WO2021139695A1 - 一种谐波增宽线性范围的磁电阻传感器 - Google Patents

一种谐波增宽线性范围的磁电阻传感器 Download PDF

Info

Publication number
WO2021139695A1
WO2021139695A1 PCT/CN2021/070518 CN2021070518W WO2021139695A1 WO 2021139695 A1 WO2021139695 A1 WO 2021139695A1 CN 2021070518 W CN2021070518 W CN 2021070518W WO 2021139695 A1 WO2021139695 A1 WO 2021139695A1
Authority
WO
WIPO (PCT)
Prior art keywords
pull
push
magnetoresistive
magnetoresistance
resistance
Prior art date
Application number
PCT/CN2021/070518
Other languages
English (en)
French (fr)
Inventor
迪克詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2022542111A priority Critical patent/JP7432964B2/ja
Priority to EP21738821.4A priority patent/EP4089428A4/en
Publication of WO2021139695A1 publication Critical patent/WO2021139695A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays

Definitions

  • the disclosed embodiments relate to magnetic sensor technology, and in particular, to a magnetoresistive sensor with a harmonic widening linear range.
  • the magnetoresistance sensing unit includes a free layer, a pinned layer, and an intermediate insulating layer.
  • the push-pull linear tunnel magnetoresistance sensor includes a push magnetoresistance sensor unit and a pull magnetoresistance sensor unit.
  • the angle difference between the free layer and the pinned layer magnetic moment anglePL-angleFL is 90° and -90°, where anglePL is the direction angle of the pinned layer magnetic moment ⁇ p , and angleFL is the direction angle of the free layer magnetic moment ⁇ f .
  • the relationship between the resistance R of the push-pull linear tunnel magnetoresistance sensor and the external magnetic field H is related to the zero magnetic field resistance R0 of the magnetoresistance sensing unit, the rate of change of magnetoresistance MR, and the saturation magnetic field Hs of the free layer. It has a symmetrical linear range [ -HL,HL].
  • the existing push-pull linear tunnel magnetoresistive sensor has a narrow linear range.
  • the embodiment of the disclosure provides a magnetoresistive sensor with a harmonic widened linear range, so as to improve the linear range of the push-pull linear tunnel magnetoresistive sensor.
  • the embodiment of the present disclosure provides a magnetoresistive sensor with a harmonic widened linear range, including:
  • a plurality of push-pull magnetoresistance sensing bridges located on the substrate the multinomial push-pull magnetoresistance sensing bridge includes a push arm and a pull arm, and the push arm includes N types of push magnetoresistance sensors.
  • each magnetoresistance sensor unit includes zero magnetic field resistance R0 i , magnetoresistance change rate MR i , free layer saturation magnetic field H si , pinned layer magnetic moment direction angle ⁇ pi and series-parallel coefficient a i , wherein, the push magnetoresistance sensor unit has a pinned layer magnetic moment direction angle + ⁇ pi , and the pull magnetoresistance sensor unit has a pinned layer magnetic moment direction angle - ⁇ pi , where i is an integer from 1 to N,
  • the key characteristic parameters of the push magnetoresistance sensor unit and the corresponding pull magnetoresistance sensor unit are different from the key characteristic parameters of the standard magnetoresistance sensor unit of the standard push-pull linear magnetoresistance sensor,
  • j is an integer greater than or equal to 1 and less than or equal to N, which characterizes the magnetic push resistance sensor
  • the linear part and the non-linear harmonic part of the RH characteristic curve of the unit and its corresponding pull magnetoresistive sensing unit are superimposed, so that the linear range of the multinomial push-pull magnetoresistive sensing bridge is larger than the standard push
  • two or more magnetoresistive sensing units with different key characteristic parameters are provided in the push-pull magnetoresistive sensor, and the magnetoresistive sensing units are connected in series, parallel, or mixed series and parallel. , Constitute a new multi-push-pull magnetoresistive sensor.
  • the multinomial push-pull magnetoresistive sensor has at least one set of key characteristic parameters [(R0 j ,MR j ,H sj , ⁇ pj ),a j ], which characterizes the push-pull magnetoresistive sensor unit and its corresponding pull
  • the linear part and the nonlinear harmonic part of the RH characteristic curve of the magnetoresistive sensor unit are superimposed, so that the linear range of the multi-push-pull magnetoresistive sensor bridge is larger than that of the standard push-pull linear magnetoresistive sensor, which improves Linear range.
  • Figure 1 is a graph of the magnetization curve of a single domain magnetic moment with an external magnetic field
  • Figure 2 is a diagram of the magnetic moment and the orientation of the external magnetic field of the magnetoresistive sensing unit
  • Figure 3 is an electrical connection diagram of a push-pull magnetoresistive sensor
  • Figure 4a is a view of the orientation of the magnetic moment of the push magnetoresistive sensor unit
  • Figure 4b is a diagram of the orientation of the magnetic moment of the pull magnetoresistive sensor unit
  • Figure 5 is a characteristic curve diagram of a standard push-pull TMR linear magnetoresistive sensor
  • Fig. 6 is a diagram showing the relationship between the magnetoresistance sensing unit and the direction angle of the pinned layer
  • Figure 7 is a cross-sectional view of a multiple push-pull magnetoresistive sensor
  • Figure 8 is an electrical connection diagram of multiple push-pull magnetoresistive sensors
  • Figure 9 is a graph showing the relationship between the sensitivity of the standard and multi-push-pull linear magnetoresistive sensors with changes in the external magnetic field;
  • Fig. 10 is a graph showing the relationship between the sensitivity difference of standard and multi-push-pull linear magnetoresistive sensors with external magnetic field changes;
  • Figure 11 is a graph showing the relationship between the sensitivity difference of standard and multi-push-pull linear magnetoresistive sensors with external magnetic field changes;
  • Figure 12 is a graph showing the relationship between the sensitivity of standard and multiple push-pull linear magnetoresistive sensors with changes in external magnetic field;
  • Figure 13 is an electrical connection diagram of a multiple push-pull linear magnetoresistive sensor with shunt resistance
  • Figure 14 is an electrical connection diagram of a multinomial push-pull linear magnetoresistive sensor with shunt resistance
  • Figure 15 is a graph showing the relationship between the resistance of the magnetoresistance sensing unit of a multinomial push-pull linear magnetoresistance sensor with shunt resistance and the change of an external magnetic field;
  • Figure 16 is a graph showing the relationship between the sensitivity of standard and multinomial push-pull linear magnetoresistive sensors with shunt resistors as a function of external magnetic field.
  • the embodiment of the disclosure provides a magnetoresistive sensor with a harmonic widened linear range.
  • the magnetoresistive sensor may be a push-pull linear magnetoresistive sensor based on tunnel magnetoresistance technology.
  • the magnetoresistive sensor provided in this embodiment includes: a substrate; a multi-push-pull magneto-resistance sensing bridge located on the substrate, and the multi-push-pull magneto-resistance sensing bridge includes a push arm and a pull
  • the push arm includes N types of push magnetoresistance sensing units, and the pull arm includes N types of pull magnetoresistance sensing units, where N is an integer greater than 1.
  • each magnetoresistance sensing unit includes zero Magnetic field resistance R0 i , magnetoresistance change rate MR i , free layer saturation magnetic field H si , pinning layer magnetic moment direction angle ⁇ pi, and series-parallel coefficient a i , wherein the push magnetic resistance sensing unit has pinning Layer magnetic moment direction angle + ⁇ pi , the pull magnetoresistance sensor unit has a pinned layer magnetic moment direction angle - ⁇ pi , i is an integer from 1 to N, the push magnetoresistance sensor unit and its corresponding
  • the key characteristic parameters of the pull magnetoresistive sensor unit are different from those of the standard push-pull linear magnetoresistive sensor.
  • the magnetoresistive sensor with the harmonic widened linear range is a multinomial push-pull TMR linear magnetoresistive sensor, and TMR is a tunnel magnetoresistive technology.
  • the push arm includes N types of push magnetic resistance sensing units, and the key characteristic parameters of the i-th push magnetic resistance sensing unit are [(R0 i , MR i , H si , + ⁇ pi ), a i ] ,
  • the pull arm contains N types of pull magnetic resistance sensing units.
  • the key characteristic parameters of the i-th pull magnetic resistance sensing unit are [(R0 i , MR i , H si , - ⁇ pi ), a i ], push arm and
  • the connection modes of the N magnetoresistive sensing units of the arm are completely the same.
  • the standard push-pull linear magnetoresistance sensor includes a standard push magnetoresistance sensor unit and a standard pull magnetoresistance sensor unit.
  • the magnetoresistive sensor unit of the magnetoresistive sensor with the harmonic widened linear range there is at least one push magnetoresistance sensor unit and its corresponding pull magnetoresistance sensor unit, and its key characteristic parameters [( R0 j ,MR j ,H sj , ⁇ pj ),a j ] and the key characteristic parameters of the standard push/pull magnetoresistive sensor unit [(R0 s ,MR s ,H ss , ⁇ ps ),a s ]
  • the difference mentioned here means that there is a difference in at least one of the five key characteristic parameters of the magnetoresistive sensing unit.
  • a multinomial push-pull TMR linear magnetoresistive sensor it is characterized by the superposition of the linear part and the nonlinear harmonic part of the RH characteristic curve of the push magnetoresistive sensor unit and its corresponding pull magnetoresistance sensor unit, so that the multinomial push
  • the linear range of the pull-type TMR linear magnetoresistive sensor bridge is greater than that of the standard push-pull linear magnetoresistive sensor.
  • the range of the magnetic moment direction angle of the pinned layer of the magnetoresistive sensing unit of the multiple push-pull magnetoresistive sensing bridges is 0°-360°.
  • the direction angle of the magnetic moment of the pinned layer of the magnetoresistive sensor unit is realized by laser annealing, and the value range is 0-360°
  • the range of the zero magnetic field resistance of the magnetoresistance sensing unit of the multi-selectable push-pull magnetoresistance sensing bridge is 1K ⁇ -1000M ⁇ .
  • the parameter of zero magnetic field resistance is realized by setting the area size of the magnetoresistance sensing unit, and the value range is 1KOhm-1000Mohm.
  • the range of the saturation magnetic field of the free layer of the magnetoresistance sensing unit of multiple push-pull magnetoresistance sensing bridges is 1-100 Oe.
  • the parameters of the free layer saturation magnetic field are set by setting the permanent magnet bias magnetic field, or the shape aspect ratio of the magnetoresistance sensor unit, or by setting the exchange bias magnetic field of the exchange coupling layer, and the value range is 1-100Oe .
  • the compensation between the nonlinear terms can be realized, so that N kinds of push magnetoresistive sensing units and pull
  • the linear part and nonlinear harmonic part of the magnetic resistance R-external magnetic field H characteristic curve of the magnetic resistance sensing unit are superimposed, making the linear range HL of the multi-push-pull TMR linear magnetic resistance sensor relative to the standard push-pull TMR linear magnetic
  • the linear range HLs of the resistance sensor is improved, thereby obtaining a push-pull TMR linear magnetoresistive sensor with a higher linear range.
  • the resistance R of the magnetoresistive sensing unit is expressed as follows:
  • ⁇ f is the direction angle of the magnetic moment of the free layer of the magnetoresistive sensor unit relative to the X axis under the action of the external magnetic field H
  • ⁇ p is the direction angle of the pinned layer magnetic moment of the magnetoresistance sensor unit relative to the X axis
  • ⁇ f - ⁇ p is the angle between the magnetic moment of the free layer and the magnetic moment of the pinned layer
  • the resistance value of MR is the resistance change rate of the magnetoresistance sensing unit, that is, the rate of change of the magnetoresistance, the pinned layer magnetic moment direction angle ⁇ p is fixed, and the free layer magnetic moment direction angle ⁇ f changes with the change of the external magnetic field H.
  • the free layer can normalize the magnetic field H to x and the normalized magnetic moment M to Mx. It is known that the free layer magnetic moment of the magnetoresistive sensor unit has a direction angle relative to the X axis under the action of the external magnetic field H. f , then the regularized magnetic field H and the regularized magnetic moment M are expressed as follows:
  • FIG. 4a shows a schematic diagram of the magnetic moment orientation and magnetic field orientation corresponding to the push magnetoresistive sensor unit
  • FIG. 4b is a schematic diagram of the magnetic moment orientation and magnetic field orientation corresponding to the pull magnetoresistive sensor unit.
  • the direction angle of the pinned layer of the push magnetoresistive sensor unit is ⁇ pi
  • the direction angle of the pinned layer of the pull magnetoresistance sensor unit is - ⁇ pi
  • the direction angle of the pinned layer of the magnetoresistive sensor unit is fixed, and the direction angle of the pinned layer of the specific push magnetoresistance sensor unit is different from the pinned layer direction angle of the pull magnetoresistive sensor unit and has the same absolute value.
  • the pinned layer direction angle of the standard push-pull magnetoresistive sensor unit is 90°
  • the pinned layer direction angle of the standard pull magnetoresistive sensor unit is -90°.
  • the free layer saturation magnetic field Hss of the standard push magnetic resistance sensing unit and the standard pull magnetic resistance sensing unit can take different values
  • the characteristic curve of the resistance RvsH/Hs of the standard push magnetic resistance sensing unit and the standard pull magnetic resistance transmission The characteristic curve of the resistance RvsH/Hs of the sensing unit is the same curve as shown in FIG. 5.
  • the free layer saturation magnetic field Hs of the magnetoresistive sensor unit does not affect the characteristic curve of RvsH/Hs, and the direction angle of the pinned layer of the magnetoresistive sensor unit may affect RvsH/Hs Characteristic curve.
  • the direction angle of the pinned layer of the magnetoresistive sensor unit is non-90°, such as 0°, 10°, 20°,..., 180°, and the RvsH/Hs characteristics of the magnetoresistive sensor unit
  • the curve includes a non-linear stage in the interval [-HL, HL], and the more the pinned layer direction angle deviates from 90°, the RvsH/Hs characteristic curve of the non-linear stage in the interval [-HL, HL] is relative to the linear stage.
  • the proportion is gradually increasing.
  • the different key characteristic parameters include at least one of different pinning layer orientation angles, different free layer saturation magnetic fields Hs, and different zero magnetic field resistances R0.
  • the multi-push-pull magnetoresistive sensor includes a substrate 100 and a push-pull sensor located on the substrate 100. Pull type magnetoresistive sensor 90.
  • the multiple push-pull magnetoresistive sensor includes a push arm 91 and a pull arm 92.
  • the push arm 91 includes N types of push magnetic resistance sensing units 94, and the key characteristic parameters of the i-th push magnetic resistance sensing unit 94 are [(R0 i , MR i , H si , + ⁇ pi ), a i ].
  • the pull arm 92 includes N types of pull magnetic resistance sensing units, and the key characteristic parameters of the i-th pull magnetic resistance sensing unit are [(R0 i , MR i , H si , - ⁇ pi ), a i ].
  • the series-parallel connection relationship 93 of the magnetoresistance sensor unit is characterized by the series-parallel coefficient a i , 95 marks the direction of the pinned layer magnetic moment of the magnetoresistance sensor unit, and N types of magnetoresistance sensing of the push arm 91 and the pull arm 92
  • the connection modes of the units are completely the same, and the N types of magnetoresistance sensing units can be connected in series, parallel or series-parallel to form push arms and pull arms.
  • the multiple push-pull magnetoresistive sensor shown in Figure 8 there are at least one set of push-pull magnetoresistive sensor units and their corresponding pull magnetoresistive sensor units, and their key characteristic parameters are different from those of standard push-pull linear magnetoresistive sensors.
  • the key characteristic parameters of the standard magnetoresistive sensing unit are [(R0 s ,MR s ,H ss , ⁇ ps ),a s ], among which, select
  • the key characteristic parameters of the standard push magnetic resistance sensor unit are [(500*e3, 200, 10Oe, 90°), 1]
  • the key characteristic parameters of the standard pull magnetic resistance sensor unit are [(500*e3, 200, 10Oe, -90°), 1]
  • the formulas of the resistance R pushs of the push arm and the resistance R pulls of the pull arm are expressed as follows:
  • R pushs R(500e3,200,90°,10,1) (7)
  • R pulls R(500e3,200,-90°,10,1) (8)
  • ⁇ fs is the direction angle of the free layer magnetic moment of the standard magnetoresistive sensor unit.
  • the sensitivity of a standard push-pull linear magnetoresistive sensor can be expressed as:
  • the bridge arm resistance R is not only a function of the direction angle of the magnetic moment of the pinned layer of the magnetoresistive sensor unit and the saturation magnetic field of the free layer, but also a function of the rate of change of the magnetoresistance and the zero magnetic field resistance R0, namely:
  • the bridge arm resistance R is not only a function of the direction angle of the magnetic moment of the pinned layer of the magnetoresistive sensor unit and the saturation magnetic field of the free layer, but also a function of the rate of change of the magnetoresistance and the zero magnetic field resistance R0, namely:
  • the linear range shown in B3 is improved compared to the standard push-pull linear magnetoresistive sensor.
  • the optional N types of push magnetoresistance sensing units that form the push arm are connected in parallel, and the N types of pull magnet resistance sensor units that form the pull arm are connected in parallel.
  • the resistance R push of the push arm, the resistance R pull of the pull arm and the resistance R i of the multi-push-pull magnetoresistive sensing bridge satisfy the following relationship:
  • R i (R0 i , MR i , H si , + ⁇ pi ) represents the resistance value corresponding to the four key characteristic parameters of the push magnetoresistive sensor unit
  • R i (R0 i , MR i , H si , - ⁇ pi ) characterizes the resistance values corresponding to the four key characteristic parameters of the pull magnet resistance sensing unit.
  • the optional N types of push magnetoresistance sensing units forming the push arm are connected in series, and the N types of pull magnetoresistive sensor units forming the pull arm are connected in series. ;
  • the resistance R push of the push arm, the resistance R pull of the pull arm and the resistance R i of the multi-push-pull magnetoresistive sensing bridge satisfy the following relationship:
  • R i (R0 i , MR i , H si , + ⁇ pi ) represents the resistance value corresponding to the four key characteristic parameters of the push magnetoresistive sensor unit
  • R i (R0 i , MR i , H si , - ⁇ pi ) characterizes the resistance values corresponding to the four key characteristic parameters of the pull magnet resistance sensing unit.
  • the key parameters of the pull magnetoresistive sensor unit are:
  • the key characteristic parameters of the push-pull magnetoresistive sensor unit are:
  • the key parameters of the pull magnetoresistive sensor unit are:
  • the resistance R push of the push arm, the resistance R pull of the pull arm and the resistance R i of the multi-push-pull magnetoresistive sensing bridge satisfy the following relationship:
  • R i (R0 i , MR i , H si , + ⁇ pi ) represents the resistance value corresponding to the four key characteristic parameters of the push magnetoresistive sensor unit
  • R i (R0 i , MR i , H si , - ⁇ pi ) characterizes the resistance values corresponding to the four key characteristic parameters of the pull-magnetic resistance sensing unit
  • m is an integer greater than or equal to 1 and less than or equal to N.
  • the optional magnetoresistive sensor further includes: a magnetoresistive shunt resistor R sh located on the substrate, the magnetoresistive shunt resistor Rsh is connected to a multi-push-pull magnetoresistive sensing bridge, and the magnetoresistive shunt resistor R sh
  • the key feature parameters of is [(R0 sh , MR sh , H ssh , ⁇ psh ), a sh ], there is at least one set of key feature parameters ⁇ [(R0 sh ,MR sh ,H ssh , ⁇ psh ),a sh ],[(R0 i ,MR i ,H si , ⁇ pi ),a i ] ⁇ , making the RH characteristic curve of the magnetoresistive shunt resistance R sh and the push magnetoresistance in the polynomial push-pull magnetoresistive sensing bridge The RH characteristic curves of the sensing unit and the pull magnet resistance sensing unit are superimposed.
  • a magnetoresistive shunt resistor R shunt is introduced, so that the magnetoresistive shunt resistor R shunt is connected in series with the multiple push-pull magnetoresistive sensing bridge, and the magnetic field follows the magnetic field through R shunt.
  • the RH characteristic curve of the magnetoresistance shunt resistance R sh of the magnetoresistance sensor unit is compared with the RH curve of the push magnetoresistance sensor unit and the pull magnetoresistance sensor unit in the multinomial push-pull magnetoresistance sensor bridge.
  • the superposition makes the linear range of the multinomial push-pull magnetoresistive sensing bridge including the magnetoresistive shunt resistance larger than that of the standard push-pull linear magnetoresistive sensor.
  • FIG. 13 is an electrical connection diagram of a multinomial push-pull magnetoresistive sensor 100 with a magnetoresistive shunt resistor R shunt.
  • the multinomial push-pull magnetoresistive sensor 100 includes a linear push-pull magnetoresistive sensor bridge 110, wherein the linear push-pull magnetoresistive sensor bridge 110 can be a standard or a multinomial push-pull magnetoresistive sensor bridge.
  • the multiple push-pull magnetoresistive sensor 100 also includes a magnetoresistive shunt resistor R shunt 120 connected to a linear push-pull magnetoresistive sensing bridge 110.
  • the key characteristic parameter of the magnetoresistive shunt resistor R shunt 120 is [(R0 sh , MR sh , H ssh , ⁇ psh ), a sh ], the ash coefficient indicates that R shunt can characterize the series, parallel, or series-parallel connection between R0 sh.
  • the sensitivity of multiple push-pull magnetoresistive sensors 100 can be expressed as:
  • FIG. 14 is an electrical connection diagram of a multi-push-pull magnetoresistive sensor 200 with a magnetoresistive shunt resistor R shunt.
  • the multinomial push-pull magnetoresistive sensor 200 includes a linear push-pull magnetoresistive sensor bridge 210, where the linear push-pull magnetoresistive sensor bridge 210 can be a standard or a multinomial push-pull magnetoresistive sensor bridge.
  • the key characteristic parameters of the bridge and magnetoresistive sensing unit are [(R0 i ,MR i ,H si , ⁇ pi ),a i ].
  • the multiple push-pull magnetoresistive sensor 200 also includes a shunt push resistor R shunt 220 connected to a linear push-pull magnetoresistive sensing bridge 210.
  • the key characteristic parameters of the shunt push resistor R shunt 220 are [(R0 sh , MR sh , H ssh , + ⁇ psh ), a sh ], and also including shunt pull resistance R shunt 230, the key characteristic parameters of shunt pull resistance R shunt 230 are [(R0 sh , MR sh , H ssh , - ⁇ psh ) , A sh ].
  • sensitivity of a multinomial push-pull magnetoresistive sensor 200 can be expressed as:
  • Table 3 compares the key parameters of multiple push-pull linear magnetic resistance sensors with magnetic resistance shunt resistors and standard push-pull linear magnetic resistance sensors.
  • the key parameters of the standard push magnetoresistive sensor unit and standard pull magnetoresistive sensor unit are:
  • Figure 15 shows the magnetic field characteristic curves of the push magnetic resistance sensing unit, the pull magnetic resistance sensing unit and the magnetic resistance shunt resistance. It can be seen that the magnetic resistance shunt resistance has a symmetrical curve characteristic, which is respectively compared with the push magnetic resistance sensing unit and the pull magnetic The resistance sensing unit forms a complement.
  • Figure 16 shows the sensitivity S vs. external magnetic field H curve characteristics of the standard push-pull linear magnetoresistive sensor and the multi-push-pull linear magnetoresistive sensor with shunt resistance. It can be seen that compared to the standard push-pull linear magnetoresistive sensor with shunt resistance The multinomial push-pull linear magnetoresistive sensor has a wider linear range.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种谐波增宽线性范围的磁电阻传感器,包括:衬底(100)和多项推挽式磁电阻传感电桥,其推臂(91)包含N种推磁电阻传感单元(94),其挽臂(92)包含N种挽磁电阻传感单元;每个磁电阻传感单元的关键特征参数包括R 0i、MR i、H si、±α pi以及a i,推磁电阻传感单元(94)及其对应的挽磁电阻传感单元的关键特征参数不同于标准推挽式线性磁电阻传感器的标准磁电阻传感单元的关键特征参数,存在着至少一组关键特征参数[(R 0j,MR j,H Sj,±α pj),a j],将表征推磁电阻传感单元和挽磁电阻传感单元的R-H特征曲线线性部分、非线性谐波部分进行叠加,使得多项推挽式磁电阻传感电桥的线性范围大于标准推挽式线性磁电阻传感器的线性范围。

Description

一种谐波增宽线性范围的磁电阻传感器 技术领域
本揭露实施例涉及磁传感器技术,尤其涉及一种谐波增宽线性范围的磁电阻传感器。
背景技术
磁电阻传感单元包括自由层、钉扎层以及中间绝缘层。在实际使用时,推挽式线性隧道磁电阻传感器包括推磁电阻传感单元和挽磁电阻传感单元,其自由层和钉扎层磁矩之间的角度差anglePL-angleFL分别为90°和-90°,其中anglePL为钉扎层磁矩方向角α p,angleFL为自由层磁矩方向角α f
推挽式线性隧道磁电阻传感器的电阻R随外磁场H的变化关系与其中磁电阻传感单元的零磁场电阻R0,磁阻变化率MR,自由层饱和磁场Hs相关,具有对称的线性范围[-HL,HL]。
现有推挽式线性隧道磁电阻传感器的线性范围窄。
发明内容
本揭露实施例提供一种谐波增宽线性范围的磁电阻传感器,以提高推挽式线性隧道磁电阻传感器的线性范围。
本揭露实施例提供了一种谐波增宽线性范围的磁电阻传感器,包括:
衬底;
位于所述衬底上的多项推挽式磁电阻传感电桥,所述多项推挽式磁电阻传感电桥包括推臂和挽臂,所述推臂包含N种推磁电阻传感单元,所述挽臂包含N种挽磁电阻传感单元,N为大于1的整数;
每个磁电阻传感单元的关键特征参数包括零磁场电阻R0 i、磁电阻变化率MR i、自由层饱和磁场H si、钉扎层磁矩方向角±α pi以及串并联系数a i,其中,所述推磁电阻传感单元具有钉扎层磁矩方向角+α pi,所述挽磁电阻传感单元具有钉扎层磁矩方向角-α pi,i为1到N的整数,所述推磁电阻传感单元及其对应的所述挽磁电阻传感单元的关键特征参数不同于标准推挽式线性磁电阻传感器的标准磁电阻传感单元的关键特征参数,
存在着至少一组关键特征参数[(R0 j,MR j,H sj,±α pj),a j],j为大于或等于1且小于或等于N的整数,表征所述推磁电阻传感单元和其对应的所述挽磁电阻传感单元的R-H特征曲线线性部分、非线性谐波部分进行叠加,使得所述多项推挽式磁电阻传感电桥的线性范围大于所述标准推挽式线性磁电阻传感器的线性范围,其中,所述标准磁电阻传感单元的 关键特征参数为[(R0 s,MR s,H ss,±α ps),a s],±α ps=90°,a s=1。
本揭露实施例中,在推挽式磁电阻传感器中设置两个或者多个具有不同关键特征参数的磁电阻传感单元,将磁电阻传感单元通过串联、并联或者混合串并联的方式进行连接,构成新的多项推挽式磁电阻传感器。该多项推挽式磁电阻传感器,存在着至少一组关键特征参数[(R0 j,MR j,H sj,±α pj),a j],表征推磁电阻传感单元和其对应的挽磁电阻传感单元的R-H特征曲线线性部分、非线性谐波部分进行叠加,使得多项推挽式磁电阻传感电桥的线性范围大于标准推挽式线性磁电阻传感器的线性范围,提高了线性范围。
附图说明
为了更清楚地说明本揭露实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本揭露的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是单畴磁矩随外磁场的磁化曲线图;
图2是磁电阻传感单元的磁矩及外磁场方位图;
图3是推挽式磁电阻传感器的电连接图;
图4a是推磁电阻传感单元的磁矩取向方位图;
图4b是挽磁电阻传感单元的磁矩取向方位图;
图5是标准推挽式TMR线性磁电阻传感器特征曲线图;
图6是磁电阻传感单元随钉扎层方向角变化的关系图;
图7是多项推挽式磁电阻传感器的截面图;
图8是多项推挽式磁电阻传感器的电连接图;
图9是标准及多项推挽式线性磁电阻传感器的灵敏度随外磁场变化的关系曲线图;
图10是标准及多项推挽式线性磁电阻传感器的灵敏度差随外磁场变化的关系曲线图;
图11是标准及多项推挽式线性磁电阻传感器的灵敏度差随外磁场变化的关系曲线图;
图12是标准及多项推挽式线性磁电阻传感器的灵敏度随外磁场变化的关系曲线图;
图13是带分流电阻的多项推挽式线性磁电阻传感器的电连接图;
图14是带分流电阻的多项推挽式线性磁电阻传感器的电连接图;
图15是带分流电阻的多项推挽式线性磁电阻传感器的磁电阻传感单元电阻随外磁场变化的关系曲线图;
图16是标准及带分流电阻的多项推挽式线性磁电阻传感器的灵敏度随外磁场变化的关系曲线图。
具体实施方式
为使本揭露的目的、技术方案和优点更加清楚,以下将参照本揭露实施例中的附图,通过实施方式清楚、完整地描述本揭露的技术方案,显然,所描述的实施例是本揭露一部分实施例,而不是全部的实施例。基于本揭露中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本揭露保护的范围。
本揭露实施例提供了一种谐波增宽线性范围的磁电阻传感器,可选该磁电阻传感器为基于隧道磁阻技术的推挽式线性磁电阻传感器。本实施例提供的磁电阻传感器包括:衬底;位于所述衬底上的多项推挽式磁电阻传感电桥,所述多项推挽式磁电阻传感电桥包括推臂和挽臂,所述推臂包含N种推磁电阻传感单元,所述挽臂包含N种挽磁电阻传感单元,N为大于1的整数;每个磁电阻传感单元的关键特征参数包括零磁场电阻R0 i、磁电阻变化率MR i、自由层饱和磁场H si、钉扎层磁矩方向角±α pi以及串并联系数a i,其中,所述推磁电阻传感单元具有钉扎层磁矩方向角+α pi,所述挽磁电阻传感单元具有钉扎层磁矩方向角-α pi,i为1到N的整数,所述推磁电阻传感单元及其对应的所述挽磁电阻传感单元的关键特征参数不同于标准推挽式线性磁电阻传感器的标准磁电阻传感单元的关键特征参数,存在着至少一组关键特征参数[(R0 j,MR j,H sj,±α pj),a j],j为大于或等于1且小于或等于N的整数,表征所述推磁电阻传感单元和其对应的所述挽磁电阻传感单元的R-H特征曲线线性部分、非线性谐波部分进行叠加,使得所述多项推挽式磁电阻传感电桥的线性范围大于所述标准推挽式线性磁电阻传感器的线性范围,其中,所述标准磁电阻传感单元的关键特征参数为[(R0 s,MR s,H ss,±α ps),a s],±α ps=90°,a s=1。该谐波增宽线性范围的磁电阻传感器为多项推挽式TMR线性磁电阻传感器,TMR为隧道磁阻技术。
本实施例中,推臂包含N种推磁电阻传感单元,第i种推磁电阻传感单元的关键特征参数为[(R0 i,MR i,H si,+α pi),a i],挽臂包含N种挽磁电阻传感单元,第i种挽磁电阻传感单元的关键特征参数为[(R0 i,MR i,H si,-α pi),a i],推臂和挽臂的N种磁电阻传感单元的连接方式完全相同。
标准推挽式线性磁电阻传感器包括标准推磁电阻传感单元和标准挽磁电阻传感单元,标准推磁电阻传感单元的关键特征参数均为[(R0 s,MR s,H ss,+α ps),a s],标准挽磁电阻传感单元的关键特征参数均为[(R0 s,MR s,H ss,-α ps),a s],其中,α ps=90°,a s=1,其磁场线性范围为[-HLs,HLs]。
本实施例中,谐波增宽线性范围的磁电阻传感器的磁电阻传感单元中,存在着至少一个推磁电阻传感单元及其对应的挽磁电阻传感单元,其关键特征参数[(R0 j,MR j,H sj,±α pj),a j]与标准推/挽磁电阻传感单元的关键特征参数[(R0 s,MR s,H ss,±α ps),a s]不同,在此所述的不同是指推磁电阻传感单元的五个关键特征参数中至少一个参数存在差异。例如谐波增宽线性范围的磁电阻传感器中存在着至少一个推磁电阻传感单元,其钉扎层磁矩方向 角不等于90°,而标准推磁电阻传感单元的钉扎层磁矩方向角固定为90°。
对于多项推挽式TMR线性磁电阻传感器,则表征为推磁电阻传感单元和其对应的挽磁电阻传感单元的R-H特征曲线线性部分、非线性谐波部分进行叠加,使得多项推挽式TMR线性磁电阻传感电桥的线性范围大于标准推挽式线性磁电阻传感器的线性范围。如此可使得本揭露提供的多项推挽式TMR线性磁电阻传感器的线性范围为[-HL,HL],该[-HL,HL]覆盖标准推挽式线性磁电阻传感器的线性范围[-HLs,HLs],本揭露提供的多项推挽式TMR线性磁电阻传感器的增益因子Q=HL/HLs,Q为大于1的数。
可选多项推挽式磁电阻传感电桥的磁电阻传感单元的钉扎层磁矩方向角的取值范围为0°-360°。其中,磁电阻传感单元的钉扎层磁矩方向角通过激光退火的方式实现,取值范围为0-360°
可选多项推挽式磁电阻传感电桥的磁电阻传感单元的零磁场电阻的取值范围为1KΩ-1000MΩ。其中,零磁场电阻的参数通过设定磁电阻传感单元的面积大小实现,取值范围为1KOhm-1000Mohm。
可选多项推挽式磁电阻传感电桥的磁电阻传感单元的自由层饱和磁场的取值范围为1-100Oe。其中,自由层饱和磁场的参数通过设置永磁偏置磁场,或者磁电阻传感单元的形状长宽比,或者通过设置交换耦合层的交换偏置磁场来实现设置,取值范围为1-100Oe。
可选多项推挽式磁电阻传感电桥的线性范围与标准推挽式线性磁电阻传感器的线性范围的比值大于1且小于等于2。即多项推挽式TMR线性磁电阻传感器的增益因子Q=HL/HLs,Q大于1且小于等于2。其中,多项推挽式磁电阻传感电桥的线性范围HL与标准推挽式线性磁电阻传感器的线性范围的比值Q大于1且小于等于2。
多项推挽式TMR线性磁电阻传感器的灵敏度S=V/Vcc,Vcc为电源电压信号,V为输出电压信号,S vs H表征了在[-HL,HL]磁场线性区间内,S与外磁场H的线性关系;以及,在H>HL或H<-HL的磁场区间内,S与外磁场H的关系表现为非线性,具体为包含外磁场H的二次谐波或高次谐波的非线性关系。显然,如果能够对非线性区间的二次谐波项或者高次谐波项进行补偿,那么多项推挽式TMR线性磁电阻传感器的线性范围将会得到增强。
而多项推挽式TMR线性磁电阻传感器中,磁电阻传感单元的磁电阻R vs H特征曲线除了在anglePL-angleFL=90°和-90°时具有良好的线性之外,在其他角度如0°或者180°,其非线性项如谐波项或者高次谐波项会根据角度值不同而展示出不同R vs H非线性特征。本揭露中通过这些具有不同线性项和非线性项的磁电阻传感单元之间的并联和/或串联连接,可以实现非线性项之间的补偿,使得N种推磁电阻传感单元和挽磁电阻传感单元的磁电阻R-外磁场H特征曲线线性部分、非线性谐波部分进行叠加,使得多项推挽式TMR线性磁电阻传感器的线性范围HL相对于标准推挽式TMR线性磁电阻传感器的线性范围HLs得到提高,从而得到更高线性范围的推挽式TMR线性磁电阻传感器。
具体过程如下所述。
参考图1所示为磁电阻传感单元的自由层磁矩和外磁场的坐标关系图,其中,纵坐标M/Ms为自由层磁矩,横坐标H/Hs为磁电阻传感单元受到的外磁场。单畴磁电阻传感单元中,磁矩M和外磁场H的关系式M(H)表达如下:
M=Ms·tanh(H/Hs)   (1)
结合图1和式(1)可知,在外磁场H/Hs接近0的范围如[-1,+1]区间内,自由层磁矩M/Ms和外磁场H/Hs可以视为线性关系;在外磁场H/Hs接近1如[+1,+3]及[-3,-1]区间内,自由层磁矩M/Ms和外磁场H/Hs为非线性过渡部分;在外磁场H/Hs的更大范围如[-5,-3]及[+3,+5]区间内,自由层磁矩M/Ms可以近似为1。
参考图2所示为磁电阻传感单元的磁矩M和外磁场H的取向关系图,其中,X方向表征零磁场时自由层磁化方向,Y方向表征外磁场H方向。磁电阻传感单元的电阻R表示如下:
Figure PCTCN2021070518-appb-000001
其中,α f为磁电阻传感单元的自由层磁矩在外磁场H作用下相对于X轴的方向角,α p为磁电阻传感单元的钉扎层磁矩相对于X轴的方向角,α fp为自由层磁矩与钉扎层磁矩之间的夹角,R0为磁电阻传感单元在最小磁场(零磁场)时的电阻值即α fp=180°时的电阻值,MR为磁电阻传感单元的阻抗变化率即磁电阻变化率,钉扎层磁矩方向角α p固定不变,自由层磁矩方向角α f随外磁场H变化而变化。
参考图3所示为推挽式磁电阻传感器的结构图。对于推挽式全桥结构的磁电阻传感器,其推臂电阻为R push,其挽臂电阻为R pull,那么其输出端信号电压V与电源两端电压Vcc所对应的信号灵敏度S=V/Vcc可转换为:
Figure PCTCN2021070518-appb-000002
自由层在外磁场H作用下,可以正则化磁场H为x以及正则化磁矩M为Mx,已知磁电阻传感单元的自由层磁矩在外磁场H作用下相对于X轴的方向角为α f,则正则化磁场H和正则化磁矩M表达如下:
Figure PCTCN2021070518-appb-000003
Figure PCTCN2021070518-appb-000004
结合式(1)、(4)和(5),可以得到:M x=tanh(x)   (1-1)。
代入并计算得到自由层磁矩方向角α f为:
Figure PCTCN2021070518-appb-000005
参考图4a所示为推磁电阻传感单元所对应的磁矩取向及磁场取向的示意图,图4b为挽磁电阻传感单元所对应的磁矩取向及磁场取向的示意图。其中,推磁电阻传感单元的钉扎层方向角为α pi,挽磁电阻传感单元的钉扎层方向角为-α pi。磁电阻传感单元的钉扎层方向角固定不变,具体的推磁电阻传感单元的钉扎层方向角与挽磁电阻传感单元的钉扎层方向角不同且绝对值相等。
在正常的标准推挽式TMR线性磁电阻传感器中,标准推磁电阻传感单元的钉扎层方向角为90°,标准挽磁电阻传感单元的钉扎层方向角为-90°。虽然标准推磁电阻传感单元和标准挽磁电阻传感单元的自由层饱和磁场Hss可以取不同的值,但是标准推磁电阻传感单元的电阻RvsH/Hs的特征曲线和标准挽磁电阻传感单元的电阻RvsH/Hs的特征曲线均为图5所示的同一曲线。由此可知,推挽式TMR线性磁电阻传感器中,磁电阻传感单元的自由层饱和磁场Hs不影响RvsH/Hs的特征曲线,磁电阻传感单元的钉扎层方向角可能影响RvsH/Hs的特征曲线。
参考图6所示为不同钉扎层方向角所对应的RvsH/Hs的特征曲线。可以看出,磁电阻传感单元的钉扎层方向角为90°时,磁电阻传感单元具有最高线性度和最大线性的区间,因此对于单个基于隧道磁阻技术的推挽式线性磁电阻传感器而言,在零磁场电阻R0、磁电阻变化率MR以及自由层饱和磁场Hs确定的情况下,该磁电阻传感器的线性范围[-HL,HL]取值是恒定值。例如[-HL,HL]为[-3,3]。
从图6还可以看出,磁电阻传感单元的钉扎层方向角为非90°角,如0°、10°、20°、…、180°,磁电阻传感单元的RvsH/Hs特征曲线在区间[-HL,HL]内包含非线性阶段,且钉扎层方向角越偏离90°,其RvsH/Hs特征曲线在区间[-HL,HL]内的非线性阶段相对于线性阶段的占比逐渐增加。
由此可以得出结论,在推挽式TMR线性磁电阻传感器中设置两个或者多个具有不同关键特征参数的磁电阻传感单元,将磁电阻传感单元通过串联、并联或者混合串并联的方式进行连接,构成新的推挽式TMR线性磁电阻传感器,可以对各个磁电阻传感单元的RvsH特征曲线的非线性部分进行补偿,最终使得其灵敏度SvsH所定义的线性范围HL相对于标准推挽式线性磁电阻传感器的线性范围HLs得到大幅提高。其中不同关键特征参数包括不同的钉扎层方向角、不同的自由层饱和磁场Hs和不同的零磁场电阻R0中的至少一种。
参考图7所示为本揭露实施例提供的一种谐波增宽线性范围的磁电阻传感器的截面图,该多项推挽式磁电阻传感器包括:衬底100以及位于衬底100上的推挽式磁电阻传感 器90。
参考图8所示为图7中多项推挽式磁电阻传感器的电连接图,该多项推挽式磁电阻传感器包括推臂91和挽臂92。推臂91包括N种推磁电阻传感单元94,第i种推磁电阻传感单元94的关键特征参数为[(R0 i,MR i,H si,+α pi),a i]。挽臂92包括N种挽磁电阻传感单元,第i种挽磁电阻传感单元的关键特征参数为[(R0 i,MR i,H si,-α pi),a i]。磁电阻传感单元的串并联连接关系93采用串并联系数a i进行表征,95标记了磁电阻传感器单元的钉扎层磁矩方向,推臂91和挽臂92的N种磁电阻传感单元的连接方式完全相同,N种磁电阻传感单元之间可以以串联、并联或者串并联方式进行连接成推臂和挽臂。
对于任一标准推挽式线性磁电阻传感器,其推磁电阻传感单元的关键特征参数为[(R s,MR s,H ss,+α ps=90°),a s],挽磁电阻传感单元的关键特征参数为[(R s,MR s,H ss,-α ps=-90°),a s],其线性范围为[-HLs,HLs]。
图8所示多项推挽式磁电阻传感器中,存在着至少一组推磁电阻传感单元和其对应的挽磁电阻传感单元,其关键特征参数与标准推挽式线性磁电阻传感器不同,使得本实施例的多项推挽式磁电阻传感器具有高于标准推挽式线性磁电阻传感器的线性范围[-HL,HL],其增益因子Q=HL/HLs,Q为大于1的数。
表1列出了标准推挽式线性磁电阻传感器以及图8所示N=2的多项推挽式磁电阻传感器的关键特征参数H s、α p、灵敏度S=V/Vcc以及灵敏度差S-Ss随外磁场H变化的曲线值。其中,N=2的多项推挽式磁电阻传感器的推臂和挽臂的N种磁电阻传感单元均采用并联连接方式。表1各个参数的单位未示出。
Figure PCTCN2021070518-appb-000006
A、标准推挽式线性磁电阻传感器:
如表1所示,标准推挽式线性磁电阻传感器中,标准磁电阻传感单元的关键特征参数为[(R0 s,MR s,H ss,±α ps),a s],其中,选取标准推磁电阻传感器单元的关键特征参数为[(500*e3,200,10Oe,90°),1],标准挽磁电阻传感单元的关键特征参数为[(500*e3,200,10Oe,-90°),1],以此作为参考比较对象,其推臂的电阻R pushs和挽臂的电阻R pulls的公式表示如下:
R pushs=R(500e3,200,90°,10,1)   (7)
R pulls=R(500e3,200,-90°,10,1)   (8)
该推臂电阻R pushs和挽臂电阻R pulls在外磁场H作用下的电阻可以表示为:
Figure PCTCN2021070518-appb-000007
Figure PCTCN2021070518-appb-000008
其中,α fs为标准磁电阻传感单元的自由层磁矩方向角。
标准推挽式线性磁电阻传感器的灵敏度可以表示为:
Figure PCTCN2021070518-appb-000009
H取值可以在更宽的范围如[-16Oe,16Oe]区间内,选择100个数据点H k,k=1~100,并采用如下线性函数:
S=a·H   (12)
以此拟合SvsH曲线,通过设定阙值来计算HLs:
|S s-S|<0.1·S    (13)
计算结果显示,HLs约等于8.5,即其线性范围为[-8.5,+8.5]Oe。
B、N=2的多项推挽式磁电阻传感器:
假设N项推挽式磁电阻传感器包含N种磁电阻传感单元,其推磁电阻传感单元的关键特征参数为[(R0 i,MR i=200,H si,+α pi),a i=1],其挽磁电阻传感单元的关键特征参数为[(R0 i,MR i=200,H si,-α pi),a i=1],i=1,…,N;
B1、N种磁电阻传感单元串联连接时,其推臂电阻R push和挽臂电阻R pull可以表示为:
Figure PCTCN2021070518-appb-000010
Figure PCTCN2021070518-appb-000011
B2、N种磁电阻传感单元串并联连接时,其推臂电阻R push和挽臂电阻R pull可以表示为:
Figure PCTCN2021070518-appb-000012
Figure PCTCN2021070518-appb-000013
此外,桥臂电阻R除了是磁电阻传感单元钉扎层磁矩方向角和自由层饱和磁场的函数,还是磁电阻变化率和零磁场电阻R0的函数,即:
Figure PCTCN2021070518-appb-000014
Figure PCTCN2021070518-appb-000015
B3、N种磁电阻传感单元并联连接时,其推臂电阻R push和挽臂电阻R pull可以表示为:
Figure PCTCN2021070518-appb-000016
Figure PCTCN2021070518-appb-000017
此外,桥臂电阻R除了是磁电阻传感单元钉扎层磁矩方向角和自由层饱和磁场的函数,还是磁电阻变化率和零磁场电阻R0的函数,即:
Figure PCTCN2021070518-appb-000018
Figure PCTCN2021070518-appb-000019
Figure PCTCN2021070518-appb-000020
表1列出B3条件所对应的并联的N=2多项推挽式磁电阻传感器的关键特征参数,其中,推磁电阻传感单元的关键特征参数分别为:
[(R0 1=500e3,MR0 1=200,H s1=15.30,+α p1=116.2°),a 1=0.9824],
[(R0 2=500e3,MR0 2=200,H s2=9.61,+α p2=115.4°),a 2=0.0176];
挽磁电阻传感单元的关键特征参数分别为:
[(R0 1=500e3,MR0 1=200,H s1=15.30,-α p1=-116.2°),a 1=0.9824],
[(R0 2=500e3,MR0 2=200,H s2=9.61,-α p2=-115.4°),a 2=0.0176];
计算得出其磁场线性范围为:[-10.4,+10.4]Oe,磁场增益因子Q=10.4/8.5=1.22,显 然,B3所示线性范围相对于标准推挽式线性磁电阻传感器得到提高。
基于图8所示多项推挽式磁电阻传感器,可选的构成推臂的N种推磁电阻传感单元采用并联连接方式,构成挽臂的N种挽磁电阻传感单元采用并联连接方式;推臂的电阻R push、挽臂的电阻R pull和多项推挽式磁电阻传感电桥的电阻R i满足如下关系:
Figure PCTCN2021070518-appb-000021
Figure PCTCN2021070518-appb-000022
其中,R i(R0 i,MR i,H si,+α pi)表征推磁电阻传感单元的四个关键特征参数对应的电阻值,R i(R0 i,MR i,H si,-α pi)表征挽磁电阻传感单元的四个关键特征参数对应的电阻值。
参考图9所示为在更宽磁场范围[-16,+16]Oe内,标准推挽式线性磁电阻传感器以及N=2并联多项推挽式磁电阻传感器的灵敏度SvsH的关系曲线。可以看出,标准推挽式线性磁电阻传感器的灵敏度SvsH的关系曲线,以及N=2并联多项推挽式磁电阻传感器的灵敏度SvsH的关系曲线,会在H接近0的中间部分有重合区域,曲线两端的差别则较大。
图10比较了曲线灵敏度与拟合直线的相对误差(S-a*H)/a*H*100%vs H曲线。可以看出,标准推挽式线性磁电阻传感器的曲线,以及N=2并联多项推挽式磁电阻传感器的曲线,在正负10%上下两个极限范围内,N=2并联多项推挽式磁电阻传感器的曲线具有更大的磁场线性范围。
基于图8所示多项推挽式磁电阻传感器,可选的构成推臂的N种推磁电阻传感单元采用串联连接方式,构成挽臂的N种挽磁电阻传感单元采用串联连接方式;
推臂的电阻R push、挽臂的电阻R pull和多项推挽式磁电阻传感电桥的电阻R i满足如下关系:
Figure PCTCN2021070518-appb-000023
Figure PCTCN2021070518-appb-000024
其中,R i(R0 i,MR i,H si,+α pi)表征推磁电阻传感单元的四个关键特征参数对应的电阻值,R i(R0 i,MR i,H si,-α pi)表征挽磁电阻传感单元的四个关键特征参数对应的电阻值。
表2列出了标准推挽式线性磁电阻传感器以及图8所示N=2的多项推挽式磁电阻传感器的关键特征参数Hs、α p、灵敏度S=V/Vcc以及灵敏度差S-Ss随外磁场H变化的曲线值。其中,N=2的多项推挽式磁电阻传感器的推臂和挽臂的N种磁电阻传感单元均采用 并联或串联连接方式。表2各个参数的单位未示出。
Figure PCTCN2021070518-appb-000025
表2给出了一组N=2并联多项推挽式磁电阻传感器和标准推挽式线性磁电阻传感器的关键特征参数。其中,N=2并联多项推挽式磁电阻传感器中,推磁电阻传感单元的关键特征参数分别为:
[(R0 1=500e3,MR0 1=200,Hs 1=3.37,+α p1=90°),a 1=1],
[(R0 2=500e3,MR0 2=200,Hs 2=4.45,+α p2=180°),a 2=1];
而挽磁电阻传感单元关键参数分别为:
[(R0 1=500e3,MR0 1=200,H s1=3.37,-α p1=-90°),a 1=1],
[(R0 2=500e3,MR0 2=200,H s2=4.45,-α p2=-180°),a 2=1],
为了比较,表2还列出了N=2串联多项推挽式磁电阻传感器的关键特征参数,推磁电阻传感单元的关键特征参数分别为:
[(R0 1=500e3,MR0 1=200,H s1=5,+α p1=90°)a 1=1],
[(R0 2=500e3,MR0 2=200,H s2=50,+α p2=90°),a 2=1];
而挽磁电阻传感单元关键参数分别为:
[(R0 1=500e3,MR0 1=200,H s1=5,-α p1=-90°),a 1=1],
[(R0 2=500e3,MR0 2=200,H s2=50,-α p2=-90°),a 2=1],
图11为标准、N=2串联、N=2并联推挽式磁电阻传感器的灵敏度差值S-a*H vs H曲线。可以看出,N=2并联多项推挽式磁电阻传感器的差值曲线在灵敏度差值0值附近显示了更宽的磁场范围。
图12为标准、N=2串联、N=2并联推挽式磁电阻传感器的灵敏度S vs H曲线。可以看出,在[-3,3]Oe小磁场范围内,N=2并联和N=2串联多项推挽式磁电阻传感器具有近 似相同的曲线。从表2可以看出,标准推挽式线性磁电阻传感器灵敏度S=0.049993,N=2并联多项推挽式磁电阻传感器灵敏度为0.049456,N=2串联多项推挽式磁电阻传感器灵敏度为0.054993;从误差值S-a*H值来看,标准推挽式线性磁电阻传感器的误差值S-a*H值为-0.00505,N=2并联多项推挽式磁电阻传感器的误差值S-a*H值为2.81E-05,N=2串联多项推挽式磁电阻传感器的误差值S-a*H值为-0.00701,因此在小磁场范围内,并联多项推挽式磁电阻传感器误差更小,这也与图10结果一致。
基于此,还可选构成推臂的N种推磁电阻传感单元采用串并联混合连接方式,构成挽臂的N种挽磁电阻传感单元采用串并联混合连接方式;
推臂的电阻R push、挽臂的电阻R pull和多项推挽式磁电阻传感电桥的电阻R i满足如下关系:
Figure PCTCN2021070518-appb-000026
Figure PCTCN2021070518-appb-000027
其中,R i(R0 i,MR i,H si,+α pi)表征推磁电阻传感单元的四个关键特征参数对应的电阻值,R i(R0 i,MR i,H si,-α pi)表征挽磁电阻传感单元的四个关键特征参数对应的电阻值,m为大于或等于1且小于或等于N的整数。采用串并联混合连接方式的多项推挽式磁电阻传感器,可以得到所需的磁场线性范围。
示例性的,可选的磁电阻传感器还包括:位于衬底上的磁电阻分流电阻R sh,磁电阻分流电阻Rsh与多项推挽式磁电阻传感电桥连接,磁电阻分流电阻R sh的关键特征参数为[(R0 sh,MR sh,H ssh,α psh),a sh],存在着至少一组关键特征参数{[(R0 sh,MR sh,H sshpsh),a sh],[(R0 i,MR i,H si,±α pi),a i]},使得磁电阻分流电阻R sh的R-H特征曲线与多项推挽式磁电阻传感电桥中推磁电阻传感单元和挽磁电阻传感单元的R-H特征曲线进行叠加。
本实施例中提供的多项推挽式磁电阻传感器,其中引入磁电阻分流电阻R shunt,使得磁电阻分流电阻R shunt与多项推挽式磁电阻传感电桥串联,通过R shunt随磁场的变化曲线关系,来获得更高磁场线性范围的多项推挽式磁电阻传感器。具体的,磁电阻传感单元的磁电阻分流电阻R sh的R-H特征曲线与多项推挽式磁电阻传感电桥中推磁电阻传感单元和挽磁电阻传感单元的R-H曲线的进行叠加,使得包含磁电阻分流电阻的多项推挽式磁电阻传感电桥的线性范围大于标准推挽式线性磁电阻传感器的线性范围。
图13为带磁电阻分流电阻R shunt的多项推挽式磁电阻传感器100的电连接图。该多 项推挽式磁电阻传感器100包括线性推挽式磁电阻传感电桥110,其中,线性推挽式磁电阻传感电桥110可以为标准或者多项推挽式磁电阻传感电桥,其中磁电阻传感单元的关键特征参数为[(R0 i,MR i,H si,±α pi),a i],其中,i=1:N。该多项推挽式磁电阻传感器100还包括与线性推挽式磁电阻传感电桥110相连的磁电阻分流电阻R shunt120,磁电阻分流电阻R shunt120的关键特征参数为[(R0 sh,MR sh,H ssh,α psh),a sh],ash系数表明R shunt可以表征R0 sh之间的串联、并联或者串并联连接形式。
则多项推挽式磁电阻传感器100的灵敏度可以表示为:
Figure PCTCN2021070518-appb-000028
图14为带磁电阻分流电阻R shunt的多项推挽式磁电阻传感器200电连接图。该多项推挽式磁电阻传感器200包括线性推挽式磁电阻传感电桥210,其中,线性推挽式磁电阻传感电桥210可以为标准或者多项推挽式磁电阻传感电桥,磁电阻传感单元的关键特征参数为[(R0 i,MR i,H si,±α pi),a i]。该多项推挽式磁电阻传感器200还包括与线性推挽式磁电阻传感电桥210相连的分流推电阻R shunt220,分流推电阻R shunt220的关键特征参数为[(R0 sh,MR sh,H ssh,+α psh),a sh],以及还包括分流挽电阻R shunt230,分流挽电阻R shunt230的关键特征参数为[(R0 sh,MR sh,H ssh,-α psh),a sh]。
则多项推挽式磁电阻传感器200的灵敏度可以表示为:
Figure PCTCN2021070518-appb-000029
表3为带磁电阻分流电阻的多项推挽式线性磁电阻传感器及标准推挽式线性磁电阻传感器的关键参数比较。
Figure PCTCN2021070518-appb-000030
Figure PCTCN2021070518-appb-000031
对于一个标准推挽式线性磁电阻传感器,其标准推磁电阻传感单元和标准挽磁电阻传感单元关键参数分别为:
[(R 0=10e3,MR=200,Hs=10,+α p=+90),a1=1]
[(R 0=10e3,MR=200,Hs=10,-α p=-90),a1=1]
其中存在一个磁电阻分流电阻R shunt,其关键特征参数为:
[(R0 sh=2e3,MR sh=200,H ssh=10,anglePL sh=180),a 1=1]
和与之相连的N=1推挽式线性磁电阻传感器,其推磁电阻传感单元和挽磁电阻传感单元关键参数分别为:
[(R0=8e3,MR=200,H s=7.9,+α p=+90),a 1=1]
[(R0=8e3,MR=200,H s=7.9,-α p=-90),a 1=1]
图15为推磁电阻传感单元和挽磁电阻传感单元以及磁电阻分流电阻的磁场特征曲线,可以看出,磁电阻分流电阻具有对称曲线特征,分别和推磁电阻传感单元和挽磁电阻传感单元形成互补。
图16为标准推挽线性磁电阻传感器和带分流电阻的多项推挽线性磁电阻传感器的灵敏度S vs外磁场H曲线特征,可以看出,相对于标准推挽线性磁电阻传感器,带分流电阻的多项推挽式线性磁电阻传感器具有更宽的线性范围。
注意,上述仅为本揭露的较佳实施例及所运用技术原理。本领域技术人员会理解,本揭露不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本揭露的保护范围。因此,虽然通过以上实施例对本揭露进行了较为详细的说明,但是本揭露不仅仅限于以上实施例,在不脱离本揭露构思的情况下,还可以包括更多其他等效实施例,而本揭露的范围由所附的权利要求范围决定。

Claims (9)

  1. 一种谐波增宽线性范围的磁电阻传感器,其特征在于,包括:
    衬底;
    位于所述衬底上的多项推挽式磁电阻传感电桥,所述多项推挽式磁电阻传感电桥包括推臂和挽臂,所述推臂包含N种推磁电阻传感单元,所述挽臂包含N种挽磁电阻传感单元,N为大于1的整数;
    每个磁电阻传感单元的关键特征参数包括零磁场电阻R0 i、磁电阻变化率MR i、自由层饱和磁场H si、钉扎层磁矩方向角±α pi以及串并联系数a i,其中,所述推磁电阻传感单元具有钉扎层磁矩方向角+α pi,所述挽磁电阻传感单元具有钉扎层磁矩方向角-α pi,i为1到N的整数,所述推磁电阻传感单元及其对应的所述挽磁电阻传感单元的关键特征参数不同于标准推挽式线性磁电阻传感器的标准磁电阻传感单元的关键特征参数,
    存在着至少一组关键特征参数[(R0 j,MR j,H sj,±α pj),a j],j为大于或等于1且小于或等于N的整数,表征所述推磁电阻传感单元和其对应的所述挽磁电阻传感单元的R-H特征曲线线性部分、非线性谐波部分进行叠加,使得所述多项推挽式磁电阻传感电桥的线性范围大于所述标准推挽式线性磁电阻传感器的线性范围,其中,所述标准磁电阻传感单元的关键特征参数为[(R0 s,MR s,H ss,±α ps),a s],±α ps=90°,a s=1。
  2. 根据权利要求1所述的磁电阻传感器,其特征在于,构成所述推臂的N种推磁电阻传感单元采用并联连接方式,构成所述挽臂的N种挽磁电阻传感单元采用并联连接方式;
    所述推臂的电阻R push、所述挽臂的电阻R pull和所述多项推挽式磁电阻传感电桥的电阻R i满足如下关系:
    Figure PCTCN2021070518-appb-100001
    Figure PCTCN2021070518-appb-100002
    其中,R i(R0 i,MR i,H si,+α pi)表征所述推磁电阻传感单元的四个关键特征参数对应的电阻值,R i(R0 i,MR i,H si,-α pi)表征所述挽磁电阻传感单元的四个关键特征参数对应的电阻值。
  3. 根据权利要求1所述的磁电阻传感器,其特征在于,构成所述推臂的N种推磁电阻传感单元采用串联连接方式,构成所述挽臂的N种挽磁电阻传感单元采用串联连接方式;
    所述推臂的电阻R push、所述挽臂的电阻R pull和所述多项推挽式磁电阻传感电桥的电 阻R i满足如下关系:
    Figure PCTCN2021070518-appb-100003
    Figure PCTCN2021070518-appb-100004
    其中,R i(R0 i,MR i,H si,+α pi)表征所述推磁电阻传感单元的四个关键特征参数对应的电阻值,R i(R0 i,MR i,H si,-α pi)表征所述挽磁电阻传感单元的四个关键特征参数对应的电阻值。
  4. 根据权利要求1所述的磁电阻传感器,其特征在于,构成所述推臂的N种推磁电阻传感单元采用串并联混合连接方式,构成所述挽臂的N种挽磁电阻传感单元采用串并联混合连接方式;
    所述推臂的电阻R push、所述挽臂的电阻R pull和所述多项推挽式磁电阻传感电桥的电阻R i满足如下关系:
    Figure PCTCN2021070518-appb-100005
    Figure PCTCN2021070518-appb-100006
    其中,R i(R0 i,MR i,H si,+α pi)表征所述推磁电阻传感单元的四个关键特征参数对应的电阻值,R i(R0 i,MR i,H si,-α pi)表征所述挽磁电阻传感单元的四个关键特征参数对应的电阻值,m为大于或等于1且小于或等于N的整数。
  5. 根据权利要求1所述的磁电阻传感器,其特征在于,还包括:位于所述衬底上的磁电阻分流电阻R sh,所述磁电阻分流电阻R sh与所述多项推挽式磁电阻传感电桥连接,所述磁电阻分流电阻R sh的关键特征参数为[(R0 sh,MR sh,H ssh,±α psh),a sh],
    存在着至少一组关键特征参数{[(R0 sh,MR sh,H ssh,±α psh),a sh],[(R0 i,MR i,H si,±α pi),a i]},使得所述磁电阻分流电阻R sh的R-H特征曲线与所述多项推挽式磁电阻传感电桥中推磁电阻传感单元和挽磁电阻传感单元的R-H特征曲线进行叠加。
  6. 根据权利要求1所述的磁电阻传感器,其特征在于,所述多项推挽式磁电阻传感电桥的磁电阻传感单元的钉扎层磁矩方向角的取值范围为0°-360°。
  7. 根据权利要求1所述的磁电阻传感器,其特征在于,所述多项推挽式磁电阻传感 电桥的磁电阻传感单元的零磁场电阻的取值范围为1KΩ-1000MΩ。
  8. 根据权利要求1所述的磁电阻传感器,其特征在于,所述多项推挽式磁电阻传感电桥的磁电阻传感单元的自由层饱和磁场的取值范围为1-100Oe。
  9. 根据权利要求1所述的磁电阻传感器,其特征在于,所述多项推挽式磁电阻传感电桥的线性范围与所述标准推挽式线性磁电阻传感器的线性范围的比值大于1且小于或等于2。
PCT/CN2021/070518 2020-01-10 2021-01-06 一种谐波增宽线性范围的磁电阻传感器 WO2021139695A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022542111A JP7432964B2 (ja) 2020-01-10 2021-01-06 高調波的に広げられた線形範囲を有する磁気抵抗センサ
EP21738821.4A EP4089428A4 (en) 2020-01-10 2021-01-06 MAGNETORESISTIC SENSOR WITH HARMONIC EXTENDED LINEAR RANGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010028130.1A CN111198342B (zh) 2020-01-10 2020-01-10 一种谐波增宽线性范围的磁电阻传感器
CN202010028130.1 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139695A1 true WO2021139695A1 (zh) 2021-07-15

Family

ID=70744733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070518 WO2021139695A1 (zh) 2020-01-10 2021-01-06 一种谐波增宽线性范围的磁电阻传感器

Country Status (4)

Country Link
EP (1) EP4089428A4 (zh)
JP (1) JP7432964B2 (zh)
CN (1) CN111198342B (zh)
WO (1) WO2021139695A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198342B (zh) * 2020-01-10 2021-07-06 江苏多维科技有限公司 一种谐波增宽线性范围的磁电阻传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076737A (zh) * 2004-10-11 2007-11-21 皇家飞利浦电子股份有限公司 非线性磁场传感器和电流传感器
US7394247B1 (en) * 2007-07-26 2008-07-01 Magic Technologies, Inc. Magnetic field angle sensor with GMR or MTJ elements
CN102565727A (zh) * 2012-02-20 2012-07-11 江苏多维科技有限公司 用于测量磁场的磁电阻传感器
CN202939205U (zh) * 2012-11-26 2013-05-15 王建国 Tmr电流传感器
US20160320462A1 (en) * 2015-04-29 2016-11-03 Everspin Technologies, Inc. Magnetic field sensor with 3-axes self test
CN206583459U (zh) * 2016-12-19 2017-10-24 无锡乐尔科技有限公司 线性传感器
CN108919147A (zh) * 2018-06-22 2018-11-30 钱正洪 一种三轴磁场传感器
CN109633496A (zh) * 2018-12-27 2019-04-16 北京航空航天大学青岛研究院 单、双轴磁场传感器与其制备方法以及设备
CN111198342A (zh) * 2020-01-10 2020-05-26 江苏多维科技有限公司 一种谐波增宽线性范围的磁电阻传感器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150725A1 (ja) * 2009-06-24 2010-12-29 アルプス電気株式会社 磁気検出装置
CN102298125B (zh) * 2011-03-03 2013-01-23 江苏多维科技有限公司 推挽桥式磁电阻传感器
US8975891B2 (en) * 2011-11-04 2015-03-10 Honeywell International Inc. Apparatus and method for determining in-plane magnetic field components of a magnetic field using a single magnetoresistive sensor
US9588134B2 (en) * 2012-05-10 2017-03-07 Infineon Technologies Ag Increased dynamic range sensor
CN102809665B (zh) * 2012-06-04 2016-08-03 江苏多维科技有限公司 一种磁电阻齿轮传感器
CN203587786U (zh) * 2013-10-21 2014-05-07 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
TWI633321B (zh) * 2015-03-30 2018-08-21 財團法人工業技術研究院 用於磁場感測之穿隧磁阻裝置
CN204758807U (zh) * 2015-06-09 2015-11-11 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器
US11187763B2 (en) * 2016-03-23 2021-11-30 Analog Devices International Unlimited Company Offset compensation for magnetic field detector
CN107479010B (zh) * 2016-06-07 2019-06-04 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器
CN106160670B (zh) * 2016-08-18 2023-05-30 江苏多维科技有限公司 一种平衡磁电阻混频器
CN206671519U (zh) * 2017-03-24 2017-11-24 江苏多维科技有限公司 一种单芯片双轴磁电阻线性传感器
US10739165B2 (en) * 2017-07-05 2020-08-11 Analog Devices Global Magnetic field sensor
CN110426658A (zh) * 2019-07-10 2019-11-08 杭州电子科技大学 一种闭环式芯上反馈的宽量程垂直灵敏磁传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076737A (zh) * 2004-10-11 2007-11-21 皇家飞利浦电子股份有限公司 非线性磁场传感器和电流传感器
US7394247B1 (en) * 2007-07-26 2008-07-01 Magic Technologies, Inc. Magnetic field angle sensor with GMR or MTJ elements
CN102565727A (zh) * 2012-02-20 2012-07-11 江苏多维科技有限公司 用于测量磁场的磁电阻传感器
CN202939205U (zh) * 2012-11-26 2013-05-15 王建国 Tmr电流传感器
US20160320462A1 (en) * 2015-04-29 2016-11-03 Everspin Technologies, Inc. Magnetic field sensor with 3-axes self test
CN206583459U (zh) * 2016-12-19 2017-10-24 无锡乐尔科技有限公司 线性传感器
CN108919147A (zh) * 2018-06-22 2018-11-30 钱正洪 一种三轴磁场传感器
CN109633496A (zh) * 2018-12-27 2019-04-16 北京航空航天大学青岛研究院 单、双轴磁场传感器与其制备方法以及设备
CN111198342A (zh) * 2020-01-10 2020-05-26 江苏多维科技有限公司 一种谐波增宽线性范围的磁电阻传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089428A4 *

Also Published As

Publication number Publication date
CN111198342B (zh) 2021-07-06
JP2023509093A (ja) 2023-03-06
EP4089428A1 (en) 2022-11-16
JP7432964B2 (ja) 2024-02-19
EP4089428A4 (en) 2024-01-24
CN111198342A (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
US20030070497A1 (en) Rotation angle sensor capable of accurately detecting rotation angle
US9664768B2 (en) Magnetic sensor
US20120262164A1 (en) Magneto-resistive sensor for measuring magnetic fields
CN111044953A (zh) 单一芯片全桥tmr磁场传感器
WO2013097542A1 (zh) 一种电流传感器
WO2021139695A1 (zh) 一种谐波增宽线性范围的磁电阻传感器
US20150309129A1 (en) Magnetic sensor and production method therefor
US20190120916A1 (en) Anisotropic magnetoresistive (amr) sensor without set and reset device
US6819101B2 (en) Magnetic detector
WO2018029883A1 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
US20240045003A1 (en) Magnetic sensor
WO2019035294A1 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
WO2016017490A1 (ja) 磁気スイッチ
JP4286739B2 (ja) 磁気検出装置
CN116718963A (zh) 基于电流退火的线性gmr磁传感器制造方法及系统
CN111965571B (zh) 一种gmr磁场传感器的制备方法
CN212008887U (zh) 一种单一芯片全桥tmr磁场传感器
CN216144871U (zh) 一种温度补偿电流传感器
CN117177654B (zh) 一种磁阻元件及其制备方法、电子设备
CN216387341U (zh) 磁电阻传感器芯片
CN116106801B (zh) 磁阻传感器、磁传感装置及其制备方法
JP2017139269A (ja) 磁気センサ、磁気センサの製造方法および電流センサ
KR100462792B1 (ko) 교환바이어스형 스핀밸브를 이용한 브리지센서 제조방법
JP2806549B2 (ja) 磁気抵抗効果素子
JP2008209317A (ja) 磁気式角度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021738821

Country of ref document: EP

Effective date: 20220810