WO2021139828A1 - Bwp指示和转换方法、基站和用户、电子设备及介质 - Google Patents

Bwp指示和转换方法、基站和用户、电子设备及介质 Download PDF

Info

Publication number
WO2021139828A1
WO2021139828A1 PCT/CN2021/075637 CN2021075637W WO2021139828A1 WO 2021139828 A1 WO2021139828 A1 WO 2021139828A1 CN 2021075637 W CN2021075637 W CN 2021075637W WO 2021139828 A1 WO2021139828 A1 WO 2021139828A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
user equipment
rrc
inactive state
base station
Prior art date
Application number
PCT/CN2021/075637
Other languages
English (en)
French (fr)
Inventor
高兴航
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2021139828A1 publication Critical patent/WO2021139828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention belongs to the field of 5G communication, and in particular relates to a BWP indication and conversion method, base station and user, electronic equipment and medium.
  • RRC_inactive Radio Resource Control Layer_Inactive
  • 5G NR a global 5G standard based on a new OFDM-based air interface design
  • the base station can instruct the UE to enter the RRC_inactive state.
  • the behavior of the UE is the same as that in the idle state. It does not monitor PDCCH (Physical Downlink Control Channel), does not perform measurement, only performs reference signal detection, performs cell reselection, and monitors paging/SI (Paging/System Message) etc.
  • PDCCH Physical Downlink Control Channel
  • the difference from idle is that both the base station and the UE save the context of the UE.
  • the RRC connection can be quickly resumed through the RACH (random access) process without reactivating the security mode and reporting the capability.
  • Information configuration and other processes thereby reducing the signaling interaction process, reducing the signaling overhead, and reducing the power consumption of the UE.
  • the R16 version does not support user plane data transmission in the inactive state of the UE. If the UE has data transmission, it needs to be switched to the connected state to proceed.
  • 5G NR random access can adopt a 4-step RACH process or a 2-step RACH process. The following is a brief introduction to the 4-step RACH process and the 2-step RACH:
  • the 4-step RACH process includes: the first step, the UE transmits Msg1; the second step, the base station transmits Msg2; the third step, the UE transmits Msg3; the fourth step, the base station transmits Msg4.
  • Msg1 Random access preamble, mainly used to notify the base station that there is a random access request, and at the same time enable the base station to estimate the transmission delay between it and the UE and use this to calibrate the uplink timing, and pass The random access response message is indicated to the UE.
  • Msg2 the random access response message is transmitted through the resource location indicated by the PDCCH scrambled by RA-RNTI (indicating the resource block used by the user to send the random access preamble).
  • the time-frequency position of the preamble determines the value of RA-RNTI.
  • the UE sends the preamble it will monitor the corresponding PDCCH according to the RA-RNTI value within the RAR (Random Access Response) time window, to Receive the RAR corresponding to RA-RNTI. If the RAR returned by the base station is not received within this RAR time window, it is considered that this random access procedure has failed.
  • RAR Random Access Response
  • the random access response message contains the time adjustment required to specify the UE uplink synchronization; the UE sends the uplink resources of Msg3; the temporary C-RNTI is used for the subsequent transmission between the UE and the base station. After the conflict is resolved, the value becomes C- RNTI.
  • the UE randomly selects a preamble (random access preamble) for random access, which may cause multiple UEs to select the same PRACH (physical random access channel) resource and the same preamble at the same time, resulting in conflicts (using the same RA-RNTI and preamble, so it is not sure which UE the RAR responds to). At this time, a conflict resolution mechanism is needed to solve this problem.
  • Msg3 is transmitted on UL-SCH (Uplink Shared Channel), and Msg3 needs to include an important information: a unique identifier for each UE. This flag will be used in the fourth step of conflict resolution.
  • a unique identifier for each UE.
  • C-RNTI For UEs in RRC_CONNECTED state, the only identifier is C-RNTI; for UEs in non-RRC_CONNECTED state, other UE identifiers (S-TMSI (Temporary UE Identification Number) or resume ID or a random number) will be used As its sign.
  • S-TMSI Temporary UE Identification Number
  • Msg4 The contention is resolved, and the UE carries its own unique flag in Msg3.
  • the base station will carry the unique identifier in Msg4 to designate the winning UE, and other UEs that have not won in the conflict resolution will re-initiate random access.
  • the UE contention resolution identity MAC control element contained in the successfully decoded MAC layer PDU (protocol data unit)
  • the UE contention resolution ID MAC control element matches the CCCH SDU (Common Control Channel Service Data Unit) sent by Msg3
  • the UE will consider that the random access is successful and set its TC-RNTI to C-RNTI.
  • the 2-step RACH process includes: the first step, the UE transmits MsgA, MsgA includes Msg1 and Msg3 in the original 4-step RACH process; the second step, the base station transmits MsgB, MsgB includes the original 4-step RACH process Msg2 and Msg4.
  • UEs with different bandwidth reception capabilities are supported.
  • the 3GPP Transmissiond Generation Partnership Project
  • the 3GPP Third Generation Partnership Project
  • the network can configure multiple BWPs of different bandwidth lengths or different Numerology (parameter sets) for the UE according to the bandwidth receiving capability of the UE, and these BWPs need to be limited to the maximum receiving bandwidth of the UE.
  • the UE/network can adaptively adjust the BWP used according to the terminal's service requirements and load conditions, so as to save the terminal's power consumption, increase the transmission rate, and improve the user experience.
  • the UE performs cell search, determines the SSB (synchronization signal and PBCH block) to camp on, receives SIB1 (system information block 1), obtains initial access resources, and performs a random access process.
  • SIB1 system information block 1
  • the initially activated BWP configuration can be determined, and the UE performs initial access on the initially activated UL BWP (uplink BWP) and DL BWP (downlink BWP).
  • the network After the UE completes the RRC connection with the network, the network will configure one or more UL BWP and DL BWP for the UE according to the service requirements of the UE.
  • BWP can be activated through RRC signaling or scheduling DCI (downlink control information).
  • the UE After the base station instructs the UE to enter the RRC_inactive/idle (inactive/idle) state, the UE needs to fall back to camp on the initially activated UL/DL BWP.
  • UEs in the RRC_inactive state they need to camp on the UL/DL BWP that is initially activated to perform operations, such as receiving paging/SI and performing RACH (Random Access Channel) procedures as required.
  • RACH Random Access Channel
  • UEs that transmit small data packets such as App messages
  • these UEs are all camped on the same initial activated UL/DL BWP for uplink/downlink small data packet transmission, which may cause the data of multiple UEs to be transmitted. Triggered on the same resource, which increases the probability of collision and causes data transmission to fail.
  • the technical problem to be solved by the present invention is to overcome the need for UEs in the RRC_inactive state in the prior art to camp on the initially activated UL/DL BWP for data transmission and reception, so that if a large number of UEs are all camped on the same initial activated UL/ DL BWP performs uplink/downlink small data packet transmission, which may cause the data of multiple UEs to be triggered on the same resource, which will increase the collision probability and cause the defect of data transmission failure.
  • a method for indicating data packet transmission bandwidth includes:
  • the base station After receiving the data packet transmitted by the user equipment in the RRC_inactive state or when sending the data packet to the user equipment in the RRC_inactive state, the base station instructs the user equipment in the RRC_inactive state to use the BWP for subsequent uplink transmission and the downlink reception BWP.
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through a RACH response message.
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through a RACH response message, which specifically includes:
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the SRB message carried by Msg4 in the RRC_inactive state;
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the SRB message carried by the MsgB;
  • the base station uses the MAC subheader or MAC CE in Msg4 to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state;
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission in the RRC_inactive state through the MAC subheader in the MsgB or the successful random access response service data unit And BWP used for downlink reception.
  • the BWP used for subsequent uplink transmission and the BWP used for downlink reception instructing the user equipment in the RRC_inactive state includes:
  • the BWP index points to the UL BWP and DL BWP that are initially activated or a number of pairs of non-initial activations allocated to the user equipment by the base station A pair of BWPs in the UL BWP and DL BWP; or, instruct the user equipment whether to switch to the default DL BWP (default downlink BWP) and paired UL BWP designated by the base station for the user equipment in the RRC_inactive state (Uplink BWP) Perform subsequent uplink transmission and downlink reception; or, instruct the user equipment whether to transfer to the base station in the RRC_inactive state, and specify from a number of pairs of non-initial activated UL BWP and DL BWP allocated to the user equipment A pair of BWP for subsequent uplink transmission and downlink reception;
  • the BWP index points to the UL BWP and DL BWP that are initially activated or a number of pairs of non-initial activations allocated to the user equipment by the base station A pair of BWP in the UL BWP and DL BWP; or, instruct the user equipment in the RRC_inactive state whether to switch to the default DL BWP and paired UL BWP designated by the base station for the user equipment for subsequent uplink transmission and Downlink reception; or, instructing the user equipment in the RRC_inactive state whether to transfer to the base station to perform subsequent uplink transmissions from a pair of BWPs assigned to the user equipment in the non-initially activated UL BWP and DL BWP, and Downlink reception.
  • the instruction method further includes before the base station instructs the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state:
  • the base station determines whether the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state, and if so, it executes the steps of instructing the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • a method for indicating data packet transmission bandwidth includes:
  • the base station After receiving the data packet transmitted by the user equipment in the RRC_inactive state or after sending the data packet to the user equipment in the RRC_inactive state, the base station instructs the user equipment in the RRC_inactive state to use the BWP for subsequent uplink transmission and the downlink reception BWP.
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the PDCCH in the RRC_inactive state.
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the PDCCH, which specifically includes:
  • the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception; and, the base station passes the C-RNTI (cell radio) indicated in the MsgB Network Temporary Identifier) Scrambles the Bandwidth part indicator (a field in DCI) in the DCI (downlink control information) carried by the PDCCH to indicate the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state
  • the BWP index points to a pair of UL BWP and DL BWP that are initially activated or a pair of BWPs among several pairs of non-initially activated UL BWP and DL BWP allocated to the user equipment by the base station;
  • the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception; and, the base station uses the C-RNTI indicated in Msg4 to add
  • the Bandwidth part indicator in the DCI carried by the scrambled PDCCH indicates the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state, and the BWP index points to the UL BWP and DL BWP that are initially activated or the base station allocates to all the BWPs.
  • the instruction method further includes before the base station instructs the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state:
  • the base station determines whether the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state, and if so, it executes the steps of instructing the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • a method for indicating data packet transmission bandwidth includes:
  • the base station After receiving multiple data packets transmitted by user equipments in the RRC_inactive state or when sending data packets to multiple user equipments in the RRC_inactive state, the base station uses the above-mentioned indication method to simultaneously instruct multiple user equipments in RRC_inactive state.
  • the BWP used for subsequent uplink transmission and the BWP used for downlink reception are the same or different for different user equipments.
  • a method for converting data packet transmission bandwidth including:
  • the user equipment receives, in the RRC_inactive state, an indication of the BWP used by the user equipment for subsequent uplink transmission and the BWP used for downlink reception of the user equipment in the RRC_inactive state;
  • the user equipment performs subsequent uplink transmission and downlink reception on the indicated BWP in the RRC_inactive state according to the indication.
  • a base station, the base station includes:
  • the BWP indication module is used to indicate the BWP used by the user equipment for subsequent uplink transmission in the RRC_inactive state after receiving a data packet transmitted by the user equipment in the RRC_inactive state or when sending a data packet to the user equipment in the RRC_inactive state And BWP used for downlink reception.
  • the BWP indicating module instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through a RACH response message.
  • the BWP indicating module instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through a RACH response message, which specifically includes:
  • the BWP indicating module instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the SRB message carried by Msg4;
  • the BWP indicating module instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the SRB message carried by the MsgB;
  • the BWP indicating module uses the MAC subheader or MAC CE in Msg4 to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state ;
  • the BWP indicating module uses the MAC subheader in the MsgB or the successful random access response service data unit to instruct the user equipment to perform subsequent uplink transmissions in the RRC_inactive state BWP and the BWP used for downlink reception.
  • the BWP used for subsequent uplink transmission and the BWP used for downlink reception instructing the user equipment in the RRC_inactive state includes:
  • the BWP index points to the UL BWP and DL BWP that are initially activated or a number of pairs of non-initial activations allocated to the user equipment by the base station A pair of BWP in the UL BWP and DL BWP; or, instruct the user equipment in the RRC_inactive state whether to switch to the default DL BWP and paired UL BWP designated by the base station for the user equipment for subsequent uplink transmission and Downlink reception; or, instructing the user equipment in the RRC_inactive state whether to transfer to the base station to perform subsequent uplink transmissions from a pair of BWPs assigned to the user equipment in the non-initially activated UL BWP and DL BWP, and Downlink reception;
  • the BWP index points to the UL BWP and DL BWP that are initially activated or a number of pairs of non-initial activations allocated to the user equipment by the base station A pair of BWP in the UL BWP and DL BWP; or, instruct the user equipment in the RRC_inactive state whether to switch to the default DL BWP and paired UL BWP designated by the base station for the user equipment for subsequent uplink transmission and Downlink reception; or, instructing the user equipment in the RRC_inactive state whether to transfer to the base station to perform subsequent uplink transmissions from a pair of BWPs assigned to the user equipment in the non-initially activated UL BWP and DL BWP, and Downlink reception.
  • the base station further includes:
  • the state conversion module is configured to determine whether the user equipment is required to continue receiving or receiving in the RRC_inactive state before the BWP indicating module instructs the user equipment to perform subsequent uplink transmissions and BWPs for downlink reception in the RRC_inactive state.
  • the subsequent data packet is transmitted, and if so, the BWP indicating module is invoked to instruct the user equipment to perform the BWP used for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state.
  • a base station, the base station includes:
  • the BWP indication module is used to indicate the BWP used by the user equipment for subsequent uplink transmission in the RRC_inactive state after receiving the data packet transmitted by the user equipment in the RRC_inactive state or after sending the data packet to the user equipment in the RRC_inactive state And BWP used for downlink reception.
  • the BWP indicating module instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the PDCCH.
  • the BWP indicating module instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the PDCCH, which specifically includes:
  • the BWP indicating module instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception; and, the BWP indicating module passes the C-indicated in MsgB
  • the RNTI scrambled PDCCH carries the Bandwidth part indicator in the DCI indicating the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state, and the BWP index points to the initially activated UL BWP and DL BWP or the base station allocation A pair of BWPs in a number of pairs of non-initially activated UL BWPs and DL BWPs for the user equipment;
  • the BWP indicating module instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception; and, the BWP module passes the C indicated in Msg4 -RNTI scrambles the Bandwidth part indicator in the DCI carried by the PDCCH to indicate the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state, and the BWP index points to the initially activated UL BWP and DL BWP or the base station A pair of BWPs among several pairs of non-initial activated UL BWPs and DL BWPs allocated to the user equipment.
  • the base station further includes:
  • the state conversion module is configured to determine whether the user equipment is required to continue receiving or receiving in the RRC_inactive state before the BWP indicating module instructs the user equipment to perform subsequent uplink transmissions and BWPs for downlink reception in the RRC_inactive state.
  • the subsequent data packet is transmitted, and if so, the BWP indicating module is invoked to instruct the user equipment to perform the BWP used for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state.
  • a base station configured to use the BWP indication module as described in the previous item after receiving multiple data packets transmitted by user equipment in the RRC_inactive state or when sending data packets to multiple user equipment in the RRC_inactive state At the same time, the BWP used for subsequent uplink transmission and the BWP used for downlink reception of multiple user equipments in the RRC_inactive state are indicated, and the indicated BWPs of different user equipments are the same or different.
  • a user equipment including:
  • An indication receiving module configured to receive, in the RRC_inactive state, an indication from the base station of the BWP used for subsequent uplink transmission and the BWP used for downlink reception of the user equipment in the RRC_inactive state;
  • the BWP conversion module is configured to perform subsequent uplink transmission and downlink reception on the indicated BWP according to the indication in the RRC_inactive state.
  • An electronic device includes a memory, a processor, and a computer program that is stored on the memory and can run on the processor, and the processor implements the above-mentioned method when the program is executed.
  • a computer-readable storage medium has a computer program stored thereon, and when the program is executed by a processor, the steps of the method described above are realized.
  • the positive progress effect of the present invention is that the base station of the present invention can instruct the user equipment in the RRC_inactive state whether to perform UL/DL BWP conversion, or continue to reside on the UL/DL BWP that is initially activated, or switch to other non-initial activations.
  • UL/DL BWP for subsequent uplink transmission and downlink reception especially the transmission of small data packets of App messages or other application scenarios, especially for the subsequent uplink when it is instructed to switch to the non-initial activated UL/DL BWP Transmission and downlink reception can reduce the probability of resource conflicts caused by a large number of user equipments performing uplink transmission and downlink reception on the initially activated UL/DL BWP, and improve the success rate of uplink transmission and downlink reception.
  • Figure 1 is a schematic diagram of a 4-step RACH process in the prior art
  • Figure 2 is a schematic diagram of a 2-step RACH process in the prior art
  • FIG. 3 is a schematic diagram of the interaction between the base station and the user equipment after the user equipment triggers the 4-step RACH in the RRC_inactive state for uplink transmission in the preferred embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of the interaction between the base station and the user equipment after the user equipment triggers the 2-step RACH in the RRC_inactive state for uplink transmission in the preferred embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of the interaction between the base station and the user equipment after the user equipment triggers a 4-step RACH in the RRC_inactive state for downlink reception in the preferred embodiment 2 of the present invention
  • FIG. 6 is a schematic diagram of the interaction between the base station and the user equipment after the user equipment triggers the 2-step RACH in the RRC_inactive state for downlink reception in the preferred embodiment 2 of the present invention
  • FIG. 7 is a schematic diagram of the interaction between the base station and the user equipment after the user equipment triggers the 4-step RACH in the RRC_inactive state for uplink transmission in the preferred embodiment 3 of the present invention
  • FIG. 8 is a schematic diagram of the interaction between the base station and the user equipment after the user equipment triggers the 2-step RACH in the RRC_inactive state for uplink transmission in the preferred embodiment 3 of the present invention
  • FIG. 9 is a schematic diagram of the interaction between the base station and the user equipment after the user equipment triggers the 4-step RACH in the RRC_inactive state for downlink reception in the preferred embodiment 4 of the present invention
  • FIG. 10 is a schematic diagram of the interaction between the base station and the user equipment after the user equipment triggers the 2-step RACH in the RRC_inactive state for downlink reception in the preferred embodiment 4 of the present invention
  • FIG. 11 is a flowchart of a method for converting data packet transmission bandwidth according to a preferred embodiment 7 of the present invention.
  • Fig. 12 is a schematic block diagram of a base station according to a preferred embodiment 8 of the present invention.
  • Fig. 13 is a schematic block diagram of a base station according to a preferred embodiment 9 of the present invention.
  • FIG. 14 is a schematic block diagram of a user equipment according to a preferred embodiment 11 of the present invention.
  • FIG. 15 is a schematic structural diagram of an electronic device according to a preferred embodiment 12 of the present invention.
  • the user equipment is in the RCC_idle state; then, the user equipment enters the RCC_connected state through the initial access process on the UL/DL BWP (default UL BWP0/DL BWP0) that is initially activated; then, the base station enters the RCC_connected state according to the service characteristics of the user equipment and
  • the bandwidth capability of the user equipment is configured with several pairs of non-initially activated UL/DL BWP (such as two pairs of non-initially activated UL/DL BWP1 and UL/DL BWP2) and related configuration information for sending and receiving data on the corresponding BWP .
  • the base station instructs the user equipment to enter the RCC_inactive state to save power consumption.
  • the user equipment After receiving the instruction, the user equipment enters the RCC_inactive state and transfers to the initially activated UL/DL BWP.
  • the base station and the user equipment store all previous configuration information .
  • This embodiment provides a method for indicating data packet transmission bandwidth, which is applied to a base station and specifically includes the following steps:
  • the base station After receiving the data packet transmitted by the user equipment in the RRC_inactive state, the base station instructs the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • the follow-up refers to after the base station makes the above-mentioned instruction to the user equipment.
  • the BWP used for uplink transmission includes UL BWP used for uplink feedback and/or uplink data transmission
  • the BWP used for downlink reception includes DL BWP used for downlink feedback and/or downlink data reception.
  • the data packet received by the base station may be a small data packet with a small amount of data of the App message type or other application scenarios.
  • the indicated BWP can be the UL/DL BWP (initial active UL/DL BWP) that is initially activated by the user equipment, or it can be the UL/DL BWP that is not initially activated, such as the default DL BWP and paired UL BWP or other designated non-initial BWPs.
  • the UL/DL BWP that is initially activated, and the UL/DL BWP that is not initially activated is usually allocated to the user equipment by the base station after the user equipment enters the connected state.
  • the base station specifically instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through a RACH response message.
  • the RACH response message can be Msg4 in the 4-step RACH process, or MsgB in the 2-step RACH process.
  • the base station uses Msg4 in the 4-step RACH process to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • Msg4 in the 4-step RACH process to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • any of the following two methods can be used:
  • Method 1 After the user equipment triggers the 4-step RACH process, the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the SRB message carried by Msg4; the SRB message may specifically be RRCRelease( The RRC release message or the RRCReject (RRC reject) message, or the newly defined RRC message, is not limited here.
  • Method 2 After the user equipment triggers the 4-step RACH process, the base station uses the MAC subheader or MAC CE in Msg4 to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state; the MAC subheader can be The contention resolution in Msg4 identifies the subheader corresponding to the MAC CE, or the MAC subheader corresponding to the service data unit containing the SRB message in Msg4.
  • the base station uses the MsgB in the 2-step RACH process to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • MsgB in the 2-step RACH process to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • any of the following two methods can be used:
  • Method 1 After the user equipment triggers the 2-step RACH process, the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the SRB message carried by the MsgB; the SRB message may specifically be an RRCRelease message Or the RRCReject message, or the newly defined RRC message, which is not limited here.
  • Method 2 After the user equipment triggers the 2-step RACH process, the base station uses the MAC subheader in MsgB or the successful random access response service data unit (successRAR) to instruct the user equipment to use the BWP and downlink for subsequent uplink transmission in the RRC_inactive state
  • the BWP used for receiving where the MAC subheader can be the subheader corresponding to the successful random access response service data unit in MsgB, or the MAC subheader corresponding to the service data unit containing the SRB message in MsgB.
  • the SRB message carried by Msg4/MsgB, the MAC subheader in Msg4/MsgB, the MAC CE in Msg4, and the successful random access response service data unit in MsgB can all use the following four indications: Any one of, indicating the BWP used by the user equipment for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state:
  • the first type indicates the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the BWP index points to the initially activated UL BWP and DL BWP or several pairs of non-initially activated UL BWPs and BWPs allocated to the user equipment by the base station.
  • a pair of BWPs in DL BWP, the pair of BWPs includes UL BWP and DL BWP.
  • the second type Instruct the user equipment in the RRC_inactive state whether to switch to the default DL BWP and paired UL BWP designated by the base station for the user equipment for subsequent uplink transmission and downlink reception; wherein, if the user equipment is instructed to be in the RRC_inactive state, it does not switch The default DL BWP and the paired UL BWP, the user equipment retains the UL BWP that is initially activated for subsequent uplink transmission, and retains the DL BWP that is initially activated for subsequent downlink reception.
  • the third type indicates whether the user equipment is transferred to the base station in the RRC_inactive state to perform subsequent uplink transmission and downlink reception from a pair of BWPs assigned to the user equipment in the non-initial activated UL BWP and DL BWP.
  • the pair of BWPs includes UL BWP and DL BWP; among them, if the user equipment is instructed not to switch to the specified pair of BWPs in the RRC_inactive state, the user equipment retains the UL BWP that is initially activated for subsequent uplink transmission, and remains on the initially activated DL BWP. Subsequent downlink reception.
  • the fourth type instruct the user equipment to keep in the RRC_inactive state for subsequent uplink transmission and downlink reception; and, add the above-mentioned first, second, or third indication content.
  • the above-mentioned first type of indication content needs to occupy 2 bits or more, depending on the maximum configurable BWP number, the second and third types of indication content need to occupy 1 bit, indicating whether the specified BWP is activated.
  • the required bit position can use the SRB message carried by Msg4/MsgB, the MAC subheader in Msg4/MsgB, the MAC CE in Msg4, and the reserved bits in the successful random access response service data unit in MsgB, or It is the expanded bit position, and there is no restriction on the position of the required bit.
  • the above-mentioned fourth indication content describes the way to instruct the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception, which can implicitly indicate whether the user equipment remains in the RRC_inactive state, such as the SRB carried by Msg4/MsgB
  • the message, the MAC subheader in Msg4/MsgB, the MAC CE in Msg4, and the successful random access response service data unit in MsgB include the BWP index to determine whether the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmissions and Downlink reception, that is, if the BWP index is included, it is determined that the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception.
  • the base station determines whether the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception.
  • the indicating method may further include before the base station instructs the user equipment to perform the BWP used for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state:
  • the base station determines whether the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state, and if so, it executes the steps of instructing the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • the base station may specifically determine whether the user equipment is required to continue the subsequent uplink transmission and downlink reception in the RRC_inactive state according to the data volume of the data packet to be subsequently received or transmitted, or according to the cell load condition.
  • the base station will require the user equipment to switch to the RRC_connected state to receive or transmit subsequent data packets.
  • the specific process that the base station requires the user equipment to switch to the RRC_connected state to receive or transmit subsequent data packets, and how the user equipment switches to the RRC_connected state after receiving the instruction, and how to perform subsequent uplink transmission and downlink reception reference can be made to the prior art. The details are not repeated here.
  • the user equipment transmits Msg1 on the UL BWP that is initially activated;
  • the base station transmits Msg2 on the initially activated DL BWP;
  • the user equipment transmits Msg3 and uplink data packets to be transmitted to the base station on the UL BWP that is initially activated;
  • the base station confirms that the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state
  • the base station transmits Msg4 on the initially activated DL BWP, and gives one of the above four indications through the SRB message carried by Msg4 or the MAC subheader in Msg4 or MAC CE to determine UL BWP and DL BWP. Subsequent uplink transmission and downlink reception.
  • the user equipment transmits MsgA and uplink data packets to be transmitted to the base station on the initial activated UL BWP;
  • the base station confirms that the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state
  • the base station transmits MsgB on the initially activated DL BWP, and gives one of the above four indications through the SRB message carried by MsgB or the MAC subheader in MsgB or successRAR to determine UL BWP and DL BWP for subsequent follow-up Uplink transmission and downlink reception.
  • the user equipment can only camp on the UL/DL BWP that is initially activated in the RRC_inactive state.
  • the indication method of this embodiment uses the above steps so that the base station can perform subsequent uplink transmissions to the user equipment in the RRC_inactive state.
  • the BWP received in the downlink so that the user equipment can continue to reside on the initially activated UL/DL BWP, or switch from the initially activated UL/DL BWP to the non-initial activated UL/DL BWP to perform subsequent follow-ups.
  • the user equipment when instructed to switch to the non-initially activated UL/DL BWP for subsequent uplink transmission and downlink reception in the RRC_inactive state, it can reduce a large number of UEs to perform uplink transmission and downlink reception on the initially activated UL/DL BWP The probability of resource conflict is raised, and the success rate of data uplink transmission and downlink reception is improved.
  • This embodiment provides a method for indicating data packet transmission bandwidth, which is applied to a base station and specifically includes the following steps:
  • the base station When sending a data packet to the user equipment in the RRC_inactive state, the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • the follow-up refers to after the base station makes the above-mentioned instruction to the user equipment.
  • the BWP used for uplink transmission includes UL BWP used for uplink feedback and/or uplink data transmission
  • the BWP used for downlink reception includes DL BWP used for downlink feedback and/or downlink data reception.
  • the data packet received by the base station may be a small data packet with a small amount of data of the App message type or other application scenarios.
  • the indicated BWP can be the UL/DL BWP (initial active UL/DL BWP) that is initially activated by the user equipment, or it can be the UL/DL BWP that is not initially activated, such as the default DL BWP and paired UL BWP or other designated non-initial BWPs.
  • the UL/DL BWP that is initially activated, and the UL/DL BWP that is not initially activated is usually allocated to the user equipment by the base station after the user equipment enters the connected state.
  • the base station specifically instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through a RACH response message.
  • the RACH response message may be Msg4 in the 4-step RACH process, or MsgB in the 2-step RACH process.
  • the base station uses Msg4 in the 4-step RACH process to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • Msg4 in the 4-step RACH process to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • any of the following two methods can be used:
  • Method 1 After the user equipment triggers the 4-step RACH process, the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the SRB message carried by Msg4; the SRB message may specifically be an RRCRelease message Or the RRCReject message, or the newly defined RRC message, which is not limited here.
  • Method 2 After the user equipment triggers the 4-step RACH process, the base station uses the MAC subheader or MAC CE in Msg4 to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state; the MAC subheader can be The contention resolution in Msg4 identifies the subheader corresponding to the MAC CE, or the MAC subheader corresponding to the service data unit containing the SRB message in Msg4.
  • the base station uses the MsgB in the 2-step RACH process to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • MsgB in the 2-step RACH process to instruct the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • any of the following two methods can be used:
  • Method 1 After the user equipment triggers the 2-step RACH process, the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through the SRB message carried by the MsgB; the SRB message may specifically be an RRCRelease message Or the RRCReject message, or the newly defined RRC message, which is not limited here.
  • Method 2 After the user equipment triggers the 2-step RACH process, the base station uses the MAC subheader in MsgB or the successful random access response service data unit to instruct the user equipment to use the BWP for subsequent uplink transmission and downlink reception in the RRC_inactive state BWP; where the MAC subheader can be the subheader corresponding to the successful random access response service data unit in MsgB, or the MAC subheader corresponding to the service data unit containing the SRB message in MsgB.
  • the SRB message carried by Msg4/MsgB, the MAC subheader in Msg4/MsgB, the MAC CE in Msg4, and the successful random access response service data unit in MsgB can all use the following four indications: Any one of, indicating the BWP used by the user equipment for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state:
  • the first type indicates the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the BWP index points to the initially activated UL BWP and DL BWP or several pairs of non-initial activated UL BWPs and BWPs allocated to the user equipment by the base station.
  • a pair of BWPs in DL BWP, the pair of BWPs includes UL BWP and DL BWP;
  • the second type Instruct the user equipment in the RRC_inactive state whether to switch to the default DL BWP and paired UL BWP designated by the base station for the user equipment for subsequent uplink transmission and downlink reception; wherein, if the user equipment is instructed to be in the RRC_inactive state, it does not switch The default DL BWP and the paired UL BWP, the user equipment retains the UL BWP that is initially activated for subsequent uplink transmission, and retains the DL BWP that is initially activated for subsequent downlink reception.
  • the third type indicates whether the user equipment is transferred to the base station in the RRC_inactive state to perform subsequent uplink transmission and downlink reception from a pair of BWPs assigned to the user equipment in the non-initial activated UL BWP and DL BWP.
  • the pair of BWPs includes UL BWP and DL BWP; among them, if the user equipment is instructed not to switch to the specified pair of BWPs in the RRC_inactive state, the user equipment retains the UL BWP that is initially activated for subsequent uplink transmission, and remains on the initially activated DL BWP. Subsequent downlink reception.
  • the fourth type instruct the user equipment to keep in the RRC_inactive state for subsequent uplink transmission and downlink reception; and, add the above-mentioned first, second, or third indication content.
  • the above-mentioned first type of indication content needs to occupy 2 bits or more, depending on the maximum configurable BWP number, the second and third types of indication content need to occupy 1 bit, indicating whether the specified BWP is activated.
  • the required bit position can use the SRB message carried by Msg4/MsgB, the MAC subheader in Msg4/MsgB, the MAC CE in Msg4, and the reserved bits in the successful random access response service data unit in MsgB, or It is the expanded bit position, and there is no restriction on the position of the required bit.
  • the above-mentioned fourth indication content describes the way to instruct the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception, which can implicitly indicate whether the user equipment remains in the RRC_inactive state, such as the SRB carried by Msg4/MsgB
  • the message, the MAC subheader in Msg4/MsgB, the MAC CE in Msg4, and the successful random access response service data unit in MsgB include the BWP index to determine whether the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmissions and Downlink reception, that is, if the BWP index is included, it is determined that the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception.
  • the base station determines whether the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception.
  • the indicating method may further include before the base station instructs the user equipment to perform the BWP used for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state:
  • the base station determines whether the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state, and if so, it executes the steps of instructing the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • the base station may specifically determine whether the user equipment is required to continue the subsequent uplink transmission and downlink reception in the RRC_inactive state according to the data volume of the data packet to be subsequently received or transmitted, or according to the cell load condition.
  • the base station will request the user equipment to switch to the RRC_connected state to receive or transmit subsequent data packets.
  • the specific process that the base station requires the user equipment to switch to the RRC_connected state to receive or transmit subsequent data packets, and how the user equipment switches to the RRC_connected state after receiving the instruction, and how to perform subsequent uplink transmission and downlink reception reference can be made to the prior art. The details are not repeated here.
  • S31 The user equipment transmits Msg1 on the UL BWP that is initially activated;
  • the base station transmits Msg2 on the initially activated DL BWP;
  • the user equipment transmits Msg3 on the UL BWP that is initially activated:
  • the base station confirms that the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state;
  • the base station transmits Msg4 and downlink data packets to be sent to the user equipment on the initially activated DL BWP, and gives one of the above four indications through the SRB message carried by Msg4 or the MAC subheader in Msg4 or MAC CE. In order to determine the UL BWP and DL BWP for subsequent uplink transmission and downlink reception.
  • the user equipment transmits MsgA on the UL BWP which is initially activated;
  • the base station confirms that the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state;
  • the base station transmits the MsgB and the downlink data packet to be sent to the user equipment on the initially activated DL BWP, and gives one of the above four indications through the SRB message carried by the MsgB or the MAC subheader in the MsgB or successRAR. To determine the UL BWP and DL BWP for subsequent uplink transmission and downlink reception.
  • the user equipment can only camp on the UL/DL BWP that is initially activated in the RRC_inactive state.
  • the indication method of this embodiment uses the above steps so that the base station can perform subsequent uplink transmissions to the user equipment in the RRC_inactive state.
  • the BWP received in the downlink so that the user equipment can continue to reside on the initially activated UL/DL BWP, or switch from the initially activated UL/DL BWP to the non-initial activated UL/DL BWP to perform subsequent follow-ups.
  • the user equipment when instructed to switch to the non-initially activated UL/DL BWP for subsequent uplink transmission and downlink reception in the RRC_inactive state, it can reduce a large number of UEs to perform uplink transmission and downlink reception on the initially activated UL/DL BWP The probability of resource conflict is raised, and the success rate of data uplink transmission and downlink reception is improved.
  • This embodiment provides a method for indicating data packet transmission bandwidth, which is applied to a base station and specifically includes the following steps:
  • the base station After receiving the data packet transmitted by the user equipment in the RRC_inactive state, the base station instructs the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • the follow-up refers to after the base station makes the above-mentioned instruction to the user equipment.
  • the BWP used for uplink transmission includes UL BWP used for uplink feedback and/or uplink data transmission
  • the BWP used for downlink reception includes DL BWP used for downlink feedback and/or downlink data reception.
  • the data packet received by the base station may be a small data packet with a small amount of data of the App message type or other application scenarios.
  • the indicated BWP can be the UL/DL BWP (initial active UL/DL BWP) that is initially activated by the user equipment, or it can be the UL/DL BWP that is not initially activated, such as the default DL BWP and paired UL BWP or other designated non-initial BWPs.
  • the UL/DL BWP that is initially activated, and the UL/DL BWP that is not initially activated is usually allocated to the user equipment by the base station after the user equipment enters the connected state.
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the PDCCH in the RRC_inactive state.
  • any of the following two methods can be used:
  • Method 1 After the user equipment triggers the 2-step RACH process, the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception through MsgB, and scrambles the PDCCH to carry the Bandwidth in the DCI through the C-RNTI indicated in the MsgB
  • the part indicator indicates the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the BWP index points to the initially activated UL BWP and DL BWP or several pairs of non-initial activated UL BWP and DL BWP allocated to the user equipment by the base station A pair of BWPs in, the pair of BWPs includes UL BWP and DL BWP.
  • Method 2 After the user equipment triggers the 4-step RACH process, the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception through Msg4, and scrambles the PDCCH to carry the Bandwidth in the DCI through the C-RNTI indicated in Msg4
  • the part indicator indicates the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the BWP index points to the initially activated UL BWP and DL BWP or several pairs of non-initial activated UL BWP and DL BWP allocated to the user equipment by the base station A pair of BWPs in, the pair of BWPs includes UL BWP and DL BWP.
  • the above method describes the manner in which the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception.
  • the display mode can indicate whether the user equipment remains in the RRC_inactive state, such as through the SRB message carried by Msg4/MsgB, Msg4/MsgB
  • the MAC subheader, the MAC CE in Msg4, and the 1bit setting value in the successful random access response service data unit in MsgB determine whether the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception, and then The user equipment then obtains the BWP index used for subsequent uplink transmission and downlink reception by receiving the PDCCH.
  • the indicating method may further include before the base station instructs the user equipment to perform the BWP used for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state:
  • the base station determines whether the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state, and if so, it executes the steps of instructing the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • the base station may specifically determine whether the user equipment is required to continue the subsequent uplink transmission and downlink reception in the RRC_inactive state according to the data volume of the data packet to be subsequently received or transmitted, or according to the cell load condition.
  • the base station will require the user equipment to switch to the RRC_connected state to receive or transmit subsequent data packets.
  • the specific process that the base station requires the user equipment to switch to the RRC_connected state to receive or transmit subsequent data packets, and how the user equipment switches to the RRC_connected state after receiving the instruction, and how to perform subsequent uplink transmission and downlink reception reference can be made to the prior art. The details are not repeated here.
  • the user equipment transmits Msg1 on the UL BWP that is initially activated;
  • the base station transmits Msg2 on the initially activated DL BWP;
  • the user equipment transmits Msg3 and the uplink data packet to be transmitted to the base station on the UL BWP that is initially activated;
  • the base station confirms that the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state
  • the base station transmits Msg4 on the initially activated DL BWP, and Msg4 indicates the C-RNTI, the SRB message carried by Msg4, the MAC subheader in Msg4, or the MAC CE in Msg4 indicates that the user equipment remains in the RRC_inactive state for subsequent follow-up Uplink transmission and downlink reception;
  • the base station transmits the PDCCH on the initially activated DL BWP;
  • the user equipment monitors the PDCCH scrambled with the C-RNTI, and the PDCCH carries the Bandwidth part indicator in the DCI to indicate the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the user equipment transmits MsgA and uplink data packets to be transmitted to the base station on the UL BWP that is initially activated;
  • the base station confirms that the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state
  • the base station transmits MsgB on the initially activated DL BWP, and MsgB indicates C-RNTI, the SRB message carried by MsgB, the MAC subheader in MsgB, or the successful random access response service data unit in MsgB indicates that the user equipment remains Perform subsequent uplink transmission and downlink reception in the RRC_inactive state;
  • the base station transmits the PDCCH on the initially activated DL BWP;
  • the user equipment monitors the PDCCH scrambled with the C-RNTI, and the PDCCH carries the Bandwidth part indicator in the DCI to indicate the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the user equipment can only camp on the UL/DL BWP that is initially activated in the RRC_inactive state.
  • the indication method of this embodiment uses the above steps so that the base station can perform subsequent uplink transmissions to the user equipment in the RRC_inactive state.
  • the BWP received in the downlink so that the user equipment can continue to reside on the initially activated UL/DL BWP, or switch from the initially activated UL/DL BWP to the non-initial activated UL/DL BWP to perform subsequent follow-ups.
  • the user equipment when instructed to switch to the non-initially activated UL/DL BWP for subsequent uplink transmission and downlink reception in the RRC_inactive state, it can reduce a large number of UEs to perform uplink transmission and downlink reception on the initially activated UL/DL BWP The probability of resource conflict is raised, and the success rate of data uplink transmission and downlink reception is improved.
  • This embodiment provides a method for indicating data packet transmission bandwidth, which is applied to a base station and specifically includes the following steps:
  • the base station After sending a data packet to the user equipment in the RRC_inactive state, the base station instructs the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • the follow-up refers to after the base station makes the above-mentioned instruction to the user equipment.
  • the BWP used for uplink transmission includes UL BWP used for uplink feedback and/or uplink data transmission
  • the BWP used for downlink reception includes DL BWP used for downlink feedback and/or downlink data reception.
  • the data packet received by the base station may be a small data packet with a small amount of data of the App message type or other application scenarios.
  • the indicated BWP can be the UL/DL BWP (initial active UL/DL BWP) that is initially activated by the user equipment, or it can be the UL/DL BWP that is not initially activated, such as the default DL BWP and paired UL BWP or other designated non-initial BWPs.
  • the UL/DL BWP that is initially activated, and the UL/DL BWP that is not initially activated is usually allocated to the user equipment by the base station after the user equipment enters the connected state.
  • the base station instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the PDCCH in the RRC_inactive state. It specifically adopts any of the following two methods:
  • Method 1 After the user equipment triggers the 2-step RACH process, the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception, and scramble the PDCCH to carry the Bandwidth part indicator in the DCI through the C-RNTI indicated in the MsgB Indicate the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the BWP index points to the UL BWP and DL BWP that are initially activated or the number of pairs of non-initially activated UL BWP and DL BWP allocated to the user equipment by the base station.
  • a pair of BWPs, the pair of BWPs includes UL BWP and DL BWP.
  • Method 2 After the user equipment triggers the 4-step RACH process, the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception, and scramble the PDCCH to carry the Bandwidth part indicator in the DCI through the C-RNTI indicated in Msg4 Indicate the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the BWP index points to the UL BWP and DL BWP that are initially activated or the number of pairs of non-initially activated UL BWP and DL BWP allocated to the user equipment by the base station.
  • a pair of BWPs, the pair of BWPs includes UL BWP and DL BWP.
  • the above method describes the manner in which the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception.
  • the display mode can indicate whether the user equipment remains in the RRC_inactive state, such as through the SRB message carried by Msg4/MsgB, Msg4/MsgB
  • the MAC subheader, the MAC CE in Msg4, and the 1bit setting value in the successful random access response service data unit in MsgB determine whether the base station instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception, and then The user equipment then obtains the BWP index used for subsequent uplink transmission and downlink reception by receiving the PDCCH.
  • the indicating method may further include before the base station instructs the user equipment to perform the BWP used for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state:
  • the base station determines whether the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state, and if so, it executes the steps of instructing the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state.
  • the base station may specifically determine whether the user equipment is required to continue the subsequent uplink transmission and downlink reception in the RRC_inactive state according to the data volume of the data packet to be subsequently received or transmitted, or according to the cell load condition.
  • the base station will require the user equipment to switch to the RRC_connected state to receive or transmit subsequent data packets.
  • the specific process that the base station requires the user equipment to switch to the RRC_connected state to receive or transmit subsequent data packets, and how the user equipment switches to the RRC_connected state after receiving the instruction, and how to perform subsequent uplink transmission and downlink reception reference can be made to the prior art. The details are not repeated here.
  • the user equipment transmits Msg1 on the UL BWP that is initially activated;
  • the base station transmits Msg2 on the initially activated DL BWP;
  • the user equipment transmits Msg3 on the UL BWP that is initially activated:
  • the base station confirms that the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state
  • the base station transmits Msg4 and the downlink data packet to be sent to the user equipment on the initially activated DL BWP, and the C-RNTI is indicated in Msg4, the SRB message carried by Msg4, the MAC subheader in Msg4 or the MAC CE in Msg4 indicates the user
  • the device remains in the RRC_inactive state for subsequent uplink transmission and downlink reception;
  • the base station transmits the PDCCH on the initially activated DL BWP;
  • the user equipment monitors the PDCCH scrambled with the C-RNTI, and the PDCCH carries the Bandwidth part indicator in the DCI to indicate the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • S81 The user equipment transmits MsgA on the UL BWP that is initially activated;
  • the base station confirms that the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state;
  • the base station transmits the MsgB and the downlink data packet to be sent to the user equipment on the initially activated DL BWP, and the MsgB indicates the C-RNTI, the SRB message carried by the MsgB, the MAC subheader in the MsgB, or the successful random access in the MsgB.
  • the incoming response service data unit indicates that the user equipment remains in the RRC_inactive state for subsequent uplink transmission and downlink reception;
  • the base station transmits the PDCCH on the initially activated DL BWP;
  • the user equipment monitors the PDCCH scrambled with the C-RNTI, and the PDCCH carries the Bandwidth part indicator in the DCI to indicate the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the user equipment can only camp on the UL/DL BWP that is initially activated in the RRC_inactive state.
  • the indication method of this embodiment uses the above steps so that the base station can perform subsequent uplink transmissions to the user equipment in the RRC_inactive state.
  • the BWP received in the downlink so that the user equipment can continue to reside on the initially activated UL/DL BWP, or switch from the initially activated UL/DL BWP to the non-initial activated UL/DL BWP to perform subsequent follow-ups.
  • the user equipment when instructed to switch to the non-initially activated UL/DL BWP for subsequent uplink transmission and downlink reception in the RRC_inactive state, it can reduce a large number of UEs to perform uplink transmission and downlink reception on the initially activated UL/DL BWP The probability of resource conflict is raised, and the success rate of data uplink transmission and downlink reception is improved.
  • This embodiment provides a method for indicating data packet transmission bandwidth, and the indicating method includes:
  • the base station After receiving the data packets transmitted by multiple user equipments in the RRC_inactive state, the base station simultaneously instructs multiple user equipments in the RRC_inactive state to use the BWP for subsequent uplink transmission and the BWP for downlink reception and different user equipments through the RACH response message.
  • the indicated BWP is the same or different.
  • the specific process of simultaneously instructing multiple user equipments through the RACH response message can refer to Embodiment 1.
  • the indication method distributes multiple user equipments in the RRC_inactive state to different BWPs for uplink transmission and downlink reception, reducing a large number of user equipments residing on the initially activated UL/DL BWP for uplink transmission and downlink reception, causing resource conflicts The probability of increasing the success rate of uplink transmission and downlink reception.
  • This embodiment provides a method for indicating data packet transmission bandwidth, and the indicating method includes:
  • the base station When sending data packets to multiple user equipments in the RRC_inactive state, the base station simultaneously instructs multiple user equipments in the RRC_inactive state to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the RACH response message, and different user equipments are indicated
  • the BWP is the same or different.
  • the indication method distributes multiple user equipments in the RRC_inactive state to different BWPs for uplink transmission and downlink reception, reducing a large number of user equipments residing on the initially activated UL/DL BWP for uplink transmission and downlink reception, causing resource conflicts The probability of increasing the success rate of uplink transmission and downlink reception.
  • This embodiment provides a method for converting data packet transmission bandwidth, which is applied to user equipment, as shown in FIG. 11, which includes:
  • the user equipment receives an indication from the base station to the BWP used for subsequent uplink transmission and the BWP used for downlink reception of the user equipment in the RRC_inactive state;
  • the base station instructs the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state
  • the user equipment performs subsequent uplink transmission and downlink reception on the UL BWP and DL BWP pointed to by the BWP index.
  • the base station instructs the user equipment in the RRC_inactive state to switch to the default DL BWP and paired UL BWP designated by the base station for the user equipment for subsequent uplink transmission and downlink reception
  • the user equipment in the RRC_inactive state transfers to the base station designated for the user equipment
  • the default DL BWP and the paired UL BWP perform subsequent uplink transmission and downlink reception;
  • the base station instructs the user equipment in the RRC_inactive state not to switch to the default DL BWP and paired UL BWP designated by the base station for the user equipment for subsequent uplink transmission and downlink reception, the user equipment continues to initially activate UL BWP and UL BWP in the RRC_inactive state.
  • the DL BWP performs subsequent uplink transmission and downlink reception.
  • the base station instructs the user equipment in the RRC_inactive state to transfer to the base station to perform subsequent uplink transmission and downlink reception from a number of non-initial activated UL BWP and DL BWP assigned to the user equipment, the user equipment is in the RRC_inactive state. Perform subsequent uplink transmission and downlink reception on the designated pair of BWPs;
  • the base station instructs the user equipment not to transfer to the base station in the RRC_inactive state to perform subsequent uplink transmission and downlink reception from a pair of non-initial activated UL BWPs and DL BWPs assigned to the user equipment, the user equipment is in RRC_inactive In the state, continue to initially activate UL BWP and DL BWP for subsequent uplink transmission and downlink reception.
  • the base station includes:
  • the BWP indicating module 011 is used to instruct the user equipment to perform subsequent uplink transmissions in the RRC_inactive state after receiving a data packet transmitted by the user equipment in the RRC_inactive state or when sending a data packet to the user equipment in the RRC_inactive state. BWP used for downlink reception.
  • the BWP indicating module 011 indicates the BWP used for subsequent uplink transmission and the BWP used for downlink reception of the user equipment in the RRC_inactive state through the RACH response message.
  • the BWP indicating module 011 instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state through a RACH response message, which specifically includes:
  • the BWP indicating module 011 instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the SRB message carried by Msg4 in the RRC_inactive state;
  • the BWP indicating module 011 instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the SRB message carried by the MsgB in the RRC_inactive state;
  • the BWP indicating module 011 instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the MAC subheader or MAC CE in Msg4 in the RRC_inactive state;
  • the BWP indicating module 011 uses the MAC subheader in MsgB or the successful random access response service data unit to instruct the user equipment to use the BWP and downlink reception for subsequent uplink transmission in the RRC_inactive state The BWP used.
  • the BWP used for instructing the user equipment to perform subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state includes:
  • the BWP index points to the UL BWP and DL BWP that are initially activated or the number of pairs of non-initially activated UL BWP and DL BWP allocated to the user equipment by the base station.
  • a pair of BWP instruct the user equipment whether to switch to the default DL BWP and paired UL BWP designated by the base station for the user equipment in the RRC_inactive state for subsequent uplink transmission and downlink reception; or, instruct the user equipment whether to transfer in the RRC_inactive state To the base station, perform subsequent uplink transmission and downlink reception from a pair of BWPs designated in a number of non-initially activated UL BWPs and DL BWPs allocated to the user equipment;
  • the base station assigns to the user equipment a pair of non-initially activated UL BWPs and a pair of DL BWPs; or, instructs the user equipment whether to switch to the default DL BWP and paired UL BWPs designated by the base station for the user equipment in the RRC_inactive state Perform subsequent uplink transmission and downlink reception; or, instruct the user equipment whether to transfer to the base station in the RRC_inactive state to perform subsequent uplink transmission and downlink from a pair of BWPs assigned to the user equipment in the non-initially activated UL BWP and DL BWP receive.
  • the base station also includes:
  • the state conversion module 012 is configured to determine whether the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state before the BWP indicating module 011 instructs the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state If yes, the BWP indication module 011 is called to instruct the user equipment to perform the BWP used for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state.
  • the base station includes:
  • the BWP indicating module 021 is used to instruct the user equipment to perform subsequent uplink transmissions in the RRC_inactive state after receiving the data packet transmitted by the user equipment in the RRC_inactive state or after sending the data packet to the user equipment in the RRC_inactive state. BWP used for downlink reception.
  • the BWP indicating module 021 instructs the BWP used for subsequent uplink transmission and the BWP used for downlink reception of the user equipment in the RRC_inactive state through the PDCCH.
  • the BWP indicating module 021 instructs the user equipment to use the BWP for subsequent uplink transmission and the BWP for downlink reception through the PDCCH in the RRC_inactive state, which specifically includes:
  • the BWP indicating module 021 instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception; and, the BWP indicating module 021 scrambles the PDCCH to carry DCI through the C-RNTI indicated in the MsgB
  • the Bandwidth part indicator in the RRC_inactive state indicates the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the BWP index points to the initially activated UL BWP and DL BWP or several pairs of non-initially activated UL BWPs allocated to the user equipment by the base station. And a pair of BWP in DL BWP;
  • the BWP indicating module 021 instructs the user equipment to remain in the RRC_inactive state for subsequent uplink transmission and downlink reception; and, the BWP indicating module 021 scrambles the PDCCH through the C-RNTI indicated in Msg4
  • the Bandwidth part indicator in the bearer DCI indicates the BWP index used by the user equipment for subsequent uplink transmission and downlink reception in the RRC_inactive state.
  • the BWP index points to the initially activated UL BWP and DL BWP or several pairs of non-initially activated pairs allocated to the user equipment by the base station. A pair of BWP in UL BWP and DL BWP.
  • the base station also includes:
  • the state conversion module 022 is configured to determine whether the user equipment is required to continue to receive or transmit subsequent data packets in the RRC_inactive state before the BWP indicating module 021 instructs the user equipment to perform the BWP for subsequent uplink transmission and the BWP for downlink reception in the RRC_inactive state If yes, the BWP indicating module 021 is called to instruct the user equipment to perform the BWP used for subsequent uplink transmission and the BWP used for downlink reception in the RRC_inactive state.
  • This embodiment provides a base station, which is configured to use the BWP in Embodiment 8 after receiving multiple data packets transmitted by user equipment in the RRC_inactive state or when sending data packets to multiple user equipment in the RRC_inactive state.
  • the indication module simultaneously indicates the BWP used for subsequent uplink transmission and the BWP used for downlink reception of multiple user equipments in the RRC_inactive state, and the indicated BWPs of different user equipments are the same or different.
  • This embodiment provides a user equipment, as shown in FIG. 14, which includes:
  • the indication receiving module 031 is configured to receive, in the RRC_inactive state, an indication of the BWP used by the base station for subsequent uplink transmission and the BWP used for downlink reception of the user equipment in the RRC_inactive state;
  • the BWP conversion module 032 is configured to perform subsequent uplink transmission and downlink reception on the indicated BWP according to the indication in the RRC_inactive state.
  • FIG. 15 is a schematic structural diagram of an electronic device according to Embodiment 12 of the present invention.
  • the electronic device includes a memory, a processor, and a computer program that is stored on the memory and can run on the processor, and the processor implements any one of the methods in Embodiments 1-7 when the processor executes the program.
  • the electronic device 50 shown in FIG. 15 is only an example, and should not bring any limitation to the function and application scope of the embodiment of the present invention.
  • the electronic device 50 may be in the form of a general-purpose computing device, for example, it may be a server device.
  • the components of the electronic device 50 may include, but are not limited to: the aforementioned at least one processor 51, the aforementioned at least one memory 52, and a bus 53 connecting different system components (including the memory 52 and the processor 51).
  • the bus 53 includes a data bus, an address bus, and a control bus.
  • the memory 52 may include a volatile memory, such as a random access memory (RAM) 521 and/or a cache memory 522, and may further include a read-only memory (ROM) 523.
  • RAM random access memory
  • ROM read-only memory
  • the memory 52 may also include a program/utility tool 525 having a set of (at least one) program module 525.
  • program module 524 includes but is not limited to: an operating system, one or more application programs, other program modules, and program data. Each of the examples or some combination may include the realization of a network environment.
  • the processor 51 executes various functional applications and data processing by running a computer program stored in the memory 52, for example, the method provided in Embodiments 1-7 of the present invention.
  • the electronic device 50 may also communicate with one or more external devices 54 (such as keyboards, pointing devices, etc.). This communication can be performed through an input/output (I/O) interface 55.
  • the model-generated device 50 may also communicate with one or more networks (for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 56. As shown in FIG. 15, the network adapter 56 communicates with other modules of the device 50 generated by the model through the bus 53.
  • networks for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of any one of the methods provided in Embodiments 1-7 are implemented.
  • the readable storage medium may more specifically include but not limited to: portable disk, hard disk, random access memory, read only memory, erasable programmable read only memory, optical storage device, magnetic storage device or any of the above The right combination.
  • the present invention can also be implemented in the form of a program product, which includes program code.
  • program product runs on a terminal device
  • the program code is used to make the terminal device execute the implementation. Steps in any of the methods described in Examples 1-7.
  • program code used to execute the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent
  • the software package is executed, partly on the user’s device, partly on the remote device, or entirely on the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种BWP指示和转换方法、基站和用户、电子设备及介质。指示方法包括:基站在接收到RRC_inactive状态下的UE传输的数据包之后或在给inactive状态下的UE发送数据包时,指示UE在inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。本发明的基站可指示inactive状态下的UE或继续驻留在初始激活的UL/DL BWP上,或转换到其他的非初始激活的UL/DL BWP上,特别是指示转换到非初始激活的UL/DL BWP可降低大量UE都在初始激活UL/DL BWP上进行上行传输及下行接收引发资源冲突的概率,提高上行传输及下行接收的成功率。

Description

BWP指示和转换方法、基站和用户、电子设备及介质
本申请要求申请日为2020/1/8的中国专利申请202010019453.4的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于5G通信领域,尤其涉及一种BWP指示和转换方法、基站和用户、电子设备及介质。
背景技术
RRC_inactive(无线资源控制层_非活跃)是5G NR(基于OFDM的全新空口设计的全球性5G标准)新增的一种状态。R15版本中,当UE(用户设备)没有数据收发的时候,基站可以指示UE进入RRC_inactive状态。在inactive状态下,UE的行为跟idle(空闲)态的行为是一样的,不监听PDCCH(物理下行控制信道),不进行测量,只进行参考信号的检测,进行小区重选,监听paging/SI(寻呼/系统消息)等。和idle的区别是基站和UE都保存着UE的上下文,当有数据重新收发的时候,可以通过RACH(随机接入)过程进行快速的resume恢复RRC连接,不需要重新进行安全模式激活,能力上报,信息配置等过程,从而减少了信令交互过程,降低了信令开销,降低了UE的功耗。R16版本不支持UE在inactive状态进行用户面数据传输,如果UE有数据传输,需要转到连接态再进行。5G NR随机接入可采用4步RACH过程或2步RACH过程。下面对4步RACH过程和2步RACH分别进行简要介绍:
如图1所示,4步RACH过程包括:第一步、UE传输Msg1;第二步、基站传输Msg2;第三步、UE传输Msg3;第四步、基站传输Msg4。
其中,第一步中,Msg1:随机接入前导码,主要用于通知基站有一个随机接入请求,同时使得基站能估计其与UE之间的传输时延并以此校准上行定时,并通过随机接入响应消息指示给UE。
第二步中,Msg2:随机接入响应消息,是通过RA-RNTI(标示用户发随机接入前导所使用的资源块)加扰的PDCCH指示的资源位置进行传输的。前导码的时频位置决定了RA-RNTI的值,UE发送了前导码之后,会在RAR(随机接入响应,Radom Access Response)时间窗内根据这个RA-RNTI值来监听对应的PDCCH,以接收对应RA-RNTI的RAR。如果在此RAR时间窗内没有接收到基站回复的RAR,则认为此次随机接入过程失败。随机接入响应消息包含用于指定UE上行同步所需要的时间调整量;UE发送Msg3的上行资源;临时C-RNTI,用于UE和基站的后续传输,冲突解决后,该值变成C-RNTI。UE随机选择一个preamble(随机接入前导码)用于随机接入,就可能导致多个UE同时选择同一PRACH(物理随机接入信道)资源和同一个preamble,从而导致冲突的出现(使用相同的RA-RNTI和preamble,因此还不确定RAR是对哪个UE的响应),这时需要一个冲突解决机制来解决这个问题。
第三步中,Msg3在UL-SCH(上行共享信道)上传输,Msg3中需要包含一个重要信息:每个UE 唯一的标志。该标志将用于第四步的冲突解决。对于处于RRC_CONNECTED态的UE来说,其唯一标志是C-RNTI;对于非RRC_CONNECTED态的UE来说,将使用其他的UE标志(S-TMSI(临时UE识别号)或resume ID或一个随机数)作为其标志。
第四步中,Msg4:竞争解决,UE在Msg3有携带自己唯一的标志。基站在冲突解决机制中,会在Msg4中携带该唯一的标志以指定胜出的UE,而其它没有在冲突解决中胜出的UE将重新发起随机接入。如果UE在Msg4中接收到的PDCCH由RAR中指定的TC-RNTI(临时C-RNTI)加扰,则当成功解码出的MAC层PDU(协议数据单元)中包含的UE Contention Resolution Identity MAC control element(UE竞争解决ID MAC控制元素)与Msg3发送的CCCH SDU(公共控制信道服务数据单元)匹配时,UE会认为随机接入成功并将自己的TC-RNTI设置成C-RNTI。
如图2所示,2步RACH过程包括:第一步、UE传输MsgA,MsgA包括原4步RACH过程中的Msg1和Msg3;第二步、基站传输MsgB,MsgB包括原来4步RACH过程中的Msg2和Msg4。
5G(第五代移动通信技术)系统中,支持具有不同带宽接收能力的UE。为了支持不同带宽接收能力的终端,3GPP(第三代合作计划)组织定义了部分载波带宽(BWP)。同时为了节省终端功耗,网络可以根据UE的带宽接收能力为UE配置多个不同带宽长度或不同Numerology(参数集)的BWP,这些BWP需限制在UE的最大接收带宽范围内。UE/网络可以根据终端的业务需求以及负载情况自适应调整所用BWP,以便节省终端的功耗,提高传输速率,提升用户体验。
UE进行小区搜索,确定要驻留的SSB(同步信号和PBCH块)之后,接收SIB1(系统信息块1),获得初始接入资源,进行随机接入过程。根据MIB(总系统信息块)消息能够确定初始激活的BWP配置,UE在初始激活的UL BWP(上行BWP)和DL BWP(下行BWP)上进行初始接入。当UE跟网络完成RRC连接之后,网络会根据UE的业务需求为UE配置一个或多个UL BWP和DL BWP。可通过RRC信令或调度DCI(下行控制信息)进行BWP的激活。
当基站指示UE进入RRC_inactive/idle(非活跃/空闲)状态后,UE需要回退到初始激活的UL/DL BWP上驻留。
对于RRC_inactive状态的UE,需要驻留在初始激活的UL/DL BWP上进行操作,如接收paging/SI以及根据需求进行RACH(随机接入信道,Random Access Channel)过程。对小数据包(如App消息)传输的UE,如果UE数量大,这些UE都驻留在相同的初始激活UL/DL BWP进行上行/下行小数据包传输,有可能导致多个UE的数据在相同的资源上触发,从而导致碰撞概率加大,造成数据传输失败。
发明内容
本发明要解决的技术问题是为了克服现有技术中RRC_inactive状态的UE需要驻留在初始激活的UL/DL BWP上进行数据收发操作,致使如果大量的UE都驻留在相同的初始激活UL/DL BWP进行上行/下行小数据包传输,有可能导致多个UE的数据在相同的资源上触发,从而导致碰撞概率加大,造成数据传输失败的缺陷,提供一种BWP指示和转换方法、基站和用户、电子设备及介质。
本发明是通过下述技术方案来解决上述技术问题:
一种数据包传输带宽的指示方法,所述指示方法包括:
基站在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包时,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,所述基站通过RACH响应消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,所述基站通过RACH响应消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
在所述用户设备触发4步RACH过程后,所述基站通过Msg4承载的SRB消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在所述用户设备触发2步RACH过程后,所述基站通过MsgB承载的SRB消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在所述用户设备触发4步RACH过程后,所述基站通过Msg4中MAC子头或MAC CE指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在所述用户设备触发2步RACH过程后,所述基站通过MsgB中的MAC子头或成功的随机接入响应业务数据单元指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP包括:
指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站为所述用户设备指定的default DL BWP(默认下行BWP)及成对的UL BWP(上行BWP)进行后续上行传输及下行接收;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站从分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收;
或,
指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,
指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站为所述用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站从分配给所述用户设备的若干对非初始 激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收。
较佳地,所述指示方法还包括在基站指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前:
所述基站判断是否要求所述用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则执行指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP步骤。
一种数据包传输带宽的指示方法,所述指示方法包括:
基站在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包之后,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,所述基站通过PDCCH指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,所述基站通过PDCCH指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
在所述用户设备触发2步RACH过程后,所述基站指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,所述基站通过MsgB中指示的C-RNTI(小区无线网络临时标识)加扰PDCCH承载DCI(下行控制信息)中的Bandwidth part indicator(部分带宽指示,DCI中的一个字段)指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;
或,在所述用户设备触发4步RACH过程后,所述基站指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,所述基站通过Msg4中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP。
较佳地,所述指示方法还包括在基站指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前:
所述基站判断是否要求所述用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则执行指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP步骤。
一种数据包传输带宽的指示方法,所述指示方法包括:
基站在接收到多个RRC_inactive状态下的用户设备传输的数据包之后或在给多个RRC_inactive状态下的用户设备发送数据包时,使用如上所述的指示方法同时指示多个所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP且不同的用户设备被指 示的BWP相同或不同。
一种数据包传输带宽的转换方法,包括:
用户设备在RRC_inactive状态下接收基站对所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP的指示;
所述用户设备在RRC_inactive状态下根据所述指示在所指示的BWP上进行后续上行传输及下行接收。
一种基站,所述基站包括:
BWP指示模块,用于在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包时,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,所述BWP指示模块通过RACH响应消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,所述BWP指示模块通过RACH响应消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
在所述用户设备触发4步RACH过程后,所述BWP指示模块通过Msg4承载的SRB消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在所述用户设备触发2步RACH过程后,所述BWP指示模块通过MsgB承载的SRB消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在所述用户设备触发4步RACH过程后,所述BWP指示模块通过Msg4中MAC子头或MAC CE指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在所述用户设备触发2步RACH过程后,所述BWP指示模块通过MsgB中的MAC子头或成功的随机接入响应业务数据单元指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP包括:
指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站为所述用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站从分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收;
或,
指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,
指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站为所述用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站从分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收。
较佳地,所述基站还包括:
状态转换模块,用于在所述BWP指示模块指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前,判断是否要求所述用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则调用所述BWP指示模块指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
一种基站,所述基站包括:
BWP指示模块,用于在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包之后,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,所述BWP指示模块通过PDCCH指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
较佳地,所述BWP指示模块通过PDCCH指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
在所述用户设备触发2步RACH过程后,所述BWP指示模块指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,所述BWP指示模块通过MsgB中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;
或,在所述用户设备触发4步RACH过程后,所述BWP指示模块指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,所述BWP模块通过Msg4中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP。
较佳地,所述基站还包括:
状态转换模块,用于在所述BWP指示模块指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前,判断是否要求所述用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则调用所述BWP指示模块指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
一种基站,所述基站用于在接收到多个RRC_inactive状态下的用户设备传输的数据包之后或在给多个RRC_inactive状态下的用户设备发送数据包时,使用如上项所述的BWP指示模块同时指示多个所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP且不同的用户设备被指示的BWP相同或不同。
一种用户设备,包括:
指示接收模块,用于在RRC_inactive状态下接收基站对所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP的指示;
BWP转换模块,用于在RRC_inactive状态下根据所述指示在所指示的BWP上进行后续上行传输及下行接收。
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上所述的方法。
一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如上所述的方法的步骤。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明的基站可指示RRC_inactive状态下的用户设备是否进行UL/DL BWP转换,或继续驻留在初始激活的UL/DL BWP上,或转换到其他的非初始激活的UL/DL BWP上,以进行后续上行传输及下行接收(尤其是App消息类或其它应用场景的小数据包的传输),特别是指示转换到非初始激活的UL/DL BWP时进行后续上行传输及下行接收,可降低大量用户设备都在初始激活UL/DL BWP上进行上行传输及下行接收引发资源冲突的概率,提高上行传输及下行接收的成功率。
附图说明
图1为现有技术中4步RACH过程示意图;
图2为现有技术中2步RACH过程示意图;
图3为本发明较佳实施例1中针对上行传输、用户设备在RRC_inactive状态下触发4步RACH之后,基站与用户设备之间交互的示意图;
图4为本发明较佳实施例1中针对上行传输、用户设备在RRC_inactive状态下触发2步RACH之后,基站与用户设备之间交互的示意图;
图5为本发明较佳实施例2中针对下行接收、用户设备在RRC_inactive状态下触发4步RACH之后,基站与用户设备之间交互的示意图;
图6为本发明较佳实施例2中针对下行接收、用户设备在RRC_inactive状态下触发2步RACH之后,基站与用户设备之间交互的示意图;
图7为本发明较佳实施例3中针对上行传输、用户设备在RRC_inactive状态下触发4步RACH之后,基站与用户设备之间交互的示意图;
图8为本发明较佳实施例3中针对上行传输、用户设备在RRC_inactive状态下触发2步RACH之后,基站与用户设备之间交互的示意图;
图9为本发明较佳实施例4中针对下行接收、用户设备在RRC_inactive状态下触发4步RACH之后,基站与用户设备之间交互的示意图;
图10为本发明较佳实施例4中针对下行接收、用户设备在RRC_inactive状态下触发2步RACH之后,基站与用户设备之间交互的示意图;
图11为本发明较佳实施例7的一种数据包传输带宽的转换方法的流程图;
图12为本发明较佳实施例8的一种基站的示意框图;
图13为本发明较佳实施例9的一种基站的示意框图;
图14为本发明较佳实施例11的一种用户设备的示意框图;
图15为本发明较佳实施例12的一种电子设备的结构示意图。
具体实施方式
为了便于理解本发明,在具体说明本发明实施例之前,先对用户设备RCC状态转换的过程做简要说明:
起先,用户设备处于RCC_idle态;然后,用户设备在初始激活的UL/DL BWP(默认UL BWP0/DL BWP0)上通过初始接入过程进入到RCC_connected态;再然后,基站根据用户设备的业务特征以及用户设备的带宽能力,为用户设备配置了若干对非初始激活的UL/DL BWP(如2对非初始激活的UL/DL BWP1和UL/DL BWP2)及在对应BWP上收发数据的相关配置信息。当前数据传输结束,基站指示用户设备进入RCC_inactive状态以便节省设备功耗,用户设备收到指示后进入RCC_inactive状态并转到初始激活的UL/DL BWP,基站和用户设备将之前所有的配置信息存储下来。
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例提供一种数据包传输带宽的指示方法,其应用于基站,具体包括以下步骤:
基站在接收到RRC_inactive状态下的用户设备传输的数据包之后,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。其中,所述的后续是指在基站向用户设备做出了上述指示之后。上行传输所用的BWP包括用于上行反馈和/或上行数据传输的UL BWP,下行接收所用的BWP包括用于下行反馈和/或下行数据接收的DL BWP。其中,基站所接收到的数据包可以是App消息类或其它应用场景的数据量较小的小数据包。被指示的BWP可以是用户设备初始激活的UL/DL BWP(initial active UL/DL BWP),也可以是非初始激活的UL/DL BWP,如default DL BWP及成对的UL BWP或指定的其它非初始激活的UL/DL BWP,所述的非初始激活的UL/DL BWP通常是基站在用户设备进入连接态后分配给用户设备的。
本实施例中,基站具体通过RACH响应消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。具体地,RACH响应消息可以是4步RACH过程中的 Msg4,也可以是2步RACH过程中的MsgB。
基站通过4步RACH过程中的Msg4指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体可以采用以下两种方式中的任意一种:
方式一:在用户设备触发4步RACH过程后,基站通过Msg4承载的SRB消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;其中的SRB消息具体可以是RRCRelease(RRC释放)消息或RRCReject(RRC拒绝)消息,或新定义的RRC消息,在此不做限定。
方式二:在用户设备触发4步RACH过程后,基站通过Msg4中MAC子头或MAC CE指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;其中MAC子头可以是Msg4中竞争决议标识MAC CE对应的子头,也可以是Msg4中包含SRB消息业务数据单元对应的MAC子头。
基站通过2步RACH过程中的MsgB指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体可以采用以下两种方式中的任意一种:
方式一:在用户设备触发2步RACH过程后,基站通过MsgB承载的SRB消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;其中的SRB消息具体可以是RRCRelease消息或RRCReject消息,或新定义的RRC消息,在此不做限定。
方式二:在用户设备触发2步RACH过程后,基站通过MsgB中的MAC子头或成功的随机接入响应业务数据单元(successRAR)指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;其中MAC子头可以是MsgB中成功的随机接入响应业务数据单元对应的子头,也可以是MsgB中包含SRB消息业务数据单元对应的MAC子头。
上述的四种方式中,Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元均可以采用以下四种指示内容中的任意一种,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP:
第一种:指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP,该对BWP包括UL BWP和DL BWP。
第二种:指示用户设备在RRC_inactive状态下是否转到基站为用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;其中,若指示用户设备在RRC_inactive状态下不转到default DL BWP及成对的UL BWP,则用户设备保留在初始激活的UL BWP上进行后续上行传输,保留在初始激活的DL BWP上进行后续下行接收。
第三种:指示用户设备在RRC_inactive状态下是否转到基站从分配给用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收,该对BWP包括UL BWP和DL BWP;其中,若指示用户设备在RRC_inactive状态下不转到指定的该对BWP,则用户设备保留在初始激活的UL BWP上进行后续上行传输,保留在初始激活的DL BWP上进行后续下行接 收。
第四种:指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,附加上述的第一种、第二种或第三种指示内容。
上述的第一种指示内容需要占用2bit或更多bit数量,取决于最大可配置的BWP数量,第二种和第三种指示内容需要占用1bit,指示指定的BWP是否被激活。所述需要bit的位置可以使用Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元中的预留bit,也可以是扩展后的bit位置,对需要bit的位置不做限制。
上述第四种指示内容所描述指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收的方式,可以通过隐含方式指示用户设备是否保留在RRC_inactive状态下,如通过Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元是否包含BWP索引判断基站是否指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收,即,如果包含BWP索引则判断基站指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收,如果不包含BWP索引则判断基站指示用户设备需要转换到RRC_connected状态下进行后续的上行传输及下行接收;也可以通过显示方式指示用户设备是否保留在RRC_inactive状态下,如通过Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元中的1bit设置值确定基站是否指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收。
本实施例中,指示方法还可以进一步包括在基站指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前:
基站判断是否要求用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则执行指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP步骤。
其中,基站具体可以根据后续要接收或传输的数据包的数据量,或根据小区负载情况判断是否要求用户设备继续在RRC_inactive状态下进行后续上行传输及下行接收。
对于上述判断为否的情况,基站会要求用户设备转换到RRC_connected状态下接收或传输后续数据包。至于基站要求用户设备转换到RRC_connected状态下接收或传输后续数据包的具体过程,以及用户设备在接收到指示后如何转换到RRC_connected状态下及如何进行后续上行传输及下行接收均可参考现有技术,具体不再赘述。
下面给出一种针对上行传输、用户设备在RRC_inactive状态下触发4步RACH之后,基站与用户设备之间交互的具体流程,如图3所示:
S11:用户设备在初始激活的UL BWP上传输Msg1;
S12:基站在初始激活的DL BWP上传输Msg2;
S13:用户设备在初始激活的UL BWP上传输Msg3以及要传输给基站的上行数据包;
S14:基站确认要求用户设备继续在RRC_inactive状态下接收或传输后续数据包;
S15:基站在初始激活的DL BWP上传输Msg4,并通过Msg4承载的SRB消息或Msg4中的MAC 子头或MAC CE给出上述四种指示内容中的一种,以确定UL BWP和DL BWP进行后续的上行传输和下行接收。
下面给出一种针对上行传输、用户设备在RRC_inactive状态下触发2步RACH之后,基站与用户设备之间交互的具体流程,如图4所示:
S21:用户设备在初始激活UL BWP上传输MsgA以及要传输给基站的上行数据包;
S22:基站确认要求用户设备继续在RRC_inactive状态下接收或传输后续数据包;
S23:基站在初始激活DL BWP上传输MsgB,并通过MsgB承载的SRB消息或MsgB中的MAC子头或successRAR给出上述四种指示内容中的一种,以确定UL BWP和DL BWP进行后续的上行传输和下行接收。
在通常情况下,用户设备在RRC_inactive状态下只能驻留在初始激活的UL/DL BWP上,然而本实施例的指示方法通过上述步骤,使得基站可对用户设备在RRC_inactive状态下进行后续上行传输及下行接收的BWP进行指示,让用户设备可以继续驻留在初始激活的UL/DL BWP上,也可以从初始激活的UL/DL BWP转换到非初始激活的UL/DL BWP上,以执行后续的上行传输及下行接收步骤。尤其是在指示用户设备在RRC_inactive状态下转换到非初始激活的UL/DL BWP上进行后续上行传输及下行接收时,可降低大量UE都在初始激活的UL/DL BWP上进行上行传输及下行接收引发资源冲突的概率,提高数据上行传输及下行接收的成功率。
实施例2
本实施例提供一种数据包传输带宽的指示方法,其应用于基站,具体包括以下步骤:
基站在给RRC_inactive状态下的用户设备发送数据包时,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。其中,的后续是指在基站向用户设备做出了上述指示之后。上行传输所用的BWP包括用于上行反馈和/或上行数据传输的UL BWP,下行接收所用的BWP包括用于下行反馈和/或下行数据接收的DL BWP。其中,基站所接收到的数据包可以是App消息类或其它应用场景的数据量较小的小数据包。被指示的BWP可以是用户设备初始激活的UL/DL BWP(initial active UL/DL BWP),也可以是非初始激活的UL/DL BWP,如default DL BWP及成对de UL BWP或指定的其它非初始激活的UL/DL BWP,所述的非初始激活的UL/DL BWP通常是基站在用户设备进入连接态后分配给用户设备的。
本实施例中,基站具体通过RACH响应消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。具体地,RACH响应消息可以是4步RACH过程中的Msg4,也可以是2步RACH过程中的MsgB。
基站通过4步RACH过程中的Msg4指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体可以采用以下两种方式中的任意一种:
方式一:在用户设备触发4步RACH过程后,基站通过Msg4承载的SRB消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;其中的SRB消息具体可以是RRCRelease消息或RRCReject消息,或新定义的RRC消息,在此不做限定。
方式二:在用户设备触发4步RACH过程后,基站通过Msg4中MAC子头或MAC CE指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;其中MAC子头可以是Msg4中竞争决议标识MAC CE对应的子头,也可以是Msg4中包含SRB消息业务数据单元对应的MAC子头。
基站通过2步RACH过程中的MsgB指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体可以采用以下两种方式中的任意一种:
方式一:在用户设备触发2步RACH过程后,基站通过MsgB承载的SRB消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;其中的SRB消息具体可以是RRCRelease消息或RRCReject消息,或新定义的RRC消息,在此不做限定。
方式二:在用户设备触发2步RACH过程后,基站通过MsgB中的MAC子头或成功的随机接入响应业务数据单元指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;其中MAC子头可以是MsgB中成功的随机接入响应业务数据单元对应的子头,也可以是MsgB中包含SRB消息业务数据单元对应的MAC子头。
上述的四种方式中,Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元均可以采用以下四种指示内容中的任意一种,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP:
第一种:指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP,该对BWP包括UL BWP和DL BWP;
第二种:指示用户设备在RRC_inactive状态下是否转到基站为用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;其中,若指示用户设备在RRC_inactive状态下不转到default DL BWP及成对的UL BWP,则用户设备保留在初始激活的UL BWP上进行后续上行传输,保留在初始激活的DL BWP上进行后续下行接收。
第三种:指示用户设备在RRC_inactive状态下是否转到基站从分配给用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收,该对BWP包括UL BWP和DL BWP;其中,若指示用户设备在RRC_inactive状态下不转到指定的该对BWP,则用户设备保留在初始激活的UL BWP上进行后续上行传输,保留在初始激活的DL BWP上进行后续下行接收。
第四种:指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,附加上述的第一种、第二种或第三种指示内容。
上述的第一种指示内容需要占用2bit或更多bit数量,取决于最大可配置的BWP数量,第二种和第三种指示内容需要占用1bit,指示指定的BWP是否被激活。所述需要bit的位置可以使用Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元中的预留bit,也可以是扩展后的bit位置,对需要bit的位置不做限制。
上述第四种指示内容所描述指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收的方式,可以通过隐含方式指示用户设备是否保留在RRC_inactive状态下,如通过Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元是否包含BWP索引判断基站是否指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收,即,如果包含BWP索引则判断基站指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收,如果不包含BWP索引则判断基站指示用户设备需要转换到RRC_connected状态下进行后续的上行传输及下行接收;也可以通过显示方式指示用户设备是否保留在RRC_inactive状态下,如通过Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元中的1bit设置值确定基站是否指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收。
本实施例中,指示方法还可以进一步包括在基站指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前:
基站判断是否要求用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则执行指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP步骤。
其中,基站具体可以根据后续要接收或传输的数据包的数据量,或根据小区负载情况判断是否要求用户设备继续在RRC_inactive状态下进行后续上行传输及下行接收。
对于判断为否的情况,基站会要求用户设备转换到RRC_connected状态下接收或传输后续数据包。至于基站要求用户设备转换到RRC_connected状态下接收或传输后续数据包的具体过程,以及用户设备在接收到指示后如何转换到RRC_connected状态下及如何进行后续上行传输及下行接收均可参考现有技术,具体不再赘述。
下面给出一种针对下行接收、用户设备在RRC_inactive状态下触发4步RACH之后,基站与用户设备之间交互的具体流程,如图5所示:
S31:用户设备在初始激活的UL BWP上传输Msg1;
S32:基站在初始激活的DL BWP上传输Msg2;
S33:用户设备在初始激活的UL BWP上传输Msg3:
S34:基站确认要求用户设备继续在RRC_inactive状态下接收或传输后续数据包;
S35:基站在初始激活的DL BWP上传输Msg4以及要发送给用户设备的下行数据包,并通过Msg4承载的SRB消息或Msg4中的MAC子头或MAC CE给出上述四种指示内容中的一种,以确定UL BWP和DL BWP进行后续的上行传输和下行接收。
下面给出一种针对下行接收、用户设备在RRC_inactive状态下触发2步RACH之后,基站与用户设备之间交互的具体流程,如图6所示:
S41:用户设备在初始激活UL BWP上传输MsgA;
S42:基站确认要求用户设备继续在RRC_inactive状态下接收或传输后续数据包;
S43:基站在初始激活DL BWP上传输MsgB以及要发送给用户设备的下行数据包,并通过MsgB 承载的SRB消息或MsgB中的MAC子头或successRAR给出上述四种指示内容中的一种,以确定UL BWP和DL BWP进行后续的上行传输和下行接收。
在通常情况下,用户设备在RRC_inactive状态下只能驻留在初始激活的UL/DL BWP上,然而本实施例的指示方法通过上述步骤,使得基站可对用户设备在RRC_inactive状态下进行后续上行传输及下行接收的BWP进行指示,让用户设备可以继续驻留在初始激活的UL/DL BWP上,也可以从初始激活的UL/DL BWP转换到非初始激活的UL/DL BWP上,以执行后续的上行传输及下行接收步骤。尤其是在指示用户设备在RRC_inactive状态下转换到非初始激活的UL/DL BWP上进行后续上行传输及下行接收时,可降低大量UE都在初始激活的UL/DL BWP上进行上行传输及下行接收引发资源冲突的概率,提高数据上行传输及下行接收的成功率。
实施例3
本实施例提供一种数据包传输带宽的指示方法,其应用于基站,具体包括以下步骤:
基站在接收到RRC_inactive状态下的用户设备传输的数据包之后,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。其中,所述的后续是指在基站向用户设备做出了上述指示之后。上行传输所用的BWP包括用于上行反馈和/或上行数据传输的UL BWP,下行接收所用的BWP包括用于下行反馈和/或下行数据接收的DL BWP。其中,基站所接收到的数据包可以是App消息类或其它应用场景的数据量较小的小数据包。被指示的BWP可以是用户设备初始激活的UL/DL BWP(initial active UL/DL BWP),也可以是非初始激活的UL/DL BWP,如default DL BWP及成对的UL BWP或指定的其它非初始激活的UL/DL BWP,所述的非初始激活的UL/DL BWP通常是基站在用户设备进入连接态后分配给用户设备的。
本实施例中,基站通过PDCCH指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。其具体可以采用以下两种方式中的任意一种:
方式一:在用户设备触发2步RACH过程后,基站通过MsgB指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收,以及通过MsgB中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP,该对BWP包括UL BWP和DL BWP。
方式二:在用户设备触发4步RACH过程后,基站通过Msg4指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收,以及通过Msg4中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP,该对BWP包括UL BWP和DL BWP。
上述方式描述基站指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收的方式,可以通过显示方式指示用户设备是否保留在RRC_inactive状态下,如通过Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务 数据单元中的1bit设置值确定基站是否指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收,然后用户设备再通过接收PDCCH来获得后续上行传输及下行接收所用的BWP索引。
本实施例中,指示方法还可以进一步包括在基站指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前:
基站判断是否要求用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则执行指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP步骤。
其中,基站具体可以根据后续要接收或传输的数据包的数据量,或根据小区负载情况判断是否要求用户设备继续在RRC_inactive状态下进行后续上行传输及下行接收。
对于上述判断为否的情况,基站会要求用户设备转换到RRC_connected状态下接收或传输后续数据包。至于基站要求用户设备转换到RRC_connected状态下接收或传输后续数据包的具体过程,以及用户设备在接收到指示后如何转换到RRC_connected状态下及如何进行后续上行传输及下行接收均可参考现有技术,具体不再赘述。
下面给出一种针对上行传输、用户设备在RRC_inactive状态下触发4步RACH之后,基站与用户设备之间交互的具体流程,如图7所示:
S51:用户设备在初始激活的UL BWP上传输Msg1;
S52:基站在初始激活的DL BWP上传输Msg2;
S53:用户设备在初始激活的UL BWP上传输Msg3以及要传输给基站的上行数据包;
S54:基站确认要求用户设备继续在RRC_inactive状态下接收或传输后续数据包;
S55:基站在初始激活的DL BWP上传输Msg4,且Msg4中指示C-RNTI,Msg4承载的SRB消息、Msg4中MAC子头或Msg4中的MAC CE指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收;
S56:基站在初始激活的DL BWP上传输PDCCH;
S57:用户设备监听以C-RNTI加扰的PDCCH,PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引。
下面给出一种针对上行传输、用户设备在RRC_inactive状态下触发2步RACH之后,基站与用户设备之间交互的具体流程,如图8所示:
S61:用户设备在初始激活的UL BWP上传输MsgA以及要传输给基站的上行数据包;
S62:基站确认要求用户设备继续在RRC_inactive状态下接收或传输后续数据包;
S63:基站在初始激活DL BWP上传输MsgB,且MsgB中指示C-RNTI,MsgB承载的SRB消息、MsgB中MAC子头或MsgB中的成功的随机接入响应业务数据单元指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收;
S64:基站在初始激活的DL BWP上传输PDCCH;
S65:用户设备监听以C-RNTI加扰的PDCCH,PDCCH承载DCI中的Bandwidth part indicator指 示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引。
在通常情况下,用户设备在RRC_inactive状态下只能驻留在初始激活的UL/DL BWP上,然而本实施例的指示方法通过上述步骤,使得基站可对用户设备在RRC_inactive状态下进行后续上行传输及下行接收的BWP进行指示,让用户设备可以继续驻留在初始激活的UL/DL BWP上,也可以从初始激活的UL/DL BWP转换到非初始激活的UL/DL BWP上,以执行后续的上行传输及下行接收步骤。尤其是在指示用户设备在RRC_inactive状态下转换到非初始激活的UL/DL BWP上进行后续上行传输及下行接收时,可降低大量UE都在初始激活的UL/DL BWP上进行上行传输及下行接收引发资源冲突的概率,提高数据上行传输及下行接收的成功率。
实施例4
本实施例提供一种数据包传输带宽的指示方法,其应用于基站,具体包括以下步骤:
基站在给RRC_inactive状态下的用户设备发送数据包之后,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。其中,所述的后续是指在基站向用户设备做出了上述指示之后。上行传输所用的BWP包括用于上行反馈和/或上行数据传输的UL BWP,下行接收所用的BWP包括用于下行反馈和/或下行数据接收的DL BWP。其中,基站所接收到的数据包可以是App消息类或其它应用场景的数据量较小的小数据包。被指示的BWP可以是用户设备初始激活的UL/DL BWP(initial active UL/DL BWP),也可以是非初始激活的UL/DL BWP,如default DL BWP及成对的UL BWP或指定的其它非初始激活的UL/DL BWP,所述的非初始激活的UL/DL BWP通常是基站在用户设备进入连接态后分配给用户设备的。
本实施例中,基站通过PDCCH指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。其具体采用以下两种方式中的任意一种:
方式一:在用户设备触发2步RACH过程后,基站指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收,以及通过MsgB中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP,该对BWP包括UL BWP和DL BWP。
方式二:在用户设备触发4步RACH过程后,基站指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收,以及通过Msg4中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP,该对BWP包括UL BWP和DL BWP。
上述方式描述基站指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收的方式,可以通过显示方式指示用户设备是否保留在RRC_inactive状态下,如通过Msg4/MsgB承载的SRB消息、Msg4/MsgB中MAC子头、Msg4中的MAC CE以及MsgB中的成功的随机接入响应业务数据单元中的1bit设置值确定基站是否指示用户设备仍保留在RRC_inactive状态下进行后续的上行 传输及下行接收,然后用户设备再通过接收PDCCH来获得后续上行传输及下行接收所用的BWP索引。
本实施例中,指示方法还可以进一步包括在基站指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前:
基站判断是否要求用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则执行指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP步骤。
其中,基站具体可以根据后续要接收或传输的数据包的数据量,或根据小区负载情况判断是否要求用户设备继续在RRC_inactive状态下进行后续上行传输及下行接收。
对于上述判断为否的情况,基站会要求用户设备转换到RRC_connected状态下接收或传输后续数据包。至于基站要求用户设备转换到RRC_connected状态下接收或传输后续数据包的具体过程,以及用户设备在接收到指示后如何转换到RRC_connected状态下及如何进行后续上行传输及下行接收均可参考现有技术,具体不再赘述。
下面给出一种针对下行接收、用户设备在RRC_inactive状态下触发4步RACH之后,基站与用户设备之间交互的具体流程,如图9所示:
S71:用户设备在初始激活的UL BWP上传输Msg1;
S72:基站在初始激活的DL BWP上传输Msg2;
S73:用户设备在初始激活的UL BWP上传输Msg3:
S74:基站确认要求用户设备继续在RRC_inactive状态下接收或传输后续数据包;
S75:基站在初始激活的DL BWP上传输Msg4以及要发送给用户设备的下行数据包,且Msg4中指示C-RNTI,Msg4承载的SRB消息、Msg4中MAC子头或Msg4中的MAC CE指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收;
S76:基站在初始激活的DL BWP上传输PDCCH;
S77:用户设备监听以C-RNTI加扰的PDCCH,PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引。
下面给出一种针对下行接收、用户设备在RRC_inactive状态下触发2步RACH之后,基站与用户设备之间交互的具体流程,如图10所示:
S81:用户设备在初始激活的UL BWP上传输MsgA;
S82:基站确认要求用户设备继续在RRC_inactive状态下接收或传输后续数据包;
S83:基站在初始激活的DL BWP上传输MsgB以及要发送给用户设备的下行数据包,且MsgB中指示C-RNTI,MsgB承载的SRB消息、MsgB中MAC子头或MsgB中的成功的随机接入响应业务数据单元指示用户设备仍保留在RRC_inactive状态下进行后续的上行传输及下行接收;
S84:基站在初始激活的DL BWP上传输PDCCH;
S85:用户设备监听以C-RNTI加扰的PDCCH,PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引。
在通常情况下,用户设备在RRC_inactive状态下只能驻留在初始激活的UL/DL BWP上,然而本实施例的指示方法通过上述步骤,使得基站可对用户设备在RRC_inactive状态下进行后续上行传输及下行接收的BWP进行指示,让用户设备可以继续驻留在初始激活的UL/DL BWP上,也可以从初始激活的UL/DL BWP转换到非初始激活的UL/DL BWP上,以执行后续的上行传输及下行接收步骤。尤其是在指示用户设备在RRC_inactive状态下转换到非初始激活的UL/DL BWP上进行后续上行传输及下行接收时,可降低大量UE都在初始激活的UL/DL BWP上进行上行传输及下行接收引发资源冲突的概率,提高数据上行传输及下行接收的成功率。
实施例5
本实施例提供一种数据包传输带宽的指示方法,指示方法包括:
基站在接收到多个RRC_inactive状态下的用户设备传输的数据包之后,通过RACH响应消息同时指示多个用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP且不同的用户设备被指示的BWP相同或不同。其中,通过RACH响应消息同时指示多个用户设备的具体过程可参考实施例1。
指示方法通过将多个RRC_inactive状态下的用户设备分布到不同的BWP上进行上行传输及下行接收,降低大量用户设备都驻留在初始激活的UL/DL BWP上进行上行传输及下行接收引发资源冲突的概率,提高上行传输及下行接收的成功率。
实施例6
本实施例提供一种数据包传输带宽的指示方法,指示方法包括:
基站在给多个RRC_inactive状态下的用户设备发送数据包时,通过RACH响应消息同时指示多个用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP且不同的用户设备被指示的BWP相同或不同。其中,通过RACH响应消息同时指示多个用户设备的具体过程可参考实施例2。
指示方法通过将多个RRC_inactive状态下的用户设备分布到不同的BWP上进行上行传输及下行接收,降低大量用户设备都驻留在初始激活的UL/DL BWP上进行上行传输及下行接收引发资源冲突的概率,提高上行传输及下行接收的成功率。
实施例7
本实施例提供一种数据包传输带宽的转换方法,其应用于用户设备,如图11所示,其包括:
S91:用户设备在RRC_inactive状态下接收基站对用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP的指示;
S92:用户设备在RRC_inactive状态下根据指示在所指示的BWP上进行后续上行传输及下行接收。
其中,若基站指示了用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,则用户设备在BWP索引所指向的UL BWP和DL BWP上进行后续上行传输及下行接收。
若基站指示了用户设备在RRC_inactive状态下转到基站为用户设备指定的default DL BWP及成 对的UL BWP进行后续上行传输及下行接收,则用户设备在RRC_inactive状态下转到基站为用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;
若基站指示了用户设备在RRC_inactive状态下不转到基站为用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收,则用户设备在RRC_inactive状态下继续在初始激活UL BWP和DL BWP进行后续上行传输及下行接收。
若基站指示了用户设备在RRC_inactive状态下转到基站从分配给用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收,则用户设备在RRC_inactive状态下在指定的该对BWP进行后续上行传输及下行接收;
若基站指示了用户设备在RRC_inactive状态下不转到基站从分配给用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收,则用户设备在RRC_inactive状态下继续在初始激活UL BWP和DL BWP进行后续上行传输及下行接收。
实施例8
本实施例提供一种基站,如图12所示,基站包括:
BWP指示模块011,用于在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包时,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
其中,BWP指示模块011通过RACH响应消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
具体地,BWP指示模块011通过RACH响应消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
在用户设备触发4步RACH过程后,BWP指示模块011通过Msg4承载的SRB消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在用户设备触发2步RACH过程后,BWP指示模块011通过MsgB承载的SRB消息指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在用户设备触发4步RACH过程后,BWP指示模块011通过Msg4中MAC子头或MAC CE指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
或,在用户设备触发2步RACH过程后,BWP指示模块011通过MsgB中的MAC子头或成功的随机接入响应业务数据单元指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
具体地,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP包括:
指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示用户设备在RRC_inactive状态下是否转到基站为用户设备指定的default  DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示用户设备在RRC_inactive状态下是否转到基站从分配给用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收;
或,
指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示用户设备在RRC_inactive状态下是否转到基站为用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示用户设备在RRC_inactive状态下是否转到基站从分配给用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收。
另外,基站还包括:
状态转换模块012,用于在BWP指示模块011指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前,判断是否要求用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则调用BWP指示模块011指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
相关具体说明可参考实施例1-2。
实施例9
本实施例提供一种基站,如图13所示,基站包括:
BWP指示模块021,用于在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包之后,指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
其中,BWP指示模块021通过PDCCH指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
具体地,BWP指示模块021通过PDCCH指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
在用户设备触发2步RACH过程后,BWP指示模块021指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,BWP指示模块021通过MsgB中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;
或,在用户设备触发4步RACH过程后,BWP指示模块021指示用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,BWP指示模块021通过Msg4中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示用户设备在RRC_inactive状态下进行后续上行传 输及下行接收所用的BWP索引,BWP索引指向初始激活的UL BWP及DL BWP或基站分配给用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP。
另外,基站还包括:
状态转换模块022,用于在BWP指示模块021指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前,判断是否要求用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则调用BWP指示模块021指示用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
相关具体说明可参考实施例3-4。
实施例10
本实施例提供一种基站,基站用于在接收到多个RRC_inactive状态下的用户设备传输的数据包之后或在给多个RRC_inactive状态下的用户设备发送数据包时,使用实施例8中的BWP指示模块同时指示多个用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP且不同的用户设备被指示的BWP相同或不同。
实施例11
本实施例提供一种用户设备,如图14所示,其包括:
指示接收模块031,用于在RRC_inactive状态下接收基站对用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP的指示;
BWP转换模块032,用于在RRC_inactive状态下根据指示在所指示的BWP上进行后续上行传输及下行接收。
实施例12
图15为本发明实施例12提供的一种电子设备的结构示意图。电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现实施例1-7的任意一种方法。图15显示的电子设备50仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图15所示,电子设备50可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备50的组件可以包括但不限于:上述至少一个处理器51、上述至少一个存储器52、连接不同系统组件(包括存储器52和处理器51)的总线53。
总线53包括数据总线、地址总线和控制总线。
存储器52可以包括易失性存储器,例如随机存取存储器(RAM)521和/或高速缓存存储器522,还可以进一步包括只读存储器(ROM)523。
存储器52还可以包括具有一组(至少一个)程序模块525的程序/实用工具525,这样的程序模块524包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器51通过运行存储在存储器52中的计算机程序,从而执行各种功能应用以及数据处理,例 如本发明实施例1-7所提供的方法。
电子设备50也可以与一个或多个外部设备54(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口55进行。并且,模型生成的设备50还可以通过网络适配器56与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图15所示,网络适配器56通过总线53与模型生成的设备50的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成的设备50使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例13
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现实施例1-7所提供的任意一种方法的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行实现实施例1-7所述的任意一种方法中的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (24)

  1. 一种数据包传输带宽的指示方法,其特征在于,所述指示方法包括:
    基站在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包时,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  2. 如权利要求1所述的指示方法,其特征在于,所述基站通过RACH响应消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  3. 如权利要求2所述的指示方法,其特征在于,所述基站通过RACH响应消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
    在所述用户设备触发4步RACH过程后,所述基站通过Msg4承载的SRB消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
    或,在所述用户设备触发2步RACH过程后,所述基站通过MsgB承载的SRB消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
    或,在所述用户设备触发4步RACH过程后,所述基站通过Msg4中MAC子头或MAC CE指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
    或,在所述用户设备触发2步RACH过程后,所述基站通过MsgB中的MAC子头或成功的随机接入响应业务数据单元指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  4. 如权利要求2和3中至少一项所述的指示方法,其特征在于,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP包括:
    指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站为所述用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站从分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收;
    或,
    指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,
    指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站为所述用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站从分配给所述用户设备的若干对非初始 激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收。
  5. 如权利要求1至4中至少一项所述的指示方法,其特征在于,所述指示方法还包括在基站指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前:
    所述基站判断是否要求所述用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则执行指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP步骤。
  6. 一种数据包传输带宽的指示方法,其特征在于,所述指示方法包括:
    基站在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包之后,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  7. 如权利要求6所述的指示方法,其特征在于,所述基站通过PDCCH指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  8. 如权利要求7所述的指示方法,其特征在于,所述基站通过PDCCH指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
    在所述用户设备触发2步RACH过程后,所述基站指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,所述基站通过MsgB中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;
    或,在所述用户设备触发4步RACH过程后,所述基站指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,所述基站通过Msg4中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP。
  9. 如权利要求6至8中至少一项所述的指示方法,其特征在于,所述指示方法还包括在基站指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前:
    所述基站判断是否要求所述用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则执行指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP步骤。
  10. 一种数据包传输带宽的指示方法,其特征在于,所述指示方法包括:
    基站在接收到多个RRC_inactive状态下的用户设备传输的数据包之后或在给多个RRC_inactive状态下的用户设备发送数据包时,使用权利要求2-5中任意一项所述的指示方法同时指示多个所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP且不同的用户设备被指示的BWP相同或不同。
  11. 一种数据包传输带宽的转换方法,其特征在于,包括:
    用户设备在RRC_inactive状态下接收基站对所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP的指示;
    所述用户设备在RRC_inactive状态下根据所述指示在所指示的BWP上进行后续上行传输及下行接收。
  12. 一种基站,其特征在于,所述基站包括:
    BWP指示模块,用于在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包时,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  13. 如权利要求12所述的基站,其特征在于,所述BWP指示模块通过RACH响应消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  14. 如权利要求13所述的基站,其特征在于,所述BWP指示模块通过RACH响应消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
    在所述用户设备触发4步RACH过程后,所述BWP指示模块通过Msg4承载的SRB消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
    或,在所述用户设备触发2步RACH过程后,所述BWP指示模块通过MsgB承载的SRB消息指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
    或,在所述用户设备触发4步RACH过程后,所述BWP指示模块通过Msg4中MAC子头或MAC CE指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP;
    或,在所述用户设备触发2步RACH过程后,所述BWP指示模块通过MsgB中的MAC子头或成功的随机接入响应业务数据单元指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  15. 如权利要求13和14中至少一项所述的基站,其特征在于,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP包括:
    指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站为所述用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站从分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收;
    或,
    指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,
    指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述 BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站为所述用户设备指定的default DL BWP及成对的UL BWP进行后续上行传输及下行接收;或,指示所述用户设备在RRC_inactive状态下是否转到所述基站从分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中指定的一对BWP进行后续上行传输及下行接收。
  16. 如权利要求12至15中至少一项所述的基站,其特征在于,所述基站还包括:
    状态转换模块,用于在所述BWP指示模块指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前,判断是否要求所述用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则调用所述BWP指示模块指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  17. 一种基站,其特征在于,所述基站包括:
    BWP指示模块,用于在接收到RRC_inactive状态下的用户设备传输的数据包之后或在给RRC_inactive状态下的用户设备发送数据包之后,指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  18. 如权利要求17所述的基站,其特征在于,所述BWP指示模块通过PDCCH指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  19. 如权利要求18所述的基站,其特征在于,所述BWP指示模块通过PDCCH指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP,具体包括:
    在所述用户设备触发2步RACH过程后,所述BWP指示模块指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,所述BWP指示模块通过MsgB中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DLBWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP;
    或,在所述用户设备触发4步RACH过程后,所述BWP指示模块指示所述用户设备保留在RRC_inactive状态下进行后续的上行传输及下行接收;以及,所述BWP模块通过Msg4中指示的C-RNTI加扰PDCCH承载DCI中的Bandwidth part indicator指示所述用户设备在RRC_inactive状态下进行后续上行传输及下行接收所用的BWP索引,所述BWP索引指向初始激活的UL BWP及DL BWP或所述基站分配给所述用户设备的若干对非初始激活的UL BWP及DL BWP中的一对BWP。
  20. 如权利要求17至19中至少一项所述的基站,其特征在于,所述基站还包括:
    状态转换模块,用于在所述BWP指示模块指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP之前,判断是否要求所述用户设备继续在RRC_inactive状态下接收或传输后续数据包,若是,则调用所述BWP指示模块指示所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP。
  21. 一种基站,其特征在于,所述基站用于在接收到多个RRC_inactive状态下的用户设备传输的 数据包之后或在给多个RRC_inactive状态下的用户设备发送数据包时,使用权利要求13-16中至少一项所述的BWP指示模块同时指示多个所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP且不同的用户设备被指示的BWP相同或不同。
  22. 一种用户设备,其特征在于,包括:
    指示接收模块,用于在RRC_inactive状态下接收基站对所述用户设备在RRC_inactive状态下进行后续上行传输所用的BWP及下行接收所用的BWP的指示;
    BWP转换模块,用于在RRC_inactive状态下根据所述指示在所指示的BWP上进行后续上行传输及下行接收。
  23. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1至11中至少一项所述的方法。
  24. 一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求1至11中至少一项所述的方法的步骤。
PCT/CN2021/075637 2020-01-08 2021-02-05 Bwp指示和转换方法、基站和用户、电子设备及介质 WO2021139828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010019453.4 2020-01-08
CN202010019453.4A CN111194089B (zh) 2020-01-08 2020-01-08 Bwp指示和转换方法、基站和用户、电子设备及介质

Publications (1)

Publication Number Publication Date
WO2021139828A1 true WO2021139828A1 (zh) 2021-07-15

Family

ID=70709953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075637 WO2021139828A1 (zh) 2020-01-08 2021-02-05 Bwp指示和转换方法、基站和用户、电子设备及介质

Country Status (2)

Country Link
CN (2) CN111194089B (zh)
WO (1) WO2021139828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026893A (zh) * 2021-09-30 2022-02-08 北京小米移动软件有限公司 一种sdt传输方法、装置及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11240867B2 (en) * 2019-10-25 2022-02-01 Huawei Technologies Co., Ltd. Method and device for configuring and using a bandwidth part for communication in radio resource control inactive state
CN111194089B (zh) * 2020-01-08 2023-06-27 北京紫光展锐通信技术有限公司 Bwp指示和转换方法、基站和用户、电子设备及介质
WO2022010209A1 (en) 2020-07-06 2022-01-13 Samsung Electronics Co., Ltd. Method and apparatus for small data transmission
CN113950153A (zh) 2020-07-15 2022-01-18 华硕电脑股份有限公司 选择预配置小数据传送中后续传送带宽部分的方法和设备
CN114071746A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种通信方法及装置
CN114205920B (zh) * 2020-09-17 2023-12-08 华硕电脑股份有限公司 无线通信系统中用于小数据传送程序的方法和设备
CN114448807A (zh) * 2020-10-16 2022-05-06 夏普株式会社 带宽配置方法和用户设备
WO2022143755A1 (en) * 2020-12-29 2022-07-07 FG Innovation Company Limited Methods for bandwidth part switching and user equipment using the same
KR20240004769A (ko) * 2021-05-10 2024-01-11 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보 전송 방법, 장치, 통신 기기 및 저장 매체
CN113994765B (zh) * 2021-09-22 2024-04-09 北京小米移动软件有限公司 一种bwp切换方法、装置及存储介质
WO2024020807A1 (zh) * 2022-07-26 2024-02-01 北京小米移动软件有限公司 非激活态组播业务接收、配置发送方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109156026A (zh) * 2018-08-13 2019-01-04 北京小米移动软件有限公司 上行调度请求的发送方法、装置、设备及存储介质
US20190200393A1 (en) * 2017-12-21 2019-06-27 Samsung Electronics Co., Ltd. System and method of handling bandwidth part inactivity timer
CN110022197A (zh) * 2018-01-10 2019-07-16 维沃移动通信有限公司 参考信号的处理方法、网络设备和终端
CN110072285A (zh) * 2018-01-22 2019-07-30 维沃移动通信有限公司 频域资源的配置方法、终端和基站
CN111194089A (zh) * 2020-01-08 2020-05-22 北京紫光展锐通信技术有限公司 Bwp指示和转换方法、基站和用户、电子设备及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190200393A1 (en) * 2017-12-21 2019-06-27 Samsung Electronics Co., Ltd. System and method of handling bandwidth part inactivity timer
CN110022197A (zh) * 2018-01-10 2019-07-16 维沃移动通信有限公司 参考信号的处理方法、网络设备和终端
CN110072285A (zh) * 2018-01-22 2019-07-30 维沃移动通信有限公司 频域资源的配置方法、终端和基站
CN109156026A (zh) * 2018-08-13 2019-01-04 北京小米移动软件有限公司 上行调度请求的发送方法、装置、设备及存储介质
CN111194089A (zh) * 2020-01-08 2020-05-22 北京紫光展锐通信技术有限公司 Bwp指示和转换方法、基站和用户、电子设备及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RENO: "3GPP TSG-RAN WG2 Meeting #108 R2-1916355", STAGE-2 RUNNING CR NR IIOT_DEC_2019, 22 November 2019 (2019-11-22), XP051839273 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026893A (zh) * 2021-09-30 2022-02-08 北京小米移动软件有限公司 一种sdt传输方法、装置及存储介质

Also Published As

Publication number Publication date
CN111194089B (zh) 2023-06-27
CN111194089A (zh) 2020-05-22
CN117015047A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2021139828A1 (zh) Bwp指示和转换方法、基站和用户、电子设备及介质
US20190021058A1 (en) Method and apparatus for power saving in a wireless communication system
US11700571B2 (en) Method and apparatus for recovering RRC connection, and computer storage medium
EP3624549B1 (en) Methods and devices for controlling rrc state
US10560929B2 (en) Resource request method and system, device, and network side node
US11265963B2 (en) Method and apparatus for suspending RRC connection, and computer storage medium
EP3117550B1 (en) Network node, radio network node, and methods for selecting a second secondary cell of a wireless device
WO2020143617A1 (zh) 一种下行控制信道的传输方法、终端和网络侧设备
EP3621399B1 (en) Method and device for sending random access response message, method and device for receiving random access response message
WO2018024016A1 (zh) 无线网络中的接入方法及设备
CN110831184A (zh) 一种终端能力的传输方法、网络设备及终端
CA3131866A1 (en) Terminal waking method, device and storage medium
US11974317B2 (en) Data transmission method and apparatus, computer device, and system
WO2022012440A1 (zh) 物理下行控制信道pdcch监测方法、装置及终端
JP2023547257A (ja) Pdcp重複の配置、アクティブ化又は非アクティブ化方法と端末
US11602001B2 (en) Method and device for resuming data radio bearer, storage medium and electronic device
US20230040049A1 (en) Method for transmitting data and terminal
US10917871B2 (en) Method and device for determining carrier for bearing paging message and sending paging message
US20220110170A1 (en) Random access channel type selection method and device
WO2021088679A1 (zh) 一种通信方法及装置
BR112012007676B1 (pt) Método e equipamento para a obtenção da informação da solicitação de repetição automática híbrida (harq) de um canal de controle comum (ccch)
RU2801324C2 (ru) Способ произвольного доступа и устройство
KR102029583B1 (ko) 무선 통신 시스템에서 그룹 기반 초기 접속 방법 및 그 방법을 이용하는 기지국
CN112788649B (zh) 网络连接的控制方法、终端及存储介质
WO2020164553A1 (zh) 一种随机接入方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738030

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21738030

Country of ref document: EP

Kind code of ref document: A1