating an antenna system
US8526895B2 (en) Systems and methods of transmitter protection for wireless communications
JP3673732B2 (en) Array antenna transmission pattern calibration method
JP2006267036A (en) Interference wave suppressor
JPH11312917A (en) Array antenna radio communication equipment
JP3764662B2 (en) OFDM signal receiving circuit and OFDM signal transmitting / receiving circuit
EP2017956A1 (en) Radio signal amplifying device and method for generating and for amplifying a radio frequency signal
WO2021140580A1 (en) Calibration device, calibration method, calibration program, repeating device, and satellite communication system
WO2005015773A1 (en) Array antenna receiver apparatus and received signal correcting method
WO2000060698A1 (en) Radio transmitter and transmission directivity adjusting method
JP7050444B2 (en) A method for measuring element-to-element deviations of phased array antennas, digital radio repeaters, and phased array antennas.
JP5474886B2 (en) Earth station apparatus and earth station apparatus control method for satellite communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912130

Country of ref document: EP

Kind code of ref document: A1